metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Sodium 1-carb­oxy­cyclo­propane-1-carboxyl­ate cyclo­propane-1,1-di­carboxylic acid monohydrate

aDepartment of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland
*Correspondence e-mail: ken@chem.gla.ac.uk

(Received 8 October 2004; accepted 25 October 2004; online 11 November 2004)

In the title type B2 acid salt, Na(LH)(LH2)·H2O [LH2 = C2H4C(CO2H)2] or Na+·C5H5O4·C5H6O4·H2O, the vertices of a distorted octahedron centred on each Na+ cation are defined by six O atoms, one from a water mol­ecule, one from an internally hydrogen-bonded LH anion and four from three neutral LH2 acid mol­ecules. Chains of edge-sharing O6 octahedra are stabilized by hydrogen bonds, which interconnect the donor H2O and LH2 mol­ecules and LH anions. In particular, the LH2 mol­ecule donates H atoms to LH and H2O and forgoes the internal hydrogen bond which stabilizes the free acid and all of its characterized salts.

Comment

The cyclo­propane-1,1-di­carboxylic acid mol­ecule, (1[link]), hereinafter LH2, where L is C2H4C(CO2)2, contains an internal O—H⋯O hydrogen bond (see scheme[link]) and, in consequence, its monoanion LH, (2[link]), is a very weak acid (Meester et al., 1971[Meester, M. A. M., Schenk, H. & MacGillavry, C. H. (1971). Acta Cryst. B27, 630-634.]). The LH anions of the related acid salt K(LH)·0.5H2O are also stabilized by internal O—H⋯O hydrogen bonds (Dubourg et al., 1990[Dubourg, A., Fabregue, E., Maury, L. & Declercq, J.-P. (1990). Acta Cryst. C46, 1394-1396.]). We now report that our attempt to prepare the analogous sodium salt Na(LH)·0.5H2O has instead produced the title compound, Na(LH)(LH2)·H2O, (I[link]).

[Scheme 1]

Crystals of (I[link]) are built up from Na+ cations, LH anions, mol­ecules of the neutral acid and water. The LH anions (Fig. 1[link]b) contain an internal O—H⋯O hydrogen bond with an O⋯O distance of 2.429 (3) Å, which is even shorter than the corresponding bond in the free acid (2.563 Å). The internal O—H⋯O hydrogen bonds in the LH2 mol­ecule (Meester et al., 1971[Meester, M. A. M., Schenk, H. & MacGillavry, C. H. (1971). Acta Cryst. B27, 630-634.]) and in the LH anions of (I[link]) and K(LH)·0.5H2O (Dubourg et al., 1990[Dubourg, A., Fabregue, E., Maury, L. & Declercq, J.-P. (1990). Acta Cryst. C46, 1394-1396.]) all have ordered H atoms conventionally bonded to one of the O atoms. This contrasts with [Co(H2O)6](LH)2, where the anions straddle crystallographic mirror planes so that the acidic H atom is either equidistant from the two O atoms or is disordered (Schwarz et al., 1998[Schwarz, T., Petri, A., Schilling, J. & Lentz, A. (1998). Acta Cryst. C54, 1104-1105.]).

The LH2 mol­ecules of (I[link]) (Fig. 1[link]a) have near C2v symmetry but adopt a conformation, (3[link]), which precludes internal hydrogen bonding [O21⋯O41 = 2.834 (3) Å]. The geometries of the LH2 mol­ecule and LH anion (Table 1[link]) show typical features (see, for example, Meester et al., 1971[Meester, M. A. M., Schenk, H. & MacGillavry, C. H. (1971). Acta Cryst. B27, 630-634.]; Dubourg et al., 1990[Dubourg, A., Fabregue, E., Maury, L. & Declercq, J.-P. (1990). Acta Cryst. C46, 1394-1396.]; Muir et al., 2000[Muir, K. W., Macdonald, A., Murray, A. & Macdonald, A. (2000). Acta Cryst. C56, 534-535.]; Schwarz et al., 1998[Schwarz, T., Petri, A., Schilling, J. & Lentz, A. (1998). Acta Cryst. C54, 1104-1105.]). First, pairs of C—O bond lengths differ by > 0.08 Å in CO2H groups and by < 0.02 (5) Å in CO2 groups. Secondly, an electronic effect of the carboxyl substituents shortens the distal C2n—C3n (n = 1 or 2) ring bonds by 0.05–0.07 Å relative to the other C—C bonds in the cyclo­propane rings. Finally, each carboxyl group nearly coincides with the plane normal to C2n—C3n passing through C1n; the C51 carboxyl group is an exception, as can be seen by comparing the C41—C11—C51—O41 torsion angle with the others in Table 1[link].

The crystal structure of (I[link]) is built from kinked chains of identical NaO6 octahedra (Table 1[link] and Fig. 2[link]a), which are axially elongated along the O21⋯Na1⋯O1W direction and linked via edges which pass through crystallographic inversion centres. Atom Na1 shares octahedral edges with atoms Na1i and Na1iii, themselves related directly by translation along the a axis which thus defines the direction of the chains [symmetry codes: (i) 1 − x, 1 − y, 2 − z; (iii) −x, 1 − y, 2 − z].

Atom Na1 bonds to three different LH2 mol­ecules, one water mol­ecule and one LH anion. In consequence, the LH2 mol­ecule participates in four Na—O bonds (Fig. 2[link]b), with atom O2i bonded to both atoms Na1 and Nai, and atom O41i shared between atoms Na1 and Naiii. The LH anion is attached to only one cation, through atom O42, which is part of the ionized carboxyl group. Similarly, the water atom O1W bonds to only one Na+ cation. Each acid mol­ecule is also the donor in two O—H⋯O hydrogen bonds (Table 2[link]), namely a very strong bond [O⋯O = 2.478 (3) Å] to the LH anion and a weaker one [O⋯O = 2.642 (3) Å] to a water mol­ecule. Atom O22 accepts a hydrogen bond from atom O1W. The resulting arrangement surrounds atoms Na1 and Na1iii by a roughly planar belt containing an (LH2LH–H2O)2 ring in which the individual mol­ecules and anions are joined by hydrogen bonds. Not shown in Fig. 2[link](b) are the O1W—H⋯O12 hydrogen bonds which link together the chains of octahedra.

The crystal architecture of (I[link]) uses all five available O—H groups as hydrogen-bond donors, two of these bonds being very short (O⋯O < 2.50 Å). In each independent O—H⋯O bond, the two O atoms are unrelated by crystallographic symmetry. Compound (I[link]) is therefore a B2 acid salt in the classification of Speakman (1972[Speakman, J. C. (1972). Struct. Bonding, 12, 142-199.]).

It is tempting to ascribe the different stoichiometries of the sodium and potassium acid salts of cyclo­propane-1,1-di­carboxylic acid to the different ionic radii of K+ and Na+. However, in the case of malonic acid, L′H2, where L′ is CH2(CO2)2, a similar difference is the result of a solvent isotope effect: the salts Na(L′H) and Na(L′H)(LH2) can be produced by identical procedures, but using D2O as the solvent gives partially deuterated Na(L′H)(L′H2), whereas H2O gives Na(L′H) (Kalsbeek, 1992[Kalsbeek, N. (1992). Acta Cryst. C48, 878-883.]).

[Figure 1]
Figure 1
Views of (a) the LH2 mol­ecule and (b) the LH anion of (I[link]). Displacement ellipsoids are drawn at the 20% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
(a) Part of the infinite chain of linked NaO6 octahedra. (b) The hydrogen-bonded (LH2LH–H2O)2 belt around atoms Na1 and Na1iii. Displacement ellipsoids are drawn at the 20% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) 1 − x, 1 − y, 2 − z; (ii) x − 1, y, z; (iii) −x, 1 − y, 2 − z; (iv) 1 + x, y, z.]

Experimental

Crystals of (I[link]) were obtained from an aqueous solution containing sodium hydroxide and cyclo­propane-1,1-di­carboxylic acid in a 1:2 molar ratio. The IR spectrum contains broad bands at 2480 and 1905 cm−1 attributable to unsymmetrical O—H⋯O hydrogen bonds.

Crystal data
  • Na+·C5H5O4·C5H6O4·H2O

  • Mr = 300.19

  • Triclinic, [P\overline 1]

  • a = 5.2910 (13) Å

  • b = 10.118 (3) Å

  • c = 12.895 (5) Å

  • α = 109.44 (3)°

  • β = 98.64 (2)°

  • γ = 99.57 (2)°

  • V = 626.0 (4) Å3

  • Z = 2

  • Dx = 1.593 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 22 reflections

  • θ = 18.8–20.7°

  • μ = 0.17 mm−1

  • T = 293 (2) K

  • Needle, white

  • 0.48 × 0.22 × 0.16 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Non-profiled ω scans

  • 3932 measured reflections

  • 2985 independent reflections

  • 1654 reflections with I > 2σ(I)

  • Rint = 0.047

  • θmax = 28.0°

  • h = −6 → 1

  • k = −13 → 13

  • l = −17 → 17

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • Refinement on F2

  • R(F) = 0.051

  • wR(F2) = 0.150

  • S = 0.99

  • 2985 reflections

  • 202 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.075P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected geometric parameters (Å, °)

Na1—O42 2.261 (2)
Na1—O21i 2.325 (2)
Na1—O41i 2.370 (2)
Na1—O41ii 2.384 (2)
Na1—O1W 2.526 (3)
Na1—O21 2.533 (2)
Na1—Na1iii 3.245 (2)
Na1—Na1i 3.769 (3)
O11—C41 1.320 (3)
O21—C41 1.204 (3)
O31—C51 1.301 (3)
O41—C51 1.207 (3)
C11—C21 1.513 (4)
C11—C31 1.525 (4)
C21—C31 1.464 (5)
O12—C42 1.215 (3)
O22—C42 1.298 (4)
O32—C52 1.233 (3)
O42—C52 1.258 (3)
C12—C32 1.518 (4)
C12—C22 1.520 (4)
C22—C32 1.451 (5)
C51—C11—C41—O21 −1.4 (4)
C41—C11—C51—O41 −23.0 (4)
C52—C12—C42—O22 −3.1 (4)
C42—C12—C52—O42 1.9 (4)
Symmetry codes: (i) 1-x,1-y,2-z; (ii) x-1,y,z; (iii) -x,1-y,2-z.

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O22—H22⋯O42 0.93 (6) 1.56 (6) 2.429 (3) 154 (5)
O1W—H2W⋯O12v 0.86 (4) 1.90 (4) 2.737 (3) 162 (4)
O1W—H1W⋯O22ii 0.85 (4) 1.98 (4) 2.777 (4) 155 (3)
O11—H11⋯O1Wiii 0.77 (5) 1.88 (5) 2.642 (3) 170 (5)
O31—H31⋯O32iv 0.72 (6) 1.80 (6) 2.478 (3) 155 (6)
Symmetry codes: (ii) x-1,y,z; (iii) -x,1-y,2-z; (iv) 1+x,y,z; (v) 1-x,-y,2-z.

H atoms were initially located in difference maps. In the final refinement, the positions of the methyl­ene H atoms were determined by the HFIX instruction in SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]) and they were then treated as riding on their parent C atoms, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). The positional and isotropic dis­place­ment parameters of H atoms attached to O atoms were freely refined.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The cyclopropane-1,1-dicarboxylic acid molecule, (1), hereinafter LH2, where L is C2H4C(CO2)2, contains an internal O—H···O hydrogen bond (see scheme) and in consequence, its monoanion LH, (2), is a very weak acid (Meester et al., 1971). The LH anions of the related acid salt K(LH)·0.5H2O are also stabilized by internal O—H···O hydrogen bonds (Dubourg et al., 1990). We now report that our attempt to prepare the analogous sodium salt Na(LH)·0.5H2O has instead produced the title compound, Na(LH)(LH2)·H2O, (I). \sch

Crystals of (I) are built up from Na+ cations, LH anions, molecules of the neutral acid and water. The LH anions (Fig. 1 b) contain an internal O—H···O hydrogen bond which is even shorter [O···O 2.429 (3) Å] than the corresponding bond in the free acid (2.563 Å). The internal O—H···O hydrogen bonds in the LH2 molecule (Meester et al., 1971) and in the LH anions of (I) and K(LH)·0.5H2O (Dubourg et al., 1990) all have ordered H atoms conventionally bonded to one of the O atoms. This contrasts with [Co(H2O)6][LH]2, where the anions straddle crystallographic mirror planes so that the acidic H atom is either equidistant from the two O atoms or is disordered (Schwartz et al., 1998).

The LH2 molecules of (I) (Fig. 1a) have near C2v symmetry but adopt conformation (3), which precludes internal hydrogen bonding [O21···O41 2.834 (3) Å]. The geometries of the LH2 molecule and LH anion (Table 1) show typical features (see, for example, Meester et al., 1971; Dubourg et al., 1990; Muir et al., 2000; Schwartz et al., 1998). Firstly, pairs of C—O bond lengths differ by > 0.08 Å in CO2H groups and by < 0.02 (5) Å in CO2 groups. Secondly, an electronic effect of the carboxyl substituents shortens the distal C2n—C3n (n = 1, 2) ring bonds by 0.05–0.07 Å relative to the other C—C bonds in the cyclopropane rings. Finally, they adopt Please check added text conformations which make each carboxyl group nearly coincide with the plane normal to C2n—C3n passing through C1n; the C51 carboxyl group is an exception, as can be seen by comparing the C41—C11—C51—O41 torsion angle with the others in Table 1.

The crystal of (I) is built from kinked chains of identical NaO6 octahedra (Table 1 and Fig. 2a), which are axially elongated along the O21—Na1—O1W direction and linked via edges which pass through crystallographic inversion centres. Atom Na1 shares octahedral edges with atoms Na1i and Na1iii, themselves related directly by translation along the a axis which thus defines the direction of the chains [symmetry codes: (i) 1 − x, 1 − y, 2 − z; (iii) −x, 1 − y, 2 − z].

Atom Na1 bonds to three different LH2 molecules, one water molecule and one LH anion. In consequence, the LH2 molecule participates in four Na—O bonds (Fig. 2 b), with atom O2i bonded to both atoms Na1 and Nai, and atom O41i shared between atoms Na1 and Naiii. The LH anion is attached to only one cation, through atom O42, which is part of the ionized carboxyl group. Similarly, the water atom O1W bonds to only one Na+ cation. Each acid molecule is also the donor in two O—H···O hydrogen bonds (Table 2), namely a very strong bond [O···O 2.478 (3) Å] to the LH anion and a weaker one [O···O 2.642 (3) Å] to a water molecule. Atom O22 accepts a hydrogen bond from atom O1W. The resulting arrangement surrounds atoms Na1 and Na1iii by a roughly planar belt containing an (LH2—LH—H2O)2 ring, in which the individual molecules and anions are joined by hydrogen bonds. Not shown in Fig. 2(b) are the O1W—H···O12 hydrogen bonds, which link together the chains of octahedra.

The crystal architecture uses all five available O—H groups as hydrogen-bond donors, two of these bonds being very short (O···O < 2.50 Å). In each independent O—H···O bond, the two O atoms are unrelated by crystallographic symmetry. Compound (I) is therefore a B2 acid salt in the classification of Speakman (1972).

It is tempting to ascribe the different stoichiometries of the sodium and potassium acid salts of cyclopropane-1,1-dicarboxylic acid to the different ionic radii of K+ and Na+. However, in the case of malonic acid, L'H2, where L' is CH2(CO2)2, a similar difference is the result of a solvent isotope effect: the salts Na(L'H) and Na(L'H)(LH2) can be produced by identical procedures, but using D2O as the solvent gives partially deuterated Na(L'H)(L'H2), whereas H2O gives Na(L'H) (Kalsbeek, 1992).

Experimental top

Crystals of (I) were obtained from an aqueous solution containing sodium hydroxide and cyclopropane-1,1-dicarboxylic acid in a 1:2 molar ratio. The IR spectrum contains broad bands at 2480 and 1905 cm−1, attributable to unsymmetrical O—H···O hydrogen bonds.

Refinement top

H atoms were initially located in difference maps. In the final refinement, the positions of the methylene H atoms were determined by the HFIX instruction in SHELXL97 (Sheldrick, 1997) and they were then treated as riding on their parent C atoms, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). The positional and isotropic displacement parameters of H atoms attached to O atoms were freely refined.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1998).

Figures top
[Figure 1] Fig. 1. Views of (a) the LH2 molecule and (b) the LH anion of (I). Displacement ellipsoids are drawn at the 20% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. (a) Part of the infinite chain of linked NaO6 octahedra. (b) The hydrogen-bonded (LH2—LH—H2O)2 belt around atoms Na1 and Na1iii. Displacement ellipsoids are drawn at the 20% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) 1 − x, 1 − y, 2 − z; (ii) 1 − x, y, z; (iii) −x, 1 − y, 2 − z; (iv) 1 + x, y, z.]
Sodium 1-carboxycyclopropane-1-carboxylate cyclopropane-1,1-dicarboxylic acid monohydrate top
Crystal data top
Na+·C5H5O4·C5H4O4·H2OZ = 2
Mr = 300.19F(000) = 312
Triclinic, P1Dx = 1.593 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.2910 (13) ÅCell parameters from 22 reflections
b = 10.118 (3) Åθ = 18.8–20.7°
c = 12.895 (5) ŵ = 0.17 mm1
α = 109.44 (3)°T = 293 K
β = 98.64 (2)°Needle, white
γ = 99.57 (2)°0.48 × 0.22 × 0.16 mm
V = 626.0 (4) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
θmax = 28.0°, θmin = 4.7°
non–profiled ω scansh = 61
3932 measured reflectionsk = 1313
2985 independent reflectionsl = 1717
1654 reflections with I > 2σ(I)3 standard reflections every 120 min
Rint = 0.047 intensity decay: 1%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.075P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.150(Δ/σ)max < 0.001
S = 0.99Δρmax = 0.31 e Å3
2985 reflectionsΔρmin = 0.36 e Å3
202 parameters
Crystal data top
Na+·C5H5O4·C5H4O4·H2Oγ = 99.57 (2)°
Mr = 300.19V = 626.0 (4) Å3
Triclinic, P1Z = 2
a = 5.2910 (13) ÅMo Kα radiation
b = 10.118 (3) ŵ = 0.17 mm1
c = 12.895 (5) ÅT = 293 K
α = 109.44 (3)°0.48 × 0.22 × 0.16 mm
β = 98.64 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.047
3932 measured reflections3 standard reflections every 120 min
2985 independent reflections intensity decay: 1%
1654 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.31 e Å3
2985 reflectionsΔρmin = 0.36 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.1701 (2)0.37779 (12)0.97765 (9)0.0352 (3)
O110.1927 (4)0.5960 (2)0.76510 (18)0.0356 (5)
O210.4078 (4)0.5633 (2)0.91192 (15)0.0336 (5)
O310.7072 (5)0.2632 (2)0.68504 (18)0.0416 (6)
O410.8106 (4)0.4147 (2)0.86355 (15)0.0301 (5)
C110.4859 (5)0.4464 (3)0.7284 (2)0.0252 (6)
C210.3162 (7)0.3705 (4)0.6105 (2)0.0469 (9)
H21A0.33260.27440.56810.056*
H21B0.140.38590.59730.056*
C310.5363 (7)0.4912 (4)0.6301 (2)0.0449 (9)
H31A0.49550.58090.62930.054*
H31B0.68820.46920.60.054*
C410.3651 (5)0.5410 (3)0.8125 (2)0.0237 (6)
C510.6834 (5)0.3729 (3)0.7681 (2)0.0248 (6)
H110.148 (10)0.650 (5)0.813 (4)0.086 (16)*
H310.791 (11)0.222 (6)0.703 (4)0.11 (2)*
O120.6526 (4)0.1338 (2)0.78279 (19)0.0480 (6)
O220.6093 (5)0.0705 (3)0.9017 (2)0.0597 (8)
O320.0016 (4)0.0965 (2)0.68459 (17)0.0434 (6)
O420.2679 (4)0.1867 (2)0.85276 (18)0.0494 (6)
C120.3214 (5)0.0282 (3)0.7212 (2)0.0261 (6)
C220.3379 (6)0.0868 (4)0.5981 (2)0.0412 (8)
H22A0.26730.04010.54950.049*
H22B0.49270.12150.58110.049*
C320.1525 (6)0.1714 (3)0.6373 (2)0.0387 (8)
H32A0.19240.25860.64440.046*
H32B0.03290.17720.61290.046*
C420.5417 (6)0.0353 (3)0.8047 (2)0.0330 (6)
C520.1839 (5)0.0932 (3)0.7549 (2)0.0303 (6)
H220.494 (12)0.131 (6)0.905 (5)0.13 (2)*
O1W0.0154 (5)0.2282 (2)1.0885 (2)0.0379 (5)
H1W0.094 (8)0.159 (4)1.036 (3)0.048 (11)*
H2W0.100 (8)0.180 (4)1.120 (3)0.062 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0363 (7)0.0395 (6)0.0280 (6)0.0220 (5)0.0043 (5)0.0049 (5)
O110.0377 (12)0.0496 (13)0.0327 (11)0.0314 (11)0.0144 (9)0.0189 (10)
O210.0310 (11)0.0478 (12)0.0261 (10)0.0229 (10)0.0094 (8)0.0109 (9)
O310.0457 (13)0.0432 (12)0.0326 (11)0.0314 (11)0.0027 (9)0.0024 (9)
O410.0262 (10)0.0371 (10)0.0272 (10)0.0172 (8)0.0049 (8)0.0079 (8)
C110.0224 (13)0.0319 (14)0.0231 (13)0.0154 (11)0.0066 (10)0.0075 (11)
C210.0410 (19)0.060 (2)0.0282 (15)0.0316 (17)0.0022 (13)0.0032 (14)
C310.053 (2)0.070 (2)0.0358 (16)0.044 (2)0.0250 (15)0.0303 (16)
C410.0183 (13)0.0272 (13)0.0280 (14)0.0091 (11)0.0066 (10)0.0109 (11)
C510.0212 (13)0.0303 (14)0.0255 (13)0.0108 (11)0.0085 (10)0.0097 (11)
O120.0395 (13)0.0502 (13)0.0555 (14)0.0281 (11)0.0011 (10)0.0165 (11)
O220.0478 (15)0.0680 (17)0.0428 (14)0.0312 (13)0.0117 (11)0.0049 (12)
O320.0443 (13)0.0446 (12)0.0435 (12)0.0315 (11)0.0059 (10)0.0105 (10)
O420.0428 (13)0.0451 (13)0.0444 (13)0.0241 (11)0.0043 (10)0.0080 (10)
C120.0242 (14)0.0278 (13)0.0271 (13)0.0128 (11)0.0062 (11)0.0074 (11)
C220.047 (2)0.0526 (19)0.0301 (15)0.0300 (17)0.0129 (13)0.0122 (14)
C320.0409 (18)0.0261 (14)0.0410 (17)0.0140 (13)0.0002 (14)0.0031 (12)
C420.0238 (14)0.0378 (15)0.0360 (15)0.0105 (13)0.0059 (12)0.0104 (13)
C520.0249 (15)0.0298 (14)0.0362 (15)0.0106 (12)0.0115 (12)0.0082 (12)
O1W0.0357 (13)0.0374 (12)0.0376 (12)0.0202 (11)0.0037 (10)0.0063 (10)
Geometric parameters (Å, º) top
Na1—O422.261 (2)C21—C311.464 (5)
Na1—O21i2.325 (2)C21—H21A0.97
Na1—O41i2.370 (2)C21—H21B0.97
Na1—O41ii2.384 (2)C31—H31A0.97
Na1—O1W2.526 (3)C31—H31B0.97
Na1—O212.533 (2)O12—C421.215 (3)
Na1—Na1iii3.245 (2)O22—C421.298 (4)
Na1—Na1i3.769 (3)O22—H220.93 (6)
O11—C411.320 (3)O32—C521.233 (3)
O11—H110.77 (5)O42—C521.258 (3)
O21—C411.204 (3)C12—C421.491 (4)
O21—Na1i2.325 (2)C12—C521.504 (4)
O31—C511.301 (3)C12—C321.518 (4)
O31—H310.72 (6)C12—C221.520 (4)
O41—C511.207 (3)C22—C321.451 (5)
O41—Na1i2.370 (2)C22—H22A0.97
O41—Na1iv2.384 (2)C22—H22B0.97
C11—C411.491 (3)C32—H32A0.97
C11—C511.503 (3)C32—H32B0.97
C11—C211.513 (4)O1W—H1W0.85 (4)
C11—C311.525 (4)O1W—H2W0.86 (4)
O42—Na1—O21i89.54 (9)C21—C31—H31B117.7
O42—Na1—O41i163.78 (9)C11—C31—H31B117.7
O21i—Na1—O41i74.26 (8)H31A—C31—H31B114.8
O42—Na1—O41ii101.48 (9)O21—C41—O11122.1 (2)
O21i—Na1—O41ii155.79 (9)O21—C41—C11125.7 (2)
O41i—Na1—O41ii93.90 (7)O11—C41—C11112.2 (2)
O42—Na1—O1W91.34 (9)O41—C51—O31124.8 (2)
O21i—Na1—O1W89.24 (9)O41—C51—C11124.1 (2)
O41i—Na1—O1W87.70 (8)O31—C51—C11110.9 (2)
O41ii—Na1—O1W111.72 (9)C42—O22—H22109 (4)
O42—Na1—O2195.42 (9)C52—O42—Na1142.02 (19)
O21i—Na1—O2178.33 (8)C42—C12—C52119.5 (2)
O41i—Na1—O2182.32 (8)C42—C12—C32116.4 (2)
O41ii—Na1—O2179.21 (8)C52—C12—C32116.0 (2)
O1W—Na1—O21165.77 (8)C42—C12—C22116.4 (2)
C41—O11—H11108 (4)C52—C12—C22116.4 (2)
C41—O21—Na1i122.87 (17)C32—C12—C2257.1 (2)
C41—O21—Na1118.33 (18)C32—C22—C1261.39 (19)
Na1i—O21—Na1101.67 (8)C32—C22—H22A117.6
C51—O31—H31113 (4)C12—C22—H22A117.6
C51—O41—Na1i130.55 (17)C32—C22—H22B117.6
C51—O41—Na1iv142.66 (17)C12—C22—H22B117.6
Na1i—O41—Na1iv86.10 (7)H22A—C22—H22B114.7
C41—C11—C51119.0 (2)C22—C32—C1261.5 (2)
C41—C11—C21115.9 (2)C22—C32—H32A117.6
C51—C11—C21117.8 (2)C12—C32—H32A117.6
C41—C11—C31116.9 (2)C22—C32—H32B117.6
C51—C11—C31114.9 (2)C12—C32—H32B117.6
C21—C11—C3157.6 (2)H32A—C32—H32B114.7
C31—C21—C1161.6 (2)O12—C42—O22121.9 (3)
C31—C21—H21A117.6O12—C42—C12121.9 (3)
C11—C21—H21A117.6O22—C42—C12116.1 (2)
C31—C21—H21B117.6O32—C52—O42124.4 (3)
C11—C21—H21B117.6O32—C52—C12118.3 (2)
H21A—C21—H21B114.7O42—C52—C12117.2 (2)
C21—C31—C1160.8 (2)Na1—O1W—H1W99 (2)
C21—C31—H31A117.7Na1—O1W—H2W129 (3)
C11—C31—H31A117.7H1W—O1W—H2W100 (4)
O42—Na1—O21—C4149.41 (19)C21—C11—C51—O41172.1 (3)
O21i—Na1—O21—C41137.8 (2)C31—C11—C51—O41122.9 (3)
O41i—Na1—O21—C41146.76 (18)C41—C11—C51—O31160.1 (2)
O41ii—Na1—O21—C4151.28 (18)C21—C11—C51—O3111.0 (4)
O1W—Na1—O21—C41167.4 (3)C31—C11—C51—O3154.0 (3)
Na1iii—Na1—O21—C4199.11 (18)O21i—Na1—O42—C52167.9 (4)
Na1i—Na1—O21—C41137.8 (2)O41i—Na1—O42—C52170.7 (3)
O42—Na1—O21—Na1i88.41 (9)O41ii—Na1—O42—C529.6 (4)
O41i—Na1—O21—Na1i75.43 (8)O1W—Na1—O42—C52102.9 (4)
O41ii—Na1—O21—Na1i170.91 (9)O21—Na1—O42—C5289.7 (4)
O1W—Na1—O21—Na1i29.6 (3)Na1iii—Na1—O42—C5216.7 (5)
Na1iii—Na1—O21—Na1i123.07 (8)Na1i—Na1—O42—C52126.9 (4)
C41—C11—C21—C31106.7 (3)C42—C12—C22—C32105.6 (3)
C51—C11—C21—C31103.3 (3)C52—C12—C22—C32105.2 (3)
C41—C11—C31—C21105.0 (3)C42—C12—C32—C22105.7 (3)
C51—C11—C31—C21108.4 (3)C52—C12—C32—C22105.8 (3)
Na1i—O21—C41—O11135.2 (2)C52—C12—C42—O12177.4 (3)
Na1—O21—C41—O1196.4 (3)C32—C12—C42—O1230.1 (4)
Na1i—O21—C41—C1147.5 (3)C22—C12—C42—O1234.4 (4)
Na1—O21—C41—C1180.9 (3)C52—C12—C42—O223.1 (4)
C51—C11—C41—O211.4 (4)C32—C12—C42—O22150.4 (3)
C21—C11—C41—O21148.3 (3)C22—C12—C42—O22145.1 (3)
C31—C11—C41—O21146.7 (3)Na1—O42—C52—O3211.3 (6)
C51—C11—C41—O11178.9 (2)Na1—O42—C52—C12170.4 (2)
C21—C11—C41—O1129.3 (3)C42—C12—C52—O32179.7 (3)
C31—C11—C41—O1135.8 (3)C32—C12—C52—O3232.3 (4)
Na1i—O41—C51—O31173.4 (2)C22—C12—C52—O3232.0 (4)
Na1iv—O41—C51—O316.5 (5)C42—C12—C52—O421.9 (4)
Na1i—O41—C51—C113.1 (4)C32—C12—C52—O42149.3 (3)
Na1iv—O41—C51—C11170.0 (2)C22—C12—C52—O42146.4 (3)
C41—C11—C51—O4123.0 (4)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z; (iii) x, y+1, z+2; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H22···O420.93 (6)1.56 (6)2.429 (3)154 (5)
O1W—H2W···O12v0.86 (4)1.90 (4)2.737 (3)162 (4)
O1W—H1W···O22ii0.85 (4)1.98 (4)2.777 (4)155 (3)
O11—H11···O1Wiii0.77 (5)1.88 (5)2.642 (3)170 (5)
O31—H31···O32iv0.72 (6)1.80 (6)2.478 (3)155 (6)
Symmetry codes: (ii) x1, y, z; (iii) x, y+1, z+2; (iv) x+1, y, z; (v) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaNa+·C5H5O4·C5H4O4·H2O
Mr300.19
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.2910 (13), 10.118 (3), 12.895 (5)
α, β, γ (°)109.44 (3), 98.64 (2), 99.57 (2)
V3)626.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.48 × 0.22 × 0.16
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3932, 2985, 1654
Rint0.047
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.150, 0.99
No. of reflections2985
No. of parameters202
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.36

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1998).

Selected geometric parameters (Å, º) top
Na1—O422.261 (2)O41—C511.207 (3)
Na1—O21i2.325 (2)C11—C211.513 (4)
Na1—O41i2.370 (2)C11—C311.525 (4)
Na1—O41ii2.384 (2)C21—C311.464 (5)
Na1—O1W2.526 (3)O12—C421.215 (3)
Na1—O212.533 (2)O22—C421.298 (4)
Na1—Na1iii3.245 (2)O32—C521.233 (3)
Na1—Na1i3.769 (3)O42—C521.258 (3)
O11—C411.320 (3)C12—C321.518 (4)
O21—C411.204 (3)C12—C221.520 (4)
O31—C511.301 (3)C22—C321.451 (5)
C51—C11—C41—O211.4 (4)C52—C12—C42—O223.1 (4)
C41—C11—C51—O4123.0 (4)C42—C12—C52—O421.9 (4)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z; (iii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H22···O420.93 (6)1.56 (6)2.429 (3)154 (5)
O1W—H2W···O12iv0.86 (4)1.90 (4)2.737 (3)162 (4)
O1W—H1W···O22ii0.85 (4)1.98 (4)2.777 (4)155 (3)
O11—H11···O1Wiii0.77 (5)1.88 (5)2.642 (3)170 (5)
O31—H31···O32v0.72 (6)1.80 (6)2.478 (3)155 (6)
Symmetry codes: (ii) x1, y, z; (iii) x, y+1, z+2; (iv) x+1, y, z+2; (v) x+1, y, z.
 

Acknowledgements

The authors thank the EPSRC, UK, and the University of Glasgow for support.

References

First citationDubourg, A., Fabregue, E., Maury, L. & Declercq, J.-P. (1990). Acta Cryst. C46, 1394–1396.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKalsbeek, N. (1992). Acta Cryst. C48, 878–883.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMeester, M. A. M., Schenk, H. & MacGillavry, C. H. (1971). Acta Cryst. B27, 630–634.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMuir, K. W., Macdonald, A., Murray, A. & Macdonald, A. (2000). Acta Cryst. C56, 534–535.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchwarz, T., Petri, A., Schilling, J. & Lentz, A. (1998). Acta Cryst. C54, 1104–1105.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpeakman, J. C. (1972). Struct. Bonding, 12, 142–199.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds