organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Hydro­gen-bonded chains in 5-methyl-2-tri­fluoro­methyl-1,2,4-triazolo­[1,5-a]­pyrimidin-7(4H)-one and hydrogen-bonded chains of rings in 5-amino-3-tri­fluoro­methyl-1H-1,2,4-triazole–5-methyl-2-tri­fluoro­methyl-1,2,4-triazolo­[1,5-a]­pyrimidin-7(4H)-one (1/1), the co-crystal of a reaction product and one of its precursors

CROSSMARK_Color_square_no_text.svg

aFundação Oswaldo Cruz, Far Manguinhos, Rua Sizenando Nabuco, 100 Manguinhos, 21041250 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 11 August 2004; accepted 16 August 2004; online 18 September 2004)

In the title compounds, C7H5F3N4O, (I[link]), and C3H3F3N4·C7H5F3N4O, (II[link]), all of the molecular components exhibit some polarization of their molecular–electronic structures. The mol­ecules in (I[link]) are linked into simple C(6) chains, while in (II[link]), the components are linked by a combination of two-centre N—H⋯N and N—H⋯O, and three-centre N—H⋯(O,N) hydrogen bonds into chains containing R[{_1^2}](5), R[{_2^1}](6) and R[{_2^2}](8) rings.

Comment

In the course of our studies of fluorinated triazole precursors of potential antimalarial compounds, we needed to prepare 3-methyl-5-(tri­fluoro­methyl)-1,2,4-­triazolo­[1,5-a]­pyrimidin-7-one, (I[link]). The preparation of this compound by the reaction of 5-amino-3-tri­fluoro­methyl-1H-1,2,4-triazole with ethyl aceto­acetate has recently been reported (Zohdi, 1997[Zohdi, H. F. (1997). J. Chem. Res. (S), pp. 392-393; (M), pp. 2378-2394.]), and use of the reported chromatographic purification readily affords pure (I[link]). However, we have found that, when purification of the crude reaction product is attempted using recrystallization methods, the crystalline material obtained is not the expected triazolopyrimidinone, (I[link]), but a co-crystal, (II[link]), containing a 1:1 molar ratio of (I[link]) with the starting triazole. We report here the molecular and supramolecular structures of both (I[link]) and the co-crystal, (II[link]).

[Scheme 1]

In both (I[link]) and (II[link]) (Figs. 1[link] and 2[link]), the bond lengths in the six-membered rings (Tables 1[link] and 3[link]) indicate that the O14—C14—C15—C16—N17 fragment constitutes a vinyl­ogous amide, with a significant contribution from the polarized form, (Ia[link]). The other bond distances and angles in (I[link]) show no unexpected values. In particular, the five-membered ring of the bicyclic component shows very strong bond fixation with a clear distinction between single and double bonds.

Within the triazole component of (II[link]), the N21—C25 and N25—C25 bonds are too similar in length to be convincingly represented as double and single bonds, respectively. In pure 5-amino-3-tri­fluoro­methyl-1H-1,2,4-triazole itself, (III[link]) (Borbulevych et al., 1998[Borbulevych, O. Y., Shishkin, O. V., Desenko, S. M., Chernenko, V. N. & Orlov, V. D. (1998). Acta Cryst. C54, 442-444.]), the corresponding bonds differ in length by only 0.022 (2) Å. The other C—N bond lengths within this ring are typical of their types (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) in both (II[link]) and (III[link]), and the dimensions thus suggest that there is some contribution from the polarized form, (IIIa[link]), in both (II[link]) and (III[link]).

The mol­ecules of (I[link]) are linked into C(6) chains (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) by a single, almost linear, N—H⋯O hydrogen bond (Table 2[link]). Amine atom N7 in the mol­ecule at (x, y, z) acts as donor to carbonyl atom O4 in the mol­ecule at (x − 1, [{3 \over 2}] − y, z − [{1 \over 2}]), so forming a chain running parallel to the [201] direction and generated by the c-glide plane at y = [{3 \over 4}] (Fig. 3[link]). Two such chains, which are related to one another by inversion and hence antiparallel to each other, pass through each unit cell, but there are no direction-specific interactions between adjacent chains.

Within the asymmetric unit of compound (II[link]), the independent molecular components are linked by two nearly linear N—H⋯N hydrogen bonds (Table 4[link]), forming an R[{_2^2}](8) motif. These units are linked into a chain by one two-centre N—H⋯O hydrogen bond and one three-centre N—H⋯(O,N) hydrogen bond. Atom N25 at (x, y, z) acts as hydrogen-bond donor, via atom H25B, to atom N11 at (x − [{3 \over 2}], [{3 \over 2}] − y, [{1 \over 2}] + z). At the same time, atom N24 at (x, y, z) acts as donor to both atoms O14 and N13 at (x − [{3 \over 2}], [{3 \over 2}] − y, [{1 \over 2}] + z), forming a markedly asymmetric, but planar, three-centre interaction. Propagation of these hydrogen bonds then forms a complex chain of rings, containing [R[{_1^2}](5)][R[{_2^1}](6)][R[{_2^2}](8)] sequences of three edge-fused rings (Fig. 4[link]). This chain is generated by the c-glide plane at y = [{3 \over 4}] and runs parallel to the [30[\overline 1]] direction. Two chains of this type pass through each unit cell, but there are no direction-specific interactions between adjacent chains.

It is pertinent to reconsider the supramolecular structure of the pure triazole component, (III[link]). This was described (Borbulevych et al., 1998[Borbulevych, O. Y., Shishkin, O. V., Desenko, S. M., Chernenko, V. N. & Orlov, V. D. (1998). Acta Cryst. C54, 442-444.]) as forming hydrogen-bonded layers parallel to the ab plane. However, analysis of the original atom coordinates using PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) clearly shows that the supramolecular structure consists of a C(4)C(5)[R[{_2^2}](7)] chain of rings running parallel to the [010] direction (Fig. 5[link]). The formation of this chain utilizes only two of the three available N—H bonds, but there are no plausible acceptors available within hydrogen-bonding range of the third N—H bond, so that the supramolecular structure of (III[link]) is properly described as one-dimensional.

[Figure 1]
Figure 1
The mol­ecule of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
The independent molecular components of (II[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3]
Figure 3
Part of the crystal structure of (I[link]), showing the formation of a chain along [201]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x − 1, [{3 \over 2}] − y, z − [{1 \over 2}]) and (1 + x, [{3 \over 2}] − y, [{1 \over 2}] + z), respectively.
[Figure 4]
Figure 4
Part of the crystal structure of (II[link]), showing the formation of a chain of rings along [30[\overline 1]]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x − [{3 \over 2}], [{3 \over 2}] − y, [{1 \over 2}] + z) and ([{3 \over 2}] + x, [{3 \over 2}] − y, z − [{1 \over 2}]), respectively.
[Figure 5]
Figure 5
Part of the crystal structure of (III[link]) (Borbulevych et al., 1998[Borbulevych, O. Y., Shishkin, O. V., Desenko, S. M., Chernenko, V. N. & Orlov, V. D. (1998). Acta Cryst. C54, 442-444.]), showing the formation of a chain of rings along [010]. The original atomic coordinates and atom-labelling scheme have been used. Atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions (−x, [{1 \over 2}] + y, [{1 \over 2}] − z), (x, 1 + y, z) and (−x, y − [{1 \over 2}], [{1 \over 2}] − z), respectively.

Experimental

For the preparation of (I[link]) and (II[link]), an equimolar mixture of 3-amino-5-tri­fluoro­methyl-1,2,4-triazole and ethyl aceto­acetate (1 mmol of each) in toluene (27 ml) was heated under reflux for 2 h. The mixture was cooled to ambient temperature and the resulting solid was collected. Chromatographic purification (Zohdi, 1997[Zohdi, H. F. (1997). J. Chem. Res. (S), pp. 392-393; (M), pp. 2378-2394.]) gave pure (I[link]), and crystals of (I[link]) suitable for single-crystal X-ray diffraction were grown from a solution in ethanol. By contrast, successive recrystallizations of the crude reaction mixture from EtOH and then from Me2CO–CHCl3 (1:1 v/v) gave crystals of (II[link]) suitable for single-crystal X-ray diffraction.

Compound (I)[link]

Crystal data
  • C7H5F3N4O

  • Mr = 218.15

  • Monoclinic, P21/c

  • a = 4.6152 (4) Å

  • b = 20.504 (2) Å

  • c = 8.7094 (9) Å

  • β = 91.378 (7)°

  • V = 823.93 (14) Å3

  • Z = 4

  • Dx = 1.759 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1862 reflections

  • θ = 3.1–27.5°

  • μ = 0.17 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.42 × 0.20 × 0.12 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (DENZOSMN; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.922, Tmax = 0.980

  • 8410 measured reflections

  • 1862 independent reflections

  • 1288 reflections with I > 2σ(I)

  • Rint = 0.053

  • θmax = 27.5°

  • h = −5 → 5

  • k = −26 → 23

  • l = −11 → 11

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.173

  • S = 1.02

  • 1862 reflections

  • 138 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.1146P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.53 e Å−3

  • Extinction correction: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.])

  • Extinction coefficient: 0.071 (10)

Table 1
Selected interatomic distances (Å) for (I)[link]

N1—C2 1.362 (3)
C2—N3 1.316 (3)
N3—N3a 1.369 (3)
N3a—C4 1.405 (3)
C4—C5 1.424 (3)
C5—C6 1.361 (3)
C6—N7 1.368 (3)
N7—C7a 1.350 (3)
C7a—N1 1.312 (3)
N3a—C7a 1.363 (3)
C4—O4 1.235 (3)
C2—C21 1.496 (3)

Table 2
Hydrogen-bonding geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O4i 0.88 1.83 2.713 (2) 179
Symmetry code: (i) [x-1,{\script{3\over 2}}-y,z-{\script{1\over 2}}].

Compound (II)[link]

Crystal data
  • C3H3F3N4·C7H5F3N4O

  • Mr = 370.24

  • Monoclinic, Cc

  • a = 5.0752 (4) Å

  • b = 22.182 (2) Å

  • c = 12.3960 (11) Å

  • β = 91.3200 (5)°

  • V = 1395.2 (2) Å3

  • Z = 4

  • Dx = 1.763 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1596 reflections

  • θ = 3.3–27.5°

  • μ = 0.18 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.55 × 0.18 × 0.04 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.948, Tmax = 0.993

  • 8977 measured reflections

  • 1596 independent reflections

  • 1176 reflections with I > 2σ(I)

  • Rint = 0.061

  • θmax = 27.5°

  • h = −6 → 6

  • k = −28 → 28

  • l = −16 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.110

  • S = 1.03

  • 1596 reflections

  • 227 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0677P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Table 3
Selected interatomic distances (Å) for (II)[link]

N11—C12 1.361 (5)
C12—N13 1.312 (5)
N13—N13a 1.369 (5)
N13a—C14 1.404 (5)
C14—C15 1.417 (6)
C15—C16 1.372 (6)
C16—N17 1.364 (5)
N17—C17a 1.351 (5)
C17a—N11 1.323 (5)
N13a—C17a 1.355 (5)
C14—O14 1.235 (5)
C12—C121 1.498 (6)
C22—C221 1.488 (6)
N21—C22 1.363 (5)
C22—N23 1.298 (5)
N23—N24 1.358 (5)
N24—C25 1.356 (5)
C25—N21 1.329 (5)
C25—N25 1.342 (5)

Table 4
Hydrogen-bonding geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N17—H17⋯N21 0.88 2.00 2.868 (4) 168
N25—H25A⋯N11 0.88 2.12 2.987 (5) 167
N24—H24⋯N13i 0.88 2.41 3.193 (4) 149
N24—H24⋯O14i 0.88 2.16 2.860 (5) 136
N25—H25B⋯O14i 0.88 2.10 2.853 (4) 143
Symmetry codes: (i) [x-{\script{3\over 2}},{\script{3\over 2}}-y,{\script{1\over 2}}+z].

For compound (I[link]), the space group P21/c was uniquely assigned from the systematic absences. Crystals of (II[link]) are monoclinic and the systematic absences permitted Cc and C2/c as possible space groups. Consideration of the unit-cell volume suggested space group Cc, and this was confirmed by the subsequent structure analysis. All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.95 (ring CH) or 0.98 Å (CH3) and N—H distances of 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N), or 1.5Ueq(C) for the methyl group. In the absence of any significant anomalous scattering, the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter was indeterminate (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]) and it was not possible to establish the correct orientation of the structure of (II[link]) relative to the polar-axis directions (Jones, 1986[Jones, P. G. (1986). Acta Cryst. A42, 57.]). Accordingly, the Friedel-equivalent reflections were merged prior to the final refinements. However, although the data are 99.2% complete to θ = 27.47°, with merged equivalents the ratio of data to parameters is rather low at only 7.0.

For both compounds, data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZOSMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZOSMN. For compound (I[link]), program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]). For compound (II[link]), program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]). For both compounds, molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

In the course of our studies of fluorinated triazole precursors of potential anti-malarial compounds, we needed to prepare 3-methyl-5-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-one, (I). The preparation of this compound by the reaction of 3-amino-5-trifluoromethyl-1H-1,2,4-triazole with ethyl acetoacetate has recently been reported (Zohdi, 1997), and use of the reported chromatographic purification readily affords pure (I). However, we have found that, when purification of the crude reaction product is attempted using recrystallization methods, the crystalline material obtained is not the expected triazolopyrimidinone, (I), but a co-crystal, (II), containing a 1:1 molar ratio of (I) with the starting triazole. Here, we report the molecular and supramolecular structures of both (I) and the co-crystal, (II). \sch

In both (I) and (II) (Figs. 1 and 2), the bond lengths in the six-membered rings (Tables 1 and 3) indicate that the O14—C14—C15—C16—N17 fragment constitutes a vinylogous amide, with a significant contribution from the polarized form, (Ia). The other bond distances and angles in (I) show no unexpected values. In particular, the five-membered ring of the bicyclic component shows very strong bond fixation with a clear distinction between single and double bonds.

Within the triazole component of (II), the N21—C25 and N25—C25 bonds are too similar in length to be convincingly represented as double and single bonds, respectively. In pure 3-amino-5-trifluoromethyl-1H-1,2,4-triazole itself, (III) (Borbulevych et al., 1998), the corresponding bonds differ in length by only 0.022 (2) Å. The other C—N bond lengths within this ring are typical of their types (Allen et al., 1987) in both (II) and (III), and the dimensions thus suggest that there is some contribution from the polarized form, (IIIa), in both (II) and (III).

The molecules of (I) are linked into C(6) chains (Bernstein et al., 1995) by a single, almost linear, N—H···O hydrogen bond (Table 2). Amino atom N7 in the molecule at (x, y, z) acts as donor to carbonyl atom O4 in the molecule at (x − 1, 3/2 − y, z − 1/2), so forming a chain running parallel to the [201] direction and generated by the c-glide plane at y = 3/4 (Fig. 3). Two such chains, which are related to one another by inversion and are hence anti-parallel to each other, pass through each unit cell, but there are no direction-specific interactions between adjacent chains.

Within the asymmetric unit of compound (II), the independent molecular components are linked by two nearly linear N—H···N hydrogen bonds (Table 4), forming an R22(8) motif. These units are linked into a chain by one two-centre N—H···O hydrogen bond and one three-centre N—H···(O,N) hydrogen bond. Atom N25 at (x, y, z) acts as hydrogen-bond donor, via atom H25B, to atom N11 at (x − 3/2, 3/2 − y, 1/2 + z). At the same time, atom N24 at (x, y, z) acts as donor to both atoms O14 and N13 at (x − 3/2, 3/2 − y, 1/2 + z), forming a markedly asymmetric, but planar, three-centre interaction. Propagation of these hydrogen bonds then forms a complex chain of rings, containing [R12(5)][R21(6)][R22(8)] sequences of three edge-fused rings (Fig. 4). This chain is generated by the c-glide plane at y = 3/4 and it runs parallel to the [301] direction. Two chains of this type pass through each unit cell, but there are no direction-specific interactions between adjacent chains.

It is pertinent to reconsider the supramolecular structure of the pure triazole component, (III). This was described (Borbulevych et al., 1998) as forming hydrogen-bonded layers parallel to the ab plane. However, analysis of the original atom coordinates using PLATON (Spek, 2003) clearly shows that the supramolecular structure consists of a C(4) C(5)[R22(7)] chain of rings running parallel to the [010] direction (Fig. 5). The formation of this chain utilizes only two of the three available N—H bonds, but there are no plausible acceptors available within hydrogen-bonding range of the third N—H bond, so that the supramolecular structure of (III) is properly described as one-dimensional.

Experimental top

For the preparation of (I) and (II), an equimolar mixture of 3-amino-5-trifluoromethyl-1,2,4-triazole and ethyl acetoacetate (1 mmol of each) in toluene (27 ml) was heated under reflux for 2 h. The mixture was cooled to ambient temperature and the resulting solid was collected. Chromatographic purification (Zohdi, 1997) gave pure (I), and crystals of (I) suitable for single-crystal X-ray diffraction were grown from a solution in ethanol. By contrast, successive recrystallizations of the crude reaction mixture from EtOH and then from Me2CO/CHCl3 (1/1, v/v) gave crystals of (II) suitable for single-crystal X-ray diffraction.

Refinement top

For compound (I), the space group P21/c was uniquely assigned from the systematic absences. Crystals of (II) are monoclinic and the systematic absences permitted Cc and C2/c as possible space groups. Consideration of the unit-cell volume suggested space group Cc, and this was confirmed by the subsequent structure analysis. All H atoms were located from difference maps, and then treated as riding atoms, with C—H distances of 0.95 (ring CH) or 0.98 Å (CH3) and N—H distances of 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N), or 1.5Ueq(C) for the methyl group. In the absence of any significant anomalous scattering, the Flack parameter (Flack, 1983) was indeterminate (Flack & Bernardinelli, 2000), and it was not possible to establish the correct orientation of the structure of (II) relative to the polar axis directions (Jones, 1986). Accordingly, the Friedel-equivalent reflections were merged prior to the final refinements. However, although the data are 99.2% complete to θ = 27.47°, with merged equivalents the ratio of data to parameters is rather low at only 7.0.

Computing details top

For both compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) for (I); OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997) for (II). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) for (I); OSCAIL and SHELXL97 (Sheldrick, 1997) for (II). For both compounds, molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The independent molecular components of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing formation of a chain along [201]. For the sake of clarity, H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x − 1, 3/2 − y, z − 1/2) and (1 + x, 3/2 − y, 1/2 + z), respectively.
[Figure 4] Fig. 4. Part of the crystal structure of (II), showing formation of a chain of rings along [301]. For the sake of clarity, H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x − 3/2, 3/2 − y, 1/2 + z) and (3/2 + x, 3/2 − y, z − 1/2), respectively.
[Figure 5] Fig. 5. Part of the crystal structure of (III) (Borbulevych et al., 1998), showing formation of a chain of rings along [010]. The original atomic coordinates and atom-labelling scheme have been used. The atoms marked with an asterisk (*), a hash (#) or a dollar sign () are at the symmetry positions (-x, 1/2 + y, 1/2 − z), (x, 1 + y, z) and (-x, y − 1/2, 1/2 − z), respectively.
(I) 5-methyl-2-trifluoromethyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one top
Crystal data top
C7H5F3N4OF(000) = 440
Mr = 218.15Dx = 1.759 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1862 reflections
a = 4.6152 (4) Åθ = 3.1–27.5°
b = 20.504 (2) ŵ = 0.17 mm1
c = 8.7094 (9) ÅT = 120 K
β = 91.378 (7)°Block, colourless
V = 823.93 (14) Å30.42 × 0.20 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
1862 independent reflections
Radiation source: fine-focus sealed X-ray tube1288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 55
Tmin = 0.922, Tmax = 0.980k = 2623
8410 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.173 w = 1/[σ2(Fo2) + (0.1146P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1862 reflectionsΔρmax = 0.65 e Å3
138 parametersΔρmin = 0.53 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.071 (10)
Crystal data top
C7H5F3N4OV = 823.93 (14) Å3
Mr = 218.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.6152 (4) ŵ = 0.17 mm1
b = 20.504 (2) ÅT = 120 K
c = 8.7094 (9) Å0.42 × 0.20 × 0.12 mm
β = 91.378 (7)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1862 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
1288 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.980Rint = 0.053
8410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.02Δρmax = 0.65 e Å3
1862 reflectionsΔρmin = 0.53 e Å3
138 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F210.1721 (3)0.52415 (8)0.2457 (2)0.0537 (6)
F220.2289 (3)0.51437 (7)0.13118 (15)0.0386 (5)
F230.2028 (4)0.48649 (7)0.36639 (17)0.0475 (5)
O40.7878 (3)0.68786 (8)0.58691 (17)0.0290 (5)
N10.0722 (4)0.65130 (9)0.2409 (2)0.0247 (5)
N30.4013 (4)0.60891 (9)0.4147 (2)0.0249 (5)
N3a0.4146 (4)0.67558 (9)0.4130 (2)0.0233 (5)
N70.1892 (4)0.76402 (9)0.2895 (2)0.0239 (5)
C20.1948 (5)0.59834 (11)0.3109 (3)0.0255 (6)
C40.6088 (5)0.71441 (12)0.4997 (2)0.0244 (5)
C50.5643 (5)0.78230 (11)0.4739 (2)0.0242 (5)
C60.3613 (5)0.80605 (11)0.3727 (2)0.0247 (5)
C7a0.2155 (4)0.69892 (11)0.3087 (2)0.0222 (5)
C210.1123 (5)0.53028 (12)0.2658 (3)0.0301 (6)
C610.3113 (5)0.87660 (12)0.3425 (3)0.0306 (6)
H50.68200.81240.53000.029*
H6A0.10610.88680.35610.046*
H6B0.36490.88690.23710.046*
H6C0.43000.90260.41460.046*
H70.06050.77950.22290.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F210.0276 (9)0.0371 (10)0.0961 (14)0.0050 (7)0.0038 (8)0.0253 (9)
F220.0494 (9)0.0331 (9)0.0331 (8)0.0012 (6)0.0005 (6)0.0083 (6)
F230.0754 (12)0.0266 (9)0.0397 (9)0.0040 (7)0.0118 (8)0.0054 (7)
O40.0284 (9)0.0300 (10)0.0279 (9)0.0020 (7)0.0113 (7)0.0010 (7)
N10.0251 (10)0.0243 (11)0.0244 (10)0.0000 (8)0.0052 (7)0.0026 (8)
N30.0270 (10)0.0190 (11)0.0283 (10)0.0004 (8)0.0042 (8)0.0015 (8)
N3a0.0240 (10)0.0216 (11)0.0240 (10)0.0005 (8)0.0047 (7)0.0017 (8)
N70.0247 (10)0.0234 (11)0.0233 (10)0.0027 (8)0.0065 (7)0.0021 (8)
C20.0255 (12)0.0259 (13)0.0248 (11)0.0009 (9)0.0025 (9)0.0003 (9)
C40.0223 (11)0.0279 (13)0.0229 (11)0.0002 (9)0.0010 (8)0.0026 (9)
C50.0250 (11)0.0242 (12)0.0233 (11)0.0021 (9)0.0029 (8)0.0028 (9)
C60.0268 (12)0.0250 (13)0.0222 (12)0.0024 (9)0.0013 (8)0.0041 (9)
C7a0.0209 (11)0.0243 (13)0.0212 (11)0.0013 (9)0.0019 (8)0.0003 (9)
C210.0298 (13)0.0271 (13)0.0331 (13)0.0007 (10)0.0034 (9)0.0019 (10)
C610.0347 (13)0.0235 (13)0.0333 (14)0.0018 (11)0.0041 (10)0.0018 (10)
Geometric parameters (Å, º) top
N1—C21.362 (3)C2—C211.496 (3)
C2—N31.316 (3)F21—C211.326 (3)
N3—N3a1.369 (3)F22—C211.342 (3)
N3a—C41.405 (3)F23—C211.315 (3)
C4—C51.424 (3)C5—H50.95
C5—C61.361 (3)C6—C611.487 (3)
C6—N71.368 (3)C61—H6A0.98
N7—C7a1.350 (3)C61—H6B0.98
C7a—N11.312 (3)C61—H6C0.98
N3a—C7a1.363 (3)N7—H70.88
C4—O41.235 (3)
C7a—N1—C2101.12 (18)C6—C5—H5118.4
N3—C2—N1117.5 (2)C4—C5—H5118.4
N3—C2—C21120.6 (2)C5—C6—N7120.0 (2)
N1—C2—C21121.7 (2)C5—C6—C61124.3 (2)
F23—C21—F21108.7 (2)N7—C6—C61115.7 (2)
F23—C21—F22106.76 (19)C6—C61—H6A109.5
F21—C21—F22106.16 (18)C6—C61—H6B109.5
F23—C21—C2112.78 (19)H6A—C61—H6B109.5
F21—C21—C2111.57 (19)C6—C61—H6C109.5
F22—C21—C2110.55 (19)H6A—C61—H6C109.5
C2—N3—N3a100.91 (17)H6B—C61—H6C109.5
C7a—N3a—N3109.13 (17)C7a—N7—C6120.52 (18)
C7a—N3a—C4124.77 (19)C7a—N7—H7119.7
N3—N3a—C4126.06 (17)C6—N7—H7119.7
O4—C4—N3a119.3 (2)N1—C7a—N7129.59 (19)
O4—C4—C5128.3 (2)N1—C7a—N3a111.29 (19)
N3a—C4—C5112.42 (18)N7—C7a—N3a119.11 (19)
C6—C5—C4123.1 (2)
C7a—N1—C2—N30.4 (3)N3—N3a—C4—C5179.10 (19)
C7a—N1—C2—C21176.8 (2)O4—C4—C5—C6179.1 (2)
N3—C2—C21—F2317.8 (3)N3a—C4—C5—C61.8 (3)
N1—C2—C21—F23165.9 (2)C4—C5—C6—N70.4 (3)
N3—C2—C21—F21140.5 (2)C4—C5—C6—C61179.6 (2)
N1—C2—C21—F2143.2 (3)C5—C6—N7—C7a1.2 (3)
N3—C2—C21—F22101.6 (2)C61—C6—N7—C7a179.57 (19)
N1—C2—C21—F2274.7 (3)C2—N1—C7a—N7179.1 (2)
N1—C2—N3—N3a0.3 (2)C2—N1—C7a—N3a0.4 (2)
C21—C2—N3—N3a176.70 (19)C6—N7—C7a—N1179.9 (2)
C2—N3—N3a—C7a0.0 (2)C6—N7—C7a—N3a0.4 (3)
C2—N3—N3a—C4177.7 (2)N3—N3a—C7a—N10.2 (2)
C7a—N3a—C4—O4177.25 (19)C4—N3a—C7a—N1177.46 (18)
N3—N3a—C4—O40.1 (3)N3—N3a—C7a—N7179.27 (18)
C7a—N3a—C4—C53.6 (3)C4—N3a—C7a—N73.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O4i0.881.832.713 (2)179
Symmetry code: (i) x1, y+3/2, z1/2.
(II) 3-amino-5-trifluoromethyl-1H-1,2,4-triazole– 5-methyl-2-trifluoromethyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one (1/1) top
Crystal data top
C3H3F3N4·C7H5F3N4OF(000) = 744
Mr = 370.24Dx = 1.763 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1596 reflections
a = 5.0752 (4) Åθ = 3.3–27.5°
b = 22.182 (2) ŵ = 0.18 mm1
c = 12.3960 (11) ÅT = 120 K
β = 91.3200 (5)°Plate, colourless
V = 1395.2 (2) Å30.55 × 0.18 × 0.04 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
1596 independent reflections
Radiation source: rotating anode1176 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 66
Tmin = 0.948, Tmax = 0.993k = 2828
8977 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0677P)2]
where P = (Fo2 + 2Fc2)/3
1596 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.25 e Å3
2 restraintsΔρmin = 0.28 e Å3
Crystal data top
C3H3F3N4·C7H5F3N4OV = 1395.2 (2) Å3
Mr = 370.24Z = 4
Monoclinic, CcMo Kα radiation
a = 5.0752 (4) ŵ = 0.18 mm1
b = 22.182 (2) ÅT = 120 K
c = 12.3960 (11) Å0.55 × 0.18 × 0.04 mm
β = 91.3200 (5)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1596 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
1176 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.993Rint = 0.061
8977 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
1596 reflectionsΔρmin = 0.28 e Å3
227 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F1210.2594 (6)0.88968 (12)0.5318 (3)0.0574 (8)
F1220.6378 (6)0.88378 (12)0.6120 (2)0.0520 (7)
F1230.6108 (5)0.91107 (11)0.4469 (2)0.0449 (7)
O140.9903 (5)0.70589 (13)0.3008 (2)0.0342 (7)
N110.3680 (6)0.76650 (15)0.5263 (3)0.0277 (8)
N130.7101 (6)0.79148 (14)0.4179 (2)0.0267 (7)
N13a0.6641 (6)0.73067 (14)0.4156 (2)0.0258 (7)
N170.3804 (6)0.65950 (15)0.4898 (2)0.0278 (7)
C120.5292 (8)0.80928 (19)0.4848 (3)0.0280 (9)
C140.7995 (8)0.68870 (19)0.3527 (3)0.0283 (9)
C150.6937 (8)0.62978 (19)0.3606 (3)0.0302 (9)
C160.4914 (8)0.61592 (18)0.4278 (3)0.0291 (9)
C17a0.4606 (7)0.71726 (18)0.4803 (3)0.0261 (8)
C1210.5084 (8)0.8741 (2)0.5176 (3)0.0342 (10)
C1610.3770 (9)0.55411 (18)0.4364 (4)0.0382 (10)
F2210.1869 (5)0.52602 (13)0.6966 (2)0.0516 (7)
F2220.2027 (7)0.49841 (13)0.7390 (3)0.0755 (12)
F2230.1152 (5)0.51899 (11)0.5748 (2)0.0479 (7)
N210.0183 (6)0.64663 (14)0.6485 (3)0.0285 (8)
N230.3334 (7)0.61325 (16)0.7604 (3)0.0341 (9)
N240.3346 (6)0.67441 (16)0.7552 (3)0.0300 (8)
N250.0922 (7)0.75220 (15)0.6700 (3)0.0298 (7)
C220.1431 (8)0.59970 (18)0.6965 (3)0.0312 (9)
C250.1428 (7)0.69385 (17)0.6893 (3)0.0266 (9)
C2210.0683 (9)0.5357 (2)0.6779 (4)0.0399 (10)
H150.76570.59870.31770.036*
H16A0.38630.54090.51180.057*
H16B0.47700.52620.39190.057*
H16C0.19260.55480.41120.057*
H170.25740.65000.53570.033*
H240.44400.69800.78960.036*
H25A0.03480.76230.62640.036*
H25B0.18610.78040.70110.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1210.0476 (16)0.0366 (15)0.089 (2)0.0044 (11)0.0172 (15)0.0123 (14)
F1220.086 (2)0.0376 (16)0.0325 (14)0.0062 (13)0.0058 (13)0.0074 (11)
F1230.0647 (18)0.0315 (14)0.0390 (14)0.0053 (12)0.0091 (13)0.0046 (11)
O140.0370 (16)0.0400 (17)0.0260 (14)0.0003 (14)0.0103 (13)0.0013 (12)
N110.0297 (18)0.0292 (19)0.0243 (16)0.0003 (13)0.0019 (14)0.0016 (13)
N130.0300 (17)0.0299 (19)0.0205 (16)0.0004 (13)0.0035 (14)0.0005 (13)
N13a0.0304 (17)0.0298 (18)0.0176 (14)0.0007 (14)0.0058 (13)0.0002 (13)
N170.0309 (17)0.0290 (18)0.0237 (16)0.0002 (13)0.0032 (14)0.0002 (13)
C120.031 (2)0.031 (2)0.023 (2)0.0002 (17)0.0030 (17)0.0022 (16)
C140.029 (2)0.038 (2)0.0186 (17)0.0016 (17)0.0019 (16)0.0001 (16)
C150.032 (2)0.035 (2)0.0243 (19)0.0020 (17)0.0048 (17)0.0033 (16)
C160.030 (2)0.032 (2)0.025 (2)0.0026 (17)0.0012 (18)0.0032 (16)
C17a0.0236 (19)0.035 (2)0.0192 (18)0.0043 (16)0.0004 (15)0.0003 (16)
C1210.037 (2)0.037 (2)0.029 (2)0.0009 (18)0.0064 (18)0.0017 (19)
C1610.045 (2)0.034 (2)0.036 (2)0.0023 (19)0.006 (2)0.0029 (19)
F2210.0519 (17)0.0494 (17)0.0531 (16)0.0185 (13)0.0041 (13)0.0009 (13)
F2220.096 (3)0.0348 (16)0.099 (3)0.0066 (16)0.062 (2)0.0194 (16)
F2230.0526 (16)0.0369 (13)0.0540 (17)0.0002 (11)0.0000 (13)0.0112 (13)
N210.0286 (19)0.0307 (19)0.0265 (17)0.0007 (14)0.0041 (14)0.0026 (14)
N230.037 (2)0.033 (2)0.033 (2)0.0008 (14)0.0093 (17)0.0044 (14)
N240.0311 (19)0.032 (2)0.0274 (17)0.0023 (14)0.0076 (15)0.0001 (14)
N250.0312 (17)0.0286 (18)0.0298 (17)0.0023 (14)0.0078 (14)0.0009 (14)
C220.034 (2)0.034 (2)0.0260 (19)0.0005 (18)0.0022 (18)0.0041 (18)
C250.028 (2)0.032 (2)0.0196 (18)0.0018 (17)0.0038 (16)0.0013 (17)
C2210.047 (3)0.033 (2)0.040 (2)0.0016 (19)0.015 (2)0.0079 (19)
Geometric parameters (Å, º) top
N11—C121.361 (5)C161—H16A0.98
C12—N131.312 (5)C161—H16B0.98
N13—N13a1.369 (5)C161—H16C0.98
N13a—C141.404 (5)N17—H170.88
C14—C151.417 (6)C22—C2211.488 (6)
C15—C161.372 (6)N21—C221.363 (5)
C16—N171.364 (5)C22—N231.298 (5)
N17—C17a1.351 (5)N23—N241.358 (5)
C17a—N111.323 (5)N24—C251.356 (5)
N13a—C17a1.355 (5)C25—N211.329 (5)
C14—O141.235 (5)C25—N251.342 (5)
C12—C1211.498 (6)C221—F2221.322 (5)
C121—F1231.316 (5)C221—F2211.328 (6)
C121—F1211.326 (5)C221—F2231.347 (5)
C121—F1221.346 (5)N24—H240.88
C15—H150.95N25—H25A0.88
C16—C1611.494 (6)N25—H25B0.88
C17a—N11—C12100.9 (3)H16B—C161—H16C109.5
N13—C12—N11117.7 (4)C17a—N17—C16119.6 (3)
N13—C12—C121121.0 (4)C17a—N17—H17120.2
N11—C12—C121121.3 (3)C16—N17—H17120.2
F123—C121—F121108.5 (4)N11—C17a—N17129.4 (4)
F123—C121—F122106.7 (4)N11—C17a—N13a110.9 (4)
F121—C121—F122106.8 (3)N17—C17a—N13a119.7 (3)
F123—C121—C12112.8 (3)C25—N21—C22101.9 (3)
F121—C121—C12111.1 (4)N23—C22—N21116.7 (4)
F122—C121—C12110.7 (3)N23—C22—C221120.8 (4)
C12—N13—N13a100.9 (3)N21—C22—C221122.5 (4)
C17a—N13a—N13109.6 (3)F222—C221—F221108.2 (4)
C17a—N13a—C14124.9 (3)F222—C221—F223106.8 (4)
N13—N13a—C14125.4 (3)F221—C221—F223105.7 (3)
O14—C14—N13a119.0 (4)F222—C221—C22111.8 (4)
O14—C14—C15128.6 (4)F221—C221—C22112.3 (4)
N13a—C14—C15112.4 (3)F223—C221—C22111.7 (4)
C16—C15—C14122.6 (4)C22—N23—N24101.8 (3)
C16—C15—H15118.7C25—N24—N23110.1 (3)
C14—C15—H15118.7C25—N24—H24125.0
N17—C16—C15120.5 (4)N23—N24—H24125.0
N17—C16—C161116.4 (4)N21—C25—N25126.7 (4)
C15—C16—C161123.1 (4)N21—C25—N24109.5 (3)
C16—C161—H16A109.5N25—C25—N24123.8 (3)
C16—C161—H16B109.5C25—N25—H25A120.0
H16A—C161—H16B109.5C25—N25—H25B120.0
C16—C161—H16C109.5H25A—N25—H25B120.0
H16A—C161—H16C109.5
C17a—N11—C12—N130.3 (4)C12—N11—C17a—N13a0.1 (4)
C17a—N11—C12—C121177.4 (4)C16—N17—C17a—N11174.8 (4)
N13—C12—C121—F12323.6 (6)C16—N17—C17a—N13a5.1 (5)
N11—C12—C121—F123158.9 (3)N13—N13a—C17a—N110.1 (4)
N13—C12—C121—F121145.7 (4)C14—N13a—C17a—N11177.9 (3)
N11—C12—C121—F12136.8 (5)N13—N13a—C17a—N17179.7 (3)
N13—C12—C121—F12295.8 (4)C14—N13a—C17a—N172.0 (5)
N11—C12—C121—F12281.7 (5)C25—N21—C22—N231.3 (5)
N11—C12—N13—N13a0.3 (4)C25—N21—C22—C221178.6 (4)
C121—C12—N13—N13a177.3 (3)N23—C22—C221—F2224.7 (6)
C12—N13—N13a—C17a0.3 (4)N21—C22—C221—F222175.3 (4)
C12—N13—N13a—C14178.0 (3)N23—C22—C221—F221126.5 (4)
C17a—N13a—C14—O14176.6 (3)N21—C22—C221—F22153.4 (5)
N13—N13a—C14—O146.0 (5)N23—C22—C221—F223114.9 (4)
C17a—N13a—C14—C152.2 (5)N21—C22—C221—F22365.2 (6)
N13—N13a—C14—C15175.1 (3)N21—C22—N23—N240.4 (5)
O14—C14—C15—C16175.1 (4)C221—C22—N23—N24179.5 (4)
N13a—C14—C15—C163.6 (5)C22—N23—N24—C250.7 (4)
C14—C15—C16—N170.8 (6)C22—N21—C25—N25178.4 (4)
C14—C15—C16—C161179.6 (4)C22—N21—C25—N241.6 (4)
C15—C16—N17—C17a3.7 (6)N23—N24—C25—N211.5 (4)
C161—C16—N17—C17a175.2 (3)N23—N24—C25—N25178.5 (4)
C12—N11—C17a—N17179.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···N210.882.002.868 (4)168
N25—H25A···N110.882.122.987 (5)167
N24—H24···N13i0.882.413.193 (4)149
N24—H24···O14i0.882.162.860 (5)136
N25—H25B···O14i0.882.102.853 (4)143
Symmetry code: (i) x3/2, y+3/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC7H5F3N4OC3H3F3N4·C7H5F3N4O
Mr218.15370.24
Crystal system, space groupMonoclinic, P21/cMonoclinic, Cc
Temperature (K)120120
a, b, c (Å)4.6152 (4), 20.504 (2), 8.7094 (9)5.0752 (4), 22.182 (2), 12.3960 (11)
β (°) 91.378 (7) 91.3200 (5)
V3)823.93 (14)1395.2 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.170.18
Crystal size (mm)0.42 × 0.20 × 0.120.55 × 0.18 × 0.04
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Multi-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.922, 0.9800.948, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
8410, 1862, 1288 8977, 1596, 1176
Rint0.0530.061
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.173, 1.02 0.046, 0.110, 1.03
No. of reflections18621596
No. of parameters138227
No. of restraints02
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.530.25, 0.28

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected bond lengths (Å) for (I) top
N1—C21.362 (3)C6—N71.368 (3)
C2—N31.316 (3)N7—C7a1.350 (3)
N3—N3a1.369 (3)C7a—N11.312 (3)
N3a—C41.405 (3)N3a—C7a1.363 (3)
C4—C51.424 (3)C4—O41.235 (3)
C5—C61.361 (3)C2—C211.496 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O4i0.881.832.713 (2)179
Symmetry code: (i) x1, y+3/2, z1/2.
Selected bond lengths (Å) for (II) top
N11—C121.361 (5)C14—O141.235 (5)
C12—N131.312 (5)C12—C1211.498 (6)
N13—N13a1.369 (5)C22—C2211.488 (6)
N13a—C141.404 (5)N21—C221.363 (5)
C14—C151.417 (6)C22—N231.298 (5)
C15—C161.372 (6)N23—N241.358 (5)
C16—N171.364 (5)N24—C251.356 (5)
N17—C17a1.351 (5)C25—N211.329 (5)
C17a—N111.323 (5)C25—N251.342 (5)
N13a—C17a1.355 (5)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N17—H17···N210.882.002.868 (4)168
N25—H25A···N110.882.122.987 (5)167
N24—H24···N13i0.882.413.193 (4)149
N24—H24···O14i0.882.162.860 (5)136
N25—H25B···O14i0.882.102.853 (4)143
Symmetry code: (i) x3/2, y+3/2, z+1/2.
 

Footnotes

Postal address: School of Engineering, University of Dundee, Dundee DD1 4HN, Scotland.

Acknowledgements

The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. NB, KDBD and SMSVW thank CNPq for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBorbulevych, O. Y., Shishkin, O. V., Desenko, S. M., Chernenko, V. N. & Orlov, V. D. (1998). Acta Cryst. C54, 442–444.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJones, P. G. (1986). Acta Cryst. A42, 57.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZohdi, H. F. (1997). J. Chem. Res. (S), pp. 392–393; (M), pp. 2378–2394.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds