organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Polarized molecular–electronic ­structures and supramolecular ­aggregation in 1-(6-amino-1,3-benzodioxol-5-yl)-3-aryl­prop-2-en-1-ones

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 12 August 2004; accepted 16 August 2004; online 18 September 2004)

Molecules of 1-(6-amino-1,3-benzodioxol-5-yl)-3-(4-methyl­phenyl)­prop-2-en-1-one, C17H15NO3, (I[link]), 1-(6-amino-1,3-benzodioxol-5-yl)-3-(4-methoxy­phenyl)­prop-2-en-1-one, C17H15NO4, (II[link]), and 1-(6-amino-1,3-benzodioxol-5-yl)-3-[4-(tri­fluoro­methyl)­phenyl]­prop-2-en-1-one, C17H12F3NO3, (III[link]), all contain an intramolecular N—H⋯O hydrogen bond and all exhibit polarized molecular–electronic structures. The mol­ecules of (I[link]) are linked into simple sheets, generated by translation, by means of one N—H⋯O and one C—H⋯π(arene) hydrogen bond. Compound (II[link]) crystallizes as two concomitant polymorphs, viz. (IIa[link]), with Z′ = 1 in P21/c, and (IIb[link]), with Z′ = 2 in P[\overline 1]. In (IIa[link]), intra- and intermolecular N—H⋯O hydrogen bonds generate a helical chain of rings, and these chains are linked into sheets by simple helical chains built from a C—H⋯π(arene) hydrogen bond, while in (IIb[link]), the mol­ecules are linked into simple chains by a C—H⋯O hydrogen bond. In (III[link]), where Z′ = 2, each type of mol­ecule forms a simple N—H⋯O hydrogen-bonded chain generated by translation and the two types of chain are linked by a single ππ stacking interaction.

Comment

A range of 2-amino­chalcone derivatives have been prepared for use as intermediates in the synthesis of new 6,7-methyl­ene­dioxy­tetra­hydro­quinolin-4-ones, compounds with interesting biological and pharmacological properties (Donnelly & Farell, 1990[Donnelly, J. A. & Farell, D. F. (1990). Tetrahedron, 46, 885-894.]; Prager & Thredgold, 1968[Prager, R. & Thredgold, M. (1968). Aust. J. Chem. 21, 229-241.]; Kurasawa et al., 2002[Kurasawa, Y., Tsuruoka, A., Rikiishi, N., Fujiwara, N., Okamoto, Y. & Kim, H. S. (2002). J. Heterocycl. Chem. 37, 791-798.]). We report here the molecular and supramolecular structures of three such compounds, (I[link])–(III[link]), and compare them with two further examples, (IV[link]) and (V[link]) (Low et al., 2002[Low, J. N., Cobo, J., Nogueras, M., Sánchez, A., Albornoz, A. & Abonia, R. (2002). Acta Cryst. C58, o42-o45.]).

Compounds (I[link]) and (III[link]) crystallize with Z′ values of 1 and 2, respectively, while compound (II[link]) forms two polymorphs, viz. monoclinic and triclinic, denoted (IIa[link]) and (IIb[link]), respectively, which crystallize concomitantly from di­methyl­form­amide, with Z′ values of 1 and 2, respectively (Figs. 1[link]–4[link][link][link]). Of the two polymorphs of (II[link]), the monoclinic polymorph has a significantly higher density than the triclinic polymorph and hence is probably the thermodynamically more stable form (Burger & Ramberger, 1979[Burger, A. & Ramberger, R. (1979). Mikrochim. Acta, 2, 259-271.]).

[Scheme 1]

There is significant bond fixation within the amino-substituted aryl rings of (I[link])–(III[link]) (Table 1[link]). In particular, the C3a—C4 and C7—C7a bonds are both short, while the C5—C6 and C6—C7 bonds are long. In addition, the C6—C8 bond is short for its type (mean value 1.488 Å; Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]), while C8—O8 is long (mean value 1.231 Å). These values point to the charge-separated form, (A[link]) (see scheme below), as an important contributor to the overall molecular–electronic structure, alongside the delocalized form, (B[link]). An entirely similar pattern of distances (Table 1[link]) is observed in the analogous compounds (IV[link]) and (V[link]), the structures of which have recently been reported (Low et al., 2002[Low, J. N., Cobo, J., Nogueras, M., Sánchez, A., Albornoz, A. & Abonia, R. (2002). Acta Cryst. C58, o42-o45.]), although this was not discussed or noted in the original report, which focused exclusively on the supramolecular aggregation of (IV[link]) and (V[link]).

[Scheme 2]

In all cases, the molecular skeletons are fairly close to being planar but, as shown by the key torsion angles (Table 2[link]), there are some significant deviations in most of the independent examples. The sole exception is the type 1 mol­ecule (containing atom O11, etc.; Fig. 3[link]a) of compound (III[link]). The five-membered rings show some flexibility of conformational behaviour. Thus, this ring is planar in (IIa[link]) [although not in (IIb[link])] and in the type 2 mol­ecule of compound (III[link]), but it adopts an envelope conformation, with a folding across the O⋯O line, in (I[link]), in both mol­ecules of (IIb[link]) and in the type 1 mol­ecule of (III[link]). For these rings, the ring-puckering parameter φ2 (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) takes the values 31.1 (15) and 30.5 (9)° in (I[link]) and (III[link]), respectively, and 30.9 (5) and 213.7 (5)° in the two independent mol­ecules of (IIb[link]). The two independent mol­ecules in (IIb[link]) exhibit different conformations at the methoxy substituent (Table 2[link]), and this alone is sufficient to preclude the possibility of any additional symmetry

All of the mol­ecules contain an intramolecular N—H⋯O hydrogen bond (Tables 3[link]–6[link][link][link]), in each case generating an S(6) motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), and these may have some influence on the overall molecular conformations. The supramolecular structures of (I[link]) and (IIa[link]) both depend upon a combination of N—H⋯O and C—H⋯π(arene) hydrogen bonds to generate sheets, but the structures differ considerably in detail. In compound (I[link]), the amine atom N5 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor, via atom H5B, to ring atom O1 in the mol­ecule at (x, y − 1, z), so generating by translation a C(7) chain running parallel to the [010] direction (Fig. 5[link]). In addition, atom C2 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor, via atom H2A, to the C11–C16 ring in the mol­ecule at (x − 1, y, z), so generating by translation a chain running parallel to the [100] direction (Fig. 6[link]). The combination of the [100] and [010] chains generates a sheet parallel to (001), lying in the domain [{1 \over 2}] < z < [{3 \over 4}] (Fig. 7[link]). Four sheets of this type pass through each unit cell, but there are no direction-specific interactions between adjacent sheets.

The monoclinic polymorph (IIa[link]) of compound (II[link]) exhibits two C—H⋯π(arene) hydrogen bonds in addition to the two N—H⋯O interactions (Table 4[link]). Amine atom N5 in the mol­ecule at (x, y, z) acts as donor, again via atom H5B, but this time to carbonyl atom O8 in the mol­ecule at (2 − x, y − [{1 \over 2}], [{1 \over 2}] − z), so producing a helical C21(4)C(6)[S(6)] chain of rings running parallel to the [010] direction and generated by the 21 screw axis along (1, y, [{1 \over 4}]) (Fig. 8[link]). This chain of rings may be contrasted with the very simple chain formed by the N—H⋯O hydrogen bonds in compound (I[link]) (Fig. 5[link]). Of the two C—H⋯π(arene) hydrogen bonds, that having atom C2 as the donor simply reinforces the foregoing [010] chain. However, that involving atom C13 in the mol­ecule at (x, y, z) as donor to the C11–C16 ring in the mol­ecule at (1 − x, y − [{1 \over 2}], [{1 \over 2}] − z) not only generates a second chain running parallel to [010], this time generated by the 21 axis along ([{1 \over 2}], y, [{1 \over 4}]) (Fig. 9[link]), but also serves to link all of the chain of rings into an (001) sheet (Fig. 10[link]). In the triclinic polymorph (IIb[link]), the type 1 mol­ecules (Fig. 3[link]a) are linked by means of a single C—H⋯O hydrogen bond into chains generated by translation, while the type 2 mol­ecules (Fig. 3[link]b) are pendent from these chains and linked to them by N—H⋯O hydrogen bonds (Fig. 11[link])

Each of the two independent mol­ecules in compound (III[link]) forms a simple C(7) chain. The amine atoms N15 and N25 in the mol­ecules at (x, y, z) act as donors to, respectively, the ring atoms O11 and O21 in the mol­ecules at (x − 1, y, z), so generating C(7) chains by translation (Table 5[link] and Fig. 12[link]). These two chains are linked by an aromatic ππ stacking interaction between the C111–C116 and C211–C216 rings within the asymmetric unit. The dihedral angle between the planes of these two rings is only 4.5 (2)°, the interplanar spacing is ca 3.5 Å and the centroid–centroid separation is 3.618 (2) Å. Propagation of this interaction then links the two independent translational chains (Fig. 12[link])

The simple and complex sheets in (I[link]) and (IIa[link]), the single chains in (IIb[link]) and the paired chains in (III[link]) may be briefly compared with the supramolecular structures of the analogues (IV[link]) and (V[link]) (Low et al., 2002[Low, J. N., Cobo, J., Nogueras, M., Sánchez, A., Albornoz, A. & Abonia, R. (2002). Acta Cryst. C58, o42-o45.]). In (IV[link]), where Z′ = 1, the sole significant intermolecular interactions are a C—H⋯O hydrogen bond with a ring O atom as acceptor, which generates zigzag C(10) chains, and a ππ stacking interaction linking these chains into sheets. In (V[link]), where Z′ = 2, two N—H⋯O hydrogen bonds generate centrosymmetric R84(16) tetramers, which are weakly linked into chains by two rather long C—H⋯O hydrogen bonds. Hence, for the five compounds (I[link])–(V[link]), while their intramolecular properties are all very similar, their supramolecular aggregation patterns are all different. For no single example in this series could the supramolecular structure be predicted from a knowledge of the supramolecular structures of all the others.

[Figure 1]
Figure 1
The mol­ecule of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
The mol­ecule of (IIa[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3]
Figure 3
The two independent mol­ecules of (IIb[link]), showing the atom-labelling scheme for (a) the type 1 mol­ecule and (b) the type 2 mol­ecule. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4]
Figure 4
The two independent mol­ecules of (III[link]), showing the atom-labelling scheme for (a) the type 1 mol­ecule and (b) the type 2 mol­ecule. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 5]
Figure 5
Part of the crystal structure of (I[link]), showing the formation of a chain parallel to [010]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, y − 1, z) and (x, 1 + y, z), respectively.
[Figure 6]
Figure 6
Part of the crystal structure of (I[link]), showing the formation of a chain parallel to [100]. For the sake of clarity, H atoms bonded to C atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x − 1, y, z) and (1 + x, y, z), respectively.
[Figure 7]
Figure 7
A stereoview of part of the crystal structure of (I[link]), showing the formation of a sheet parallel to (001). For the sake of clarity, H atoms bonded to C atoms not involved in the motif shown have been omitted.
[Figure 8]
Figure 8
Part of the crystal structure of polymorph (IIa[link]), showing the formation of a chain of rings parallel to [010]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), a hash (#) or an ampersand (&) are at the symmetry positions (2 − x, y − [{1 \over 2}], [{1 \over 2}] − z), (x, y − 1, z) and (2 − x, [{1 \over 2}] + y, [{1 \over 2}] − z), respectively.
[Figure 9]
Figure 9
A stereoview of part of the crystal structure of polymorph (IIa[link]), showing the formation of an [010] chain generated by C—H⋯π(arene) hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 10]
Figure 10
A stereoview of part of the crystal structure of polymorph (IIa[link]), showing the formation of a sheet parallel to (001). For the sake of clarity, the intramolecular hydrogen bond and H atoms bonded to C atoms and not involved in the motif shown have been omitted.
[Figure 11]
Figure 11
A stereoview of part of the crystal structure of polymorph (IIb[link]), showing the formation of a C(8) chain along [100]. For the sake of clarity, the intramolecular hydrogen bond and H atoms bonded to C atoms and not involved in the motif shown have been omitted.
[Figure 12]
Figure 12
Part of the crystal structure of (III[link]), showing the formation of a π-stacked pair of chains parallel to [100]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x − 1, y, z) and (1 + x, y, z), respectively.

Experimental

For the synthesis of (I[link]), a solution of 6-amino-3,4-methyl­ene­dioxy­aceto­phenone (0.5 g, 2.79 mmol), 4-tolu­aldehyde (0.33 g, 2.75 mmol), ethanol (10 ml) and aqueous NaOH (0.5 ml, 20%) was heated under reflux for 20 min. After cooling the mixture, the resulting precipitate was filtered off and washed with ethanol, yielding (I[link]) as a yellow solid (yield 91%, m.p. 401 K). Spectroscopic analysis, IR (KBr disc, ν, cm−1): 3454, 3278 (NH2), 1646 (C=O), 1606 (C=C), 1224 (OCH2O); 1H NMR (DMSO-d6, δ): 2.33 (3H, s, CH3), 5.96 (2H, s, OCH2O), 6.35 (1H, s), 7.23 (2H, d, J = 8.0 Hz), 7.53 (1H, d, J = 15.4 Hz), 7.65 (1H, s), 7.67 (2H, br s, NH2), 7.73 (2H, d, J = 8.0 Hz), 7.81 (1H, d, J = 15.4 Hz); 13C NMR (DMSO-d6, δ): 21.0 (CH3), 95.8, 101.1 (OCH2O), 108.0, 109.9, 122.7, 128.5, 129.4, 132.5, 137.7, 139.6, 141.0, 151.7, 152.7, 187.7 (C=O). MS (70 eV): m/e (%) 281 (41, [M+]), 190 (100, [M–C7H7]). Crystals of (I[link]) suitable for single-crystal X-ray diffraction were grown from a solution in ethanol. For the synthesis of (II[link]), a solution of 6-­amino-3,4-methyl­ene­dioxy­aceto­phenone (0.5 g, 2.79 mmol), 4-­methoxy­benz­aldehyde (0.38 g, 2.79 mmol), ethanol (10 ml) and aqueous NaOH (0.5 ml, 20%) was heated under reflux for 30 min. After cooling the mixture, the resulting precipitate was filtered off and crystallized from ethanol, giving (II[link]) as an orange solid (yield 50%, m.p. 405 K). Spectroscopic analysis, IR (KBr disc, ν, cm−1): 3461, 3303 (NH2), 1644 (C=O), 1603 (C=C), 1223 (OCH2O); 1H NMR (CDCl3, δ): 3.89 (3H, s, OCH3), 5.93 (2H, s, OCH2O), 6.19 (1H, s), 6.57 (2H, br s, NH2), 6.91 (2H, d, J = 8.0 Hz), 7.26 (1H, s), 7.35 (1H, d, J = 15.4 Hz), 7.47 (2H, d, J = 8.0 Hz), 7.71 (1H, d, J = 15.4 Hz); 13C NMR (CDCl3, δ): 55.2 (OCH3), 96.8, l01.5 (OCH2O), 108.2, 112.0, 114.5, 121.2, 128.3, 130.0, 138.9, 142.1, 150.0, 153.5, 161.2, 189.0 (C=O). MS (70 eV): m/e (%) 297 (27, [M+]), 190 (100, [M–C7H7O]). Crystallization from di­methyl­form­amide gave a mixture of the monoclinic polymorph (IIa[link]) as red crystals (m.p. 382 K) and the triclinic polymorph (IIb[link]) as yellow crystals (m.p. 389 K). For the synthesis of (III[link]), a solution of 6-amino-3,4-methyl­ene­dioxy­aceto­phenone (0.5 g, 2.79 mmol), 4-(tri­fluoro­methyl)­benz­aldehyde (0.49 g, 2.79 mmol), ethanol (10 ml) and aqueous NaOH (0.5 ml, 20%) was heated under reflux for 25 min. After cooling the mixture, the resulting precipitate was filtered off and washed with ethanol, yielding (III[link]) as an orange solid (yield 75%, m.p. 417 K). Spectroscopic analysis, IR (KBr disc, ν, cm−1): 3468, 3305 (NH2), 1646 (C=O), 1606 (C=C), 1228 (OCH2O); 1H NMR (DMSO-d6, δ): 5.94 (1H, s, H2), 5.98 (2H, s, OCH2O), 6.38 (1H, s, H6), 7.6 (1H, d, H8, J = 15.0 Hz), 7.69 (2H, br s, NH2), 7.76 (2H, d, J = 8.0 Hz), 8.02 (1H, d, J = 15.4 Hz), 8.15 (2H, d, J = 8.0 Hz); 13C NMR (DMSO-d6, δ): 95.8, 101.2 (OCH2O), 108.0, 108.9, 113.5 (CF3), 125.5, 126.7, 129.3, 138.0, 139.1, 139.4, 152.2, 153.2, 187.1 (C=O). MS (70 eV): m/e (%) 335 (100, [M+]). Crystals of (III[link]) suitable for single-crystal X-ray diffraction were grown from a solution in ethanol.

Table 1
Selected bond distances (Å) for compounds (I[link])–(V[link])

Bond (I[link]) (IIa[link]) (IIb[link]) (IIb[link]) (III[link]) (III[link]) (IV[link]) (V[link]) (V[link])
      Mol 1 Mol 2 Mol 1 Mol 2   Mol 1 Mol 2
x nil nil 1 2 1 2 nil 1 2
Cx3a—Cx4 1.368 (3) 1.357 (2) 1.357 (2) 1.359 (2) 1.358 (3) 1.355 (3) 1.361 (2) 1.358 (2) 1.351 (2)
Cx4—Cx5 1.402 (3) 1.416 (2) 1.418 (2) 1.418 (2) 1.415 (3) 1.417 (3) 1.417 (2) 1.419 (2) 1.418 (2)
Cx5—Cx6 1.424 (3) 1.430 (2) 1.423 (2) 1.422 (2) 1.429 (3) 1.419 (3) 1.426 (2) 1.426 (2) 1.431 (2)
Cx6—Cx7 1.428 (3) 1.430 (2) 1.420 (2) 1.435 (2) 1.428 (3) 1.421 (3) 1.428 (2) 1.426 (2) 1.423 (2)
Cx7—Cx7a 1.339 (3) 1.354 (2) 1.353 (2) 1.350 (2) 1.350 (3) 1.355 (3) 1.355 (2) 1.354 (2) 1.353 (2)
Cx7a—Cx3a 1.386 (3) 1.394 (2) 1.387 (2) 1.391 (2) 1.390 (3) 1.390 (3) 1.394 (2) 1.390 (2) 1.393 (2)
Cx5—Nx5 1.364 (3) 1.353 (2) 1.364 (2) 1.361 (2) 1.368 (2) 1.369 (3) 1.359 (2) 1.370 (2) 1.360 (2)
Cx6—Cx8 1.459 (3) 1.461 (2) 1.470 (2) 1.462 (2) 1.468 (2) 1.468 (3) 1.470 (2) 1.473 (2) 1.463 (2)
Cx8-Ox8 1.249 (3) 1.246 (2) 1.240 (2) 1.244 (2) 1.244 (4) 1.237 (2) 1.243 (2) 1.253 (2) 1.250 (2)

Table 2
Selected torsion angles (°) for compounds (I[link])–(III[link])

Parameter (I[link]) (IIa[link]) (IIb[link]) (IIb[link]) (III[link]) (III[link])
      Mol 1 Mol 2 Mol 1 Mol 2
x nil nil 1 2 1 2
Cx5—Cx6—Cx8—Cx9 −177.8 (2) 179.63 (13) −168.15 (13) −175.23 (13) −171.93 (18) −156.36 (19)
Cx6—Cx8—Cx9—Cx10 −159.1 (2) −175.03 (14) −170.48 (13) 153.13 (14) 171.9 (2) 176.7 (2)
Cx8—Cx9—Cx10—Cx11 178.4 (2) 179.77 (14) −178.12 (13) −176.05 (13) −177.59 (19) −177.65 (19)
Cx9—Cx10—Cx11—Cx12 −9.0 (2) 5.1 (2) −11.3 (2) −16.8 (2) 0.7 (3) −8.6 (3)
Cx13—Cx14—Ox14—Cx41   −175.91 (13) 1.4 (2) −176.09 (14)    

Compound (I)[link]

Crystal data
  • C17H15NO3

  • Mr = 281.30

  • Monoclinic, P21/n

  • a = 10.530 (5) Å

  • b = 7.362 (5) Å

  • c = 17.546 (5) Å

  • β = 91.719 (5)°

  • V = 1359.6 (12) Å3

  • Z = 4

  • Dx = 1.374 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3062 reflections

  • θ = 5.3–27.5°

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Block, yellow

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (EvalCCD; Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]) Tmin = 0.958, Tmax = 0.981

  • 17 073 measured reflections

  • 3062 independent reflections

  • 2024 reflections with I > 2σ(I)

  • Rint = 0.065

  • θmax = 27.5°

  • h = −13 → 12

  • k = −9 → 9

  • l = −22 → 22

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.135

  • S = 1.11

  • 3062 reflections

  • 191 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0198P)2 + 1.4934P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 3
Hydrogen-bonding geometry (Å, °) for (I)[link]

Cg1 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O8 0.96 1.88 2.612 (3) 131
N5—H5B⋯O1i 0.96 2.07 3.032 (3) 178
C2—H2ACg1ii 0.99 2.86 3.644 (4) 137
Symmetry codes: (i) x,y-1,z; (ii) x-1,y,z.

Polymorph (IIa)[link]

Crystal data
  • C17H15NO4

  • Mr = 297.30

  • Monoclinic, P21/c

  • a = 17.5560 (4) Å

  • b = 5.0914 (2) Å

  • c = 15.4869 (4) Å

  • β = 91.9240 (16)°

  • V = 1383.51 (7) Å3

  • Z = 4

  • Dx = 1.427 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3170 reflections

  • θ = 2.9–27.5°

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Block, red

  • 0.04 × 0.02 × 0.02 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.959, Tmax = 0.998

  • 14 325 measured reflections

  • 3170 independent reflections

  • 2271 reflections with I > 2σ(I)

  • Rint = 0.038

  • θmax = 27.5°

  • h = −21 → 22

  • k = −6 → 6

  • l = −20 → 19

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.128

  • S = 1.04

  • 3169 reflections

  • 201 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0701P)2 + 0.2374P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

  • Extinction correction: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.])

  • Extinction coefficient: 0.007 (2)

Table 4
Hydrogen-bonding geometry (Å, °) for polymorph (IIa)[link]

Cg1 is the centroid of the C11–C16 ring and Cg2 is the centroid of the C3a/C4–C7/C7a ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O8 0.96 1.95 2.6301 (15) 126
N5—H5B⋯O8i 0.96 2.49 3.1232 (15) 123
C2—H2BCg2ii 0.99 2.84 3.640 (2) 138
C13—H13⋯Cg1iii 0.95 2.81 3.488 (2) 130
Symmetry codes: (i) [2-x,y-{\script{1\over 2}},{\script{1\over 2}}-z]; (ii) x,y-1,z; (iii) [1-x,y-{\script{1\over 2}},{\script{1\over 2}}-z].

Polymorph (IIb)[link]

Crystal data
  • C17H15NO4

  • Mr = 297.30

  • Triclinic, [P\overline 1]

  • a = 9.5352 (2) Å

  • b = 10.6193 (3) Å

  • c = 14.7611 (4) Å

  • α = 89.1400 (14)°

  • β = 81.0970 (17)°

  • γ = 75.7540 (14)°

  • V = 1430.83 (6) Å3

  • Z = 4

  • Dx = 1.380 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 6517 reflections

  • θ = 3.1–27.5°

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Block, yellow

  • 0.45 × 0.30 × 0.20 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.951, Tmax = 0.981

  • 23 999 measured reflections

  • 6517 independent reflections

  • 4940 reflections with I > 2σ(I)

  • Rint = 0.035

  • θmax = 27.5°

  • h = −12 → 12

  • k = −13 → 13

  • l = −19 → 19

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.137

  • S = 1.10

  • 6512 reflections

  • 399 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0778P)2 + 0.1431P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.37 e Å−3

Table 5
Hydrogen-bonding geometry (Å, °) for polymorph (IIb)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N15—H15B⋯O18 0.88 1.99 2.6451 (17) 130
N25—H25A⋯O28 0.88 1.95 2.6069 (19) 131
N25—H25B⋯O13 0.88 2.19 3.0586 (17) 170
C12—H12A⋯O18i 0.99 2.27 3.221 (2) 161
Symmetry code: (i) x-1,y,z.

Compound (III)[link]

Crystal data
  • C17H12F3NO3

  • Mr = 335.28

  • Triclinic, [P\overline 1]

  • a = 7.3420 (2) Å

  • b = 10.9241 (3) Å

  • c = 18.7176 (5) Å

  • α = 85.0180 (11)°

  • β = 83.2280 (14)°

  • γ = 75.8180 (14)°

  • V = 1442.71 (7) Å3

  • Z = 4

  • Dx = 1.544 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 6611 reflections

  • θ = 3.0–27.6°

  • μ = 0.13 mm−1

  • T = 120 (2) K

  • Block, red

  • 0.60 × 0.60 × 0.50 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.920, Tmax = 0.937

  • 20 172 measured reflections

  • 6611 independent reflections

  • 4510 reflections with I > 2σ(I)

  • Rint = 0.038

  • θmax = 27.6°

  • h = −9 → 6

  • k = −14 → 13

  • l = −24 → 24

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.157

  • S = 1.04

  • 6611 reflections

  • 433 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0874P)2 + 0.3568P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.52 e Å−3

Table 6
Hydrogen-bonding geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N15—H15A⋯O18 0.96 1.91 2.637 (2) 131
N15—H15B⋯O11i 0.96 2.26 3.161 (2) 156
N25—H25A⋯O28 0.96 1.91 2.662 (2) 134
N25—H25B⋯O21i 0.96 2.09 3.024 (2) 165
Symmetry code: (i) x-1,y,z.

For (I[link]) and (IIa[link]), the space groups P21/n and P21/c, respectively, were uniquely determined from the systematic absences. Crystals of (IIb[link]) and (III[link]) are triclinic, and the space group P[\overline 1] was selected and then confirmed by the structure analysis. All H atoms were located from difference maps and subsequently treated as riding atoms, with C—H = 0.95 (CH), 0.98 (CH3) or 0.99 Å (CH2) and N—H = 0.96 Å, and with Uiso(H) = 1.2Ueq(C,N), or 1.5Ueq(C) for the methyl groups. In compound (III[link]), the highest residual peak (0.77 e Å−3) is 1.26 Å from F141 and the deepest hole (−0.52 e Å−3) is 0.97 Å from F141. Careful inspection of electron-density maps indicated some libration of the CF3 groups about the adjacent C—C bonds, but gave no grounds for modelling these groups with more than three F-atom sites per group.

For all four compounds, data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]). For compound (I[link]), cell refinement: DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]); data reduction: EvalCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]). For compounds (IIa[link]) and (III[link]), cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97. For compound (IIb[link]), cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL and SHELXS97; program(s) used to refine structure: OSCAIL and SHELXL97. For all four compounds, molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 3-17.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

A range of 2-aminochalcone derivatives have been prepared for use as intermediates in the synthesis of new 6,7-methylenedioxytetrahydroquinolin-4-ones, compounds with interesting biological and pharmacological properties (Donnelly & Farell, 1990; Prager & Thredgold, 1968; Kurasawa et al., 2002). Here, we report the molecular and supramolecular structures of three such compounds, (I)-(III), and compare them with two further examples, (IV) and (V) (Low et al., 2002). \sch

Compounds (I) and (III) crystallize with Z' values of 1 and 2, respectively, while compound (II) forms two polymorphs, monoclinic and triclinic, denoted (IIa) and (IIb), respectively, which crystallize concomitantly from dimethylformamide, with Z' values of 1 and 2, respectively (Figs. 1–4). Of the two polymorphs of (II), the monoclinic polymorph has a significantly higher density than the triclinic polymorph and hence is probably the thermodynamically more stable form (Burger & Ramberger, 1979).

There is significant bond fixation within the amino-substituted aryl ring of (I)-(III) (Table 1). In particular, the C3a—C4 and C7—C7a bonds are both short, while the C5—C6 and C6—C7 bonds are long. In addition, the C6—C8 bond is short for its type (mean value 1.488 Å; Allen et al., 1987), while C8—O8 is long (mean value 1.231 Å). These values point to the charge-separated form, (A), as an important contributor to the overall molecular-electronic structure, alongside the delocalized form, (B). An entirely similar pattern of distances (Table 1) is observed in the analogous compounds (IV) and (V), the structures of which have recently been reported (Low et al., 2002), although this was not discussed or noted in the original report, which focused exclusively on the supramolecular aggregation of (IV) and (V).

In all cases, the molecular skeletons are fairly close to being planar but, as shown by the key torsion angles (Table 2), there are some significant deviations in most of the independent examples. The sole exception is the type 1 molecule (containing atom O11 etc.; Fig. 3a) of compound (III). The five-membered rings show some flexibility of conformational behaviour. Thus, this ring is planar in (IIa) [although not in (IIb)] and in the type 2 molecule of compound (III), but it adopts an envelope conformation, with a folding across the O···O line, in (I), in both molecules of (IIb) and in the type 1 molecule of (III). For these rings, the ring-puckering parameter ϕ2 (Cremer & Pople, 1975) takes the values 31.1 (15) and 30.5 (9)° in (I) and (III), respectively, and 30.9 (5) and 213.7 (5)° in the two independent molecules of (IIb). The two independent molecules in (IIb) exhibit different conformations at the methoxy substituent (Table 2), and this alone is sufficient to preclude the possibility of any additional symmetry

All of the molecules contain an intramolecular N—H···O hydrogen bond (Tables 3–6), in each case generating an S(6) motif (Bernstein et al., 1995), and these may have some influence on the overall molecular conformations. The supramolecular structures of (I) and (IIa) both depend upon a combination of N—H···O and C—H···π(arene) hydrogen bonds to generate sheets, but the structures differ considerably in detail. In compound (I), the amino atom N5 in the molecule at (x, y, z) acts as hydrogen-bond donor, via atom H5B, to ring atom O1 in the molecule at (x, y − 1, z), so generating by translation a C(7) chain running parallel to the [010] direction (Fig. 5). In addition, atom C2 in the molecule at (x, y, z) acts as hydrogen-bond donor, via atom H2A, to the C11—C16 ring in the molecule at (x − 1, y, z), so generating by translation a chain running parallel to the [100] direction (Fig. 6). The combination of the [100] and [010] chains generates a sheet parallel to (001), lying in the domain 1/2 < z < 3/4 (Fig. 7). Four sheets of this type pass through each unit cell, but there are no direction-specific interactions between adjacent sheets.

The monoclinic polymorph (IIa) of compound (II) exhibits two C—H···π(arene) hydrogen bonds in addition to the two N—H···O interactions (Table 4). The amino atom N5 in the molecule at (x, y, z) acts as donor, again via atom H5B, but this time to the carbonyl atom O8 in the molecule at (2 − x, y − 1/2, 1/2 − z), so producing a helical C21(4) C(6)[S(6)] chain of rings running parallel to the [010] direction and generated by the 21 screw axis along (1, y, 1/4) (Fig. 8). This chain of rings may be contrasted with the very simple chain formed by the N—H···O hydrogen bonds in compound (I) (Fig. 5). Of the two C—H···π(arene) hydrogen bonds, that having atom C2 as the donor simply reinforces the foregoing [010] chain. However, that involving atom C13 in the molecule at (x, y, z) as donor to the C11—C16 ring in the molecule at (1 − x, y − 1/2, 1/2 − z) not only generates a second chain running parallel to [010], this time generated by the 21 axis along (1/2, y, 1/4) (Fig. 9), but also serves to link all of the chain of rings into an (001) sheet (Fig. 10). In the triclinic polymorph (IIb), the type 1 molecules (Fig. 3a) are linked by means of a single C—H···O hydrogen bond into chains generated by translation, while the type 2 molecules (Fig. 3 b) are pendent from these chains and linked to them by N—H···O hydrogen bonds (Fig. 11)

Each of the two independent molecules in compound (III) forms a simple C(7) chain. The amino atoms N15 and N25 in the molecules at (x, y, z) act as donors to, respectively, the ring atoms O11 and O21 in the molecules at (x − 1, y, z), so generating C(7) chains by translation (Table 5, Fig. 12). These two chains are linked by an aromatic ππ stacking interaction between the C111—C116 and C211—C216 rings within the asymmetric unit. The dihedral angle between the planes of these two rings is only 4.5 (2)°, the interplanar spacing is ca 3.5 Å and the ring-centroid separation is 3.618 (2) Å. Propagation of this interaction then links the two independent translational chains (Fig. 12)

The simple and complex sheets in (I) and (IIa), the single chains in (IIb) and the paired chains in (III) may be briefly compared with the supramolecular structures of the analogues (IV) and (V) (Low et al., 2002). In (IV), where Z' = 1, the sole significant intermolecular interactions are a C—H···O hydrogen bond with a ring O atom as acceptor, which generates zigzag C(10) chains, and a ππ stacking interaction linking these chains into sheets. In (V), where Z' = 2, two N—H···O hydrogen bonds generate centrosymmetric R84(16) tetramers, which are weakly linked into chains by two rather long C—H···O hydrogen bonds. Hence, of the five compounds (I)-(V), while their intramolecular properties are all very similar, their supramolecular aggregation patterns are all different. For no single example in this series could the supramolecular structure be predicted from a knowledge of the supramolecular structures of all the others.

Table 1. Selected bond distances (Å) for compounds (I)-(V)

Table 2. Selected torsion angles (°) for compounds (I)-(III)

Table 3. Hydrogen-bond parameters (Å, °) for compound (I); Cg1 is the centroid of the C11—C16 ring.

Table 4. Hydrogen-bond parameters (Å, °) for polymorph (IIa); Cg1 is the centroid of the C11—C16 ring and Cg2 is the centroid of the C3a/C4—C7/C7a ring.

Table 5. Hydrogen-bond parameters (Å, °) for polymorph (IIb)

Table 6. Hydrogen-bond parameters (Å, °) for compound (III)

Experimental top

For the synthesis of (I), a solution of 6-amino-3,4-methylenedioxyacetophenone (0.5 g, 2.79 mmol), 4-tolualdehyde (0.33 g, 2.75 mmol), ethanol (10 ml) and aqueous NaOH (0.5 ml, 20%) was heated under reflux for 20 min. After cooling the mixture, the resulting precipitate was filtered and washed with ethanol, yielding (I) as a yellow solid (yield 91%, m.p. 401 K). Spectroscopic analysis: IR (KBr disc, ν, cm−1): 3454, 3278 (NH2), 1646 (CO), 1606 (CC), 1224 (OCH2O); 1H NMR (DMSO-d6, δ, p.p.m.): 2.33 (3H, s, CH3), 5.96 (2H, s, OCH2O), 6.35 (1H, s), 7.23 (2H, d, J = 8.0 Hz), 7.53 (1H, d, J = 15.4 Hz), 7.65 (1H, s), 7.67 (2H, br s, NH2), 7.73 (2H, d, J = 8.0 Hz), 7.81 (1H, d, J = 15.4 Hz); 13C NMR (DMSO-d6, δ, p.p.m.): 21.0 (CH3), 95.8, 101.1 (OCH2O), 108.0, 109.9, 122.7, 128.5, 129.4, 132.5, 137.7, 139.6, 141.0, 151.7, 152.7, 187.7 (CO). MS (70 eV): m/e (%) 281 (41, [M+]), 190 (100, [M—C7H7]). Crystals of (I) suitable for single-crystal X-ray diffraction were grown from a solution in ethanol. For the synthesis of (II), a solution of 6-amino-3,4-methylenedioxyacetophenone (0.5 g, 2.79 mmol), 4-methoxybenzaldehyde (0.38 g, 2.79 mmol), ethanol (10 ml) and aqueous NaOH (0.5 ml, 20%) was heated under reflux for 30 min. After cooling the mixture, the resulting precipitate was filtered and crystallized from ethanol, giving an (II) as an orange solid (yield 50%, m.p. 405 K). Spectroscopic analysis: IR (KBr disc, ν, cm−1): 3461, 3303 (NH2), 1644 (CO), 1603 (CC), 1223 (OCH2O); 1H NMR (CDCl3, δ, p.p.m.) 3.89 (3H, s, OCH3), 5.93 (2H, s, OCH2O), 6.19 (1H, s), 6.57 (2H, br s, NH2), 6.91 (2H, d, J = 8.0 Hz), 7.26 (1H, s), 7.35 (1H, d, J = 15.4 Hz), 7.47 (2H, d, J = 8.0 Hz), 7.71 (1H, d, J = 15.4 Hz); 13C NMR (CDCl3, δ, p.p.m.) 55.2 (OCH3), 96.8, l01.5 (OCH2O), 108.2, 112.0, 114.5, 121.2, 128.3, 130.0, 138.9, 142.1, 150.0, 153.5, 161.2, 189.0 (CO). MS (70 eV): m/e (%) 297 (27, [M+]), 190 (100, [M—C7H7O]). Crystallization from dimethylformamide gave a mixture of the monoclinic polymorph (IIa) as red crystals (m.p. 382 K) and the triclinic polymorph (IIb) as yellow crystals (m.p. 389 K). For the synthesis of (III), a solution of 6-amino-3,4-methylenedioxyacetophenone (0.5 g, 2.79 mmol), 4-trifluoromethylbenzaldehyde (0.49 g, 2.79 mmol), ethanol (10 ml) and aqueous NaOH (0.5 ml, 20%) was heated under reflux for 25 min. After cooling the mixture, the resulting precipitate was filtered and washed with ethanol, yielding (III) as an orange solid (yield 75%, m.p. 417 K). Spectroscopic analysis: IR (KBr disc, ν, cm−1): 3468, 3305 (NH2), 1646 (CO), 1606 (CC), 1228 (OCH2O); 1H NMR (DMSO-d6, δ, p.p.m.): 5.94 (1H, s, H2), 5.98 (2H, s, OCH2O), 6.38 (1H, s, H6), 7.6 (1H, d, H8, J = 15.0 Hz), 7.69 (2H, br s, NH2), 7.76 (2H, d, J = 8.0 Hz), 8.02 (1H, d, J = 15.4 Hz), 8.15 (2H, d, J = 8.0 Hz); 13C NMR (DMSO-d6, δ, p.p.m.): 95.8, 101.2 (OCH2O), 108.0, 108.9, 113.5 (CF3), 125.5, 126.7, 129.3, 138.0, 139.1, 139.4, 152.2, 153.2, 187.1 (CO). MS (70 eV): m/e (%) 335 (100, [M+]). Crystals of (III) suitable for single-crystal X-ray diffraction were grown from a solution in ethanol.

Refinement top

For (I) and (IIa), the space groups P21/n and P21/c, respectively, were uniquely determined from the systematic absences. Crystals of (IIb) and (III) are triclinic, and the space group P1 was selected and then confirmed by the structure analysis. All H atoms were located from difference maps and subsequently treated as riding atoms, with C—H = 0.95 (C—H), 0.98 (CH3) or 0.99 Å (CH2) and N—H = 0.96 Å, and with Uiso(H) = 1.2Ueq(C,N), or 1.5Ueq(C) for the methyl groups. In compound (III), the highest residual peak (0.77 e Å−3) is 1.26 Å from F141 and the deepest hole (−0.52 e Å−3) is 0.97 Å from F141. Careful inspection of electron-density maps indicated some libration of the CF3 groups about the adjacent C—C bonds, but gave no grounds for modelling these groups with more than three F-atom sites per group.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1998). Cell refinement: DIRAX/LSQ (Duisenberg et al., 2000) for (I); DENZO (Otwinowski & Minor, 1997) and COLLECT for (IIa), (IIb), (III). Data reduction: EVALCCD (Duisenberg et al., 2003) for (I); DENZO and COLLECT for (IIa), (IIb), (III). Program(s) used to solve structure: SIR97 (Altomare et al., 1999) for (I); SHELXS97 (Sheldrick, 1997) for (IIa), (III); OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997) for (IIb). Program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997) for (I); SHELXL97 (Sheldrick, 1997) for (IIa), (III); OSCAIL and SHELXL97 (Sheldrick, 1997) for (IIb). For all compounds, molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecule of (IIa), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The two independent molecules of (IIb), showing the atom-labelling scheme. (a) The type 1 molecule. (b) The type 2 molecule. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. The two independent molecules of (III), showing the atom-labelling scheme. (a) The type 1 molecule. (b) The type 2 molecule. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 5] Fig. 5. Part of the crystal structure of (I), showing formation of a chain parallel to [010]. For the sake of clarity, H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, y − 1, z) and (x, 1 + y, z), respectively.
[Figure 6] Fig. 6. Part of the crystal structure of (I), showing formation of a chain parallel to [100]. For the sake of clarity, H atoms bonded to C atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x − 1, y, z) and (1 + x, y, z), respectively.
[Figure 7] Fig. 7. A stereoview of part of the crystal structure of (I), showing formation of a sheet parallel to (001). For the sake of clarity, H atoms bonded to C atoms not involved in the motif shown have been omitted.
[Figure 8] Fig. 8. Part of the crystal structure of polymorph (IIa), showing formation of a chain of rings parallel to [010]. For the sake of clarity, H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*), a hash (#) or an ampersand () are at the symmetry positions (2 − x, y − 1/2, 1/2 − z), (x, y − 1, z) and (2 − x, 1/2 + y, 1/2 − z), respectively.
[Figure 9] Fig. 9. A stereoview of part of the crystal structure of polymorph (IIa), showing formation of an [010] chain generated by C—H···π(arene) hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 10] Fig. 10. A stereoview of part of the crystal structure of polymorph (IIa), showing formation of a sheet parallel to (001). For the sake of clarity, the intramolecular hydrogen bond and H atoms bonded to C atoms and not involved in the motif shown have been omitted.
[Figure 11] Fig. 11. A stereoview of part of the crystal structure of polymorph (IIb), showing formation of a C(8) chain along [100]. For the sake of clarity, the intramolecular hydrogen bond and H atoms bonded to C atoms and not involved in the motif shown have been omitted.
[Figure 12] Fig. 12. Part of the crystal structure of (III), showing formation of a π-stacked pair of chains parallel to [100]. For the sake of clarity, H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x − 1, y, z) and (1 + x, y, z), respectively.
(I) 1-(6-Amino-1,3-benzodioxol-5-yl)-3-(4-methylphenyl)prop-2-en-1-one top
Crystal data top
C17H15NO3F(000) = 592
Mr = 281.30Dx = 1.374 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3062 reflections
a = 10.530 (5) Åθ = 5.3–27.5°
b = 7.362 (5) ŵ = 0.10 mm1
c = 17.546 (5) ÅT = 120 K
β = 91.719 (5)°Block, yellow
V = 1359.6 (12) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
3062 independent reflections
Radiation source: Finefocus Sealed Tube2024 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 5.3°
Absorption correction: multi-scan
(EVALCCD; Duisenberg et al., 2003)
h = 1312
Tmin = 0.958, Tmax = 0.981k = 99
17073 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0198P)2 + 1.4934P]
where P = (Fo2 + 2Fc2)/3
3062 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C17H15NO3V = 1359.6 (12) Å3
Mr = 281.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.530 (5) ŵ = 0.10 mm1
b = 7.362 (5) ÅT = 120 K
c = 17.546 (5) Å0.40 × 0.30 × 0.20 mm
β = 91.719 (5)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3062 independent reflections
Absorption correction: multi-scan
(EVALCCD; Duisenberg et al., 2003)
2024 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.981Rint = 0.065
17073 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.11Δρmax = 0.24 e Å3
3062 reflectionsΔρmin = 0.21 e Å3
191 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00920 (16)0.5248 (2)0.70572 (10)0.0377 (4)
C20.1286 (2)0.4763 (4)0.73506 (16)0.0395 (6)
O30.14191 (15)0.2809 (2)0.72870 (10)0.0376 (4)
O80.38327 (17)0.0352 (2)0.61985 (11)0.0420 (5)
N50.1656 (2)0.1693 (3)0.66004 (12)0.0349 (5)
C3a0.0267 (2)0.2171 (3)0.70827 (13)0.0287 (5)
C40.0092 (2)0.0401 (3)0.69898 (13)0.0296 (5)
C50.1324 (2)0.0062 (3)0.67436 (12)0.0283 (5)
C60.2172 (2)0.1534 (3)0.66237 (12)0.0272 (5)
C70.1736 (2)0.3349 (3)0.67335 (13)0.0290 (5)
C7a0.0542 (2)0.3615 (3)0.69493 (13)0.0291 (5)
C80.3452 (2)0.1205 (3)0.63584 (13)0.0305 (5)
C90.4315 (2)0.2774 (3)0.62687 (13)0.0305 (5)
C100.5305 (2)0.2676 (3)0.58262 (13)0.0316 (5)
C110.6208 (2)0.4135 (3)0.56747 (13)0.0294 (5)
C120.6041 (2)0.5939 (3)0.59041 (13)0.0332 (6)
C130.6932 (2)0.7254 (3)0.57474 (13)0.0356 (6)
C140.8011 (2)0.6835 (4)0.53535 (13)0.0342 (6)
C150.8158 (2)0.5059 (4)0.51085 (14)0.0374 (6)
C160.7271 (2)0.3723 (3)0.52632 (14)0.0351 (6)
C1410.8975 (3)0.8287 (4)0.51910 (16)0.0445 (7)
H2A0.19790.53760.70570.047*
H2B0.13290.51390.78910.047*
H40.04760.05680.70890.036*
H5A0.25280.19250.64880.042*
H5B0.11030.26480.67590.042*
H70.22850.43520.66550.035*
H90.41530.38700.65340.037*
H100.54460.15450.55820.038*
H120.53040.62630.61720.040*
H130.68010.84670.59130.043*
H150.88840.47470.48280.045*
H160.73940.25190.50850.042*
H14A0.85450.94610.51340.067*
H14B0.94060.79910.47190.067*
H14C0.96020.83520.56140.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0316 (9)0.0259 (9)0.0564 (11)0.0009 (7)0.0126 (8)0.0042 (8)
C20.0351 (13)0.0329 (14)0.0510 (16)0.0017 (11)0.0112 (12)0.0024 (12)
O30.0311 (9)0.0317 (10)0.0504 (10)0.0033 (8)0.0093 (8)0.0047 (8)
O80.0394 (10)0.0289 (10)0.0584 (12)0.0014 (8)0.0118 (9)0.0034 (8)
N50.0359 (11)0.0233 (11)0.0456 (12)0.0033 (9)0.0042 (9)0.0013 (9)
C3a0.0272 (11)0.0316 (13)0.0273 (11)0.0020 (10)0.0023 (9)0.0038 (10)
C40.0313 (12)0.0254 (13)0.0322 (12)0.0081 (10)0.0025 (10)0.0037 (9)
C50.0318 (12)0.0270 (13)0.0259 (11)0.0018 (10)0.0020 (9)0.0015 (9)
C60.0278 (11)0.0263 (12)0.0275 (11)0.0034 (10)0.0019 (9)0.0007 (9)
C70.0295 (12)0.0266 (12)0.0311 (12)0.0060 (10)0.0033 (9)0.0009 (9)
C7a0.0340 (12)0.0227 (12)0.0307 (12)0.0011 (10)0.0024 (9)0.0016 (9)
C80.0314 (12)0.0298 (13)0.0301 (12)0.0017 (10)0.0007 (9)0.0006 (10)
C90.0294 (12)0.0289 (13)0.0332 (12)0.0013 (10)0.0023 (10)0.0041 (10)
C100.0324 (12)0.0277 (13)0.0347 (12)0.0017 (10)0.0014 (10)0.0015 (10)
C110.0285 (12)0.0318 (13)0.0280 (11)0.0002 (10)0.0006 (9)0.0006 (10)
C120.0337 (13)0.0346 (14)0.0315 (12)0.0005 (11)0.0047 (10)0.0019 (10)
C130.0454 (14)0.0292 (13)0.0324 (12)0.0060 (11)0.0008 (11)0.0020 (10)
C140.0353 (13)0.0383 (15)0.0287 (12)0.0085 (11)0.0035 (10)0.0064 (11)
C150.0311 (13)0.0415 (15)0.0400 (14)0.0012 (11)0.0052 (11)0.0040 (12)
C160.0344 (13)0.0295 (13)0.0418 (14)0.0004 (11)0.0054 (10)0.0019 (11)
C1410.0408 (14)0.0494 (17)0.0429 (15)0.0157 (13)0.0030 (12)0.0048 (13)
Geometric parameters (Å, º) top
O1—C7a1.391 (3)C8—C91.480 (3)
O1—C21.418 (3)C9—C101.321 (3)
C2—O31.449 (3)C9—H90.95
C2—H2A0.99C10—C111.464 (3)
C2—H2B0.99C10—H100.95
O3—C3a1.359 (3)C11—C161.383 (3)
C3a—C41.368 (3)C11—C121.400 (3)
C3a—C7a1.386 (3)C12—C131.381 (3)
C4—C51.402 (3)C12—H120.95
C4—H40.95C13—C141.383 (4)
C5—N51.364 (3)C13—H130.95
C5—C61.424 (3)C14—C151.387 (4)
N5—H5A0.96C14—C1411.507 (3)
N5—H5B0.96C141—H14A0.98
C6—C71.428 (3)C141—H14B0.98
C6—C81.459 (3)C141—H14C0.98
C7—C7a1.339 (3)C15—C161.389 (4)
C7—H70.95C15—H150.95
C8—O81.249 (3)C16—H160.95
C7a—O1—C2105.41 (18)C6—C8—C9118.7 (2)
O1—C2—O3107.88 (19)C10—C9—C8121.2 (2)
O1—C2—H2A110.1C10—C9—H9119.4
O3—C2—H2A110.1C8—C9—H9119.4
O1—C2—H2B110.1C9—C10—C11126.5 (2)
O3—C2—H2B110.1C9—C10—H10116.7
H2A—C2—H2B108.4C11—C10—H10116.7
C3a—O3—C2106.14 (18)C16—C11—C12117.9 (2)
O3—C3a—C4127.8 (2)C16—C11—C10118.3 (2)
O3—C3a—C7a109.7 (2)C12—C11—C10123.8 (2)
C4—C3a—C7a122.5 (2)C13—C12—C11121.0 (2)
C3a—C4—C5117.9 (2)C13—C12—H12119.5
C3a—C4—H4121.1C11—C12—H12119.5
C5—C4—H4121.1C12—C13—C14121.1 (2)
N5—C5—C4118.0 (2)C12—C13—H13119.5
N5—C5—C6121.9 (2)C14—C13—H13119.5
C4—C5—C6120.0 (2)C13—C14—C15117.8 (2)
C5—N5—H5A117.3C13—C14—C141120.3 (2)
C5—N5—H5B118.6C15—C14—C141121.9 (2)
H5A—N5—H5B121.4C14—C141—H14A109.5
C5—C6—C7119.1 (2)C14—C141—H14B109.5
C5—C6—C8120.7 (2)H14A—C141—H14B109.5
C7—C6—C8120.1 (2)C14—C141—H14C109.5
C7a—C7—C6118.9 (2)H14A—C141—H14C109.5
C7a—C7—H7120.5H14B—C141—H14C109.5
C6—C7—H7120.5C14—C15—C16121.7 (2)
C7—C7a—C3a121.5 (2)C14—C15—H15119.2
C7—C7a—O1128.6 (2)C16—C15—H15119.2
C3a—C7a—O1109.9 (2)C11—C16—C15120.4 (2)
O8—C8—C6122.0 (2)C11—C16—H16119.8
O8—C8—C9119.3 (2)C15—C16—H16119.8
C7a—O1—C2—O39.7 (3)C2—O1—C7a—C3a6.7 (3)
O1—C2—O3—C3a9.4 (3)C5—C6—C8—O82.9 (3)
C2—O3—C3a—C4176.6 (2)C7—C6—C8—O8174.3 (2)
C2—O3—C3a—C7a5.3 (3)C5—C6—C8—C9177.8 (2)
O3—C3a—C4—C5177.4 (2)C7—C6—C8—C95.0 (3)
C7a—C3a—C4—C50.6 (3)O8—C8—C9—C1020.2 (3)
C3a—C4—C5—N5175.6 (2)C6—C8—C9—C10159.1 (2)
C3a—C4—C5—C62.1 (3)C8—C9—C10—C11178.4 (2)
N5—C5—C6—C7175.7 (2)C9—C10—C11—C16172.8 (2)
C4—C5—C6—C72.0 (3)C9—C10—C11—C129.0 (4)
N5—C5—C6—C81.6 (3)C16—C11—C12—C132.2 (3)
C4—C5—C6—C8179.2 (2)C10—C11—C12—C13179.7 (2)
C5—C6—C7—C7a0.3 (3)C11—C12—C13—C140.6 (4)
C8—C6—C7—C7a177.5 (2)C12—C13—C14—C151.2 (4)
C6—C7—C7a—C3a1.3 (3)C12—C13—C14—C141179.7 (2)
C6—C7—C7a—O1177.1 (2)C13—C14—C15—C161.3 (4)
O3—C3a—C7a—C7179.5 (2)C141—C14—C15—C16179.6 (2)
C4—C3a—C7a—C71.2 (4)C12—C11—C16—C152.1 (3)
O3—C3a—C7a—O10.8 (3)C10—C11—C16—C15179.6 (2)
C4—C3a—C7a—O1177.4 (2)C14—C15—C16—C110.4 (4)
C2—O1—C7a—C7174.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O80.961.882.612 (3)131
N5—H5B···O1i0.962.073.032 (3)178
C2—H2A···Cg1ii0.992.863.644 (4)137
Symmetry codes: (i) x, y1, z; (ii) x1, y, z.
(IIa) 1-(6-Amino-1,3-benzodioxol-5-yl)-3-(4-methoxyphenyl)prop-2-en-1-one, monoclinic polymorph top
Crystal data top
C17H15NO4F(000) = 624
Mr = 297.30Dx = 1.427 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3170 reflections
a = 17.5560 (4) Åθ = 2.9–27.5°
b = 5.0914 (2) ŵ = 0.10 mm1
c = 15.4869 (4) ÅT = 120 K
β = 91.9240 (16)°Block, red
V = 1383.51 (7) Å30.04 × 0.02 × 0.02 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
3170 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2271 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 2122
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 66
Tmin = 0.959, Tmax = 0.998l = 2019
14325 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0701P)2 + 0.2374P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
3169 reflectionsΔρmax = 0.26 e Å3
201 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.007 (2)
Crystal data top
C17H15NO4V = 1383.51 (7) Å3
Mr = 297.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.5560 (4) ŵ = 0.10 mm1
b = 5.0914 (2) ÅT = 120 K
c = 15.4869 (4) Å0.04 × 0.02 × 0.02 mm
β = 91.9240 (16)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3170 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2271 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.998Rint = 0.038
14325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
3169 reflectionsΔρmin = 0.21 e Å3
201 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.78208 (6)0.4220 (2)0.01174 (7)0.0337 (3)
C20.83733 (8)0.5459 (4)0.03950 (11)0.0340 (4)
O30.91051 (6)0.4401 (2)0.01723 (7)0.0356 (3)
C3a0.89963 (8)0.2603 (3)0.04676 (9)0.0252 (4)
C40.95265 (8)0.1077 (3)0.08815 (10)0.0267 (4)
C50.92780 (8)0.0730 (3)0.15079 (9)0.0232 (3)
N50.98106 (6)0.2294 (3)0.18954 (8)0.0277 (3)
C60.84914 (8)0.0844 (3)0.17162 (9)0.0222 (3)
C70.79644 (8)0.0847 (3)0.12632 (9)0.0242 (3)
C7a0.82251 (8)0.2480 (3)0.06499 (9)0.0244 (3)
C80.82376 (8)0.2649 (3)0.23813 (9)0.0240 (3)
O80.86837 (5)0.4110 (2)0.28000 (7)0.0303 (3)
C90.74153 (8)0.2741 (3)0.25819 (9)0.0252 (4)
C100.71444 (8)0.4477 (3)0.31353 (9)0.0248 (3)
C110.63473 (8)0.4739 (3)0.33750 (9)0.0224 (3)
C120.57815 (8)0.2974 (3)0.30779 (9)0.0240 (3)
C130.50314 (8)0.3286 (3)0.32865 (9)0.0240 (3)
C140.48187 (8)0.5373 (3)0.38070 (9)0.0228 (3)
O140.40540 (5)0.5557 (2)0.39519 (6)0.0269 (3)
C1410.38014 (8)0.7774 (3)0.44357 (10)0.0302 (4)
C150.53670 (8)0.7104 (3)0.41239 (9)0.0257 (4)
C160.61226 (8)0.6771 (3)0.39075 (10)0.0261 (4)
H2A0.82500.51510.10150.041*
H2B0.83720.73770.02900.041*
H41.00510.12170.07550.032*
H5A0.96640.37210.22600.033*
H5B1.03170.22750.16810.033*
H70.74390.08240.13910.029*
H90.70750.15270.23080.030*
H100.75010.56570.34000.030*
H120.59200.15350.27260.029*
H130.46580.20760.30750.029*
H14A0.40360.77240.50190.045*
H14B0.32460.77150.44730.045*
H14C0.39500.93970.41460.045*
H150.52280.85140.44880.031*
H160.64960.79660.41300.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0224 (6)0.0406 (7)0.0384 (6)0.0021 (5)0.0042 (5)0.0136 (6)
C20.0247 (8)0.0368 (10)0.0407 (9)0.0012 (7)0.0044 (7)0.0109 (8)
O30.0232 (6)0.0460 (8)0.0380 (7)0.0004 (5)0.0057 (5)0.0161 (6)
C3a0.0231 (7)0.0292 (9)0.0237 (8)0.0048 (6)0.0042 (6)0.0003 (7)
C40.0159 (7)0.0346 (9)0.0299 (8)0.0030 (6)0.0046 (6)0.0020 (7)
C50.0195 (7)0.0258 (8)0.0243 (7)0.0011 (6)0.0017 (6)0.0059 (7)
N50.0159 (6)0.0320 (8)0.0354 (7)0.0018 (5)0.0034 (5)0.0038 (6)
C60.0169 (7)0.0252 (8)0.0245 (7)0.0017 (6)0.0014 (6)0.0043 (6)
C70.0160 (7)0.0284 (8)0.0283 (8)0.0005 (6)0.0037 (6)0.0014 (7)
C7a0.0201 (7)0.0272 (9)0.0260 (8)0.0011 (6)0.0003 (6)0.0012 (7)
C80.0189 (7)0.0281 (9)0.0250 (7)0.0001 (6)0.0015 (6)0.0037 (7)
O80.0200 (5)0.0361 (7)0.0350 (6)0.0021 (5)0.0022 (4)0.0073 (5)
C90.0179 (7)0.0327 (9)0.0250 (7)0.0007 (6)0.0014 (6)0.0024 (7)
C100.0210 (7)0.0269 (8)0.0263 (8)0.0010 (6)0.0004 (6)0.0000 (7)
C110.0192 (7)0.0263 (8)0.0217 (7)0.0025 (6)0.0010 (6)0.0002 (6)
C120.0242 (7)0.0271 (8)0.0208 (7)0.0022 (6)0.0020 (6)0.0008 (6)
C130.0209 (7)0.0286 (9)0.0223 (7)0.0023 (6)0.0002 (6)0.0012 (6)
C140.0172 (7)0.0297 (9)0.0216 (7)0.0024 (6)0.0018 (6)0.0025 (6)
O140.0183 (5)0.0344 (7)0.0282 (6)0.0015 (4)0.0050 (4)0.0047 (5)
C150.0255 (8)0.0263 (8)0.0253 (8)0.0037 (6)0.0026 (6)0.0035 (7)
C160.0218 (7)0.0272 (8)0.0292 (8)0.0014 (6)0.0014 (6)0.0026 (7)
C1410.0241 (8)0.0348 (10)0.0322 (8)0.0051 (7)0.0074 (6)0.0033 (7)
Geometric parameters (Å, º) top
O1—C7a1.3890 (18)C9—C101.330 (2)
O1—C21.4214 (18)C9—H90.95
C2—O31.4248 (19)C10—C111.4659 (19)
C2—H2A0.99C10—H100.95
C2—H2B0.99C11—C161.388 (2)
O3—C3a1.3673 (18)C11—C121.406 (2)
C3a—C41.357 (2)C12—C131.376 (2)
C3a—C7a1.3937 (19)C12—H120.95
C4—C51.416 (2)C13—C141.392 (2)
C4—H40.95C13—H130.95
C5—N51.3531 (19)C14—O141.3718 (17)
C5—C61.4297 (19)C14—C151.383 (2)
N5—H5A0.96O14—C1411.4332 (18)
N5—H5B0.9599C141—H14A0.98
C6—C71.430 (2)C141—H14B0.98
C6—C81.461 (2)C141—H14C0.98
C7—C7a1.354 (2)C15—C161.3894 (19)
C7—H70.95C15—H150.95
C8—O81.2460 (18)C16—H160.95
C8—C91.4877 (19)
C7a—O1—C2105.65 (11)C10—C9—C8121.71 (14)
O1—C2—O3108.89 (13)C10—C9—H9119.1
O1—C2—H2A109.9C8—C9—H9119.1
O3—C2—H2A109.9C9—C10—C11126.05 (14)
O1—C2—H2B109.9C9—C10—H10117.0
O3—C2—H2B109.9C11—C10—H10117.0
H2A—C2—H2B108.3C16—C11—C12117.33 (13)
C3a—O3—C2106.38 (11)C16—C11—C10120.72 (13)
C4—C3a—O3127.99 (13)C12—C11—C10121.95 (13)
C4—C3a—C7a122.30 (14)C13—C12—C11121.39 (14)
O3—C3a—C7a109.70 (13)C13—C12—H12119.3
C3a—C4—C5118.25 (13)C11—C12—H12119.3
C3a—C4—H4120.9C12—C13—C14120.11 (14)
C5—C4—H4120.9C12—C13—H13119.9
N5—C5—C4117.51 (13)C14—C13—H13119.9
N5—C5—C6122.30 (14)O14—C14—C15124.88 (13)
C4—C5—C6120.19 (14)O14—C14—C13115.46 (13)
C5—N5—H5A120.7C15—C14—C13119.65 (13)
C5—N5—H5B118.4C14—O14—C141117.45 (12)
H5A—N5—H5B118.7O14—C141—H14A109.5
C5—C6—C7118.61 (13)O14—C141—H14B109.5
C5—C6—C8120.27 (13)H14A—C141—H14B109.5
C7—C6—C8121.12 (12)O14—C141—H14C109.5
C7a—C7—C6119.05 (13)H14A—C141—H14C109.5
C7a—C7—H7120.5H14B—C141—H14C109.5
C6—C7—H7120.5C14—C15—C16119.70 (14)
C7—C7a—O1129.08 (13)C14—C15—H15120.1
C7—C7a—C3a121.55 (14)C16—C15—H15120.1
O1—C7a—C3a109.37 (12)C11—C16—C15121.78 (14)
O8—C8—C6122.76 (12)C11—C16—H16119.1
O8—C8—C9118.04 (13)C15—C16—H16119.1
C6—C8—C9119.20 (13)
C7a—O1—C2—O31.08 (17)C5—C6—C8—O81.2 (2)
O1—C2—O3—C3a0.93 (18)C7—C6—C8—O8178.52 (14)
C2—O3—C3a—C4179.51 (16)C5—C6—C8—C9179.63 (13)
C2—O3—C3a—C7a0.40 (17)C7—C6—C8—C90.6 (2)
O3—C3a—C4—C5177.80 (14)O8—C8—C9—C105.8 (2)
C7a—C3a—C4—C51.2 (2)C6—C8—C9—C10175.03 (14)
C3a—C4—C5—N5177.99 (14)C8—C9—C10—C11179.77 (14)
C3a—C4—C5—C62.5 (2)C9—C10—C11—C16174.69 (15)
N5—C5—C6—C7178.83 (13)C9—C10—C11—C125.1 (2)
C4—C5—C6—C71.7 (2)C16—C11—C12—C131.7 (2)
N5—C5—C6—C81.4 (2)C10—C11—C12—C13178.04 (14)
C4—C5—C6—C8178.10 (13)C11—C12—C13—C140.4 (2)
C5—C6—C7—C7a0.5 (2)C12—C13—C14—O14177.87 (13)
C8—C6—C7—C7a179.76 (14)C12—C13—C14—C151.0 (2)
C6—C7—C7a—O1178.04 (14)C15—C14—O14—C1412.9 (2)
C6—C7—C7a—C3a1.8 (2)C13—C14—O14—C141175.91 (13)
C2—O1—C7a—C7179.31 (16)O14—C14—C15—C16177.65 (13)
C2—O1—C7a—C3a0.83 (17)C13—C14—C15—C161.1 (2)
C4—C3a—C7a—C71.0 (2)C12—C11—C16—C151.6 (2)
O3—C3a—C7a—C7179.86 (13)C10—C11—C16—C15178.15 (14)
C4—C3a—C7a—O1178.89 (14)C14—C15—C16—C110.2 (2)
O3—C3a—C7a—O10.28 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O80.961.952.6301 (15)126
N5—H5B···O8i0.962.493.1232 (15)123
C2—H2B···Cg2ii0.992.843.640 (2)138
C13—H13···Cg1iii0.952.813.488 (2)130
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y1, z; (iii) x+1, y1/2, z+1/2.
(IIb) 1-(6-Amino-1,3-benzodioxol-5-yl)-3-(4-methoxyphenyl)prop-2-en-1-one, triclinic polymorph top
Crystal data top
C17H15NO4Z = 4
Mr = 297.30F(000) = 624
Triclinic, P1Dx = 1.380 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5352 (2) ÅCell parameters from 6517 reflections
b = 10.6193 (3) Åθ = 3.1–27.5°
c = 14.7611 (4) ŵ = 0.10 mm1
α = 89.1400 (14)°T = 120 K
β = 81.0970 (17)°Block, yellow
γ = 75.7540 (14)°0.45 × 0.30 × 0.20 mm
V = 1430.83 (6) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
6517 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode4940 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.951, Tmax = 0.981l = 1919
23999 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0778P)2 + 0.1431P]
where P = (Fo2 + 2Fc2)/3
6512 reflections(Δ/σ)max = 0.001
399 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C17H15NO4γ = 75.7540 (14)°
Mr = 297.30V = 1430.83 (6) Å3
Triclinic, P1Z = 4
a = 9.5352 (2) ÅMo Kα radiation
b = 10.6193 (3) ŵ = 0.10 mm1
c = 14.7611 (4) ÅT = 120 K
α = 89.1400 (14)°0.45 × 0.30 × 0.20 mm
β = 81.0970 (17)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
6517 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4940 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.981Rint = 0.035
23999 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.10Δρmax = 0.30 e Å3
6512 reflectionsΔρmin = 0.37 e Å3
399 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.93492 (11)1.05175 (11)0.26740 (7)0.0293 (3)
C120.82075 (18)1.0549 (2)0.19306 (12)0.0433 (5)
O130.88228 (11)0.97686 (10)0.12149 (7)0.0278 (3)
C13a1.03083 (15)0.96323 (13)0.14296 (10)0.0219 (3)
C141.13545 (16)0.91026 (14)0.09121 (10)0.0233 (3)
C151.28298 (16)0.90599 (13)0.12808 (10)0.0212 (3)
N151.38864 (14)0.85000 (13)0.07718 (9)0.0303 (3)
C161.31659 (15)0.95830 (13)0.21581 (9)0.0196 (3)
C171.20217 (15)1.00866 (13)0.26744 (10)0.0211 (3)
C17a1.06302 (15)1.01012 (13)0.22988 (10)0.0216 (3)
C181.46764 (15)0.96232 (13)0.25280 (10)0.0214 (3)
O181.57336 (11)0.90408 (10)0.21638 (7)0.0268 (2)
C191.49422 (16)1.03991 (14)0.33514 (10)0.0242 (3)
C1101.62835 (16)1.03311 (13)0.37915 (10)0.0222 (3)
C1111.67155 (15)1.10589 (13)0.45907 (10)0.0204 (3)
C1121.57301 (15)1.17991 (14)0.51147 (10)0.0233 (3)
C1131.61880 (16)1.25048 (14)0.58487 (10)0.0239 (3)
C1141.76706 (16)1.24714 (13)0.60766 (10)0.0222 (3)
O1141.82482 (11)1.31281 (10)0.67802 (7)0.0298 (3)
C1411.72509 (19)1.39249 (16)0.73043 (12)0.0346 (4)
C1151.86764 (15)1.17362 (14)0.55668 (10)0.0237 (3)
C1161.82016 (15)1.10385 (14)0.48380 (10)0.0227 (3)
O210.90504 (13)0.30396 (10)0.07496 (7)0.0326 (3)
C221.01329 (19)0.31569 (15)0.15102 (11)0.0327 (4)
O231.02449 (12)0.44767 (10)0.15327 (8)0.0349 (3)
C23a0.90742 (16)0.51538 (14)0.09352 (10)0.0252 (3)
C240.86521 (16)0.64606 (14)0.07812 (10)0.0265 (3)
C250.74048 (16)0.69550 (14)0.01122 (10)0.0232 (3)
N250.69942 (15)0.82629 (12)0.00494 (9)0.0301 (3)
C260.66336 (16)0.61005 (13)0.03725 (10)0.0223 (3)
C270.71473 (16)0.47289 (14)0.01813 (10)0.0242 (3)
C27a0.83396 (16)0.43040 (14)0.04616 (10)0.0237 (3)
C280.53670 (16)0.66027 (14)0.10777 (10)0.0252 (3)
O280.48934 (13)0.77871 (10)0.12534 (8)0.0372 (3)
C290.46453 (16)0.56927 (14)0.16273 (10)0.0248 (3)
C2100.39261 (16)0.60410 (14)0.24716 (10)0.0259 (3)
C2110.32337 (16)0.52343 (14)0.31214 (10)0.0243 (3)
C2120.29118 (17)0.40866 (15)0.28601 (11)0.0282 (3)
C2130.23095 (17)0.33422 (15)0.35017 (11)0.0305 (4)
C2140.20247 (16)0.37000 (14)0.44281 (11)0.0264 (3)
O2140.14627 (13)0.28658 (11)0.50080 (8)0.0351 (3)
C2410.1067 (2)0.32327 (17)0.59548 (12)0.0388 (4)
C2150.23255 (17)0.48297 (15)0.47021 (11)0.0294 (3)
C2160.29181 (17)0.55836 (15)0.40472 (11)0.0295 (3)
H12A0.74311.01990.21300.052*
H12B0.77701.14550.17030.052*
H141.11070.87720.03230.028*
H15A1.36420.81800.02340.036*
H15B1.48130.84580.09820.036*
H171.22291.04070.32720.025*
H191.41311.09600.35700.029*
H1101.70570.97370.35590.027*
H1121.47191.18200.49640.028*
H1131.54971.30080.61940.029*
H14A1.65641.46070.69060.052*
H14B1.67071.33910.75720.052*
H14C1.77971.43240.77960.052*
H1151.96871.17150.57200.028*
H1161.88971.05330.44960.027*
H22A0.98460.29190.20890.039*
H22B1.10890.25670.14410.039*
H240.91740.70230.11100.032*
H25B0.74980.87680.02570.036*
H25A0.62250.86040.04600.036*
H270.66600.41340.04990.029*
H290.46940.48600.13790.030*
H2100.38560.69030.26720.031*
H2120.31130.38210.22320.034*
H2130.20840.25740.33110.037*
H24A0.19460.32690.62100.058*
H24B0.06080.25920.62840.058*
H24C0.03740.40900.60220.058*
H2150.21290.50880.53320.035*
H2160.31150.63650.42380.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0194 (5)0.0438 (7)0.0250 (6)0.0092 (5)0.0023 (4)0.0055 (5)
C120.0245 (8)0.0760 (14)0.0314 (10)0.0186 (9)0.0013 (7)0.0129 (9)
O130.0211 (5)0.0374 (6)0.0255 (6)0.0124 (5)0.0029 (4)0.0035 (5)
C13a0.0217 (7)0.0221 (7)0.0223 (7)0.0105 (6)0.0038 (6)0.0024 (6)
C140.0277 (7)0.0247 (7)0.0176 (7)0.0101 (6)0.0021 (6)0.0024 (6)
C150.0253 (7)0.0177 (7)0.0207 (7)0.0070 (6)0.0014 (6)0.0009 (5)
N150.0278 (7)0.0384 (8)0.0236 (7)0.0075 (6)0.0033 (6)0.0130 (6)
C160.0221 (7)0.0181 (7)0.0183 (7)0.0068 (6)0.0013 (6)0.0003 (5)
C170.0237 (7)0.0222 (7)0.0171 (7)0.0078 (6)0.0008 (6)0.0024 (5)
C17a0.0210 (7)0.0234 (7)0.0204 (7)0.0067 (6)0.0019 (6)0.0012 (6)
C180.0233 (7)0.0192 (7)0.0213 (7)0.0067 (6)0.0001 (6)0.0015 (5)
O180.0219 (5)0.0298 (6)0.0273 (6)0.0046 (4)0.0027 (4)0.0064 (4)
C190.0213 (7)0.0256 (7)0.0252 (8)0.0065 (6)0.0016 (6)0.0052 (6)
C1100.0233 (7)0.0225 (7)0.0206 (7)0.0062 (6)0.0019 (6)0.0014 (6)
C1110.0215 (7)0.0199 (7)0.0186 (7)0.0058 (6)0.0018 (6)0.0017 (5)
C1120.0194 (7)0.0277 (8)0.0232 (8)0.0086 (6)0.0006 (6)0.0009 (6)
C1130.0229 (7)0.0266 (8)0.0225 (8)0.0062 (6)0.0041 (6)0.0033 (6)
C1140.0265 (7)0.0216 (7)0.0177 (7)0.0076 (6)0.0018 (6)0.0014 (5)
O1140.0280 (6)0.0346 (6)0.0260 (6)0.0099 (5)0.0003 (5)0.0115 (5)
C1410.0372 (9)0.0380 (9)0.0298 (9)0.0119 (7)0.0061 (7)0.0146 (7)
C1150.0190 (7)0.0258 (7)0.0249 (8)0.0066 (6)0.0022 (6)0.0000 (6)
C1160.0202 (7)0.0237 (7)0.0216 (7)0.0018 (6)0.0009 (6)0.0016 (6)
O210.0424 (7)0.0222 (6)0.0282 (6)0.0069 (5)0.0085 (5)0.0011 (4)
C220.0402 (9)0.0279 (8)0.0267 (8)0.0085 (7)0.0055 (7)0.0015 (6)
O230.0357 (6)0.0270 (6)0.0365 (7)0.0074 (5)0.0112 (5)0.0026 (5)
C23a0.0250 (7)0.0283 (8)0.0215 (8)0.0076 (6)0.0007 (6)0.0011 (6)
C240.0278 (8)0.0249 (8)0.0275 (8)0.0100 (6)0.0010 (6)0.0038 (6)
C250.0259 (7)0.0228 (7)0.0221 (7)0.0069 (6)0.0058 (6)0.0033 (6)
N250.0318 (7)0.0213 (7)0.0349 (8)0.0081 (5)0.0047 (6)0.0022 (5)
C260.0249 (7)0.0226 (7)0.0195 (7)0.0065 (6)0.0033 (6)0.0033 (6)
C270.0303 (8)0.0239 (7)0.0198 (7)0.0101 (6)0.0030 (6)0.0043 (6)
C27a0.0299 (8)0.0206 (7)0.0208 (7)0.0064 (6)0.0040 (6)0.0008 (6)
C280.0279 (7)0.0250 (8)0.0215 (8)0.0048 (6)0.0029 (6)0.0050 (6)
O280.0408 (7)0.0243 (6)0.0367 (7)0.0006 (5)0.0111 (5)0.0045 (5)
C290.0243 (7)0.0252 (8)0.0242 (8)0.0052 (6)0.0030 (6)0.0038 (6)
C2100.0274 (7)0.0235 (7)0.0252 (8)0.0049 (6)0.0014 (6)0.0038 (6)
C2110.0234 (7)0.0233 (7)0.0236 (8)0.0038 (6)0.0009 (6)0.0019 (6)
C2120.0295 (8)0.0313 (8)0.0232 (8)0.0086 (7)0.0007 (6)0.0032 (6)
C2130.0324 (8)0.0262 (8)0.0343 (9)0.0126 (7)0.0006 (7)0.0024 (7)
C2140.0234 (7)0.0245 (8)0.0292 (8)0.0054 (6)0.0010 (6)0.0059 (6)
O2140.0399 (6)0.0315 (6)0.0331 (7)0.0147 (5)0.0056 (5)0.0061 (5)
C2410.0389 (9)0.0411 (10)0.0315 (9)0.0076 (8)0.0051 (7)0.0111 (7)
C2150.0352 (8)0.0301 (8)0.0216 (8)0.0093 (7)0.0015 (7)0.0000 (6)
C2160.0359 (9)0.0251 (8)0.0276 (8)0.0108 (7)0.0002 (7)0.0017 (6)
Geometric parameters (Å, º) top
O11—C17a1.3894 (17)O21—C27a1.3867 (18)
O11—C121.416 (2)O21—C221.4289 (19)
C12—O131.440 (2)C22—O231.4310 (19)
C12—H12A0.99C22—H22A0.99
C12—H12B0.99C22—H22B0.99
O13—C13a1.3745 (17)O23—C23a1.3639 (18)
C13a—C141.357 (2)C23a—C241.359 (2)
C13a—C17a1.387 (2)C23a—C27a1.391 (2)
C14—C151.418 (2)C24—C251.418 (2)
C14—H140.95C24—H240.95
C15—N151.364 (2)C25—N251.361 (2)
C15—C161.423 (2)C25—C261.422 (2)
N15—H15A0.88N25—H25B0.88
N15—H15B0.88N25—H25A0.88
C16—C171.420 (2)C26—C271.435 (2)
C16—C181.470 (2)C26—C281.462 (2)
C17—C17a1.353 (2)C27—C27a1.350 (2)
C17—H170.95C27—H270.95
C18—O181.240 (2)C28—O281.244 (2)
C18—C191.483 (2)C28—C291.482 (2)
C19—C1101.327 (2)C29—C2101.336 (2)
C19—H190.95C29—H290.95
C110—C1111.4620 (19)C210—C2111.465 (2)
C110—H1100.95C210—H2100.95
C111—C1121.3936 (19)C211—C2161.389 (2)
C111—C1161.4024 (19)C211—C2121.401 (2)
C112—C1131.384 (2)C212—C2131.373 (2)
C112—H1120.95C212—H2120.95
C113—C1141.393 (2)C213—C2141.392 (2)
C113—H1130.95C213—H2130.95
C114—O1141.3633 (17)C214—O2141.3688 (18)
C114—C1151.390 (2)C214—C2151.380 (2)
O114—C1411.4251 (18)O214—C2411.424 (2)
C141—H14A0.98C241—H24A0.98
C141—H14B0.98C241—H24B0.98
C141—H14C0.98C241—H24C0.98
C115—C1161.379 (2)C215—C2161.388 (2)
C115—H1150.95C215—H2150.95
C116—H1160.95C216—H2160.95
C17a—O11—C12104.76 (11)C27a—O21—C22105.38 (11)
O11—C12—O13107.95 (13)O21—C22—O23108.06 (12)
O11—C12—H12A110.1O21—C22—H22A110.1
O13—C12—H12A110.1O23—C22—H22A110.1
O11—C12—H12B110.1O21—C22—H22B110.1
O13—C12—H12B110.1O23—C22—H22B110.1
H12A—C12—H12B108.4H22A—C22—H22B108.4
C13a—O13—C12104.95 (11)C23a—O23—C22105.80 (12)
C14—C13a—O13127.68 (13)C24—C23a—O23127.26 (14)
C14—C13a—C17a122.81 (13)C24—C23a—C27a122.60 (14)
O13—C13a—C17a109.50 (12)O23—C23a—C27a110.13 (13)
C13a—C14—C15117.67 (13)C23a—C24—C25117.61 (14)
C13a—C14—H14121.2C23a—C24—H24121.2
C15—C14—H14121.2C25—C24—H24121.2
N15—C15—C14117.80 (13)N25—C25—C24117.53 (13)
N15—C15—C16122.27 (13)N25—C25—C26121.96 (14)
C14—C15—C16119.93 (13)C24—C25—C26120.51 (13)
C15—N15—H15A120.0C25—N25—H25B120.0
C15—N15—H15B120.0C25—N25—H25A120.0
H15A—N15—H15B120.0H25B—N25—H25A120.0
C17—C16—C15119.39 (12)C25—C26—C27118.97 (13)
C17—C16—C18119.79 (12)C25—C26—C28120.71 (13)
C15—C16—C18120.81 (12)C27—C26—C28120.29 (13)
C17a—C17—C16118.67 (13)C27a—C27—C26118.38 (13)
C17a—C17—H17120.7C27a—C27—H27120.8
C16—C17—H17120.7C26—C27—H27120.8
C17—C17a—C13a121.45 (13)C27—C27a—O21128.93 (13)
C17—C17a—O11129.04 (13)C27—C27a—C23a121.94 (14)
C13a—C17a—O11109.50 (12)O21—C27a—C23a109.12 (13)
O18—C18—C16121.90 (13)O28—C28—C26121.63 (13)
O18—C18—C19119.03 (13)O28—C28—C29118.26 (14)
C16—C18—C19119.07 (12)C26—C28—C29120.08 (13)
C110—C19—C18121.78 (13)C210—C29—C28120.12 (14)
C110—C19—H19119.1C210—C29—H29119.9
C18—C19—H19119.1C28—C29—H29119.9
C19—C110—C111127.91 (13)C29—C210—C211126.92 (14)
C19—C110—H110116.0C29—C210—H210116.5
C111—C110—H110116.0C211—C210—H210116.5
C112—C111—C116117.67 (13)C216—C211—C212117.50 (14)
C112—C111—C110123.79 (13)C216—C211—C210119.37 (13)
C116—C111—C110118.52 (12)C212—C211—C210123.09 (14)
C113—C112—C111121.63 (13)C213—C212—C211120.74 (14)
C113—C112—H112119.2C213—C212—H212119.6
C111—C112—H112119.2C211—C212—H212119.6
C112—C113—C114119.47 (13)C212—C213—C214120.78 (14)
C112—C113—H113120.3C212—C213—H213119.6
C114—C113—H113120.3C214—C213—H213119.6
O114—C114—C115115.27 (12)O214—C214—C215124.73 (14)
O114—C114—C113124.73 (13)O214—C214—C213115.69 (13)
C115—C114—C113120.00 (13)C215—C214—C213119.58 (14)
C114—O114—C141117.17 (11)C214—O214—C241117.66 (13)
O114—C141—H14A109.5O214—C241—H24A109.5
O114—C141—H14B109.5O214—C241—H24B109.5
H14A—C141—H14B109.5H24A—C241—H24B109.5
O114—C141—H14C109.5O214—C241—H24C109.5
H14A—C141—H14C109.5H24A—C241—H24C109.5
H14B—C141—H14C109.5H24B—C241—H24C109.5
C116—C115—C114119.77 (13)C214—C215—C216119.21 (14)
C116—C115—H115120.1C214—C215—H215120.4
C114—C115—H115120.1C216—C215—H215120.4
C115—C116—C111121.44 (13)C215—C216—C211122.18 (14)
C115—C116—H116119.3C215—C216—H216118.9
C111—C116—H116119.3C211—C216—H216118.9
C17a—O11—C12—O1318.20 (18)C27a—O21—C22—O2312.11 (16)
O11—C12—O13—C13a17.28 (18)O21—C22—O23—C23a11.89 (17)
C12—O13—C13a—C14171.96 (16)C22—O23—C23a—C24174.23 (15)
C12—O13—C13a—C17a9.52 (16)C22—O23—C23a—C27a7.09 (17)
O13—C13a—C14—C15179.64 (13)O23—C23a—C24—C25178.94 (14)
C17a—C13a—C14—C151.3 (2)C27a—C23a—C24—C250.4 (2)
C13a—C14—C15—N15178.46 (13)C23a—C24—C25—N25179.21 (13)
C13a—C14—C15—C161.1 (2)C23a—C24—C25—C260.1 (2)
N15—C15—C16—C17176.49 (13)N25—C25—C26—C27178.63 (13)
C14—C15—C16—C173.0 (2)C24—C25—C26—C270.7 (2)
N15—C15—C16—C184.4 (2)N25—C25—C26—C280.7 (2)
C14—C15—C16—C18176.13 (12)C24—C25—C26—C28178.60 (13)
C15—C16—C17—C17a2.6 (2)C25—C26—C27—C27a0.7 (2)
C18—C16—C17—C17a176.55 (13)C28—C26—C27—C27a178.60 (13)
C16—C17—C17a—C13a0.3 (2)C26—C27—C27a—O21178.58 (13)
C16—C17—C17a—O11178.61 (13)C26—C27—C27a—C23a0.2 (2)
C14—C13a—C17a—C171.8 (2)C22—O21—C27a—C27173.61 (15)
O13—C13a—C17a—C17179.65 (12)C22—O21—C27a—C23a7.80 (16)
C14—C13a—C17a—O11176.87 (13)C24—C23a—C27a—C270.4 (2)
O13—C13a—C17a—O111.74 (16)O23—C23a—C27a—C27179.17 (13)
C12—O11—C17a—C17169.12 (16)C24—C23a—C27a—O21178.29 (13)
C12—O11—C17a—C13a12.39 (17)O23—C23a—C27a—O210.46 (17)
C17—C16—C18—O18169.98 (13)C25—C26—C28—O282.6 (2)
C15—C16—C18—O1810.9 (2)C27—C26—C28—O28179.54 (13)
C17—C16—C18—C1911.0 (2)C25—C26—C28—C29175.23 (13)
C15—C16—C18—C19168.15 (13)C27—C26—C28—C292.7 (2)
O18—C18—C19—C11010.5 (2)O28—C28—C29—C21024.7 (2)
C16—C18—C19—C110170.48 (13)C26—C28—C29—C210153.13 (14)
C18—C19—C110—C111178.12 (13)C28—C29—C210—C211176.05 (13)
C19—C110—C111—C11211.3 (2)C29—C210—C211—C216160.90 (15)
C19—C110—C111—C116167.29 (15)C29—C210—C211—C21216.8 (2)
C116—C111—C112—C1130.7 (2)C216—C211—C212—C2130.1 (2)
C110—C111—C112—C113177.92 (13)C210—C211—C212—C213177.68 (14)
C111—C112—C113—C1140.4 (2)C211—C212—C213—C2141.0 (2)
C112—C113—C114—O114179.72 (13)C212—C213—C214—O214178.20 (14)
C112—C113—C114—C1150.2 (2)C212—C213—C214—C2151.3 (2)
C115—C114—O114—C141178.20 (13)C215—C214—O214—C2414.5 (2)
C113—C114—O114—C1411.4 (2)C213—C214—O214—C241176.09 (14)
O114—C114—C115—C116179.80 (13)O214—C214—C215—C216178.92 (14)
C113—C114—C115—C1160.2 (2)C213—C214—C215—C2160.5 (2)
C114—C115—C116—C1110.5 (2)C214—C215—C216—C2110.6 (2)
C112—C111—C116—C1150.7 (2)C212—C211—C216—C2150.9 (2)
C110—C111—C116—C115177.97 (13)C210—C211—C216—C215176.98 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15B···O180.881.992.6451 (17)130
N25—H25A···O280.881.952.6069 (19)131
N25—H25B···O130.882.193.0586 (17)170
C12—H12A···O18i0.992.273.221 (2)161
Symmetry code: (i) x1, y, z.
(III) 1-(6-Amino-1,3-benzodioxol-5-yl)-3-[4-(trifluoromethyl)phenyl]prop-2-en-1-one top
Crystal data top
C17H12F3NO3Z = 4
Mr = 335.28F(000) = 688
Triclinic, P1Dx = 1.544 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3420 (2) ÅCell parameters from 6611 reflections
b = 10.9241 (3) Åθ = 3.0–27.6°
c = 18.7176 (5) ŵ = 0.13 mm1
α = 85.0180 (11)°T = 120 K
β = 83.2280 (14)°Block, red
γ = 75.8180 (14)°0.60 × 0.60 × 0.50 mm
V = 1442.71 (7) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
6611 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode4510 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 27.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 96
Tmin = 0.920, Tmax = 0.937k = 1413
20172 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0874P)2 + 0.3568P]
where P = (Fo2 + 2Fc2)/3
6611 reflections(Δ/σ)max < 0.001
433 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C17H12F3NO3γ = 75.8180 (14)°
Mr = 335.28V = 1442.71 (7) Å3
Triclinic, P1Z = 4
a = 7.3420 (2) ÅMo Kα radiation
b = 10.9241 (3) ŵ = 0.13 mm1
c = 18.7176 (5) ÅT = 120 K
α = 85.0180 (11)°0.60 × 0.60 × 0.50 mm
β = 83.2280 (14)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
6611 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4510 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.937Rint = 0.038
20172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.04Δρmax = 0.77 e Å3
6611 reflectionsΔρmin = 0.52 e Å3
433 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F1410.7571 (4)0.6220 (2)0.35107 (10)0.0990 (9)
F1420.8294 (3)0.48202 (16)0.43056 (11)0.0721 (6)
F1430.5784 (2)0.6202 (2)0.44684 (13)0.0963 (9)
O110.8022 (2)0.19815 (14)0.06107 (8)0.0288 (4)
O130.6180 (2)0.26762 (14)0.01200 (8)0.0271 (3)
O180.0728 (2)0.13519 (14)0.19270 (8)0.0272 (3)
N150.0344 (2)0.00119 (17)0.08840 (9)0.0250 (4)
C120.8092 (3)0.2675 (2)0.00123 (12)0.0266 (5)
C13a0.5051 (3)0.17842 (18)0.03120 (10)0.0213 (4)
C140.3142 (3)0.13762 (19)0.03553 (11)0.0220 (4)
C150.2260 (3)0.04596 (19)0.08561 (10)0.0201 (4)
C160.3368 (3)0.00141 (18)0.12949 (10)0.0193 (4)
C170.5368 (3)0.04738 (19)0.12315 (10)0.0211 (4)
C17a0.6138 (3)0.13464 (19)0.07453 (10)0.0204 (4)
C180.2472 (3)0.09856 (19)0.18044 (10)0.0205 (4)
C190.3685 (3)0.15777 (19)0.21796 (11)0.0240 (5)
C1100.2951 (3)0.2558 (2)0.25768 (11)0.0240 (4)
C1110.3977 (3)0.32596 (19)0.29524 (11)0.0222 (4)
C1120.5947 (3)0.2958 (2)0.29228 (11)0.0228 (4)
C1130.6856 (3)0.3665 (2)0.32679 (11)0.0241 (5)
C1140.5816 (3)0.46842 (19)0.36509 (11)0.0231 (4)
C1150.3861 (3)0.4992 (2)0.36956 (11)0.0278 (5)
C1160.2954 (3)0.4280 (2)0.33448 (12)0.0273 (5)
C1410.6809 (3)0.5487 (2)0.39885 (12)0.0311 (5)
F2410.7526 (2)0.43372 (14)0.03458 (7)0.0458 (4)
F2420.70842 (19)0.29796 (12)0.11946 (7)0.0360 (3)
F2430.88822 (18)0.42096 (14)0.13137 (9)0.0471 (4)
O210.1650 (2)1.18306 (16)0.45514 (9)0.0351 (4)
O230.1122 (2)1.24138 (15)0.53049 (8)0.0307 (4)
O280.2621 (2)0.92780 (16)0.28116 (8)0.0341 (4)
N250.4550 (2)1.02100 (18)0.40185 (10)0.0290 (4)
C220.0792 (3)1.2534 (2)0.51624 (12)0.0298 (5)
C23a0.1391 (3)1.16850 (19)0.47839 (11)0.0222 (4)
C240.2995 (3)1.13411 (19)0.46896 (11)0.0238 (4)
C250.2946 (3)1.05837 (19)0.41070 (11)0.0219 (4)
C260.1245 (3)1.01753 (19)0.36568 (10)0.0208 (4)
C270.0388 (3)1.05749 (19)0.37799 (11)0.0227 (4)
C27a0.0266 (3)1.1324 (2)0.43324 (11)0.0231 (4)
C280.1177 (3)0.9359 (2)0.30665 (11)0.0233 (4)
C290.0670 (3)0.85498 (19)0.27934 (11)0.0233 (4)
C2100.0779 (3)0.7751 (2)0.22836 (11)0.0234 (4)
C2110.2466 (3)0.68672 (19)0.19792 (10)0.0215 (4)
C2120.4279 (3)0.6868 (2)0.21305 (11)0.0230 (4)
C2130.5837 (3)0.6000 (2)0.18387 (11)0.0230 (4)
C2140.5600 (3)0.51135 (19)0.13917 (11)0.0233 (4)
C2150.3809 (3)0.5099 (2)0.12317 (11)0.0254 (5)
C2160.2268 (3)0.5978 (2)0.15186 (11)0.0252 (5)
C2410.7261 (3)0.4169 (2)0.10704 (12)0.0284 (5)
H12A0.88440.35530.00630.032*
H12B0.86900.22710.04400.032*
H140.24210.16960.00590.026*
H15A0.02520.04490.12970.030*
H15B0.03480.04930.06640.030*
H170.61370.01910.15240.025*
H190.50140.12450.21330.029*
H1100.16140.28380.26240.029*
H1120.66640.22600.26630.027*
H1130.81950.34560.32440.029*
H1150.31510.56820.39630.033*
H1160.16140.44910.33720.033*
H22A0.08171.34360.50630.036*
H22B0.14921.22020.55860.036*
H240.41151.15990.50040.029*
H25A0.45500.98770.35600.035*
H25B0.57001.06550.42730.035*
H270.15381.03230.34820.027*
H290.17870.86040.29850.028*
H2100.03710.77560.20960.028*
H2120.44480.74710.24380.028*
H2130.70670.60120.19440.028*
H2150.36440.44900.09280.030*
H2160.10440.59780.14000.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1410.173 (2)0.1098 (17)0.0615 (12)0.1166 (18)0.0459 (13)0.0215 (11)
F1420.0742 (12)0.0468 (10)0.1064 (15)0.0045 (9)0.0628 (11)0.0210 (10)
F1430.0447 (10)0.1122 (17)0.147 (2)0.0189 (11)0.0043 (11)0.1106 (16)
O110.0201 (7)0.0332 (9)0.0337 (8)0.0036 (6)0.0005 (6)0.0163 (7)
O130.0238 (8)0.0274 (8)0.0316 (8)0.0060 (6)0.0002 (6)0.0149 (7)
O180.0200 (7)0.0285 (8)0.0335 (8)0.0042 (6)0.0012 (6)0.0112 (7)
N150.0196 (9)0.0291 (10)0.0284 (10)0.0064 (7)0.0050 (7)0.0083 (8)
C120.0243 (11)0.0268 (12)0.0297 (11)0.0061 (9)0.0003 (9)0.0103 (9)
C13a0.0273 (11)0.0166 (10)0.0204 (10)0.0063 (8)0.0006 (8)0.0042 (8)
C140.0245 (10)0.0228 (11)0.0221 (10)0.0101 (9)0.0044 (8)0.0044 (8)
C150.0202 (10)0.0206 (10)0.0212 (10)0.0078 (8)0.0033 (8)0.0012 (8)
C160.0198 (10)0.0201 (10)0.0197 (10)0.0071 (8)0.0019 (8)0.0042 (8)
C170.0218 (10)0.0210 (10)0.0230 (10)0.0081 (8)0.0031 (8)0.0049 (8)
C17a0.0159 (9)0.0219 (10)0.0243 (10)0.0062 (8)0.0011 (8)0.0037 (8)
C180.0243 (11)0.0184 (10)0.0198 (10)0.0064 (8)0.0030 (8)0.0010 (8)
C190.0210 (10)0.0242 (11)0.0278 (11)0.0043 (9)0.0047 (8)0.0071 (9)
C1100.0209 (10)0.0245 (11)0.0281 (11)0.0068 (9)0.0014 (8)0.0074 (9)
C1110.0256 (11)0.0196 (10)0.0220 (10)0.0061 (9)0.0013 (8)0.0033 (8)
C1120.0249 (11)0.0208 (10)0.0219 (10)0.0022 (8)0.0034 (8)0.0047 (8)
C1130.0240 (11)0.0238 (11)0.0237 (11)0.0020 (9)0.0055 (8)0.0039 (9)
C1140.0273 (11)0.0202 (10)0.0232 (10)0.0057 (9)0.0048 (8)0.0053 (8)
C1150.0305 (12)0.0246 (11)0.0293 (12)0.0057 (9)0.0017 (9)0.0112 (9)
C1160.0234 (11)0.0270 (12)0.0323 (12)0.0054 (9)0.0001 (9)0.0116 (9)
C1410.0348 (13)0.0263 (12)0.0343 (13)0.0070 (10)0.0092 (10)0.0073 (10)
F2410.0530 (9)0.0404 (9)0.0302 (8)0.0075 (7)0.0124 (6)0.0019 (6)
F2420.0409 (8)0.0208 (7)0.0419 (8)0.0000 (6)0.0022 (6)0.0067 (6)
F2430.0239 (7)0.0449 (9)0.0719 (10)0.0018 (6)0.0050 (7)0.0294 (8)
O210.0249 (8)0.0418 (10)0.0436 (10)0.0131 (7)0.0026 (7)0.0237 (8)
O230.0269 (8)0.0326 (9)0.0348 (9)0.0083 (7)0.0012 (7)0.0169 (7)
O280.0219 (8)0.0437 (10)0.0363 (9)0.0003 (7)0.0075 (7)0.0165 (7)
N250.0170 (9)0.0371 (11)0.0341 (10)0.0086 (8)0.0046 (7)0.0131 (9)
C220.0274 (11)0.0280 (12)0.0355 (13)0.0055 (9)0.0046 (9)0.0119 (10)
C23a0.0252 (11)0.0186 (10)0.0220 (10)0.0030 (8)0.0013 (8)0.0047 (8)
C240.0211 (10)0.0231 (11)0.0251 (11)0.0029 (9)0.0052 (8)0.0063 (9)
C250.0194 (10)0.0216 (11)0.0240 (10)0.0034 (8)0.0010 (8)0.0034 (8)
C260.0204 (10)0.0198 (10)0.0209 (10)0.0022 (8)0.0022 (8)0.0019 (8)
C270.0186 (10)0.0242 (11)0.0238 (10)0.0022 (8)0.0009 (8)0.0052 (9)
C27a0.0183 (10)0.0243 (11)0.0277 (11)0.0048 (8)0.0032 (8)0.0066 (9)
C280.0204 (10)0.0247 (11)0.0234 (10)0.0025 (8)0.0018 (8)0.0029 (9)
C290.0205 (10)0.0255 (11)0.0237 (10)0.0040 (9)0.0036 (8)0.0035 (9)
C2100.0216 (10)0.0242 (11)0.0237 (11)0.0028 (9)0.0027 (8)0.0035 (9)
C2110.0249 (10)0.0187 (10)0.0196 (10)0.0030 (8)0.0013 (8)0.0012 (8)
C2120.0264 (11)0.0221 (11)0.0217 (10)0.0066 (9)0.0032 (8)0.0045 (8)
C2130.0221 (10)0.0228 (11)0.0241 (10)0.0048 (9)0.0021 (8)0.0033 (8)
C2140.0260 (11)0.0184 (10)0.0229 (10)0.0006 (8)0.0014 (8)0.0022 (8)
C2150.0277 (11)0.0215 (11)0.0270 (11)0.0034 (9)0.0036 (9)0.0078 (9)
C2160.0237 (11)0.0241 (11)0.0284 (11)0.0043 (9)0.0048 (9)0.0058 (9)
C2410.0301 (12)0.0247 (12)0.0287 (12)0.0026 (9)0.0014 (9)0.0058 (9)
Geometric parameters (Å, º) top
O11—C17a1.391 (2)O21—C27a1.386 (2)
O11—C121.434 (2)O21—C221.429 (3)
C12—O131.442 (2)C22—O231.436 (3)
C12—H12A0.99C22—H22A0.99
C12—H12B0.99C22—H22B0.99
O13—C13a1.369 (2)O23—C23a1.372 (2)
C13a—C141.358 (3)C23a—C241.355 (3)
C13a—C17a1.390 (3)C23a—C27a1.390 (3)
C14—C151.415 (3)C24—C251.417 (3)
C14—H140.95C24—H240.95
C15—N151.368 (2)C25—N251.369 (3)
C15—C161.429 (3)C25—C261.419 (3)
N15—H15A0.9599N25—H25A0.9599
N15—H15B0.9599N25—H25B0.9598
C16—C171.428 (3)C26—C271.421 (3)
C16—C181.468 (3)C26—C281.468 (3)
C17—C17a1.350 (3)C27—C27a1.355 (3)
C17—H170.95C27—H270.95
C18—O181.244 (2)C28—O281.237 (2)
C18—C191.488 (3)C28—C291.486 (3)
C19—C1101.323 (3)C29—C2101.331 (3)
C19—H190.95C29—H290.95
C110—C1111.466 (3)C210—C2111.461 (3)
C110—H1100.95C210—H2100.95
C111—C1161.396 (3)C211—C2121.393 (3)
C111—C1121.398 (3)C211—C2161.397 (3)
C112—C1131.379 (3)C212—C2131.385 (3)
C112—H1120.95C212—H2120.95
C113—C1141.389 (3)C213—C2141.388 (3)
C113—H1130.95C213—H2130.95
C114—C1151.385 (3)C214—C2151.387 (3)
C114—C1411.490 (3)C214—C2411.494 (3)
C141—F1431.287 (3)C241—F2421.335 (2)
C141—F1411.316 (3)C241—F2431.336 (3)
C141—F1421.326 (3)C241—F2411.350 (3)
C115—C1161.387 (3)C215—C2161.380 (3)
C115—H1150.95C215—H2150.95
C116—H1160.95C216—H2160.95
C17a—O11—C12105.14 (15)C27a—O21—C22106.12 (15)
O11—C12—O13107.71 (16)O21—C22—O23108.18 (16)
O11—C12—H12A110.2O21—C22—H22A110.1
O13—C12—H12A110.2O23—C22—H22A110.1
O11—C12—H12B110.2O21—C22—H22B110.1
O13—C12—H12B110.2O23—C22—H22B110.1
H12A—C12—H12B108.5H22A—C22—H22B108.4
C13a—O13—C12105.69 (14)C23a—O23—C22106.25 (16)
C14—C13a—O13127.59 (18)C24—C23a—O23127.64 (19)
C14—C13a—C17a122.32 (18)C24—C23a—C27a122.38 (18)
O13—C13a—C17a110.05 (17)O23—C23a—C27a109.98 (17)
C13a—C14—C15117.85 (17)C23a—C24—C25117.79 (18)
C13a—C14—H14121.1C23a—C24—H24121.1
C15—C14—H14121.1C25—C24—H24121.1
N15—C15—C14118.10 (17)N25—C25—C24118.06 (18)
N15—C15—C16121.58 (18)N25—C25—C26121.56 (18)
C14—C15—C16120.27 (18)C24—C25—C26120.29 (18)
C15—N15—H15A116.2C25—N25—H25A114.7
C15—N15—H15B117.3C25—N25—H25B116.6
H15A—N15—H15B118.9H25A—N25—H25B121.1
C17—C16—C15118.97 (17)C25—C26—C27119.24 (18)
C17—C16—C18120.30 (16)C25—C26—C28120.35 (17)
C15—C16—C18120.73 (17)C27—C26—C28120.41 (17)
C17a—C17—C16118.38 (17)C27a—C27—C26118.50 (18)
C17a—C17—H17120.8C27a—C27—H27120.8
C16—C17—H17120.8C26—C27—H27120.8
C17—C17a—C13a122.18 (18)C27—C27a—O21128.79 (18)
C17—C17a—O11128.33 (17)C27—C27a—C23a121.75 (18)
C13a—C17a—O11109.44 (17)O21—C27a—C23a109.46 (17)
O18—C18—C16122.49 (17)O28—C28—C26122.06 (18)
O18—C18—C19118.40 (18)O28—C28—C29118.85 (18)
C16—C18—C19119.09 (17)C26—C28—C29119.01 (17)
C110—C19—C18121.33 (19)C210—C29—C28120.89 (18)
C110—C19—H19119.3C210—C29—H29119.6
C18—C19—H19119.3C28—C29—H29119.6
C19—C110—C111127.1 (2)C29—C210—C211127.38 (19)
C19—C110—H110116.4C29—C210—H210116.3
C111—C110—H110116.4C211—C210—H210116.3
C116—C111—C112118.63 (18)C212—C211—C216118.20 (19)
C116—C111—C110118.94 (19)C212—C211—C210122.71 (18)
C112—C111—C110122.43 (19)C216—C211—C210119.09 (18)
C113—C112—C111120.51 (19)C213—C212—C211120.79 (19)
C113—C112—H112119.7C213—C212—H212119.6
C111—C112—H112119.7C211—C212—H212119.6
C112—C113—C114120.08 (19)C212—C213—C214119.89 (19)
C112—C113—H113120.0C212—C213—H213120.1
C114—C113—H113120.0C214—C213—H213120.1
C115—C114—C113120.47 (18)C215—C214—C213120.26 (19)
C115—C114—C141119.70 (19)C215—C214—C241118.92 (18)
C113—C114—C141119.77 (19)C213—C214—C241120.82 (19)
F143—C141—F141107.2 (2)F242—C241—F243106.69 (18)
F143—C141—F142105.9 (2)F242—C241—F241104.94 (17)
F141—C141—F142102.2 (2)F243—C241—F241106.09 (17)
F143—C141—C114115.1 (2)F242—C241—C214112.93 (18)
F141—C141—C114112.47 (19)F243—C241—C214113.07 (17)
F142—C141—C114113.03 (19)F241—C241—C214112.50 (18)
C114—C115—C116119.2 (2)C216—C215—C214119.36 (19)
C114—C115—H115120.4C216—C215—H215120.3
C116—C115—H115120.4C214—C215—H215120.3
C115—C116—C111121.1 (2)C215—C216—C211121.49 (19)
C115—C116—H116119.5C215—C216—H216119.3
C111—C116—H116119.5C211—C216—H216119.3
C17a—O11—C12—O1314.0 (2)C27a—O21—C22—O230.9 (2)
O11—C12—O13—C13a13.3 (2)O21—C22—O23—C23a1.3 (2)
C12—O13—C13a—C14174.7 (2)C22—O23—C23a—C24178.4 (2)
C12—O13—C13a—C17a7.4 (2)C22—O23—C23a—C27a1.2 (2)
O13—C13a—C14—C15178.55 (19)O23—C23a—C24—C25179.64 (19)
C17a—C13a—C14—C150.9 (3)C27a—C23a—C24—C250.1 (3)
C13a—C14—C15—N15177.71 (18)C23a—C24—C25—N25178.58 (19)
C13a—C14—C15—C160.3 (3)C23a—C24—C25—C261.9 (3)
N15—C15—C16—C17178.80 (18)N25—C25—C26—C27178.95 (19)
C14—C15—C16—C171.5 (3)C24—C25—C26—C272.4 (3)
N15—C15—C16—C181.3 (3)N25—C25—C26—C281.6 (3)
C14—C15—C16—C18178.61 (18)C24—C25—C26—C28178.13 (19)
C15—C16—C17—C17a1.5 (3)C25—C26—C27—C27a0.8 (3)
C18—C16—C17—C17a178.59 (18)C28—C26—C27—C27a179.72 (19)
C16—C17—C17a—C13a0.4 (3)C26—C27—C27a—O21179.6 (2)
C16—C17—C17a—O11177.34 (19)C26—C27—C27a—C23a1.2 (3)
C14—C13a—C17a—C170.9 (3)C22—O21—C27a—C27179.4 (2)
O13—C13a—C17a—C17178.90 (18)C22—O21—C27a—C23a0.2 (2)
C14—C13a—C17a—O11176.60 (18)C24—C23a—C27a—C271.8 (3)
O13—C13a—C17a—O111.4 (2)O23—C23a—C27a—C27178.65 (19)
C12—O11—C17a—C17173.1 (2)C24—C23a—C27a—O21178.93 (19)
C12—O11—C17a—C13a9.6 (2)O23—C23a—C27a—O210.7 (2)
C17—C16—C18—O18173.09 (19)C25—C26—C28—O2820.2 (3)
C15—C16—C18—O186.8 (3)C27—C26—C28—O28159.2 (2)
C17—C16—C18—C198.2 (3)C25—C26—C28—C29156.36 (19)
C15—C16—C18—C19171.93 (18)C27—C26—C28—C2924.2 (3)
O18—C18—C19—C1106.9 (3)O28—C28—C29—C2100.0 (3)
C16—C18—C19—C110171.9 (2)C26—C28—C29—C210176.7 (2)
C18—C19—C110—C111177.59 (19)C28—C29—C210—C211177.65 (19)
C19—C110—C111—C116179.6 (2)C29—C210—C211—C2128.6 (3)
C19—C110—C111—C1120.7 (3)C29—C210—C211—C216171.2 (2)
C116—C111—C112—C1130.7 (3)C216—C211—C212—C2130.8 (3)
C110—C111—C112—C113178.18 (19)C210—C211—C212—C213179.01 (19)
C111—C112—C113—C1140.2 (3)C211—C212—C213—C2140.2 (3)
C112—C113—C114—C1150.6 (3)C212—C213—C214—C2150.5 (3)
C112—C113—C114—C141176.65 (19)C212—C213—C214—C241179.96 (19)
C115—C114—C141—F14318.8 (3)C215—C214—C241—F24253.3 (3)
C113—C114—C141—F143164.0 (2)C213—C214—C241—F242127.2 (2)
C115—C114—C141—F141104.3 (3)C215—C214—C241—F243174.60 (18)
C113—C114—C141—F14172.9 (3)C213—C214—C241—F2435.9 (3)
C115—C114—C141—F142140.6 (2)C215—C214—C241—F24165.2 (3)
C113—C114—C141—F14242.1 (3)C213—C214—C241—F241114.2 (2)
C113—C114—C115—C1160.9 (3)C213—C214—C215—C2160.3 (3)
C141—C114—C115—C116176.4 (2)C241—C214—C215—C216179.2 (2)
C114—C115—C116—C1110.3 (3)C214—C215—C216—C2111.3 (3)
C112—C111—C116—C1150.5 (3)C212—C211—C216—C2151.6 (3)
C110—C111—C116—C115178.5 (2)C210—C211—C216—C215178.22 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15A···O180.961.912.637 (2)131
N15—H15B···O11i0.962.263.161 (2)156
N25—H25A···O280.961.912.662 (2)134
N25—H25B···O21i0.962.093.024 (2)165
Symmetry code: (i) x1, y, z.

Experimental details

(I)(IIa)(IIb)(III)
Crystal data
Chemical formulaC17H15NO3C17H15NO4C17H15NO4C17H12F3NO3
Mr281.30297.30297.30335.28
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/cTriclinic, P1Triclinic, P1
Temperature (K)120120120120
a, b, c (Å)10.530 (5), 7.362 (5), 17.546 (5)17.5560 (4), 5.0914 (2), 15.4869 (4)9.5352 (2), 10.6193 (3), 14.7611 (4)7.3420 (2), 10.9241 (3), 18.7176 (5)
α, β, γ (°)90, 91.719 (5), 9090, 91.9240 (16), 9089.1400 (14), 81.0970 (17), 75.7540 (14)85.0180 (11), 83.2280 (14), 75.8180 (14)
V3)1359.6 (12)1383.51 (7)1430.83 (6)1442.71 (7)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.100.100.100.13
Crystal size (mm)0.40 × 0.30 × 0.200.04 × 0.02 × 0.020.45 × 0.30 × 0.200.60 × 0.60 × 0.50
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(EVALCCD; Duisenberg et al., 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.958, 0.9810.959, 0.9980.951, 0.9810.920, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
17073, 3062, 2024 14325, 3170, 2271 23999, 6517, 4940 20172, 6611, 4510
Rint0.0650.0380.0350.038
(sin θ/λ)max1)0.6510.6500.6500.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.135, 1.11 0.045, 0.128, 1.04 0.049, 0.137, 1.10 0.052, 0.157, 1.04
No. of reflections3062316965126611
No. of parameters191201399433
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.210.26, 0.210.30, 0.370.77, 0.52

Computer programs: COLLECT (Nonius, 1998), DIRAX/LSQ (Duisenberg et al., 2000), DENZO (Otwinowski & Minor, 1997) and COLLECT, EVALCCD (Duisenberg et al., 2003), DENZO and COLLECT, SIR97 (Altomare et al., 1999), OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O80.961.882.612 (3)131
N5—H5B···O1i0.962.073.032 (3)178
C2—H2A···Cg1ii0.992.863.644 (4)137
Symmetry codes: (i) x, y1, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) for (IIa) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O80.961.952.6301 (15)126
N5—H5B···O8i0.962.493.1232 (15)123
C2—H2B···Cg2ii0.992.843.640 (2)138
C13—H13···Cg1iii0.952.813.488 (2)130
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y1, z; (iii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (IIb) top
D—H···AD—HH···AD···AD—H···A
N15—H15B···O180.881.992.6451 (17)130
N25—H25A···O280.881.952.6069 (19)131
N25—H25B···O130.882.193.0586 (17)170
C12—H12A···O18i0.992.273.221 (2)161
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N15—H15A···O180.961.912.637 (2)131
N15—H15B···O11i0.962.263.161 (2)156
N25—H25A···O280.961.912.662 (2)134
N25—H25B···O21i0.962.093.024 (2)165
Symmetry code: (i) x1, y, z.
Selected bond distances (Å) for compounds (I)-(V) top
Parameter(I)(IIa)(IIb)(IIb)(III)(III)(IV)(V)(V)
Mol 1Mol 2Mol 1Mol 2Mol 1Mol 2
xnilnil1212nil12
Cx3a-Cx41.368 (3)1.357 (2)1.357 (2)1.359 (2)1.358 (3)1.355 (3)1.361 (2)1.358 (2)1.351 (2)
Cx4-Cx51.402 (3)1.416 (2)1.418 (2)1.418 (2)1.415 (3)1.417 (3)1.417 (2)1.419 (2)1.418 (2)
Cx5-Cx61.424 (3)1.430 (2)1.423 (2)1.422 (2)1.429 (3)1.419 (3)1.426 (2)1.426 (2)1.431 (2)
Cx6-Cx71.428 (3)1.430 (2)1.420 (2)1.435 (2)1.428 (3)1.421 (3)1.428 (2)1.426 (2)1.423 (2)
Cx7-Cx7a1.339 (3)1.354 (2)1.353 (2)1.350 (2)1.350 (3)1.355 (3)1.355 (2)1.354 (2)1.353 (2)
Cx7a-Cx3a1.386 (3)1.394 (2)1.387 (2)1.391 (2)1.390 (3)1.390 (3)1.394 (2)1.390 (2)1.393 (2)
Cx5-Nx51.364 (3)1.353 (2)1.364 (2)1.361 (2)1.368 (2)1.369 (3)1.359 (2)1.370 (2)1.360 (2)
Cx6-Cx81.459 (3)1.461 (2)1.470 (2)1.462 (2)1.468 (2)1.468 (3)1.470 (2)1.473 (2)1.463 (2)
Cx8-Ox81.249 (3)1.246 (2)1.240 (2)1.244 (2)1.244 (4)1.237 (2)1.243 (2)1.253 (2)1.250 (2)
Selected torsion angles (°) for compounds (I)-(III) top
Parameter(I)(IIa)(IIb)(IIb)(III)(III)
Mol 1Mol 2Mol 1Mol 2
xnilnil1212
Cx5-Cx6-Cx8-Cx9-177.8 (2)179.63 (13)-168.15 (13)-175.23 (13)-171.93 (18)-156.36 (19)
Cx6-Cx8-Cx9-Cx10-159.1 (2)-175.03 (14)-170.48 (13)153.13 (14)171.9 (2)176.7 (2)
Cx8-Cx9-Cx10-Cx11178.4 (2)179.77 (14)-178.12 (13)-176.05 (13)-177.59 (19)-177.65 (19)
Cx9-Cx10-Cx11-Cx12-9.0 (2)5.1 (2)-11.3 (2)-16.8 (2)0.7 (3)-8.6 (3)
Cx13-Cx14-Ox14-Cx41-175.91 (13)1.4 (2)-176.09 (14)
 

Acknowledgements

The X-ray data for compounds (II[link]) and (III[link]) were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. RA thanks `Fundación para la Promoción de la Investigación y la Tecnología (Banco de la República)' and Universidad del Valle for financial support. PC thanks COLCIENCIAS for a doctoral fellowship. JC and MN thank Consejería de Educación (Junta de Andalucía, Spain) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurger, A. & Ramberger, R. (1979). Mikrochim. Acta, 2, 259–271.  CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDonnelly, J. A. & Farell, D. F. (1990). Tetrahedron, 46, 885–894.  CrossRef CAS Web of Science Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationKurasawa, Y., Tsuruoka, A., Rikiishi, N., Fujiwara, N., Okamoto, Y. & Kim, H. S. (2002). J. Heterocycl. Chem. 37, 791–798.  CrossRef Google Scholar
First citationLow, J. N., Cobo, J., Nogueras, M., Sánchez, A., Albornoz, A. & Abonia, R. (2002). Acta Cryst. C58, o42–o45.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrager, R. & Thredgold, M. (1968). Aust. J. Chem. 21, 229–241.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 3–17.  Web of Science CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds