metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Transition metal complexes with pyrazole-based ligands. XIX. Di­aqua­bis­(3,5-di­methyl-1H-pyrazole-1-carbox­amidine-κ2N,N′)­metal(II) ­dinitrate, with metal = Co and Ni

CROSSMARK_Color_square_no_text.svg

aFaculty of Metallurgy and Technology, University of Montenegro, 81000 Podgorica, Serbia and Montenegro, bFaculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia and Montenegro, and cDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: ivana.radosavljevic@durham.ac.uk

(Received 27 May 2004; accepted 15 July 2004; online 4 September 2004)

The two title isostructural and isomorphous complexes, [M(C6H10N4)2(H2O)2](NO3)2 (M is Co or Ni), contain the transition metal in a distorted octahedral geometry, coordinated by four N atoms of two neutral bidentate organic ligands in the equatorial plane and two water O atoms mol­ecules in the axial positions. The cation is centrosymmetric, with the transition metal located on an inversion centre. The structures are stabilized by a three-dimensional network of hydrogen bonding.

Comment

Transition metal complexes with pyrazole-derived ligands exhibit interesting coordination chemistry and have attracted the research interest of numerous authors (Trofimenko, 1972[Trofimenko, S. (1972). Chem. Rev. 72, 447-509.], 1986[Trofimenko, S. (1986). Prog. Inorg. Chem. 34, 115-210.], 1993[Trofimenko, S. (1993). Chem. Rev. 93, 943-980.], and references therein). These compounds find application in antipyretics and antirheumatics, in herbicides and fungicides, and also as metal ion extractants (Ding et al., 1994[Ding, L., Grehn, L., De Clercq, E., Andrei, G., Snoeck, R., Balzarini, J., Fransson, B. & Ragnarsson, U. (1994). Acta Chim. Scand. 48, 498-505.]; Goslar et al., 1988[Goslar, J., Sczaniecki, P. B., Strawiak, M. M. & Mrozinski, J. (1988). Transition Met. Chem. 13, 81-86.]). A more recent area of research activity has focused on the biocoordination chemistry of pyrazole and its macrocyclic derivatives (Bienvenue et al., 1995[Bienvenue, E., Chona, S., Loborecio, M. A., Marzin, C., Pacheco, P., Seta, P. & Tarrago, G. (1995). J. Inorg. Biochem. 57, 157-168.]; Gupta et al., 1996[Gupta, R., Pathak, D. & Jindal, D. P. (1996). Eur. J. Med. Chem. Chim. Ther. 31, 241-247.]).

We have synthesized and characterized a number of pyrazole-derived ligands and their metal complexes, with the aim of investigating the influence of the pyrazole ring substituents on complex formation (Jaćimović et al., 1999[Jaćimović, Ž. K., Tomić, Z. D., Bogdanović, G. A., Iveges, E. Z. & Leovac, V. M. (1999). Acta Cryst. C55, 1769-1771.], 2003[Jaćimović, Ž. K., Giester, G., Tomic, Z. D. & Leovac, V. M. (2003). Acta Cryst. C59, m381-m383.]; Tomić et al., 2000[Tomić, Z. D., Jaćimović, Ž. K., Leovac, V. M. & Češljević, V. I. (2000). Acta Cryst. C56, 777-779.]; Mészáros Szécsényi et al., 2001[Mészáros Szécsényi, K., Leovac, V. M., Jaćimović, Z. K., Češljevic, V. I., Kovács, A., Pokol, G. & Gal, S. (2001). J. Therm. Anal. Calorim. 63, 723-732.], 2003[Mészáros Szécsényi, K., Leovac, V. M., Češljević, V. I., Kovács, A., Pokol, G., Argay, Gy., Kálmán, A., Bogdanović, G. A., Jaćimović, Ž. K. & Spasojević-de Biré, A. (2003). Inorg. Chim. Acta, 353, 253-262.]). We report here the crystal structures of the isomorphous Co and Ni complexes of the ligand 3,5-di­methyl-1H-­pyrazole-1-carbox­amidine nitrate (Khudoyarov et al., 1995[Khudoyarov, A. B., Mirdzhalalov, F. F., Sharipov, Kh. T. & Khudaiberdyeva, S. P. (1995). Uzb. Khim. Zh. pp. 5-6. (In Russian.)]). The Co complex, (I[link]), has been prepared for the first time, while the structure of the Ni analogue, (II[link]), has been determined previously (Podder et al., 1986[Podder, A., Mukhopadhyay, B. P., Saha, N., Saha, A. & Stensland, B. (1986). J. Crystallogr. Spectrosc. Res. 19, 71-76.]). However, the geometry and orientation of the water mol­ecules in the previously reported structure were implausible. For example, the O—H bond lengths were 0.64 and 0.90 Å, the H—O—H bond angle was 96°, and the mol­ecule was oriented in such a way that one of the H atoms was only 1.4 Å from the Ni centre. Clearly, such an incorrect model does not permit an accurate description of the hydrogen-bonding interactions, which play a significant role in the stability of this complex and which will be discussed below.

[Scheme 1]

The asymmetric units of (I[link]) and (II[link]) contains half an [M(C6H10N4)2(H2O)2]2+ cation, located on an inversion centre, and an NO3 anion. The CoII and NiII cations are found in a distorted octahedral environment, coordinated to the ligand in the equatorial plane through pyrazole ring N atoms and the adjacent amidinium group N atoms. The coordination sphere is completed by two O atoms belonging to water mol­ecules in axial positions (Fig. 1[link]).

In (I[link]), the equatorial bond lengths are Co—N2 = 2.0871 (8) Å and Co—N3 2.0842 (9) Å, and the ligand bite angle is 76.46 (3)°. The axial Co—O4 bond length is 2.1737 (7) Å. The corresponding parameters for (II[link]) are 2.0474 (11) and 2.0552 (12) Å, 77.67 (4)°, and 2.1520 (10) Å. In both cases, the ligand ring system is essentially planar, with the amidinium group tilted relative to the substituted pyrazole ring by 3.7° in (I[link]) and by 2.2° in (II[link]). This is in contrast to the molecular structure of the ligand itself (Khudoyarov et al., 1995[Khudoyarov, A. B., Mirdzhalalov, F. F., Sharipov, Kh. T. & Khudaiberdyeva, S. P. (1995). Uzb. Khim. Zh. pp. 5-6. (In Russian.)]), where a significant departure from planarity exists, with the amidinium group twisted at an angle of 34° relative to the plane of the pyrazole ring. In the formation of complexes (I[link]) and (II[link]), the geometry of the ligand is adjusted to accommodate the coordination requirements of the transition metal.

Packing diagrams for the title complexes are shown in Fig. 2[link]. The cations pack in such a way that mol­ecules lying parallel form layers of alternating orientation. Layers of cations are separated by layers of nitrate anions. This arrangement gives rise to a system of hydrogen bonding involving the N atoms of the amino group and the water O atoms as donors, and the O atoms of the nitrate groups as acceptors. Two O atoms of a given nitrate group form hydrogen bonds to two cations in the layer above (with the amino group of one mol­ecule and water in the other), while the third forms a bifurcated hydrogen bond to two cations in the layer below. The adjacent nitrate group forms the same number and types of hydrogen bonds, but in the opposite orientation, as shown in Fig. 2[link]. Details of the hydrogen-bonding geometries for the two complexes are given in Tables 2[link] and 4[link]. This three-dimensional pattern of hydrogen bonding imparts stability to the crystal structures of these two complexes.

[Figure 1]
Figure 1
Views of the (a) the Co complex, (I[link]), and (b) the Ni complex, (II[link]), with their atom-numbering schemes. Each asymmetric unit consists of half a cation, with the metal on an inversion centre, and one nitrate anion. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2]
Figure 2
Views of the packing and hydrogen-bonding schemes for (a) complex (I[link]) and (b) complex (II[link]).

Experimental

For the preparation of (I[link]), an ethanol solution (5 ml) of Co(OAc)2·4H2O (0.06 g, 0.25 mmol) was added to an ethanol solution (5 ml) of the ligand 3,5-di­methyl­pyrazole-1-carbox­amidine nitrate (0.1 g, 0.5 mmol) and the mixture was gently heated. After 48 h, orange crystals of (I[link]) were filtered off and washed with ethanol (yield 0.18 g, 65%). Elemental analysis, found (calculated): C 28.89 (29.08), N 28.30 (28.27), H 4.96% (4.89%). For the preparation of (II[link]), an ethanol solution (5 ml) of Ni(OAc)2·4H2O (0.06 g, 0.25 mmol) was added to an ethanol solution (5 ml) of the ligand 3,5-di­methyl­pyrazole-1-carbox­amidine nitrate (0.1 g, 0.5 mmol) and the mixture was gently heated. After 60 h, purple crystals of (II[link]) were filtered off and washed with ethanol (yield 0.18 g, 65%). Elemental analysis, found (calculated): C 28.93 (29.10), N 28.30 (28.29), H 4.96% (4.89%).

Compound (I)[link]

Crystal data
  • [Co(C6H10N4)2(H2O)2](NO3)2

  • Mr = 495.32

  • Monoclinic, P21/n

  • a = 9.1067 (11) Å

  • b = 10.9344 (13) Å

  • c = 10.4425 (13) Å

  • β = 107.602 (2)°

  • V = 991.1 (2) Å3

  • Z = 2

  • Dx = 1.660 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 7486 reflections

  • θ = 5.2–61.7°

  • μ = 0.93 mm−1

  • T = 120 K

  • Rectangular prism, orange

  • 0.24 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.840, Tmax = 0.911

  • 13 055 measured reflections

  • 2975 independent reflections

  • 2920 reflections with I > 2σ(I)

  • Rint = 0.02

  • θmax = 30.9°

  • h = −12 → 13

  • k = −15 → 15

  • l = −15 → 14

Refinement
  • Refinement on F2

  • R(F) = 0.027

  • wR(F2) = 0.062

  • S = 0.98

  • 2920 reflections

  • 190 parameters

  • All H-atom parameters refined

  • Weighting scheme: method, part 1, Chebychev polynomial (Watkin, 1994[Watkin, D. J. (1994). Acta Cryst. A50, 411-437.]; Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]), [weight] = 1/[A0T0(x) + A1T1(x) + … + An−1Tn−1(x)], where Ai are the Chebychev coefficients 1.62, 2.12 and 0.556, and x = Fcalc/Fmax. Method = robust weighting (Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]), W = [weight] × [1−(ΔF/6σF)2]2

  • (Δ/σ)max = 0.001

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Co1—N2 2.0871 (8)
Co1—N3 2.0842 (9)
Co1—O4 2.1737 (7)
N1—N2 1.3778 (10)
N1—C1 1.4176 (12)
N1—C5 1.3731 (12)
N2—C3 1.3256 (12)
N3—C1 1.2890 (12)
N5—O1 1.2408 (11)
N5—O2 1.2582 (11)
N5—O3 1.2546 (11)
N4—C1 1.3361 (12)
C2—C3 1.4918 (13)
C3—C4 1.4104 (12)
C4—C5 1.3717 (13)
C5—C6 1.4860 (13)
N2—Co1—N3 76.46 (3) 
N2—Co1—O4 91.79 (3)
N3—Co1—O4 87.79 (3)

Table 2
Hydrogen-bonding geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H9⋯O1i 0.84 (2) 2.249 (18) 2.8572 (13) 129.7 (16)
N4—H10⋯O2ii 0.811 (18) 2.114 (18) 2.9136 (13) 168.8 (18)
O4—H11⋯O2 0.772 (19) 2.081 (19) 2.8539 (12) 179.5 (14)
O4—H12⋯O3iii 0.85 (2) 2.14 (2) 2.9799 (12) 169.6 (18)
Symmetry codes: (i) [{\script{1\over 2}}+x,{\script{1\over 2}}-y,{\script{1\over 2}}+z]; (ii) 3-x,1-y,2-z; (iii) [{\script{5\over 2}}-x,{\script{1\over 2}}+y,{\script{3\over 2}}-z].

Compound (II)[link]

Crystal data
  • [Ni(C6H10N4)2(H2O)2](NO3)2

  • Mr = 495.10

  • Monoclinic, P21/n

  • a = 9.077 (3) Å

  • b = 10.866 (4) Å

  • c = 10.456 (3) Å

  • β = 107.251 (15)°

  • V = 985.0 (6) Å3

  • Z = 2

  • Dx = 1.669 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 6757 reflections

  • θ = 5.2–62.2°

  • μ = 1.05 mm−1

  • T = 120 K

  • Rectangular prism, purple

  • 0.20 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.803, Tmax = 0.881

  • 13 257 measured reflections

  • 2990 independent reflections

  • 2617 reflections with I > 2σ(I)

  • Rint = 0.02

  • θmax = 31.0°

  • h = −12 → 12

  • k = −15 → 15

  • l = −14 → 14

Refinement
  • Refinement on F2

  • R(F) = 0.026

  • wR(F2) = 0.062

  • S = 0.98

  • 2617 reflections

  • 190 parameters

  • All H-atom parameters refined

  • Weighting scheme, method, part 1, Chebychev polynomial (Watkin, 1994[Watkin, D. J. (1994). Acta Cryst. A50, 411-437.]; Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]), [weight] = 1/[A0T0(x) + A1T1(x) + … + An−1Tn−1(x)], where Ai are the Chebychev coefficients 1.85, 2.44 and 0.676, and x = Fcalc/Fmax. Method = robust weighting (Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]), W = [weight] × [1−(ΔF/6σF)2]2

  • (Δ/σ)max = 0.001

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.47 e Å−3

Table 3
Selected geometric parameters (Å, °) for (II)[link]

Ni1—N2 2.0474 (11)
Ni1—N3 2.0552 (12)
Ni1—O4 2.1520 (10)
N1—N2 1.3776 (12)
N1—C2 1.4186 (14)
N1—C5 1.3753 (14)
N2—C3 1.3275 (14)
N3—C2 1.2833 (14)
N4—C2 1.3402 (14)
N5—O1 1.2402 (13)
N5—O2 1.2589 (13)
N5—O3 1.2548 (13)
C1—C3 1.4919 (16)
C3—C4 1.4106 (14)
C4—C5 1.3701 (16)
C5—C6 1.4863 (15)
N2—Ni1—N3 77.67 (4) 
N2—Ni1—O4 91.05 (4)
N3—Ni1—O4 88.43 (4)

Table 4
Hydrogen-bonding geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H9⋯O1i 0.83 (2) 2.256 (19) 2.8604 (18) 130.0 (17)
N4—H10⋯O2ii 0.818 (19) 2.113 (19) 2.9171 (18) 167.5 (18)
O4—H12⋯O2 0.76 (2) 2.09 (2) 2.8537 (16) 179 (2)
O4—H11⋯O3iii 0.82 (2) 2.17 (2) 2.9849 (17) 169.9 (18)
Symmetry codes: (i) [{\script{1\over 2}}+x,{\script{1\over 2}}-y,{\script{1\over 2}}+z]; (ii) 3-x,1-y,2-z; (iii) [{\script{5\over 2}}-x,{\script{1\over 2}}+y,{\script{3\over 2}}-z].

H atoms were located in difference Fourier maps and refined isotropically. Refined distance ranges are as follows: C—H = 0.91 (2)–0.99 (2) Å, N—H = 0.74 (2)–0.84 (2) Å and O—H = 0.76 (2)–0.85 (2) Å.

For both compounds, data collection: SMART (Bruker, 1999[Bruker (1999). SMART (Version 5.049) and SAINT (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART (Version 5.049) and SAINT (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ATOMS (Dowty, 2000[Dowty, E. (2000). ATOMS for Windows. Version 5.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Transition metal complexes with pyrazole-derived ligands exhibit interesting coordination chemistry and have attracted the research interest of numerous authors (Trofimenko, 1972, 1986, 1993, and references therein). These phases find applications in antipyretics and antirheumatics, in herbicides and fungicides, and also as metal ion extragents [extractants?] (Ding et al., 1994; Goslar et al., 1988). A more recent area of research activity has focused on the biocoordination chemistry of pyrazole and its macrocyclic derivatives (Bienvenue et al., 1995; Gupta et al., 1996).

We have synthesized and characterized a number of pyrazole-derived ligands and their metal complexes, with the aim of investigating the influence of the pyrazole ring substituents on complex formation (Jaćimović et al., 1999, 2003; Tomić et al., 2000; Mészáros Szécsényi et al., 2001, 2003). We report here the crystal structures of the isomorphous Co and Ni complexes of the ligand 3,5-dimethylpyrazole-1-carboxamidine nitrate (Khudoyarov et al., 1995). The Co complex, (I), has been prepared for the first time, while the structure of the Ni analogue, (II), has been determined previously (Podder et al., 1986). However, the geometry and orientation of the water molecules in that reported structure was implausible. For example, the O—H bond lengths are 0.64 and 0.90 Å, the H—O—H bond angle is 96°, and the molecule is oriented in such a way that one of the H atoms lies only 1.4 Å away from the Ni centre. Clearly, such an incorrect model does not permit an accurate description of the hydrogen-bonding interactions, which play a significant role in the stability of this complex and which will be discussed below. \sch

The asymmetric unit of (I) and (II) contains half an (MC12N8O2H24)2+ cation, located on an inversion centre, and an NO3 anion. The CoII and NiII cations are found in a distorted octahedral environment, coordinated to the ligand in the equatorial plane through the pyrazole ring N atoms and the adjacent amidinium group N atoms. The coordination sphere is completed by two O atoms belonging to water molecules in axial positions (Fig. 1).

In (I), the equatorial bond lengths are Co—N2 2.0871 (8) and Co—N3 2.0842 (9) Å, and the ligand bite angle is 76.46 (3)°. The axial Co—O4 bond length is 2.1737 (7) Å. The corresponding parameters for (II) are 2.0474 (11) and 2.0552 (12) Å, 77.67 (4)°, and 2.1520 (10) Å. In both cases, the ligand ring system is essentially planar, with the amidinium group tilted relative to the substituted pyrazole ring by 3.7° in (I) and by 2.2° in (II). This is in contrast with the molecular structure of the ligand itself (Khudoyarov et al., 1995), where a significant departure from planarity exists, with the amidinium group twisted at an angle of 34° relative to the plane of the pyrazole ring. In the formation of complexes (I) and (II), the geometry of the ligand is adjusted to accommodate the coordination requirements of the transition metal.

Packing diagrams for the title complexes are shown in Fig. 2. The cations pack in such a way that molecules lying parallel form layers of alternating orientation. Layers of cations are separated by layers of nitrate anions. This arrangement gives rise to a system of hydrogen bonding involving the N atoms of the amino group and the water O atoms as donors, and the O atoms of the nitrate groups as acceptors. Two O atoms of a given nitrate group form hydrogen bonds to two cations in the layer above (with the amino group on one molecule and water on the other), while the third forms a bifurcated hydrogen bond to two cations in the layer below. The adjacent nitrate group forms the same number and types of hydrogen bonds, but in the opposite orientation, as shown in Fig. 2. Details of the hydrogen-bonding geometries for the two complexes are given in Tables 2 and 4. This three-dimensional pattern of hydrogen bonding imparts stability to the crystal structures of these two complexes.

Experimental top

For the preparation of (I), 5 ml of an ethanolic solution of Co(OAc)2.4 H2O (0.06 g, 0.25 mmol) was added to 5 ml of an ethanolic solution of the ligand 3,5-dimethylpyrazole-1-carboxamidine nitrate (0.1 g, 0.5 mmol) and the mixture was gently heated. After 48 h, orange crystals of (I) were filtered off and washed with ethanol (yield 0.08 g). Elemental analysis, found (calculated): C 28.89 (29.08), N 28.30 (28.27), H 4.96 (4.89)%. For the preparation of (II), 5 ml of an ethanolic solution of Ni(OAc)2.4 H2O (0.06 g, (0.25 mmol) was added to 5 ml of an ethanolic solution of the ligand 3,5-dimethylpyrazole-1-carboxamidine nitrate (0.1 g, 0.5 mmol) and the mixture was gently heated. After 60 h, purple crystals of (II) were filtered off and washed with ethanol (yield 0.18 g). Elemental analysis, found (calculated): C 28.93 (29.10), N 28.30 (28.29), H 4.96 (4.89)%.

Refinement top

H atoms were located in the difference Fourier maps and refined isotropically. Please give ranges for refined C—H, N—H and O—H bond distances.

Computing details top

For both compounds, data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: CRYSTALS.

Figures top
[Figure 1] Fig. 1. Views of the Co and Ni complexes, (I) and (II), repsectively, with their and atom-numbering schemes. The asymmetric unit consists of half a cation, with the metal on an inversion centre, and one nitrate anion. Displacement ellipsoids are shown at the 50% probability level. From the Coeditor: Please check the above text, and make sure you have sent in a copy of the ellipsoid plot for the Ni structure.
[Figure 2] Fig. 2. Views of the packing and hydrogen-bonding schemes for (a) complex (I) and (b) complex (II).
(I) Diaquabis(3,5-dimethylpyrazole-1-carboxamidine-κ2N,N')cobalt(II) dinitrate top
Crystal data top
[Co(C6H10N4)2(H2O)2](NO3)2F(000) = 514
Mr = 495.32Dx = 1.660 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7486 reflections
a = 9.1067 (11) Åθ = 5.2–61.7°
b = 10.9344 (13) ŵ = 0.93 mm1
c = 10.4425 (13) ÅT = 120 K
β = 107.602 (2)°Rectangular prism, orange
V = 991.1 (2) Å30.24 × 0.10 × 0.10 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2920 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.02
ω scansθmax = 30.9°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1213
Tmin = 0.840, Tmax = 0.911k = 1515
13055 measured reflectionsl = 1514
2975 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027All H-atom parameters refined
wR(F2) = 0.062 Method, part 1, Chebychev polynomial (Watkin, 1994; Prince, 1982), [weight] = 1/[A0T0(x) + A1T1(x) ··· + An-1Tn-1(x)],
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = robust weighting (Prince, 1982), W = [weight] × [1-(ΔF/6σF)2]2. Ai are 1.62, 2.12 and 0.556
S = 0.98(Δ/σ)max = 0.001
2920 reflectionsΔρmax = 0.44 e Å3
190 parametersΔρmin = 0.38 e Å3
0 restraints
Crystal data top
[Co(C6H10N4)2(H2O)2](NO3)2V = 991.1 (2) Å3
Mr = 495.32Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.1067 (11) ŵ = 0.93 mm1
b = 10.9344 (13) ÅT = 120 K
c = 10.4425 (13) Å0.24 × 0.10 × 0.10 mm
β = 107.602 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2975 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2920 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.911Rint = 0.02
13055 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.062All H-atom parameters refined
S = 0.98Δρmax = 0.44 e Å3
2920 reflectionsΔρmin = 0.38 e Å3
190 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00000.50001.00000.0127
N11.20636 (9)0.29222 (7)1.00939 (8)0.0146
N21.05102 (8)0.31803 (7)0.97054 (8)0.0151
N31.23936 (10)0.49253 (7)1.07683 (9)0.0161
N41.45759 (10)0.37046 (9)1.09871 (9)0.0204
N51.33613 (9)0.34672 (8)0.74332 (8)0.0171
C11.30604 (10)0.39099 (9)1.06510 (9)0.0151
C20.80811 (11)0.20551 (9)0.87785 (11)0.0206
C30.97959 (10)0.21337 (8)0.92762 (9)0.0157
C41.08791 (11)0.11904 (8)0.93680 (10)0.0178
C51.23080 (11)0.17100 (8)0.98816 (9)0.0165
C61.38285 (12)0.11031 (10)1.01281 (12)0.0231
O11.23276 (9)0.27136 (8)0.69350 (9)0.0309
O21.30401 (9)0.45101 (7)0.77817 (8)0.0219
O31.47423 (9)0.31926 (8)0.75900 (9)0.0275
O41.02884 (8)0.55437 (7)0.80883 (7)0.0183
H11.297 (2)0.5397 (17)1.1074 (16)0.027 (4)*
H21.0670 (17)0.0377 (15)0.9125 (14)0.020 (3)*
H30.7762 (19)0.1272 (17)0.8487 (16)0.035 (4)*
H40.7637 (18)0.2253 (16)0.9478 (15)0.029 (4)*
H50.765 (2)0.2578 (16)0.8001 (17)0.032 (4)*
H61.362 (2)0.030 (2)0.9825 (19)0.041 (5)*
H71.4387 (19)0.1133 (16)1.1032 (16)0.029 (4)*
H81.4425 (19)0.1488 (15)0.9590 (15)0.027 (4)*
H91.4919 (19)0.2992 (18)1.1012 (16)0.034 (4)*
H101.514 (2)0.4268 (17)1.1324 (16)0.028 (4)*
H111.103 (2)0.5260 (18)0.8003 (18)0.035 (4)*
H121.037 (2)0.6309 (19)0.7992 (18)0.042 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.00943 (9)0.01169 (9)0.01636 (9)0.00113 (5)0.00285 (6)0.00073 (5)
N10.0107 (3)0.0139 (3)0.0182 (3)0.0025 (3)0.0027 (2)0.0004 (3)
N20.0092 (3)0.0150 (3)0.0201 (3)0.0017 (3)0.0030 (3)0.0015 (3)
N30.0120 (4)0.0142 (3)0.0207 (4)0.0004 (3)0.0030 (3)0.0022 (3)
N40.0109 (3)0.0188 (4)0.0287 (4)0.0027 (3)0.0018 (3)0.0028 (3)
N50.0137 (3)0.0192 (4)0.0179 (3)0.0011 (3)0.0039 (3)0.0008 (3)
C10.0125 (4)0.0167 (4)0.0153 (4)0.0000 (3)0.0029 (3)0.0003 (3)
C20.0129 (4)0.0195 (4)0.0281 (4)0.0023 (3)0.0043 (3)0.0061 (4)
C30.0140 (4)0.0148 (4)0.0182 (4)0.0001 (3)0.0048 (3)0.0010 (3)
C40.0175 (4)0.0141 (4)0.0222 (4)0.0016 (3)0.0065 (3)0.0010 (3)
C50.0160 (4)0.0146 (4)0.0188 (4)0.0036 (3)0.0052 (3)0.0006 (3)
C60.0170 (4)0.0185 (4)0.0323 (5)0.0065 (3)0.0049 (4)0.0014 (4)
O10.0190 (4)0.0276 (4)0.0434 (5)0.0085 (3)0.0052 (3)0.0082 (4)
O20.0180 (3)0.0188 (3)0.0299 (4)0.0016 (3)0.0087 (3)0.0005 (3)
O30.0131 (3)0.0275 (4)0.0416 (4)0.0013 (3)0.0078 (3)0.0087 (3)
O40.0161 (3)0.0183 (3)0.0216 (3)0.0018 (3)0.0072 (2)0.0016 (2)
Geometric parameters (Å, º) top
Co1—N22.0871 (8)N4—H100.809 (18)
Co1—N32.0842 (9)C2—C31.4918 (13)
Co1—O42.1737 (7)C2—H30.926 (18)
N1—N21.3778 (10)C2—H40.960 (16)
N1—C11.4176 (12)C2—H50.973 (17)
N1—C51.3731 (12)C3—C41.4104 (12)
N2—C31.3256 (12)C4—C51.3717 (13)
N3—C11.2890 (12)C4—H20.929 (16)
N3—H10.734 (19)C5—C61.4860 (13)
N5—O11.2408 (11)C6—H60.93 (2)
N5—O21.2582 (11)C6—H70.927 (16)
N5—O31.2546 (11)C6—H80.986 (16)
N4—C11.3361 (12)O4—H110.78 (2)
N4—H90.837 (19)O4—H120.85 (2)
N2—Co1—N376.46 (3)H3—C2—H4107.2 (14)
N2—Co1—O491.79 (3)C3—C2—H5111.8 (10)
N3—Co1—O487.79 (3)H3—C2—H5105.2 (14)
N2—N1—C1115.97 (7)H4—C2—H5110.2 (14)
N2—N1—C5110.63 (7)C2—C3—N2121.50 (8)
C1—N1—C5133.37 (8)C2—C3—C4128.21 (8)
Co1—N2—N1113.98 (6)N2—C3—C4110.29 (8)
Co1—N2—C3139.86 (6)C3—C4—C5106.56 (8)
N1—N2—C3106.14 (7)C3—C4—H2126.9 (9)
Co1—N3—C1117.72 (7)C5—C4—H2126.5 (9)
Co1—N3—H1131.5 (14)N1—C5—C4106.38 (8)
C1—N3—H1110.7 (14)N1—C5—C6126.24 (9)
O1—N5—O2120.66 (8)C4—C5—C6127.36 (9)
O1—N5—O3119.95 (9)C5—C6—H6106.2 (12)
O2—N5—O3119.39 (8)C5—C6—H7110.9 (10)
C1—N4—H9120.7 (12)H6—C6—H7111.7 (15)
C1—N4—H10116.9 (12)C5—C6—H8110.8 (9)
H9—N4—H10120.9 (16)H6—C6—H8107.3 (15)
N1—C1—N4117.53 (8)H7—C6—H8109.8 (14)
N1—C1—N3115.70 (8)Co1—O4—H11110.4 (14)
N4—C1—N3126.77 (9)Co1—O4—H12114.7 (12)
C3—C2—H3111.1 (10)H11—O4—H12105.7 (18)
C3—C2—H4111.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H9···O1i0.84 (2)2.249 (18)2.8572 (13)129.7 (16)
N4—H10···O2ii0.811 (18)2.114 (18)2.9136 (13)168.8 (18)
O4—H11···O20.772 (19)2.081 (19)2.8539 (12)179.5 (14)
O4—H12···O3iii0.85 (2)2.14 (2)2.9799 (12)169.6 (18)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3, y+1, z+2; (iii) x+5/2, y+1/2, z+3/2.
(II) Diaquabis(3,5-dimethylpyrazole-1-carboxamidine-κ2N,N')nickel(II) dinitrate top
Crystal data top
[Ni(C6H10N4)2(H2O)2](NO3)2F(000) = 516
Mr = 495.10Dx = 1.669 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6757 reflections
a = 9.077 (3) Åθ = 5.2–62.2°
b = 10.866 (4) ŵ = 1.05 mm1
c = 10.456 (3) ÅT = 120 K
β = 107.251 (15)°Rectangular prism, purple
V = 985.0 (6) Å30.20 × 0.20 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2617 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.02
ω scansθmax = 31.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.803, Tmax = 0.881k = 1515
13257 measured reflectionsl = 1414
2990 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026All H-atom parameters refined
wR(F2) = 0.062 Method, part 1, Chebychev polynomial (Watkin, 1994; Prince, 1982), [weight] = 1/[A0T0(x) + A1T1(x) ··· + An-1Tn-1(x)],
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = robust weighting (Prince, 1982), W = [weight] × [1-(ΔF/6σF)2]2. Ai are: 1.85, 2.44 and 0.676
S = 0.98(Δ/σ)max = 0.001
2617 reflectionsΔρmax = 0.47 e Å3
190 parametersΔρmin = 0.47 e Å3
0 restraints
Crystal data top
[Ni(C6H10N4)2(H2O)2](NO3)2V = 985.0 (6) Å3
Mr = 495.10Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.077 (3) ŵ = 1.05 mm1
b = 10.866 (4) ÅT = 120 K
c = 10.456 (3) Å0.20 × 0.20 × 0.12 mm
β = 107.251 (15)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2990 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2617 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.881Rint = 0.02
13257 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.062All H-atom parameters refined
S = 0.98Δρmax = 0.47 e Å3
2617 reflectionsΔρmin = 0.47 e Å3
190 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.50001.00000.0117
N11.20472 (10)0.29438 (8)1.00897 (9)0.0135
N21.04915 (10)0.32015 (8)0.97087 (9)0.0138
N31.23645 (11)0.49587 (8)1.07451 (10)0.0149
N41.45618 (11)0.37327 (10)1.09870 (11)0.0190
N51.33536 (10)0.34503 (9)0.74153 (9)0.0160
C10.80616 (12)0.20587 (11)0.87690 (12)0.0195
C21.30392 (11)0.39416 (10)1.06429 (10)0.0138
C30.97774 (12)0.21492 (10)0.92694 (10)0.0148
C41.08685 (13)0.12043 (10)0.93566 (11)0.0165
C51.22977 (12)0.17245 (10)0.98690 (10)0.0151
C61.38240 (13)0.11188 (11)1.01099 (13)0.0214
O11.23263 (11)0.26895 (9)0.69137 (10)0.0288
O21.30235 (10)0.44931 (8)0.77778 (9)0.0210
O31.47384 (10)0.31817 (9)0.75619 (10)0.0262
O41.02480 (9)0.55069 (8)0.80849 (8)0.0169
H11.295 (2)0.544 (2)1.1051 (18)0.027 (4)*
H21.064 (2)0.0411 (19)0.9098 (16)0.024 (4)*
H30.760 (2)0.2269 (17)0.9444 (17)0.027 (4)*
H40.777 (2)0.1244 (19)0.8476 (18)0.035 (5)*
H50.767 (2)0.2570 (18)0.7992 (19)0.030 (4)*
H61.360 (2)0.031 (2)0.9824 (19)0.032 (5)*
H71.439 (2)0.1114 (17)1.1021 (18)0.028 (4)*
H81.444 (2)0.1498 (17)0.9580 (16)0.022 (4)*
H91.490 (2)0.302 (2)1.1036 (19)0.040 (5)*
H101.513 (2)0.4310 (18)1.1309 (17)0.024 (4)*
H111.035 (2)0.625 (2)0.799 (2)0.041 (5)*
H121.099 (2)0.524 (2)0.800 (2)0.030 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00923 (9)0.01014 (9)0.01518 (9)0.00126 (6)0.00284 (7)0.00069 (6)
N10.0094 (4)0.0131 (4)0.0167 (4)0.0023 (3)0.0020 (3)0.0005 (3)
N20.0089 (4)0.0130 (4)0.0186 (4)0.0016 (3)0.0027 (3)0.0005 (3)
N30.0118 (4)0.0126 (4)0.0193 (4)0.0005 (3)0.0029 (3)0.0016 (3)
N40.0102 (4)0.0169 (4)0.0272 (5)0.0021 (3)0.0013 (3)0.0028 (4)
N50.0135 (4)0.0171 (4)0.0171 (4)0.0006 (3)0.0040 (3)0.0012 (3)
C10.0125 (4)0.0175 (5)0.0273 (5)0.0017 (4)0.0043 (4)0.0056 (4)
C20.0117 (4)0.0149 (4)0.0142 (4)0.0001 (3)0.0027 (3)0.0002 (3)
C30.0138 (4)0.0132 (4)0.0174 (4)0.0002 (3)0.0046 (3)0.0013 (4)
C40.0165 (4)0.0119 (4)0.0211 (5)0.0014 (4)0.0056 (4)0.0009 (4)
C50.0151 (4)0.0130 (4)0.0176 (4)0.0031 (3)0.0051 (3)0.0005 (3)
C60.0161 (5)0.0163 (5)0.0299 (6)0.0060 (4)0.0042 (4)0.0021 (4)
O10.0177 (4)0.0256 (5)0.0403 (5)0.0090 (3)0.0041 (4)0.0086 (4)
O20.0180 (4)0.0175 (4)0.0286 (4)0.0014 (3)0.0086 (3)0.0007 (3)
O30.0126 (4)0.0253 (4)0.0401 (5)0.0015 (3)0.0071 (3)0.0080 (4)
O40.0148 (3)0.0164 (4)0.0204 (4)0.0013 (3)0.0067 (3)0.0012 (3)
Geometric parameters (Å, º) top
Ni1—N22.0474 (11)N5—O31.2548 (13)
Ni1—N32.0552 (12)C1—C31.4919 (16)
Ni1—O42.1520 (10)C1—H30.948 (17)
N1—N21.3776 (12)C1—H40.95 (2)
N1—C21.4186 (14)C1—H50.961 (19)
N1—C51.3753 (14)C3—C41.4106 (14)
N2—C31.3275 (14)C4—C51.3701 (16)
N3—C21.2833 (14)C4—H20.91 (2)
N3—H10.75 (2)C5—C61.4863 (15)
N4—C21.3402 (14)C6—H60.93 (2)
N4—H90.83 (2)C6—H70.939 (18)
N4—H100.817 (19)C6—H80.983 (17)
N5—O11.2402 (13)O4—H110.83 (2)
N5—O21.2589 (13)O4—H120.76 (2)
N2—Ni1—N377.67 (4)H4—C1—H5105.6 (16)
N2—Ni1—O491.05 (4)N1—C2—N4117.35 (10)
N3—Ni1—O488.43 (4)N1—C2—N3115.55 (9)
N2—N1—C2115.77 (8)N4—C2—N3127.10 (10)
N2—N1—C5110.71 (8)C1—C3—N2122.00 (9)
C2—N1—C5133.49 (9)C1—C3—C4127.92 (10)
N1—N2—Ni1113.64 (7)N2—C3—C4110.08 (9)
N1—N2—C3106.16 (8)C3—C4—C5106.87 (10)
Ni1—N2—C3140.19 (7)C3—C4—H2125.4 (11)
Ni1—N3—C2117.24 (7)C5—C4—H2127.7 (11)
Ni1—N3—H1132.7 (15)N1—C5—C4106.18 (9)
C2—N3—H1109.9 (15)N1—C5—C6126.18 (10)
C2—N4—H9120.7 (14)C4—C5—C6127.62 (10)
C2—N4—H10116.8 (13)C5—C6—H6104.9 (12)
H9—N4—H10121.0 (18)C5—C6—H7112.3 (11)
O1—N5—O2120.74 (10)H6—C6—H7108.8 (16)
O1—N5—O3119.80 (10)C5—C6—H8111.8 (10)
O2—N5—O3119.46 (9)H6—C6—H8108.8 (16)
C3—C1—H3111.5 (10)H7—C6—H8109.9 (15)
C3—C1—H4109.6 (12)Ni1—O4—H11114.0 (14)
H3—C1—H4108.9 (16)Ni1—O4—H12110.5 (15)
C3—C1—H5109.9 (11)H11—O4—H12103 (2)
H3—C1—H5111.0 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H9···O1i0.83 (2)2.256 (19)2.8604 (18)130.0 (17)
N4—H10···O2ii0.818 (19)2.113 (19)2.9171 (18)167.5 (18)
O4—H12···O20.76 (2)2.09 (2)2.8537 (16)179 (2)
O4—H11···O3iii0.82 (2)2.17 (2)2.9849 (17)169.9 (18)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3, y+1, z+2; (iii) x+5/2, y+1/2, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Co(C6H10N4)2(H2O)2](NO3)2[Ni(C6H10N4)2(H2O)2](NO3)2
Mr495.32495.10
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)120120
a, b, c (Å)9.1067 (11), 10.9344 (13), 10.4425 (13)9.077 (3), 10.866 (4), 10.456 (3)
β (°) 107.602 (2) 107.251 (15)
V3)991.1 (2)985.0 (6)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.931.05
Crystal size (mm)0.24 × 0.10 × 0.100.20 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.840, 0.9110.803, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
13055, 2975, 2920 13257, 2990, 2617
Rint0.020.02
(sin θ/λ)max1)0.7230.726
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.062, 0.98 0.026, 0.062, 0.98
No. of reflections29202617
No. of parameters190190
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.44, 0.380.47, 0.47

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), ATOMS (Dowty, 2000), CRYSTALS.

Selected geometric parameters (Å, º) for (I) top
Co1—N22.0871 (8)N5—O11.2408 (11)
Co1—N32.0842 (9)N5—O21.2582 (11)
Co1—O42.1737 (7)N5—O31.2546 (11)
N1—N21.3778 (10)N4—C11.3361 (12)
N1—C11.4176 (12)C2—C31.4918 (13)
N1—C51.3731 (12)C3—C41.4104 (12)
N2—C31.3256 (12)C4—C51.3717 (13)
N3—C11.2890 (12)C5—C61.4860 (13)
N2—Co1—N376.46 (3)N3—Co1—O487.79 (3)
N2—Co1—O491.79 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N4—H9···O1i0.84 (2)2.249 (18)2.8572 (13)129.7 (16)
N4—H10···O2ii0.811 (18)2.114 (18)2.9136 (13)168.8 (18)
O4—H11···O20.772 (19)2.081 (19)2.8539 (12)179.5 (14)
O4—H12···O3iii0.85 (2)2.14 (2)2.9799 (12)169.6 (18)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3, y+1, z+2; (iii) x+5/2, y+1/2, z+3/2.
Selected geometric parameters (Å, º) for (II) top
Ni1—N22.0474 (11)N4—C21.3402 (14)
Ni1—N32.0552 (12)N5—O11.2402 (13)
Ni1—O42.1520 (10)N5—O21.2589 (13)
N1—N21.3776 (12)N5—O31.2548 (13)
N1—C21.4186 (14)C1—C31.4919 (16)
N1—C51.3753 (14)C3—C41.4106 (14)
N2—C31.3275 (14)C4—C51.3701 (16)
N3—C21.2833 (14)C5—C61.4863 (15)
N2—Ni1—N377.67 (4)N3—Ni1—O488.43 (4)
N2—Ni1—O491.05 (4)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N4—H9···O1i0.83 (2)2.256 (19)2.8604 (18)130.0 (17)
N4—H10···O2ii0.818 (19)2.113 (19)2.9171 (18)167.5 (18)
O4—H12···O20.76 (2)2.09 (2)2.8537 (16)179 (2)
O4—H11···O3iii0.82 (2)2.17 (2)2.9849 (17)169.9 (18)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3, y+1, z+2; (iii) x+5/2, y+1/2, z+3/2.
 

Acknowledgements

The purchase of the Bruker AXS SMART diffractometer with a Bede Microsource was facilitated by grant No. HEFCE/JR00DUHOEQ. This work was financed in part by the Ministry for Science and Technology of the Republic of Serbia (Project No. 1318 – `Physicochemical, structural and biological investigation of complex compounds').

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBienvenue, E., Chona, S., Loborecio, M. A., Marzin, C., Pacheco, P., Seta, P. & Tarrago, G. (1995). J. Inorg. Biochem. 57, 157–168.  Google Scholar
First citationBruker (1999). SMART (Version 5.049) and SAINT (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, L., Grehn, L., De Clercq, E., Andrei, G., Snoeck, R., Balzarini, J., Fransson, B. & Ragnarsson, U. (1994). Acta Chim. Scand. 48, 498–505.  Google Scholar
First citationDowty, E. (2000). ATOMS for Windows. Version 5.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.  Google Scholar
First citationGoslar, J., Sczaniecki, P. B., Strawiak, M. M. & Mrozinski, J. (1988). Transition Met. Chem. 13, 81–86.  CrossRef CAS Web of Science Google Scholar
First citationGupta, R., Pathak, D. & Jindal, D. P. (1996). Eur. J. Med. Chem. Chim. Ther. 31, 241–247.  Google Scholar
First citationJaćimović, Ž. K., Giester, G., Tomic, Z. D. & Leovac, V. M. (2003). Acta Cryst. C59, m381–m383.  CrossRef IUCr Journals Google Scholar
First citationJaćimović, Ž. K., Tomić, Z. D., Bogdanović, G. A., Iveges, E. Z. & Leovac, V. M. (1999). Acta Cryst. C55, 1769–1771.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhudoyarov, A. B., Mirdzhalalov, F. F., Sharipov, Kh. T. & Khudaiberdyeva, S. P. (1995). Uzb. Khim. Zh. pp. 5–6. (In Russian.)  Google Scholar
First citationMészáros Szécsényi, K., Leovac, V. M., Češljević, V. I., Kovács, A., Pokol, G., Argay, Gy., Kálmán, A., Bogdanović, G. A., Jaćimović, Ž. K. & Spasojević-de Biré, A. (2003). Inorg. Chim. Acta, 353, 253–262.  Web of Science CSD CrossRef Google Scholar
First citationMészáros Szécsényi, K., Leovac, V. M., Jaćimović, Z. K., Češljevic, V. I., Kovács, A., Pokol, G. & Gal, S. (2001). J. Therm. Anal. Calorim. 63, 723–732.  Google Scholar
First citationPodder, A., Mukhopadhyay, B. P., Saha, N., Saha, A. & Stensland, B. (1986). J. Crystallogr. Spectrosc. Res. 19, 71–76.  Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationTomić, Z. D., Jaćimović, Ž. K., Leovac, V. M. & Češljević, V. I. (2000). Acta Cryst. C56, 777–779.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrofimenko, S. (1972). Chem. Rev. 72, 447–509.  Google Scholar
First citationTrofimenko, S. (1986). Prog. Inorg. Chem. 34, 115–210.  CrossRef CAS Web of Science Google Scholar
First citationTrofimenko, S. (1993). Chem. Rev. 93, 943–980.  CrossRef CAS Web of Science Google Scholar
First citationWatkin, D. J. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds