metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

The copper(II) complexes di-μ-bromo-bis­{[2,6-bis­­(pyrazol-1-yl)­pyridine]­per­chlorato­copper(II)} and [2,6-bis­(pyra­zol-1-yl)­pyridine]­di­bromo­copper(II)

aDepartment of Chemistry, North-Eastern Hill University, Shillong 793 022, India, bDepartment of Chemistry, University of Aarhus, DK-8000 Aarhus C, Denmark, and cDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: j.a.k.howard@durham.ac.uk

(Received 29 September 2004; accepted 19 October 2004; online 11 November 2004)

The two title compounds, di-μ-bromo-bis{[2,6-bis­(pyrazol-1-yl-κN2)­pyridine-κN](perchlorato-κO)copper(II)}, [Cu2Br2(ClO4)2(C11H9N5)2], (I), and [2,6-bis­(pyrazol-1-yl)­pyridine]­dibromo­copper(II), [CuBr2(C11H9N5)], (II), were synthesized by only slight modifications of the same reaction; compound (II) was formed by adding one molar equivalent of pyrazole (C3N2H4) to the reaction mixture of (I). Compound (I) is a bromo-bridged dinuclear copper(II) compound stabilized by weak interactions with the perchlorate anions (ClO4), while (II) is a related mononuclear species, which has a distorted square-pyramidal geometry.

Comment

After the discovery of planar tridentate N-atom donor ligands by Jameson & Goldsby (1990[Jameson, D. L. & Goldsby, K. A. (1990). J. Org. Chem. 55, 4992-4994.]), much work has been carried out in the past decade with various transition metals and the 2,6-bis­(pyrazolyl)­pyridine ligand (bppy; see first scheme[link] below), because of its potential in bonding to metal atoms (Jameson et al., 1989[Jameson, D. L., Blaho, J. K., Kruger, K. T. & Goldsby, K. A. (1989). Inorg. Chem. 28, 4312-4314.]; Downard et al., 1991[Downard, A. J., Honey, G. E. & Steel, P. J. (1991). Inorg. Chem. pp. 3733-3737.]; Abel et al., 1994[Abel, E. W., Hyl­andas, K. A., Olsen, M. D., Orrell, K. G., Osborne, A. G., Sik, V. & Ward, G. N. (1994). J. Chem. Soc. Dalton Trans. pp. 1079-1090.]; Solanki et al., 1998[Solanki, N. K., Mclnnes, E. J. L., Mabbs, F. E., Radojevic, S., McPartlin, M., Feeder, N., Davies, J. E. & Halcrow, M. A. (1998). Angew. Chem. Int. Ed. 37, 2221-2223.]). Examples include iron(II) complexes of bppy derivatives, which have been shown to exhibit thermal

[Scheme 2]
and light-induced spin-crossover transitions (Holland et al., 2002[Holland, J. M., McAllister, J. A., Kilner, C. A., Thornton-Pett, M., Bridgeman, A. J. & Halcrow, M. A. (2002). J. Chem. Soc. Dalton Trans. pp. 548-554.]; Money et al., 2004[Money, V. A., Elhaik, J., Evans, I. R., Halcrow, M. A. & Howard, J. A. K. (2004). Dalton Trans. pp. 65-69.]). Previous work carried out on related copper(II) complexes has shown that they exhibit an axially compressed octahedral geometry (Solanki et al., 1998[Solanki, N. K., Mclnnes, E. J. L., Mabbs, F. E., Radojevic, S., McPartlin, M., Feeder, N., Davies, J. E. & Halcrow, M. A. (1998). Angew. Chem. Int. Ed. 37, 2221-2223.]). In this context, we have synthesized two new copper(II) complexes and have carried out a structural study.

The bromine-bridged dicopper complex [Cu2Br2(ClO4)2(bppy)2] (I[link]), and the monocopper complex [CuBr2(bppy)], (II[link]), were prepared via essentially the same route, except that pyrazole was added to the reaction mixture that yielded (II[link]).

[Scheme 1]

Compound (I[link]) contains two Cu atoms, each ligated in a square-planar geometry by a tridentate bppy ligand and one Br atom. Pairs of these square-planar copper complexes form dimers bridged by the two bromine ions. In addition, these dinuclear species are stabilized by two ligating ClO4 anions, with the result that both copper centres exhibit a pseudo-octahedral geometry (Carranza et al., 2003[Carranza, J., Brennan, C., Sletten, J., Clement-Juan, J. M., Lloret, F. & Julve, M. (2003). Inorg. Chem. 42, 8716-8727.]). Thus, each distorted octahedron contains a bppy ligand together with one of the bridging Br atoms in the equatorial plane, and is capped by a ClO4 anion and the remaining bridging Br atom. The two halves of the mol­ecule are related by a non-crystallographic inversion centre situated between the copper centres (Fig. 1[link]).

The equatorial CuN3Br planes each contain three Cu—N bonds of approximately 2.0 Å and one longer Cu—Br bond [2.3436 (10) and 2.3578 (10) Å; Table 1[link]]. Bridging halides are quite common and bridging pairs of Br atoms have been reported many times in the literature, with various bond lengths (Marsh et al., 1983[Marsh, W. E., Patel, K. C., Hatfield, W. E. & Hodgson, D. L. (1983). Inorg. Chem. 22, 511-515.]; Hoffmann et al., 1984[Hoffmann, S. K., Towle, D. K., Hatfield, W. E., Wieghardt, K., Chaudhuri, P. & Weiss, J. (1984). Mol. Cryst. Liq. Cryst. 107, 161-170.]; Xu et al., 2000[Xu, Z., White, S., Thompson, L. K., Miller, D. O., Ohba, M., Okawa, H., Wilson, C. & Howard, J. A. K. (2000). J. Chem. Soc. Dalton Trans. pp. 1751-1757.]). In the case of (I[link]) however, the axial and equatorial Cu—Br bonds are highly asymmetric, the axial bonds being longer at approximately 3.0 Å.

Each Cu atom also forms a bond to the nearest perchlorate O atom [Cu1—O5 = 2.466 (6) Å and Cu2—O4 = 2.564 (6) Å], resulting in a distorted elongated octahedral geometry around each metal atom. As in many perchlorate compounds, the ClO4 ions have larger displacement parameters than the rest of the mol­ecule, indicating a tendency to disorder (Ragunathan & Bharadwaj, 1992[Ragunathan, K. G. & Bharadwaj, P. K. (1992). J. Chem. Soc. Dalton Trans. pp. 2417-2422.]). However, the coordination to the copper centres has reduced this motion, making it possible to refine anistropic displacement parameters.

In contrast to (I[link]), the mononuclear compound (II[link]) consists of a single Cu atom ligated by the bppy ligand and two Br atoms (Fig. 2[link]). The five-cordinate geometry is best described with respect to (I[link]) as pseudo-square-pyramidal, with the `equatorial' Br2 atom 1.04 Å (29.7°) out of the plane of the bppy ligand. This configuration also leads to a difference in the positions of the axial Br atoms, which in (I[link]) made angles of 87.83 (16) and 89.69 (16)° with the bppy ligand planes, and in (II[link]) makes an angle of 104.03 (4)°. There is also an increase in the Br—Cu—Br angle [93.39 (4) and 93.88 (3)° in (I[link]), and 107.203 (10)° in (II[link])], due to the reduction in coordination number, and a reduction in the asymmetry that is seen in the Cu—Br distances for (I[link]) (Table 2[link]).

Another consequence of the lower coordination number is that the central Cu atom lies slightly out of the plane of the bppy ligand. Thus, while the internal parameters of the bppy ligand ring system are in accordance with anticipated values (Bessel et al., 1992[Bessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1992). J. Chem. Soc. Dalton Trans. pp. 3223-3228.]), the separate aromatic rings of the bppy ligand are not coplanar and the angles between the planes of the pyridine ring and the pyrazole rings are 2.8 (2) (for N1/C1–C3/N2) and 4.3 (2)° (for N4/C9–C11/N5).

[Figure 1]
Figure 1
A view of (I[link]), showing the long Cu—Br and Cu—O bonds as broken lines. The square-planar geometry of the CuBr(bppy) moiety can clearly be seen, as can the pseudo-octahedral geometry around the Cu centre in the dimer. Displacement ellipsoids for the non-H atoms are drawn at the 50% probability level.
[Figure 2]
Figure 2
A view of (II[link]), showing the square-pyramidal geometry around the Cu centre. Displacement ellipsoids for the non-H atoms are drawn at the 50% probability level.

Experimental

Compound (I[link]) was prepared by stirring a mixture of Cu(ClO4)2·6H2O (0.370 g, 1 mmol), bppy (0.211 g, 1 mmol) and potassium bromide (0.0297 g, 0.25 mmol) in aceto­nitrile (25 ml) for 4 h at room temperature. During this time, the colour of the solution changed from blue to blue–green. After evaporation of the solvent, blue–green crystals were obtained (yield 0.390 g, 63.85%). Compound (II[link]) was prepared using a mixture of Cu(ClO4)2·6H2O, bppy and potassium bromide in aceto­nitrile (as above), which was stirred for 2 h. Pyrazole (0.068 g, 1 mmol) was added to the reaction mixture and the mixture was stirred for a further 2 h. During this time, the colour of the solution changed from blue–green to deep green. On evaporation of the solvent, the solution yielded the green compound (II[link]) together with a pale-blue compound thought to be unreacted starting material (yield 0.280 g, 41.19%). Caution: perchlorate salts of metal complexes are potentially explosive. Suitable care should be taken when handling such hazardous compounds. Compounds (I[link]) and (II[link]) were both purified by passing them through a silica-gel column using methanol–aceto­nitrile–di­chloro­methane (1:1:2) as eluant. X-ray quality crystals of both (I[link]) and (II[link]) were grown by keeping a saturated solution of the purified compound in aceto­nitrile for several days at room temperature.

Compound (I)[link]

Crystal data
  • [Cu2Br2(ClO4)2(C11H9N5)2]

  • Mr = 908.26

  • Monoclinic, P21

  • a = 7.8033 (2) Å

  • b = 15.1425 (5) Å

  • c = 12.7301 (3) Å

  • β = 106.305 (2)°

  • V = 1443.71 (7) Å3

  • Z = 2

  • Dx = 2.089 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 10 240 reflections

  • θ = 1.8–32.9°

  • μ = 4.49 mm−1

  • T = 120 (2) K

  • Tube, blue–green

  • 0.13 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART 6K CCD area-detector diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART-NT, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.604, Tmax = 0.662

  • 56 664 measured reflections

  • 9732 independent reflections

  • 6041 reflections with I > 2σ(I)

  • Rint = 0.092

  • θmax = 32.5°

  • h = −11 → 11

  • k = −22 → 22

  • l = −19 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.128

  • S = 1.03

  • 9732 reflections

  • 416 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0464P)2 + 3.2337P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 1.66 e Å−3

  • Δρmin = −1.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4335 Friedel pairs

  • Flack parameter = 0.000 (12)

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Br1—Cu1 2.3436 (10)
Br1—Cu2 2.9945 (11)
Br2—Cu2 2.3578 (10)
Br2—Cu1 3.0249 (11)
Cu1—N3 1.977 (5)
Cu1—N1 1.998 (6)
Cu1—N5 2.016 (6)
Cu1—O5 2.466 (6)
Cu2—N21 2.016 (6)
Cu2—N23 1.962 (6)
Cu2—N25 2.013 (5)
Cu2—O4 2.564 (6)
Cu1—Br1—Cu2 86.84 (3)
Cu2—Br2—Cu1 85.88 (3)
N1—Cu1—Br1 102.00 (17)
N3—Cu1—Br1 178.59 (16)
N5—Cu1—Br1 100.43 (15)
N1—Cu1—Br2 94.25 (17)
N3—Cu1—Br2 87.83 (16)
N5—Cu1—Br2 86.26 (16)
Br1—Cu1—Br2 93.39 (4)
N21—Cu2—Br2 100.95 (15)
N23—Cu2—Br2 176.42 (17)
N25—Cu2—Br2 101.72 (18)
N21—Cu2—Br1 94.87 (16)
N23—Cu2—Br1 89.69 (16)
N25—Cu2—Br1 85.04 (16)
Br2—Cu2—Br1 93.88 (3)

Compound (II)[link]

Crystal data
  • [CuBr2(C11H9N5)]

  • Mr = 434.58

  • Monoclinic, P21/c

  • a = 11.0056 (2) Å

  • b = 7.8940 (1) Å

  • c = 15.2370 (2) Å

  • β = 93.856 (1)°

  • V = 1320.77 (3) Å3

  • Z = 4

  • Dx = 2.186 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 10 000 reflections

  • θ = 1.8–32.9°

  • μ = 7.70 mm−1

  • T = 120 (2) K

  • Tube, green

  • 0.30 × 0.27 × 0.25 mm

Data collection
  • Bruker SMART 6K CCD area-detector diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART-NT, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.206, Tmax = 0.249

  • 24 033 measured reflections

  • 4675 independent reflections

  • 3978 reflections with I > 2σ(I)

  • Rint = 0.034

  • θmax = 32.5°

  • h = −16 → 16

  • k = −11 → 11

  • l = −23 → 23

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.055

  • S = 1.03

  • 4675 reflections

  • 172 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0255P)2 + 0.8921P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.77 e Å−3

Table 2
Selected geometric parameters (Å, °) for (II)[link]

Cu1—Br1 2.5740 (3)
Cu1—Br2 2.3946 (3)
Cu1—N1 2.0218 (15)
Cu1—N3 1.9854 (14)
Cu1—N5 2.0264 (15)
N1—C1 1.329 (2)
N1—N2 1.371 (2)
N2—C3 1.360 (2)
N2—C4 1.406 (2)
N3—C4 1.329 (2)
N3—C8 1.331 (2)
N4—C9 1.363 (2)
N4—N5 1.376 (2)
N4—C8 1.402 (2)
N5—C11 1.327 (2)
N3—Cu1—N1 77.86 (6)
N3—Cu1—N5 77.87 (6)
N1—Cu1—N5 154.50 (6)
N3—Cu1—Br2 148.76 (4)
N1—Cu1—Br2 96.62 (4)
N5—Cu1—Br2 100.07 (4)
N3—Cu1—Br1 104.03 (4)
N1—Cu1—Br1 100.58 (4)
N5—Cu1—Br1 92.76 (4)
Br2—Cu1—Br1 107.203 (10)

H atoms were treated using a riding model (C—H = 0.93 Å), with isotropic displacement parameters fixed at 120% of the Ueq values of the parent C atoms.

For both compounds, data collection: SMART-NT (Bruker, 1998[Bruker (1998). SMART-NT, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART-NT; data reduction: SAINT-NT (Bruker, 1998[Bruker (1998). SMART-NT, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

After the discovery of planar tridentate N-atom donor ligands by Jameson & Goldsby (1990), much work has been carried out in the past decade with various transition metals and the ligand 2,6-bis(pyrazolyl)pyridine (bppy; see first scheme below), because of its potential in bonding to metal atoms (Jameson et al., 1989; Downard et al., 1991; Abel et al., 1994; Solanki et al., 1998). Examples include iron(II) complexes of bppy derivatives, which have been shown to exhibit thermal and light-induced spin-crossover transitions (Holland et al., 2002; Money et al., 2004). Previous work carried out on related copper(II) complexes has shown that they exhibit an axially compressed octahedral geometry (Solanki et al., 1998). In this context, we have synthesized two new copper(II) complexes and carried out a structural study.

The bromine-bridged dicopper complex [Cu2(bppy)2Br2](ClO4)2 (I), and the mono-copper complex [Cu(bppy)Br2], (II), were prepared via essentially the same route, except that pyrazole was added to the reaction mixture that yielded (II).

Compound (I) contains two Cu atoms, each ligated in a square-planar geometry by a tridentate bppy ligand and one Br atom. Pairs of these square-planar copper complexes form dimers bridged by the two bromine ions. In addition, these dinuclear species are stabilized by two ligating ClO4 anions, with the result that both copper centres exhibit a pseudo-octahedral geometry (Carranza et al., 2003). Thus, both distorted octahedra contain a bppy ligand together with one of the bridging Br atoms in the equatorial plane, and are capped by a ClO4 anion and the remaining bridging Br atom. The two halves of the molecule are related by a non-crystallographic inversion centre situated between the copper centres (Fig. 2).

The equatorial CuN3Br planes both contain three Cu—N bonds of approximately 2.00 Å and longer Cu—Br bonds of 2.3436 (10) and 2.3578 (10) Å (Table 1). Bridging halides are quite common and bridging pairs of Br atoms have been reported many times in the literature, with various bond lengths (Marsh et al., 1983; Hoffmann et al., 1984; Xu et al., 2000). In the case of (I), however, the axial and equatorial Cu—Br bonds are highly asymmetric, the axial bonds being longer at approximately 3.00 Å.

Each Cu atom also forms a bond to the nearest perchlorate O atom [Cu1—O5 = 2.466 (6) Å and Cu2—O4 = 2.564 (6) Å], resulting in a distorted elongated octahedral geometry around each metal atom. As in many perchlorate compounds, the ClO4 ions have larger displacement parameters than the rest of the molecule, indicating a tendency to disorder (Raganathan & Bharadwaj, 1992). However, the coordination to the copper centres has reduced this motion, making it possible to refine anistropic displacement parameters.

In contrast to (I), the mononuclear compound (II) consists of a single Cu atom ligated by the bppy ligand and two Br atoms (Fig. 3). The five-cordinate geometry is best described with respect to (I) as pseudo-square-pyramidal, with the `equatorial' Br atom 1.33 Å (31.24°) out of the plane of the bppy ligand. This also leads to a change in the position of the axial Br atom, which in (I) made angles of 87.83 (16) and 89.69 (16)° with the bppy ligand plane, and in (II) makes an angle of 104.03 (4)°. There is also an increase in the Br—Cu—Br angle [93.39 (4) and 93.88 (3)° in (I), and 107.203 (10)° in (II)], due to the reduction in coordination number, and a reduction in the asymmetry that is seen in the Cu—Br distances for (I) (Table 2).

Another consequence of the lower coordination number is that the central Cu atom lies slightly out of the plane of the bppy ligand. Thus while the internal parameters of the 2,6-bis(pyrazolyl)pyridine ligand ring system are in accordance with anticipated values (Bessel et al., 1992), the separate aromatic rings of the bppy ligand are not coplanar, and the angles between the planes of the pyridine ring and the pyrazol rings are 2.8 (2)° (for N1/C1/C2/C3/N2) and 4.3 (2)° (for N4/C9/C10/C11/N5).

Experimental top

Caution: perchlorate salts of metal complexes are potentially explosive. Suitable care should be taken when handling such hazardous compounds. Compound (I) was prepared by stirring a mixture of Cu(ClO4)2·6H2O (0.370 g, 1 mmol), bppy (0.211 g, 1 mmol) and potassium bromide (0.0297 g, 0.25 mmol) in acetonitrile (25 ml) for 4 h at room temperature. During this time, the colour of the solution changed from blue to blue–green. After evaporation of the solvent, blue–green crystals were obtained (yield 0.390 g, 63.85%). Compound (II) was prepared using a mixture of Cu(ClO4)2·6H2O, bppy and potassium bromide in acetonitrile (as above), which was stirred for 2 h. Pyrazole (0.068 g, 1 mmol) was added to the reaction mixture and the mixture was stirred for a further 2 h. During this interval, the colour of the solution changed from blue–green to deep green. On evaporation of the solvent, the solution yielded the green compound (II) together with a pale-blue compound thought to be unreacted starting material (yield 0.280 g, 41.19%). Common methods were applied for crystallization and purification of both (I) and (II). Compounds (I) and (II) were purified by passing them through a silica-gel column using methanol–acetonitrile–dichloromethane (1:1:2) as eluant. X-ray quality crystals of both (I) and (II) were grown by keeping a saturated solution of the purified compound in acetonitrile for several days at room temperature.

Refinement top

Both compounds are monoclinic, with (I) in space group P21 and (II) in space group P21/c. H atoms were treated using a riding model (C—H = 0.93 Å), with isotropic displacement parameters fixed at 120% of the Ueq values of the parent C atoms.

Computing details top

For both compounds, data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of (I), showing the long Cu—Br and Cu—O bonds as broken lines. The square-planar geometry of the Cu(bppy)Br moiety can clearly be seen, as can the pseudo-octahedral geometry around the Cu centre in the dimer. Displacement ellipsoids for the non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of (II), showing the square-pyramidal geometry around the Cu centre. Displacement ellipsoids for the non-H atoms are drawn at the 50% probability level.
(I) di-µ-bromo-bis{[2,6-bis(pyrazol-1-yl-κN2)pyridine-κN](perchlorato- κO)copper(II)} top
Crystal data top
[Cu2Br2(ClO4)2(C11H9N5)2]F(000) = 892
Mr = 908.2610240 integrated reflections used for unit cell measurement.
Monoclinic, P21Dx = 2.089 Mg m3
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 7.8033 (2) ÅCell parameters from 10240 reflections
b = 15.1425 (5) Åθ = 1.8–32.9°
c = 12.7301 (3) ŵ = 4.49 mm1
β = 106.305 (2)°T = 120 K
V = 1443.71 (7) Å3Tube, blue-green
Z = 20.13 × 0.12 × 0.10 mm
Data collection top
Bruker SMART 6K CCD area-detector
diffractometer
9732 independent reflections
Radiation source: fine-focus sealed tube6041 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
Detector resolution: 8 pixels mm-1θmax = 32.5°, θmin = 1.7°
ω and ϕ scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 2222
Tmin = 0.604, Tmax = 0.662l = 1918
56664 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0464P)2 + 3.2337P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
9732 reflectionsΔρmax = 1.66 e Å3
416 parametersΔρmin = 1.13 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.000 (12)
Crystal data top
[Cu2Br2(ClO4)2(C11H9N5)2]V = 1443.71 (7) Å3
Mr = 908.26Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.8033 (2) ŵ = 4.49 mm1
b = 15.1425 (5) ÅT = 120 K
c = 12.7301 (3) Å0.13 × 0.12 × 0.10 mm
β = 106.305 (2)°
Data collection top
Bruker SMART 6K CCD area-detector
diffractometer
9732 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
6041 reflections with I > 2σ(I)
Tmin = 0.604, Tmax = 0.662Rint = 0.092
56664 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.128Δρmax = 1.66 e Å3
S = 1.03Δρmin = 1.13 e Å3
9732 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
416 parametersAbsolute structure parameter: 0.000 (12)
1 restraint
Special details top

Experimental. The absorbtion correction was done with SADABS, mu*r. The radius was calculated from the estimation of the crystal being a sphere (r = 0.07 mm). The mu coefficient is calculated from the program FPrime (Program FPrime for Windows 1.0 for calculating real and anomalous X-ray dispersion coefficients, R·B. Von Dreele, 1994).

The data collection nominally covered over a full sphere of reciprocal space, by a combination of 6 sets of ω scans and a 2 of ϕ scan. Each scan was exposured for 3 s covering 0.3° in ω or ϕ. No sign of crystal decay was observed.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Absolute configuration was determined by inverting the structure and by checking Flack parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.83413 (9)0.76392 (4)0.29061 (5)0.02583 (15)
Br20.53815 (9)0.55200 (4)0.28052 (5)0.02516 (15)
Cu10.80261 (11)0.67318 (5)0.43317 (7)0.02240 (19)
Cu20.57084 (11)0.64501 (5)0.13886 (7)0.02147 (18)
N11.0078 (7)0.5900 (4)0.4520 (5)0.0230 (12)
N21.0240 (8)0.5304 (4)0.5356 (4)0.0238 (12)
N30.7773 (7)0.5992 (4)0.5559 (4)0.0187 (11)
N40.5439 (7)0.6900 (4)0.5486 (4)0.0216 (12)
N50.5891 (7)0.7298 (4)0.4654 (4)0.0206 (11)
N210.3616 (7)0.7272 (4)0.1224 (4)0.0208 (11)
N220.3395 (7)0.7828 (3)0.0340 (4)0.0205 (11)
N230.5880 (7)0.7175 (4)0.0144 (5)0.0194 (11)
N240.8266 (7)0.6331 (4)0.0169 (5)0.0194 (12)
N250.7861 (7)0.5924 (4)0.1050 (5)0.0236 (12)
C11.1460 (9)0.5702 (4)0.4126 (6)0.0237 (14)
H11.17190.59960.35470.028*
C21.2455 (9)0.4997 (5)0.4698 (6)0.0251 (14)
H21.34560.47370.45680.030*
C31.1662 (10)0.4772 (5)0.5480 (6)0.0270 (16)
H31.20330.43320.60050.032*
C40.8961 (9)0.5372 (4)0.5945 (6)0.0218 (14)
C50.8874 (9)0.4851 (4)0.6834 (6)0.0242 (14)
H50.96890.43990.70970.029*
C60.7511 (10)0.5040 (5)0.7306 (6)0.0267 (16)
H60.74160.47150.79070.032*
C70.6277 (9)0.5715 (5)0.6887 (6)0.0257 (15)
H70.53480.58400.71890.031*
C80.6499 (9)0.6177 (4)0.6026 (5)0.0209 (13)
C90.4002 (9)0.7303 (5)0.5700 (6)0.0275 (15)
H90.34470.71400.62290.033*
C100.3553 (9)0.7983 (5)0.4989 (6)0.0306 (16)
H100.26410.83910.49390.037*
C110.4752 (9)0.7950 (5)0.4338 (6)0.0260 (14)
H110.47370.83360.37670.031*
C210.2262 (9)0.7442 (5)0.1628 (6)0.0263 (15)
H210.20860.71660.22430.032*
C220.1131 (9)0.8086 (5)0.1019 (6)0.0265 (14)
H220.00850.83060.11330.032*
C230.1899 (9)0.8325 (5)0.0213 (6)0.0276 (15)
H230.14730.87500.03240.033*
C240.4643 (8)0.7786 (5)0.0247 (5)0.0211 (14)
C250.4717 (10)0.8314 (5)0.1115 (6)0.0269 (16)
H250.38880.87610.13680.032*
C260.6075 (9)0.8152 (5)0.1595 (6)0.0274 (15)
H260.61350.84880.21950.033*
C270.7334 (10)0.7509 (5)0.1209 (6)0.0282 (16)
H270.82580.74080.15220.034*
C280.7156 (8)0.7017 (4)0.0326 (5)0.0208 (13)
C290.9765 (9)0.5961 (4)0.0024 (6)0.0264 (15)
H291.03070.61150.05140.032*
C301.0349 (9)0.5321 (4)0.0807 (6)0.0271 (15)
H301.13520.49650.09110.032*
C310.9108 (9)0.5321 (4)0.1416 (6)0.0251 (14)
H310.91570.49460.20020.030*
Cl10.3574 (2)0.50429 (11)0.10475 (14)0.0260 (3)
O10.5380 (7)0.4775 (4)0.0894 (5)0.0416 (14)
O20.2447 (8)0.4311 (4)0.1002 (5)0.0442 (14)
O30.2923 (8)0.5485 (6)0.2068 (5)0.067 (2)
O40.3512 (8)0.5635 (5)0.0192 (5)0.0557 (18)
Cl21.0087 (2)0.80230 (11)0.67630 (14)0.0254 (3)
O51.0122 (8)0.7597 (5)0.5775 (5)0.066 (2)
O61.1163 (8)0.8794 (4)0.6875 (5)0.0468 (15)
O71.0796 (9)0.7443 (6)0.7655 (6)0.077 (3)
O80.8273 (7)0.8231 (4)0.6724 (5)0.0349 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0322 (4)0.0253 (3)0.0222 (3)0.0028 (3)0.0111 (3)0.0013 (3)
Br20.0282 (4)0.0260 (3)0.0228 (3)0.0011 (3)0.0099 (3)0.0022 (3)
Cu10.0232 (4)0.0255 (4)0.0210 (4)0.0025 (3)0.0104 (4)0.0036 (3)
Cu20.0230 (4)0.0244 (4)0.0192 (4)0.0027 (3)0.0095 (3)0.0026 (3)
N10.022 (3)0.030 (3)0.020 (3)0.004 (2)0.009 (2)0.002 (2)
N20.029 (3)0.028 (3)0.016 (3)0.000 (2)0.009 (2)0.002 (2)
N30.017 (3)0.024 (3)0.016 (3)0.005 (2)0.006 (2)0.005 (2)
N40.024 (3)0.029 (3)0.015 (3)0.002 (2)0.009 (2)0.006 (2)
N50.027 (3)0.022 (3)0.014 (3)0.001 (2)0.008 (2)0.007 (2)
N210.024 (3)0.024 (3)0.018 (3)0.003 (2)0.011 (2)0.000 (2)
N220.019 (3)0.021 (3)0.023 (3)0.000 (2)0.006 (2)0.002 (2)
N230.013 (2)0.024 (3)0.021 (3)0.001 (2)0.005 (2)0.007 (2)
N240.011 (3)0.021 (3)0.025 (3)0.003 (2)0.003 (2)0.007 (2)
N250.020 (3)0.029 (3)0.020 (3)0.002 (2)0.004 (2)0.005 (2)
C10.031 (4)0.023 (3)0.019 (3)0.010 (3)0.009 (3)0.002 (3)
C20.018 (3)0.027 (3)0.030 (4)0.006 (3)0.007 (3)0.004 (3)
C30.030 (4)0.024 (4)0.024 (4)0.005 (3)0.003 (3)0.006 (3)
C40.019 (3)0.023 (3)0.022 (3)0.002 (3)0.004 (3)0.000 (3)
C50.027 (3)0.023 (3)0.021 (3)0.004 (3)0.004 (3)0.003 (3)
C60.032 (4)0.028 (4)0.025 (4)0.002 (3)0.016 (3)0.002 (3)
C70.024 (4)0.034 (4)0.022 (3)0.007 (3)0.010 (3)0.004 (3)
C80.021 (3)0.025 (3)0.016 (3)0.005 (3)0.004 (3)0.003 (2)
C90.020 (3)0.037 (4)0.029 (4)0.000 (3)0.011 (3)0.000 (3)
C100.023 (3)0.037 (4)0.032 (4)0.009 (3)0.009 (3)0.004 (3)
C110.027 (4)0.026 (3)0.026 (4)0.001 (3)0.010 (3)0.002 (3)
C210.021 (3)0.036 (4)0.026 (4)0.001 (3)0.014 (3)0.002 (3)
C220.027 (4)0.029 (4)0.025 (4)0.002 (3)0.011 (3)0.002 (3)
C230.017 (3)0.028 (4)0.035 (4)0.003 (3)0.004 (3)0.000 (3)
C240.016 (3)0.029 (4)0.021 (3)0.002 (3)0.010 (3)0.005 (3)
C250.026 (4)0.031 (4)0.025 (4)0.000 (3)0.010 (3)0.001 (3)
C260.021 (3)0.036 (4)0.024 (4)0.004 (3)0.003 (3)0.000 (3)
C270.030 (4)0.035 (4)0.022 (4)0.007 (3)0.011 (3)0.000 (3)
C280.017 (3)0.025 (3)0.021 (3)0.003 (3)0.007 (3)0.004 (3)
C290.027 (4)0.028 (4)0.028 (4)0.005 (3)0.013 (3)0.007 (3)
C300.021 (3)0.027 (3)0.033 (4)0.001 (3)0.006 (3)0.005 (3)
C310.018 (3)0.025 (3)0.029 (4)0.001 (3)0.002 (3)0.004 (3)
Cl10.0236 (8)0.0311 (8)0.0248 (8)0.0005 (7)0.0094 (7)0.0002 (7)
O10.021 (3)0.061 (4)0.043 (3)0.011 (3)0.009 (2)0.001 (3)
O20.043 (3)0.031 (3)0.055 (4)0.014 (3)0.008 (3)0.004 (3)
O30.034 (3)0.114 (6)0.052 (4)0.008 (4)0.010 (3)0.052 (4)
O40.037 (3)0.074 (4)0.062 (4)0.021 (3)0.024 (3)0.046 (4)
Cl20.0245 (8)0.0293 (8)0.0233 (8)0.0005 (7)0.0081 (7)0.0032 (7)
O50.035 (3)0.103 (6)0.070 (5)0.029 (4)0.031 (3)0.061 (4)
O60.038 (3)0.036 (3)0.064 (4)0.008 (3)0.011 (3)0.018 (3)
O70.040 (4)0.100 (6)0.092 (6)0.023 (4)0.021 (4)0.067 (5)
O80.030 (3)0.046 (3)0.033 (3)0.012 (2)0.016 (2)0.006 (2)
Geometric parameters (Å, º) top
Br1—Cu12.3436 (10)C4—C51.397 (9)
Br1—Cu22.9945 (11)C5—C61.391 (10)
Br2—Cu22.3578 (10)C5—H50.9300
Br2—Cu13.0249 (11)C6—C71.403 (10)
Cu1—N31.977 (5)C6—H60.9300
Cu1—N11.998 (6)C7—C81.351 (9)
Cu1—N52.016 (6)C7—H70.9300
Cu1—O52.466 (6)C9—C101.351 (10)
Cu2—N212.016 (6)C9—H90.9300
Cu2—N231.962 (6)C10—C111.414 (9)
Cu2—N252.013 (5)C10—H100.9300
Cu2—O42.564 (6)C11—H110.9300
N1—C11.345 (8)C21—C221.396 (10)
N1—N21.374 (8)C21—H210.9300
N2—C31.344 (9)C22—C231.374 (10)
N2—C41.410 (8)C22—H220.9300
N3—C41.314 (8)C23—H230.9300
N3—C81.324 (8)C24—C251.377 (10)
N4—N51.348 (7)C25—C261.386 (10)
N4—C91.369 (8)C25—H250.9300
N4—C81.427 (9)C26—C271.373 (10)
N5—C111.314 (9)C26—H260.9300
N21—C211.325 (8)C27—C281.387 (9)
N21—N221.377 (7)C27—H270.9300
N22—C231.360 (8)C29—C301.373 (10)
N22—C241.385 (8)C29—H290.9300
N23—C281.319 (8)C30—C311.400 (9)
N23—C241.330 (8)C30—H300.9300
N24—C291.356 (8)C31—H310.9300
N24—C281.385 (9)Cl1—O41.422 (6)
N24—N251.392 (8)Cl1—O31.423 (6)
N25—C311.319 (8)Cl1—O11.426 (5)
C1—C21.399 (10)Cl1—O21.427 (6)
C1—H10.9300Cl2—O71.419 (7)
C2—C31.355 (10)Cl2—O51.420 (6)
C2—H20.9300Cl2—O61.422 (6)
C3—H30.9300Cl2—O81.437 (5)
Cu1—Br1—Cu286.84 (3)C4—C5—H5121.6
Cu2—Br2—Cu185.88 (3)C5—C6—C7120.8 (7)
N1—Cu1—Br1102.00 (17)C5—C6—H6119.6
N3—Cu1—Br1178.59 (16)C7—C6—H6119.6
N5—Cu1—Br1100.43 (15)C8—C7—C6117.0 (6)
N1—Cu1—Br294.25 (17)C8—C7—H7121.5
N3—Cu1—Br287.83 (16)C6—C7—H7121.5
N5—Cu1—Br286.26 (16)N3—C8—C7122.6 (6)
Br1—Cu1—Br293.39 (4)N3—C8—N4110.6 (6)
N21—Cu2—Br2100.95 (15)C7—C8—N4126.8 (6)
N23—Cu2—Br2176.42 (17)C10—C9—N4106.2 (6)
N25—Cu2—Br2101.72 (18)C10—C9—H9126.9
N21—Cu2—Br194.87 (16)N4—C9—H9126.9
N23—Cu2—Br189.69 (16)C9—C10—C11106.0 (6)
N25—Cu2—Br185.04 (16)C9—C10—H10127.0
Br2—Cu2—Br193.88 (3)C11—C10—H10127.0
N3—Cu1—N178.6 (2)N5—C11—C10110.4 (6)
N3—Cu1—N578.9 (2)N5—C11—H11124.8
N1—Cu1—N5157.5 (2)C10—C11—H11124.8
N23—Cu2—N2578.4 (2)N21—C21—C22111.6 (6)
N23—Cu2—N2178.9 (2)N21—C21—H21124.2
N25—Cu2—N21157.3 (2)C22—C21—H21124.2
C1—N1—N2103.5 (5)C23—C22—C21105.0 (6)
C1—N1—Cu1142.6 (5)C23—C22—H22127.5
N2—N1—Cu1113.8 (4)C21—C22—H22127.5
C3—N2—N1112.2 (5)N22—C23—C22107.8 (6)
C3—N2—C4131.8 (6)N22—C23—H23126.1
N1—N2—C4116.0 (5)C22—C23—H23126.1
C4—N3—C8121.5 (6)N23—C24—C25121.0 (6)
C4—N3—Cu1118.9 (4)N23—C24—N22112.1 (6)
C8—N3—Cu1119.3 (5)C25—C24—N22126.9 (6)
N5—N4—C9111.5 (6)C24—C25—C26117.5 (7)
N5—N4—C8118.5 (5)C24—C25—H25121.3
C9—N4—C8129.9 (6)C26—C25—H25121.3
C11—N5—N4105.8 (5)C27—C26—C25121.7 (7)
C11—N5—Cu1141.6 (5)C27—C26—H26119.1
N4—N5—Cu1112.6 (4)C25—C26—H26119.1
C21—N21—N22105.5 (5)C26—C27—C28116.5 (6)
C21—N21—Cu2142.3 (5)C26—C27—H27121.7
N22—N21—Cu2112.0 (4)C28—C27—H27121.7
C23—N22—N21110.0 (5)N23—C28—N24112.6 (6)
C23—N22—C24132.1 (6)N23—C28—C27122.0 (6)
N21—N22—C24117.9 (5)N24—C28—C27125.3 (6)
C28—N23—C24121.1 (6)N24—C29—C30108.4 (6)
C28—N23—Cu2119.8 (5)N24—C29—H29125.8
C24—N23—Cu2119.0 (4)C30—C29—H29125.8
C29—N24—C28134.5 (6)C29—C30—C31105.2 (6)
C29—N24—N25109.0 (6)C29—C30—H30127.4
C28—N24—N25116.4 (5)C31—C30—H30127.4
C31—N25—N24106.2 (5)N25—C31—C30111.1 (7)
C31—N25—Cu2140.8 (5)N25—C31—H31124.4
N24—N25—Cu2112.9 (4)C30—C31—H31124.4
N1—C1—C2111.2 (6)O4—Cl1—O3108.8 (5)
N1—C1—H1124.4O4—Cl1—O1108.6 (4)
C2—C1—H1124.4O3—Cl1—O1110.2 (4)
C3—C2—C1105.9 (6)O4—Cl1—O2107.7 (4)
C3—C2—H2127.1O3—Cl1—O2109.7 (4)
C1—C2—H2127.1O1—Cl1—O2111.8 (4)
N2—C3—C2107.2 (6)Cl1—O4—Cu2138.2 (3)
N2—C3—H3126.4O7—Cl2—O5109.1 (5)
C2—C3—H3126.4O7—Cl2—O6110.0 (4)
N3—C4—C5121.1 (6)O5—Cl2—O6107.7 (4)
N3—C4—N2112.6 (6)O7—Cl2—O8108.8 (4)
C5—C4—N2126.3 (6)O5—Cl2—O8109.4 (4)
C6—C5—C4116.8 (6)O6—Cl2—O8111.8 (3)
C6—C5—H5121.6Cl2—O5—Cu1136.7 (3)
N3—Cu1—N1—C1179.3 (9)C4—N3—C8—N4177.2 (6)
N5—Cu1—N1—C1175.8 (7)Cu1—N3—C8—N42.6 (7)
N3—Cu1—N1—N21.0 (4)C6—C7—C8—N32.4 (10)
N5—Cu1—N1—N22.6 (9)C6—C7—C8—N4178.5 (6)
C1—N1—N2—C30.8 (8)N5—N4—C8—N32.6 (8)
Cu1—N1—N2—C3178.2 (5)C9—N4—C8—N3179.9 (7)
C1—N1—N2—C4178.6 (6)N5—N4—C8—C7178.2 (6)
Cu1—N1—N2—C40.3 (7)C9—N4—C8—C70.9 (11)
N1—Cu1—N3—C42.3 (5)N5—N4—C9—C100.9 (8)
N5—Cu1—N3—C4176.3 (5)C8—N4—C9—C10176.6 (6)
N1—Cu1—N3—C8177.0 (5)N4—C9—C10—C111.3 (8)
N5—Cu1—N3—C81.6 (5)N4—N5—C11—C100.8 (8)
C9—N4—N5—C110.0 (8)Cu1—N5—C11—C10177.9 (6)
C8—N4—N5—C11177.7 (6)C9—C10—C11—N51.4 (8)
C9—N4—N5—Cu1179.2 (5)N22—N21—C21—C221.1 (8)
C8—N4—N5—Cu11.4 (7)Cu2—N21—C21—C22173.0 (6)
N3—Cu1—N5—C11178.7 (8)N21—C21—C22—C231.4 (8)
N1—Cu1—N5—C11175.1 (7)N21—N22—C23—C220.4 (8)
N3—Cu1—N5—N40.0 (4)C24—N22—C23—C22178.9 (7)
N1—Cu1—N5—N43.5 (9)C21—C22—C23—N221.0 (8)
N23—Cu2—N21—C21177.2 (8)C28—N23—C24—C254.1 (10)
N25—Cu2—N21—C21177.2 (7)Cu2—N23—C24—C25179.6 (5)
N23—Cu2—N21—N223.4 (4)C28—N23—C24—N22178.0 (6)
N25—Cu2—N21—N223.3 (8)Cu2—N23—C24—N221.6 (7)
C21—N21—N22—C230.4 (7)C23—N22—C24—N23177.7 (6)
Cu2—N21—N22—C23175.7 (4)N21—N22—C24—N231.5 (8)
C21—N21—N22—C24179.8 (6)C23—N22—C24—C254.5 (12)
Cu2—N21—N22—C243.7 (7)N21—N22—C24—C25176.3 (7)
N25—Cu2—N23—C280.7 (5)N23—C24—C25—C263.2 (10)
N21—Cu2—N23—C28179.2 (5)N22—C24—C25—C26179.3 (7)
N25—Cu2—N23—C24177.1 (5)C24—C25—C26—C271.8 (11)
N21—Cu2—N23—C242.9 (5)C25—C26—C27—C281.2 (10)
C29—N24—N25—C310.0 (7)C24—N23—C28—N24177.3 (6)
C28—N24—N25—C31177.8 (5)Cu2—N23—C28—N241.0 (7)
C29—N24—N25—Cu2177.7 (4)C24—N23—C28—C273.6 (10)
C28—N24—N25—Cu20.1 (7)Cu2—N23—C28—C27179.9 (5)
N23—Cu2—N25—C31176.2 (8)C29—N24—C28—N23176.4 (7)
N21—Cu2—N25—C31176.2 (6)N25—N24—C28—N230.6 (8)
N23—Cu2—N25—N240.3 (4)C29—N24—C28—C272.7 (11)
N21—Cu2—N25—N240.3 (9)N25—N24—C28—C27179.7 (6)
N2—N1—C1—C20.2 (7)C26—C27—C28—N232.1 (10)
Cu1—N1—C1—C2178.7 (6)C26—C27—C28—N24178.9 (6)
N1—C1—C2—C31.1 (8)C28—N24—C29—C30176.7 (7)
N1—N2—C3—C21.5 (9)N25—N24—C29—C300.5 (7)
C4—N2—C3—C2178.9 (7)N24—C29—C30—C310.8 (8)
C1—C2—C3—N21.5 (8)N24—N25—C31—C300.5 (7)
C8—N3—C4—C53.3 (10)Cu2—N25—C31—C30176.1 (6)
Cu1—N3—C4—C5177.9 (5)C29—C30—C31—N250.8 (8)
C8—N3—C4—N2177.7 (6)O3—Cl1—O4—Cu2112.2 (6)
Cu1—N3—C4—N23.1 (7)O1—Cl1—O4—Cu27.8 (8)
C3—N2—C4—N3179.5 (7)O2—Cl1—O4—Cu2129.0 (6)
N1—N2—C4—N32.2 (8)N23—Cu2—O4—Cl176.3 (7)
C3—N2—C4—C51.6 (12)N25—Cu2—O4—Cl11.2 (7)
N1—N2—C4—C5178.9 (6)N21—Cu2—O4—Cl1156.3 (7)
N3—C4—C5—C62.0 (10)O7—Cl2—O5—Cu195.0 (8)
N2—C4—C5—C6179.1 (7)O6—Cl2—O5—Cu1145.6 (6)
C4—C5—C6—C71.0 (11)O8—Cl2—O5—Cu123.9 (8)
C5—C6—C7—C81.2 (11)N3—Cu1—O5—Cl253.7 (7)
C4—N3—C8—C73.6 (10)N1—Cu1—O5—Cl2132.7 (8)
Cu1—N3—C8—C7178.1 (5)N5—Cu1—O5—Cl225.0 (8)
(II) dibromo[2,6-bis(pyrazol-1-yl)pyridine]copper(II) top
Crystal data top
[CuBr2(C11H9N5)]F(000) = 836
Mr = 434.5810000 integrated reflections used for unit cell measurement.
Monoclinic, P21/cDx = 2.186 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.0056 (2) ÅCell parameters from 10000 reflections
b = 7.8940 (1) Åθ = 1.8–32.9°
c = 15.2370 (2) ŵ = 7.70 mm1
β = 93.856 (1)°T = 120 K
V = 1320.77 (3) Å3Tube, green
Z = 40.30 × 0.27 × 0.25 mm
Data collection top
Bruker SMART 6K CCD area-detector
diffractometer
4675 independent reflections
Radiation source: fine-focus sealed tube3978 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 8 pixels mm-1θmax = 32.5°, θmin = 1.9°
ω and ϕ scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1111
Tmin = 0.206, Tmax = 0.249l = 2323
24033 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0255P)2 + 0.8921P]
where P = (Fo2 + 2Fc2)/3
4675 reflections(Δ/σ)max = 0.002
172 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[CuBr2(C11H9N5)]V = 1320.77 (3) Å3
Mr = 434.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0056 (2) ŵ = 7.70 mm1
b = 7.8940 (1) ÅT = 120 K
c = 15.2370 (2) Å0.30 × 0.27 × 0.25 mm
β = 93.856 (1)°
Data collection top
Bruker SMART 6K CCD area-detector
diffractometer
4675 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3978 reflections with I > 2σ(I)
Tmin = 0.206, Tmax = 0.249Rint = 0.034
24033 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.03Δρmax = 0.61 e Å3
4675 reflectionsΔρmin = 0.77 e Å3
172 parameters
Special details top

Experimental. The absorbtion correction was done with SADABS, mu*r. The radius was calculated from the estimation of the crystal being a sphere (r = 0.16 mm). The mu coefficient is calculated from the program FPrime (Program FPrime for Windows 1.0 for calculating real and anomalous X-ray dispersion coefficients, R·B. Von Dreele, 1994).

The data collection nominally covered over a full sphere of reciprocal space, by a combination of 3 sets of ω scans and 1 of a ϕ scan. Each scan was exposured for 3 s covering 0.3° in ω or ϕ. No sign of crystal decay was observed.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.728141 (18)0.90095 (3)0.113100 (14)0.01129 (5)
Br10.837301 (15)0.61243 (2)0.115767 (11)0.01398 (4)
Br20.650512 (16)0.94056 (2)0.254749 (11)0.01595 (5)
N10.87207 (13)1.0590 (2)0.13190 (9)0.0133 (3)
N20.90523 (13)1.13552 (19)0.05633 (9)0.0124 (3)
N30.74678 (12)0.98764 (19)0.00757 (9)0.0110 (3)
N40.57702 (13)0.83521 (19)0.04324 (9)0.0119 (3)
N50.57788 (13)0.80694 (19)0.04589 (9)0.0127 (3)
C10.95340 (16)1.1111 (2)0.19455 (12)0.0153 (3)
H10.95401.07900.25330.018*
C21.03860 (16)1.2215 (2)0.15992 (12)0.0159 (3)
H21.10421.27420.19040.019*
C31.00504 (15)1.2353 (2)0.07225 (12)0.0144 (3)
H31.04311.30040.03130.017*
C40.83384 (15)1.0993 (2)0.02140 (11)0.0117 (3)
C50.84967 (16)1.1683 (2)0.10355 (11)0.0146 (3)
H50.91021.24760.11230.018*
C60.76983 (16)1.1120 (2)0.17227 (12)0.0163 (3)
H60.77871.15260.22880.020*
C70.67706 (16)0.9967 (2)0.15862 (11)0.0145 (3)
H70.62400.95910.20460.017*
C80.66796 (15)0.9409 (2)0.07314 (11)0.0120 (3)
C90.48000 (15)0.7573 (2)0.08654 (12)0.0152 (3)
H90.46010.75930.14680.018*
C100.41726 (15)0.6752 (2)0.02408 (12)0.0159 (3)
H100.34690.61060.03340.019*
C110.48184 (15)0.7096 (2)0.05683 (12)0.0150 (3)
H110.46000.66920.11090.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00993 (9)0.01347 (10)0.01054 (9)0.00080 (7)0.00120 (7)0.00041 (7)
Br10.01222 (8)0.01348 (9)0.01613 (8)0.00164 (6)0.00024 (6)0.00060 (6)
Br20.01605 (8)0.01973 (9)0.01256 (8)0.00186 (6)0.00462 (6)0.00079 (6)
N10.0134 (6)0.0151 (7)0.0114 (6)0.0011 (5)0.0019 (5)0.0002 (5)
N20.0113 (6)0.0141 (7)0.0118 (6)0.0005 (5)0.0016 (5)0.0005 (5)
N30.0104 (6)0.0113 (7)0.0114 (6)0.0005 (5)0.0009 (5)0.0010 (5)
N40.0099 (6)0.0132 (7)0.0127 (6)0.0002 (5)0.0004 (5)0.0006 (5)
N50.0117 (6)0.0144 (7)0.0122 (6)0.0010 (5)0.0023 (5)0.0005 (5)
C10.0147 (7)0.0174 (8)0.0136 (7)0.0005 (6)0.0000 (6)0.0022 (6)
C20.0132 (7)0.0154 (8)0.0189 (8)0.0009 (6)0.0012 (6)0.0051 (7)
C30.0111 (7)0.0125 (8)0.0199 (8)0.0002 (6)0.0023 (6)0.0021 (6)
C40.0101 (7)0.0121 (8)0.0132 (7)0.0018 (6)0.0015 (5)0.0013 (6)
C50.0144 (7)0.0152 (8)0.0145 (7)0.0006 (6)0.0032 (6)0.0018 (6)
C60.0178 (8)0.0187 (9)0.0127 (8)0.0021 (7)0.0028 (6)0.0025 (6)
C70.0141 (7)0.0171 (8)0.0121 (7)0.0017 (6)0.0001 (6)0.0010 (6)
C80.0105 (7)0.0115 (8)0.0142 (7)0.0014 (6)0.0017 (5)0.0016 (6)
C90.0112 (7)0.0149 (8)0.0189 (8)0.0018 (6)0.0017 (6)0.0041 (6)
C100.0110 (7)0.0127 (8)0.0239 (9)0.0004 (6)0.0007 (6)0.0033 (7)
C110.0123 (7)0.0125 (8)0.0204 (8)0.0006 (6)0.0036 (6)0.0000 (6)
Geometric parameters (Å, º) top
Cu1—Br12.5740 (3)C1—H10.9300
Cu1—Br22.3946 (3)C2—C31.366 (2)
Cu1—N12.0218 (15)C2—H20.9300
Cu1—N31.9854 (14)C3—H30.9300
Cu1—N52.0264 (15)C4—C51.387 (2)
N1—C11.329 (2)C5—C61.394 (3)
N1—N21.371 (2)C5—H50.9300
N2—C31.360 (2)C6—C71.394 (3)
N2—C41.406 (2)C6—H60.9300
N3—C41.329 (2)C7—C81.385 (2)
N3—C81.331 (2)C7—H70.9300
N4—C91.363 (2)C9—C101.375 (3)
N4—N51.376 (2)C9—H90.9300
N4—C81.402 (2)C10—C111.407 (3)
N5—C111.327 (2)C10—H100.9300
C1—C21.408 (3)C11—H110.9300
N3—Cu1—N177.86 (6)C3—C2—H2127.1
N3—Cu1—N577.87 (6)C1—C2—H2127.1
N1—Cu1—N5154.50 (6)N2—C3—C2106.88 (16)
N3—Cu1—Br2148.76 (4)N2—C3—H3126.6
N1—Cu1—Br296.62 (4)C2—C3—H3126.6
N5—Cu1—Br2100.07 (4)N3—C4—C5122.62 (16)
N3—Cu1—Br1104.03 (4)N3—C4—N2111.67 (14)
N1—Cu1—Br1100.58 (4)C5—C4—N2125.71 (16)
N5—Cu1—Br192.76 (4)C4—C5—C6116.24 (16)
Br2—Cu1—Br1107.203 (10)C4—C5—H5121.9
C1—N1—N2105.22 (14)C6—C5—H5121.9
C1—N1—Cu1140.90 (13)C7—C6—C5121.81 (16)
N2—N1—Cu1113.77 (11)C7—C6—H6119.1
C3—N2—N1111.26 (14)C5—C6—H6119.1
C3—N2—C4131.82 (15)C8—C7—C6116.62 (16)
N1—N2—C4116.92 (14)C8—C7—H7121.7
C4—N3—C8120.36 (15)C6—C7—H7121.7
C4—N3—Cu1119.73 (11)N3—C8—C7122.23 (16)
C8—N3—Cu1119.81 (12)N3—C8—N4111.38 (14)
C9—N4—N5110.96 (14)C7—C8—N4126.37 (16)
C9—N4—C8131.61 (15)N4—C9—C10106.92 (16)
N5—N4—C8117.35 (14)N4—C9—H9126.5
C11—N5—N4105.39 (14)C10—C9—H9126.5
C11—N5—Cu1141.15 (12)C9—C10—C11105.55 (15)
N4—N5—Cu1113.00 (10)C9—C10—H10127.2
N1—C1—C2110.82 (16)C11—C10—H10127.2
N1—C1—H1124.6N5—C11—C10111.17 (16)
C2—C1—H1124.6N5—C11—H11124.4
C3—C2—C1105.81 (16)C10—C11—H11124.4
N3—Cu1—N1—C1176.2 (2)Cu1—N1—C1—C2175.94 (15)
N5—Cu1—N1—C1165.68 (17)N1—C1—C2—C30.2 (2)
Br2—Cu1—N1—C135.0 (2)N1—N2—C3—C20.86 (19)
Br1—Cu1—N1—C174.0 (2)C4—N2—C3—C2179.01 (17)
N3—Cu1—N1—N20.80 (11)C1—C2—C3—N20.65 (19)
N5—Cu1—N1—N218.9 (2)C8—N3—C4—C52.0 (3)
Br2—Cu1—N1—N2149.61 (11)Cu1—N3—C4—C5178.21 (13)
Br1—Cu1—N1—N2101.45 (11)C8—N3—C4—N2178.29 (15)
C1—N1—N2—C30.71 (19)Cu1—N3—C4—N22.04 (19)
Cu1—N1—N2—C3177.72 (11)C3—N2—C4—N3177.16 (17)
C1—N1—N2—C4179.19 (15)N1—N2—C4—N32.7 (2)
Cu1—N1—N2—C42.17 (18)C3—N2—C4—C52.6 (3)
Br2—Cu1—N3—C481.95 (15)N1—N2—C4—C5177.56 (16)
Br1—Cu1—N3—C498.78 (12)N3—C4—C5—C61.0 (3)
Br2—Cu1—N3—C894.32 (14)N2—C4—C5—C6178.75 (16)
Br1—Cu1—N3—C884.96 (13)C4—C5—C6—C71.8 (3)
N1—Cu1—N3—C40.74 (12)C5—C6—C7—C80.1 (3)
N5—Cu1—N3—C4171.40 (14)C4—N3—C8—C74.2 (3)
N1—Cu1—N3—C8177.00 (14)Cu1—N3—C8—C7179.61 (13)
N5—Cu1—N3—C84.87 (13)C4—N3—C8—N4174.38 (14)
C9—N4—N5—C110.78 (19)Cu1—N3—C8—N41.86 (19)
C8—N4—N5—C11177.90 (15)C6—C7—C8—N33.2 (3)
C9—N4—N5—Cu1174.68 (11)C6—C7—C8—N4175.11 (16)
C8—N4—N5—Cu18.20 (18)C9—N4—C8—N3179.27 (17)
N3—Cu1—N5—C11177.3 (2)N5—N4—C8—N34.3 (2)
N1—Cu1—N5—C11164.57 (17)C9—N4—C8—C72.3 (3)
Br2—Cu1—N5—C1134.4 (2)N5—N4—C8—C7174.13 (16)
Br1—Cu1—N5—C1173.57 (19)N5—N4—C9—C100.61 (19)
N3—Cu1—N5—N46.73 (11)C8—N4—C9—C10177.19 (17)
N1—Cu1—N5—N424.8 (2)N4—C9—C10—C110.20 (19)
Br2—Cu1—N5—N4154.95 (10)N4—N5—C11—C100.64 (19)
Br1—Cu1—N5—N497.03 (11)Cu1—N5—C11—C10171.68 (14)
N2—N1—C1—C20.3 (2)C9—C10—C11—N50.3 (2)

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu2Br2(ClO4)2(C11H9N5)2][CuBr2(C11H9N5)]
Mr908.26434.58
Crystal system, space groupMonoclinic, P21Monoclinic, P21/c
Temperature (K)120120
a, b, c (Å)7.8033 (2), 15.1425 (5), 12.7301 (3)11.0056 (2), 7.8940 (1), 15.2370 (2)
β (°) 106.305 (2) 93.856 (1)
V3)1443.71 (7)1320.77 (3)
Z24
Radiation typeMo KαMo Kα
µ (mm1)4.497.70
Crystal size (mm)0.13 × 0.12 × 0.100.30 × 0.27 × 0.25
Data collection
DiffractometerBruker SMART 6K CCD area-detector
diffractometer
Bruker SMART 6K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Multi-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.604, 0.6620.206, 0.249
No. of measured, independent and
observed [I > 2σ(I)] reflections
56664, 9732, 6041 24033, 4675, 3978
Rint0.0920.034
(sin θ/λ)max1)0.7560.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.128, 1.03 0.023, 0.055, 1.03
No. of reflections97324675
No. of parameters416172
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.66, 1.130.61, 0.77
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881?
Absolute structure parameter0.000 (12)?

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
Br1—Cu12.3436 (10)Cu1—N52.016 (6)
Br1—Cu22.9945 (11)Cu1—O52.466 (6)
Br2—Cu22.3578 (10)Cu2—N212.016 (6)
Br2—Cu13.0249 (11)Cu2—N231.962 (6)
Cu1—N31.977 (5)Cu2—N252.013 (5)
Cu1—N11.998 (6)Cu2—O42.564 (6)
Cu1—Br1—Cu286.84 (3)Br1—Cu1—Br293.39 (4)
Cu2—Br2—Cu185.88 (3)N21—Cu2—Br2100.95 (15)
N1—Cu1—Br1102.00 (17)N23—Cu2—Br2176.42 (17)
N3—Cu1—Br1178.59 (16)N25—Cu2—Br2101.72 (18)
N5—Cu1—Br1100.43 (15)N21—Cu2—Br194.87 (16)
N1—Cu1—Br294.25 (17)N23—Cu2—Br189.69 (16)
N3—Cu1—Br287.83 (16)N25—Cu2—Br185.04 (16)
N5—Cu1—Br286.26 (16)Br2—Cu2—Br193.88 (3)
Selected geometric parameters (Å, º) for (II) top
Cu1—Br12.5740 (3)N2—C41.406 (2)
Cu1—Br22.3946 (3)N3—C41.329 (2)
Cu1—N12.0218 (15)N3—C81.331 (2)
Cu1—N31.9854 (14)N4—C91.363 (2)
Cu1—N52.0264 (15)N4—N51.376 (2)
N1—C11.329 (2)N4—C81.402 (2)
N1—N21.371 (2)N5—C111.327 (2)
N2—C31.360 (2)
N3—Cu1—N177.86 (6)N5—Cu1—Br2100.07 (4)
N3—Cu1—N577.87 (6)N3—Cu1—Br1104.03 (4)
N1—Cu1—N5154.50 (6)N1—Cu1—Br1100.58 (4)
N3—Cu1—Br2148.76 (4)N5—Cu1—Br192.76 (4)
N1—Cu1—Br296.62 (4)Br2—Cu1—Br1107.203 (10)
 

References

First citationAbel, E. W., Hyl­andas, K. A., Olsen, M. D., Orrell, K. G., Osborne, A. G., Sik, V. & Ward, G. N. (1994). J. Chem. Soc. Dalton Trans. pp. 1079–1090.  CrossRef Web of Science Google Scholar
First citationBessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1992). J. Chem. Soc. Dalton Trans. pp. 3223–3228.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART-NT, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarranza, J., Brennan, C., Sletten, J., Clement-Juan, J. M., Lloret, F. & Julve, M. (2003). Inorg. Chem. 42, 8716–8727.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDownard, A. J., Honey, G. E. & Steel, P. J. (1991). Inorg. Chem. pp. 3733–3737.  CrossRef Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHoffmann, S. K., Towle, D. K., Hatfield, W. E., Wieghardt, K., Chaudhuri, P. & Weiss, J. (1984). Mol. Cryst. Liq. Cryst. 107, 161–170.  CrossRef CAS Web of Science Google Scholar
First citationHolland, J. M., McAllister, J. A., Kilner, C. A., Thornton-Pett, M., Bridgeman, A. J. & Halcrow, M. A. (2002). J. Chem. Soc. Dalton Trans. pp. 548–554.  Web of Science CSD CrossRef Google Scholar
First citationJameson, D. L., Blaho, J. K., Kruger, K. T. & Goldsby, K. A. (1989). Inorg. Chem. 28, 4312–4314.  CrossRef CAS Web of Science Google Scholar
First citationJameson, D. L. & Goldsby, K. A. (1990). J. Org. Chem. 55, 4992–4994.  CrossRef CAS Web of Science Google Scholar
First citationMarsh, W. E., Patel, K. C., Hatfield, W. E. & Hodgson, D. L. (1983). Inorg. Chem. 22, 511–515.  CSD CrossRef CAS Web of Science Google Scholar
First citationMoney, V. A., Elhaik, J., Evans, I. R., Halcrow, M. A. & Howard, J. A. K. (2004). Dalton Trans. pp. 65–69.  Web of Science CSD CrossRef Google Scholar
First citationRagunathan, K. G. & Bharadwaj, P. K. (1992). J. Chem. Soc. Dalton Trans. pp. 2417–2422.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSolanki, N. K., Mclnnes, E. J. L., Mabbs, F. E., Radojevic, S., McPartlin, M., Feeder, N., Davies, J. E. & Halcrow, M. A. (1998). Angew. Chem. Int. Ed. 37, 2221–2223.  Web of Science CrossRef CAS Google Scholar
First citationXu, Z., White, S., Thompson, L. K., Miller, D. O., Ohba, M., Okawa, H., Wilson, C. & Howard, J. A. K. (2000). J. Chem. Soc. Dalton Trans. pp. 1751–1757.  Web of Science CSD CrossRef Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds