metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

[(1R,2R)-2-Amino-1,2-di­phenyl-N-(p-tolylsulfonyl)ethylamido]chloro­(η6-ethoxybenzene)ruthenium(II) methanol solvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, University of Ilam, Ilam, Iran, and bDepartment of Chemistry, University of Sheffield, Sheffield S3 7HF, England
*Correspondence e-mail: janet_soleimannejad@yahoo.com

(Received 16 August 2004; accepted 20 December 2004; online 12 February 2005)

The title compound, [Ru(C21H21N2O2S)Cl(C8H10O)]·CH4O or [Ru(TsDPEN)Cl(η6-C6H5OCH2CH3)]·CH4O [where TsDPEN is (1R,2R)-1,2-diphenyl-N-(p-toluene­sulfonyl)ethyl­enediamine], contains an S-chiral Ru centre in a distorted octahedral environment, with similar bond lengths and angles to analogous complexes. The very short (N—)H⋯Cl distance of 2.61 Å is ascribed to an intramolecular hydrogen bond.

Comment

Arene–ruthenium(II) derivatives are of interest both as reagents in organic chemistry (Pigge & Coniglio, 2001[Pigge, F. C. & Coniglio, J. J. (2001). Curr. Org. Chem. 5, 757-784.]) and as catalysts for a wide range of reactions, including arene hydrogenation (Boxwell et al., 2002[Boxwell, C. J., Dyson, P. J., Ellis, D. J. & Welton, T. (2002). J. Am. Chem. Soc. 124, 9334-9335.]), alkene metathesis (Zaja et al., 2003[Zaja, M., Connon, S. J., Dunne, A. M., Rivard, M., Buschmann, N., Jiricek, J. & Blechert, S. (2003). Tetrahedron, 59, 6545-6558.]) and Diels–Alder reactions (Davenport et al., 2004[Davenport, A. J., Davies, D. L., Fawcett, J. & Russell, D. R. (2004). J. Chem. Soc. Dalton Trans. pp. 1481-1492.]). Arene–ruthenium complexes containing chiral diamine ligands are of particular interest, since Noyori and co-workers (Noyori & Hashiguchi, 1997[Noyori, R. & Hashiguchi, S. (1997). Acc. Chem. Res. 30, 97-102.]) have demonstrated that they are active enantioselective hydrogen-transfer catalysts. We have recently developed a simple method of synthesizing func­tionalized arene–ruthenium complexes, e.g. [RuCl2(η6-C6H5OCH2CH2OH)]2 (Soleimannejad & White, 2005[Soleimannejad, J. & White, C. (2005). Organometallics. Submitted.]), and we wish to exploit this using the functionality to link the arene to polymer supports in order to prepare easily recyclable `Noyori-type' catalysts (Soleimannejad et al., 2003[Soleimannejad, J., Sisson, A. & White, C. (2003). Inorg. Chim. Acta, 352, 121-128.]). During this study, the title compound, (I)[link], was synthesized, crystallizing with a methanol solvent molecule.

The Ru atom in (I)[link] has a pseudo-octahedral geometry, being coordinated to a chloride ligand, an η6-arene occupying three facial coordination sites, and a five-membered chelate ligand with neutral amine and anionic sulfonamide moieties. The configuration of this chiral ruthenium centre is S (Stanley & Baird, 1975[Stanley, K. & Baird, M. C. (1975). J. Am. Chem. Soc. 97, 6598-6599.]). The Ru—Cl bond length of 2.4526 (16) Å is slightly longer than those observed in the analogous complexes found in a search of the Cambridge Structural Database (CSD, Version 5.25; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]), [RuCl(TsDPEN)(η6-1,4-MeC6H4CHMe2)] [2.435 (4) Å; CSD refcode TAXFON10; Haack et al., 1997[Haack, K. J., Hashiguchi, S., Fujii, A., Ikariya, T. & Noyori, R. (1997). Angew. Chem. Int. Ed. Engl. 36, 285-288.]] and [RuCl(TsDPEN)(η6-C6H5OCH2CH2OH)] [2.430 (4) Å; refcode OKAMIW; ­Soleimannejad et al., 2003[Soleimannejad, J., Sisson, A. & White, C. (2003). Inorg. Chim. Acta, 352, 121-128.]], but in agreement with that reported for [RuCl{(1S,2S)-N-(SO2CF3)NCH(C6H5)CH(C6H5)NH2}(η6-C6H6)] [2.463 (3) Å; refcode ZALWIS; ­Hashiguchi et al., 1995[Hashiguchi, S., Fujii, A., Takehara, J., Ikariya, T. & Noyori, R. (1995). J. Am. Chem. Soc. 117, 7562-7563.]]. The η6-arene ring in (I)[link] is planar [average r.m.s. deviation from the plane Δ = 0.014 (4) Å], as are the other three arene rings [Δ 0.006 (4) Å for the C9–C14 ring, 0.008 (3) Å for the C15–C20 ring and 0.008 (3) Å for the C23–C28 ring]. The distance of the Ru atom from the centre of the η6-arene ring is 1.670 Å, whereas the mean Ru—C distance is 2.194 (7) Å, similar to the other arene–ruthenium compounds noted above.

[Scheme 1]

The –OCH2CH3 side chain is on the same side as the chloride ligand, rather than the tosyl group, to minimize unfavourable steric interactions. A similar orientation of the alkoxy side chain was reported for [RuCl(NH2CH2CH2NTs)(η6-C6H5OCH2CH2OH)] (Soleimannejad et al., 2003[Soleimannejad, J., Sisson, A. & White, C. (2003). Inorg. Chim. Acta, 352, 121-128.]), whereas in OKAMIW, the alkoxy side chain is directed away from the chloride ligand on the opposite site of the molecule. The Ru—N2 and Ru—N1 bond lengths are 2.134 (5) and 2.111 (5) Å, respectively, and both bond distances are com­parable with those in TAFON10, OKAMIW, ZALWIS and [RuCl{C5H4N-2-C(Me)=N(CHMePh)}(η6-1,3,5-C6H3Me3)]+ (Davies et al., 1997[Davies, D. L., Fawcett, J., Krafcyk, R. & Russell, D. R. (1997). J. Organomet. Chem. 545-546, 581-585.]).

The five-membered chelate ring of the (R,R)-TsDPEN ligand is highly skewed and has two diastereotopic N-bound H atoms, labelled H1B and H1C. The H1B⋯Cl distance of 2.61 Å is much shorter than the sum of the van der Waals radii (2.95 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441.]), suggesting the existence of a hydrogen-bond attraction. Similar hydrogen bonding has been proposed in related `Noyori-type catalysts' (Haack et al., 1997[Haack, K. J., Hashiguchi, S., Fujii, A., Ikariya, T. & Noyori, R. (1997). Angew. Chem. Int. Ed. Engl. 36, 285-288.]). Noyori has reported that complexes of this type eliminate HCl to form hydrogen-transfer catalysts of the type [Ru(η6-arene){TsNCH(Ph)CH(Ph)NH}], and presumably such an interaction between Cl and NH facilitates this elimination.

One methanol solvent molecule per molecule of the complex is also present in the crystal lattice of (I)[link]. Hydrogen bonding between the methanol and the complex is responsible for the formation of a one-dimensional chain of molecules in the [100] direction. Evidence for these interactions can be seen in Table 2[link], with the last entries, though weak, included for completeness (the methanol O atom is O1S).

[Figure 1]
Figure 1
A view of the structure of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms and the methanol solvent molecule have been omitted for clarity.

Experimental

The title compound was synthesized in 72% yield by the reaction of [RuCl2(η6-C6H5OC2H5)]2 (Soleimannejad & White, 2005[Soleimannejad, J. & White, C. (2005). Organometallics. Submitted.]; 0.20 g, 0.34 mmol) and (R,R)-1,2-diphenyl-N-(p-toluene­sulfonyl)­ethyl­ene­diamine {[(R,R)-TsDPEN]H; 0.25 g, 0.68 mmol} in the presence of triethyl­amine (0.20 ml, 1.36 mmol) in 2-propanol (7 ml) at 353 K for 1 h. The orange solution was concentrated to 2 ml and the resulting solid was filtered off, washed with water and dried under vacuum. Yellow crystals of (I)[link] were grown from methanol. Analysis found: C 54.3, H 5.1, Cl 5.9, N 4.1, S 4.8%; C29H31ClN2O3RuS·MeOH requires: C 54.9, H 5.4, Cl 5.4, N 4.3, S 4.9%. MS, m/z (FAB+): 624 ([M+], 6%), 589 ([M+] − Cl, 100%).

Crystal data
  • [Ru(C21H21N2O2S)Cl(C8H10O)]·CH4O

  • Mr = 656.18

  • Monoclinic, P21

  • a = 7.8880 (15) Å

  • b = 14.591 (3) Å

  • c = 12.955 (2) Å

  • β = 91.799 (3)°

  • V = 1490.3 (5) Å3

  • Z = 2

  • Dx = 1.462 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3067 reflections

  • θ = 5.2–51.8°

  • μ = 0.72 mm−1

  • T = 150 (2) K

  • Block, yellow

  • 0.21 × 0.08 × 0.08 mm

Data collection
  • Bruker SMART1000 CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan(SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. ])Tmin = 0.863, Tmax = 0.944

  • 9704 measured reflections

  • 5928 independent reflections

  • 4729 reflections with I > 2σ(I)

  • Rint = 0.049

  • θmax = 27.5°

  • h = −10 → 10

  • k = −18 → 14

  • l = −16 → 14

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.083

  • S = 0.96

  • 5928 reflections

  • 352 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0271P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 2454 Friedel pairs

  • Flack parameter: −0.01 (3)

Table 1
Selected interatomic distances (Å)

Ru1—N1 2.110 (4)
Ru1—N2 2.131 (3)
Ru1—C2 2.162 (5)
Ru1—C6 2.172 (5)
Ru1—C1 2.179 (5)
Ru1—C4 2.243 (5)
Ru1—Cl1 2.4532 (13)
S1—O2 1.433 (3)
S1—O3 1.446 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1S⋯Cl1i 0.84 2.32 3.146 (4) 168
N1—H1B⋯Cl1 0.92 2.61 2.971 (4) 104
N1—H1C⋯O1S 0.92 2.11 2.892 (6) 143
C2—H2A⋯O1S 1.00 2.46 3.252 (7) 136
C6—H6A⋯O2 1.00 2.38 2.916 (6) 112
C20—H20A⋯O3 0.95 2.47 2.859 (6) 105
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+1].

H atoms were positioned geometrically and refined using a riding model (including torsional freedom for methyl groups), with C—H distances in the range 0.95–0.98 Å and N—H distances of 0.92 Å, and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq of the parent atom.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. ]); cell refinement: SMART; data reduction: SHELXTL (Bruker, 1997[Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. ]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Arene–ruthenium(II) derivatives are of interest both as reagents in organic chemistry (Pigge & Coniglio, 2001) and as catalysts for a wide range of reactions, including arene hydrogenation (Boxwell et al., 2002), alkene metathesis (Zaja et al., 2003) and Diels–Alder reactions (Davenport et al., 2004). Arene–ruthenium complexes containing chiral diammine ligands are of particular interest, since Noyori and co-workers (Noyori & Hashiguchi, 1997) have demonstrated that they are active enantioselective hydrogen-transfer catalysts. We have recently developed a simple method of synthesizing functionalized arene–ruthenium complexes, e.g. [RuCl2(η6-C6H5OCH2CH2OH)]2 (Soleimannejad & White, 2004), and we wish to exploit this using the functionality to link the arene to polymer supports, in order to prepare easily recyclable `Noyori-type' catalysts (Soleimannejad et al., 2003). During this study, the title compound, (I), was also synthesized, crystallizing with a methanol solvent of crystallization.

The ruthenium in (I) has a pseudo-octahedral geometry, being coordinated to a Cl, an η6-arene occupying three facial coordination sites, and a five-membered chelate ligand with neutral amino and anionic sulfonamide moieties. The configuration of this chiral ruthenium centre is (S) (Stanley & Baird, 1975). The Ru—Cl bond length of 2.4526 (16) Å is slightly longer than those observed in the analogous complexes found in a search of the Cambridge Structural Database (CSD, Version?; Allen, 2002), [RuCl(TsDPEN)(η6-1,4-MeC6H4CHMe2)] [2.435 (4) Å; CSD refcode TAXFON10; Haack et al., 1997] and [RuCl(TsDPEN)(η6-C6H5OCH2CH2OH)] [2.430 (4) Å; OKAMIW; Soleimannejad et al., 2003], but in agreement with that reported for [RuCl{(1S,2S)-N-(SO2CF3)NCH(C6H5)CH (C6H5)NH2}(η6-C6H6)] [2.463 (3) Å; ZALWIS; Hashiguchi et al., 1995]. The η6-arene ring in (I) is planar [average r.m.s deviation from the plane Δ = 0.0135 (36) Å], as are the three other arene rings [Δ 0.0064 (40) Å for the C9–C14 ring, 0.0078 (33) Å for the C15–C20 ring and 0.0078 (33) Å for the C23–C28 ring]. The distance of the Ru atom from the centre of the η6-arene ring is 1.670 Å, whereas the mean Ru—C distance is 2.194 (7) Å, similar to the other arene–ruthenium compounds noted above.

The –OCH2CH3 side chain is on the same side as the Cl, rather than the tosyl group, to minimize unfavourable steric interactions. A similar orientation of the alkoxy side-chain was reported for [RuCl(NH2CH2CH2NTs)(η6-C6H5OCH2CH2OH)] (Soleimannejad et al., 2003), whereas in OKAMIW, the alkoxy side-chain is directed away from the Cl on the opposite site of the molecule. The Ru—N2 and Ru—N1 bond lengths are 2.134 (5) and 2.111 (5) Å, respectively, and both bond distances are also comparable with those in TAFON10, OKAMIW, ZALWIS and [RuCl{C5H4N-2-C(Me)N(CHMePh)}(η6-1,3,5-C6H3Me3)]+ (Davies et al., 1997).

The five-membered chelate ring of the (R,R)-TsDPEN ligand is highly skewed and has two diastereotopic N-bound H atoms, labelled H1B and H1C. The H1B···Cl distance of 2.612 Å is much shorter than the sum of the van der Waals radii (2.95 Å; Reference?), suggesting the existence of a hydrogen-bond attraction. Similar hydrogen bonding has been proposed in related `Noyori-type catalysts' (Haack et al., 1997). Noyori has reported that complexes of this type eliminate HCl to form hydrogen-transfer catalysts of the type [Ru(η6-arene)(TsNCH(Ph)CH(Ph)NH], and presumably such an interaction between the Cl and NH facilitates this elimination.

One molecule of solvent methanol for each molecule of the complex is also present in the crystal lattice of (I). Hydrogen bonding between the methanol and the complex is responsible for the formation of a one-dimensional chain of molecules in the [100] direction. Evidence for these interactions can be seen in Table 2, with the last entries, though weak, included for completeness (the methanol O atom is O1S).

Experimental top

The title compound was synthesized in 72% yield by the reaction of [RuCl2(η6-C6H5OC2H5)]2 (Soleimannejad & White, 2004; 0.20 g, 0.34 mmol) and (R,R)—N-(p-toluenesulfonyl)-1,2-diphenylethylenediamine {[(R,R)-TsDPEN]H; 0.25 g, 0.68 mmol} in the presence of triethylamine (0.20 ml, 1.36 mmol) in 2-propanol (7 ml) at 353 K for 1 h. The orange solution was concentrated to 2 ml and the resulting solid was filtered off, washed with water and dried under vacuum. Orange crystals of (I) were grown from methanol. Analysis, found: C 54.3, H 5.1, Cl 5.9, N 4.1, S 4.8%; C29H31ClN2O3RuS·MeOH requires: C 54.9, H 5.4, Cl 5.4, N 4.3, S 4.9%. MS, m/z (FAB+): 624 ([M+], 6%), 589 ([M+]-Cl, 100%).

Refinement top

H atoms were positioned geometrically and refined with a riding model (including torsional freedom for methyl groups), with C—H distances in the range 0.95–0.98 Å and N—H distances of 0.92 Å, and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the ??% probability level. H atoms and the methanol solvate molecule have been omitted for clarity.
Chloro(η6-ethoxyphenyl){(1R,2R)-N-(p-toluenesulfonyl)- 1,2-diphenylethylenediamino}ruthenium(II) methanol solvate top
Crystal data top
[RuCl(C21H21N2O2S)(C8H10O)]·CH4OF(000) = 676
Mr = 656.18Dx = 1.462 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.8880 (15) ÅCell parameters from 3067 reflections
b = 14.591 (3) Åθ = 5.2–51.8°
c = 12.955 (2) ŵ = 0.72 mm1
β = 91.799 (3)°T = 150 K
V = 1490.3 (5) Å3Block, yellow
Z = 20.21 × 0.08 × 0.08 mm
Data collection top
Bruker SMART1000 CCD area-detector
diffractometer
5928 independent reflections
Radiation source: fine-focus sealed tube4729 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 100 pixels mm-1θmax = 27.5°, θmin = 2.1°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
k = 1814
Tmin = 0.863, Tmax = 0.944l = 1614
9704 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0271P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
5928 reflectionsΔρmax = 1.14 e Å3
352 parametersΔρmin = 0.32 e Å3
49 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Crystal data top
[RuCl(C21H21N2O2S)(C8H10O)]·CH4OV = 1490.3 (5) Å3
Mr = 656.18Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.8880 (15) ŵ = 0.72 mm1
b = 14.591 (3) ÅT = 150 K
c = 12.955 (2) Å0.21 × 0.08 × 0.08 mm
β = 91.799 (3)°
Data collection top
Bruker SMART1000 CCD area-detector
diffractometer
5928 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
4729 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 0.944Rint = 0.049
9704 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.083Δρmax = 1.14 e Å3
S = 0.96Δρmin = 0.32 e Å3
5928 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs
352 parametersAbsolute structure parameter: 0.01 (3)
49 restraints
Special details top

Experimental. Chloro(1R,2R-N-(4-toluenesulfonyl)-1,2-diphenylethylenediamine) (ethoxybenzene)ruthenium 1 methanol solvate

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.05598 (4)0.34113 (2)0.54299 (2)0.02583 (9)
S10.11434 (14)0.17368 (7)0.38012 (9)0.0264 (3)
Cl10.24201 (15)0.29831 (8)0.51191 (10)0.0344 (3)
N10.0197 (5)0.4500 (2)0.4448 (3)0.0307 (9)
H1B0.13550.45700.44690.037*
H1C0.02970.50340.46850.037*
N20.1102 (4)0.2844 (2)0.3961 (3)0.0200 (8)
O10.1187 (5)0.2802 (2)0.7581 (3)0.0457 (10)
O20.1603 (4)0.1312 (2)0.4767 (2)0.0325 (8)
O30.0349 (4)0.1378 (2)0.3264 (3)0.0352 (8)
C10.3109 (6)0.3705 (3)0.6036 (4)0.0354 (9)
H1A0.40140.39000.55590.043*
C20.1948 (7)0.4363 (4)0.6417 (4)0.0337 (9)
H2A0.20450.50190.62040.040*
C30.0516 (7)0.4071 (3)0.6955 (4)0.0343 (9)
H3A0.03990.45240.70950.041*
C40.0199 (6)0.3134 (3)0.7112 (4)0.0340 (9)
C50.1320 (7)0.2468 (4)0.6686 (4)0.0343 (9)
H5A0.09710.18100.66490.041*
C60.2754 (7)0.2761 (4)0.6173 (4)0.0352 (9)
H6A0.34070.23020.57730.042*
C70.2532 (6)0.3425 (6)0.7822 (4)0.0516 (12)
H7A0.29420.37450.71880.062*
H7B0.21140.38890.83250.062*
C80.3936 (8)0.2888 (5)0.8267 (5)0.0676 (19)
H8A0.48670.33020.84340.101*
H8B0.35220.25780.88970.101*
H8C0.43450.24310.77630.101*
C90.0890 (6)0.3222 (3)0.2035 (3)0.0291 (11)
C100.2576 (5)0.3390 (4)0.1840 (3)0.0319 (9)
H10A0.33450.35190.24000.038*
C110.3163 (6)0.3375 (5)0.0846 (4)0.0461 (12)
H11A0.43300.34790.07290.055*
C120.2040 (8)0.3205 (4)0.0014 (4)0.0558 (17)
H12A0.24280.32090.06730.067*
C130.0371 (8)0.3035 (3)0.0201 (4)0.0504 (15)
H13A0.03990.29140.03610.060*
C140.0211 (7)0.3035 (3)0.1203 (4)0.0357 (12)
H14A0.13690.29060.13190.043*
C150.2843 (5)0.1491 (3)0.2980 (3)0.0235 (9)
C160.4480 (6)0.1760 (3)0.3263 (4)0.0308 (11)
H16A0.46860.20980.38810.037*
C170.5813 (6)0.1533 (3)0.2639 (4)0.0352 (12)
H17A0.69260.17340.28250.042*
C180.5554 (6)0.1017 (3)0.1748 (4)0.0355 (12)
C190.3919 (6)0.0748 (3)0.1487 (4)0.0329 (11)
H19A0.37190.03880.08840.040*
C200.2567 (6)0.0989 (3)0.2083 (4)0.0303 (11)
H20A0.14480.08110.18770.036*
C210.7048 (8)0.0758 (4)0.1085 (5)0.0497 (17)
H21A0.66410.03850.04990.075*
H21B0.78770.04060.15020.075*
H21C0.75850.13150.08290.075*
C220.0181 (5)0.3330 (4)0.3105 (3)0.0238 (9)
H22B0.10340.31340.30860.029*
C230.0280 (6)0.4346 (3)0.3365 (3)0.0273 (10)
H23A0.14890.45400.33050.033*
C240.0778 (7)0.4912 (3)0.2603 (4)0.0331 (12)
C250.0018 (8)0.5444 (3)0.1862 (4)0.0439 (14)
H25B0.11830.54740.18400.053*
C260.1011 (10)0.5931 (4)0.1156 (5)0.0582 (18)
H26A0.04770.62810.06410.070*
C270.2728 (13)0.5920 (5)0.1181 (5)0.066 (2)
H27A0.33830.62820.07070.080*
C280.3518 (9)0.5387 (5)0.1892 (5)0.0613 (19)
H28A0.47210.53640.18980.074*
C290.2556 (7)0.4878 (4)0.2606 (4)0.0429 (13)
H29B0.31050.45070.30970.052*
O1S0.2496 (6)0.5844 (3)0.4582 (4)0.0673 (13)
H1S0.23180.64100.46220.101*
C1S0.4098 (8)0.5696 (4)0.4227 (5)0.0621 (18)
H2S0.41990.59850.35490.093*
H3S0.42980.50360.41660.093*
H4S0.49390.59620.47130.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.03008 (17)0.02161 (16)0.02581 (17)0.0015 (2)0.00117 (13)0.0005 (2)
S10.0271 (6)0.0206 (6)0.0318 (6)0.0008 (5)0.0038 (5)0.0011 (5)
Cl10.0300 (6)0.0331 (6)0.0402 (7)0.0022 (5)0.0041 (5)0.0039 (5)
N10.043 (2)0.023 (2)0.026 (2)0.0053 (17)0.0023 (19)0.0066 (16)
N20.0248 (19)0.0143 (18)0.021 (2)0.0045 (15)0.0030 (16)0.0012 (15)
O10.053 (2)0.045 (2)0.040 (2)0.0069 (18)0.0166 (19)0.0079 (17)
O20.0399 (19)0.0233 (18)0.0349 (19)0.0041 (15)0.0092 (16)0.0063 (14)
O30.0278 (17)0.0279 (18)0.050 (2)0.0003 (14)0.0021 (16)0.0083 (16)
C10.0385 (19)0.036 (2)0.0309 (19)0.0032 (15)0.0079 (16)0.0020 (16)
C20.041 (2)0.0302 (19)0.029 (2)0.0018 (16)0.0067 (17)0.0013 (16)
C30.0411 (19)0.034 (2)0.0281 (19)0.0061 (17)0.0028 (17)0.0027 (16)
C40.0394 (19)0.036 (2)0.0266 (18)0.0034 (15)0.0008 (16)0.0031 (15)
C50.043 (2)0.0318 (19)0.027 (2)0.0065 (16)0.0069 (17)0.0016 (16)
C60.040 (2)0.035 (2)0.0298 (19)0.0121 (17)0.0101 (16)0.0032 (17)
C70.054 (3)0.060 (3)0.042 (3)0.005 (5)0.010 (2)0.007 (4)
C80.054 (4)0.089 (5)0.060 (4)0.006 (4)0.012 (3)0.007 (4)
C90.043 (3)0.015 (3)0.029 (2)0.0036 (19)0.004 (2)0.0003 (17)
C100.041 (2)0.022 (2)0.033 (2)0.005 (3)0.0023 (18)0.003 (3)
C110.057 (3)0.039 (3)0.044 (3)0.002 (4)0.021 (2)0.002 (4)
C120.086 (4)0.051 (5)0.032 (3)0.001 (3)0.018 (3)0.004 (3)
C130.073 (4)0.041 (3)0.037 (3)0.006 (3)0.005 (3)0.006 (2)
C140.042 (3)0.028 (2)0.037 (3)0.004 (2)0.000 (2)0.007 (2)
C150.025 (2)0.020 (2)0.026 (2)0.0026 (18)0.0014 (19)0.0010 (18)
C160.030 (2)0.032 (3)0.030 (3)0.000 (2)0.006 (2)0.002 (2)
C170.028 (2)0.040 (3)0.038 (3)0.007 (2)0.001 (2)0.001 (2)
C180.037 (3)0.036 (3)0.034 (3)0.013 (2)0.007 (2)0.006 (2)
C190.048 (3)0.025 (3)0.026 (3)0.002 (2)0.001 (2)0.005 (2)
C200.033 (3)0.027 (3)0.030 (3)0.001 (2)0.006 (2)0.002 (2)
C210.046 (4)0.051 (4)0.053 (4)0.011 (3)0.020 (3)0.002 (3)
C220.0229 (18)0.022 (2)0.027 (2)0.001 (2)0.0009 (16)0.000 (2)
C230.036 (3)0.020 (2)0.026 (3)0.001 (2)0.003 (2)0.0019 (19)
C240.053 (3)0.018 (2)0.027 (3)0.012 (2)0.005 (2)0.0008 (19)
C250.068 (4)0.028 (3)0.036 (3)0.002 (3)0.013 (3)0.002 (2)
C260.107 (6)0.035 (3)0.033 (3)0.010 (4)0.000 (4)0.004 (3)
C270.132 (7)0.040 (4)0.026 (4)0.035 (4)0.019 (4)0.001 (3)
C280.066 (4)0.063 (4)0.053 (4)0.023 (4)0.023 (4)0.016 (3)
C290.046 (3)0.043 (3)0.039 (3)0.010 (3)0.007 (3)0.003 (2)
O1S0.061 (3)0.044 (2)0.097 (4)0.010 (2)0.024 (3)0.019 (2)
C1S0.059 (4)0.056 (4)0.073 (5)0.022 (3)0.017 (4)0.016 (3)
Geometric parameters (Å, º) top
Ru1—N12.110 (4)C11—C121.396 (7)
Ru1—N22.131 (3)C11—H11A0.9500
Ru1—C22.162 (5)C12—C131.369 (8)
Ru1—C62.172 (5)C12—H12A0.9500
Ru1—C12.179 (5)C13—C141.390 (7)
Ru1—C52.200 (5)C13—H13A0.9500
Ru1—C32.199 (5)C14—H14A0.9500
Ru1—C42.243 (5)C15—C201.385 (6)
Ru1—Cl12.4532 (13)C15—C161.388 (6)
S1—O21.433 (3)C16—C171.387 (6)
S1—O31.446 (3)C16—H16A0.9500
S1—N21.629 (3)C17—C181.387 (7)
S1—C151.774 (4)C17—H17A0.9500
Cl1—H1C3.7340C18—C191.380 (7)
N1—C231.481 (5)C18—C211.528 (7)
N1—H1B0.9200C19—C201.382 (7)
N1—H1C0.9200C19—H19A0.9500
N2—C221.486 (5)C20—H20A0.9500
O1—C41.357 (6)C21—H21A0.9800
O1—C71.438 (7)C21—H21B0.9800
C1—C61.418 (7)C21—H21C0.9800
C1—C21.425 (7)C22—C231.521 (7)
C1—H1A1.0000C22—H22B1.0000
C2—C31.411 (7)C23—C241.517 (6)
C2—H2A1.0000C23—H23A1.0000
C3—C41.406 (7)C24—C251.385 (7)
C3—H3A1.0000C24—C291.404 (7)
C4—C51.435 (7)C25—C261.382 (8)
C5—C61.397 (7)C25—H25B0.9500
C5—H5A1.0000C26—C271.356 (10)
C6—H6A1.0000C26—H26A0.9500
C7—C81.487 (8)C27—C281.370 (10)
C7—H7A0.9900C27—H27A0.9500
C7—H7B0.9900C28—C291.392 (8)
C8—H8A0.9800C28—H28A0.9500
C8—H8B0.9800C29—H29B0.9500
C8—H8C0.9800O1S—C1S1.375 (7)
C9—C101.384 (6)O1S—H1S0.8400
C9—C141.390 (6)C1S—H2S0.9800
C9—C221.519 (6)C1S—H3S0.9800
C10—C111.383 (6)C1S—H4S0.9800
C10—H10A0.9500
N1—Ru1—N279.35 (13)O1—C7—H7A110.0
N1—Ru1—C290.09 (18)C8—C7—H7A110.0
N2—Ru1—C2131.74 (17)O1—C7—H7B110.0
N1—Ru1—C6143.39 (19)C8—C7—H7B110.0
N2—Ru1—C692.66 (17)H7A—C7—H7B108.4
C2—Ru1—C668.7 (2)C7—C8—H8A109.5
N1—Ru1—C1108.05 (17)C7—C8—H8B109.5
N2—Ru1—C1100.93 (17)H8A—C8—H8B109.5
C2—Ru1—C138.34 (18)C7—C8—H8C109.5
C6—Ru1—C138.0 (2)H8A—C8—H8C109.5
N1—Ru1—C5169.23 (17)H8B—C8—H8C109.5
N2—Ru1—C5111.10 (16)C10—C9—C14118.3 (4)
C2—Ru1—C580.96 (18)C10—C9—C22122.1 (4)
C6—Ru1—C537.26 (19)C14—C9—C22119.3 (4)
C1—Ru1—C568.2 (2)C9—C10—C11121.3 (4)
N1—Ru1—C3101.53 (16)C9—C10—H10A119.4
N2—Ru1—C3169.02 (18)C11—C10—H10A119.4
C2—Ru1—C337.75 (19)C10—C11—C12120.0 (5)
C6—Ru1—C380.1 (2)C10—C11—H11A120.0
C1—Ru1—C368.3 (2)C12—C11—H11A120.0
C5—Ru1—C367.71 (19)C13—C12—C11119.1 (5)
N1—Ru1—C4132.79 (16)C13—C12—H12A120.5
N2—Ru1—C4146.36 (15)C11—C12—H12A120.5
C2—Ru1—C467.59 (19)C12—C13—C14120.9 (5)
C6—Ru1—C467.33 (19)C12—C13—H13A119.6
C1—Ru1—C480.17 (19)C14—C13—H13A119.6
C5—Ru1—C437.68 (18)C13—C14—C9120.5 (5)
C3—Ru1—C436.89 (19)C13—C14—H14A119.7
N1—Ru1—Cl180.86 (12)C9—C14—H14A119.7
N2—Ru1—Cl188.42 (10)C20—C15—C16119.5 (4)
C2—Ru1—Cl1136.51 (15)C20—C15—S1120.5 (3)
C6—Ru1—Cl1135.04 (15)C16—C15—S1119.9 (3)
C1—Ru1—Cl1168.02 (14)C17—C16—C15119.6 (4)
C5—Ru1—Cl1101.51 (15)C17—C16—H16A120.2
C3—Ru1—Cl1102.54 (15)C15—C16—H16A120.2
C4—Ru1—Cl187.89 (13)C16—C17—C18121.4 (4)
O2—S1—O3116.3 (2)C16—C17—H17A119.3
O2—S1—N2108.86 (19)C18—C17—H17A119.3
O3—S1—N2113.59 (18)C19—C18—C17118.0 (4)
O2—S1—C15105.13 (19)C19—C18—C21121.5 (5)
O3—S1—C15104.9 (2)C17—C18—C21120.4 (5)
N2—S1—C15107.19 (19)C18—C19—C20121.5 (4)
Ru1—Cl1—H1C43.0C18—C19—H19A119.2
C23—N1—Ru1112.4 (3)C20—C19—H19A119.2
C23—N1—H1B109.1C19—C20—C15120.0 (4)
Ru1—N1—H1B109.1C19—C20—H20A120.0
C23—N1—H1C109.1C15—C20—H20A120.0
Ru1—N1—H1C109.1C18—C21—H21A109.5
H1B—N1—H1C107.9C18—C21—H21B109.5
C22—N2—S1113.0 (3)H21A—C21—H21B109.5
C22—N2—Ru1111.9 (2)C18—C21—H21C109.5
S1—N2—Ru1120.28 (19)H21A—C21—H21C109.5
C4—O1—C7118.8 (4)H21B—C21—H21C109.5
C6—C1—C2118.6 (5)N2—C22—C9116.5 (4)
C6—C1—Ru170.7 (3)N2—C22—C23106.3 (3)
C2—C1—Ru170.2 (3)C9—C22—C23106.5 (4)
C6—C1—H1A120.1N2—C22—H22B109.1
C2—C1—H1A120.1C9—C22—H22B109.1
Ru1—C1—H1A120.1C23—C22—H22B109.1
C3—C2—C1120.1 (5)N1—C23—C24112.5 (4)
C3—C2—Ru172.6 (3)N1—C23—C22110.1 (3)
C1—C2—Ru171.5 (3)C24—C23—C22111.3 (4)
C3—C2—H2A119.6N1—C23—H23A107.6
C1—C2—H2A119.6C24—C23—H23A107.6
Ru1—C2—H2A119.6C22—C23—H23A107.6
C2—C3—C4120.9 (5)C25—C24—C29118.4 (5)
C2—C3—Ru169.7 (3)C25—C24—C23121.0 (5)
C4—C3—Ru173.2 (3)C29—C24—C23120.6 (4)
C2—C3—H3A118.9C26—C25—C24119.9 (6)
C4—C3—H3A118.9C26—C25—H25B120.1
Ru1—C3—H3A118.9C24—C25—H25B120.1
O1—C4—C3124.2 (4)C27—C26—C25121.6 (6)
O1—C4—C5116.4 (4)C27—C26—H26A119.2
C3—C4—C5119.2 (5)C25—C26—H26A119.2
O1—C4—Ru1128.9 (3)C26—C27—C28119.8 (6)
C3—C4—Ru169.9 (3)C26—C27—H27A120.1
C5—C4—Ru169.5 (3)C28—C27—H27A120.1
C6—C5—C4119.6 (5)C27—C28—C29120.0 (6)
C6—C5—Ru170.3 (3)C27—C28—H28A120.0
C4—C5—Ru172.8 (3)C29—C28—H28A120.0
C6—C5—H5A119.8C28—C29—C24120.2 (6)
C4—C5—H5A119.8C28—C29—H29B119.9
Ru1—C5—H5A119.8C24—C29—H29B119.9
C5—C6—C1121.5 (5)C1S—O1S—H1S109.5
C5—C6—Ru172.5 (3)O1S—C1S—H2S109.5
C1—C6—Ru171.2 (3)O1S—C1S—H3S109.5
C5—C6—H6A118.7H2S—C1S—H3S109.5
C1—C6—H6A118.7O1S—C1S—H4S109.5
Ru1—C6—H6A118.7H2S—C1S—H4S109.5
O1—C7—C8108.4 (6)H3S—C1S—H4S109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···Cl1i0.842.323.146 (4)168
N1—H1B···Cl10.922.612.971 (4)104
N1—H1C···O1S0.922.112.892 (6)143
C2—H2A···O1S1.002.463.252 (7)136
C6—H6A···O21.002.382.916 (6)112
C20—H20A···O30.952.472.859 (6)105
Symmetry code: (i) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[RuCl(C21H21N2O2S)(C8H10O)]·CH4O
Mr656.18
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)7.8880 (15), 14.591 (3), 12.955 (2)
β (°) 91.799 (3)
V3)1490.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.21 × 0.08 × 0.08
Data collection
DiffractometerBruker SMART1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.863, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
9704, 5928, 4729
Rint0.049
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.083, 0.96
No. of reflections5928
No. of parameters352
No. of restraints49
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.14, 0.32
Absolute structureFlack (1983), with how many Friedel pairs
Absolute structure parameter0.01 (3)

Computer programs: SMART (Bruker, 1997), SMART, SHELXTL (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected bond lengths (Å) top
Ru1—N12.110 (4)Ru1—C42.243 (5)
Ru1—N22.131 (3)Ru1—Cl12.4532 (13)
Ru1—C22.162 (5)S1—O21.433 (3)
Ru1—C62.172 (5)S1—O31.446 (3)
Ru1—C12.179 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···Cl1i0.842.323.146 (4)168
N1—H1B···Cl10.922.612.971 (4)104
N1—H1C···O1S0.922.112.892 (6)143
C2—H2A···O1S1.002.463.252 (7)136
C6—H6A···O21.002.382.916 (6)112
C20—H20A···O30.952.472.859 (6)105
Symmetry code: (i) x, y+1/2, z+1.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441.  CrossRef Web of Science Google Scholar
First citationBoxwell, C. J., Dyson, P. J., Ellis, D. J. & Welton, T. (2002). J. Am. Chem. Soc. 124, 9334–9335.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavenport, A. J., Davies, D. L., Fawcett, J. & Russell, D. R. (2004). J. Chem. Soc. Dalton Trans. pp. 1481–1492.  CSD CrossRef Google Scholar
First citationDavies, D. L., Fawcett, J., Krafcyk, R. & Russell, D. R. (1997). J. Organomet. Chem. 545–546, 581–585.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaack, K. J., Hashiguchi, S., Fujii, A., Ikariya, T. & Noyori, R. (1997). Angew. Chem. Int. Ed. Engl. 36, 285–288.  CSD CrossRef CAS Web of Science Google Scholar
First citationHashiguchi, S., Fujii, A., Takehara, J., Ikariya, T. & Noyori, R. (1995). J. Am. Chem. Soc. 117, 7562–7563.  CSD CrossRef CAS Web of Science Google Scholar
First citationNoyori, R. & Hashiguchi, S. (1997). Acc. Chem. Res. 30, 97–102.  CrossRef CAS Web of Science Google Scholar
First citationPigge, F. C. & Coniglio, J. J. (2001). Curr. Org. Chem. 5, 757–784.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSoleimannejad, J., Sisson, A. & White, C. (2003). Inorg. Chim. Acta, 352, 121–128.  Web of Science CSD CrossRef CAS Google Scholar
First citationSoleimannejad, J. & White, C. (2005). Organometallics. Submitted.  Google Scholar
First citationStanley, K. & Baird, M. C. (1975). J. Am. Chem. Soc. 97, 6598–6599.  CrossRef CAS Web of Science Google Scholar
First citationZaja, M., Connon, S. J., Dunne, A. M., Rivard, M., Buschmann, N., Jiricek, J. & Blechert, S. (2003). Tetrahedron, 59, 6545–6558.  Web of Science CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds