metal-organic compounds
The copper(II) complexes di-μ-bromo-bis{[2,6-bis(pyrazol-1-yl)pyridine]perchloratocopper(II)} and [2,6-bis(pyrazol-1-yl)pyridine]dibromocopper(II)
aDepartment of Chemistry, North-Eastern Hill University, Shillong 793 022, India, bDepartment of Chemistry, University of Aarhus, DK-8000 Aarhus C, Denmark, and cDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: j.a.k.howard@durham.ac.uk
The two title compounds, di-μ-bromo-bis{[2,6-bis(pyrazol-1-yl-κN2)pyridine-κN](perchlorato-κO)copper(II)}, [Cu2Br2(ClO4)2(C11H9N5)2], (I), and [2,6-bis(pyrazol-1-yl)pyridine]dibromocopper(II), [CuBr2(C11H9N5)], (II), were synthesized by only slight modifications of the same reaction; compound (II) was formed by adding one molar equivalent of pyrazole (C3N2H4) to the reaction mixture of (I). Compound (I) is a bromo-bridged dinuclear copper(II) compound stabilized by weak interactions with the perchlorate anions (ClO4−), while (II) is a related mononuclear species, which has a distorted square-pyramidal geometry.
Comment
After the discovery of planar tridentate N-atom donor ligands by Jameson & Goldsby (1990), much work has been carried out in the past decade with various transition metals and the 2,6-bis(pyrazolyl)pyridine ligand (bppy; see first scheme below), because of its potential in bonding to metal atoms (Jameson et al., 1989; Downard et al., 1991; Abel et al., 1994; Solanki et al., 1998). Examples include iron(II) complexes of bppy derivatives, which have been shown to exhibit thermal
and light-induced spin-crossover transitions (Holland et al., 2002; Money et al., 2004). Previous work carried out on related copper(II) complexes has shown that they exhibit an axially compressed octahedral geometry (Solanki et al., 1998). In this context, we have synthesized two new copper(II) complexes and have carried out a structural study.The bromine-bridged dicopper complex [Cu2Br2(ClO4)2(bppy)2] (I), and the monocopper complex [CuBr2(bppy)], (II), were prepared via essentially the same route, except that pyrazole was added to the reaction mixture that yielded (II).
Compound (I) contains two Cu atoms, each ligated in a square-planar geometry by a tridentate bppy ligand and one Br atom. Pairs of these square-planar copper complexes form dimers bridged by the two bromine ions. In addition, these dinuclear species are stabilized by two ligating ClO4− anions, with the result that both copper centres exhibit a pseudo-octahedral geometry (Carranza et al., 2003). Thus, each distorted octahedron contains a bppy ligand together with one of the bridging Br atoms in the equatorial plane, and is capped by a ClO4− anion and the remaining bridging Br atom. The two halves of the molecule are related by a non-crystallographic inversion centre situated between the copper centres (Fig. 1).
The equatorial CuN3Br planes each contain three Cu—N bonds of approximately 2.0 Å and one longer Cu—Br bond [2.3436 (10) and 2.3578 (10) Å; Table 1]. Bridging halides are quite common and bridging pairs of Br atoms have been reported many times in the literature, with various bond lengths (Marsh et al., 1983; Hoffmann et al., 1984; Xu et al., 2000). In the case of (I) however, the axial and equatorial Cu—Br bonds are highly asymmetric, the axial bonds being longer at approximately 3.0 Å.
Each Cu atom also forms a bond to the nearest perchlorate O atom [Cu1—O5 = 2.466 (6) Å and Cu2—O4 = 2.564 (6) Å], resulting in a distorted elongated octahedral geometry around each metal atom. As in many perchlorate compounds, the ClO4− ions have larger displacement parameters than the rest of the molecule, indicating a tendency to disorder (Ragunathan & Bharadwaj, 1992). However, the coordination to the copper centres has reduced this motion, making it possible to refine anistropic displacement parameters.
In contrast to (I), the mononuclear compound (II) consists of a single Cu atom ligated by the bppy ligand and two Br atoms (Fig. 2). The five-cordinate geometry is best described with respect to (I) as pseudo-square-pyramidal, with the `equatorial' Br2 atom 1.04 Å (29.7°) out of the plane of the bppy ligand. This configuration also leads to a difference in the positions of the axial Br atoms, which in (I) made angles of 87.83 (16) and 89.69 (16)° with the bppy ligand planes, and in (II) makes an angle of 104.03 (4)°. There is also an increase in the Br—Cu—Br angle [93.39 (4) and 93.88 (3)° in (I), and 107.203 (10)° in (II)], due to the reduction in and a reduction in the asymmetry that is seen in the Cu—Br distances for (I) (Table 2).
Another consequence of the lower et al., 1992), the separate aromatic rings of the bppy ligand are not coplanar and the angles between the planes of the pyridine ring and the pyrazole rings are 2.8 (2) (for N1/C1–C3/N2) and 4.3 (2)° (for N4/C9–C11/N5).
is that the central Cu atom lies slightly out of the plane of the bppy ligand. Thus, while the internal parameters of the bppy ligand ring system are in accordance with anticipated values (BesselExperimental
Compound (I) was prepared by stirring a mixture of Cu(ClO4)2·6H2O (0.370 g, 1 mmol), bppy (0.211 g, 1 mmol) and potassium bromide (0.0297 g, 0.25 mmol) in acetonitrile (25 ml) for 4 h at room temperature. During this time, the colour of the solution changed from blue to blue–green. After evaporation of the solvent, blue–green crystals were obtained (yield 0.390 g, 63.85%). Compound (II) was prepared using a mixture of Cu(ClO4)2·6H2O, bppy and potassium bromide in acetonitrile (as above), which was stirred for 2 h. Pyrazole (0.068 g, 1 mmol) was added to the reaction mixture and the mixture was stirred for a further 2 h. During this time, the colour of the solution changed from blue–green to deep green. On evaporation of the solvent, the solution yielded the green compound (II) together with a pale-blue compound thought to be unreacted starting material (yield 0.280 g, 41.19%). Caution: perchlorate salts of metal complexes are potentially explosive. Suitable care should be taken when handling such hazardous compounds. Compounds (I) and (II) were both purified by passing them through a silica-gel column using methanol–acetonitrile–dichloromethane (1:1:2) as eluant. X-ray quality crystals of both (I) and (II) were grown by keeping a of the purified compound in acetonitrile for several days at room temperature.
Compound (I)
Crystal data
|
Data collection
Refinement
|
|
Compound (II)
Crystal data
|
Data collection
Refinement
|
|
H atoms were treated using a riding model (C—H = 0.93 Å), with isotropic displacement parameters fixed at 120% of the Ueq values of the parent C atoms.
For both compounds, data collection: SMART-NT (Bruker, 1998); cell SMART-NT; data reduction: SAINT-NT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S0108270104026459/fg1771sup1.cif
contains datablocks I, global, II. DOI:Structure factors: contains datablock I. DOI: 10.1107/S0108270104026459/fg1771Isup2.hkl
Structure factors: contains datablock II. DOI: 10.1107/S0108270104026459/fg1771IIsup3.hkl
Caution: perchlorate salts of metal complexes are potentially explosive. Suitable care should be taken when handling such hazardous compounds. Compound (I) was prepared by stirring a mixture of Cu(ClO4)2·6H2O (0.370 g, 1 mmol), bppy (0.211 g, 1 mmol) and potassium bromide (0.0297 g, 0.25 mmol) in acetonitrile (25 ml) for 4 h at room temperature. During this time, the colour of the solution changed from blue to blue–green. After evaporation of the solvent, blue–green crystals were obtained (yield 0.390 g, 63.85%). Compound (II) was prepared using a mixture of Cu(ClO4)2·6H2O, bppy and potassium bromide in acetonitrile (as above), which was stirred for 2 h. Pyrazole (0.068 g, 1 mmol) was added to the reaction mixture and the mixture was stirred for a further 2 h. During this interval, the colour of the solution changed from blue–green to deep green. On evaporation of the solvent, the solution yielded the green compound (II) together with a pale-blue compound thought to be unreacted starting material (yield 0.280 g, 41.19%). Common methods were applied for crystallization and purification of both (I) and (II). Compounds (I) and (II) were purified by passing them through a silica-gel column using methanol–acetonitrile–dichloromethane (1:1:2) as eluant. X-ray quality crystals of both (I) and (II) were grown by keeping a
of the purified compound in acetonitrile for several days at room temperature.Both compounds are monoclinic, with (I) in
P21 and (II) in P21/c. H atoms were treated using a riding model (C—H = 0.93 Å), with isotropic displacement parameters fixed at 120% of the Ueq values of the parent C atoms.For both compounds, data collection: SMART (Bruker, 1998); cell
SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.[Cu2Br2(ClO4)2(C11H9N5)2] | F(000) = 892 |
Mr = 908.26 | 10240 integrated reflections used for | measurement.
Monoclinic, P21 | Dx = 2.089 Mg m−3 |
Hall symbol: P 2yb | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8033 (2) Å | Cell parameters from 10240 reflections |
b = 15.1425 (5) Å | θ = 1.8–32.9° |
c = 12.7301 (3) Å | µ = 4.49 mm−1 |
β = 106.305 (2)° | T = 120 K |
V = 1443.71 (7) Å3 | Tube, blue-green |
Z = 2 | 0.13 × 0.12 × 0.10 mm |
Bruker SMART 6K CCD area-detector diffractometer | 9732 independent reflections |
Radiation source: fine-focus sealed tube | 6041 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.092 |
Detector resolution: 8 pixels mm-1 | θmax = 32.5°, θmin = 1.7° |
ω and ϕ scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | k = −22→22 |
Tmin = 0.604, Tmax = 0.662 | l = −19→18 |
56664 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.128 | w = 1/[σ2(Fo2) + (0.0464P)2 + 3.2337P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
9732 reflections | Δρmax = 1.66 e Å−3 |
416 parameters | Δρmin = −1.13 e Å−3 |
1 restraint | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.000 (12) |
[Cu2Br2(ClO4)2(C11H9N5)2] | V = 1443.71 (7) Å3 |
Mr = 908.26 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 7.8033 (2) Å | µ = 4.49 mm−1 |
b = 15.1425 (5) Å | T = 120 K |
c = 12.7301 (3) Å | 0.13 × 0.12 × 0.10 mm |
β = 106.305 (2)° |
Bruker SMART 6K CCD area-detector diffractometer | 9732 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 6041 reflections with I > 2σ(I) |
Tmin = 0.604, Tmax = 0.662 | Rint = 0.092 |
56664 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.128 | Δρmax = 1.66 e Å−3 |
S = 1.03 | Δρmin = −1.13 e Å−3 |
9732 reflections | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
416 parameters | Absolute structure parameter: 0.000 (12) |
1 restraint |
Experimental. The absorbtion correction was done with SADABS, mu*r. The radius was calculated from the estimation of the crystal being a sphere (r = 0.07 mm). The mu coefficient is calculated from the program FPrime (Program FPrime for Windows 1.0 for calculating real and anomalous X-ray dispersion coefficients, R·B. Von Dreele, 1994). The data collection nominally covered over a full sphere of reciprocal space, by a combination of 6 sets of ω scans and a 2 of ϕ scan. Each scan was exposured for 3 s covering 0.3° in ω or ϕ. No sign of crystal decay was observed. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Absolute configuration was determined by inverting the structure and by checking Flack parameters. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.83413 (9) | 0.76392 (4) | 0.29061 (5) | 0.02583 (15) | |
Br2 | 0.53815 (9) | 0.55200 (4) | 0.28052 (5) | 0.02516 (15) | |
Cu1 | 0.80261 (11) | 0.67318 (5) | 0.43317 (7) | 0.02240 (19) | |
Cu2 | 0.57084 (11) | 0.64501 (5) | 0.13886 (7) | 0.02147 (18) | |
N1 | 1.0078 (7) | 0.5900 (4) | 0.4520 (5) | 0.0230 (12) | |
N2 | 1.0240 (8) | 0.5304 (4) | 0.5356 (4) | 0.0238 (12) | |
N3 | 0.7773 (7) | 0.5992 (4) | 0.5559 (4) | 0.0187 (11) | |
N4 | 0.5439 (7) | 0.6900 (4) | 0.5486 (4) | 0.0216 (12) | |
N5 | 0.5891 (7) | 0.7298 (4) | 0.4654 (4) | 0.0206 (11) | |
N21 | 0.3616 (7) | 0.7272 (4) | 0.1224 (4) | 0.0208 (11) | |
N22 | 0.3395 (7) | 0.7828 (3) | 0.0340 (4) | 0.0205 (11) | |
N23 | 0.5880 (7) | 0.7175 (4) | 0.0144 (5) | 0.0194 (11) | |
N24 | 0.8266 (7) | 0.6331 (4) | 0.0169 (5) | 0.0194 (12) | |
N25 | 0.7861 (7) | 0.5924 (4) | 0.1050 (5) | 0.0236 (12) | |
C1 | 1.1460 (9) | 0.5702 (4) | 0.4126 (6) | 0.0237 (14) | |
H1 | 1.1719 | 0.5996 | 0.3547 | 0.028* | |
C2 | 1.2455 (9) | 0.4997 (5) | 0.4698 (6) | 0.0251 (14) | |
H2 | 1.3456 | 0.4737 | 0.4568 | 0.030* | |
C3 | 1.1662 (10) | 0.4772 (5) | 0.5480 (6) | 0.0270 (16) | |
H3 | 1.2033 | 0.4332 | 0.6005 | 0.032* | |
C4 | 0.8961 (9) | 0.5372 (4) | 0.5945 (6) | 0.0218 (14) | |
C5 | 0.8874 (9) | 0.4851 (4) | 0.6834 (6) | 0.0242 (14) | |
H5 | 0.9689 | 0.4399 | 0.7097 | 0.029* | |
C6 | 0.7511 (10) | 0.5040 (5) | 0.7306 (6) | 0.0267 (16) | |
H6 | 0.7416 | 0.4715 | 0.7907 | 0.032* | |
C7 | 0.6277 (9) | 0.5715 (5) | 0.6887 (6) | 0.0257 (15) | |
H7 | 0.5348 | 0.5840 | 0.7189 | 0.031* | |
C8 | 0.6499 (9) | 0.6177 (4) | 0.6026 (5) | 0.0209 (13) | |
C9 | 0.4002 (9) | 0.7303 (5) | 0.5700 (6) | 0.0275 (15) | |
H9 | 0.3447 | 0.7140 | 0.6229 | 0.033* | |
C10 | 0.3553 (9) | 0.7983 (5) | 0.4989 (6) | 0.0306 (16) | |
H10 | 0.2641 | 0.8391 | 0.4939 | 0.037* | |
C11 | 0.4752 (9) | 0.7950 (5) | 0.4338 (6) | 0.0260 (14) | |
H11 | 0.4737 | 0.8336 | 0.3767 | 0.031* | |
C21 | 0.2262 (9) | 0.7442 (5) | 0.1628 (6) | 0.0263 (15) | |
H21 | 0.2086 | 0.7166 | 0.2243 | 0.032* | |
C22 | 0.1131 (9) | 0.8086 (5) | 0.1019 (6) | 0.0265 (14) | |
H22 | 0.0085 | 0.8306 | 0.1133 | 0.032* | |
C23 | 0.1899 (9) | 0.8325 (5) | 0.0213 (6) | 0.0276 (15) | |
H23 | 0.1473 | 0.8750 | −0.0324 | 0.033* | |
C24 | 0.4643 (8) | 0.7786 (5) | −0.0247 (5) | 0.0211 (14) | |
C25 | 0.4717 (10) | 0.8314 (5) | −0.1115 (6) | 0.0269 (16) | |
H25 | 0.3888 | 0.8761 | −0.1368 | 0.032* | |
C26 | 0.6075 (9) | 0.8152 (5) | −0.1595 (6) | 0.0274 (15) | |
H26 | 0.6135 | 0.8488 | −0.2195 | 0.033* | |
C27 | 0.7334 (10) | 0.7509 (5) | −0.1209 (6) | 0.0282 (16) | |
H27 | 0.8258 | 0.7408 | −0.1522 | 0.034* | |
C28 | 0.7156 (8) | 0.7017 (4) | −0.0326 (5) | 0.0208 (13) | |
C29 | 0.9765 (9) | 0.5961 (4) | 0.0024 (6) | 0.0264 (15) | |
H29 | 1.0307 | 0.6115 | −0.0514 | 0.032* | |
C30 | 1.0349 (9) | 0.5321 (4) | 0.0807 (6) | 0.0271 (15) | |
H30 | 1.1352 | 0.4965 | 0.0911 | 0.032* | |
C31 | 0.9108 (9) | 0.5321 (4) | 0.1416 (6) | 0.0251 (14) | |
H31 | 0.9157 | 0.4946 | 0.2002 | 0.030* | |
Cl1 | 0.3574 (2) | 0.50429 (11) | −0.10475 (14) | 0.0260 (3) | |
O1 | 0.5380 (7) | 0.4775 (4) | −0.0894 (5) | 0.0416 (14) | |
O2 | 0.2447 (8) | 0.4311 (4) | −0.1002 (5) | 0.0442 (14) | |
O3 | 0.2923 (8) | 0.5485 (6) | −0.2068 (5) | 0.067 (2) | |
O4 | 0.3512 (8) | 0.5635 (5) | −0.0192 (5) | 0.0557 (18) | |
Cl2 | 1.0087 (2) | 0.80230 (11) | 0.67630 (14) | 0.0254 (3) | |
O5 | 1.0122 (8) | 0.7597 (5) | 0.5775 (5) | 0.066 (2) | |
O6 | 1.1163 (8) | 0.8794 (4) | 0.6875 (5) | 0.0468 (15) | |
O7 | 1.0796 (9) | 0.7443 (6) | 0.7655 (6) | 0.077 (3) | |
O8 | 0.8273 (7) | 0.8231 (4) | 0.6724 (5) | 0.0349 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0322 (4) | 0.0253 (3) | 0.0222 (3) | −0.0028 (3) | 0.0111 (3) | 0.0013 (3) |
Br2 | 0.0282 (4) | 0.0260 (3) | 0.0228 (3) | −0.0011 (3) | 0.0099 (3) | 0.0022 (3) |
Cu1 | 0.0232 (4) | 0.0255 (4) | 0.0210 (4) | 0.0025 (3) | 0.0104 (4) | 0.0036 (3) |
Cu2 | 0.0230 (4) | 0.0244 (4) | 0.0192 (4) | 0.0027 (3) | 0.0095 (3) | 0.0026 (3) |
N1 | 0.022 (3) | 0.030 (3) | 0.020 (3) | 0.004 (2) | 0.009 (2) | −0.002 (2) |
N2 | 0.029 (3) | 0.028 (3) | 0.016 (3) | 0.000 (2) | 0.009 (2) | 0.002 (2) |
N3 | 0.017 (3) | 0.024 (3) | 0.016 (3) | −0.005 (2) | 0.006 (2) | −0.005 (2) |
N4 | 0.024 (3) | 0.029 (3) | 0.015 (3) | 0.002 (2) | 0.009 (2) | 0.006 (2) |
N5 | 0.027 (3) | 0.022 (3) | 0.014 (3) | −0.001 (2) | 0.008 (2) | 0.007 (2) |
N21 | 0.024 (3) | 0.024 (3) | 0.018 (3) | −0.003 (2) | 0.011 (2) | 0.000 (2) |
N22 | 0.019 (3) | 0.021 (3) | 0.023 (3) | 0.000 (2) | 0.006 (2) | 0.002 (2) |
N23 | 0.013 (2) | 0.024 (3) | 0.021 (3) | 0.001 (2) | 0.005 (2) | −0.007 (2) |
N24 | 0.011 (3) | 0.021 (3) | 0.025 (3) | −0.003 (2) | 0.003 (2) | −0.007 (2) |
N25 | 0.020 (3) | 0.029 (3) | 0.020 (3) | 0.002 (2) | 0.004 (2) | −0.005 (2) |
C1 | 0.031 (4) | 0.023 (3) | 0.019 (3) | −0.010 (3) | 0.009 (3) | −0.002 (3) |
C2 | 0.018 (3) | 0.027 (3) | 0.030 (4) | 0.006 (3) | 0.007 (3) | −0.004 (3) |
C3 | 0.030 (4) | 0.024 (4) | 0.024 (4) | 0.005 (3) | 0.003 (3) | 0.006 (3) |
C4 | 0.019 (3) | 0.023 (3) | 0.022 (3) | −0.002 (3) | 0.004 (3) | 0.000 (3) |
C5 | 0.027 (3) | 0.023 (3) | 0.021 (3) | 0.004 (3) | 0.004 (3) | 0.003 (3) |
C6 | 0.032 (4) | 0.028 (4) | 0.025 (4) | −0.002 (3) | 0.016 (3) | 0.002 (3) |
C7 | 0.024 (4) | 0.034 (4) | 0.022 (3) | −0.007 (3) | 0.010 (3) | −0.004 (3) |
C8 | 0.021 (3) | 0.025 (3) | 0.016 (3) | −0.005 (3) | 0.004 (3) | −0.003 (2) |
C9 | 0.020 (3) | 0.037 (4) | 0.029 (4) | 0.000 (3) | 0.011 (3) | 0.000 (3) |
C10 | 0.023 (3) | 0.037 (4) | 0.032 (4) | 0.009 (3) | 0.009 (3) | −0.004 (3) |
C11 | 0.027 (4) | 0.026 (3) | 0.026 (4) | −0.001 (3) | 0.010 (3) | 0.002 (3) |
C21 | 0.021 (3) | 0.036 (4) | 0.026 (4) | 0.001 (3) | 0.014 (3) | 0.002 (3) |
C22 | 0.027 (4) | 0.029 (4) | 0.025 (4) | −0.002 (3) | 0.011 (3) | 0.002 (3) |
C23 | 0.017 (3) | 0.028 (4) | 0.035 (4) | 0.003 (3) | 0.004 (3) | 0.000 (3) |
C24 | 0.016 (3) | 0.029 (4) | 0.021 (3) | −0.002 (3) | 0.010 (3) | −0.005 (3) |
C25 | 0.026 (4) | 0.031 (4) | 0.025 (4) | 0.000 (3) | 0.010 (3) | −0.001 (3) |
C26 | 0.021 (3) | 0.036 (4) | 0.024 (4) | −0.004 (3) | 0.003 (3) | 0.000 (3) |
C27 | 0.030 (4) | 0.035 (4) | 0.022 (4) | −0.007 (3) | 0.011 (3) | 0.000 (3) |
C28 | 0.017 (3) | 0.025 (3) | 0.021 (3) | −0.003 (3) | 0.007 (3) | −0.004 (3) |
C29 | 0.027 (4) | 0.028 (4) | 0.028 (4) | −0.005 (3) | 0.013 (3) | −0.007 (3) |
C30 | 0.021 (3) | 0.027 (3) | 0.033 (4) | 0.001 (3) | 0.006 (3) | −0.005 (3) |
C31 | 0.018 (3) | 0.025 (3) | 0.029 (4) | 0.001 (3) | 0.002 (3) | −0.004 (3) |
Cl1 | 0.0236 (8) | 0.0311 (8) | 0.0248 (8) | 0.0005 (7) | 0.0094 (7) | 0.0002 (7) |
O1 | 0.021 (3) | 0.061 (4) | 0.043 (3) | 0.011 (3) | 0.009 (2) | −0.001 (3) |
O2 | 0.043 (3) | 0.031 (3) | 0.055 (4) | −0.014 (3) | 0.008 (3) | −0.004 (3) |
O3 | 0.034 (3) | 0.114 (6) | 0.052 (4) | 0.008 (4) | 0.010 (3) | 0.052 (4) |
O4 | 0.037 (3) | 0.074 (4) | 0.062 (4) | −0.021 (3) | 0.024 (3) | −0.046 (4) |
Cl2 | 0.0245 (8) | 0.0293 (8) | 0.0233 (8) | 0.0005 (7) | 0.0081 (7) | −0.0032 (7) |
O5 | 0.035 (3) | 0.103 (6) | 0.070 (5) | −0.029 (4) | 0.031 (3) | −0.061 (4) |
O6 | 0.038 (3) | 0.036 (3) | 0.064 (4) | −0.008 (3) | 0.011 (3) | −0.018 (3) |
O7 | 0.040 (4) | 0.100 (6) | 0.092 (6) | 0.023 (4) | 0.021 (4) | 0.067 (5) |
O8 | 0.030 (3) | 0.046 (3) | 0.033 (3) | 0.012 (2) | 0.016 (2) | 0.006 (2) |
Br1—Cu1 | 2.3436 (10) | C4—C5 | 1.397 (9) |
Br1—Cu2 | 2.9945 (11) | C5—C6 | 1.391 (10) |
Br2—Cu2 | 2.3578 (10) | C5—H5 | 0.9300 |
Br2—Cu1 | 3.0249 (11) | C6—C7 | 1.403 (10) |
Cu1—N3 | 1.977 (5) | C6—H6 | 0.9300 |
Cu1—N1 | 1.998 (6) | C7—C8 | 1.351 (9) |
Cu1—N5 | 2.016 (6) | C7—H7 | 0.9300 |
Cu1—O5 | 2.466 (6) | C9—C10 | 1.351 (10) |
Cu2—N21 | 2.016 (6) | C9—H9 | 0.9300 |
Cu2—N23 | 1.962 (6) | C10—C11 | 1.414 (9) |
Cu2—N25 | 2.013 (5) | C10—H10 | 0.9300 |
Cu2—O4 | 2.564 (6) | C11—H11 | 0.9300 |
N1—C1 | 1.345 (8) | C21—C22 | 1.396 (10) |
N1—N2 | 1.374 (8) | C21—H21 | 0.9300 |
N2—C3 | 1.344 (9) | C22—C23 | 1.374 (10) |
N2—C4 | 1.410 (8) | C22—H22 | 0.9300 |
N3—C4 | 1.314 (8) | C23—H23 | 0.9300 |
N3—C8 | 1.324 (8) | C24—C25 | 1.377 (10) |
N4—N5 | 1.348 (7) | C25—C26 | 1.386 (10) |
N4—C9 | 1.369 (8) | C25—H25 | 0.9300 |
N4—C8 | 1.427 (9) | C26—C27 | 1.373 (10) |
N5—C11 | 1.314 (9) | C26—H26 | 0.9300 |
N21—C21 | 1.325 (8) | C27—C28 | 1.387 (9) |
N21—N22 | 1.377 (7) | C27—H27 | 0.9300 |
N22—C23 | 1.360 (8) | C29—C30 | 1.373 (10) |
N22—C24 | 1.385 (8) | C29—H29 | 0.9300 |
N23—C28 | 1.319 (8) | C30—C31 | 1.400 (9) |
N23—C24 | 1.330 (8) | C30—H30 | 0.9300 |
N24—C29 | 1.356 (8) | C31—H31 | 0.9300 |
N24—C28 | 1.385 (9) | Cl1—O4 | 1.422 (6) |
N24—N25 | 1.392 (8) | Cl1—O3 | 1.423 (6) |
N25—C31 | 1.319 (8) | Cl1—O1 | 1.426 (5) |
C1—C2 | 1.399 (10) | Cl1—O2 | 1.427 (6) |
C1—H1 | 0.9300 | Cl2—O7 | 1.419 (7) |
C2—C3 | 1.355 (10) | Cl2—O5 | 1.420 (6) |
C2—H2 | 0.9300 | Cl2—O6 | 1.422 (6) |
C3—H3 | 0.9300 | Cl2—O8 | 1.437 (5) |
Cu1—Br1—Cu2 | 86.84 (3) | C4—C5—H5 | 121.6 |
Cu2—Br2—Cu1 | 85.88 (3) | C5—C6—C7 | 120.8 (7) |
N1—Cu1—Br1 | 102.00 (17) | C5—C6—H6 | 119.6 |
N3—Cu1—Br1 | 178.59 (16) | C7—C6—H6 | 119.6 |
N5—Cu1—Br1 | 100.43 (15) | C8—C7—C6 | 117.0 (6) |
N1—Cu1—Br2 | 94.25 (17) | C8—C7—H7 | 121.5 |
N3—Cu1—Br2 | 87.83 (16) | C6—C7—H7 | 121.5 |
N5—Cu1—Br2 | 86.26 (16) | N3—C8—C7 | 122.6 (6) |
Br1—Cu1—Br2 | 93.39 (4) | N3—C8—N4 | 110.6 (6) |
N21—Cu2—Br2 | 100.95 (15) | C7—C8—N4 | 126.8 (6) |
N23—Cu2—Br2 | 176.42 (17) | C10—C9—N4 | 106.2 (6) |
N25—Cu2—Br2 | 101.72 (18) | C10—C9—H9 | 126.9 |
N21—Cu2—Br1 | 94.87 (16) | N4—C9—H9 | 126.9 |
N23—Cu2—Br1 | 89.69 (16) | C9—C10—C11 | 106.0 (6) |
N25—Cu2—Br1 | 85.04 (16) | C9—C10—H10 | 127.0 |
Br2—Cu2—Br1 | 93.88 (3) | C11—C10—H10 | 127.0 |
N3—Cu1—N1 | 78.6 (2) | N5—C11—C10 | 110.4 (6) |
N3—Cu1—N5 | 78.9 (2) | N5—C11—H11 | 124.8 |
N1—Cu1—N5 | 157.5 (2) | C10—C11—H11 | 124.8 |
N23—Cu2—N25 | 78.4 (2) | N21—C21—C22 | 111.6 (6) |
N23—Cu2—N21 | 78.9 (2) | N21—C21—H21 | 124.2 |
N25—Cu2—N21 | 157.3 (2) | C22—C21—H21 | 124.2 |
C1—N1—N2 | 103.5 (5) | C23—C22—C21 | 105.0 (6) |
C1—N1—Cu1 | 142.6 (5) | C23—C22—H22 | 127.5 |
N2—N1—Cu1 | 113.8 (4) | C21—C22—H22 | 127.5 |
C3—N2—N1 | 112.2 (5) | N22—C23—C22 | 107.8 (6) |
C3—N2—C4 | 131.8 (6) | N22—C23—H23 | 126.1 |
N1—N2—C4 | 116.0 (5) | C22—C23—H23 | 126.1 |
C4—N3—C8 | 121.5 (6) | N23—C24—C25 | 121.0 (6) |
C4—N3—Cu1 | 118.9 (4) | N23—C24—N22 | 112.1 (6) |
C8—N3—Cu1 | 119.3 (5) | C25—C24—N22 | 126.9 (6) |
N5—N4—C9 | 111.5 (6) | C24—C25—C26 | 117.5 (7) |
N5—N4—C8 | 118.5 (5) | C24—C25—H25 | 121.3 |
C9—N4—C8 | 129.9 (6) | C26—C25—H25 | 121.3 |
C11—N5—N4 | 105.8 (5) | C27—C26—C25 | 121.7 (7) |
C11—N5—Cu1 | 141.6 (5) | C27—C26—H26 | 119.1 |
N4—N5—Cu1 | 112.6 (4) | C25—C26—H26 | 119.1 |
C21—N21—N22 | 105.5 (5) | C26—C27—C28 | 116.5 (6) |
C21—N21—Cu2 | 142.3 (5) | C26—C27—H27 | 121.7 |
N22—N21—Cu2 | 112.0 (4) | C28—C27—H27 | 121.7 |
C23—N22—N21 | 110.0 (5) | N23—C28—N24 | 112.6 (6) |
C23—N22—C24 | 132.1 (6) | N23—C28—C27 | 122.0 (6) |
N21—N22—C24 | 117.9 (5) | N24—C28—C27 | 125.3 (6) |
C28—N23—C24 | 121.1 (6) | N24—C29—C30 | 108.4 (6) |
C28—N23—Cu2 | 119.8 (5) | N24—C29—H29 | 125.8 |
C24—N23—Cu2 | 119.0 (4) | C30—C29—H29 | 125.8 |
C29—N24—C28 | 134.5 (6) | C29—C30—C31 | 105.2 (6) |
C29—N24—N25 | 109.0 (6) | C29—C30—H30 | 127.4 |
C28—N24—N25 | 116.4 (5) | C31—C30—H30 | 127.4 |
C31—N25—N24 | 106.2 (5) | N25—C31—C30 | 111.1 (7) |
C31—N25—Cu2 | 140.8 (5) | N25—C31—H31 | 124.4 |
N24—N25—Cu2 | 112.9 (4) | C30—C31—H31 | 124.4 |
N1—C1—C2 | 111.2 (6) | O4—Cl1—O3 | 108.8 (5) |
N1—C1—H1 | 124.4 | O4—Cl1—O1 | 108.6 (4) |
C2—C1—H1 | 124.4 | O3—Cl1—O1 | 110.2 (4) |
C3—C2—C1 | 105.9 (6) | O4—Cl1—O2 | 107.7 (4) |
C3—C2—H2 | 127.1 | O3—Cl1—O2 | 109.7 (4) |
C1—C2—H2 | 127.1 | O1—Cl1—O2 | 111.8 (4) |
N2—C3—C2 | 107.2 (6) | Cl1—O4—Cu2 | 138.2 (3) |
N2—C3—H3 | 126.4 | O7—Cl2—O5 | 109.1 (5) |
C2—C3—H3 | 126.4 | O7—Cl2—O6 | 110.0 (4) |
N3—C4—C5 | 121.1 (6) | O5—Cl2—O6 | 107.7 (4) |
N3—C4—N2 | 112.6 (6) | O7—Cl2—O8 | 108.8 (4) |
C5—C4—N2 | 126.3 (6) | O5—Cl2—O8 | 109.4 (4) |
C6—C5—C4 | 116.8 (6) | O6—Cl2—O8 | 111.8 (3) |
C6—C5—H5 | 121.6 | Cl2—O5—Cu1 | 136.7 (3) |
N3—Cu1—N1—C1 | −179.3 (9) | C4—N3—C8—N4 | 177.2 (6) |
N5—Cu1—N1—C1 | −175.8 (7) | Cu1—N3—C8—N4 | 2.6 (7) |
N3—Cu1—N1—N2 | −1.0 (4) | C6—C7—C8—N3 | 2.4 (10) |
N5—Cu1—N1—N2 | 2.6 (9) | C6—C7—C8—N4 | −178.5 (6) |
C1—N1—N2—C3 | 0.8 (8) | N5—N4—C8—N3 | −2.6 (8) |
Cu1—N1—N2—C3 | −178.2 (5) | C9—N4—C8—N3 | −179.9 (7) |
C1—N1—N2—C4 | 178.6 (6) | N5—N4—C8—C7 | 178.2 (6) |
Cu1—N1—N2—C4 | −0.3 (7) | C9—N4—C8—C7 | 0.9 (11) |
N1—Cu1—N3—C4 | 2.3 (5) | N5—N4—C9—C10 | −0.9 (8) |
N5—Cu1—N3—C4 | −176.3 (5) | C8—N4—C9—C10 | 176.6 (6) |
N1—Cu1—N3—C8 | 177.0 (5) | N4—C9—C10—C11 | 1.3 (8) |
N5—Cu1—N3—C8 | −1.6 (5) | N4—N5—C11—C10 | 0.8 (8) |
C9—N4—N5—C11 | 0.0 (8) | Cu1—N5—C11—C10 | −177.9 (6) |
C8—N4—N5—C11 | −177.7 (6) | C9—C10—C11—N5 | −1.4 (8) |
C9—N4—N5—Cu1 | 179.2 (5) | N22—N21—C21—C22 | 1.1 (8) |
C8—N4—N5—Cu1 | 1.4 (7) | Cu2—N21—C21—C22 | −173.0 (6) |
N3—Cu1—N5—C11 | 178.7 (8) | N21—C21—C22—C23 | −1.4 (8) |
N1—Cu1—N5—C11 | 175.1 (7) | N21—N22—C23—C22 | −0.4 (8) |
N3—Cu1—N5—N4 | 0.0 (4) | C24—N22—C23—C22 | 178.9 (7) |
N1—Cu1—N5—N4 | −3.5 (9) | C21—C22—C23—N22 | 1.0 (8) |
N23—Cu2—N21—C21 | 177.2 (8) | C28—N23—C24—C25 | −4.1 (10) |
N25—Cu2—N21—C21 | 177.2 (7) | Cu2—N23—C24—C25 | 179.6 (5) |
N23—Cu2—N21—N22 | 3.4 (4) | C28—N23—C24—N22 | 178.0 (6) |
N25—Cu2—N21—N22 | 3.3 (8) | Cu2—N23—C24—N22 | 1.6 (7) |
C21—N21—N22—C23 | −0.4 (7) | C23—N22—C24—N23 | −177.7 (6) |
Cu2—N21—N22—C23 | 175.7 (4) | N21—N22—C24—N23 | 1.5 (8) |
C21—N21—N22—C24 | −179.8 (6) | C23—N22—C24—C25 | 4.5 (12) |
Cu2—N21—N22—C24 | −3.7 (7) | N21—N22—C24—C25 | −176.3 (7) |
N25—Cu2—N23—C28 | 0.7 (5) | N23—C24—C25—C26 | 3.2 (10) |
N21—Cu2—N23—C28 | −179.2 (5) | N22—C24—C25—C26 | −179.3 (7) |
N25—Cu2—N23—C24 | 177.1 (5) | C24—C25—C26—C27 | −1.8 (11) |
N21—Cu2—N23—C24 | −2.9 (5) | C25—C26—C27—C28 | 1.2 (10) |
C29—N24—N25—C31 | 0.0 (7) | C24—N23—C28—N24 | −177.3 (6) |
C28—N24—N25—C31 | −177.8 (5) | Cu2—N23—C28—N24 | −1.0 (7) |
C29—N24—N25—Cu2 | 177.7 (4) | C24—N23—C28—C27 | 3.6 (10) |
C28—N24—N25—Cu2 | −0.1 (7) | Cu2—N23—C28—C27 | 179.9 (5) |
N23—Cu2—N25—C31 | 176.2 (8) | C29—N24—C28—N23 | −176.4 (7) |
N21—Cu2—N25—C31 | 176.2 (6) | N25—N24—C28—N23 | 0.6 (8) |
N23—Cu2—N25—N24 | −0.3 (4) | C29—N24—C28—C27 | 2.7 (11) |
N21—Cu2—N25—N24 | −0.3 (9) | N25—N24—C28—C27 | 179.7 (6) |
N2—N1—C1—C2 | 0.2 (7) | C26—C27—C28—N23 | −2.1 (10) |
Cu1—N1—C1—C2 | 178.7 (6) | C26—C27—C28—N24 | 178.9 (6) |
N1—C1—C2—C3 | −1.1 (8) | C28—N24—C29—C30 | 176.7 (7) |
N1—N2—C3—C2 | −1.5 (9) | N25—N24—C29—C30 | −0.5 (7) |
C4—N2—C3—C2 | −178.9 (7) | N24—C29—C30—C31 | 0.8 (8) |
C1—C2—C3—N2 | 1.5 (8) | N24—N25—C31—C30 | 0.5 (7) |
C8—N3—C4—C5 | 3.3 (10) | Cu2—N25—C31—C30 | −176.1 (6) |
Cu1—N3—C4—C5 | 177.9 (5) | C29—C30—C31—N25 | −0.8 (8) |
C8—N3—C4—N2 | −177.7 (6) | O3—Cl1—O4—Cu2 | −112.2 (6) |
Cu1—N3—C4—N2 | −3.1 (7) | O1—Cl1—O4—Cu2 | 7.8 (8) |
C3—N2—C4—N3 | 179.5 (7) | O2—Cl1—O4—Cu2 | 129.0 (6) |
N1—N2—C4—N3 | 2.2 (8) | N23—Cu2—O4—Cl1 | 76.3 (7) |
C3—N2—C4—C5 | −1.6 (12) | N25—Cu2—O4—Cl1 | −1.2 (7) |
N1—N2—C4—C5 | −178.9 (6) | N21—Cu2—O4—Cl1 | 156.3 (7) |
N3—C4—C5—C6 | −2.0 (10) | O7—Cl2—O5—Cu1 | 95.0 (8) |
N2—C4—C5—C6 | 179.1 (7) | O6—Cl2—O5—Cu1 | −145.6 (6) |
C4—C5—C6—C7 | 1.0 (11) | O8—Cl2—O5—Cu1 | −23.9 (8) |
C5—C6—C7—C8 | −1.2 (11) | N3—Cu1—O5—Cl2 | −53.7 (7) |
C4—N3—C8—C7 | −3.6 (10) | N1—Cu1—O5—Cl2 | −132.7 (8) |
Cu1—N3—C8—C7 | −178.1 (5) | N5—Cu1—O5—Cl2 | 25.0 (8) |
[CuBr2(C11H9N5)] | F(000) = 836 |
Mr = 434.58 | 10000 integrated reflections used for | measurement.
Monoclinic, P21/c | Dx = 2.186 Mg m−3 |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 11.0056 (2) Å | Cell parameters from 10000 reflections |
b = 7.8940 (1) Å | θ = 1.8–32.9° |
c = 15.2370 (2) Å | µ = 7.70 mm−1 |
β = 93.856 (1)° | T = 120 K |
V = 1320.77 (3) Å3 | Tube, green |
Z = 4 | 0.30 × 0.27 × 0.25 mm |
Bruker SMART 6K CCD area-detector diffractometer | 4675 independent reflections |
Radiation source: fine-focus sealed tube | 3978 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 8 pixels mm-1 | θmax = 32.5°, θmin = 1.9° |
ω and ϕ scans | h = −16→16 |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | k = −11→11 |
Tmin = 0.206, Tmax = 0.249 | l = −23→23 |
24033 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.055 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0255P)2 + 0.8921P] where P = (Fo2 + 2Fc2)/3 |
4675 reflections | (Δ/σ)max = 0.002 |
172 parameters | Δρmax = 0.61 e Å−3 |
0 restraints | Δρmin = −0.77 e Å−3 |
[CuBr2(C11H9N5)] | V = 1320.77 (3) Å3 |
Mr = 434.58 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.0056 (2) Å | µ = 7.70 mm−1 |
b = 7.8940 (1) Å | T = 120 K |
c = 15.2370 (2) Å | 0.30 × 0.27 × 0.25 mm |
β = 93.856 (1)° |
Bruker SMART 6K CCD area-detector diffractometer | 4675 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 3978 reflections with I > 2σ(I) |
Tmin = 0.206, Tmax = 0.249 | Rint = 0.034 |
24033 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 0 restraints |
wR(F2) = 0.055 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.61 e Å−3 |
4675 reflections | Δρmin = −0.77 e Å−3 |
172 parameters |
Experimental. The absorbtion correction was done with SADABS, mu*r. The radius was calculated from the estimation of the crystal being a sphere (r = 0.16 mm). The mu coefficient is calculated from the program FPrime (Program FPrime for Windows 1.0 for calculating real and anomalous X-ray dispersion coefficients, R·B. Von Dreele, 1994). The data collection nominally covered over a full sphere of reciprocal space, by a combination of 3 sets of ω scans and 1 of a ϕ scan. Each scan was exposured for 3 s covering 0.3° in ω or ϕ. No sign of crystal decay was observed. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.728141 (18) | 0.90095 (3) | 0.113100 (14) | 0.01129 (5) | |
Br1 | 0.837301 (15) | 0.61243 (2) | 0.115767 (11) | 0.01398 (4) | |
Br2 | 0.650512 (16) | 0.94056 (2) | 0.254749 (11) | 0.01595 (5) | |
N1 | 0.87207 (13) | 1.0590 (2) | 0.13190 (9) | 0.0133 (3) | |
N2 | 0.90523 (13) | 1.13552 (19) | 0.05633 (9) | 0.0124 (3) | |
N3 | 0.74678 (12) | 0.98764 (19) | −0.00757 (9) | 0.0110 (3) | |
N4 | 0.57702 (13) | 0.83521 (19) | −0.04324 (9) | 0.0119 (3) | |
N5 | 0.57788 (13) | 0.80694 (19) | 0.04589 (9) | 0.0127 (3) | |
C1 | 0.95340 (16) | 1.1111 (2) | 0.19455 (12) | 0.0153 (3) | |
H1 | 0.9540 | 1.0790 | 0.2533 | 0.018* | |
C2 | 1.03860 (16) | 1.2215 (2) | 0.15992 (12) | 0.0159 (3) | |
H2 | 1.1042 | 1.2742 | 0.1904 | 0.019* | |
C3 | 1.00504 (15) | 1.2353 (2) | 0.07225 (12) | 0.0144 (3) | |
H3 | 1.0431 | 1.3004 | 0.0313 | 0.017* | |
C4 | 0.83384 (15) | 1.0993 (2) | −0.02140 (11) | 0.0117 (3) | |
C5 | 0.84967 (16) | 1.1683 (2) | −0.10355 (11) | 0.0146 (3) | |
H5 | 0.9102 | 1.2476 | −0.1123 | 0.018* | |
C6 | 0.76983 (16) | 1.1120 (2) | −0.17227 (12) | 0.0163 (3) | |
H6 | 0.7787 | 1.1526 | −0.2288 | 0.020* | |
C7 | 0.67706 (16) | 0.9967 (2) | −0.15862 (11) | 0.0145 (3) | |
H7 | 0.6240 | 0.9591 | −0.2046 | 0.017* | |
C8 | 0.66796 (15) | 0.9409 (2) | −0.07314 (11) | 0.0120 (3) | |
C9 | 0.48000 (15) | 0.7573 (2) | −0.08654 (12) | 0.0152 (3) | |
H9 | 0.4601 | 0.7593 | −0.1468 | 0.018* | |
C10 | 0.41726 (15) | 0.6752 (2) | −0.02408 (12) | 0.0159 (3) | |
H10 | 0.3469 | 0.6106 | −0.0334 | 0.019* | |
C11 | 0.48184 (15) | 0.7096 (2) | 0.05683 (12) | 0.0150 (3) | |
H11 | 0.4600 | 0.6692 | 0.1109 | 0.018* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.00993 (9) | 0.01347 (10) | 0.01054 (9) | −0.00080 (7) | 0.00120 (7) | 0.00041 (7) |
Br1 | 0.01222 (8) | 0.01348 (9) | 0.01613 (8) | 0.00164 (6) | 0.00024 (6) | 0.00060 (6) |
Br2 | 0.01605 (8) | 0.01973 (9) | 0.01256 (8) | 0.00186 (6) | 0.00462 (6) | 0.00079 (6) |
N1 | 0.0134 (6) | 0.0151 (7) | 0.0114 (6) | −0.0011 (5) | 0.0019 (5) | −0.0002 (5) |
N2 | 0.0113 (6) | 0.0141 (7) | 0.0118 (6) | −0.0005 (5) | 0.0016 (5) | 0.0005 (5) |
N3 | 0.0104 (6) | 0.0113 (7) | 0.0114 (6) | 0.0005 (5) | 0.0009 (5) | −0.0010 (5) |
N4 | 0.0099 (6) | 0.0132 (7) | 0.0127 (6) | 0.0002 (5) | 0.0004 (5) | −0.0006 (5) |
N5 | 0.0117 (6) | 0.0144 (7) | 0.0122 (6) | 0.0010 (5) | 0.0023 (5) | 0.0005 (5) |
C1 | 0.0147 (7) | 0.0174 (8) | 0.0136 (7) | −0.0005 (6) | 0.0000 (6) | −0.0022 (6) |
C2 | 0.0132 (7) | 0.0154 (8) | 0.0189 (8) | 0.0009 (6) | −0.0012 (6) | −0.0051 (7) |
C3 | 0.0111 (7) | 0.0125 (8) | 0.0199 (8) | 0.0002 (6) | 0.0023 (6) | −0.0021 (6) |
C4 | 0.0101 (7) | 0.0121 (8) | 0.0132 (7) | 0.0018 (6) | 0.0015 (5) | −0.0013 (6) |
C5 | 0.0144 (7) | 0.0152 (8) | 0.0145 (7) | −0.0006 (6) | 0.0032 (6) | 0.0018 (6) |
C6 | 0.0178 (8) | 0.0187 (9) | 0.0127 (8) | 0.0021 (7) | 0.0028 (6) | 0.0025 (6) |
C7 | 0.0141 (7) | 0.0171 (8) | 0.0121 (7) | 0.0017 (6) | −0.0001 (6) | −0.0010 (6) |
C8 | 0.0105 (7) | 0.0115 (8) | 0.0142 (7) | 0.0014 (6) | 0.0017 (5) | −0.0016 (6) |
C9 | 0.0112 (7) | 0.0149 (8) | 0.0189 (8) | 0.0018 (6) | −0.0017 (6) | −0.0041 (6) |
C10 | 0.0110 (7) | 0.0127 (8) | 0.0239 (9) | 0.0004 (6) | 0.0007 (6) | −0.0033 (7) |
C11 | 0.0123 (7) | 0.0125 (8) | 0.0204 (8) | 0.0006 (6) | 0.0036 (6) | 0.0000 (6) |
Cu1—Br1 | 2.5740 (3) | C1—H1 | 0.9300 |
Cu1—Br2 | 2.3946 (3) | C2—C3 | 1.366 (2) |
Cu1—N1 | 2.0218 (15) | C2—H2 | 0.9300 |
Cu1—N3 | 1.9854 (14) | C3—H3 | 0.9300 |
Cu1—N5 | 2.0264 (15) | C4—C5 | 1.387 (2) |
N1—C1 | 1.329 (2) | C5—C6 | 1.394 (3) |
N1—N2 | 1.371 (2) | C5—H5 | 0.9300 |
N2—C3 | 1.360 (2) | C6—C7 | 1.394 (3) |
N2—C4 | 1.406 (2) | C6—H6 | 0.9300 |
N3—C4 | 1.329 (2) | C7—C8 | 1.385 (2) |
N3—C8 | 1.331 (2) | C7—H7 | 0.9300 |
N4—C9 | 1.363 (2) | C9—C10 | 1.375 (3) |
N4—N5 | 1.376 (2) | C9—H9 | 0.9300 |
N4—C8 | 1.402 (2) | C10—C11 | 1.407 (3) |
N5—C11 | 1.327 (2) | C10—H10 | 0.9300 |
C1—C2 | 1.408 (3) | C11—H11 | 0.9300 |
N3—Cu1—N1 | 77.86 (6) | C3—C2—H2 | 127.1 |
N3—Cu1—N5 | 77.87 (6) | C1—C2—H2 | 127.1 |
N1—Cu1—N5 | 154.50 (6) | N2—C3—C2 | 106.88 (16) |
N3—Cu1—Br2 | 148.76 (4) | N2—C3—H3 | 126.6 |
N1—Cu1—Br2 | 96.62 (4) | C2—C3—H3 | 126.6 |
N5—Cu1—Br2 | 100.07 (4) | N3—C4—C5 | 122.62 (16) |
N3—Cu1—Br1 | 104.03 (4) | N3—C4—N2 | 111.67 (14) |
N1—Cu1—Br1 | 100.58 (4) | C5—C4—N2 | 125.71 (16) |
N5—Cu1—Br1 | 92.76 (4) | C4—C5—C6 | 116.24 (16) |
Br2—Cu1—Br1 | 107.203 (10) | C4—C5—H5 | 121.9 |
C1—N1—N2 | 105.22 (14) | C6—C5—H5 | 121.9 |
C1—N1—Cu1 | 140.90 (13) | C7—C6—C5 | 121.81 (16) |
N2—N1—Cu1 | 113.77 (11) | C7—C6—H6 | 119.1 |
C3—N2—N1 | 111.26 (14) | C5—C6—H6 | 119.1 |
C3—N2—C4 | 131.82 (15) | C8—C7—C6 | 116.62 (16) |
N1—N2—C4 | 116.92 (14) | C8—C7—H7 | 121.7 |
C4—N3—C8 | 120.36 (15) | C6—C7—H7 | 121.7 |
C4—N3—Cu1 | 119.73 (11) | N3—C8—C7 | 122.23 (16) |
C8—N3—Cu1 | 119.81 (12) | N3—C8—N4 | 111.38 (14) |
C9—N4—N5 | 110.96 (14) | C7—C8—N4 | 126.37 (16) |
C9—N4—C8 | 131.61 (15) | N4—C9—C10 | 106.92 (16) |
N5—N4—C8 | 117.35 (14) | N4—C9—H9 | 126.5 |
C11—N5—N4 | 105.39 (14) | C10—C9—H9 | 126.5 |
C11—N5—Cu1 | 141.15 (12) | C9—C10—C11 | 105.55 (15) |
N4—N5—Cu1 | 113.00 (10) | C9—C10—H10 | 127.2 |
N1—C1—C2 | 110.82 (16) | C11—C10—H10 | 127.2 |
N1—C1—H1 | 124.6 | N5—C11—C10 | 111.17 (16) |
C2—C1—H1 | 124.6 | N5—C11—H11 | 124.4 |
C3—C2—C1 | 105.81 (16) | C10—C11—H11 | 124.4 |
N3—Cu1—N1—C1 | −176.2 (2) | Cu1—N1—C1—C2 | 175.94 (15) |
N5—Cu1—N1—C1 | 165.68 (17) | N1—C1—C2—C3 | 0.2 (2) |
Br2—Cu1—N1—C1 | 35.0 (2) | N1—N2—C3—C2 | 0.86 (19) |
Br1—Cu1—N1—C1 | −74.0 (2) | C4—N2—C3—C2 | −179.01 (17) |
N3—Cu1—N1—N2 | −0.80 (11) | C1—C2—C3—N2 | −0.65 (19) |
N5—Cu1—N1—N2 | −18.9 (2) | C8—N3—C4—C5 | −2.0 (3) |
Br2—Cu1—N1—N2 | −149.61 (11) | Cu1—N3—C4—C5 | −178.21 (13) |
Br1—Cu1—N1—N2 | 101.45 (11) | C8—N3—C4—N2 | 178.29 (15) |
C1—N1—N2—C3 | −0.71 (19) | Cu1—N3—C4—N2 | 2.04 (19) |
Cu1—N1—N2—C3 | −177.72 (11) | C3—N2—C4—N3 | 177.16 (17) |
C1—N1—N2—C4 | 179.19 (15) | N1—N2—C4—N3 | −2.7 (2) |
Cu1—N1—N2—C4 | 2.17 (18) | C3—N2—C4—C5 | −2.6 (3) |
Br2—Cu1—N3—C4 | 81.95 (15) | N1—N2—C4—C5 | 177.56 (16) |
Br1—Cu1—N3—C4 | −98.78 (12) | N3—C4—C5—C6 | −1.0 (3) |
Br2—Cu1—N3—C8 | −94.32 (14) | N2—C4—C5—C6 | 178.75 (16) |
Br1—Cu1—N3—C8 | 84.96 (13) | C4—C5—C6—C7 | 1.8 (3) |
N1—Cu1—N3—C4 | −0.74 (12) | C5—C6—C7—C8 | 0.1 (3) |
N5—Cu1—N3—C4 | 171.40 (14) | C4—N3—C8—C7 | 4.2 (3) |
N1—Cu1—N3—C8 | −177.00 (14) | Cu1—N3—C8—C7 | −179.61 (13) |
N5—Cu1—N3—C8 | −4.87 (13) | C4—N3—C8—N4 | −174.38 (14) |
C9—N4—N5—C11 | 0.78 (19) | Cu1—N3—C8—N4 | 1.86 (19) |
C8—N4—N5—C11 | 177.90 (15) | C6—C7—C8—N3 | −3.2 (3) |
C9—N4—N5—Cu1 | 174.68 (11) | C6—C7—C8—N4 | 175.11 (16) |
C8—N4—N5—Cu1 | −8.20 (18) | C9—N4—C8—N3 | −179.27 (17) |
N3—Cu1—N5—C11 | 177.3 (2) | N5—N4—C8—N3 | 4.3 (2) |
N1—Cu1—N5—C11 | −164.57 (17) | C9—N4—C8—C7 | 2.3 (3) |
Br2—Cu1—N5—C11 | −34.4 (2) | N5—N4—C8—C7 | −174.13 (16) |
Br1—Cu1—N5—C11 | 73.57 (19) | N5—N4—C9—C10 | −0.61 (19) |
N3—Cu1—N5—N4 | 6.73 (11) | C8—N4—C9—C10 | −177.19 (17) |
N1—Cu1—N5—N4 | 24.8 (2) | N4—C9—C10—C11 | 0.20 (19) |
Br2—Cu1—N5—N4 | 154.95 (10) | N4—N5—C11—C10 | −0.64 (19) |
Br1—Cu1—N5—N4 | −97.03 (11) | Cu1—N5—C11—C10 | −171.68 (14) |
N2—N1—C1—C2 | 0.3 (2) | C9—C10—C11—N5 | 0.3 (2) |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | [Cu2Br2(ClO4)2(C11H9N5)2] | [CuBr2(C11H9N5)] |
Mr | 908.26 | 434.58 |
Crystal system, space group | Monoclinic, P21 | Monoclinic, P21/c |
Temperature (K) | 120 | 120 |
a, b, c (Å) | 7.8033 (2), 15.1425 (5), 12.7301 (3) | 11.0056 (2), 7.8940 (1), 15.2370 (2) |
β (°) | 106.305 (2) | 93.856 (1) |
V (Å3) | 1443.71 (7) | 1320.77 (3) |
Z | 2 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 4.49 | 7.70 |
Crystal size (mm) | 0.13 × 0.12 × 0.10 | 0.30 × 0.27 × 0.25 |
Data collection | ||
Diffractometer | Bruker SMART 6K CCD area-detector diffractometer | Bruker SMART 6K CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.604, 0.662 | 0.206, 0.249 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 56664, 9732, 6041 | 24033, 4675, 3978 |
Rint | 0.092 | 0.034 |
(sin θ/λ)max (Å−1) | 0.756 | 0.757 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.128, 1.03 | 0.023, 0.055, 1.03 |
No. of reflections | 9732 | 4675 |
No. of parameters | 416 | 172 |
No. of restraints | 1 | 0 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.66, −1.13 | 0.61, −0.77 |
Absolute structure | Flack H D (1983), Acta Cryst. A39, 876-881 | ? |
Absolute structure parameter | 0.000 (12) | ? |
Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.
Br1—Cu1 | 2.3436 (10) | Cu1—N5 | 2.016 (6) |
Br1—Cu2 | 2.9945 (11) | Cu1—O5 | 2.466 (6) |
Br2—Cu2 | 2.3578 (10) | Cu2—N21 | 2.016 (6) |
Br2—Cu1 | 3.0249 (11) | Cu2—N23 | 1.962 (6) |
Cu1—N3 | 1.977 (5) | Cu2—N25 | 2.013 (5) |
Cu1—N1 | 1.998 (6) | Cu2—O4 | 2.564 (6) |
Cu1—Br1—Cu2 | 86.84 (3) | Br1—Cu1—Br2 | 93.39 (4) |
Cu2—Br2—Cu1 | 85.88 (3) | N21—Cu2—Br2 | 100.95 (15) |
N1—Cu1—Br1 | 102.00 (17) | N23—Cu2—Br2 | 176.42 (17) |
N3—Cu1—Br1 | 178.59 (16) | N25—Cu2—Br2 | 101.72 (18) |
N5—Cu1—Br1 | 100.43 (15) | N21—Cu2—Br1 | 94.87 (16) |
N1—Cu1—Br2 | 94.25 (17) | N23—Cu2—Br1 | 89.69 (16) |
N3—Cu1—Br2 | 87.83 (16) | N25—Cu2—Br1 | 85.04 (16) |
N5—Cu1—Br2 | 86.26 (16) | Br2—Cu2—Br1 | 93.88 (3) |
Cu1—Br1 | 2.5740 (3) | N2—C4 | 1.406 (2) |
Cu1—Br2 | 2.3946 (3) | N3—C4 | 1.329 (2) |
Cu1—N1 | 2.0218 (15) | N3—C8 | 1.331 (2) |
Cu1—N3 | 1.9854 (14) | N4—C9 | 1.363 (2) |
Cu1—N5 | 2.0264 (15) | N4—N5 | 1.376 (2) |
N1—C1 | 1.329 (2) | N4—C8 | 1.402 (2) |
N1—N2 | 1.371 (2) | N5—C11 | 1.327 (2) |
N2—C3 | 1.360 (2) | ||
N3—Cu1—N1 | 77.86 (6) | N5—Cu1—Br2 | 100.07 (4) |
N3—Cu1—N5 | 77.87 (6) | N3—Cu1—Br1 | 104.03 (4) |
N1—Cu1—N5 | 154.50 (6) | N1—Cu1—Br1 | 100.58 (4) |
N3—Cu1—Br2 | 148.76 (4) | N5—Cu1—Br1 | 92.76 (4) |
N1—Cu1—Br2 | 96.62 (4) | Br2—Cu1—Br1 | 107.203 (10) |
References
Abel, E. W., Hylandas, K. A., Olsen, M. D., Orrell, K. G., Osborne, A. G., Sik, V. & Ward, G. N. (1994). J. Chem. Soc. Dalton Trans. pp. 1079–1090. CrossRef Web of Science Google Scholar
Bessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1992). J. Chem. Soc. Dalton Trans. pp. 3223–3228. CSD CrossRef Web of Science Google Scholar
Bruker (1998). SMART-NT, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carranza, J., Brennan, C., Sletten, J., Clement-Juan, J. M., Lloret, F. & Julve, M. (2003). Inorg. Chem. 42, 8716–8727. Web of Science CSD CrossRef PubMed CAS Google Scholar
Downard, A. J., Honey, G. E. & Steel, P. J. (1991). Inorg. Chem. pp. 3733–3737. CrossRef Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hoffmann, S. K., Towle, D. K., Hatfield, W. E., Wieghardt, K., Chaudhuri, P. & Weiss, J. (1984). Mol. Cryst. Liq. Cryst. 107, 161–170. CrossRef CAS Web of Science Google Scholar
Holland, J. M., McAllister, J. A., Kilner, C. A., Thornton-Pett, M., Bridgeman, A. J. & Halcrow, M. A. (2002). J. Chem. Soc. Dalton Trans. pp. 548–554. Web of Science CSD CrossRef Google Scholar
Jameson, D. L., Blaho, J. K., Kruger, K. T. & Goldsby, K. A. (1989). Inorg. Chem. 28, 4312–4314. CrossRef CAS Web of Science Google Scholar
Jameson, D. L. & Goldsby, K. A. (1990). J. Org. Chem. 55, 4992–4994. CrossRef CAS Web of Science Google Scholar
Marsh, W. E., Patel, K. C., Hatfield, W. E. & Hodgson, D. L. (1983). Inorg. Chem. 22, 511–515. CSD CrossRef CAS Web of Science Google Scholar
Money, V. A., Elhaik, J., Evans, I. R., Halcrow, M. A. & Howard, J. A. K. (2004). Dalton Trans. pp. 65–69. Web of Science CSD CrossRef Google Scholar
Ragunathan, K. G. & Bharadwaj, P. K. (1992). J. Chem. Soc. Dalton Trans. pp. 2417–2422. CSD CrossRef Web of Science Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Solanki, N. K., Mclnnes, E. J. L., Mabbs, F. E., Radojevic, S., McPartlin, M., Feeder, N., Davies, J. E. & Halcrow, M. A. (1998). Angew. Chem. Int. Ed. 37, 2221–2223. Web of Science CrossRef CAS Google Scholar
Xu, Z., White, S., Thompson, L. K., Miller, D. O., Ohba, M., Okawa, H., Wilson, C. & Howard, J. A. K. (2000). J. Chem. Soc. Dalton Trans. pp. 1751–1757. Web of Science CSD CrossRef Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
After the discovery of planar tridentate N-atom donor ligands by Jameson & Goldsby (1990), much work has been carried out in the past decade with various transition metals and the ligand 2,6-bis(pyrazolyl)pyridine (bppy; see first scheme below), because of its potential in bonding to metal atoms (Jameson et al., 1989; Downard et al., 1991; Abel et al., 1994; Solanki et al., 1998). Examples include iron(II) complexes of bppy derivatives, which have been shown to exhibit thermal and light-induced spin-crossover transitions (Holland et al., 2002; Money et al., 2004). Previous work carried out on related copper(II) complexes has shown that they exhibit an axially compressed octahedral geometry (Solanki et al., 1998). In this context, we have synthesized two new copper(II) complexes and carried out a structural study.
The bromine-bridged dicopper complex [Cu2(bppy)2Br2](ClO4)2 (I), and the mono-copper complex [Cu(bppy)Br2], (II), were prepared via essentially the same route, except that pyrazole was added to the reaction mixture that yielded (II).
Compound (I) contains two Cu atoms, each ligated in a square-planar geometry by a tridentate bppy ligand and one Br atom. Pairs of these square-planar copper complexes form dimers bridged by the two bromine ions. In addition, these dinuclear species are stabilized by two ligating ClO4− anions, with the result that both copper centres exhibit a pseudo-octahedral geometry (Carranza et al., 2003). Thus, both distorted octahedra contain a bppy ligand together with one of the bridging Br atoms in the equatorial plane, and are capped by a ClO4− anion and the remaining bridging Br atom. The two halves of the molecule are related by a non-crystallographic inversion centre situated between the copper centres (Fig. 2).
The equatorial CuN3Br planes both contain three Cu—N bonds of approximately 2.00 Å and longer Cu—Br bonds of 2.3436 (10) and 2.3578 (10) Å (Table 1). Bridging halides are quite common and bridging pairs of Br atoms have been reported many times in the literature, with various bond lengths (Marsh et al., 1983; Hoffmann et al., 1984; Xu et al., 2000). In the case of (I), however, the axial and equatorial Cu—Br bonds are highly asymmetric, the axial bonds being longer at approximately 3.00 Å.
Each Cu atom also forms a bond to the nearest perchlorate O atom [Cu1—O5 = 2.466 (6) Å and Cu2—O4 = 2.564 (6) Å], resulting in a distorted elongated octahedral geometry around each metal atom. As in many perchlorate compounds, the ClO4− ions have larger displacement parameters than the rest of the molecule, indicating a tendency to disorder (Raganathan & Bharadwaj, 1992). However, the coordination to the copper centres has reduced this motion, making it possible to refine anistropic displacement parameters.
In contrast to (I), the mononuclear compound (II) consists of a single Cu atom ligated by the bppy ligand and two Br atoms (Fig. 3). The five-cordinate geometry is best described with respect to (I) as pseudo-square-pyramidal, with the `equatorial' Br atom 1.33 Å (31.24°) out of the plane of the bppy ligand. This also leads to a change in the position of the axial Br atom, which in (I) made angles of 87.83 (16) and 89.69 (16)° with the bppy ligand plane, and in (II) makes an angle of 104.03 (4)°. There is also an increase in the Br—Cu—Br angle [93.39 (4) and 93.88 (3)° in (I), and 107.203 (10)° in (II)], due to the reduction in coordination number, and a reduction in the asymmetry that is seen in the Cu—Br distances for (I) (Table 2).
Another consequence of the lower coordination number is that the central Cu atom lies slightly out of the plane of the bppy ligand. Thus while the internal parameters of the 2,6-bis(pyrazolyl)pyridine ligand ring system are in accordance with anticipated values (Bessel et al., 1992), the separate aromatic rings of the bppy ligand are not coplanar, and the angles between the planes of the pyridine ring and the pyrazol rings are 2.8 (2)° (for N1/C1/C2/C3/N2) and 4.3 (2)° (for N4/C9/C10/C11/N5).