organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

11-Methyl-2,3-benzodipyrrin-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Queen Mary, University of London, Mile End Road, London E1 4NS, England, and bDepartament de Química Orgànica, Facultat de Química, Universitat de Barcelona, Marti i Franquès 1-11, Barcelona 08028, Spain
*Correspondence e-mail: r.bonnett@qmul.ac.uk

(Received 4 August 2004; accepted 21 October 2004; online 23 November 2004)

The title compound {alternative names: 11-methyl-2,3-benzopyrromethenone and 3-[(1-methyl­pyrrol-2-yl)­methyl­idene]-2,3-di­hydro-1H-isoindol-1-one}, C14H12N2O, was prepared by the base-catalysed condensation of phthalimidine with 2-formyl-1-methyl­pyrrole; yellow orthorhombic crystals, space group Pbca, were obtained from ethanol. The mol­ecule is almost planar, having Z(−)antiperiplanar geometry. The mol­ecules are arranged in pairs with intermolecular hydrogen bonding between lactam functions. Comparison with literature values for poly­alkyl­dipyrrin-1-ones shows that, apart from the local constraints of the benzene ring, the fused benzo ring has little effect on the molecular dimensions of the dipyrrin-1-one skeleton.

Comment

Bilirubin, which adopts a ridge-tile structure with extensive intramolecular hydrogen bonding in the crystal (Bonnett et al., 1978[Bonnett, R., Davies, J. E., Hursthouse, M. B. & Sheldrick, G. M. (1978). Proc. R. Soc. Ser. B, 202, 249-268.]), contains two inequivalent dipyrrin-1-one (pyrromethenone) units. Such units also occur in a variety of other plant and animal linear tetra­pyrroles. Hence, the crystal structures of dipyrrin-1-ones have attracted some attention [for a review, see Sheldrick (1983[Sheldrick, W. S. (1983). Isr. J. Chem. 23, 155-166.])]. We have also had an interest in dipyrrin-1-ones as potential building blocks for the synthesis of benzoporphyrins (Bonnett & McManus, 1996[Bonnett, R. & McManus, K. A. (1996). J. Chem. Soc. Perkin Trans. 1, pp. 2461-2466.]; Valles et al., 1996[Valle´s, M. A., Biolo, R., Bonnett, R., Can~ete, M., Go´mez, A. M., Jori, G., Juarranz, A., McManus, K. A., Okolo, K. T., Soncin, M. & Villanueva, A. (1996). Proc. SPIE, 2625, 11-21.]).

[Scheme 1]

This report concerns the 2,3-benzodipyrrin-1-one system, as the 11-methyl derivative, (I[link]). Few representatives of this system have been described (Swanson, 1991[Swanson, F. J. (1991). PhD thesis, University of London, England.]; Boiadjiev & Lightner, 2003a[Boiadjiev, S. E. & Lightner, D. A. (2003a). J. Heterocycl. Chem. 40, 181-185.]), and we have found no previous X-ray crystal structure determination in this series. However, X-ray analyses have been reported for two distantly related ­structures, namely 3-[(pyrrol-2-yl)methyl­idene]indolin-2-one, derived from 2-ox­indole (Boiadjiev & Lightner, 2003b[Boiadjiev, S. E. & Lightner, D. A. (2003b). Monatsch. Chem. 134, 489-499.]), and 3-benzyl­idene­isoindolin-1-one (Mukherjee et al., 2000[Mukherjee, A. K., Guha, S., Khan, M. W., Kundu, N. G. & Helliwell, M. (2000). Acta Cryst. C56, 85-87.]). The photophysical properties of (I[link]) in organic solvents and in micellar preparations have been reported (Gerhardt et al., 2003[Gerhardt, S. A., Zhang, J. Z., Bonnett, R. & Swanson, F. J. (2003). Chem. Phys. Lett. 371, 510-515.]), but the compound was there formulated with the Z–syn geometry.

The molecular structure of (I[link]) is shown in Fig. 1[link]. X-Ray analysis shows that the mol­ecule has a 4-Z-antiperiplanar geometry, the chromophore being essentially planar, with N10—C4—C5—C6 and C4—C5—C6—N11 torsion angles of −2.0 (3) and 178.05 (16)°, respectively. Cullen et al. (1979[Cullen, D. L., Pèpe, G., Meyer, E. F., Falk, H. & Grubmayr, K. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 999-1004.]) reported a similar geometry for 11-methyl-2,3-di­methyl­dipyrrin-1-one and, as with that compound, the mol­ecules in (I[link]) are arranged in the crystal as dimers, with intermolecular hydrogen bonding between lactam groups (Table 1[link] and Fig. 2[link]).

[Scheme 2]

The bond lengths and angles observed here are similar to those observed in other 4-Z-dipyrrin-1-ones, namely (III[link]) (Cullen et al., 1977[Cullen, D. L., Black, P. S., Meyer, E. F., Lightner, D. A., Quistad, G. B. & Pak, C. S. (1977). Tetrahedron, 33, 477-483.]), (IV[link]) and (V[link]) (Cullen et al., 1979[Cullen, D. L., Pèpe, G., Meyer, E. F., Falk, H. & Grubmayr, K. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 999-1004.]), all of which have only alkyl substitution. The main difference, as might be anticipated, is in the region of the benzenoid ring; thus, the C2—C3 bond length in (I[link]), at 1.391 (2) Å, is significantly longer than the average (1.325 Å) of that bond length for compounds (III)–(V)[link]. It may be noted that 4-E-dipyrrin-1-ones have also been prepared, typically by photoisomerization of the Z compounds, and X-ray structures are available (Sheldrick et al., 1977[Sheldrick, W. S., Borkenstein, A., Blacha-Puller, M. & Gossauer, A. (1977). Acta Cryst. B33, 3625-3635.]; Hori et al., 1981[Hori, A., Mangani, S., Pèpe, G., Meyer, E. F., Cullen, D. L., Falk, H. & Grubmayr, K. (1981). J. Chem. Soc. Perkin Trans. 2, pp. 1525-1528.]).

Other comparisons are made in Table 2[link]. The bond lengths around the C5 bridge are of interest. The C4—C5 bond is slightly longer than expected for a double bond [although this discrepancy is marginal for (I[link]), it still occurs], and the C5—C6 bond is slightly shorter than expected for a single bond. These changes are in accord with the pattern of delocalization shown in (VI[link]). Cullen et al. (1979[Cullen, D. L., Pèpe, G., Meyer, E. F., Falk, H. & Grubmayr, K. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 999-1004.]) have noted that the C1—N10 bond is significantly shorter than the C4—N10 bond, and this is also apparent in the 2,3-benzo derivative (I[link]). We attribute this fact to the well known partial double-bond character of the C—N bond in amide functions. There is also a difference in length between the C9—N11 and C6—N11 bonds, the former being the shorter because of the delocalization represented in (VI[link]). Although this delocalization can occur in (I[link]) (although it is less pronounced because of the formal disruption of the benzenoid ring), it cannot occur in the Z-2,3-di­hydro system (VII[link]), and in this example the C9—N11 bond [1.386 (5) Å] is actually increased with respect to the C6—N11 bond

[Scheme 3]
[1.373 (5) Å] (Gossauer et al., 1976[Gossauer, A., Blacha, M. & Sheldrick, W. S. (1976). J. Chem. Soc. Chem. Commun. pp. 764-765.]) because of delocalization to the 9-ethoxy­carbonyl group.
[Figure 1]
Figure 1
The molecular structure of (I[link]). Ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
The dimeric assembly of (I[link]), involving hydrogen-bonded (dashed lines) lactam groups. [Symmetry code: (i) −x + 1, −y, −z.]

Experimental

Compound (I[link]) was prepared as follows (Swanson, 1991[Swanson, F. J. (1991). PhD thesis, University of London, England.]). A solution of phthalimidine (isoindol-1-one, 0.63 g) and 2-formyl-1-methyl­pyrrole (0.51 g) in ethanol (25 ml) was treated with aqueous sodium hydroxide (4 M, 20 ml) and heated under reflux for 7 h. The resulting yellow–orange solution was poured into ice-water. The bright-yellow precipitate was filtered off and washed with water to give a bright-yellow powder (0.30 g). Extraction of the filtrate with chloro­form gave a further 0.05 g. The combined yellow solids were crystallized from ethanol to give (I[link]) (0.19 g, 20%) as fine yellow needles (m.p. 471–475 K, with decomposition). Working on a larger scale allowed the yield to be increased to 40%. λmax (MeOH): 386 nm ( 21 200 M−1 cm−1). νmax (KBr): 3400–3200, 1680, 1610, 1470, 1430, 1320 cm−1. Analysis calculated for C14H12N2O: C 75.00, H 5.36, N 12.50%; found: C 74.83, H 5.32, N12.45%. Single crystals suitable for X-ray analysis were grown from ethanol.

Crystal data
  • C14H12N2O

  • Mr = 224.26

  • Orthorhombic, Pbca

  • a = 19.5886 (14) Å

  • b = 13.8924 (9) Å

  • c = 8.3714 (3) Å

  • V = 2278.1 (2) Å3

  • Z = 8

  • Dx = 1.308 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2787 reflections

  • θ = 2.9–27.5°

  • μ = 0.08 mm−1

  • T = 120 (2) K

  • Slab, yellow

  • 0.26 × 0.14 × 0.05 mm

Data collection
  • Bruker–Nonius FR591 rotating-anode diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.996

  • 11 508 measured reflections

  • 2597 independent reflections

  • 1530 reflections with I > 2σ(I)

  • Rint = 0.074

  • θmax = 27.5°

  • h = −18 → 25

  • k = −14 → 18

  • l = −10 → 8

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.130

  • S = 1.00

  • 2597 reflections

  • 155 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0647P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H1⋯O1i 0.88 2.04 2.8747 (19) 157
Symmetry code: (i) 1-x,-y,-z.

Table 2
Comparison of selected bond lengths (Å) in some dipyrrin-1-ones

Compound (III) (IV) (V) (I)
Geometry Z–syn Z–syn Z–anti Z–anti
C4—C5 1.347 (10) 1.354 (1) 1.350 (3) 1.348 (2)
C5—C6 1.405 (10) 1.431 (1) 1.445 (3) 1.435 (2)
C1—N10 (N1) 1.380 (10) 1.353 (1) 1.376 (3) 1.370 (2)
C4—N10 (N1) 1.401 (10) 1.396 (1) 1.387 (3) 1.405 (2)
C9—N11 (N2) 1.362 (9) 1.354 (1) 1.362 (3) 1.359 (2)
C6—N11 (N2) 1.384 (9) 1.375 (1) 1.391 (3) 1.387 (2)
Reference Cullen et al. (1977) Cullen et al. (1979) Cullen et al. (1979) Present work

H atoms were treated as riding atoms (C—H = 0.95 and 0.98 Å, and N—H = 0.88 Å).

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 1998[Spek, A. L. (1998). PLATON. Utrecht University, The Netherlands.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-888.]).

Supporting information


Comment top

Bilirubin, which adopts a ridge-tile structure with extensive intramolecular hydrogen bonding in the crystal (Bonnett et al., 1978), contains two inequivalent dipyrrin-1-one (pyrromethenone) units. Such units also occur in a variety of other plant and animal linear tetrapyrroles. Hence the crystal structures of dipyrrin-1-ones have attracted some attention [for a review see Sheldrick (1983)]. We have also had an interest in dipyrrin-1-ones as potential building blocks for the synthesis of benzoporphyrins (Bonnett & McManus, 1996; Valles et al., 1996).

This report concerns the 2,3-benzodipyrrin-1-one system, as the 11-methyl derivative (I). Few representatives of this system have been described (Swanson, 1991; Boiadjiev & Lightner, 2003a), and we have found no previous X-ray crystal structure determination in this series. However, X-ray analysis has been reported for two distantly related structures, namely 3-[(pyrrol-2-yl)-methylidenyl]-indolin-2-one, derived from 2-oxindole (Boiadjiev & Lightner, 2003b), and 3-benzylideneisoindolin-1-one (Mukerjee et al., 2000). The photophysical properties of (I) in organic solvent and in micellar preparations have been reported (Gerhardt et al., 2003), but the compound was there formulated with the Z-syn geometry.

The molecular structure of (I) is shown in Fig. 1. X-ray analysis shows that the molecule has a 4-Z-antiperiplanar geometry, the chromophore being essentially planar, with N10—C4—C5—C6 and C4—C5—C6—N11 torsion angles of −2.0 (3) and 178.05 (16)°, respectively. Cullen et al. (1979) reported a similar geometry for 11-methyl-2,3-dimethyldipyrrin-1-one, and as with that compound, the molecules in (I) are arranged in the crystal as dimers, with intermolecular hydrogen bonding between lactam groups (Table 1 and Fig. 2).

The bond lengths and bond angles observed here are similar to those observed in other 4-Z dipyrrin-1-ones, namely (III) (Cullen et al., 1977), (IV) and (V) (Cullen et al., 1979), all of which have only alkyl substitution. The main difference, as might be anticipated, is in the region of the benzenoid ring; thus the C2—C3 bond length in (I), at 1.391 (2) Å, is significantly longer than the average (1.325 Å) of that bond length for compounds (III)–(V). It may be noted that 4-E dipyrrin-1-ones have also been prepared, typically by photoisomerization of the Z compounds, and X-ray stuctures are available (Sheldrick et al., 1977; Hori et al., 1981).

Other comparisons are made in Table 2. The bond lengths around the C5 bridge are of interest. The C4—C5 bond is slightly longer than expected for a double bond [although this discrepancy is marginal for (I), it still occurs], and the C5—C6 bond is slightly shorter than expected for a single bond. These changes are in accord with the pattern of delocalization shown in (VI). Cullen et al. (1979) have noted that the C1—N10 bond is significantly shorter than the C4—N10 bond, and this is also apparent in the 2,3-benzo derivative (I). We attribute this fact to the well known partial double-bond character of the C—N bond in amide functions. There is also a difference in length between the C9—N11 and C6—N11 bonds, the former being the shorter because of the delocalization represented in (VI). Although this delocalization can occur in (I) (although it is less pronounced because of the formal disruption of the benzenoid ring), it cannot occur in the Z-2,3-dihydro system (VII), and in this example the C9—N11 bond [1.386 (5) Å] is actually increased with respect to the C6—N11 bond [1.373 (5) Å] (Gossauer et al., 1976) because of delocalization to the 9-ethoxycarbonyl group.

Experimental top

The title compound, (I), was prepared as follows (Swanson, 1991). A solution of phthalimidine (isoindol-1-one, 0.63 g) and 2-formyl-1-methylpyrrole (0.51 g) in ethanol (25 ml) was treated with aqueous sodium hydroxide (4M, 20 ml), and heated under reflux for 7 h. The resulting yellow–orange solution was poured into ice-water. The resulting bright-yellow precipitate was filtered off and washed with water to give a bright-yellow powder (0.30 g). Extraction of the filtrate with chloroform gave a further 0.05 g. The combined yellow solids were crystallized from ethanol to give 11-methyl-2,3-benzodipyrrin-1-one (1, 0.19 g, 20%) as fine yellow needles (m.p. 471–475 K, with decomposition). Working on a larger scale allowed the yield to be increased to 40%. λmax (MeOH) 386 nm (ε 21,200 M−1cm−1). νmax (KBr) 3400–3200, 1680, 1610, 1470, 1430, 1320 cm−1. Analysis calculated for C14H12N2O: C 75.00, H 5.36, N 12.50%; found: C 74.83, H 5.32, N12.45%. Single crystals suitable for X-ray analysis were grown from ethanol.

Refinement top

H atoms were treated as riding atoms (C—H 0.95 and 0.98 Å and N—H 0.88 Å),

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 ((Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 1998); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I).
[Figure 2] Fig. 2. Dimeric assembly of (I), involving hydrogen-bonded lactam groups. [Symmetry code: (a) −x + 1,-y,-z.]
3-[(1-methylpyrrol-2-yl)methylidene]-2,3-dihydro-1H-isoindol-2-one top
Crystal data top
C14H12N2ODx = 1.308 Mg m3
Mr = 224.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 2787 reflections
a = 19.5886 (14) Åθ = 2.9–27.5°
b = 13.8924 (9) ŵ = 0.08 mm1
c = 8.3714 (3) ÅT = 120 K
V = 2278.1 (2) Å3Slab, yellow
Z = 80.26 × 0.14 × 0.05 mm
F(000) = 944
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
2597 independent reflections
Radiation source: Bruker–Nonius FR591 rotating-anode1530 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1825
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1418
Tmin = 0.978, Tmax = 0.996l = 108
11508 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0647P)2]
where P = (Fo2 + 2Fc2)/3
2597 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H12N2OV = 2278.1 (2) Å3
Mr = 224.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 19.5886 (14) ŵ = 0.08 mm1
b = 13.8924 (9) ÅT = 120 K
c = 8.3714 (3) Å0.26 × 0.14 × 0.05 mm
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
2597 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1530 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.996Rint = 0.074
11508 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
2597 reflectionsΔρmin = 0.21 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.45320 (10)0.12758 (13)0.0406 (2)0.0270 (5)
C20.42832 (9)0.22602 (12)0.06893 (18)0.0223 (4)
C30.47004 (9)0.28845 (12)0.01674 (17)0.0223 (4)
C40.52300 (9)0.23223 (12)0.09729 (18)0.0228 (4)
C50.57387 (9)0.26733 (13)0.18882 (18)0.0241 (4)
H50.57490.33550.19740.029*
C60.62669 (9)0.21829 (13)0.27542 (17)0.0228 (4)
C70.64078 (9)0.12173 (13)0.30170 (19)0.0270 (5)
H70.61580.06880.26010.032*
C80.69855 (10)0.11603 (14)0.40061 (19)0.0304 (5)
H80.71980.05880.43770.036*
C90.71863 (10)0.20852 (13)0.43374 (19)0.0299 (5)
H90.75640.22640.49830.036*
C100.37414 (9)0.25857 (14)0.16058 (19)0.0271 (5)
H100.34640.21510.21930.032*
C110.36179 (10)0.35676 (14)0.1636 (2)0.0297 (5)
H110.32540.38140.22630.036*
C120.40241 (10)0.41964 (13)0.0753 (2)0.0308 (5)
H120.39260.48660.07740.037*
C130.45682 (10)0.38681 (13)0.01553 (19)0.0285 (5)
H130.48430.43020.07520.034*
C140.68193 (11)0.37441 (14)0.3662 (2)0.0338 (5)
H14A0.71920.39150.43910.051*
H14B0.63910.40240.40520.051*
H14C0.69190.39960.25940.051*
N100.50882 (8)0.13602 (10)0.05761 (16)0.0258 (4)
H10.53290.08680.09200.031*
N110.67539 (8)0.27026 (11)0.35879 (14)0.0258 (4)
O10.42990 (7)0.05076 (9)0.09345 (14)0.0373 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0277 (12)0.0287 (11)0.0245 (9)0.0000 (9)0.0002 (8)0.0017 (8)
C20.0228 (11)0.0244 (10)0.0197 (8)0.0005 (8)0.0036 (7)0.0001 (7)
C30.0232 (11)0.0256 (10)0.0181 (8)0.0008 (8)0.0035 (7)0.0007 (7)
C40.0260 (11)0.0226 (10)0.0197 (8)0.0015 (8)0.0041 (8)0.0004 (7)
C50.0274 (11)0.0235 (10)0.0213 (8)0.0033 (8)0.0036 (8)0.0003 (7)
C60.0229 (11)0.0283 (11)0.0172 (8)0.0052 (8)0.0012 (7)0.0012 (7)
C70.0288 (12)0.0285 (11)0.0236 (9)0.0034 (9)0.0024 (8)0.0019 (8)
C80.0313 (12)0.0316 (11)0.0282 (9)0.0017 (9)0.0004 (8)0.0015 (8)
C90.0248 (11)0.0397 (12)0.0252 (9)0.0040 (9)0.0037 (8)0.0003 (8)
C100.0247 (11)0.0307 (12)0.0258 (9)0.0017 (9)0.0033 (8)0.0036 (8)
C110.0252 (12)0.0330 (12)0.0308 (10)0.0039 (9)0.0006 (8)0.0019 (8)
C120.0342 (12)0.0245 (11)0.0336 (10)0.0053 (9)0.0013 (9)0.0015 (9)
C130.0309 (12)0.0255 (10)0.0289 (9)0.0032 (9)0.0010 (8)0.0008 (8)
C140.0366 (13)0.0304 (12)0.0342 (10)0.0100 (10)0.0039 (9)0.0025 (8)
N100.0277 (10)0.0225 (9)0.0271 (8)0.0026 (7)0.0039 (7)0.0000 (6)
N110.0258 (9)0.0279 (9)0.0236 (7)0.0054 (7)0.0010 (6)0.0014 (6)
O10.0424 (9)0.0246 (8)0.0448 (7)0.0013 (7)0.0136 (7)0.0070 (6)
Geometric parameters (Å, º) top
C1—O11.242 (2)C8—H80.9500
C1—N101.370 (2)C9—N111.359 (2)
C1—C21.471 (2)C9—H90.9500
C2—C101.385 (2)C10—C111.386 (2)
C2—C31.391 (2)C10—H100.9500
C3—C131.391 (2)C11—C121.394 (3)
C3—C41.463 (2)C11—H110.9500
C4—C51.348 (2)C12—C131.386 (3)
C4—N101.405 (2)C12—H120.9500
C5—C61.435 (2)C13—H130.9500
C5—H50.9500C14—N111.454 (2)
C6—N111.385 (2)C14—H14A0.9800
C6—C71.387 (2)C14—H14B0.9800
C7—C81.404 (3)C14—H14C0.9800
C7—H70.9500N10—H10.8800
C8—C91.372 (2)
O1—C1—N10125.42 (17)C8—C9—H9125.7
O1—C1—C2128.28 (17)C2—C10—C11117.73 (17)
N10—C1—C2106.30 (15)C2—C10—H10121.1
C10—C2—C3122.15 (17)C11—C10—H10121.1
C10—C2—C1130.29 (16)C10—C11—C12120.49 (18)
C3—C2—C1107.57 (15)C10—C11—H11119.8
C13—C3—C2119.96 (16)C12—C11—H11119.8
C13—C3—C4131.29 (16)C13—C12—C11121.58 (18)
C2—C3—C4108.75 (15)C13—C12—H12119.2
C5—C4—N10128.65 (16)C11—C12—H12119.2
C5—C4—C3126.37 (17)C12—C13—C3118.07 (17)
N10—C4—C3104.99 (14)C12—C13—H13121.0
C4—C5—C6130.40 (17)C3—C13—H13121.0
C4—C5—H5114.8N11—C14—H14A109.5
C6—C5—H5114.8N11—C14—H14B109.5
N11—C6—C7106.68 (15)H14A—C14—H14B109.5
N11—C6—C5120.24 (16)N11—C14—H14C109.5
C7—C6—C5133.05 (16)H14A—C14—H14C109.5
C6—C7—C8107.96 (16)H14B—C14—H14C109.5
C6—C7—H7126.0C1—N10—C4112.37 (15)
C8—C7—H7126.0C1—N10—H1123.8
C9—C8—C7107.31 (17)C4—N10—H1123.8
C9—C8—H8126.3C9—N11—C6109.45 (16)
C7—C8—H8126.3C9—N11—C14123.60 (15)
N11—C9—C8108.60 (16)C6—N11—C14126.95 (15)
N11—C9—H9125.7
O1—C1—C2—C100.6 (3)C7—C8—C9—N110.0 (2)
N10—C1—C2—C10179.20 (16)C3—C2—C10—C110.7 (2)
O1—C1—C2—C3179.22 (17)C1—C2—C10—C11179.10 (16)
N10—C1—C2—C30.99 (18)C2—C10—C11—C120.8 (3)
C10—C2—C3—C131.8 (2)C10—C11—C12—C131.2 (3)
C1—C2—C3—C13178.07 (14)C11—C12—C13—C30.1 (3)
C10—C2—C3—C4178.68 (15)C2—C3—C13—C121.3 (2)
C1—C2—C3—C41.49 (18)C4—C3—C13—C12179.23 (16)
C13—C3—C4—C52.0 (3)O1—C1—N10—C4179.88 (17)
C2—C3—C4—C5178.46 (16)C2—C1—N10—C40.08 (19)
C13—C3—C4—N10178.07 (17)C5—C4—N10—C1179.07 (16)
C2—C3—C4—N101.42 (17)C3—C4—N10—C10.80 (18)
N10—C4—C5—C62.0 (3)C8—C9—N11—C60.19 (19)
C3—C4—C5—C6178.18 (16)C8—C9—N11—C14179.25 (15)
C4—C5—C6—N11178.05 (16)C7—C6—N11—C90.35 (18)
C4—C5—C6—C74.3 (3)C5—C6—N11—C9178.52 (14)
N11—C6—C7—C80.37 (18)C7—C6—N11—C14179.38 (16)
C5—C6—C7—C8178.21 (17)C5—C6—N11—C142.4 (2)
C6—C7—C8—C90.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H1···O1i0.882.042.8747 (19)157
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H12N2O
Mr224.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)19.5886 (14), 13.8924 (9), 8.3714 (3)
V3)2278.1 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.26 × 0.14 × 0.05
Data collection
DiffractometerBruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.978, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
11508, 2597, 1530
Rint0.074
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.130, 1.00
No. of reflections2597
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, SHELXS97 ((Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 1998), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H1···O1i0.882.042.8747 (19)157
Symmetry code: (i) x+1, y, z.
Comparisons of selected bond lengths (Å) in some dipyrrin-1-ones top
Compound3451
GeometryZ-synZ-synZ-antiZ-anti
periplanarperiplanarperiplanarperiplanar
C4 – C51.347 (10)1.354 (1)1.350 (3)1.348 (2)
C5 – C61.405 (10)1.431 (1)1.445 (3)1.435 (2)
C1 – N10 (N1)1.380 (10)1.353 (1)1.376 (3)1.370 (2)
C4 – N10 (N1)1.401 (10)1.396 (1)1.387 (3)1.405 (2)
C9 – N11 (N2)1.362 (9)1.354 (1)1.362 (3)1.359 (2)
C6 – N11 (N2)1.384 (9)1.375 (1)1.391 (3)1.387 (2)
Ref.Cullen et al.,Cullen et al.,Cullen et al.,present
197719791979work
 

Acknowledgements

We thank the EPSRC National Crystallography Service (Southampton University) for data collection, and financial support from the SERC is acknowledged.

References

First citationBoiadjiev, S. E. & Lightner, D. A. (2003a). J. Heterocycl. Chem. 40, 181–185.  CrossRef CAS Google Scholar
First citationBoiadjiev, S. E. & Lightner, D. A. (2003b). Monatsch. Chem. 134, 489–499.  CrossRef CAS Google Scholar
First citationBonnett, R., Davies, J. E., Hursthouse, M. B. & Sheldrick, G. M. (1978). Proc. R. Soc. Ser. B, 202, 249–268.  CrossRef CAS Web of Science Google Scholar
First citationBonnett, R. & McManus, K. A. (1996). J. Chem. Soc. Perkin Trans. 1, pp. 2461–2466.  CrossRef Web of Science Google Scholar
First citationCullen, D. L., Black, P. S., Meyer, E. F., Lightner, D. A., Quistad, G. B. & Pak, C. S. (1977). Tetrahedron, 33, 477–483.  CSD CrossRef CAS Web of Science Google Scholar
First citationCullen, D. L., Pèpe, G., Meyer, E. F., Falk, H. & Grubmayr, K. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 999–1004.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–888.  CrossRef CAS IUCr Journals Google Scholar
First citationGerhardt, S. A., Zhang, J. Z., Bonnett, R. & Swanson, F. J. (2003). Chem. Phys. Lett. 371, 510–515.  Web of Science CrossRef CAS Google Scholar
First citationGossauer, A., Blacha, M. & Sheldrick, W. S. (1976). J. Chem. Soc. Chem. Commun. pp. 764–765.  CrossRef Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHori, A., Mangani, S., Pèpe, G., Meyer, E. F., Cullen, D. L., Falk, H. & Grubmayr, K. (1981). J. Chem. Soc. Perkin Trans. 2, pp. 1525–1528.  CrossRef Google Scholar
First citationMukherjee, A. K., Guha, S., Khan, M. W., Kundu, N. G. & Helliwell, M. (2000). Acta Cryst. C56, 85–87.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, W. S. (1983). Isr. J. Chem. 23, 155–166.  CrossRef CAS Google Scholar
First citationSheldrick, W. S., Borkenstein, A., Blacha-Puller, M. & Gossauer, A. (1977). Acta Cryst. B33, 3625–3635.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSpek, A. L. (1998). PLATON. Utrecht University, The Netherlands.  Google Scholar
First citationSwanson, F. J. (1991). PhD thesis, University of London, England.  Google Scholar
First citationValle´s, M. A., Biolo, R., Bonnett, R., Can~ete, M., Go´mez, A. M., Jori, G., Juarranz, A., McManus, K. A., Okolo, K. T., Soncin, M. & Villanueva, A. (1996). Proc. SPIE, 2625, 11–21.  CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds