inorganic compounds
Thallium(III) selenite, Tl2(SeO3)3
aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk
The structure of Tl2(SeO3)3 [dithallium(III) triselenium(IV) nonaoxide] is monoclinic (P21/n symmetry), with all atoms in general positions. It is built up from TlO6 octahedra, distorted TlO7 pentagonal bipyramids and (SeO3)2− pyramids sharing vertices and edges to form corrugated (001) layers. The Se lone pairs of electrons are accommodated in the interlayer regions.
Comment
Inorganic selenites containing the pyramidal (SeO3)2− ion are of ongoing crystallochemical interest because of the way the inherently asymmetric selenite ion packs into extended structures and the space requirements of the SeIV lone pair of electrons (Wontcheu & Schleid, 2005). Metal selenites have also been studied for their potentially useful physical properties, such as second-harmonic generation (Ok & Halasyamani, 2002). As part of our ongoing studies of metal selenites (Johnston & Harrison, 2004a,b), we report here the structure of the title compound, Tl2(SeO3)3, (I).
A compound of the same stoichiometry as (I) was first reported almost 100 years ago (Marino, 1909). Much later, Gospodinov (1984) reported a lemon-yellow compound of stoichiometry Tl2(SeO3)3, although its was not determined. The simulated X-ray powder pattern of (I) (colourless compound) does not match the powder data reported by Gospodinov. Thus, the yellow phase could represent a second polymorph of Tl2(SeO3)3. We could find no other detailed structural studies of thallium(III) selenites, although the structures of thallium(I) `trihydroselenite', TlH3(SeO3)2 (Shuvalov et al., 1983), and thallium(I) selenate, Tl2SeO4 (Fábry & Breczewski, 1993), have been determined from single-crystal data.
There are two Tl, three Se and nine O atoms in the ) pyramidal coordination (Table 1), with the unobserved lone pair of electrons assumed to occupy the fourth tetrahedral vertex about each Se atom. The mean Se—O bond lengths are 1.716 (2), 1.709 (2) and 1.706 (2) Å for Se1, Se2 and Se3, respectively. The bond-valence sums (BVS) for the Se atoms, calculated using the Brown (1996) formalism, are 3.88, 3.98 and 3.99 for Se1, Se2 and Se3, respectively. These are in satisfactory agreement with the expected value of 4.00. The Se atoms are displaced from the plane formed by their three attached O atoms by 0.794 (6) (Se1), 0.807 (6) (Se2) and 0.794 (6) Å (Se3). The O—Se—O bond angles in (I) show more variation than is typical for selenite groups (Johnston & Harrison, 2004a) [for Se1, θ = 95.4 (5)–102.7 (5)°, range = 7.3°; for Se2, θ = 89.7 (5)–107.3 (5)°, range = 17.6°; for Se3, θ = 93.4 (5)–103.9 (5)°, range = 10.5°]. These distortions in the O—Se—O bond angles correlate well with their edge-sharing connectivity to adjacent thallium polyhedra (see below).
of (I), all of which occupy general positions in the The three selenite groups show their expected (Verma, 1999Atom Tl1 is approximately octahedrally coordinated by six O atoms. The mean Tl—O bond length of 2.24 (2) Å is in excellent agreement with the value of 2.25 Å expected on the basis of the ionic radius sum for TlIII and O−II (Shannon, 1976). The BVS for Tl1 is 3.28, compared with an expected value of 3.00 for TlIII. This discrepancy perhaps suggests a degree of `overbonding' for this species, assuming that the BVS parameters for this species are reliable. The next-nearest O atom is 3.45 Å away from Tl1.
The coordination about atom Tl2 is unusual (Fig. 1). There are seven near-neighbour O atoms, with the Tl2—O1iv bond of 2.496 (10) Å being significantly longer than the other six [mean = 2.28 (2) Å] (see Table 1 for symmetry codes). However, we feel that it is appropriate to consider it to be a bond because it contributes a significant 0.27 valence units to the Tl2 BVS of 3.20. The next-nearest neighbouring O atom is 3.78 Å distant from Tl2. There are no fewer than three edge-sharing selenite groups bonded to Tl2, involving the six shorter Tl2—O bonds. The three acute O—Se—O bond angles noted above are involved in these three edge-sharing interactions and the corresponding O—Tl2—O edge-sharing bond angles are grouped in the narrow range of 64.7 (3)–66.0 (4)°. The Tl2O7 polyhedron could be described as a very distorted pentagonal bipyramid, with atoms O5 and O7 in the axial positions [θ(O5—Tl2—O7) = 166.0 (4)°]. The equatorial atoms Tl2, O1, O1iv and O3 are approximately coplanar (r.m.s. deviation from the best plane is 0.008 Å). However, atom O9, and especially atom O4, are substantially displaced from their nominal equatorial positions by 0.632 (15) and −1.179 (16) Å, respectively.
Of the nine O atoms in the structure of (I), four, namely O1 [bond angle sum = 359.6 (5)°], O4 [359.6 (6)°], O5 [354.2 (6)°] and O9 [358.9 (5)°], are tricoordinate to two Tl plus one Se neighbours. There is a wide variation in these angles, e.g. the Tl—O1—Tl angle is the most obtuse around O1, whereas a Tl—O4—Se angle is the largest around O4 (Table 1). The remaining five O atoms form bicoordinate Tl—O—Se bridges [mean θ(Tl—O—Se) = 120.3°]. The bicoordinate bond-angle distribution is sharply bimodal, with two angles of around 104° and three angles of around 131° (Table 1).
The polyhedral connectivity in (I) results in corner-sharing (involving the long Tl2—O1 bond) chains of the Tl2O7 groups propagating in the [100] direction. These are crosslinked by the Tl1O6 groups to form (001) sheets (Fig. 2). The Tl1O6 groups do not bond to other Tl1-centred polyhedra, but make four bonds to Tl2-centred moieties. Finally, the thallium/oxygen layers are decorated on both sides of the sheet by Se atoms (as parts of selenite groups).
When viewed down [100] (Fig. 3), the (001) layers are seen to be significantly corrugated, with the SeIV lone pairs of electrons appearing to point into the interlayer regions of the structure. This suggests that, at least in part, the Se lone pairs are responsible for the layered nature of (I).
Experimental
Tl2O3 (0.761 g, 1.66 mmol) was added to a 0.5 M H2SeO3 (20 ml) aqueous solution (i.e. dissolved SeO2) and heated to 353 K in a plastic bottle. Thin colourless plates and shards of (I) grew over a few days and were recovered by vacuum filtration; they were accompanied by a small amount of black residue of Tl2O3. [Caution! All thallium compounds are exceedingly toxic. All appropriate safety precautions must be taken during their handling, especially with respect to dust contamination.]
Crystal data
|
Refinement
|
The highest difference peak is 0.94 Å from O2 and 1.40 Å from Tl1; the deepest hole is 0.92 Å from O5 and 1.38 Å from Tl2.
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 2000); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S0108270105018111/bc1073sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S0108270105018111/bc1073Isup2.hkl
Tl2O3 (0.761 g, 1.66 mmol) was added to 0.5 M H2SeO3 (20 ml) aqueous solution (i.e. dissolved SeO2) and heated to 353 K in a plastic bottle. Thin colourless plates and shards of (I) grew over a few days and were recovered by vacuum filtration, accompanied by a small amount of black residue of Tl2O3. Caution! All thallium compounds are exceedingly toxic. All appropriate safety precautions must be taken during their handling, especially with respect to dust contamination.
The highest difference peak is 0.94 Å from O2 and 1.40 Å from Tl1; the deepest difference hole is 0.92 Å from O5 and 1.38 Å from Tl2.
Data collection: COLLECT (Nonius, 1998); cell
HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO (Otwinowski & Minor 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 2000); software used to prepare material for publication: SHELXL97.Fig. 1. A view of a fragment of (I), showing 50% displacement ellipsoids. Symmetry codes are as given in Table 1. | |
Fig. 2. Part of an (001) layer in (I), showing the [100] chains of Tl2O7 groups (dark shading) crosslinked by the Tl1O6 octahedra (light shading). Se and O atoms are represented by large and small spheres, respectively. | |
Fig. 3. The unit-cell packing in (I), projected onto (100). Drawing conventions are as in Fig. 2. |
Tl2(SeO3)3 | F(000) = 1344 |
Mr = 789.62 | Dx = 6.148 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1734 reflections |
a = 4.5666 (3) Å | θ = 2.9–27.5° |
b = 11.2194 (10) Å | µ = 50.56 mm−1 |
c = 16.7595 (13) Å | T = 120 K |
β = 96.549 (6)° | Shard, colourless |
V = 853.06 (12) Å3 | 0.13 × 0.05 × 0.01 mm |
Z = 4 |
Nonius KappaCCD area-detector diffractometer | 1948 independent reflections |
Radiation source: fine-focus sealed tube | 1690 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.059 |
ω and ϕ scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −5→5 |
Tmin = 0.053, Tmax = 0.632 | k = −14→14 |
10219 measured reflections | l = −21→21 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.044 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.121 | w = 1/[σ2(Fo2) + (0.0696P)2 + 26.3163P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.002 |
1948 reflections | Δρmax = 2.53 e Å−3 |
127 parameters | Δρmin = −3.22 e Å−3 |
Tl2(SeO3)3 | V = 853.06 (12) Å3 |
Mr = 789.62 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 4.5666 (3) Å | µ = 50.56 mm−1 |
b = 11.2194 (10) Å | T = 120 K |
c = 16.7595 (13) Å | 0.13 × 0.05 × 0.01 mm |
β = 96.549 (6)° |
Nonius KappaCCD area-detector diffractometer | 1948 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 1690 reflections with I > 2σ(I) |
Tmin = 0.053, Tmax = 0.632 | Rint = 0.059 |
10219 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.121 | w = 1/[σ2(Fo2) + (0.0696P)2 + 26.3163P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | Δρmax = 2.53 e Å−3 |
1948 reflections | Δρmin = −3.22 e Å−3 |
127 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Tl1 | 0.32538 (11) | 0.43917 (4) | 0.20541 (3) | 0.01094 (19) | |
Tl2 | 0.76747 (11) | 0.64964 (4) | 0.37514 (3) | 0.01019 (18) | |
Se1 | 0.2205 (3) | 0.44351 (11) | 0.41081 (9) | 0.0105 (3) | |
Se2 | 0.8131 (3) | 0.67867 (12) | 0.18924 (9) | 0.0106 (3) | |
Se3 | 0.7198 (3) | 0.89568 (12) | 0.45399 (8) | 0.0102 (3) | |
O1 | 0.297 (2) | 0.5895 (9) | 0.3902 (7) | 0.016 (2) | |
O2 | 0.217 (3) | 0.3759 (10) | 0.3183 (6) | 0.018 (2) | |
O3 | −0.145 (2) | 0.4663 (9) | 0.4177 (7) | 0.017 (2) | |
O4 | 0.940 (2) | 0.7586 (9) | 0.2755 (6) | 0.017 (2) | |
O5 | 0.677 (2) | 0.5697 (8) | 0.2484 (6) | 0.012 (2) | |
O6 | 1.099 (2) | 0.6081 (9) | 0.1597 (6) | 0.013 (2) | |
O7 | 0.892 (2) | 0.7637 (9) | 0.4808 (7) | 0.019 (2) | |
O8 | 0.974 (2) | 0.9728 (8) | 0.4102 (6) | 0.014 (2) | |
O9 | 0.507 (2) | 0.8338 (8) | 0.3728 (6) | 0.012 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tl1 | 0.0118 (3) | 0.0083 (3) | 0.0125 (3) | −0.00085 (17) | 0.0008 (2) | 0.00000 (17) |
Tl2 | 0.0112 (3) | 0.0080 (3) | 0.0115 (3) | −0.00027 (18) | 0.0015 (2) | −0.00023 (17) |
Se1 | 0.0114 (7) | 0.0085 (6) | 0.0117 (7) | 0.0005 (5) | 0.0021 (5) | 0.0009 (5) |
Se2 | 0.0113 (7) | 0.0091 (6) | 0.0113 (7) | 0.0006 (5) | 0.0012 (5) | 0.0010 (5) |
Se3 | 0.0115 (7) | 0.0076 (6) | 0.0117 (7) | 0.0001 (5) | 0.0022 (5) | −0.0018 (5) |
O1 | 0.010 (5) | 0.013 (5) | 0.024 (6) | −0.005 (4) | 0.000 (4) | 0.002 (4) |
O2 | 0.032 (7) | 0.017 (5) | 0.010 (5) | −0.001 (4) | 0.015 (5) | 0.001 (4) |
O3 | 0.006 (5) | 0.017 (5) | 0.027 (6) | 0.002 (4) | 0.004 (4) | 0.010 (4) |
O4 | 0.022 (6) | 0.014 (5) | 0.014 (6) | −0.004 (4) | −0.004 (4) | −0.001 (4) |
O5 | 0.020 (6) | 0.010 (5) | 0.007 (5) | −0.005 (4) | 0.003 (4) | 0.002 (4) |
O6 | 0.013 (5) | 0.010 (5) | 0.015 (5) | 0.002 (4) | 0.000 (4) | −0.002 (4) |
O7 | 0.019 (6) | 0.013 (5) | 0.024 (6) | 0.005 (4) | 0.004 (5) | −0.001 (4) |
O8 | 0.016 (5) | 0.007 (5) | 0.020 (6) | −0.001 (4) | 0.006 (4) | −0.001 (4) |
O9 | 0.013 (5) | 0.009 (4) | 0.015 (6) | −0.007 (4) | −0.002 (4) | −0.004 (4) |
Tl1—O2 | 2.131 (10) | Se1—O1 | 1.718 (10) |
Tl1—O9i | 2.229 (10) | Se1—O2 | 1.724 (11) |
Tl1—O5 | 2.231 (10) | Se2—O6 | 1.650 (10) |
Tl1—O6ii | 2.251 (10) | Se2—O5 | 1.734 (10) |
Tl1—O8iii | 2.269 (10) | Se2—O4 | 1.743 (10) |
Tl1—O4iii | 2.298 (10) | Se3—O8 | 1.681 (10) |
Tl2—O3iv | 2.198 (10) | Se3—O7 | 1.713 (10) |
Tl2—O7 | 2.207 (11) | Se3—O9 | 1.725 (10) |
Tl2—O4 | 2.280 (11) | O1—Tl2ii | 2.496 (10) |
Tl2—O1 | 2.293 (10) | O3—Tl2ii | 2.198 (10) |
Tl2—O5 | 2.299 (10) | O4—Tl1v | 2.298 (10) |
Tl2—O9 | 2.382 (10) | O6—Tl1iv | 2.251 (10) |
Tl2—O1iv | 2.496 (10) | O8—Tl1v | 2.269 (10) |
Se1—O3 | 1.706 (10) | O9—Tl1vi | 2.229 (10) |
O2—Tl1—O9i | 97.7 (4) | O7—Tl2—O1iv | 85.2 (4) |
O2—Tl1—O5 | 99.4 (4) | O4—Tl2—O1iv | 78.9 (4) |
O9i—Tl1—O5 | 162.8 (4) | O1—Tl2—O1iv | 144.9 (5) |
O2—Tl1—O6ii | 116.0 (4) | O5—Tl2—O1iv | 93.4 (4) |
O9i—Tl1—O6ii | 89.5 (3) | O9—Tl2—O1iv | 135.4 (3) |
O5—Tl1—O6ii | 80.9 (4) | O3—Se1—O1 | 95.4 (5) |
O2—Tl1—O8iii | 166.3 (4) | O3—Se1—O2 | 102.6 (6) |
O9i—Tl1—O8iii | 84.3 (4) | O1—Se1—O2 | 102.7 (5) |
O5—Tl1—O8iii | 79.7 (4) | O6—Se2—O5 | 100.4 (5) |
O6ii—Tl1—O8iii | 77.5 (4) | O6—Se2—O4 | 107.3 (5) |
O2—Tl1—O4iii | 74.6 (4) | O5—Se2—O4 | 89.7 (5) |
O9i—Tl1—O4iii | 83.7 (3) | O8—Se3—O7 | 103.9 (5) |
O5—Tl1—O4iii | 103.1 (4) | O8—Se3—O9 | 102.5 (5) |
O6ii—Tl1—O4iii | 168.2 (4) | O7—Se3—O9 | 93.4 (5) |
O8iii—Tl1—O4iii | 92.2 (4) | Se1—O1—Tl2 | 121.2 (5) |
O3iv—Tl2—O7 | 105.2 (4) | Se1—O1—Tl2ii | 93.5 (4) |
O3iv—Tl2—O4 | 132.4 (4) | Tl2—O1—Tl2ii | 144.9 (5) |
O7—Tl2—O4 | 101.4 (4) | Se1—O2—Tl1 | 132.3 (6) |
O3iv—Tl2—O1 | 80.0 (4) | Se1—O3—Tl2ii | 105.1 (5) |
O7—Tl2—O1 | 104.0 (4) | Se2—O4—Tl2 | 102.8 (5) |
O4—Tl2—O1 | 130.1 (4) | Se2—O4—Tl1v | 132.4 (6) |
O3iv—Tl2—O5 | 86.7 (4) | Tl2—O4—Tl1v | 124.4 (5) |
O7—Tl2—O5 | 166.0 (4) | Se2—O5—Tl1 | 124.8 (5) |
O4—Tl2—O5 | 64.7 (3) | Se2—O5—Tl2 | 102.4 (4) |
O1—Tl2—O5 | 85.1 (4) | Tl1—O5—Tl2 | 127.0 (5) |
O3iv—Tl2—O9 | 152.7 (4) | Se2—O6—Tl1iv | 130.6 (6) |
O7—Tl2—O9 | 66.0 (4) | Se3—O7—Tl2 | 102.8 (5) |
O4—Tl2—O9 | 74.7 (4) | Se3—O8—Tl1v | 130.8 (5) |
O1—Tl2—O9 | 77.6 (4) | Se3—O9—Tl1vi | 122.3 (5) |
O5—Tl2—O9 | 106.6 (4) | Se3—O9—Tl2 | 95.8 (4) |
O3iv—Tl2—O1iv | 64.9 (3) | Tl1vi—O9—Tl2 | 140.8 (5) |
O3iv—Tl2—Se2—O6 | −42.9 (5) | O3iv—Tl2—O4—Se2 | 62.6 (7) |
O7—Tl2—Se2—O6 | 99.4 (5) | O7—Tl2—O4—Se2 | −174.4 (5) |
O4—Tl2—Se2—O6 | 91.8 (6) | O1—Tl2—O4—Se2 | −54.9 (7) |
O1—Tl2—Se2—O6 | −129.3 (5) | O5—Tl2—O4—Se2 | 3.8 (4) |
O5—Tl2—Se2—O6 | −81.8 (6) | O9—Tl2—O4—Se2 | −113.4 (5) |
O9—Tl2—Se2—O6 | 154.0 (5) | O1iv—Tl2—O4—Se2 | 102.9 (5) |
O1iv—Tl2—Se2—O6 | 18.5 (4) | Se3—Tl2—O4—Se2 | −146.9 (5) |
Se3—Tl2—Se2—O6 | 127.1 (4) | Se1iv—Tl2—O4—Se2 | 82.0 (5) |
Se1iv—Tl2—Se2—O6 | −13.1 (4) | O3iv—Tl2—O4—Tl1v | −123.2 (6) |
O3iv—Tl2—Se2—O5 | 38.9 (6) | O7—Tl2—O4—Tl1v | −0.2 (7) |
O7—Tl2—Se2—O5 | −178.8 (6) | O1—Tl2—O4—Tl1v | 119.3 (6) |
O4—Tl2—Se2—O5 | 173.6 (7) | O5—Tl2—O4—Tl1v | 177.9 (7) |
O1—Tl2—Se2—O5 | −47.5 (6) | O9—Tl2—O4—Tl1v | 60.7 (5) |
O9—Tl2—Se2—O5 | −124.1 (6) | O1iv—Tl2—O4—Tl1v | −83.0 (6) |
O1iv—Tl2—Se2—O5 | 100.3 (6) | Se3—Tl2—O4—Tl1v | 27.3 (5) |
Se3—Tl2—Se2—O5 | −151.1 (5) | Se1iv—Tl2—O4—Tl1v | −103.8 (5) |
Se1iv—Tl2—Se2—O5 | 68.7 (5) | Se2—Tl2—O4—Tl1v | 174.1 (10) |
O3iv—Tl2—Se2—O4 | −134.7 (6) | O6—Se2—O5—Tl1 | −93.5 (7) |
O7—Tl2—Se2—O4 | 7.6 (6) | O4—Se2—O5—Tl1 | 159.0 (7) |
O1—Tl2—Se2—O4 | 138.9 (6) | Tl2—Se2—O5—Tl1 | 154.5 (9) |
O5—Tl2—Se2—O4 | −173.6 (7) | O6—Se2—O5—Tl2 | 112.0 (5) |
O9—Tl2—Se2—O4 | 62.3 (6) | O4—Se2—O5—Tl2 | 4.5 (5) |
O1iv—Tl2—Se2—O4 | −73.3 (6) | O2—Tl1—O5—Se2 | −165.4 (6) |
Se3—Tl2—Se2—O4 | 35.3 (5) | O9i—Tl1—O5—Se2 | 6.6 (17) |
Se1iv—Tl2—Se2—O4 | −104.9 (5) | O6ii—Tl1—O5—Se2 | −50.4 (6) |
O3iv—Tl2—Se3—O8 | 123.7 (5) | O8iii—Tl1—O5—Se2 | 28.5 (6) |
O7—Tl2—Se3—O8 | 98.8 (7) | O4iii—Tl1—O5—Se2 | 118.3 (6) |
O4—Tl2—Se3—O8 | −24.7 (5) | O2—Tl1—O5—Tl2 | −17.2 (6) |
O1—Tl2—Se3—O8 | −154.5 (5) | O9i—Tl1—O5—Tl2 | 154.8 (9) |
O5—Tl2—Se3—O8 | −65.3 (5) | O6ii—Tl1—O5—Tl2 | 97.9 (6) |
O9—Tl2—Se3—O8 | −97.3 (6) | O8iii—Tl1—O5—Tl2 | 176.7 (6) |
O1iv—Tl2—Se3—O8 | 51.2 (5) | O4iii—Tl1—O5—Tl2 | −93.5 (6) |
Se1iv—Tl2—Se3—O8 | 79.5 (4) | O3iv—Tl2—O5—Se2 | −144.5 (5) |
Se2—Tl2—Se3—O8 | −43.0 (4) | O7—Tl2—O5—Se2 | 3.7 (19) |
O3iv—Tl2—Se3—O7 | 24.9 (7) | O4—Tl2—O5—Se2 | −3.8 (4) |
O4—Tl2—Se3—O7 | −123.6 (6) | O1—Tl2—O5—Se2 | 135.2 (5) |
O1—Tl2—Se3—O7 | 106.7 (6) | O9—Tl2—O5—Se2 | 59.7 (5) |
O5—Tl2—Se3—O7 | −164.1 (7) | O1iv—Tl2—O5—Se2 | −79.9 (5) |
O9—Tl2—Se3—O7 | 163.8 (7) | Se3—Tl2—O5—Se2 | 41.8 (7) |
O1iv—Tl2—Se3—O7 | −47.6 (6) | Se1iv—Tl2—O5—Se2 | −112.5 (4) |
Se1iv—Tl2—Se3—O7 | −19.3 (6) | O3iv—Tl2—O5—Tl1 | 61.8 (6) |
Se2—Tl2—Se3—O7 | −141.8 (5) | O7—Tl2—O5—Tl1 | −150.0 (13) |
O3iv—Tl2—Se3—O9 | −138.9 (6) | O4—Tl2—O5—Tl1 | −157.5 (7) |
O7—Tl2—Se3—O9 | −163.8 (7) | O1—Tl2—O5—Tl1 | −18.5 (6) |
O4—Tl2—Se3—O9 | 72.6 (5) | O9—Tl2—O5—Tl1 | −94.0 (6) |
O1—Tl2—Se3—O9 | −57.2 (5) | O1iv—Tl2—O5—Tl1 | 126.4 (6) |
O5—Tl2—Se3—O9 | 32.1 (6) | Se3—Tl2—O5—Tl1 | −112.0 (5) |
O1iv—Tl2—Se3—O9 | 148.5 (5) | Se1iv—Tl2—O5—Tl1 | 93.8 (5) |
Se1iv—Tl2—Se3—O9 | 176.8 (5) | Se2—Tl2—O5—Tl1 | −153.7 (9) |
Se2—Tl2—Se3—O9 | 54.4 (5) | O5—Se2—O6—Tl1iv | −13.9 (8) |
O3—Se1—O1—Tl2 | 177.6 (7) | O4—Se2—O6—Tl1iv | 79.1 (8) |
O2—Se1—O1—Tl2 | −78.2 (7) | Tl2—Se2—O6—Tl1iv | 31.7 (8) |
Tl2ii—Se1—O1—Tl2 | −174.4 (8) | O8—Se3—O7—Tl2 | −91.4 (5) |
O3—Se1—O1—Tl2ii | −8.0 (5) | O9—Se3—O7—Tl2 | 12.4 (6) |
O2—Se1—O1—Tl2ii | 96.2 (5) | O3iv—Tl2—O7—Se3 | −162.3 (5) |
O3iv—Tl2—O1—Se1 | −8.4 (6) | O4—Tl2—O7—Se3 | 57.6 (6) |
O7—Tl2—O1—Se1 | −111.7 (7) | O1—Tl2—O7—Se3 | −79.1 (5) |
O4—Tl2—O1—Se1 | 129.9 (6) | O5—Tl2—O7—Se3 | 50.6 (18) |
O5—Tl2—O1—Se1 | 79.1 (7) | O9—Tl2—O7—Se3 | −9.8 (4) |
O9—Tl2—O1—Se1 | −172.7 (7) | O1iv—Tl2—O7—Se3 | 135.3 (5) |
O1iv—Tl2—O1—Se1 | −9.8 (15) | Se1iv—Tl2—O7—Se3 | 165.4 (4) |
Se3—Tl2—O1—Se1 | −144.1 (6) | Se2—Tl2—O7—Se3 | 53.4 (7) |
Se1iv—Tl2—O1—Se1 | −4.8 (7) | O7—Se3—O8—Tl1v | 66.3 (8) |
Se2—Tl2—O1—Se1 | 102.4 (6) | O9—Se3—O8—Tl1v | −30.5 (8) |
O3iv—Tl2—O1—Tl2ii | −178.6 (10) | Tl2—Se3—O8—Tl1v | 21.0 (7) |
O7—Tl2—O1—Tl2ii | 78.2 (9) | O8—Se3—O9—Tl1vi | −76.8 (7) |
O4—Tl2—O1—Tl2ii | −40.3 (11) | O7—Se3—O9—Tl1vi | 178.1 (6) |
O5—Tl2—O1—Tl2ii | −91.1 (9) | Tl2—Se3—O9—Tl1vi | −170.6 (8) |
O9—Tl2—O1—Tl2ii | 17.1 (8) | O8—Se3—O9—Tl2 | 93.8 (5) |
O1iv—Tl2—O1—Tl2ii | 180.0 | O7—Se3—O9—Tl2 | −11.2 (5) |
Se3—Tl2—O1—Tl2ii | 45.8 (9) | O3iv—Tl2—O9—Se3 | 85.7 (9) |
Se1iv—Tl2—O1—Tl2ii | −175.0 (7) | O7—Tl2—O9—Se3 | 9.5 (4) |
Se2—Tl2—O1—Tl2ii | −67.8 (9) | O4—Tl2—O9—Se3 | −100.7 (5) |
O3—Se1—O2—Tl1 | 105.3 (9) | O1—Tl2—O9—Se3 | 121.2 (5) |
O1—Se1—O2—Tl1 | 6.8 (10) | O5—Tl2—O9—Se3 | −157.8 (4) |
Tl2ii—Se1—O2—Tl1 | 61.3 (9) | O1iv—Tl2—O9—Se3 | −44.9 (7) |
O9i—Tl1—O2—Se1 | −145.9 (8) | Se1iv—Tl2—O9—Se3 | −9.3 (13) |
O5—Tl1—O2—Se1 | 31.7 (9) | Se2—Tl2—O9—Se3 | −130.3 (4) |
O6ii—Tl1—O2—Se1 | −52.7 (10) | O3iv—Tl2—O9—Tl1vi | −106.9 (10) |
O8iii—Tl1—O2—Se1 | 116.5 (15) | O7—Tl2—O9—Tl1vi | 177.0 (9) |
O4iii—Tl1—O2—Se1 | 132.8 (9) | O4—Tl2—O9—Tl1vi | 66.7 (7) |
O1—Se1—O3—Tl2ii | 9.4 (6) | O1—Tl2—O9—Tl1vi | −71.4 (8) |
O2—Se1—O3—Tl2ii | −94.9 (6) | O5—Tl2—O9—Tl1vi | 9.6 (8) |
O6—Se2—O4—Tl2 | −105.4 (5) | O1iv—Tl2—O9—Tl1vi | 122.5 (7) |
O5—Se2—O4—Tl2 | −4.5 (5) | Se3—Tl2—O9—Tl1vi | 167.4 (11) |
O6—Se2—O4—Tl1v | 81.2 (8) | Se1iv—Tl2—O9—Tl1vi | 158.1 (4) |
O5—Se2—O4—Tl1v | −178.0 (8) | Se2—Tl2—O9—Tl1vi | 37.1 (7) |
Tl2—Se2—O4—Tl1v | −173.5 (11) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x−1, y, z; (iii) −x+3/2, y−1/2, −z+1/2; (iv) x+1, y, z; (v) −x+3/2, y+1/2, −z+1/2; (vi) −x+1/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | Tl2(SeO3)3 |
Mr | 789.62 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 120 |
a, b, c (Å) | 4.5666 (3), 11.2194 (10), 16.7595 (13) |
β (°) | 96.549 (6) |
V (Å3) | 853.06 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 50.56 |
Crystal size (mm) | 0.13 × 0.05 × 0.01 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.053, 0.632 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10219, 1948, 1690 |
Rint | 0.059 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.121, 1.08 |
No. of reflections | 1948 |
No. of parameters | 127 |
w = 1/[σ2(Fo2) + (0.0696P)2 + 26.3163P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 2.53, −3.22 |
Computer programs: COLLECT (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO (Otwinowski & Minor 1997) and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 2000), SHELXL97.
Tl1—O2 | 2.131 (10) | Tl2—O9 | 2.382 (10) |
Tl1—O9i | 2.229 (10) | Tl2—O1iv | 2.496 (10) |
Tl1—O5 | 2.231 (10) | Se1—O3 | 1.706 (10) |
Tl1—O6ii | 2.251 (10) | Se1—O1 | 1.718 (10) |
Tl1—O8iii | 2.269 (10) | Se1—O2 | 1.724 (11) |
Tl1—O4iii | 2.298 (10) | Se2—O6 | 1.650 (10) |
Tl2—O3iv | 2.198 (10) | Se2—O5 | 1.734 (10) |
Tl2—O7 | 2.207 (11) | Se2—O4 | 1.743 (10) |
Tl2—O4 | 2.280 (11) | Se3—O8 | 1.681 (10) |
Tl2—O1 | 2.293 (10) | Se3—O7 | 1.713 (10) |
Tl2—O5 | 2.299 (10) | Se3—O9 | 1.725 (10) |
Se1—O1—Tl2 | 121.2 (5) | Se2—O5—Tl2 | 102.4 (4) |
Se1—O1—Tl2ii | 93.5 (4) | Tl1—O5—Tl2 | 127.0 (5) |
Tl2—O1—Tl2ii | 144.9 (5) | Se2—O6—Tl1iv | 130.6 (6) |
Se1—O2—Tl1 | 132.3 (6) | Se3—O7—Tl2 | 102.8 (5) |
Se1—O3—Tl2ii | 105.1 (5) | Se3—O8—Tl1v | 130.8 (5) |
Se2—O4—Tl2 | 102.8 (5) | Se3—O9—Tl1vi | 122.3 (5) |
Se2—O4—Tl1v | 132.4 (6) | Se3—O9—Tl2 | 95.8 (4) |
Tl2—O4—Tl1v | 124.4 (5) | Tl1vi—O9—Tl2 | 140.8 (5) |
Se2—O5—Tl1 | 124.8 (5) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x−1, y, z; (iii) −x+3/2, y−1/2, −z+1/2; (iv) x+1, y, z; (v) −x+3/2, y+1/2, −z+1/2; (vi) −x+1/2, y+1/2, −z+1/2. |
Acknowledgements
The authors thank the EPSRC National Crystallography Service (University of Southampton) for the data collection.
References
Brown, I. D. (1996). J. Appl. Cryst. 29, 479–480. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dowty, E. (2000). ATOMS for Windows. Version 5.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA. Google Scholar
Fábry, J. & Breczewski, T. (1993). Acta Cryst. C49, 1724–1727. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gospodinov, G. G. (1984). Thermochim. Acta, 77, 445–450. CrossRef CAS Web of Science Google Scholar
Johnston, M. G. & Harrison, W. T. A. (2004a). J. Solid State Chem. 177, 4316–4324. Web of Science CrossRef CAS Google Scholar
Johnston, M. G. & Harrison, W. T. A. (2004b). J. Solid State Chem. 177, 4680–4686. Web of Science CrossRef CAS Google Scholar
Marino, L. (1909). Z. Anorg. Chem. 62, 173–179. CrossRef Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Ok, K. M. & Halasyamani, P. S. (2002). Chem. Mater. 14, 2360–2364. Web of Science CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Shuvalov, L. A., Bondarenko, V. V., Varikash, V. M., Gridnev, S. A., Makarova, I. P. & Simonov, V. I. (1983). Kristallografiya, 28, 1124–1131. CAS Google Scholar
Verma, V. P. (1999). Thermochim. Acta, 327, 63–102. Web of Science CrossRef CAS Google Scholar
Wontcheu, J. & Schleid, T. (2005). Z. Anorg. Allg. Chem. 631, 309–315. Web of Science CrossRef CAS Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
Inorganic selenites containing the pyramidal (SeO3)2− ion are of ongoing crystallochemical interest because of the way the inherently asymmetric selenite ion packs into extended structures and the space requirements of the SeIV lone pair of electrons (Wontcheu & Schleid, 2005). Metal selenites have also been studied for their potentially useful physical properties, such as second-harmonic generation (Ok & Halasyamani, 2002). As part of our ongoing studies of metal selenites (Johnston & Harrison, 2004a,b), we report here the structure of the title compound, Tl2(SeO3)3, (I).
A compound of the same stoichiometry as (I) was first reported almost 100 years ago (Marino, 1909). Much later, Gospodinov (1984) reported a lemon-yellow compound of stoichiometry Tl2(SeO3)3, although its crystal structure was not determined. The simulated X-ray powder pattern of (I) (colourless compound) does not match the powder data reported by Gospodinov. Thus, the yellow phase could represent a second polymorph of Tl2(SeO3)3. We could find no other detailed structural studies of thallium(III) selenites, although the structures of thallium(I) `trihydroselenite', TlH3(SeO3)2 (Shuvalov et al., 1983) and thallium(I) selenate, Tl2SeO4 (Fabry & Breczewski, 1993) have been determined from single-crystal data.
There are two Tl, three Se and nine O atoms in the asymmetric unit of (I), all of which occupy general positions in the unit cell. The three selenite groups show their expected (Verma, 1999) pyramidal coordination (Table 1), with the unobserved lone pair of electrons assumed to occupy the fourth tetrahedral vertex about each Se atom. The mean Se—O bond lengths are 1.716 (2), 1.709 (2) and 1.706 (2) Å, for Se1, Se2 and Se3, respectively. The bond-valence sums (BVS) for the Se atoms, calculated using the Brown (1996) formalism, are 3.88, 3.98 and 3.99 for Se1, Se2 and Se3, respectively. These are in satisfactory agreement with the expected value of 4.00. The Se atoms are displaced from the plane formed by their three attached O atoms by 0.794 (6) Å (Se1), 0.807 (6) Å (Se2) and 0.794(60 Å (Se3). The O—Se—O bond angles in (I) show somewhat more variation than is typical for selenite groups (Johnston & Harrison, 2004a) [for Se1, θ = 95.4 (5)–102.7 (5)°, range = 7.3°; for Se2, θ = 89.7 (5)–107.3 (5)°, range = 17.6°; for Se3, θ = 93.4 (5)–103.9 (5)°, range = 10.5°]. These distortions in the O—Se—O bond angles correlate well with their edge-sharing connectivity to adjacent thallium polyhedra (see below).
Atom Tl1 is approximately octahedrally coordinated by six O atoms. The mean Tl—O bond length of 2.24 (2) Å is in excellent agreement with the value of 2.25 Å expected on the basis of the ionic radius sum for TlIII and O—II (Shannon, 1976). The BVS for Tl1 is 3.28, compared with an expected value of 3.00 for TlIII. This discrepancy perhaps suggests a degree of `overbonding' for this species, assuming that the BVS parameters for this species are reliable. The next-nearest O atom is 3.45 Å away from Tl1.
The coordination about atom Tl2 is unusual (Fig. 1). There are seven near-neighbour O atoms, with the Tl2—O1iv bond of 2.496 (10) Å being significantly longer than the other six [mean = 2.28 (2) Å] (see Table 1 for symmetry codes). However, we feel that it is appropriate to consider it to be a bond because it contributes a significant 0.27 valence units to the Tl2 BVS of 3.20. The next-nearest neighbouring O atom is 3.78 Å distant from Tl2. There are no fewer than three edge-sharing selenite groups bonded to Tl2, involving the six shorter Tl2—O bonds. The three acute O—Se—O bond angles noted above are involved in these three edge-sharing interactions and the corresponding O—Tl2—O edge-sharing bond angles are grouped in the narrow range of 64.7 (3)–66.0 (4)°. The Tl2O7 polyhedron could be described as a very distorted pentagonal bipyramid, with atoms O5 and O7 in the axial positions [θ(O5—Tl2—O7) = 166.0 (4)°]. The equatorial atoms Tl2, O1, O1iv and O3 are approximately coplanar (r.m.s. deviation from the best plane is 0.008 Å). However, atom O9, and especially atom O4, are substantially displaced from their nominal equatorial positions by 0.632 (15) and −1.179 (16) Å, respectively.
Of the nine O atoms in the structure of (I), four {O1 [bond angle sum 359.6 (5)°], O4 [359.6 (6)°], O5 [354.2 (6)°] and O9 [358.9 (5)°]} are tri-coordinate to two Tl plus one Se neighbours. There is a wide variation in these angles, e.g. the Tl—O1—Tl angle is the most obtuse around O1, whereas a Tl—O4—Se angle is the largest around O4 (Table 1). The remaining five O atoms form bi-coordinate Tl—O—Se bridges [mean θ(Tl—O—Se) = 120.3°]. The bi-coordinate bond-angle distribution is sharply bimodal, with two angles of around 104° and three angles of around 131° (Table 1).
The polyhedral connectivity in (I) results in corner sharing (involving the long Tl2—O1 bond) chains of the Tl2O7 groups propagating in the [100] direction. These are crosslinked by the Tl1O6 groups to form (001) sheets (Fig. 2). The Tl1O6 groups do not bond to other Tl1-centred polyhedra, but make four bonds to Tl2-centred moieties. Finally, the thallium/oxygen layers are decorated on both sides of the sheet by Se atoms (as parts of selenite groups).
When viewed down [100] (Fig. 3), the (001) layers are seen to be significantly corrugated, with the SeIV lone pairs of electrons appearing to point into the inter-layer regions of the structure. This suggests that, at least in part, the Se lone pairs are responsible for the layered nature of (I).