metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

B—N bond cleavage by cobalt(II) in acetato(3,5-di­phenyl­pyrazole)­[tris­­(3,5-di­phenyl­pyrazol­yl)­borato]­cobalt(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, School of Science, Walailak University, Thasala, Nakorn Si Thammarat 80160, Thailand, bDepartment of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, England, and cDepartment of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
*Correspondence e-mail: hdavid@wu.ac.th

(Received 23 March 2005; accepted 4 May 2005; online 20 May 2005)

The reaction of cobalt(II) acetate with potassium tris­(pyrazol­yl)borate (KTpPh2) affords the title complex, [Co(TpPh2)(O2CMe)(HpzPh2)] (HpzPh2 is 3,5-diphenyl­pyrazole) or [Co(C45H34BN6)(C2H3O2)(C15H12N2)], as a result of cobalt-induced B—N bond cleavage of the tris­(pyrazol­yl)borate ligand. The cobalt complex exhibits a distorted CoN4O coordination geometry with a κ3-coordinated TpPh2 ligand and monodentate acetate and pyrazole ligands. In addition, the non-coordinated acetate O atom is involved in a weak intra­molecular hydrogen-bonding inter­action with the pyrrole NH group.

Comment

The tris­(pyrazol­yl)borate ligands, HB(pz)3, first introduced by Trofimenko (1993[Trofimenko, S. (1993). Chem. Rev. 93, 943-980.]), have found widespread use in coordination chemistry. Their popularity arises from their ease of preparation and the readiness with which their steric and electronic properties may be varied. The use of tris­(pyrazol­yl)borates of inter­mediate steric bulk, namely tris­(3,5-diphenyl­pyrazol­yl)borate (TpPh2), is of particular inter­est to us as these compounds inhibit the formation of chemically inactive sandwich complexes, ML2 [L = tris­(pyrazol­yl)borate], without enforcing tetra­hedral geometry upon the metal. Tris(3,5-diphenyl­pyrazol­yl)borate was first synthesized by Kitajima et al. (1992[Kitajima, N., Fujisawa, K., Fujimoto, C., Moro-oka, Y., Hashimoto, S., Kitagawa, T., Toriumi, K., Tatsumi, K. & Nakamura, A. (1992). J. Am. Chem. Soc. 114, 1277-1291.]) and since then many complexes with CuI and CuII have appeared (Carrier et al., 1993[Carrier, S. M., Ruggiero, C. E., Houser, R. P. & Tolman, W. B. (1993). Inorg. Chem. 32, 4889-4899.]; Halcrow et al., 1997[Halcrow, M. A., Davies, J. E. & Raithby, P. R. (1997). Polyhedron, 16, 1535-1541.]; Chia et al., 2000[Chia, L. M. L., Radojevic, S., Scowen, I. J., McPartlin, M. & Halcrow, M. A. (2000). J. Chem. Soc. Dalton Trans. pp. 133-140.]; Foster et al., 2000[Foster, C. L., Liu, X., Kilner, C. A., Thornton-Pett, M. & Halcrow, M. A. (2000). J. Chem. Soc. Dalton Trans. pp. 4563-4568.]). In contrast, CoII (Ruman et al., 2002[Ruman, T., Ciunik, Z., Mazurek, J. & Wolowiec, S. (2002). Eur. J. Inorg. Chem. pp. 754-760.]) and NiII (Guo et al., 1998[Guo, S., Ding, E., Yin, Y. & Yu, K. (1998). Polyhedron, 17, 3841-3849.]) complexes remain poorly represented. Indeed, in the case of CoII, the only reported complex, [Co(TpPh2)(NO3)], was isolated as a by-product (Ruman et al., 2002[Ruman, T., Ciunik, Z., Mazurek, J. & Wolowiec, S. (2002). Eur. J. Inorg. Chem. pp. 754-760.]). The reaction of cobalt(II) acetate tetra­hydrate with KTpPh2 in a 1:1 molar ratio yields deep-purple crystals shown by X-ray analysis to be [Co(TpPh2)(O2CMe)(HpzPh2)] (HpzPh2 is 3,5-diphenyl­pyrazole), (I)[link]. The high purity of the tris­(pyrazol­yl)borate reagent, i.e. KTpPh2, indicates that the source of HpzPh2 is not a ligand impurity but the result of metal-mediated B—N bond cleavage. Inter­estingly, the reaction between Co(O2CMe)2 and the related ligand KTpPh yields [Co(TpPh)(O2CMe)] as the only product (Kremer-Aach et al., 1997[Kremer-Aach, A., Kläui, W., Bell, R., Strerath, A., Wunderlich, H. & Mootz, D. (1997). Inorg. Chem. 36, 1552-1563.]). However, reactions with CuII salts (X = Cl and O2CMe) yield B—N-cleaved products, [Cu(TpPh)X(HpzPh)], apparently as a result of the increased Lewis acidity of Cu2+ compared with Co2+ (Halcrow et al., 1997[Halcrow, M. A., Davies, J. E. & Raithby, P. R. (1997). Polyhedron, 16, 1535-1541.]; Chia et al., 2000[Chia, L. M. L., Radojevic, S., Scowen, I. J., McPartlin, M. & Halcrow, M. A. (2000). J. Chem. Soc. Dalton Trans. pp. 133-140.]). Thus, it appears that the subtle differences between TpPh2 and TpPh result in the formation of B—N-cleaved products.

[Scheme 1]

The results of X-ray analysis are supported by the FAB mass spectrum, which shows a strong peak at 787 corresponding to [Co(TpPh2)(O2CMe)]+ and a weaker signal at 1008 suggesting the presence of [Co(TpPh2)(O2CMe)(HpzPh2)]+. IR spectroscopy shows a strong B—H stretch at 2627 cm−1, indicative of a κ3-coordinated TpPh2 ligand, while an N—H stretch at 3427 cm−1 confirms the presence of a bound pyrazole group. Moreover, the difference in the symmetric and asymmetric stretch of the acetate ligand [Δν(CO2) = 149 cm−1] indicates that the ligand is monodentate (Kremer-Aach et al., 1997[Kremer-Aach, A., Kläui, W., Bell, R., Strerath, A., Wunderlich, H. & Mootz, D. (1997). Inorg. Chem. 36, 1552-1563.]). Finally, elemental analysis (see Experimental[link]) of the bulk sample was consistent with the formulation [Co(TpPh2)(O2CMe)(HpzPh2)], and thus the crystals were considered representative of the sample.

The complex crystallizes in the triclinic space group [P\overline 1], with no solvent mol­ecules in the crystal structure. The cobalt ion is five-coordinate (Fig. 1[link]) and adopts a coordination geometry inter­mediate between trigonal bipyramidal (tbp; with N1 and N7 as the axial atoms, and N5, N3 and O1 as the equatorial atoms) and square pyramidal (with N1, N7, N3 and O1 as the basal atoms, and N5 as the apical atom). Of particular note is the N3—Co1—O1 angle, which is nearly 30° greater than an ideal tbp equatorial angle, and the N3—Co1—N5 and O1—Co1—N5 angles, which are significantly contracted (Table 1[link]). The highly distorted geometry around the metal atom is probably a result of the large steric bulk of the TpPh2 and pyrazole ligands. As expected, the TpPh2 ligand is κ3-coordinated, although in contrast to [Co(TpPh2)(η2-NO3)], the Co—Npz bonds are not all equivalent, with the Co—N1 bond approximately 0.2 Å longer than the Co—N3 and Co—N5 bonds (Ruman et al., 2002[Ruman, T., Ciunik, Z., Mazurek, J. & Wolowiec, S. (2002). Eur. J. Inorg. Chem. pp. 754-760.]). A similar observation has been noted in the structure of [Co(TpPh)(NCS)(THF)] (THF is tetrahydrofuran), where the Co—Npz bonds are 2.054 (4), 2.079 (4) and 2.180 (4) Å (Calabrese et al., 1986[Calabrese, J. C., Trofimenko, S. & Thompson, J. S. (1986). J. Chem. Soc. Chem. Commun. pp. 1122-1123.]). The acetate ligand in (I)[link] is bound in a monodentate fashion, with a weak intra­molecular N—H⋯O hydrogen bond between the non-coordinated acetate O atom and the pyrrole NH group (Table 2[link]). An almost identical inter­action occurs in the structure of [Cu(TpPh)(O2CMe)(HpzPh)], where the O⋯N distance is 2.612 (5) Å and the O⋯H—N angle is 149° (Chia et al., 2000[Chia, L. M. L., Radojevic, S., Scowen, I. J., McPartlin, M. & Halcrow, M. A. (2000). J. Chem. Soc. Dalton Trans. pp. 133-140.]).

[Figure 1]
Figure 1
The mol­ecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level. The hydrogen-bonding inter­action of H8A to O2 is shown by a dashed line. Other H atoms have been omitted for clarity.

Experimental

KTpPh2 was prepared according to the literature method of Kitajima et al. (1992[Kitajima, N., Fujisawa, K., Fujimoto, C., Moro-oka, Y., Hashimoto, S., Kitagawa, T., Toriumi, K., Tatsumi, K. & Nakamura, A. (1992). J. Am. Chem. Soc. 114, 1277-1291.]). Co(O2CMe)2·4H2O (82 mg, 0.33 mmol) was dissolved in a tetrahydrofuran–methanol (5:1 ml) solution. KTpPh2 was then dissolved in tetrahydrofuran (5 ml) and added dropwise to the metal solution, resulting in a colour change from orange to red–brown. The solution was stirred for 4 h and then reduced to dryness in vacuo. The solid was washed with ethanol (3 × 5 ml) and then with diethyl ether (5 ml). The solid was redissolved in dichloromethane (2 ml) and then filtered through celite, yielding a deep-pink–purple solution that was layered with hexanes (10 ml). After 2 d, deep-purple crystals were collected and washed with hexane and ether to give [Co(TpPh2)(O2CMe)(HpzPh2)] (yield 131 mg, 44%). Analysis calculated for C62H49BCoN8O2 (Mr = 1007.83): C 73.89, H 4.90, N 11.12%; found: C 73.85, H 5.16, N 11.06%. MS/FAB (m/e): 1008, 787. IR (KBr, cm−1): 3427 (νNH), 2627 (νBH), 1558 [ν(CO2)as], 1409 [ν(CO2)sym].

Crystal data
  • [Co(C45H34BN6)(C2H3O2)(C15H12N2)]

  • Mr = 1007.83

  • Triclinic, [P \overline 1]

  • a = 13.5669 (12) Å

  • b = 14.0474 (12) Å

  • c = 15.4195 (14) Å

  • α = 84.568 (2)°

  • β = 66.500 (1)°

  • γ = 67.199 (1)°

  • V = 2478.1 (4) Å3

  • Z = 2

  • Dx = 1.351 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 7380 reflections

  • θ = 4.4–53.1°

  • μ = 0.40 mm−1

  • T = 150 (2) K

  • Block, purple

  • 0.39 × 0.21 × 0.21 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • ω scans

  • Absorption correction: multi-scan(SADABS; Bruker 1997[Bruker (1997). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.859, Tmax = 0.920

  • 28 606 measured reflections

  • 11 119 independent reflections

  • 7921 reflections with I > 2σ(I)

  • Rint = 0.041

  • θmax = 27.6°

  • h = −17 → 17

  • k = −18 → 18

  • l = −20 → 20

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.105

  • S = 1.03

  • 11 119 reflections

  • 669 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0462P)2 + 0.4199P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

Co1—O1 1.9712 (14)
Co1—N3 2.0305 (16)
Co1—N5 2.0347 (16)
Co1—N7 2.1443 (16)
Co1—N1 2.2896 (16)
O1—Co1—N3 147.09 (6) 
O1—Co1—N5 109.95 (6)
N3—Co1—N5 96.58 (6)
O1—Co1—N7 103.17 (6)
N3—Co1—N7 93.45 (6)
N5—Co1—N7 94.55 (6)
O1—Co1—N1 82.87 (6)
N3—Co1—N1 79.34 (6)
N5—Co1—N1 87.00 (6)
N7—Co1—N1 172.76 (6)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8A⋯O2 0.88 1.78 2.637 (2) 163

H atoms were positioned geometrically and refined using a riding model (including torsional freedom for meth­yl groups), with C—H distances of 0.95–0.98 Å, and with Uiso(H) values constrained to be 1.2 (1.5 for meth­yl groups) times Ueq of the carrier atom.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tris(pyrazolyl)borate ligands, {HB(pz)3}, first introduced by Trofimenko (1993) have found widespread use in coordination chemistry. Their popularity arises from their ease of preparation and the readiness with which their steric and electronic properties may be varied. The use of tris(pyrazolyl)borates of intermediate steric bulk, namely tris(3,5-diphenylpyrazolyl)borate (TpPh2), is of particular interest to us as they inhibit the formation of chemically inactive sandwich complexes, ML2 [L = tris(pyrazolyl)borate], without enforcing tetrahedral geometry upon the metal. Tris(3,5-diphenylpyrazolyl)borate was first synthesized in by Kitajima et al. (1992) and since then many complexes with CuI and CuII have appeared (Carrier et al., 1993; Halcrow et al., 1997; Chia et al., 2000; Foster et al., 2000). In contrast, CoII (Ruman et al., 2002) and NiII (Guo et al., 1998) complexes remain poorly represented. Indeed, in the case of CoII, the only reported complex, [(TpPh2)Co(NO3)], was isolated as a by-product (Ruman et al., 2002). The reaction of cobalt(II) acetate tetrahydrate with KTpPh2 in a 1:1 molar ratio yields deep-purple crystals shown by X-ray crystallography to be [(TpPh2)Co(O2CMe)(HpzPh2)], (I). The high purity of the tris(pyrazolyl)borate reagent, KTpPh2, indicates that the source of HpzPh2 is not a ligand impurity but the result of metal-mediated B—N bond cleavage. Interestingly, the reaction between Co(O2CMe)2 and the related ligand, KTpPh, yields [TpPhCo(O2CMe)] as the only product (Kremer-Aach et al., 1997). However, reactions with CuII salts (X = Cl and O2CMe) yield B—N cleaved products, [(TpPh)CuX(HpzPh)], apparently as a result of the increased Lewis acidity of Cu2+ compared with Co2+ (Halcrow et al., 1997; Chia et al., 2000). Thus, it appears that the subtle differences between TpPh2 and TpPh result in the formation of B—N cleaved products.

The results of X-ray analysis are supported by the FAB mass spectrum, which shows a strong peak at 787 corresponding to [(TpPh2)Co(O2CMe)]+ and a weaker signal at 1008 suggesting the presence of [(TpPh2)Co(O2CMe)(HpzPh2)]+. IR spectroscopy shows a strong B—H stretch at 2627 cm−1, indicative of a κ3-coordinated TpPh2 ligand, while an N—H stretch at 3427 cm−1 confirms the presence of a bound pyrazole group. Moreover, the difference in the symmetric and asymmetric stretch of the acetate ligand [Δν(CO2) = 149 cm−1] indicates that the ligand is monodentate (Kremer-Aach et al., 1997). Finally, elemental analysis (see Experimental) of the bulk sample was consistent with the formulation [(TpPh2)Co(O2CMe)(HpzPh2)], and thus the crystals were considered representative of the sample.

The complex crystallizes in the triclinic space group P-1 with no solvent molecules in the crystal structure. The cobalt ion is five-coordinate (Fig. 1) and adopts a coordination geometry intermediate between trigonal bipyramidal (defined by N1 and N7 as the axial atoms, and N5, N3 and O1 as the equatorial atoms) and square pyramidal (defined by N1, N7, N3 and O1 as the basal atoms, and N5 as the apical atom). Of particular note is the N3—Co1—O1 angle, which at 147.09 (6)° is nearly 30° greater than an ideal tbp equatorial angle, and the N3—Co1—N5 and O1—Co1—N5 angles which at 96.58 (6) and 109.95 (6)°, respectively, are significantly contracted. The highly distorted geometry around the metal is probably due to the large steric bulk of the TpPh2 and pyrazole ligands. As expected, the TpPh2 ligand is κ3-coordinated, although in contrast to [(TpPh2)Co(η2-NO3)] the Co-Npz bonds are not all equivalent, with the Co—N1 bond approximately 0.2 Å longer than the Co—N3 and Co—N5 bonds (Ruman et al., 2002). A similar observation has been noted in the structure of [TpPhCo(NCS)(THF)], where the Co—Npz bonds are 2.054 (4), 2.079 (4) and 2.180 (4) Å (Calabrese et al., 1986). The acetate ligand in (I) is bound in a monodentate fashion, with a weak intramolecular N—H···O hydrogen bond between the non-coordinated acetate O atom and the pyrrol NH group [O2···N8 = 2.637 (2) Å and O2···H8A—N8 = 162.8°]. An almost identical interaction occurs in the structure of [(TpPh)Cu(O2CMe)(HpzPh)], where the O···N distance is 2.612 (5) Å and the O···H—N angle is 149.0° (Chia et al., 2000).

Experimental top

KTpPh2 was prepared by a literature method (Kitajima et al., 1992). Co(O2CMe)2·4H2O (82 mg, 0.33 mmol) was dissolved in a THF/MeOH (5:1 ml) solution. KTpPh2 was then dissolved in THF (5 ml) and added dropwise to the metal solution, resulting in a colour change from orange to red/brown. The solution was stirred for 4 h and then reduced to dryness in vacuo. The solid was washed with EtOH (3 × 5 ml) and then with Et2O (5 ml). The solid was redissolved in CH2Cl2 (2 ml) and then filtered through celite yielding a deep-pink/purple solution that was layered with hexanes (10 ml). After 2 d, deep-purple crystals were collected and washed with hexane and ether to give [(TpPh2)Co(O2CMe)(HpzPh2)] (yield 131 mg, 44%). Analysis caluclated for C62H49N8BCoO2 (1007.83): C 73.89, H 4.90, N 11.12%; found: C 73.85, H 5.16, N 11.06%. MS/FAB (m/e): 1008, 787. IR (KBr, cm−1): 3427 (νNH), 2627 (νBH), 1558 [ν(CO2)as], 1409 [ν(CO2)sym].

Refinement top

H atoms were positioned geometrically and refined with a riding model (including torsional freedom for methyl groups), with C—H distances of 0.95–0.98 Å, and with Uiso(H) constrained to be 1.2 (1.5 for methyl groups) times Ueq of the carrier atom.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (1), showing the atom-labelling scheme. Displacement ellipsoids are shown at 50% probability level. The hydrogen-bonding interaction of H8A to O2 is shown by a dashed line. Other H atoms have been omitted for clarity.
acetato(3,5-diphenylpyrazole)[tris(3,5-diphenylpyrazolyl)borato]cobalt(II) top
Crystal data top
[Co(C45H34BN6)(C2H3O2)(C15H12N2)]Z = 2
Mr = 1007.83F(000) = 1050
Triclinic, P1Dx = 1.351 Mg m3
a = 13.5669 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.0474 (12) ÅCell parameters from 7380 reflections
c = 15.4195 (14) Åθ = 4.4–53.1°
α = 84.568 (2)°µ = 0.40 mm1
β = 66.500 (1)°T = 150 K
γ = 67.199 (1)°Block, purple
V = 2478.1 (4) Å30.39 × 0.21 × 0.21 mm
Data collection top
Bruker SMART 1000
diffractometer
11119 independent reflections
Radiation source: fine-focus sealed tube7921 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 100 pixels mm-1θmax = 27.6°, θmin = 1.4°
ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker 1997)
k = 1818
Tmin = 0.859, Tmax = 0.920l = 2020
28606 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.4199P]
where P = (Fo2 + 2Fc2)/3
11119 reflections(Δ/σ)max = 0.002
669 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Co(C45H34BN6)(C2H3O2)(C15H12N2)]γ = 67.199 (1)°
Mr = 1007.83V = 2478.1 (4) Å3
Triclinic, P1Z = 2
a = 13.5669 (12) ÅMo Kα radiation
b = 14.0474 (12) ŵ = 0.40 mm1
c = 15.4195 (14) ÅT = 150 K
α = 84.568 (2)°0.39 × 0.21 × 0.21 mm
β = 66.500 (1)°
Data collection top
Bruker SMART 1000
diffractometer
11119 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 1997)
7921 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.920Rint = 0.041
28606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.03Δρmax = 0.36 e Å3
11119 reflectionsΔρmin = 0.33 e Å3
669 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.03866 (2)0.18226 (2)0.252085 (19)0.01688 (8)
B10.85001 (19)0.11086 (17)0.24489 (16)0.0169 (5)
H10.78040.09690.24260.020*
N11.02797 (14)0.02287 (12)0.28068 (11)0.0177 (4)
N20.94049 (13)0.01305 (12)0.26345 (11)0.0173 (4)
N30.87307 (14)0.22267 (12)0.35027 (11)0.0171 (4)
N40.80008 (14)0.19230 (12)0.32899 (11)0.0171 (4)
N51.00195 (13)0.17814 (12)0.13711 (11)0.0166 (4)
N60.90971 (13)0.15226 (12)0.14986 (11)0.0167 (4)
N71.02721 (14)0.33918 (12)0.23942 (11)0.0178 (4)
N81.12625 (14)0.35643 (13)0.21553 (11)0.0185 (4)
H8A1.19410.30740.20820.028 (6)*
O11.20551 (12)0.10216 (10)0.22130 (10)0.0225 (3)
O21.30487 (13)0.19586 (11)0.22464 (12)0.0337 (4)
C10.93846 (17)0.08287 (15)0.28291 (14)0.0193 (4)
C21.02739 (18)0.13646 (16)0.31241 (15)0.0222 (5)
H21.04870.20590.33010.027*
C31.07986 (17)0.06781 (15)0.31103 (14)0.0196 (4)
C41.17564 (18)0.08581 (15)0.34146 (15)0.0209 (4)
C51.27880 (18)0.17315 (16)0.30485 (15)0.0247 (5)
H51.28680.22170.26110.030*
C61.36918 (19)0.18927 (17)0.33196 (16)0.0294 (5)
H61.43960.24810.30580.035*
C71.3579 (2)0.12017 (18)0.39703 (16)0.0306 (5)
H71.42060.13130.41500.037*
C81.2553 (2)0.03522 (18)0.43564 (16)0.0302 (5)
H81.24680.01150.48120.036*
C91.16462 (19)0.01794 (16)0.40806 (15)0.0247 (5)
H91.09420.04080.43490.030*
C100.85079 (17)0.11602 (15)0.27562 (15)0.0205 (4)
C110.81519 (18)0.09237 (16)0.20030 (15)0.0238 (5)
H110.85020.05650.14980.029*
C120.72867 (19)0.12099 (18)0.19868 (17)0.0315 (5)
H120.70360.10310.14780.038*
C130.6790 (2)0.17518 (18)0.27036 (18)0.0356 (6)
H130.62080.19560.26840.043*
C140.7141 (2)0.19956 (17)0.34482 (18)0.0336 (6)
H140.67960.23660.39440.040*
C150.79922 (19)0.17041 (16)0.34787 (16)0.0260 (5)
H150.82270.18760.39960.031*
C160.80746 (17)0.28812 (15)0.42811 (14)0.0181 (4)
C170.69111 (18)0.30295 (16)0.45550 (14)0.0215 (5)
H170.62620.34720.50690.026*
C180.68935 (17)0.24032 (15)0.39282 (14)0.0182 (4)
C190.58865 (17)0.22077 (16)0.39375 (14)0.0205 (4)
C200.48870 (18)0.30281 (17)0.39709 (16)0.0284 (5)
H200.48430.37180.39930.034*
C210.3950 (2)0.28520 (19)0.39724 (18)0.0354 (6)
H210.32660.34200.39970.043*
C220.4009 (2)0.18468 (19)0.39374 (16)0.0324 (6)
H220.33780.17250.39160.039*
C230.49828 (19)0.10288 (18)0.39342 (15)0.0271 (5)
H230.50120.03420.39340.032*
C240.59226 (18)0.12023 (16)0.39315 (14)0.0225 (5)
H240.65960.06330.39250.027*
C250.86104 (18)0.32849 (15)0.47464 (14)0.0197 (4)
C260.7918 (2)0.40914 (17)0.54497 (16)0.0290 (5)
H260.71020.43930.56160.035*
C270.8409 (2)0.44612 (18)0.59115 (17)0.0353 (6)
H270.79210.50000.64020.042*
C280.9590 (2)0.40570 (17)0.56671 (17)0.0320 (6)
H280.99230.43210.59760.038*
C291.0287 (2)0.32608 (17)0.49665 (16)0.0288 (5)
H291.11070.29820.47850.035*
C300.98027 (18)0.28662 (16)0.45279 (15)0.0235 (5)
H301.02920.22980.40680.028*
C311.10912 (17)0.45712 (15)0.20434 (14)0.0192 (4)
C320.99195 (18)0.50882 (16)0.22332 (14)0.0218 (5)
H320.95210.58110.22220.026*
C330.94392 (17)0.43327 (15)0.24444 (14)0.0193 (4)
C340.82014 (17)0.45635 (15)0.26807 (15)0.0207 (4)
C350.73704 (18)0.53765 (16)0.33547 (15)0.0252 (5)
H350.76100.57000.37030.030*
C360.62009 (18)0.57190 (17)0.35230 (16)0.0287 (5)
H360.56460.62780.39790.034*
C370.58427 (19)0.52449 (17)0.30251 (17)0.0288 (5)
H370.50420.54830.31340.035*
C380.66523 (18)0.44223 (16)0.23668 (16)0.0258 (5)
H380.64040.40880.20340.031*
C390.78205 (17)0.40865 (15)0.21931 (15)0.0208 (4)
H390.83700.35250.17370.025*
C401.20421 (18)0.49507 (16)0.17428 (14)0.0221 (5)
C411.31785 (19)0.42894 (18)0.15744 (17)0.0309 (5)
H411.33580.35710.16510.037*
C421.4056 (2)0.46696 (19)0.12943 (18)0.0388 (6)
H421.48310.42100.11840.047*
C431.3810 (2)0.57113 (19)0.11759 (18)0.0370 (6)
H431.44110.59690.09830.044*
C441.2683 (2)0.63744 (19)0.13390 (17)0.0354 (6)
H441.25090.70910.12540.042*
C451.1805 (2)0.59997 (17)0.16257 (16)0.0284 (5)
H451.10310.64650.17440.034*
C461.03287 (17)0.21576 (15)0.05112 (14)0.0177 (4)
C470.96153 (17)0.21283 (15)0.00793 (14)0.0198 (4)
H470.96490.23440.05310.024*
C480.88478 (17)0.17239 (15)0.07128 (14)0.0178 (4)
C490.79428 (17)0.15048 (15)0.05626 (14)0.0185 (4)
C500.82568 (18)0.09733 (15)0.02838 (14)0.0212 (4)
H500.90430.07320.07270.025*
C510.74346 (19)0.07913 (16)0.04878 (15)0.0248 (5)
H510.76550.04300.10680.030*
C520.62928 (19)0.11405 (17)0.01601 (16)0.0269 (5)
H520.57270.10190.00220.032*
C530.59628 (18)0.16667 (16)0.10107 (16)0.0253 (5)
H530.51770.18970.14550.030*
C540.67829 (17)0.18544 (16)0.12089 (15)0.0213 (5)
H540.65560.22230.17870.026*
C551.12601 (17)0.25740 (16)0.01514 (14)0.0197 (4)
C561.23365 (18)0.20350 (17)0.01988 (14)0.0233 (5)
H561.24860.13880.04750.028*
C571.31943 (19)0.24399 (18)0.01566 (15)0.0291 (5)
H571.39280.20690.01210.035*
C581.2987 (2)0.3378 (2)0.05625 (17)0.0364 (6)
H581.35770.36530.08070.044*
C591.1917 (2)0.39158 (19)0.06107 (17)0.0376 (6)
H591.17700.45630.08880.045*
C601.10562 (19)0.35148 (17)0.02557 (16)0.0280 (5)
H601.03230.38880.02920.034*
C611.29822 (17)0.11262 (16)0.21246 (14)0.0202 (4)
C621.40737 (18)0.01620 (16)0.18232 (17)0.0289 (5)
H62A1.45030.01280.11360.043*
H62B1.38690.04470.19910.043*
H62C1.45610.01770.21460.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01584 (15)0.01764 (15)0.01814 (15)0.00705 (11)0.00708 (11)0.00142 (11)
B10.0156 (11)0.0182 (12)0.0173 (12)0.0079 (10)0.0056 (9)0.0012 (9)
N10.0170 (9)0.0172 (9)0.0197 (9)0.0066 (7)0.0081 (7)0.0015 (7)
N20.0158 (8)0.0179 (9)0.0196 (9)0.0080 (7)0.0067 (7)0.0000 (7)
N30.0178 (9)0.0171 (9)0.0194 (9)0.0087 (7)0.0083 (7)0.0017 (7)
N40.0178 (9)0.0161 (9)0.0185 (9)0.0070 (7)0.0078 (7)0.0021 (7)
N50.0150 (8)0.0149 (8)0.0212 (9)0.0070 (7)0.0073 (7)0.0019 (7)
N60.0147 (8)0.0175 (9)0.0184 (9)0.0070 (7)0.0060 (7)0.0003 (7)
N70.0150 (8)0.0181 (9)0.0203 (9)0.0063 (7)0.0067 (7)0.0005 (7)
N80.0145 (9)0.0179 (9)0.0228 (9)0.0064 (7)0.0063 (7)0.0008 (7)
O10.0190 (8)0.0227 (8)0.0282 (8)0.0100 (6)0.0106 (6)0.0052 (6)
O20.0284 (9)0.0211 (8)0.0620 (12)0.0092 (7)0.0280 (8)0.0025 (8)
C10.0209 (11)0.0163 (10)0.0176 (11)0.0078 (9)0.0033 (9)0.0009 (8)
C20.0247 (11)0.0157 (11)0.0245 (12)0.0069 (9)0.0091 (9)0.0018 (9)
C30.0205 (11)0.0160 (10)0.0191 (11)0.0060 (9)0.0055 (9)0.0000 (8)
C40.0227 (11)0.0170 (11)0.0251 (12)0.0098 (9)0.0106 (9)0.0072 (9)
C50.0268 (12)0.0209 (11)0.0280 (12)0.0082 (10)0.0139 (10)0.0041 (9)
C60.0260 (12)0.0240 (12)0.0373 (14)0.0064 (10)0.0161 (11)0.0085 (10)
C70.0303 (13)0.0373 (14)0.0340 (13)0.0160 (11)0.0219 (11)0.0143 (11)
C80.0391 (14)0.0304 (13)0.0311 (13)0.0168 (11)0.0212 (11)0.0062 (10)
C90.0258 (12)0.0193 (11)0.0284 (12)0.0066 (9)0.0125 (10)0.0037 (9)
C100.0193 (11)0.0156 (10)0.0237 (11)0.0060 (9)0.0050 (9)0.0047 (9)
C110.0238 (11)0.0230 (12)0.0210 (11)0.0079 (9)0.0046 (9)0.0071 (9)
C120.0269 (12)0.0369 (14)0.0305 (13)0.0104 (11)0.0096 (10)0.0124 (11)
C130.0267 (13)0.0359 (14)0.0455 (16)0.0175 (11)0.0064 (11)0.0146 (12)
C140.0347 (14)0.0253 (13)0.0401 (15)0.0192 (11)0.0056 (12)0.0025 (11)
C150.0317 (12)0.0180 (11)0.0297 (13)0.0120 (10)0.0112 (10)0.0018 (9)
C160.0212 (11)0.0160 (10)0.0160 (10)0.0080 (9)0.0060 (8)0.0033 (8)
C170.0216 (11)0.0209 (11)0.0177 (11)0.0088 (9)0.0024 (9)0.0008 (9)
C180.0174 (10)0.0184 (10)0.0171 (10)0.0083 (9)0.0043 (8)0.0043 (8)
C190.0198 (11)0.0258 (12)0.0149 (10)0.0104 (9)0.0044 (8)0.0012 (9)
C200.0245 (12)0.0264 (12)0.0314 (13)0.0107 (10)0.0082 (10)0.0054 (10)
C210.0207 (12)0.0392 (15)0.0440 (15)0.0091 (11)0.0144 (11)0.0104 (12)
C220.0242 (12)0.0478 (15)0.0307 (13)0.0192 (12)0.0106 (10)0.0007 (11)
C230.0280 (12)0.0320 (13)0.0223 (12)0.0174 (11)0.0044 (10)0.0030 (10)
C240.0188 (11)0.0262 (12)0.0204 (11)0.0089 (9)0.0052 (9)0.0002 (9)
C250.0258 (11)0.0181 (11)0.0169 (11)0.0115 (9)0.0073 (9)0.0032 (8)
C260.0307 (13)0.0268 (12)0.0273 (13)0.0073 (10)0.0120 (10)0.0022 (10)
C270.0494 (16)0.0245 (13)0.0335 (14)0.0061 (11)0.0238 (12)0.0060 (10)
C280.0495 (16)0.0266 (13)0.0346 (14)0.0190 (12)0.0274 (12)0.0052 (10)
C290.0340 (13)0.0330 (13)0.0290 (13)0.0168 (11)0.0191 (11)0.0083 (10)
C300.0273 (12)0.0248 (12)0.0198 (11)0.0105 (10)0.0101 (9)0.0016 (9)
C310.0232 (11)0.0185 (11)0.0183 (11)0.0100 (9)0.0086 (9)0.0017 (8)
C320.0226 (11)0.0162 (11)0.0246 (12)0.0060 (9)0.0088 (9)0.0013 (9)
C330.0225 (11)0.0181 (11)0.0176 (11)0.0080 (9)0.0080 (9)0.0013 (8)
C340.0201 (11)0.0159 (10)0.0230 (11)0.0059 (9)0.0074 (9)0.0053 (8)
C350.0243 (12)0.0202 (11)0.0300 (13)0.0078 (9)0.0100 (10)0.0004 (9)
C360.0200 (11)0.0198 (11)0.0361 (14)0.0030 (9)0.0049 (10)0.0018 (10)
C370.0178 (11)0.0225 (12)0.0421 (14)0.0066 (9)0.0102 (10)0.0070 (10)
C380.0258 (12)0.0214 (12)0.0359 (13)0.0123 (10)0.0159 (10)0.0069 (10)
C390.0207 (11)0.0162 (10)0.0233 (11)0.0071 (9)0.0068 (9)0.0027 (9)
C400.0254 (12)0.0250 (12)0.0187 (11)0.0132 (10)0.0075 (9)0.0003 (9)
C410.0264 (12)0.0260 (12)0.0395 (14)0.0126 (10)0.0090 (11)0.0012 (10)
C420.0267 (13)0.0379 (15)0.0528 (17)0.0152 (12)0.0125 (12)0.0039 (12)
C430.0373 (15)0.0394 (15)0.0430 (15)0.0280 (13)0.0114 (12)0.0033 (12)
C440.0446 (15)0.0294 (13)0.0444 (15)0.0236 (12)0.0220 (13)0.0100 (11)
C450.0343 (13)0.0269 (12)0.0321 (13)0.0155 (11)0.0181 (11)0.0059 (10)
C460.0165 (10)0.0154 (10)0.0169 (10)0.0040 (8)0.0044 (8)0.0002 (8)
C470.0189 (11)0.0229 (11)0.0158 (10)0.0069 (9)0.0064 (9)0.0023 (8)
C480.0164 (10)0.0168 (10)0.0168 (10)0.0024 (8)0.0064 (8)0.0014 (8)
C490.0200 (11)0.0176 (10)0.0207 (11)0.0080 (9)0.0106 (9)0.0048 (8)
C500.0217 (11)0.0198 (11)0.0202 (11)0.0078 (9)0.0068 (9)0.0027 (9)
C510.0328 (13)0.0250 (12)0.0213 (11)0.0131 (10)0.0131 (10)0.0009 (9)
C520.0291 (12)0.0307 (13)0.0332 (13)0.0165 (10)0.0204 (11)0.0077 (10)
C530.0180 (11)0.0248 (12)0.0321 (13)0.0072 (9)0.0102 (10)0.0038 (10)
C540.0206 (11)0.0218 (11)0.0225 (11)0.0080 (9)0.0095 (9)0.0016 (9)
C550.0196 (11)0.0246 (11)0.0154 (10)0.0103 (9)0.0054 (8)0.0003 (8)
C560.0235 (11)0.0283 (12)0.0202 (11)0.0124 (10)0.0086 (9)0.0040 (9)
C570.0220 (12)0.0425 (14)0.0262 (13)0.0148 (11)0.0105 (10)0.0026 (11)
C580.0353 (14)0.0522 (16)0.0302 (14)0.0317 (13)0.0078 (11)0.0082 (12)
C590.0430 (15)0.0361 (14)0.0417 (15)0.0264 (12)0.0171 (13)0.0190 (12)
C600.0247 (12)0.0304 (13)0.0299 (13)0.0126 (10)0.0115 (10)0.0089 (10)
C610.0207 (11)0.0225 (11)0.0209 (11)0.0082 (9)0.0123 (9)0.0046 (9)
C620.0210 (12)0.0248 (12)0.0411 (14)0.0086 (10)0.0135 (10)0.0061 (10)
Geometric parameters (Å, º) top
Co1—O11.9712 (14)C25—C301.393 (3)
Co1—N32.0305 (16)C26—C271.391 (3)
Co1—N52.0347 (16)C26—H260.9500
Co1—N72.1443 (16)C27—C281.374 (3)
Co1—N12.2896 (16)C27—H270.9500
B1—N21.541 (3)C28—C291.381 (3)
B1—N61.549 (3)C28—H280.9500
B1—N41.558 (3)C29—C301.380 (3)
B1—H11.0503C29—H290.9500
N1—C31.339 (3)C30—H300.9500
N1—N21.373 (2)C31—C321.384 (3)
N2—C11.361 (2)C31—C401.474 (3)
N3—C161.342 (2)C32—C331.399 (3)
N3—N41.372 (2)C32—H320.9500
N4—C181.357 (2)C33—C341.473 (3)
N5—C461.345 (2)C34—C351.396 (3)
N5—N61.371 (2)C34—C391.398 (3)
N6—C481.360 (2)C35—C361.386 (3)
N7—C331.350 (2)C35—H350.9500
N7—N81.357 (2)C36—C371.384 (3)
N8—C311.347 (2)C36—H360.9500
N8—H8A0.8800C37—C381.386 (3)
O1—C611.275 (2)C37—H370.9500
O2—C611.244 (2)C38—C391.383 (3)
C1—C21.378 (3)C38—H380.9500
C1—C101.480 (3)C39—H390.9500
C2—C31.398 (3)C40—C411.387 (3)
C2—H20.9500C40—C451.392 (3)
C3—C41.477 (3)C41—C421.389 (3)
C4—C91.392 (3)C41—H410.9500
C4—C51.397 (3)C42—C431.380 (3)
C5—C61.380 (3)C42—H420.9500
C5—H50.9500C43—C441.379 (3)
C6—C71.385 (3)C43—H430.9500
C6—H60.9500C44—C451.383 (3)
C7—C81.379 (3)C44—H440.9500
C7—H70.9500C45—H450.9500
C8—C91.385 (3)C46—C471.390 (3)
C8—H80.9500C46—C551.483 (3)
C9—H90.9500C47—C481.380 (3)
C10—C111.394 (3)C47—H470.9500
C10—C151.395 (3)C48—C491.479 (3)
C11—C121.390 (3)C49—C501.392 (3)
C11—H110.9500C49—C541.398 (3)
C12—C131.378 (3)C50—C511.387 (3)
C12—H120.9500C50—H500.9500
C13—C141.377 (3)C51—C521.381 (3)
C13—H130.9500C51—H510.9500
C14—C151.385 (3)C52—C531.388 (3)
C14—H140.9500C52—H520.9500
C15—H150.9500C53—C541.384 (3)
C16—C171.394 (3)C53—H530.9500
C16—C251.476 (3)C54—H540.9500
C17—C181.380 (3)C55—C601.384 (3)
C17—H170.9500C55—C561.389 (3)
C18—C191.489 (3)C56—C571.387 (3)
C19—C201.384 (3)C56—H560.9500
C19—C241.395 (3)C57—C581.380 (3)
C20—C211.386 (3)C57—H570.9500
C20—H200.9500C58—C591.382 (3)
C21—C221.388 (3)C58—H580.9500
C21—H210.9500C59—C601.386 (3)
C22—C231.373 (3)C59—H590.9500
C22—H220.9500C60—H600.9500
C23—C241.386 (3)C61—C621.503 (3)
C23—H230.9500C62—H62A0.9800
C24—H240.9500C62—H62B0.9800
C25—C261.392 (3)C62—H62C0.9800
O1—Co1—N3147.09 (6)C30—C25—C16122.26 (18)
O1—Co1—N5109.95 (6)C27—C26—C25120.8 (2)
N3—Co1—N596.58 (6)C27—C26—H26119.6
O1—Co1—N7103.17 (6)C25—C26—H26119.6
N3—Co1—N793.45 (6)C28—C27—C26120.8 (2)
N5—Co1—N794.55 (6)C28—C27—H27119.6
O1—Co1—N182.87 (6)C26—C27—H27119.6
N3—Co1—N179.34 (6)C27—C28—C29119.0 (2)
N5—Co1—N187.00 (6)C27—C28—H28120.5
N7—Co1—N1172.76 (6)C29—C28—H28120.5
N2—B1—N6109.52 (16)C30—C29—C28120.5 (2)
N2—B1—N4107.13 (16)C30—C29—H29119.7
N6—B1—N4110.61 (16)C28—C29—H29119.7
N2—B1—H1112.4C29—C30—C25121.3 (2)
N6—B1—H1109.3C29—C30—H30119.3
N4—B1—H1107.9C25—C30—H30119.3
C3—N1—N2105.98 (15)N8—C31—C32106.16 (17)
C3—N1—Co1140.40 (13)N8—C31—C40122.83 (18)
N2—N1—Co1113.61 (11)C32—C31—C40130.97 (19)
C1—N2—N1110.40 (15)C31—C32—C33106.24 (18)
C1—N2—B1129.90 (16)C31—C32—H32126.9
N1—N2—B1118.57 (15)C33—C32—H32126.9
C16—N3—N4107.21 (15)N7—C33—C32109.94 (18)
C16—N3—Co1134.98 (13)N7—C33—C34126.54 (18)
N4—N3—Co1116.80 (12)C32—C33—C34123.52 (18)
C18—N4—N3109.23 (15)C35—C34—C39118.24 (19)
C18—N4—B1130.35 (16)C35—C34—C33118.11 (18)
N3—N4—B1120.36 (15)C39—C34—C33123.27 (18)
C46—N5—N6107.13 (15)C36—C35—C34121.0 (2)
C46—N5—Co1133.53 (13)C36—C35—H35119.5
N6—N5—Co1117.77 (12)C34—C35—H35119.5
C48—N6—N5109.36 (15)C37—C36—C35119.9 (2)
C48—N6—B1130.88 (16)C37—C36—H36120.1
N5—N6—B1119.73 (15)C35—C36—H36120.1
C33—N7—N8105.23 (15)C36—C37—C38120.0 (2)
C33—N7—Co1136.63 (13)C36—C37—H37120.0
N8—N7—Co1118.04 (12)C38—C37—H37120.0
C31—N8—N7112.42 (16)C39—C38—C37120.2 (2)
C31—N8—H8A123.8C39—C38—H38119.9
N7—N8—H8A123.8C37—C38—H38119.9
C61—O1—Co1141.77 (13)C38—C39—C34120.74 (19)
N2—C1—C2107.23 (17)C38—C39—H39119.6
N2—C1—C10123.53 (18)C34—C39—H39119.6
C2—C1—C10129.19 (18)C41—C40—C45118.4 (2)
C1—C2—C3105.93 (18)C41—C40—C31121.80 (19)
C1—C2—H2127.0C45—C40—C31119.76 (19)
C3—C2—H2127.0C40—C41—C42120.5 (2)
N1—C3—C2110.45 (18)C40—C41—H41119.7
N1—C3—C4122.15 (18)C42—C41—H41119.7
C2—C3—C4127.36 (18)C43—C42—C41120.4 (2)
C9—C4—C5118.69 (19)C43—C42—H42119.8
C9—C4—C3121.13 (18)C41—C42—H42119.8
C5—C4—C3120.17 (19)C44—C43—C42119.5 (2)
C6—C5—C4120.3 (2)C44—C43—H43120.2
C6—C5—H5119.9C42—C43—H43120.2
C4—C5—H5119.9C43—C44—C45120.2 (2)
C5—C6—C7120.4 (2)C43—C44—H44119.9
C5—C6—H6119.8C45—C44—H44119.9
C7—C6—H6119.8C44—C45—C40120.9 (2)
C8—C7—C6119.8 (2)C44—C45—H45119.6
C8—C7—H7120.1C40—C45—H45119.6
C6—C7—H7120.1N5—C46—C47109.45 (17)
C7—C8—C9120.1 (2)N5—C46—C55122.33 (17)
C7—C8—H8119.9C47—C46—C55128.15 (18)
C9—C8—H8119.9C48—C47—C46106.42 (18)
C8—C9—C4120.6 (2)C48—C47—H47126.8
C8—C9—H9119.7C46—C47—H47126.8
C4—C9—H9119.7N6—C48—C47107.64 (17)
C11—C10—C15118.52 (19)N6—C48—C49125.49 (18)
C11—C10—C1122.38 (19)C47—C48—C49126.83 (18)
C15—C10—C1119.07 (19)C50—C49—C54119.04 (18)
C12—C11—C10120.3 (2)C50—C49—C48118.03 (18)
C12—C11—H11119.8C54—C49—C48122.85 (18)
C10—C11—H11119.8C51—C50—C49120.77 (19)
C13—C12—C11120.4 (2)C51—C50—H50119.6
C13—C12—H12119.8C49—C50—H50119.6
C11—C12—H12119.8C52—C51—C50119.41 (19)
C14—C13—C12119.7 (2)C52—C51—H51120.3
C14—C13—H13120.2C50—C51—H51120.3
C12—C13—H13120.2C51—C52—C53120.7 (2)
C13—C14—C15120.4 (2)C51—C52—H52119.6
C13—C14—H14119.8C53—C52—H52119.6
C15—C14—H14119.8C54—C53—C52119.7 (2)
C14—C15—C10120.5 (2)C54—C53—H53120.1
C14—C15—H15119.7C52—C53—H53120.1
C10—C15—H15119.7C53—C54—C49120.33 (19)
N3—C16—C17109.49 (17)C53—C54—H54119.8
N3—C16—C25120.97 (17)C49—C54—H54119.8
C17—C16—C25129.44 (18)C60—C55—C56119.30 (19)
C18—C17—C16106.07 (18)C60—C55—C46119.06 (18)
C18—C17—H17127.0C56—C55—C46121.62 (18)
C16—C17—H17127.0C57—C56—C55120.1 (2)
N4—C18—C17107.95 (17)C57—C56—H56119.9
N4—C18—C19123.47 (17)C55—C56—H56119.9
C17—C18—C19128.50 (18)C58—C57—C56120.4 (2)
C20—C19—C24118.89 (19)C58—C57—H57119.8
C20—C19—C18120.18 (19)C56—C57—H57119.8
C24—C19—C18120.92 (18)C57—C58—C59119.6 (2)
C19—C20—C21120.5 (2)C57—C58—H58120.2
C19—C20—H20119.7C59—C58—H58120.2
C21—C20—H20119.7C58—C59—C60120.3 (2)
C20—C21—C22120.0 (2)C58—C59—H59119.9
C20—C21—H21120.0C60—C59—H59119.9
C22—C21—H21120.0C55—C60—C59120.3 (2)
C23—C22—C21119.9 (2)C55—C60—H60119.8
C23—C22—H22120.1C59—C60—H60119.8
C21—C22—H22120.1O2—C61—O1125.09 (19)
C22—C23—C24120.2 (2)O2—C61—C62118.60 (18)
C22—C23—H23119.9O1—C61—C62116.29 (18)
C24—C23—H23119.9C61—C62—H62A109.5
C23—C24—C19120.4 (2)C61—C62—H62B109.5
C23—C24—H24119.8H62A—C62—H62B109.5
C19—C24—H24119.8C61—C62—H62C109.5
C26—C25—C30117.55 (19)H62A—C62—H62C109.5
C26—C25—C16120.16 (19)H62B—C62—H62C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8A···O20.881.782.637 (2)163

Experimental details

Crystal data
Chemical formula[Co(C45H34BN6)(C2H3O2)(C15H12N2)]
Mr1007.83
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)13.5669 (12), 14.0474 (12), 15.4195 (14)
α, β, γ (°)84.568 (2), 66.500 (1), 67.199 (1)
V3)2478.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.39 × 0.21 × 0.21
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 1997)
Tmin, Tmax0.859, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
28606, 11119, 7921
Rint0.041
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.105, 1.03
No. of reflections11119
No. of parameters669
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.33

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Co1—O11.9712 (14)Co1—N72.1443 (16)
Co1—N32.0305 (16)Co1—N12.2896 (16)
Co1—N52.0347 (16)
O1—Co1—N3147.09 (6)N5—Co1—N794.55 (6)
O1—Co1—N5109.95 (6)O1—Co1—N182.87 (6)
N3—Co1—N596.58 (6)N3—Co1—N179.34 (6)
O1—Co1—N7103.17 (6)N5—Co1—N187.00 (6)
N3—Co1—N793.45 (6)N7—Co1—N1172.76 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8A···O20.881.782.637 (2)163
 

Acknowledgements

The authors gratefully acknowledge the Thailand Research Fund (MRG4680139) for supporting this work and Walailak University for a collaborative research grant (both to DJH). The authors also thank Professor M. D. Ward of the University of Sheffield for the use of laboratory facilities during the course of this work.

References

First citationBruker (1997). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalabrese, J. C., Trofimenko, S. & Thompson, J. S. (1986). J. Chem. Soc. Chem. Commun. pp. 1122–1123.  CrossRef Web of Science Google Scholar
First citationCarrier, S. M., Ruggiero, C. E., Houser, R. P. & Tolman, W. B. (1993). Inorg. Chem. 32, 4889–4899.  CSD CrossRef CAS Web of Science Google Scholar
First citationChia, L. M. L., Radojevic, S., Scowen, I. J., McPartlin, M. & Halcrow, M. A. (2000). J. Chem. Soc. Dalton Trans. pp. 133–140.  Web of Science CSD CrossRef Google Scholar
First citationFoster, C. L., Liu, X., Kilner, C. A., Thornton-Pett, M. & Halcrow, M. A. (2000). J. Chem. Soc. Dalton Trans. pp. 4563–4568.  Web of Science CSD CrossRef Google Scholar
First citationGuo, S., Ding, E., Yin, Y. & Yu, K. (1998). Polyhedron, 17, 3841–3849.  CSD CrossRef CAS Google Scholar
First citationHalcrow, M. A., Davies, J. E. & Raithby, P. R. (1997). Polyhedron, 16, 1535–1541.  CSD CrossRef CAS Web of Science Google Scholar
First citationKitajima, N., Fujisawa, K., Fujimoto, C., Moro-oka, Y., Hashimoto, S., Kitagawa, T., Toriumi, K., Tatsumi, K. & Nakamura, A. (1992). J. Am. Chem. Soc. 114, 1277–1291.  CSD CrossRef CAS Web of Science Google Scholar
First citationKremer-Aach, A., Kläui, W., Bell, R., Strerath, A., Wunderlich, H. & Mootz, D. (1997). Inorg. Chem. 36, 1552–1563.  PubMed CAS Google Scholar
First citationRuman, T., Ciunik, Z., Mazurek, J. & Wolowiec, S. (2002). Eur. J. Inorg. Chem. pp. 754–760.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationTrofimenko, S. (1993). Chem. Rev. 93, 943–980.  CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds