metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Bis(tetra-n-butyl­ammonium) and bis­(tetra­phenyl­phospho­nium) salts of tris­(2-oxo-1,3-di­thiole-4,5-di­thiol­ato)stannate(IV), both at 120 K

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: r.a.howie@abdn.ac.uk

(Received 5 November 2004; accepted 18 January 2005; online 28 February 2005)

The title compounds, (C16H36N)2[Sn(C3OS4)3], (I[link]), and (C24H20P)2[Sn(C3OS4)3], (II[link]), are examples of complex salts of the general form [Q]2[Sn(dmio)3], where Q is nBu4N+ or Ph4P+ and dmio is the 2-oxo-1,3-dithiole-4,5-dithiol­ate dianion. Features of both structures are the slightly distorted octahedral coordination of tin in the propeller-shaped dianions and the absence of any significant inter-anion contacts. The structure of (I[link]) is particularly notable because all of the dianions in the sample crystal have the same propeller configuration, which is very unusual in this type of structure.

Comment

Compounds of the general form [Q]2[Sn(dmit)3], where Q is an onium counter-cation and dmit represents the 2-thioxo-1,3-dithole-4,5-dithiol­ate dianion, have already received considerable attention (de Assis et al., 1999[Assis, F. de, Chohan, Z. H., Howie, R. A., Khan, A., Low, J. N., Spencer, G. M., Wardell, J. L. & Wardell, S. M. S. V. (1999). Polyhedron, 18, 3533-3544.]; Comerlato et al., 2004[Comerlato, N. M., Ferreira, G. B., Howie, R. A. & Wardell, J. L. (2004). Acta Cryst. E60, m1781-m1783.]). The compounds discussed here, namely (I[link]) with Q = nBu4N+ and (II[link]) with Q = Ph4P+, are entirely analogous, but with dmit replaced by the equivalent 2-oxo dianion, here designated dmio, although the acronym dmid, referring to the same 2-oxo species, occurs elsewhere in the literature. The dmio complexes (I[link]) and (II[link]) were obtained in order to investigate further the influence of cation variation on the overall shapes of [Sn(dmio)3]2− dianions and to compare such influences with those found in the analogous [Sn(dmit)3]2− complexes described by de Assis et al. (1999[Assis, F. de, Chohan, Z. H., Howie, R. A., Khan, A., Low, J. N., Spencer, G. M., Wardell, J. L. & Wardell, S. M. S. V. (1999). Polyhedron, 18, 3533-3544.]). The counter-cations are not, in themselves, remarkable and thus their bond lengths and angles are not discussed in detail. The anions of (I[link]) and (II[link]) are shown in Figs. 1[link] and 2[link], respectively.

Details of the coordination of the Sn atoms in both compounds in terms of bond lengths and angles are given in Table 1[link]. The Sn atoms are in octahedral environments, somewhat distorted by the chelate bite angles and by slightly asymmetric chelation by the ligands. This situation is consistent with what has been found in previously studied [Sn(dmit)3] and [Sn(dmio)3] compounds. Geometric data for the ligands are given in Table 2[link]; in this table and in the discussion below, the individual ligands in both structures are designated L1 for that comprising atoms S1–S4, C1–C3 and O1, L2 for that comprising atoms S5–S8, C4–C6 and O2, and L3 for that comprising atoms S9–S12, C7–C9 and O3.

[Scheme 1]

The bond-length and angle data show little variation from one ligand to another, both within and between the compounds. However, in the distances and angles referenced to the ligand planes, clear distinctions between the compounds and the ligands within them are evident. It is convenient, in this context, to define the plane of each ligand in terms of the C=C bond and the four S atoms directly associated with it, e.g. for L1, atoms C1, C2 and S1–S4. Of some significance are the displacements from such a plane of the oxo O atoms and the C atoms to which they are connected. These are indicative of slight variations in the ligand shape and, specifically, small departures from planarity of the five-membered ring of which the oxo O atom is a substituent. It is the displacement of the Sn atom from such ligand planes which relates to the overall shape of the dianion. These displacements correlate closely with the dihedral angles, ligand by ligand, between the ligand plane as defined above and the plane defined by the Sn atom and the two chelating S atoms of the same ligand, e.g. Sn1 and, for L1, atoms S1 and S2. Both of these are a measure of the tilt of the ligand about the vector joining the chelating S atoms. The values in Table 2[link] are compatible with the overall ligand shape (Figs. 1[link] and 2[link]) and are crudely measured by the O⋯Sn⋯O angles (Table 2[link]). These angles demonstrate the T shape of the dianion in (II[link]), as distinct from the comparatively regular three-pointed star shape of the dianion in (I[link]). Despite the difference in overall shape, both dianions have a propeller-like configuration in terms of the tilt of the ligands relative to the plane defined by the three oxo O atoms [the Sn-atom displacements are −0.900 (3) and −0.2241 (12) Å in (I[link]) and (II[link]), respectively]. The tilt is seen in the orientation of the C=C bonds in Figs. 1[link] and 2[link].

The structure of (I[link]) is unusual in that all of the dianions have the same configuration in terms of the pitch of the propellers, because there is no crystallographic symmetry plane or centre of symmetry to bring about inversion. This is in contrast with (II[link]), and with all literature examples of [Sn(dmit)3]2− dianions and the single [Q]2[Sn(dmio)3] compound (Q = Et4N+) for which structural data are available (de Assis et al., 1999[Assis, F. de, Chohan, Z. H., Howie, R. A., Khan, A., Low, J. N., Spencer, G. M., Wardell, J. L. & Wardell, S. M. S. V. (1999). Polyhedron, 18, 3533-3544.]). The resolution of the enantiomeric dianions in (I[link]) occurred spontaneously during crystal growth, rendering the bulk sample as a racemic conglomerate.

In both structures, the completeness of the coordination of the Sn atoms (coordinative saturation) precludes the existence of Sn⋯X inter-anion (X = S or O) interactions. The distribution of dianions and counter-cations, as shown in Figs. 3[link] and 4[link] for (I[link]) and in Fig. 5[link] for (II[link]), is such that the separation between the dianions is too great to permit S⋯S or S⋯O inter-anion interactions, such as those which have been found when less bulky Q moieties are present.

In compound (I[link]), the two counter-cations, namely cation A, comprising atom N1 and the butyl groups C10–C25, and cation B, comprising atoms N2 and C26–C41, contribute in very different ways to the dispersal of the dianions. The dianions and cation B in (I[link]) can be considered as being in pseudo-C-centred layers parallel to (001) (Fig. 3[link]), in which can be found all but the last two hydrogen bonds listed in Table 3[link]. One other hydrogen bond, involving cation B [C37—H37A⋯O3iv; symmetry code: (iv) [{\script{1\over 2}}-x, 1-y, z+{\script{1\over 2}}]], interconnects the layers in the c direction. Cation A, flatter than cation B and seen edge-on in Fig. 4[link], lies between the layers, providing the C10—H10B⋯S6v hydrogen bond and the first three C—H⋯π contacts in Table 4[link] [symmetry code: (v) 1-x, [y+{\script{1\over 2}}, {\script{3\over 2}}-z]]. The remaining contact in this table is provided by cation A.

For compound (II[link]), all of the inter-ion interactions given in Tables 5[link] and 6[link], with the exception of hydrogen bonds C26—H26⋯O3iii and C36—H36⋯S10iv [symmetry codes: (iii) x − 1, y, z; (iv) x, y, z − 1], are represented in the chain of interconnected ions shown in Fig. 5[link]. Also present within the chain is the ππ interaction between the five-membered ring of L1, defined by atoms C1–C3/S3/S4, and the C40–C45 phenyl group at symmetry position (2 − x, 2 − y, 1 − z), for which the distance between the ring centroids, the average perpendicular distance of the centroid of one ring from the least-squares plane of the other, and the lateral displacement or slippage of the rings are 3.824, 3.560 and 1.396 Å, respectively. The hydrogen bonds missing from Fig. 5[link] connect the chains, themselves propagated in the a direction, in the c direction, to form layers parallel to (010) in which adjacent chains are related by the operation of crystallographic centres of symmetry. The interaction between the layers involves only van der Waals contacts between ligands L2 and L3 of the dianion on the surface of one layer and between the phenyl groups of the counter-cations on the surface of the other.

The arrangement in (II[link]) is surprisingly different from that found by Comerlato et al. (2004[Comerlato, N. M., Ferreira, G. B., Howie, R. A. & Wardell, J. L. (2004). Acta Cryst. E60, m1781-m1783.]) in the formally analogous, but solvated, compound [Ph4As]2[Sn(dmit)3]·Me2CO, (III). The structure of (II[link]) contains voids of 69.6 Å3, but there is no evidence of even partial occupancy of these by solvent. Both structures contain chains in which T-shaped dianions are linked by cations through a variety of inter-ionic contacts. In both cases, the ligand forming the stem of the T, L1 in the case of (II[link]), lies between two cations, making a ππ contact with one and a C—H⋯π contact with the other (Fig. 5[link]). In both structures, the ligands forming the top of the T, L2 and L3 in the case of (II[link]), are involved in rather fewer inter-ionic contacts than L1 and its equivalent in (III). It is in the constitution and arrangement of the chains that significant differences between the structures of (II[link]) and (III) are observed. Along the chain length in (II[link]), two cations, one of each type present in the asymmetric unit, lie between adjacent dianions, which are then separated enough to allow the top of the T to be aligned with the direction of propagation of the chain. In the chains of (III), only one cation, always of the same type, separates the dianions, and the top of the T is now roughly at right angles to the chain. In (II[link]), as noted earlier, the chains are located side by side, forming layers. In the structure of (III), they are located in centrosymmetrically related pairs creating a tube-like arrangement, with the cation associated with chain formation at the centre of the tube and the tops of the T-shaped dianions at the tube surface. The remaining cations in (III) are found in separate columns.

[Figure 1]
Figure 1
The dianion of (I[link]). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The dianion of (II[link]). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
A layer of ions in (I[link]). Displacement ellipsoids are drawn at the 20% probability level. H atoms which participate in the formation of hydrogen bonds (dashed lines) are shown as small circles of arbitrary radii. For the purposes of this figure, the origin of the unit cell has been shifted to ([{1\over 2}], 0, 0). [Symmetry codes: (i) 1 + x, y, z; (ii) [{1\over 2}] + x, [{1\over 2}] − y, 2 − z; (iii) [{1\over 2}] + x, [{3\over 2}] − y, 2 − z.]
[Figure 4]
Figure 4
The unit cell of (I[link]). Displacement ellipsoids are drawn at the 20% probability level. H atoms participating in the formation of hydrogen bonds and C—H⋯π contacts (dashed lines) are depicted as for Fig. 3[link]. The labels N1 and N2 designate counter-cations rather than specific atoms. [Symmetry codes: (vi) 1 − x, y − [{1\over 2}], [{3\over 2}] − z; (vii) [{1\over 2}] − x, 1 − y, z − [{1\over 2}]; (viii) [{1\over 2}] + x, [{1\over 2}] − y, 1 − z; (ix) [{3\over 2}] − x, 1 − y, z − [{1\over 2}]; (x) x − [{1\over 2}], [{3\over 2}] − y, 1 − z; (xi) x − [{1\over 2}], [{1\over 2}] − y, 1 − z.]
[Figure 5]
Figure 5
Inter-ion contacts in (II[link]), propagating a chain in the a direction (left to right across the page). Displacement ellipsoids are drawn at the 50% probability level. H atoms participating in the formation of hydrogen bonds and C—H⋯π contacts (dashed lines) are shown as small circles of arbitrary radii. Dashed lines also indicate ππ contacts. [Symmetry codes: (i) 1 − x, 2 − y, 1 − z; (ii) 2 − x, 2 − y, 1 − z; (iii) x − 1, y, z.]

Experimental

The syntheses of (I[link]) and (II[link]), [Q]2[Sn(dmio)3], were based on the procedure described by Akasaka et al. (2002[Akasaka, T., Nakano, M., Tamura, H. & Matsubayashi, G. (2002). Bull. Chem. Soc. Jpn, 75, 2621-2628.]). 4,5-Bis(benzoyl­thio)-1,3-dithiol-2-one (0.819 mg, 2.1 mmol) and [Q]Br (4.2 mmol) were successively added to a solution of NaOMe, obtained from Na (0.100 g) and MeOH (10 ml), with agitation and under an argon atmosphere. The resulting orange solid was collected under argon and washed with dry ether (100 ml). The dried solid, [Q]2[dmio], was added to MeOH (10 ml), followed by SnCl4·5H2O (0.245 mg, 0.7 mmol). The reaction mixture was stirred for 24 h at room temperature and the precipitate collected, washed successively with H2O and Et2O, and dried in vacuo. The compounds were crystallized from acetone–methanol (1:1 v/v). For [Bu4N]2[Sn(dmio)3], (I[link]): yield 0.44 g (56%), m.p. 430–431 K; elemental analysis for C41H72N2O3S12Sn calculated (found): C 42.8 (43.0), H 6.2 (6.3), N 2.2% (2.4%); IR (CsI, cm−1): 2962, 1671, 1618, 1461, 896, 463. For [Ph4P]2[Sn(dmio)3], (II[link]): yield 0.57 g (61%), m.p. 424–425 K; IR (CsI, cm−1): 3055, 1660, 1609, 1432, 1108, 997, 894, 724, 527, 465.

Compound (I)[link]

Crystal data
  • (C16H36N)2[Sn(C3OS4)3]

  • Mr = 1144.42

  • Orthorhombic, P 21 /n

  • a = 10.7732 (4) Å

  • b = 18.3479 (7) Å

  • c = 27.5862 (9) Å

  • V = 5452.8 (3) Å3

  • Z = 4

  • Dx = 1.394 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 26 026 reflections

  • θ = 2.9–27.5°

  • μ = 0.96 mm−1

  • T = 120 (2) K

  • Plate, dark red

  • 0.55 × 0.26 × 0.08 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.])Tmin = 0.619, Tmax = 0.923

  • 43 550 measured reflections

  • 12 433 independent reflections

  • 9169 reflections with I > 2σ(I)

  • Rint = 0.081

  • θmax = 27.5°

  • h = −13 → 13

  • k = −23 → 23

  • l = −34 → 35

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.110

  • S = 1.02

  • 12 433 reflections

  • 532 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0476P)2 + 1.7266P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.62 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 5583 Friedel pairs

  • Flack parameter: −0.007 (19)

Table 1
Bond lengths and angles (Å, °) involving the Sn atom in (I[link]) and (II[link])

  (I[link]) (II[link])
Sn1—S1 2.5386 (12) 2.5354 (6)
Sn1—S2 2.5284 (13) 2.5435 (5)
Sn1—S5 2.5282 (14) 2.5649 (6)
Sn1—S6 2.5394 (12) 2.5536 (6)
Sn1—S9 2.5457 (12) 2.5549 (6)
Sn1—S10 2.5626 (14) 2.5639 (6)
     
S1—Sn1—S2 85.24 (4) 85.117 (18)
S5—Sn1—S6 85.96 (4) 82.271 (18)
S9—Sn1—S10 85.45 (4) 82.013 (19)
S1—Sn1—S6 174.24 (4) 170.76 (2)
S2—Sn1—S9 171.52 (4) 171.61 (2)
S5—Sn1—S10 169.37 (5) 160.47 (2)
S1—Sn1—S5 92.46 (4) 99.667 (19)
S2—Sn1—S5 94.97 (5) 94.268 (18)
S2—Sn1—S6 89.37 (4) 85.728 (19)
S1—Sn1—S9 87.64 (4) 86.53 (2)
S5—Sn1—S9 89.93 (5) 87.899 (19)
S6—Sn1—S9 97.88 (4) 102.61 (2)
S1—Sn1—S10 96.90 (4) 96.384 (19)
S2—Sn1—S10 90.83 (4) 98.136 (19)
S6—Sn1—S10 85.20 (4) 83.666 (18)

Table 2
Bond lengths and angles (Å, °) and other geometric parameters associated with the dmio ligands[\dagger] in (I[link]) and (II[link])

  Compound (I[link])     Compound (II[link])    
  Ligand 1 Ligand 2   Ligand 3   Ligand 1 Ligand 2   Ligand 3  
S1—C1 1.746 (5) 1.732 (6) 1.713 (7) 1.750 (2) 1.747 (2) 1.749 (2)
S2—C2 1.738 (5) 1.731 (6) 1.783 (6) 1.745 (2) 1.746 (2) 1.740 (2)
S3—C1 1.747 (5) 1.763 (6) 1.751 (6) 1.753 (2) 1.754 (2) 1.760 (2)
S3—C3 1.766 (6) 1.758 (7) 1.734 (9) 1.773 (3) 1.772 (2) 1.766 (3)
S4—C2 1.764 (5) 1.749 (5) 1.752 (6) 1.757 (2) 1.756 (2) 1.751 (2)
S4—C3 1.770 (6) 1.750 (7) 1.787 (8) 1.766 (3) 1.769 (2) 1.760 (2)
C1—C2 1.350 (7) 1.356 (7) 1.354 (8) 1.346 (3) 1.352 (3) 1.352 (3)
C3—O1 1.214 (6) 1.225 (7) 1.238 (8) 1.214 (3) 1.218 (3) 1.229 (3)
             
C1—S1—Sn1  98.84 (16)  98.47 (19)  97.9 (2)  99.78 (7)  93.81 (7)  94.68 (7)
C2—S2—Sn1  98.91 (16)  99.05 (18)  95.5 (2)  99.49 (7)  93.80 (7)  94.88 (8)
C1—S3—C3  97.5 (2)  97.1 (3)  96.7 (4)  97.18 (12)  97.13 (11)  97.37 (11)
C2—S4—C3  97.0 (2)  97.3 (3)  95.4 (4)  97.03 (12)  97.10 (10)  97.06 (11)
C2—C1—S1 126.1 (4) 128.0 (4) 127.0 (4) 126.65 (17) 125.45 (17) 125.46 (17)
C2—C1—S3 117.0 (4) 116.0 (4) 116.8 (5) 116.66 (17) 116.83 (16) 115.80 (16)
S1—C1—S3 116.9 (3) 116.0 (3) 116.2 (4) 116.67 (12) 117.63 (13) 118.58 (13)
C1—C2—S2 127.3 (4) 126.5 (4) 127.3 (5) 126.71 (17) 125.00 (17) 124.74 (17)
C1—C2—S4 116.5 (4) 116.9 (4) 117.3 (5) 117.09 (17) 116.80 (16) 117.45 (16)
S2—C2—S4 116.1 (3) 116.4 (3) 115.4 (4) 116.20 (13) 118.11 (12) 117.63 (13)
O1—C3—S3 124.3 (5) 123.5 (6) 124.3 (7) 123.6 (2) 124.14 (18) 123.45 (19)
O1—C3—S4 123.8 (5) 123.8 (6) 122.0 (7) 124.4 (2) 123.84 (18) 124.4 (2)
S3—C3—S4 111.9 (3) 112.7 (4) 113.7 (4) 111.94 (14) 112.02 (12) 112.16 (13)
             
Sn1oop 0.6438 (19) −0.505 (2) 0.861 (2) 0.4930 (9) 1.3871 (8) 1.3721 (8)
C3oop 0.035 (6) −0.046 (8) 0.070 (7) 0.064 (3) −0.012 (2) −0.015 (3)
O1oop 0.042 (5) −0.094 (7) 0.130 (6) 0.115 (2) −0.047 (2) −0.082 (2)
IP§ 19.89 (6) 15.36 (6) 27.01 (7) 15.15 (3) 45.38 (2) 44.34 (3)
             
O1⋯Sn1⋯O2 117.68 (6)     97.58 (2)    
O1⋯Sn1⋯O3 112.41 (6)     84.83 (2)    
O2⋯Sn1⋯O3 124.86 (7)     175.42 (2)    
†Atom designations apply to all three ligands if, for a ligand n, where n = 1 to 3, Sx becomes S[x + 4(n−1)], Cx becomes C[x + 3(n−1)] and Ox becomes On.
‡oop denotes displacements of the atoms so designated from the ligand planes as defined in the text.
§IP is the dihedral angle, ligand by ligand, between the ligand plane and the plane defined by the Sn atom and the chelating S atoms.

Table 3
Hydrogen-bond geometry for (I) (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26A⋯S6 0.99 2.72 3.606 (6) 149
C26—H26B⋯S2 0.99 2.77 3.621 (6) 144
C29—H29B⋯S11i 0.98 2.81 3.711 (8) 153
C30—H30B⋯O2ii 0.99 2.53 3.280 (8) 133
C34—H34B⋯O2ii 0.99 2.56 3.459 (8) 152
C35—H35A⋯S2 0.99 2.85 3.819 (6) 165
C38—H38B⋯O1iii 0.99 2.44 3.418 (7) 168
C37—H37A⋯O3iv 0.98 2.51 3.466 (9) 165
C10—H10B⋯S6v 0.99 2.80 3.772 (5) 166
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, {\script{1\over 2}}-y, 2-z]; (iii) [x+{\script{1\over 2}}, {\script{3\over 2}}-y, 2-z]; (iv) [{\script{1\over 2}}-x, 1-y, z+{\script{1\over 2}}]; (v) [1-x, y+{\script{1\over 2}}, {\script{3\over 2}}-z].

Table 4
Geometry of C—H⋯π contacts in (I)[link] (Å, °)

C—H⋯Cg C—H H⋯Cg Hperp γ§ C—H⋯Cg C⋯Cg
C12—H12ACg2v 0.99 2.87 2.78 15 145 3.729
C18—H18BCg3v 0.99 3.09 2.88 21 158 4.029
C22—H22BCg1 0.99 3.16 2.75 29 154 4.073
C40—H40BCg1i 0.99 3.27 3.05 21 144 4.114
Symmetry codes: (i) 1+x, y, z; (v) [1-x, y+{\script{1\over 2}}, {\script{3\over 2}}-z].
Cgn is the centroid of the C3S2 ring of ligand n.
‡Hperp is the perpendicular distance of the H atom from the mean plane of the ring.
§γ is the angle at H between H⋯Cg and Hperp.

Compound (II)[link]

Crystal data
  • (C24H20P)2[Sn(C3OS4)3]

  • Mr = 1338.24

  • Monoclinic, P 21 /n

  • a = 14.2844 (2) Å

  • b = 26.4828 (4) Å

  • c = 15.4538 (2) Å

  • β = 90.4168 (6)°

  • V = 5845.88 (14) Å3

  • Z = 4

  • Dx = 1.521 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 13 144 reflections

  • θ = 2.9–27.5°

  • μ = 0.96 mm−1

  • T = 120 (2) K

  • Block, dark red

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker-Nonius 95mm CCD camera on κ-goniostat diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.673, Tmax = 0.857

  • 64 111 measured reflections

  • 13 360 independent reflections

  • 10 973 reflections with I > 2σ(I)

  • Rint = 0.040

  • θmax = 27.5°

  • h = −18 → 18

  • k = −34 → 33

  • l = −20 → 19

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.09

  • 13 360 reflections

  • 676 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0365P)2 + 1.8314P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.72 e Å−3

Table 5
Hydrogen-bond geometry for (II)[link] (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C38—H38⋯S2i 0.95 2.85 3.573 (2) 133
C47—H47⋯O2i 0.95 2.41 3.323 (3) 162
C44—H44⋯S10ii 0.95 2.81 3.751 (3) 172
C53—H53⋯O1ii 0.95 2.46 3.211 (3) 135
C26—H26⋯O3iii 0.95 2.46 3.188 (3) 133
C36—H36⋯S2iv 0.95 2.71 3.576 (2) 151
Symmetry codes: (i) 1-x, 2-y, 1-z; (ii) 2-x, 2-y, 1-z; (iii) x-1, y, z; (iv) x, y, z-1.

Table 6
Geometry of C—H⋯π contacts in (II)[link] (Å, °)

C—H⋯Cg C—H H⋯Cg Hperp γ§ C—H⋯Cg C⋯Cg
C12—H12⋯Cg5 0.95 3.23 2.96 24 123 3.838
C15—H15⋯Cg1i 0.95 2.79 2.75 9 160 3.693
C18—H18⋯Cg3 0.95 3.21 3.05 18 124 3.821
C39—H39⋯Cg2 0.95 3.06 2.92 17 131 3.758
Symmetry code: (i) 1-x, 2-y, 1-z.
Cgn, where n = 1, 2, 3 and 5, are the centroids of the rings C1–C3/S3/S4, C10–C15, C34–C39 and C46–C51, respectively.
‡Hperp is the perpendicular distance of the H atom from the mean plane of the ring.
§γ is the angle at H between H⋯Cg and Hperp.

In the final stages of both refinements, H atoms were introduced in calculated positions, with C—H distances of 0.95, 0.98 and 0.99 Å for phenyl, methyl and methyl­ene H atoms, respectively, and refined with a riding model, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]) for (I[link]); COLLECT for (II[link]). For both compounds, cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; structure solution: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); structure refinement: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); publication software: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Compounds of the general form [Q]2[Sn(dmit)3], where Q is an onium countercation and dmit represents the 2-thioxo-1,3-dithole-4,5-dithiolate dianion, have already received considerable attention (de Assis et al., 1999; Comerlato et al., 2004). The compounds discussed here, namely (I) with Q = nBu4N+ and (II) with Q = Ph4P+, are entirely analogous, but with dmit replaced by the equivalent 2-oxo dianion, here designated dmio, although the acronym dmid, referring to the same 2-oxo species, occurs elsewhere in the literature. The dmio complexes (I) and (II) were obtained in order to investigate further the influence of cation variation on the overall shapes of [Sn(dmio)3] dianions and to compare such influences with those found in the analogous [Sn(dmit)3] complexes described by de Assis et al. (1999). The countercations are not, in themselves, remarkable, and their bond lengths and angles are not discussed in detail. The anions of (I) and (II) are shown in Figs. 1 and 2, respectively.

Details of the coordination of the Sn atoms in both compounds in terms of bond lengths and angles are given in Table 1. The Sn atoms are in octahedral environments, somewhat distorted by the chelate bite angles and by slightly asymmetric chelation by the ligands. This situation is consistent with what has been found in previously studied [Sn(dmit)3] and [Sn(dmio)3] compounds. Geometric data for the ligands are in Table 2. In this Table and in the discussion below, the individual ligands in both structures are designated L1, comprising atoms S1–S4, C1–C3 and O1, L2, comprising atoms S5–S8, C4–C6 and O2, and L3, comprising atoms S9–S12, C7–C9 and O3.

The bond-length and angle data show little variation from one ligand to another, both within and between the compounds. However, in the distances and angles referenced to the ligand planes, clear distinctions between the compounds and the ligands within them are evident. It is convenient, in this context, to define the plane of each ligand in terms of the CC bond and the four S atoms directly associated with it, e.g. for L1, atoms C1, C2 and S1–S4. Of some significance are the displacements from such a plane of the oxo O atoms and the C atoms to which they are connected. These are indicative of slight variations in the ligand shape and, specifically, small departures from planarity of the five-membered ring of which the oxo O atom is a substituent. It is the displacement of the Sn atom from such ligand planes which relates to the overall shape of the dianion. These displacements correlate closely with the dihedral angles, ligand by ligand, between the ligand plane as defined above and the plane defined by the Sn atom and the two chelating S atoms of the same ligand, e.g. Sn1 and, for L1, atoms S1 and S2. Both of these are a measure of the tilt of the ligand about the vector joining the chelating S atoms. The values in Table 2 are compatible with the overall ligand shape (Figs. 1 and 2) and are crudely measured by the O···Sn···O angles (Table 2). These angles demonstrate the T shape of the dianion in (II), as distinct from the comparatively regular three-pointed star shape of the dianion in (I). Despite the difference in overall shape, both dianions have a propeller-like configuration in terms of the tilt of the ligands relative to the plane defined by the three oxo O atoms [Sn-atom displacements −0.900 (3) and −0.2241 (12) Å in (I) and (II), respectively]. The tilt is seen in the orientation of the CC bonds in Figs. 1 and 2.

The structure of (I) is unusual in that all of the dianions have the same configuration in terms of the pitch of the propellers, because there is no crystallographic symmetry plane or centre of symmetry to bring about inversion. This is in contrast with (II), and with all literature examples of [Sn(dmit)3] dianions and the single [Q]2[Sn(dmio)3] compound (Q = Et4N+) for which structural data are available (de Assis et al., 1999). The resolution of the enantiomeric dianions in (I) occurred spontaneously during crystal growth, rendering the bulk sample as a racemic conglomerate.

In both structures, the completeness of the coordination of the Sn atoms (coordinative saturation) precludes the existence of Sn···X interanion (X = S or O) interactions. The distribution of dianions and countercations, as shown in Figs. 3 and 4 for (I) and Fig. 5 for (II), is such that separation between dianions is too great to permit S···S or S···O interanion interactions, such as those which have been found when less bulky Q moieties are present.

In compound (I), the two counter-cations, namely cation A, comprising atom N1 and the butyl groups C10–C25, and cation B, comprising atoms N2 and C26–41, contribute in very different ways to the dispersal of the dianions. The dianions and cation B in (I) can be considered as being in pseudo-C-centred layers parallel to (001) (Fig. 3), in which can be found all but the last two hydrogen bonds listed in Table 3. One other hydrogen bond, involving cation B (C37—H37A···O3iv), interconnects the layers in the direction of c [symmetry code: (iv) Please provide missing symmetry code]. Cation A, flatter than cation B and seen edge-on in Fig. 4, lies between the layers, providing the C10—H10B···S6v hydrogen bond and the first three C—H···π contacts in Table 4 [symmetry code: (v) Please provide missing symmetry code]. The remaining contact in this Table is provided by cation A.

For compound (II), all of the interion interactions given in Tables 5 and 6, with the exception of the hydrogen bonds C26—H26.·O3iii and C36—H36.·S10iv [symmetry codes: (iii) x − 1, y, z; (iv) x, y, z − 1], are represented in the chain of interconnected ions shown in Fig. 5. Also present within the chain is the ππ interaction between the five-membered ring of L1, defined by C1–3/S3–4, and the phenyl group defined by C40–C45 at symmetry position (2 − x, 2 − y,1 − z), for which the distance between the ring centroids, the average perpendicular distance of the centroid of one ring from the least-squares plane of the other, and the lateral displacement or slippage of the rings are 3.824, 3.560 and 1.396 Å, respectively. The hydrogen bonds missing from Fig. 5 connect the chains, themselves propagated in the a direction, in the direction of c, to form layers parallel to (010) in which adjacent chains are related by the operation of crystallographic centres of symmetry. The interaction between the layers involves only van der Waals contacts between ligands L2 and L3 of the dianion on the surface of one layer and between the phenyl groups of the countercations on the surface of the other.

The arrangement in (II) is surprisingly different from that found by Comerlato et al. (2004) in the formally analogous, but solvated, compound [Ph4As]2[Sn(dmit)3]·Me2CO, (III). The structure of (II) contains voids of 69.6 Å3 but there is no evidence of even partial occupancy of these by solvent. Both structures contain chains in which T-shaped dianions are linked by cations through a variety of interionic contacts. In both cases, the ligand forming the stem of the T, L1 in the case of (II), lies between two cations, making a ππ contact with one and a C—H···π contact with the other (Fig. 5). In both structures, the ligands forming the top of the T, L2 and L3 in the case of (II), are involved in rather fewer interionic contacts than L1 and its equivalent in (III). It is in the constitution and arrangement of the chains that significant differences between the structures of (II) and (III) are observed. Along the chain length in (II), two cations, one of each type present in the asymmetric unit, lie between adjacent dianions, which are then separated enough to allow the top of the T to be aligned with the direction of propagation of the chain. In the chains of (III), only one cation, always of the same type, separates the dianions, and the top of the T is now roughly at right angles to the chain. In (II), as noted earlier, the chains are located side by side, forming layers. In the structure of (III), they are located in centrosymmetrically related pairs creating a tube-like arrangement, with the cation associated with chain formation at the centre of the tube and the tops of the T-shaped dianions at the tube surface. The remaining cations in (III) are found in separate columns.

Experimental top

The syntheses of (I) and (II), [Q]2[Sn(dmio)3], were based on the procedure described by Akasaka et al. (2002). 4,5-Bis(benzoylthio)-1,3-dithiole-2-one (0.819 mg, 2.1 mmol) and [Q]Br (4.2 mmol) were successively added to a solution of NaOMe, obtained from Na (0.100 g) and MeOH (10 ml), with agitation and under an argon atmosphere. The resulting orange solid was collected under argon and washed with dry ether (100 ml). The dried solid, [Q]2[dmio], was added to MeOH (10 ml), followed by SnCl4·5H2O (0.245 mg, 0.7 mmol). The reaction mixture was stirred for 24 h at room temperature and the precipitate collected, washed successively with H2O and Et2O, and dried in vacuo. The compounds were crystallized from acetone–methanol (Ratio?). For [Bu4N]2[Sn(dmio)3], (I): yield 0.44 g, 56%, m.p. 430–431 K. Elemental analysis for C41H72N2O3S12Sn: calculated (found): C 42.8 (43.0), H 6.2 (6.3), N: 2.2% (2.4%). Spectroscopic analysis: IR (CsI, cm−1): 2962, 1671, 1618, 1461, 896, 463. For [Ph4P]2[Sn(dmio)3], (II): yield 0.57 g, 61%, m.p. 424–425 K. Spectroscopic analysis: IR (CsI, cm−1): 3055, 1660, 1609, 1432, 1108, 997, 894, 724, 527, 465.

Refinement top

In the final stages of both refinements, H atoms were introduced in calculated positions, with C—H distances of 0.95, 0.98 and 0.99 Å for phenyl, methyl and methylene H atoms, respectively, and refined with a riding model, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) otherwise.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998) for (I); COLLECT (Hooft, 1998) for (II). Cell refinement: DENZO and COLLECT for (I); DENZO (Otwinowski & Minor, 1997) and COLLECT for (II). For both compounds, data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The dianion of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The dianion of (II). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. A layer of ions in (I). Displacement ellipsoids are drawn at the 20% probability level. H atoms which participate in the formation of hydrogen bonds (dashed lines) are shown as small circles of arbitrary radii. For the purposes of this figure, the origin of the unit cell has been shifted to (1/2,0,0). [Symmetry codes: (i) 1 + x, y, z; (ii) 1/2 + x, 1/2 − y, 2 − z; (iii) 1/2 + x, 3/2 − y, 2 − z.]
[Figure 4] Fig. 4. The unit cell of (I). Displacement ellipsoids are drawn at the 20% probability level. H atoms participating in the formation of hydrogen bonds and C—H···π contacts (dashed lines) are depicted as for Fig. 3. The labels N1 and N2 designate countercations rather than specific atoms. [Symmetry codes: (vi) 1 − x, y − 1/2, 3/2 − z; (vii) 1/2 − x, 1 − y, z − 1/2; (viii) 1/2 + x, 1/2 − y, 1 − z; (ix) 3/2 − x, 1 − y, z − 1/2; (x) x − 1/2, 3/2 − y, 1 − z; (xi) x − 1/2, 1/2 − y, 1 − z.]
[Figure 5] Fig. 5. Interion contacts in (II), propagating a chain in the direction of a (left to right across the page). Displacement ellipsoids are drawn at the 50% probability level. H atoms participating in the formation of hydrogen bonds and C—H···π contacts (dashed lines) are shown as small circles of arbitrary radii. Dashed lines also indicate ππ contacts. [Symmetry codes: (i) 1 − x, 2 − y, 1 − z; (ii) 2 − x, 2 − y, 1 − z; (iii) x − 1, y, z.]
(I) Bis(tetrabutylammonium) tris(2-oxo-1,3-dithiole-4,5-dithiolato)stannate(IV) top
Crystal data top
(C16H36N)2[Sn(C3OS4)3]Dx = 1.394 Mg m3
Mr = 1144.42Melting point: 430 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 26026 reflections
a = 10.7732 (4) Åθ = 2.9–27.5°
b = 18.3479 (7) ŵ = 0.96 mm1
c = 27.5862 (9) ÅT = 120 K
V = 5452.8 (3) Å3Plate, dark red
Z = 40.55 × 0.26 × 0.08 mm
F(000) = 2392
Data collection top
Enraf-Nonius KappaCCD area-detector
diffractometer
12433 independent reflections
Radiation source: Enraf-Nonius FR591 rotating anode9169 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scans to fill the Ewald sphereh = 1313
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
k = 2323
Tmin = 0.619, Tmax = 0.923l = 3435
43550 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0476P)2 + 1.7266P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
12433 reflectionsΔρmax = 0.94 e Å3
532 parametersΔρmin = 0.62 e Å3
0 restraintsAbsolute structure: Flack (1983), with 5583 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.007 (19)
Crystal data top
(C16H36N)2[Sn(C3OS4)3]V = 5452.8 (3) Å3
Mr = 1144.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.7732 (4) ŵ = 0.96 mm1
b = 18.3479 (7) ÅT = 120 K
c = 27.5862 (9) Å0.55 × 0.26 × 0.08 mm
Data collection top
Enraf-Nonius KappaCCD area-detector
diffractometer
12433 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
9169 reflections with I > 2σ(I)
Tmin = 0.619, Tmax = 0.923Rint = 0.081
43550 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.110Δρmax = 0.94 e Å3
S = 1.02Δρmin = 0.62 e Å3
12433 reflectionsAbsolute structure: Flack (1983), with 5583 Friedel pairs
532 parametersAbsolute structure parameter: 0.007 (19)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them

(* indicates atom used to define plane)

− 2.5989(0.0060) x − 11.9615(0.0064) y + 19.8313(0.0090) z = 9.2716(0.0126) * 0.0227 (0.0015) S1 * −0.0029 (0.0015) S2 * −0.0108 (0.0039) C1 * −0.0267 (0.0038) C2 * −0.0097 (0.0014) S3 * 0.0274 (0.0014) S4 0.0348 (0.0056) C3 0.0418 (0.0046) O1 0.6438 (0.0019) Sn1

Rms deviation of fitted atoms = 0.0191 6.9572(0.0052) x + 7.1844(0.0097) y + 18.0819(0.0129) z = 22.4913(0.0091)

Angle to previous plane (with approximate e.s.d.) = 86.55 (0.04)

* 0.0145 (0.0017) S5 * −0.0440 (0.0017) S6 * 0.0182 (0.0044) C4 * 0.0372 (0.0043) C5 * −0.0431 (0.0017) S7 * 0.0172 (0.0017) S8 − 0.0456 (0.0077) C6 − 0.0939 (0.0066) O2 − 0.5046 (0.0022) Sn1

Rms deviation of fitted atoms = 0.0317 − 4.6322(0.0057) x + 14.3962(0.0070) y + 12.3211(0.0135) z = 15.1869(0.0093)

Angle to previous plane (with approximate e.s.d.) = 71.20 (0.04)

* 0.0295 (0.0017) S9 * −0.0113 (0.0017) S10 * −0.0141 (0.0043) C7 * −0.0199 (0.0043) C8 * −0.0172 (0.0016) S11 * 0.0330 (0.0016) S12 0.0697 (0.0068) C9 0.1302 (0.0060) O3 0.8611 (0.0021) Sn1

Rms deviation of fitted atoms = 0.0223

- 10.0568(0.0029) x − 3.0956(0.0104) y + 8.7282(0.0200) z = 2.7872(0.0205)

Angle to previous plane (with approximate e.s.d.) = 65.78 (0.05)

* 0.0000 (0.0002) O1 * 0.0000 (0.0001) O2 * 0.0000 (0.0000) O3 − 0.9005 (0.0033) Sn1

Rms deviation of fitted atoms = 0.0000

Angle ANG1 117.68 (0.06) O1 - Sn1 - O2

Angle ANG2 112.41 (0.06) O1 - Sn1 - O3

Angle ANG3 124.86 (0.07) O2 - Sn1 - O3

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.40170 (3)0.508514 (17)0.859349 (12)0.02861 (9)
S10.24324 (11)0.61000 (7)0.86847 (5)0.0308 (3)
S20.55094 (11)0.59632 (7)0.89926 (5)0.0327 (3)
S30.23735 (12)0.73191 (7)0.93960 (5)0.0343 (3)
S40.49879 (12)0.71805 (7)0.96737 (5)0.0356 (3)
C10.3229 (4)0.6644 (3)0.91003 (18)0.0292 (11)
C20.4442 (4)0.6588 (3)0.92174 (17)0.0280 (11)
C30.3573 (5)0.7647 (3)0.9774 (2)0.0410 (13)
O10.3454 (4)0.8144 (2)1.00608 (15)0.0530 (11)
S50.33482 (13)0.44854 (8)0.93762 (5)0.0410 (3)
S60.57259 (10)0.41326 (6)0.85692 (5)0.0331 (3)
S70.38608 (17)0.29951 (9)0.97393 (7)0.0631 (5)
S80.59353 (15)0.27223 (8)0.90828 (6)0.0557 (4)
C40.4254 (5)0.3707 (3)0.9339 (2)0.0411 (14)
C50.5214 (5)0.3573 (3)0.9033 (2)0.0392 (13)
C60.5000 (7)0.2373 (4)0.9546 (3)0.0668 (19)
O20.5120 (5)0.1761 (3)0.9717 (2)0.0901 (17)
S90.23672 (11)0.43677 (7)0.81366 (5)0.0334 (3)
S100.48088 (13)0.54537 (7)0.77525 (5)0.0354 (3)
S110.11713 (16)0.47424 (11)0.72112 (7)0.0705 (5)
S120.3198 (2)0.57065 (10)0.68873 (6)0.0692 (5)
C70.2454 (5)0.4827 (3)0.7597 (2)0.0529 (16)
C80.3395 (6)0.5258 (3)0.7443 (2)0.0478 (15)
C90.1687 (7)0.5345 (4)0.6771 (3)0.077 (2)
O30.1090 (6)0.5510 (3)0.6403 (2)0.112 (2)
N10.5096 (4)0.7962 (2)0.79093 (15)0.0377 (11)
C100.5727 (5)0.7993 (3)0.74172 (19)0.0409 (14)
H10A0.65420.82350.74570.049*
H10B0.52190.83030.72010.049*
C110.5936 (6)0.7260 (3)0.7167 (2)0.0515 (15)
H11A0.62970.69110.74010.062*
H11B0.51300.70630.70550.062*
C120.6807 (6)0.7344 (3)0.6734 (2)0.0537 (16)
H12A0.64930.77380.65220.064*
H12B0.76380.74910.68520.064*
C130.6925 (8)0.6656 (3)0.6444 (3)0.079 (2)
H13A0.74970.67370.61730.118*
H13B0.61080.65160.63180.118*
H13C0.72460.62660.66520.118*
C140.3889 (5)0.7523 (3)0.78772 (19)0.0407 (13)
H14A0.40840.70360.77440.049*
H14B0.35640.74520.82100.049*
C150.2871 (5)0.7862 (4)0.7570 (2)0.0529 (16)
H15A0.27060.83630.76880.064*
H15B0.31610.78980.72300.064*
C160.1686 (6)0.7433 (4)0.7583 (3)0.0597 (18)
H16A0.15150.72830.79220.072*
H16B0.17880.69850.73870.072*
C170.0588 (6)0.7866 (5)0.7392 (3)0.086 (3)
H17A0.01620.75640.74050.129*
H17B0.07480.80090.70550.129*
H17C0.04700.83030.75900.129*
C180.4856 (5)0.8739 (3)0.8054 (2)0.0433 (14)
H18A0.43380.89710.78020.052*
H18B0.56590.90010.80630.052*
C190.4213 (6)0.8835 (3)0.8545 (2)0.0497 (14)
H19A0.35700.84550.85840.060*
H19B0.48290.87740.88080.060*
C200.3618 (6)0.9580 (3)0.8586 (3)0.0629 (17)
H20A0.42260.99550.84840.076*
H20B0.34040.96730.89300.076*
C210.2426 (6)0.9657 (4)0.8272 (3)0.070 (2)
H21A0.20881.01500.83090.105*
H21B0.18070.93000.83790.105*
H21C0.26310.95700.79310.105*
C220.5905 (5)0.7575 (3)0.82739 (19)0.0413 (13)
H22A0.59360.70520.81870.050*
H22B0.55030.76120.85960.050*
C230.7246 (5)0.7855 (3)0.8321 (2)0.0438 (14)
H23A0.77250.77200.80280.053*
H23B0.72440.83930.83480.053*
C240.7848 (5)0.7529 (4)0.8763 (2)0.0487 (15)
H24A0.77900.69910.87460.058*
H24B0.73940.76910.90560.058*
C250.9223 (5)0.7752 (4)0.8808 (2)0.0578 (17)
H25A0.95840.75250.90970.087*
H25B0.92830.82830.88350.087*
H25C0.96770.75890.85200.087*
N20.9162 (4)0.4736 (2)0.93973 (15)0.0350 (10)
C260.8502 (5)0.5067 (4)0.8952 (2)0.0491 (14)
H26A0.80000.46750.88020.059*
H26B0.79130.54390.90730.059*
C270.9239 (5)0.5404 (3)0.8566 (2)0.0500 (14)
H27A0.99160.50690.84700.060*
H27B0.96220.58580.86900.060*
C280.8453 (6)0.5581 (4)0.8126 (2)0.0604 (18)
H28A0.82480.51180.79600.072*
H28B0.76630.57980.82390.072*
C290.9018 (8)0.6082 (4)0.7767 (2)0.080 (2)
H29A0.84400.61580.74980.119*
H29B0.97910.58700.76440.119*
H29C0.91980.65510.79220.119*
C300.9964 (5)0.4093 (3)0.9240 (2)0.0491 (15)
H30A1.05110.42580.89740.059*
H30B1.05040.39560.95160.059*
C310.9287 (6)0.3423 (4)0.9073 (3)0.0673 (19)
H31A0.87690.35440.87880.081*
H31B0.87300.32500.93350.081*
C321.0193 (7)0.2819 (4)0.8940 (3)0.080 (2)
H32A1.06830.29780.86550.096*
H32B1.07770.27480.92130.096*
C330.9598 (9)0.2113 (5)0.8826 (3)0.103 (3)
H33A1.02370.17550.87400.155*
H33B0.90270.21750.85530.155*
H33C0.91350.19410.91100.155*
C340.8165 (5)0.4502 (4)0.9750 (2)0.0535 (16)
H34A0.75780.41820.95750.064*
H34B0.85640.42041.00060.064*
C350.7448 (5)0.5071 (4)0.9988 (2)0.0576 (17)
H35A0.70600.53810.97370.069*
H35B0.80210.53821.01780.069*
C360.6453 (5)0.4792 (4)1.0319 (2)0.0596 (18)
H36A0.68440.45111.05850.071*
H36B0.59110.44551.01360.071*
C370.5658 (6)0.5396 (5)1.0538 (3)0.092 (3)
H37A0.50290.51811.07510.137*
H37B0.52480.56681.02770.137*
H37C0.61850.57271.07250.137*
C381.0009 (5)0.5312 (3)0.96065 (19)0.0410 (13)
H38A1.06630.54190.93640.049*
H38B0.95200.57630.96520.049*
C391.0630 (5)0.5134 (3)1.00773 (18)0.0403 (13)
H39A0.99870.50591.03290.048*
H39B1.10950.46721.00410.048*
C401.1502 (6)0.5716 (3)1.0242 (2)0.0549 (16)
H40A1.10310.61731.02960.066*
H40B1.21230.58090.99850.066*
C411.2165 (6)0.5511 (4)1.0705 (2)0.0664 (19)
H41A1.27130.59111.08040.100*
H41B1.26590.50701.06500.100*
H41C1.15540.54191.09610.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02492 (15)0.02442 (17)0.03649 (18)0.00068 (14)0.00102 (15)0.00342 (15)
S10.0243 (6)0.0287 (6)0.0393 (7)0.0007 (5)0.0037 (5)0.0031 (6)
S20.0255 (6)0.0281 (7)0.0444 (8)0.0017 (5)0.0023 (6)0.0060 (6)
S30.0316 (7)0.0274 (7)0.0440 (8)0.0022 (5)0.0060 (6)0.0044 (6)
S40.0369 (7)0.0320 (7)0.0378 (8)0.0018 (6)0.0059 (6)0.0060 (6)
C10.029 (3)0.022 (3)0.037 (3)0.002 (2)0.002 (2)0.004 (2)
C20.033 (3)0.020 (3)0.031 (3)0.003 (2)0.004 (2)0.000 (2)
C30.045 (3)0.028 (3)0.050 (3)0.006 (2)0.003 (3)0.002 (3)
O10.062 (3)0.040 (2)0.058 (3)0.004 (2)0.002 (2)0.018 (2)
S50.0382 (7)0.0388 (8)0.0462 (8)0.0025 (6)0.0100 (6)0.0054 (7)
S60.0254 (6)0.0257 (6)0.0481 (8)0.0006 (5)0.0030 (6)0.0027 (6)
S70.0642 (11)0.0503 (10)0.0748 (12)0.0023 (9)0.0117 (10)0.0246 (9)
S80.0488 (8)0.0316 (8)0.0867 (12)0.0036 (8)0.0066 (9)0.0104 (8)
C40.040 (3)0.039 (3)0.045 (3)0.001 (2)0.002 (3)0.002 (3)
C50.034 (3)0.029 (3)0.054 (4)0.000 (2)0.003 (3)0.002 (3)
C60.072 (5)0.049 (4)0.080 (5)0.000 (4)0.005 (4)0.015 (4)
O20.092 (4)0.051 (3)0.127 (5)0.008 (3)0.012 (4)0.043 (3)
S90.0233 (6)0.0288 (7)0.0481 (8)0.0041 (5)0.0031 (6)0.0146 (6)
S100.0432 (8)0.0316 (7)0.0314 (7)0.0017 (6)0.0035 (6)0.0033 (6)
S110.0573 (10)0.0807 (13)0.0734 (12)0.0150 (10)0.0230 (9)0.0272 (10)
S120.0993 (15)0.0613 (12)0.0471 (10)0.0184 (11)0.0111 (10)0.0044 (9)
C70.038 (3)0.053 (4)0.069 (4)0.015 (3)0.014 (3)0.034 (3)
C80.065 (4)0.036 (3)0.043 (3)0.010 (3)0.000 (3)0.010 (3)
C90.093 (5)0.070 (5)0.066 (5)0.038 (4)0.031 (4)0.030 (4)
O30.146 (5)0.113 (4)0.076 (4)0.050 (4)0.061 (4)0.022 (3)
N10.033 (2)0.040 (3)0.039 (3)0.003 (2)0.000 (2)0.014 (2)
C100.048 (4)0.035 (3)0.039 (3)0.006 (3)0.003 (3)0.016 (2)
C110.063 (4)0.042 (3)0.050 (4)0.004 (3)0.003 (3)0.008 (3)
C120.055 (4)0.048 (4)0.057 (4)0.001 (3)0.009 (3)0.001 (3)
C130.120 (7)0.054 (4)0.062 (4)0.010 (4)0.021 (5)0.006 (4)
C140.042 (3)0.036 (3)0.044 (3)0.007 (3)0.003 (3)0.013 (2)
C150.050 (4)0.054 (4)0.055 (4)0.009 (3)0.013 (3)0.020 (3)
C160.049 (4)0.061 (4)0.069 (4)0.007 (3)0.010 (3)0.021 (4)
C170.062 (5)0.100 (6)0.097 (6)0.002 (4)0.014 (4)0.036 (5)
C180.044 (3)0.032 (3)0.054 (4)0.003 (3)0.001 (3)0.010 (3)
C190.054 (4)0.045 (3)0.050 (3)0.001 (3)0.004 (3)0.001 (3)
C200.072 (4)0.056 (4)0.061 (4)0.005 (3)0.000 (4)0.015 (4)
C210.065 (4)0.061 (5)0.085 (5)0.011 (4)0.004 (4)0.006 (4)
C220.041 (3)0.042 (3)0.042 (3)0.002 (3)0.003 (3)0.020 (2)
C230.040 (3)0.041 (3)0.050 (3)0.000 (3)0.004 (3)0.002 (3)
C240.036 (3)0.062 (4)0.048 (3)0.001 (3)0.007 (3)0.002 (3)
C250.040 (3)0.080 (5)0.054 (4)0.010 (3)0.001 (3)0.008 (3)
N20.025 (2)0.031 (2)0.050 (3)0.0013 (18)0.002 (2)0.0009 (19)
C260.035 (3)0.054 (4)0.058 (4)0.001 (3)0.010 (3)0.003 (3)
C270.049 (4)0.058 (4)0.042 (3)0.009 (3)0.001 (3)0.001 (3)
C280.064 (4)0.064 (5)0.053 (4)0.003 (4)0.006 (3)0.006 (4)
C290.096 (6)0.082 (5)0.060 (4)0.018 (5)0.010 (5)0.014 (4)
C300.038 (3)0.051 (4)0.058 (4)0.000 (3)0.001 (3)0.000 (3)
C310.068 (5)0.056 (4)0.079 (5)0.012 (4)0.005 (4)0.011 (4)
C320.075 (5)0.060 (5)0.105 (6)0.001 (4)0.001 (5)0.032 (4)
C330.117 (7)0.070 (6)0.123 (8)0.009 (5)0.003 (6)0.023 (5)
C340.035 (3)0.066 (4)0.060 (4)0.013 (3)0.004 (3)0.012 (3)
C350.038 (3)0.078 (5)0.057 (3)0.012 (4)0.004 (3)0.016 (4)
C360.036 (3)0.085 (5)0.057 (4)0.009 (3)0.005 (3)0.010 (4)
C370.052 (4)0.149 (8)0.074 (5)0.028 (5)0.019 (4)0.035 (5)
C380.032 (3)0.044 (3)0.047 (3)0.006 (2)0.008 (3)0.007 (3)
C390.037 (3)0.042 (3)0.042 (3)0.009 (3)0.000 (2)0.005 (3)
C400.053 (4)0.047 (4)0.065 (4)0.003 (3)0.005 (3)0.011 (3)
C410.063 (4)0.083 (5)0.053 (4)0.007 (4)0.017 (3)0.011 (4)
Geometric parameters (Å, º) top
Sn1—S52.5282 (14)C21—H21A0.9800
Sn1—S22.5284 (13)C21—H21B0.9800
Sn1—S12.5386 (12)C21—H21C0.9800
Sn1—S62.5394 (12)C22—C231.538 (7)
Sn1—S92.5457 (12)C22—H22A0.9900
Sn1—S102.5626 (14)C22—H22B0.9900
S1—C11.746 (5)C23—C241.507 (8)
S2—C21.738 (5)C23—H23A0.9900
S3—C11.747 (5)C23—H23B0.9900
S3—C31.766 (6)C24—C251.542 (8)
S4—C21.764 (5)C24—H24A0.9900
S4—C31.770 (6)C24—H24B0.9900
C1—C21.350 (7)C25—H25A0.9800
C3—O11.214 (6)C25—H25B0.9800
S5—C41.732 (6)C25—H25C0.9800
S6—C51.731 (6)N2—C381.510 (6)
S7—C61.758 (7)N2—C341.512 (7)
S7—C41.763 (6)N2—C301.525 (7)
S8—C51.749 (5)N2—C261.543 (7)
S8—C61.750 (7)C26—C271.466 (8)
C4—C51.356 (7)C26—H26A0.9900
C6—O21.225 (7)C26—H26B0.9900
S9—C71.713 (7)C27—C281.515 (8)
S10—C81.783 (6)C27—H27A0.9900
S11—C91.734 (9)C27—H27B0.9900
S11—C71.751 (6)C28—C291.483 (9)
S12—C81.752 (6)C28—H28A0.9900
S12—C91.787 (8)C28—H28B0.9900
C7—C81.354 (8)C29—H29A0.9800
C9—O31.238 (8)C29—H29B0.9800
N1—C181.503 (7)C29—H29C0.9800
N1—C221.508 (6)C30—C311.503 (8)
N1—C101.519 (7)C30—H30A0.9900
N1—C141.532 (7)C30—H30B0.9900
C10—C111.528 (8)C31—C321.522 (9)
C10—H10A0.9900C31—H31A0.9900
C10—H10B0.9900C31—H31B0.9900
C11—C121.526 (8)C32—C331.480 (10)
C11—H11A0.9900C32—H32A0.9900
C11—H11B0.9900C32—H32B0.9900
C12—C131.500 (8)C33—H33A0.9800
C12—H12A0.9900C33—H33B0.9800
C12—H12B0.9900C33—H33C0.9800
C13—H13A0.9800C34—C351.454 (8)
C13—H13B0.9800C34—H34A0.9900
C13—H13C0.9800C34—H34B0.9900
C14—C151.519 (7)C35—C361.498 (8)
C14—H14A0.9900C35—H35A0.9900
C14—H14B0.9900C35—H35B0.9900
C15—C161.500 (8)C36—C371.525 (10)
C15—H15A0.9900C36—H36A0.9900
C15—H15B0.9900C36—H36B0.9900
C16—C171.520 (9)C37—H37A0.9800
C16—H16A0.9900C37—H37B0.9800
C16—H16B0.9900C37—H37C0.9800
C17—H17A0.9800C38—C391.497 (7)
C17—H17B0.9800C38—H38A0.9900
C17—H17C0.9800C38—H38B0.9900
C18—C191.530 (8)C39—C401.494 (8)
C18—H18A0.9900C39—H39A0.9900
C18—H18B0.9900C39—H39B0.9900
C19—C201.514 (8)C40—C411.510 (8)
C19—H19A0.9900C40—H40A0.9900
C19—H19B0.9900C40—H40B0.9900
C20—C211.555 (9)C41—H41A0.9800
C20—H20A0.9900C41—H41B0.9800
C20—H20B0.9900C41—H41C0.9800
S5—Sn1—S294.97 (5)C20—C21—H21C109.5
S5—Sn1—S192.46 (4)H21A—C21—H21C109.5
S2—Sn1—S185.24 (4)H21B—C21—H21C109.5
S5—Sn1—S685.96 (4)N1—C22—C23116.2 (4)
S2—Sn1—S689.37 (4)N1—C22—H22A108.2
S1—Sn1—S6174.24 (4)C23—C22—H22A108.2
S5—Sn1—S989.93 (5)N1—C22—H22B108.2
S2—Sn1—S9171.52 (4)C23—C22—H22B108.2
S1—Sn1—S987.64 (4)H22A—C22—H22B107.4
S6—Sn1—S997.88 (4)C24—C23—C22109.9 (5)
S5—Sn1—S10169.37 (5)C24—C23—H23A109.7
S2—Sn1—S1090.83 (4)C22—C23—H23A109.7
S1—Sn1—S1096.90 (4)C24—C23—H23B109.7
S6—Sn1—S1085.20 (4)C22—C23—H23B109.7
S9—Sn1—S1085.45 (4)H23A—C23—H23B108.2
C1—S1—Sn198.84 (16)C23—C24—C25111.9 (5)
C2—S2—Sn198.91 (16)C23—C24—H24A109.2
C1—S3—C397.5 (2)C25—C24—H24A109.2
C2—S4—C397.0 (2)C23—C24—H24B109.2
C2—C1—S1126.1 (4)C25—C24—H24B109.2
C2—C1—S3117.0 (4)H24A—C24—H24B107.9
S1—C1—S3116.9 (3)C24—C25—H25A109.5
C1—C2—S2127.3 (4)C24—C25—H25B109.5
C1—C2—S4116.5 (4)H25A—C25—H25B109.5
S2—C2—S4116.1 (3)C24—C25—H25C109.5
O1—C3—S3124.3 (5)H25A—C25—H25C109.5
O1—C3—S4123.8 (5)H25B—C25—H25C109.5
S3—C3—S4111.9 (3)C38—N2—C34112.4 (4)
C4—S5—Sn198.47 (19)C38—N2—C30107.9 (4)
C5—S6—Sn199.05 (18)C34—N2—C30111.4 (4)
C6—S7—C497.1 (3)C38—N2—C26107.9 (4)
C5—S8—C697.3 (3)C34—N2—C26107.3 (4)
C5—C4—S5128.0 (4)C30—N2—C26109.8 (4)
C5—C4—S7116.0 (4)C27—C26—N2119.7 (4)
S5—C4—S7116.0 (3)C27—C26—H26A107.4
C4—C5—S6126.5 (4)N2—C26—H26A107.4
C4—C5—S8116.9 (4)C27—C26—H26B107.4
S6—C5—S8116.4 (3)N2—C26—H26B107.4
O2—C6—S8123.8 (6)H26A—C26—H26B106.9
O2—C6—S7123.5 (6)C26—C27—C28111.7 (5)
S8—C6—S7112.7 (4)C26—C27—H27A109.3
C7—S9—Sn197.9 (2)C28—C27—H27A109.3
C8—S10—Sn195.5 (2)C26—C27—H27B109.3
C9—S11—C796.7 (4)C28—C27—H27B109.3
C8—S12—C995.4 (4)H27A—C27—H27B107.9
C8—C7—S9127.0 (4)C29—C28—C27116.0 (6)
C8—C7—S11116.8 (5)C29—C28—H28A108.3
S9—C7—S11116.2 (4)C27—C28—H28A108.3
C7—C8—S12117.3 (5)C29—C28—H28B108.3
C7—C8—S10127.3 (5)C27—C28—H28B108.3
S12—C8—S10115.4 (4)H28A—C28—H28B107.4
O3—C9—S11124.3 (7)C28—C29—H29A109.5
O3—C9—S12122.0 (7)C28—C29—H29B109.5
S11—C9—S12113.7 (4)H29A—C29—H29B109.5
C18—N1—C22111.6 (4)C28—C29—H29C109.5
C18—N1—C10106.2 (4)H29A—C29—H29C109.5
C22—N1—C10110.8 (4)H29B—C29—H29C109.5
C18—N1—C14111.5 (4)C31—C30—N2116.5 (5)
C22—N1—C14106.4 (4)C31—C30—H30A108.2
C10—N1—C14110.3 (4)N2—C30—H30A108.2
N1—C10—C11115.9 (4)C31—C30—H30B108.2
N1—C10—H10A108.3N2—C30—H30B108.2
C11—C10—H10A108.3H30A—C30—H30B107.3
N1—C10—H10B108.3C30—C31—C32111.0 (5)
C11—C10—H10B108.3C30—C31—H31A109.4
H10A—C10—H10B107.4C32—C31—H31A109.4
C12—C11—C10110.8 (5)C30—C31—H31B109.4
C12—C11—H11A109.5C32—C31—H31B109.4
C10—C11—H11A109.5H31A—C31—H31B108.0
C12—C11—H11B109.5C33—C32—C31114.2 (7)
C10—C11—H11B109.5C33—C32—H32A108.7
H11A—C11—H11B108.1C31—C32—H32A108.7
C13—C12—C11112.6 (5)C33—C32—H32B108.7
C13—C12—H12A109.1C31—C32—H32B108.7
C11—C12—H12A109.1H32A—C32—H32B107.6
C13—C12—H12B109.1C32—C33—H33A109.5
C11—C12—H12B109.1C32—C33—H33B109.5
H12A—C12—H12B107.8H33A—C33—H33B109.5
C12—C13—H13A109.5C32—C33—H33C109.5
C12—C13—H13B109.5H33A—C33—H33C109.5
H13A—C13—H13B109.5H33B—C33—H33C109.5
C12—C13—H13C109.5C35—C34—N2117.7 (5)
H13A—C13—H13C109.5C35—C34—H34A107.9
H13B—C13—H13C109.5N2—C34—H34A107.9
C15—C14—N1115.5 (4)C35—C34—H34B107.9
C15—C14—H14A108.4N2—C34—H34B107.9
N1—C14—H14A108.4H34A—C34—H34B107.2
C15—C14—H14B108.4C34—C35—C36114.2 (6)
N1—C14—H14B108.4C34—C35—H35A108.7
H14A—C14—H14B107.5C36—C35—H35A108.7
C16—C15—C14112.7 (5)C34—C35—H35B108.7
C16—C15—H15A109.1C36—C35—H35B108.7
C14—C15—H15A109.1H35A—C35—H35B107.6
C16—C15—H15B109.1C35—C36—C37113.3 (6)
C14—C15—H15B109.1C35—C36—H36A108.9
H15A—C15—H15B107.8C37—C36—H36A108.9
C15—C16—C17112.3 (5)C35—C36—H36B108.9
C15—C16—H16A109.2C37—C36—H36B108.9
C17—C16—H16A109.2H36A—C36—H36B107.7
C15—C16—H16B109.2C36—C37—H37A109.5
C17—C16—H16B109.2C36—C37—H37B109.5
H16A—C16—H16B107.9H37A—C37—H37B109.5
C16—C17—H17A109.5C36—C37—H37C109.5
C16—C17—H17B109.5H37A—C37—H37C109.5
H17A—C17—H17B109.5H37B—C37—H37C109.5
C16—C17—H17C109.5C39—C38—N2116.7 (4)
H17A—C17—H17C109.5C39—C38—H38A108.1
H17B—C17—H17C109.5N2—C38—H38A108.1
N1—C18—C19115.0 (4)C39—C38—H38B108.1
N1—C18—H18A108.5N2—C38—H38B108.1
C19—C18—H18A108.5H38A—C38—H38B107.3
N1—C18—H18B108.5C40—C39—C38112.9 (5)
C19—C18—H18B108.5C40—C39—H39A109.0
H18A—C18—H18B107.5C38—C39—H39A109.0
C20—C19—C18111.3 (5)C40—C39—H39B109.0
C20—C19—H19A109.4C38—C39—H39B109.0
C18—C19—H19A109.4H39A—C39—H39B107.8
C20—C19—H19B109.4C39—C40—C41112.1 (5)
C18—C19—H19B109.4C39—C40—H40A109.2
H19A—C19—H19B108.0C41—C40—H40A109.2
C19—C20—C21113.0 (5)C39—C40—H40B109.2
C19—C20—H20A109.0C41—C40—H40B109.2
C21—C20—H20A109.0H40A—C40—H40B107.9
C19—C20—H20B109.0C40—C41—H41A109.5
C21—C20—H20B109.0C40—C41—H41B109.5
H20A—C20—H20B107.8H41A—C41—H41B109.5
C20—C21—H21A109.5C40—C41—H41C109.5
C20—C21—H21B109.5H41A—C41—H41C109.5
H21A—C21—H21B109.5H41B—C41—H41C109.5
Sn1—S1—C1—C214.2 (5)C7—S11—C9—O3178.1 (6)
Sn1—S1—C1—S3165.2 (2)C7—S11—C9—S123.0 (4)
C3—S3—C1—C22.2 (5)C8—S12—C9—O3179.1 (6)
C3—S3—C1—S1177.3 (3)C8—S12—C9—S112.0 (4)
S1—C1—C2—S20.6 (7)C18—N1—C10—C11173.4 (5)
S3—C1—C2—S2178.8 (3)C22—N1—C10—C1165.2 (6)
S1—C1—C2—S4176.8 (3)C14—N1—C10—C1152.4 (6)
S3—C1—C2—S42.6 (6)N1—C10—C11—C12168.0 (5)
Sn1—S2—C2—C113.4 (5)C10—C11—C12—C13173.5 (6)
Sn1—S2—C2—S4162.8 (2)C18—N1—C14—C1551.6 (6)
C3—S4—C2—C11.6 (5)C22—N1—C14—C15173.4 (5)
C3—S4—C2—S2178.2 (3)C10—N1—C14—C1566.3 (6)
C1—S3—C3—O1179.6 (5)N1—C14—C15—C16175.9 (5)
C1—S3—C3—S41.0 (3)C14—C15—C16—C17164.8 (6)
C2—S4—C3—O1178.5 (5)C22—N1—C18—C1959.4 (6)
C2—S4—C3—S30.1 (3)C10—N1—C18—C19179.8 (4)
Sn1—S5—C4—C512.9 (5)C14—N1—C18—C1959.5 (6)
Sn1—S5—C4—S7165.8 (3)N1—C18—C19—C20160.4 (5)
C6—S7—C4—C50.2 (5)C18—C19—C20—C2173.1 (7)
C6—S7—C4—S5179.1 (4)C18—N1—C22—C2366.0 (6)
S5—C4—C5—S64.4 (8)C10—N1—C22—C2352.2 (6)
S7—C4—C5—S6174.2 (3)C14—N1—C22—C23172.2 (5)
S5—C4—C5—S8179.3 (3)N1—C22—C23—C24168.3 (5)
S7—C4—C5—S80.7 (6)C22—C23—C24—C25176.2 (5)
Sn1—S6—C5—C47.2 (5)C38—N2—C26—C2753.0 (6)
Sn1—S6—C5—S8167.8 (3)C34—N2—C26—C27174.4 (5)
C6—S8—C5—C40.8 (5)C30—N2—C26—C2764.4 (6)
C6—S8—C5—S6174.7 (4)N2—C26—C27—C28170.4 (5)
C5—S8—C6—O2179.0 (7)C26—C27—C28—C29165.4 (6)
C5—S8—C6—S70.6 (4)C38—N2—C30—C31173.2 (5)
C4—S7—C6—O2179.3 (7)C34—N2—C30—C3149.4 (7)
C4—S7—C6—S80.3 (4)C26—N2—C30—C3169.4 (6)
Sn1—S9—C7—C818.3 (5)N2—C30—C31—C32178.6 (6)
Sn1—S9—C7—S11160.3 (3)C30—C31—C32—C33173.3 (7)
C9—S11—C7—C83.2 (5)C38—N2—C34—C3549.7 (6)
C9—S11—C7—S9175.5 (3)C30—N2—C34—C35171.0 (5)
S9—C7—C8—S12176.3 (3)C26—N2—C34—C3568.8 (6)
S11—C7—C8—S122.3 (6)N2—C34—C35—C36178.0 (5)
S9—C7—C8—S101.1 (8)C34—C35—C36—C37176.1 (6)
S11—C7—C8—S10179.7 (3)C34—N2—C38—C3954.9 (6)
C9—S12—C8—C70.1 (5)C30—N2—C38—C3968.4 (6)
C9—S12—C8—S10177.8 (3)C26—N2—C38—C39173.0 (4)
Sn1—S10—C8—C719.5 (5)N2—C38—C39—C40176.9 (4)
Sn1—S10—C8—S12158.0 (3)C38—C39—C40—C41177.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26A···S60.992.723.606 (6)149
C26—H26B···S20.992.773.621 (6)144
C29—H29B···S11i0.982.813.711 (8)153
C30—H30B···O2ii0.992.533.280 (8)133
C34—H34B···O2ii0.992.563.459 (8)152
C35—H35A···S20.992.853.819 (6)165
C38—H38B···O1iii0.992.443.418 (7)168
C37—H37A···O3iv0.982.513.466 (9)165
C10—H10B···S6v0.992.803.772 (5)166
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+2; (iii) x+1/2, y+3/2, z+2; (iv) x+1/2, y+1, z+1/2; (v) x+1, y+1/2, z+3/2.
(II) Bis(tetraphenylphosphonium) tris(2-oxo-1,3-dithiole-4,5-dithiolato)stannate(IV) top
Crystal data top
(C24H20P)2[Sn(C3OS4)3]F(000) = 2712
Mr = 1338.24Dx = 1.521 Mg m3
Monoclinic, P21/nMelting point: 424 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 14.2844 (2) ÅCell parameters from 13144 reflections
b = 26.4828 (4) Åθ = 2.9–27.5°
c = 15.4538 (2) ŵ = 0.96 mm1
β = 90.4168 (6)°T = 120 K
V = 5845.88 (14) Å3Block, dark red
Z = 40.20 × 0.18 × 0.16 mm
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
13360 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode10973 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 3433
Tmin = 0.673, Tmax = 0.857l = 2019
64111 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0365P)2 + 1.8314P]
where P = (Fo2 + 2Fc2)/3
13360 reflections(Δ/σ)max = 0.002
676 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
(C24H20P)2[Sn(C3OS4)3]V = 5845.88 (14) Å3
Mr = 1338.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.2844 (2) ŵ = 0.96 mm1
b = 26.4828 (4) ÅT = 120 K
c = 15.4538 (2) Å0.20 × 0.18 × 0.16 mm
β = 90.4168 (6)°
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
13360 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
10973 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.857Rint = 0.040
64111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.09Δρmax = 0.50 e Å3
13360 reflectionsΔρmin = 0.72 e Å3
676 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

9.9106(0.0025) x − 8.1991(0.0052) y + 9.9700(0.0029) z = 6.1855(0.0063)

* 0.0373 (0.0007) S1 * −0.0270 (0.0007) S2 * −0.0316 (0.0006) S3 * 0.0410 (0.0006) S4 * −0.0129 (0.0017) C1 * −0.0068 (0.0017) C2 0.4930 (0.0009) Sn1 0.0639 (0.0027) C3 0.1150 (0.0023) O1

Rms deviation of fitted atoms = 0.0289

5.5372(0.0026) x + 23.8054(0.0026) y + 3.1127(0.0037) z = 26.0871(0.0019)

Angle to previous plane (with approximate e.s.d.) = 82.91 (0.02)

* 0.0456 (0.0006) S5 * −0.0139 (0.0007) S6 * −0.0196 (0.0006) S7 * 0.0482 (0.0006) S8 * −0.0308 (0.0017) C4 * −0.0295 (0.0017) C5 1.3871 (0.0008) Sn1 − 0.0117 (0.0024) C6 − 0.0467 (0.0020) O2

Rms deviation of fitted atoms = 0.0337

− 1.5522(0.0031) x + 24.3805(0.0029) y − 5.7834(0.0038) z = 15.2340(0.0064)

Angle to previous plane (with approximate e.s.d.) = 44.86 (0.01)

* 0.0288 (0.0007) S9 * 0.0155 (0.0007) S10 * 0.0124 (0.0007) S11 * 0.0281 (0.0007) S12 * −0.0417 (0.0018) C7 * −0.0431 (0.0018) C8 1.3721 (0.0008) Sn1 − 0.0146 (0.0026) C9 − 0.0824 (0.0023) O3

Rms deviation of fitted atoms = 0.0306

2.4174(0.0027) x − 2.3788(0.0102) y + 15.1481(0.0007) z = 11.0460(0.0105)

Angle to previous plane (with approximate e.s.d.) = 62.02 (0.03)

* 0.0000 (0.0000) O1 * 0.0000 (0.0000) O2 * 0.0000 (0.0000) O3 − 0.2241 (0.0012) Sn1

Rms deviation of fitted atoms = 0.0000

Angle ANG1 97.58 (0.02) O1 - Sn1 - O2

Angle ANG2 84.83 (0.02) O1 - Sn1 - O3

Angle ANG3 175.42 (0.02) O2 - Sn1 - O3

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H atoms in calculated positions with C—H 0.95 A ng. and refined with a riding model with Uiso(H) = 1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.665273 (9)0.901335 (5)0.749782 (9)0.01852 (5)
S10.76062 (4)0.96210 (2)0.65928 (4)0.02585 (13)
S20.60372 (4)0.98031 (2)0.82376 (4)0.02338 (12)
C10.74283 (14)1.01782 (8)0.71774 (14)0.0218 (5)
C20.68283 (15)1.02454 (8)0.78353 (14)0.0224 (5)
S30.81230 (4)1.06977 (2)0.68954 (4)0.03118 (14)
S40.68441 (4)1.08360 (2)0.83531 (4)0.03156 (14)
C30.77326 (17)1.11116 (10)0.77195 (19)0.0370 (6)
O10.80327 (13)1.15363 (7)0.78218 (16)0.0557 (6)
S50.52145 (4)0.89136 (2)0.65092 (3)0.02276 (12)
S60.56226 (4)0.85265 (2)0.85528 (4)0.02627 (13)
C40.44204 (14)0.89549 (8)0.73611 (14)0.0212 (5)
C50.45889 (14)0.88084 (8)0.81854 (14)0.0219 (5)
S70.33347 (4)0.92399 (2)0.71483 (4)0.02400 (12)
S80.37178 (4)0.89441 (2)0.89471 (4)0.02523 (13)
C60.28934 (16)0.92063 (9)0.82154 (15)0.0257 (5)
O20.21142 (11)0.93458 (7)0.84223 (11)0.0343 (4)
S90.74304 (4)0.83073 (2)0.66355 (4)0.03080 (14)
S100.79586 (4)0.87975 (2)0.85831 (4)0.02383 (12)
C70.85606 (15)0.84403 (8)0.70148 (15)0.0244 (5)
C80.87745 (14)0.86390 (8)0.77974 (14)0.0233 (5)
S110.95086 (4)0.83552 (2)0.63079 (4)0.02936 (13)
S120.99484 (4)0.87915 (3)0.80019 (4)0.03076 (14)
C91.03996 (16)0.85689 (9)0.70165 (16)0.0314 (5)
O31.12371 (12)0.85531 (8)0.68419 (12)0.0449 (5)
P10.47638 (4)0.81222 (2)0.37149 (4)0.02061 (12)
C100.52369 (15)0.87334 (8)0.39690 (13)0.0222 (5)
C110.60892 (16)0.87826 (9)0.44041 (14)0.0270 (5)
H110.64300.84910.45780.032*
C120.64363 (17)0.92608 (10)0.45811 (15)0.0329 (6)
H120.70200.92980.48730.040*
C130.59359 (19)0.96835 (10)0.43347 (15)0.0350 (6)
H130.61731.00100.44670.042*
C140.50897 (18)0.96371 (9)0.38954 (15)0.0320 (6)
H140.47500.99300.37250.038*
C150.47450 (17)0.91625 (9)0.37081 (15)0.0274 (5)
H150.41700.91280.34000.033*
C160.46417 (14)0.80878 (8)0.25559 (14)0.0212 (5)
C170.53689 (16)0.82796 (9)0.20521 (15)0.0276 (5)
H170.58990.84280.23240.033*
C180.53194 (17)0.82538 (9)0.11605 (16)0.0321 (6)
H180.58200.83790.08210.039*
C190.45376 (18)0.80450 (9)0.07607 (15)0.0307 (5)
H190.45030.80280.01470.037*
C200.38105 (17)0.78613 (9)0.12530 (15)0.0305 (5)
H200.32740.77220.09750.037*
C210.38560 (15)0.78788 (8)0.21501 (15)0.0248 (5)
H210.33560.77490.24860.030*
C220.36602 (15)0.80261 (8)0.42428 (14)0.0235 (5)
C230.32201 (16)0.75580 (9)0.41595 (16)0.0317 (5)
H230.35070.72960.38370.038*
C240.23630 (18)0.74770 (10)0.45493 (17)0.0397 (6)
H240.20550.71610.44850.048*
C250.19563 (19)0.78582 (11)0.50342 (19)0.0453 (7)
H250.13650.78040.52950.054*
C260.24055 (19)0.83161 (11)0.51397 (19)0.0465 (7)
H260.21300.85710.54870.056*
C270.32574 (17)0.84045 (9)0.47410 (16)0.0346 (6)
H270.35630.87210.48080.042*
C280.55603 (15)0.76458 (8)0.40979 (15)0.0234 (5)
C290.61570 (16)0.73951 (9)0.35334 (15)0.0290 (5)
H290.61250.74600.29290.035*
C300.67998 (17)0.70490 (9)0.38604 (17)0.0341 (6)
H300.72100.68770.34800.041*
C310.68422 (16)0.69552 (9)0.47402 (17)0.0326 (6)
H310.72840.67190.49600.039*
C320.62477 (17)0.72016 (9)0.53063 (17)0.0340 (6)
H320.62800.71330.59090.041*
C330.56059 (17)0.75480 (9)0.49856 (15)0.0322 (5)
H330.51970.77190.53690.039*
P20.88580 (4)0.91210 (2)0.20981 (4)0.02145 (12)
C340.77598 (14)0.92892 (8)0.16109 (13)0.0200 (4)
C350.76636 (16)0.92908 (9)0.07156 (15)0.0283 (5)
H350.81820.92060.03620.034*
C360.68163 (16)0.94157 (10)0.03393 (15)0.0327 (6)
H360.67510.94140.02730.039*
C370.60626 (16)0.95436 (9)0.08482 (15)0.0302 (5)
H370.54830.96340.05850.036*
C380.61476 (15)0.95403 (9)0.17388 (15)0.0277 (5)
H380.56260.96280.20860.033*
C390.69880 (15)0.94105 (8)0.21275 (14)0.0243 (5)
H390.70430.94030.27400.029*
C400.98050 (14)0.93229 (8)0.14216 (14)0.0224 (5)
C411.00448 (15)0.90257 (9)0.07055 (15)0.0253 (5)
H410.97330.87140.06020.030*
C421.07402 (15)0.91891 (9)0.01498 (15)0.0286 (5)
H421.08970.89920.03420.034*
C431.12046 (15)0.96369 (9)0.03087 (15)0.0288 (5)
H431.16820.97460.00730.035*
C441.09801 (16)0.99270 (9)0.10196 (16)0.0307 (5)
H441.13081.02330.11280.037*
C451.02777 (15)0.97742 (9)0.15757 (15)0.0267 (5)
H451.01190.99770.20600.032*
C460.89076 (14)0.94249 (9)0.31369 (14)0.0240 (5)
C470.87394 (15)0.99443 (9)0.31717 (15)0.0272 (5)
H470.86241.01280.26540.033*
C480.87416 (16)1.01898 (10)0.39631 (15)0.0306 (5)
H480.86301.05430.39890.037*
C490.89065 (16)0.99207 (11)0.47137 (15)0.0354 (6)
H490.89051.00900.52550.042*
C500.90729 (17)0.94088 (11)0.46857 (16)0.0376 (6)
H500.91850.92290.52080.045*
C510.90785 (16)0.91547 (10)0.39018 (15)0.0304 (5)
H510.91970.88020.38830.036*
C520.89278 (16)0.84483 (9)0.21863 (15)0.0268 (5)
C530.97821 (18)0.82277 (10)0.24369 (18)0.0391 (6)
H531.03020.84360.25810.047*
C540.9867 (2)0.77096 (11)0.2473 (2)0.0490 (8)
H541.04420.75600.26490.059*
C550.9108 (2)0.74085 (11)0.2251 (2)0.0537 (8)
H550.91710.70520.22690.064*
C560.8257 (2)0.76191 (10)0.20034 (19)0.0479 (7)
H560.77410.74080.18590.057*
C570.81673 (19)0.81440 (9)0.19681 (16)0.0355 (6)
H570.75900.82930.17960.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01706 (7)0.01620 (8)0.02234 (8)0.00047 (6)0.00215 (5)0.00118 (6)
S10.0306 (3)0.0236 (3)0.0234 (3)0.0054 (2)0.0090 (2)0.0032 (2)
S20.0254 (3)0.0215 (3)0.0233 (3)0.0052 (2)0.0055 (2)0.0008 (2)
C10.0235 (11)0.0180 (11)0.0238 (11)0.0020 (9)0.0038 (9)0.0011 (9)
C20.0231 (11)0.0183 (11)0.0257 (11)0.0028 (9)0.0064 (9)0.0015 (9)
S30.0267 (3)0.0230 (3)0.0439 (4)0.0049 (2)0.0007 (3)0.0027 (3)
S40.0267 (3)0.0238 (3)0.0441 (4)0.0037 (2)0.0058 (3)0.0129 (3)
C30.0239 (12)0.0250 (14)0.0620 (18)0.0015 (10)0.0075 (12)0.0065 (12)
O10.0325 (10)0.0284 (11)0.1061 (18)0.0049 (8)0.0040 (11)0.0230 (11)
S50.0195 (3)0.0275 (3)0.0213 (3)0.0009 (2)0.0021 (2)0.0026 (2)
S60.0206 (3)0.0267 (3)0.0315 (3)0.0007 (2)0.0001 (2)0.0103 (2)
C40.0175 (10)0.0199 (12)0.0263 (12)0.0013 (8)0.0023 (8)0.0019 (9)
C50.0198 (10)0.0195 (11)0.0263 (11)0.0030 (9)0.0032 (9)0.0013 (9)
S70.0192 (3)0.0292 (3)0.0237 (3)0.0026 (2)0.0023 (2)0.0035 (2)
S80.0227 (3)0.0293 (3)0.0237 (3)0.0001 (2)0.0046 (2)0.0062 (2)
C60.0260 (12)0.0246 (12)0.0266 (12)0.0012 (10)0.0047 (9)0.0049 (10)
O20.0258 (9)0.0424 (11)0.0346 (10)0.0104 (7)0.0098 (7)0.0092 (8)
S90.0246 (3)0.0250 (3)0.0428 (4)0.0027 (2)0.0012 (2)0.0156 (3)
S100.0190 (3)0.0275 (3)0.0251 (3)0.0033 (2)0.0018 (2)0.0007 (2)
C70.0204 (11)0.0192 (12)0.0337 (13)0.0037 (9)0.0038 (9)0.0027 (10)
C80.0190 (10)0.0215 (12)0.0293 (12)0.0017 (9)0.0029 (9)0.0013 (9)
S110.0286 (3)0.0270 (3)0.0327 (3)0.0020 (2)0.0071 (2)0.0053 (3)
S120.0190 (3)0.0414 (4)0.0319 (3)0.0006 (3)0.0021 (2)0.0038 (3)
C90.0272 (12)0.0326 (14)0.0343 (13)0.0002 (10)0.0071 (10)0.0018 (11)
O30.0259 (9)0.0645 (13)0.0444 (11)0.0054 (9)0.0122 (8)0.0049 (10)
P10.0202 (3)0.0183 (3)0.0234 (3)0.0002 (2)0.0010 (2)0.0009 (2)
C100.0248 (11)0.0230 (12)0.0189 (11)0.0036 (9)0.0026 (8)0.0005 (9)
C110.0270 (12)0.0322 (14)0.0219 (11)0.0052 (10)0.0015 (9)0.0001 (10)
C120.0312 (13)0.0451 (16)0.0225 (12)0.0144 (12)0.0025 (10)0.0058 (11)
C130.0535 (16)0.0297 (14)0.0218 (12)0.0186 (12)0.0112 (11)0.0077 (10)
C140.0470 (15)0.0220 (13)0.0271 (13)0.0020 (11)0.0047 (11)0.0005 (10)
C150.0337 (13)0.0239 (12)0.0247 (12)0.0018 (10)0.0020 (10)0.0009 (10)
C160.0219 (11)0.0167 (11)0.0250 (11)0.0021 (9)0.0001 (8)0.0014 (9)
C170.0260 (12)0.0279 (13)0.0289 (12)0.0029 (10)0.0000 (9)0.0022 (10)
C180.0367 (13)0.0299 (14)0.0299 (13)0.0015 (11)0.0074 (10)0.0010 (11)
C190.0481 (15)0.0203 (13)0.0236 (12)0.0045 (11)0.0026 (10)0.0003 (10)
C200.0369 (13)0.0217 (13)0.0327 (13)0.0002 (10)0.0104 (10)0.0016 (10)
C210.0261 (11)0.0171 (12)0.0313 (12)0.0008 (9)0.0009 (9)0.0002 (9)
C220.0213 (11)0.0250 (12)0.0241 (11)0.0018 (9)0.0041 (9)0.0002 (9)
C230.0321 (13)0.0258 (13)0.0373 (14)0.0040 (10)0.0091 (10)0.0059 (11)
C240.0354 (14)0.0368 (15)0.0469 (16)0.0115 (12)0.0102 (12)0.0048 (13)
C250.0318 (14)0.0478 (18)0.0566 (18)0.0016 (13)0.0206 (13)0.0004 (14)
C260.0453 (16)0.0380 (17)0.0565 (18)0.0036 (13)0.0259 (14)0.0075 (13)
C270.0379 (14)0.0260 (13)0.0402 (15)0.0004 (11)0.0110 (11)0.0056 (11)
C280.0226 (11)0.0172 (11)0.0304 (12)0.0001 (9)0.0001 (9)0.0015 (9)
C290.0318 (12)0.0272 (13)0.0280 (12)0.0035 (10)0.0008 (10)0.0012 (10)
C300.0308 (13)0.0301 (14)0.0414 (15)0.0067 (11)0.0014 (11)0.0018 (11)
C310.0283 (12)0.0238 (13)0.0455 (15)0.0031 (10)0.0073 (11)0.0034 (11)
C320.0369 (14)0.0324 (14)0.0326 (13)0.0013 (11)0.0014 (11)0.0091 (11)
C330.0321 (13)0.0327 (14)0.0317 (13)0.0051 (11)0.0031 (10)0.0041 (11)
P20.0209 (3)0.0219 (3)0.0216 (3)0.0036 (2)0.0026 (2)0.0036 (2)
C340.0203 (10)0.0190 (11)0.0208 (11)0.0003 (8)0.0011 (8)0.0006 (9)
C350.0254 (12)0.0349 (14)0.0247 (12)0.0055 (10)0.0045 (9)0.0005 (10)
C360.0320 (13)0.0452 (16)0.0207 (12)0.0053 (11)0.0009 (9)0.0017 (11)
C370.0232 (12)0.0357 (14)0.0317 (13)0.0039 (10)0.0034 (10)0.0015 (11)
C380.0222 (11)0.0307 (14)0.0302 (12)0.0025 (10)0.0043 (9)0.0024 (10)
C390.0257 (11)0.0276 (13)0.0198 (11)0.0032 (10)0.0035 (9)0.0018 (9)
C400.0192 (10)0.0245 (12)0.0233 (11)0.0047 (9)0.0017 (8)0.0043 (9)
C410.0240 (11)0.0244 (13)0.0274 (12)0.0002 (9)0.0032 (9)0.0010 (10)
C420.0262 (12)0.0335 (14)0.0261 (12)0.0062 (10)0.0040 (9)0.0017 (10)
C430.0222 (11)0.0348 (14)0.0296 (12)0.0015 (10)0.0057 (9)0.0054 (10)
C440.0298 (12)0.0270 (13)0.0353 (14)0.0045 (10)0.0012 (10)0.0023 (11)
C450.0276 (12)0.0254 (13)0.0270 (12)0.0021 (10)0.0018 (9)0.0005 (10)
C460.0187 (10)0.0322 (13)0.0209 (11)0.0015 (9)0.0011 (8)0.0037 (9)
C470.0253 (11)0.0334 (14)0.0229 (12)0.0045 (10)0.0010 (9)0.0003 (10)
C480.0280 (12)0.0350 (14)0.0289 (13)0.0013 (10)0.0027 (10)0.0041 (11)
C490.0289 (13)0.0549 (18)0.0225 (12)0.0077 (12)0.0023 (10)0.0062 (12)
C500.0365 (14)0.0530 (18)0.0234 (13)0.0025 (13)0.0019 (10)0.0112 (12)
C510.0280 (12)0.0355 (14)0.0277 (12)0.0014 (10)0.0007 (10)0.0089 (11)
C520.0293 (12)0.0223 (12)0.0289 (12)0.0030 (10)0.0091 (9)0.0046 (10)
C530.0325 (14)0.0332 (15)0.0517 (17)0.0098 (11)0.0092 (12)0.0137 (12)
C540.0497 (17)0.0345 (16)0.063 (2)0.0155 (14)0.0139 (14)0.0175 (14)
C550.079 (2)0.0219 (15)0.061 (2)0.0133 (15)0.0197 (17)0.0068 (14)
C560.064 (2)0.0294 (16)0.0506 (18)0.0086 (14)0.0073 (14)0.0001 (13)
C570.0405 (14)0.0285 (14)0.0377 (14)0.0017 (11)0.0047 (11)0.0032 (11)
Geometric parameters (Å, º) top
Sn1—S12.5354 (6)C25—H250.9500
Sn1—S22.5435 (5)C26—C271.388 (3)
Sn1—S62.5536 (6)C26—H260.9500
Sn1—S92.5549 (6)C27—H270.9500
Sn1—S102.5639 (6)C28—C291.393 (3)
Sn1—S52.5649 (6)C28—C331.397 (3)
S1—C11.750 (2)C29—C301.390 (3)
S2—C21.745 (2)C29—H290.9500
C1—C21.346 (3)C30—C311.383 (3)
C1—S31.753 (2)C30—H300.9500
C2—S41.757 (2)C31—C321.387 (3)
S3—C31.773 (3)C31—H310.9500
S4—C31.766 (3)C32—C331.386 (3)
C3—O11.214 (3)C32—H320.9500
S5—C41.747 (2)C33—H330.9500
S6—C51.746 (2)P2—C521.789 (2)
C4—C51.352 (3)P2—C341.791 (2)
C4—S71.754 (2)P2—C461.797 (2)
C5—S81.756 (2)P2—C401.797 (2)
S7—C61.772 (2)C34—C351.389 (3)
S8—C61.769 (2)C34—C391.403 (3)
C6—O21.218 (3)C35—C361.379 (3)
S9—C71.749 (2)C35—H350.9500
S10—C81.740 (2)C36—C371.380 (3)
C7—C81.352 (3)C36—H360.9500
C7—S111.760 (2)C37—C381.381 (3)
C8—S121.751 (2)C37—H370.9500
S11—C91.766 (3)C38—C391.382 (3)
S12—C91.760 (2)C38—H380.9500
C9—O31.229 (3)C39—H390.9500
P1—C281.796 (2)C40—C451.392 (3)
P1—C101.796 (2)C40—C411.402 (3)
P1—C221.798 (2)C41—C421.387 (3)
P1—C161.801 (2)C41—H410.9500
C10—C111.393 (3)C42—C431.380 (3)
C10—C151.394 (3)C42—H420.9500
C11—C121.386 (3)C43—C441.380 (3)
C11—H110.9500C43—H430.9500
C12—C131.380 (4)C44—C451.386 (3)
C12—H120.9500C44—H440.9500
C13—C141.387 (4)C45—H450.9500
C13—H130.9500C46—C471.397 (3)
C14—C151.380 (3)C46—C511.402 (3)
C14—H140.9500C47—C481.385 (3)
C15—H150.9500C47—H470.9500
C16—C211.396 (3)C48—C491.380 (3)
C16—C171.398 (3)C48—H480.9500
C17—C181.381 (3)C49—C501.377 (4)
C17—H170.9500C49—H490.9500
C18—C191.387 (3)C50—C511.386 (4)
C18—H180.9500C50—H500.9500
C19—C201.381 (3)C51—H510.9500
C19—H190.9500C52—C571.392 (3)
C20—C211.388 (3)C52—C531.405 (3)
C20—H200.9500C53—C541.379 (4)
C21—H210.9500C53—H530.9500
C22—C271.391 (3)C54—C551.387 (4)
C22—C231.395 (3)C54—H540.9500
C23—C241.385 (3)C55—C561.389 (4)
C23—H230.9500C55—H550.9500
C24—C251.387 (4)C56—C571.397 (4)
C24—H240.9500C56—H560.9500
C25—C261.381 (4)C57—H570.9500
S1—Sn1—S285.117 (18)C26—C25—C24120.4 (2)
S1—Sn1—S6170.76 (2)C26—C25—H25119.8
S2—Sn1—S685.728 (19)C24—C25—H25119.8
S1—Sn1—S986.53 (2)C25—C26—C27120.3 (2)
S2—Sn1—S9171.61 (2)C25—C26—H26119.9
S6—Sn1—S9102.61 (2)C27—C26—H26119.9
S1—Sn1—S1096.384 (19)C26—C27—C22119.5 (2)
S2—Sn1—S1098.136 (19)C26—C27—H27120.3
S6—Sn1—S1083.666 (18)C22—C27—H27120.3
S9—Sn1—S1082.013 (19)C29—C28—C33120.2 (2)
S1—Sn1—S599.667 (19)C29—C28—P1121.17 (17)
S2—Sn1—S594.268 (18)C33—C28—P1118.59 (17)
S6—Sn1—S582.271 (18)C30—C29—C28119.5 (2)
S9—Sn1—S587.899 (19)C30—C29—H29120.2
S10—Sn1—S5160.47 (2)C28—C29—H29120.2
C1—S1—Sn199.78 (7)C31—C30—C29120.0 (2)
C2—S2—Sn199.49 (7)C31—C30—H30120.0
C2—C1—S1126.65 (17)C29—C30—H30120.0
C2—C1—S3116.66 (17)C30—C31—C32120.9 (2)
S1—C1—S3116.67 (12)C30—C31—H31119.6
C1—C2—S2126.71 (17)C32—C31—H31119.6
C1—C2—S4117.09 (17)C33—C32—C31119.5 (2)
S2—C2—S4116.20 (13)C33—C32—H32120.3
C1—S3—C397.18 (12)C31—C32—H32120.3
C2—S4—C397.03 (12)C32—C33—C28120.0 (2)
O1—C3—S4124.4 (2)C32—C33—H33120.0
O1—C3—S3123.6 (2)C28—C33—H33120.0
S4—C3—S3111.94 (14)C52—P2—C34109.14 (11)
C4—S5—Sn193.81 (7)C52—P2—C46112.09 (11)
C5—S6—Sn193.80 (7)C34—P2—C46107.03 (10)
C5—C4—S5125.45 (17)C52—P2—C40107.39 (10)
C5—C4—S7116.83 (16)C34—P2—C40110.00 (10)
S5—C4—S7117.63 (13)C46—P2—C40111.19 (10)
C4—C5—S6125.00 (17)C35—C34—C39119.6 (2)
C4—C5—S8116.80 (16)C35—C34—P2119.95 (16)
S6—C5—S8118.11 (12)C39—C34—P2120.47 (16)
C4—S7—C697.13 (11)C36—C35—C34120.0 (2)
C5—S8—C697.10 (10)C36—C35—H35120.0
O2—C6—S8123.84 (18)C34—C35—H35120.0
O2—C6—S7124.14 (18)C35—C36—C37120.3 (2)
S8—C6—S7112.02 (12)C35—C36—H36119.9
C7—S9—Sn194.68 (7)C37—C36—H36119.9
C8—S10—Sn194.88 (8)C36—C37—C38120.2 (2)
C8—C7—S9125.46 (17)C36—C37—H37119.9
C8—C7—S11115.80 (16)C38—C37—H37119.9
S9—C7—S11118.58 (13)C37—C38—C39120.3 (2)
C7—C8—S10124.74 (17)C37—C38—H38119.8
C7—C8—S12117.45 (16)C39—C38—H38119.8
S10—C8—S12117.63 (13)C38—C39—C34119.6 (2)
C7—S11—C997.37 (11)C38—C39—H39120.2
C8—S12—C997.06 (11)C34—C39—H39120.2
O3—C9—S12124.4 (2)C45—C40—C41119.7 (2)
O3—C9—S11123.45 (19)C45—C40—P2121.47 (17)
S12—C9—S11112.16 (13)C41—C40—P2118.77 (17)
C28—P1—C10108.94 (10)C42—C41—C40119.6 (2)
C28—P1—C22107.84 (10)C42—C41—H41120.2
C10—P1—C22110.97 (10)C40—C41—H41120.2
C28—P1—C16110.41 (10)C43—C42—C41120.2 (2)
C10—P1—C16107.25 (10)C43—C42—H42119.9
C22—P1—C16111.42 (10)C41—C42—H42119.9
C11—C10—C15120.0 (2)C42—C43—C44120.4 (2)
C11—C10—P1121.06 (18)C42—C43—H43119.8
C15—C10—P1118.90 (17)C44—C43—H43119.8
C12—C11—C10119.4 (2)C43—C44—C45120.3 (2)
C12—C11—H11120.3C43—C44—H44119.9
C10—C11—H11120.3C45—C44—H44119.9
C13—C12—C11120.2 (2)C44—C45—C40119.8 (2)
C13—C12—H12119.9C44—C45—H45120.1
C11—C12—H12119.9C40—C45—H45120.1
C12—C13—C14120.7 (2)C47—C46—C51119.9 (2)
C12—C13—H13119.6C47—C46—P2118.01 (16)
C14—C13—H13119.6C51—C46—P2122.03 (19)
C15—C14—C13119.4 (2)C48—C47—C46119.8 (2)
C15—C14—H14120.3C48—C47—H47120.1
C13—C14—H14120.3C46—C47—H47120.1
C14—C15—C10120.2 (2)C49—C48—C47119.9 (2)
C14—C15—H15119.9C49—C48—H48120.0
C10—C15—H15119.9C47—C48—H48120.0
C21—C16—C17119.5 (2)C50—C49—C48120.7 (2)
C21—C16—P1122.59 (17)C50—C49—H49119.7
C17—C16—P1117.94 (16)C48—C49—H49119.7
C18—C17—C16120.3 (2)C49—C50—C51120.5 (2)
C18—C17—H17119.8C49—C50—H50119.7
C16—C17—H17119.8C51—C50—H50119.7
C17—C18—C19120.0 (2)C50—C51—C46119.2 (2)
C17—C18—H18120.0C50—C51—H51120.4
C19—C18—H18120.0C46—C51—H51120.4
C20—C19—C18120.1 (2)C57—C52—C53120.0 (2)
C20—C19—H19119.9C57—C52—P2121.00 (18)
C18—C19—H19119.9C53—C52—P2118.88 (19)
C19—C20—C21120.6 (2)C54—C53—C52120.1 (3)
C19—C20—H20119.7C54—C53—H53120.0
C21—C20—H20119.7C52—C53—H53120.0
C20—C21—C16119.6 (2)C53—C54—C55119.6 (3)
C20—C21—H21120.2C53—C54—H54120.2
C16—C21—H21120.2C55—C54—H54120.2
C27—C22—C23120.2 (2)C54—C55—C56121.2 (3)
C27—C22—P1121.11 (18)C54—C55—H55119.4
C23—C22—P1118.67 (17)C56—C55—H55119.4
C24—C23—C22119.8 (2)C55—C56—C57119.4 (3)
C24—C23—H23120.1C55—C56—H56120.3
C22—C23—H23120.1C57—C56—H56120.3
C23—C24—C25119.8 (2)C52—C57—C56119.7 (3)
C23—C24—H24120.1C52—C57—H57120.1
C25—C24—H24120.1C56—C57—H57120.1
Sn1—S1—C1—C28.7 (2)C10—P1—C22—C23176.10 (18)
Sn1—S1—C1—S3169.63 (10)C16—P1—C22—C2364.5 (2)
S1—C1—C2—S23.3 (3)C27—C22—C23—C242.3 (4)
S3—C1—C2—S2178.43 (12)P1—C22—C23—C24179.1 (2)
S1—C1—C2—S4176.14 (12)C22—C23—C24—C251.3 (4)
S3—C1—C2—S42.2 (2)C23—C24—C25—C260.8 (5)
Sn1—S2—C2—C112.9 (2)C24—C25—C26—C271.8 (5)
Sn1—S2—C2—S4166.51 (10)C25—C26—C27—C220.8 (4)
C2—C1—S3—C33.2 (2)C23—C22—C27—C261.3 (4)
S1—C1—S3—C3175.28 (13)P1—C22—C27—C26179.9 (2)
C1—C2—S4—C30.1 (2)C10—P1—C28—C29102.0 (2)
S2—C2—S4—C3179.42 (13)C22—P1—C28—C29137.52 (19)
C2—S4—C3—O1179.1 (2)C16—P1—C28—C2915.6 (2)
C2—S4—C3—S32.15 (16)C10—P1—C28—C3374.8 (2)
C1—S3—C3—O1178.1 (2)C22—P1—C28—C3345.7 (2)
C1—S3—C3—S43.05 (16)C16—P1—C28—C33167.66 (18)
Sn1—S5—C4—C529.6 (2)C33—C28—C29—C300.3 (3)
Sn1—S5—C4—S7146.82 (11)P1—C28—C29—C30176.44 (18)
S5—C4—C5—S62.5 (3)C28—C29—C30—C310.1 (4)
S7—C4—C5—S6178.98 (12)C29—C30—C31—C320.2 (4)
S5—C4—C5—S8174.07 (12)C30—C31—C32—C330.3 (4)
S7—C4—C5—S82.4 (2)C31—C32—C33—C280.1 (4)
Sn1—S6—C5—C433.0 (2)C29—C28—C33—C320.1 (4)
Sn1—S6—C5—S8143.53 (12)P1—C28—C33—C32176.65 (19)
C5—C4—S7—C60.0 (2)C52—P2—C34—C3584.4 (2)
S5—C4—S7—C6176.77 (13)C46—P2—C34—C35154.08 (18)
C4—C5—S8—C63.5 (2)C40—P2—C34—C3533.2 (2)
S6—C5—S8—C6179.66 (14)C52—P2—C34—C3994.36 (19)
C5—S8—C6—O2176.5 (2)C46—P2—C34—C3927.1 (2)
C5—S8—C6—S73.31 (14)C40—P2—C34—C39148.07 (18)
C4—S7—C6—O2177.5 (2)C39—C34—C35—C360.6 (3)
C4—S7—C6—S82.33 (14)P2—C34—C35—C36179.40 (19)
Sn1—S9—C7—C830.1 (2)C34—C35—C36—C370.5 (4)
Sn1—S9—C7—S11145.08 (12)C35—C36—C37—C380.9 (4)
S9—C7—C8—S100.4 (3)C36—C37—C38—C390.2 (4)
S11—C7—C8—S10175.68 (13)C37—C38—C39—C341.0 (4)
S9—C7—C8—S12174.55 (13)C35—C34—C39—C381.4 (3)
S11—C7—C8—S120.7 (3)P2—C34—C39—C38179.87 (18)
Sn1—S10—C8—C730.5 (2)C52—P2—C40—C45144.04 (18)
Sn1—S10—C8—S12144.46 (12)C34—P2—C40—C4597.30 (19)
C8—C7—S11—C91.9 (2)C46—P2—C40—C4521.1 (2)
S9—C7—S11—C9177.52 (14)C52—P2—C40—C4138.3 (2)
C7—C8—S12—C93.0 (2)C34—P2—C40—C4180.32 (19)
S10—C8—S12—C9178.29 (14)C46—P2—C40—C41161.30 (17)
C8—S12—C9—O3174.6 (2)C45—C40—C41—C421.1 (3)
C8—S12—C9—S114.03 (16)P2—C40—C41—C42176.57 (17)
C7—S11—C9—O3174.9 (2)C40—C41—C42—C431.1 (3)
C7—S11—C9—S123.75 (15)C41—C42—C43—C440.2 (4)
C28—P1—C10—C110.6 (2)C42—C43—C44—C450.8 (4)
C22—P1—C10—C11118.02 (18)C43—C44—C45—C400.8 (3)
C16—P1—C10—C11120.08 (18)C41—C40—C45—C440.1 (3)
C28—P1—C10—C15178.18 (17)P2—C40—C45—C44177.46 (18)
C22—P1—C10—C1563.2 (2)C52—P2—C46—C47171.90 (17)
C16—P1—C10—C1558.67 (19)C34—P2—C46—C4752.28 (19)
C15—C10—C11—C120.6 (3)C40—P2—C46—C4767.88 (19)
P1—C10—C11—C12179.36 (16)C52—P2—C46—C516.1 (2)
C10—C11—C12—C130.6 (3)C34—P2—C46—C51125.67 (19)
C11—C12—C13—C141.1 (3)C40—P2—C46—C51114.16 (19)
C12—C13—C14—C150.3 (3)C51—C46—C47—C480.1 (3)
C13—C14—C15—C100.9 (3)P2—C46—C47—C48177.94 (17)
C11—C10—C15—C141.4 (3)C46—C47—C48—C490.2 (3)
P1—C10—C15—C14179.86 (18)C47—C48—C49—C500.2 (4)
C28—P1—C16—C21103.69 (19)C48—C49—C50—C510.1 (4)
C10—P1—C16—C21137.74 (18)C49—C50—C51—C460.3 (4)
C22—P1—C16—C2116.1 (2)C47—C46—C51—C500.3 (3)
C28—P1—C16—C1776.3 (2)P2—C46—C51—C50177.58 (18)
C10—P1—C16—C1742.3 (2)C34—P2—C52—C575.6 (2)
C22—P1—C16—C17163.88 (17)C46—P2—C52—C57112.8 (2)
C21—C16—C17—C181.3 (3)C40—P2—C52—C57124.8 (2)
P1—C16—C17—C18178.72 (18)C34—P2—C52—C53171.06 (19)
C16—C17—C18—C191.2 (4)C46—P2—C52—C5370.6 (2)
C17—C18—C19—C200.3 (4)C40—P2—C52—C5351.9 (2)
C18—C19—C20—C210.6 (4)C57—C52—C53—C540.5 (4)
C19—C20—C21—C160.5 (3)P2—C52—C53—C54177.2 (2)
C17—C16—C21—C200.4 (3)C52—C53—C54—C550.8 (4)
P1—C16—C21—C20179.56 (17)C53—C54—C55—C560.9 (5)
C28—P1—C22—C27121.8 (2)C54—C55—C56—C570.7 (4)
C10—P1—C22—C272.5 (2)C53—C52—C57—C560.3 (4)
C16—P1—C22—C27116.9 (2)P2—C52—C57—C56176.9 (2)
C28—P1—C22—C2356.9 (2)C55—C56—C57—C520.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C38—H38···S2i0.952.853.573 (2)133
C47—H47···O2i0.952.413.323 (3)162
C44—H44···S10ii0.952.813.751 (3)172
C53—H53···O1ii0.952.463.211 (3)135
C26—H26···O3iii0.952.463.188 (3)133
C36—H36···S2iv0.952.713.576 (2)151
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+1; (iii) x1, y, z; (iv) x, y, z1.

Experimental details

(I)(II)
Crystal data
Chemical formula(C16H36N)2[Sn(C3OS4)3](C24H20P)2[Sn(C3OS4)3]
Mr1144.421338.24
Crystal system, space groupOrthorhombic, P212121Monoclinic, P21/n
Temperature (K)120120
a, b, c (Å)10.7732 (4), 18.3479 (7), 27.5862 (9)14.2844 (2), 26.4828 (4), 15.4538 (2)
α, β, γ (°)90, 90, 9090, 90.4168 (6), 90
V3)5452.8 (3)5845.88 (14)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.960.96
Crystal size (mm)0.55 × 0.26 × 0.080.20 × 0.18 × 0.16
Data collection
DiffractometerEnraf-Nonius KappaCCD area-detector
diffractometer
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.619, 0.9230.673, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
43550, 12433, 9169 64111, 13360, 10973
Rint0.0810.040
(sin θ/λ)max1)0.6490.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.110, 1.02 0.031, 0.078, 1.09
No. of reflections1243313360
No. of parameters532676
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.620.50, 0.72
Absolute structureFlack (1983), with 5583 Friedel pairs?
Absolute structure parameter0.007 (19)?

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), COLLECT (Hooft, 1998), DENZO and COLLECT, DENZO (Otwinowski & Minor, 1997) and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C26—H26A···S60.992.723.606 (6)149
C26—H26B···S20.992.773.621 (6)144
C29—H29B···S11i0.982.813.711 (8)153
C30—H30B···O2ii0.992.533.280 (8)133
C34—H34B···O2ii0.992.563.459 (8)152
C35—H35A···S20.992.853.819 (6)165
C38—H38B···O1iii0.992.443.418 (7)168
C37—H37A···O3iv0.982.513.466 (9)165
C10—H10B···S6v0.992.803.772 (5)166
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+2; (iii) x+1/2, y+3/2, z+2; (iv) x+1/2, y+1, z+1/2; (v) x+1, y+1/2, z+3/2.
Table 1. Bond lengths and angles (Å, °) involving the Sn atom in (I) and (II) top
(I)(II)
Sn1—S12.5386 (12)2.5354 (6)
Sn1—S22.5284 (13)2.5435 (5)
Sn1—S52.5282 (14)2.5649 (6)
Sn1—S62.5394 (12)2.5536 (6)
Sn1—S92.5457 (12)2.5549 (6)
Sn1—S102.5626 (14)2.5639 (6)
S1—Sn1—S285.24 (4)85.117 (18)
S5—Sn1—S685.96 (4)82.271 (18)
S9—Sn1—S1085.45 (4)82.013 (19)
S1—Sn1—S6174.24 (4)170.76 (2)
S2—Sn1—S9171.52 (4)171.61 (2)
S5—Sn1—S10169.37 (5)160.47 (2)
S1—Sn1—S592.46 (4)99.667 (19)
S2—Sn1—S594.97 (5)94.268 (18)
S2—Sn1—S689.37 (4)85.728 (19)
S1—Sn1—S987.64 (4)86.53 (2)
S5—Sn1—S989.93 (5)87.899 (19)
S6—Sn1—S997.88 (4)102.61 (2)
S1—Sn1—S1096.90 (4)96.384 (19)
S2—Sn1—S1090.83 (4)98.136 (19)
S6—Sn1—S1085.20 (4)83.666 (18)
Table 2. Bond lengths and angles (Å, °) and other geometric parameters associated with the dmio ligandsa in (I) and (II) top
(I)(II)
Ligand 1Ligand 2Ligand 3Ligand 1Ligand 2Ligand 3
S1—C11.746 (5)1.732 (6)1.713 (7)1.750 (2)1.747 (2)1.749 (2)
S2—C21.738 (5)1.731 (6)1.783 (6)1.745 (2)1.746 (2)1.740 (2)
S3—C11.747 (5)1.763 (6)1.751 (6)1.753 (2)1.754 (2)1.760 (2)
S3—C31.766 (6)1.758 (7)1.734 (9)1.773 (3)1.772 (2)1.766 (3)
S4—C21.764 (5)1.749 (5)1.752 (6)1.757 (2)1.756 (2)1.751 (2)
S4—C31.770 (6)1.750 (7)1.787 (8)1.766 (3)1.769 (2)1.760 (2)
C1—C21.350 (7)1.356 (7)1.354 (8)1.346 (3)1.352 (3)1.352 (3)
C3—O11.214 (6)1.225 (7)1.238 (8)1.214 (3)1.218 (3)1.229 (3)
C1—S1—Sn198.84 (16)98.47 (19)97.9 (2)99.78 (7)93.81 (7)94.68 (7)
C2—S2—Sn198.91 (16)99.05 (18)95.5 (2)99.49 (7)93.80 (7)94.88 (8)
C1—S3—C397.5 (2)97.1 (3)96.7 (4)97.18 (12)97.13 (11)97.37 (11)
C2—S4—C397.0 (2)97.3 (3)95.4 (4)97.03 (12)97.10 (10)97.06 (11)
C2—C1—S1126.1 (4)128.0 (4)127.0 (4)126.65 (17)125.45 (17)125.46 (17)
C2—C1—S3117.0 (4)116.0 (4)116.8 (5)116.66 (17)116.83 (16)115.80 (16)
S1—C1—S3116.9 (3)116.0 (3)116.2 (4)116.67 (12)117.63 (13)118.58 (13)
C1—C2—S2127.3 (4)126.5 (4)127.3 (5)126.71 (17)125.00 (17)124.74 (17)
C1—C2—S4116.5 (4)116.9 (4)117.3 (5)117.09 (17)116.80 (16)117.45 (16)
S2—C2—S4116.1 (3)116.4 (3)115.4 (4)116.20 (13)118.11 (12)117.63 (13)
O1—C3—S3124.3 (5)123.5 (6)124.3 (7)123.6 (2)124.14 (18)123.45 (19)
O1—C3—S4123.8 (5)123.8 (6)122.0 (7)124.4 (2)123.84 (18)124.4 (2)
S3—C3—S4111.9 (3)112.7 (4)113.7 (4)111.94 (14)112.02 (12)112.16 (13)
Sn1oopb0.6438 (19)-0.505 (2)0.861 (2)0.4930 (9)1.3871 (8)1.3721 (8)
C3oop0.035 (6)-0.046 (8)0.070 (7)0.064 (3)-0.012 (2)-0.015 (3)
O1oop0.042 (5)-0.094 (7)0.130 (6)0.115 (2)-0.047 (2)-0.082 (2)
IPc19.89 (6)15.36 (6)27.01 (7)15.15 (3)45.38 (2)44.34 (3)
O1···Sn1···O2117.68 (6)97.58 (2)
O1···Sn1···O3112.41 (6)84.83 (2)
O2···Sn1···O3124.86 (7)175.42 (2)
a Atom designations apply to all three ligands if, for a ligand n, where n = 1 to 3, Sx becomes S[x + 4(n-1)], Cx becomes C[x + 3(n-1)] and Ox becomes On. b oop denotes displacements of the atoms so designated from the ligand planes as defined in the text. c dihedral angle, ligand by ligand, between the ligand plane and the plane defined by the Sn atom and the chelating S atoms.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C38—H38···S2i0.952.853.573 (2)133
C47—H47···O2i0.952.413.323 (3)162
C44—H44···S10ii0.952.813.751 (3)172
C53—H53···O1ii0.952.463.211 (3)135
C26—H26···O3iii0.952.463.188 (3)133
C36—H36···S2iv0.952.713.576 (2)151
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+1; (iii) x1, y, z; (iv) x, y, z1.
Table 4. Geometry (Å, °) of C—H..π contacts in (I) top
C—H···CgaC—HH···CgHperpbγcC-H···CgC···Cg
C12—H12A···Cg2v0.992.872.78151453.729
C18—H18B···Cg3v0.993.092.88211584.029
C22—H22B···Cg10.993.162.75291544.073
C40—H40B···Cg1i0.993.273.05211444.114
a Cgn is the centroid of the C3S2 ring of ligand n. b Hperp is the perpendicular distance of the H atom from the mean plane of the ring. c γ is the angle at H between H···Cg and Hperp [Symmetry codes: (i) 1 + x, y, z; (v) 1 − x, 1/2 + y, 3/2 − z.].
Table 6. Geometry (Å, °) of C—H..π contacts in (II) top
C—H···CgaC—HH···CgHperpbγcC-H···CgC···Cg
C12—H12···Cg50.953.232.96241233.838
C15—H15···Cg1i0.952.792.75391603.693
C18—H18···Cg30.953.213.05181243.821
C39—H39···Cg20.953.062.92171313.758
a Cgn, where n = 1 to 5, are the centroids of the rings C1–3/S3–4, C10–15, C34–39, C40–45 and C46–51, respectively. b Hperp is the perpendicular distance of the H atom from the mean plane of the ring. c γ is the angle at H between H···Cg and Hperp [Symmetry code: (i) 1 − x, 2 − y, 1 − z.].
 

Acknowledgements

The use of the EPSRC X-ray crystallographic service at Southampton and the valuable assistance of the staff there are gratefully acknowledged. The authors thank CAPES, CNPq and FUJB, Brazil, for financial support.

References

First citationAkasaka, T., Nakano, M., Tamura, H. & Matsubayashi, G. (2002). Bull. Chem. Soc. Jpn, 75, 2621–2628.  Web of Science CSD CrossRef CAS Google Scholar
First citationAssis, F. de, Chohan, Z. H., Howie, R. A., Khan, A., Low, J. N., Spencer, G. M., Wardell, J. L. & Wardell, S. M. S. V. (1999). Polyhedron, 18, 3533–3544.  Web of Science CSD CrossRef Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationComerlato, N. M., Ferreira, G. B., Howie, R. A. & Wardell, J. L. (2004). Acta Cryst. E60, m1781–m1783.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds