inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Thallium(III) selenite, Tl2(SeO3)3

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 17 May 2005; accepted 7 June 2005; online 22 June 2005)

The structure of Tl2(SeO3)3 [dithallium(III) triselenium(IV) nonaoxide] is monoclinic (P21/n symmetry), with all atoms in general positions. It is built up from TlO6 octa­hedra, distorted TlO7 penta­gonal bipyramids and (SeO3)2− pyramids sharing vertices and edges to form corrugated (001) layers. The Se lone pairs of electrons are accommodated in the inter­layer regions.

Comment

Inorganic selenites containing the pyramidal (SeO3)2− ion are of ongoing crystallochemical inter­est because of the way the inherently asymmetric selenite ion packs into extended structures and the space requirements of the SeIV lone pair of electrons (Wontcheu & Schleid, 2005[Wontcheu, J. & Schleid, T. (2005). Z. Anorg. Allg. Chem. 631, 309-315.]). Metal selenites have also been studied for their potentially useful physical properties, such as second-harmonic generation (Ok & Halasyamani, 2002[Ok, K. M. & Halasyamani, P. S. (2002). Chem. Mater. 14, 2360-2364.]). As part of our ongoing studies of metal selenites (Johnston & Harrison, 2004a[Johnston, M. G. & Harrison, W. T. A. (2004a). J. Solid State Chem. 177, 4316-4324.],b[Johnston, M. G. & Harrison, W. T. A. (2004b). J. Solid State Chem. 177, 4680-4686.]), we report here the structure of the title compound, Tl2(SeO3)3, (I).

A compound of the same stoichiometry as (I) was first reported almost 100 years ago (Marino, 1909[Marino, L. (1909). Z. Anorg. Chem. 62, 173-179.]). Much later, Gospodinov (1984[Gospodinov, G. G. (1984). Thermochim. Acta, 77, 445-450.]) reported a lemon-yellow compound of stoichiometry Tl2(SeO3)3, although its crystal structure was not determined. The simulated X-ray powder pattern of (I) (colourless compound) does not match the powder data reported by Gospodinov. Thus, the yellow phase could represent a second polymorph of Tl2(SeO3)3. We could find no other detailed structural studies of thallium(III) selenites, although the structures of thallium(I) `trihydro­selenite', TlH3(SeO3)2 (Shuvalov et al., 1983[Shuvalov, L. A., Bondarenko, V. V., Varikash, V. M., Gridnev, S. A., Makarova, I. P. & Simonov, V. I. (1983). Kristallografiya, 28, 1124-1131.]), and thallium(I) selenate, Tl2SeO4 (Fábry & Breczewski, 1993[Fábry, J. & Breczewski, T. (1993). Acta Cryst. C49, 1724-1727.]), have been determined from single-crystal data.

There are two Tl, three Se and nine O atoms in the asymmetric unit of (I), all of which occupy general positions in the unit cell. The three selenite groups show their expected (Verma, 1999[Verma, V. P. (1999). Thermochim. Acta, 327, 63-102.]) pyramidal coordination (Table 1[link]), with the unobserved lone pair of electrons assumed to occupy the fourth tetra­hedral vertex about each Se atom. The mean Se—O bond lengths are 1.716 (2), 1.709 (2) and 1.706 (2) Å for Se1, Se2 and Se3, respectively. The bond-valence sums (BVS) for the Se atoms, calculated using the Brown (1996[Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.]) formalism, are 3.88, 3.98 and 3.99 for Se1, Se2 and Se3, respectively. These are in satisfactory agreement with the expected value of 4.00. The Se atoms are displaced from the plane formed by their three attached O atoms by 0.794 (6) (Se1), 0.807 (6) (Se2) and 0.794 (6) Å (Se3). The O—Se—O bond angles in (I) show more variation than is typical for selenite groups (Johnston & Harrison, 2004a[Johnston, M. G. & Harrison, W. T. A. (2004a). J. Solid State Chem. 177, 4316-4324.]) [for Se1, θ = 95.4 (5)–102.7 (5)°, range = 7.3°; for Se2, θ = 89.7 (5)–107.3 (5)°, range = 17.6°; for Se3, θ = 93.4 (5)–103.9 (5)°, range = 10.5°]. These distortions in the O—Se—O bond angles correlate well with their edge-sharing connectivity to adjacent thallium polyhedra (see below).

Atom Tl1 is approximately octa­hedrally coordinated by six O atoms. The mean Tl—O bond length of 2.24 (2) Å is in excellent agreement with the value of 2.25 Å expected on the basis of the ionic radius sum for TlIII and O−II (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). The BVS for Tl1 is 3.28, compared with an expected value of 3.00 for TlIII. This discrepancy perhaps suggests a degree of `overbonding' for this species, assuming that the BVS parameters for this species are reliable. The next-nearest O atom is 3.45 Å away from Tl1.

The coordination about atom Tl2 is unusual (Fig. 1[link]). There are seven near-neighbour O atoms, with the Tl2—O1iv bond of 2.496 (10) Å being significantly longer than the other six [mean = 2.28 (2) Å] (see Table 1[link] for symmetry codes). However, we feel that it is appropriate to consider it to be a bond because it contributes a significant 0.27 valence units to the Tl2 BVS of 3.20. The next-nearest neighbouring O atom is 3.78 Å distant from Tl2. There are no fewer than three edge-sharing selenite groups bonded to Tl2, involving the six shorter Tl2—O bonds. The three acute O—Se—O bond angles noted above are involved in these three edge-sharing inter­actions and the corresponding O—Tl2—O edge-sharing bond angles are grouped in the narrow range of 64.7 (3)–66.0 (4)°. The Tl2O7 polyhedron could be described as a very distorted penta­gonal bipyramid, with atoms O5 and O7 in the axial positions [θ(O5—Tl2—O7) = 166.0 (4)°]. The equatorial atoms Tl2, O1, O1iv and O3 are approximately coplanar (r.m.s. deviation from the best plane is 0.008 Å). However, atom O9, and especially atom O4, are substantially displaced from their nominal equatorial positions by 0.632 (15) and −1.179 (16) Å, respectively.

Of the nine O atoms in the structure of (I), four, namely O1 [bond angle sum = 359.6 (5)°], O4 [359.6 (6)°], O5 [354.2 (6)°] and O9 [358.9 (5)°], are tricoordinate to two Tl plus one Se neighbours. There is a wide variation in these angles, e.g. the Tl—O1—Tl angle is the most obtuse around O1, whereas a Tl—O4—Se angle is the largest around O4 (Table 1[link]). The remaining five O atoms form bicoordinate Tl—O—Se bridges [mean θ(Tl—O—Se) = 120.3°]. The bicoordinate bond-angle distribution is sharply bimodal, with two angles of around 104° and three angles of around 131° (Table 1[link]).

The polyhedral connectivity in (I) results in corner-sharing (involving the long Tl2—O1 bond) chains of the Tl2O7 groups propagating in the [100] direction. These are crosslinked by the Tl1O6 groups to form (001) sheets (Fig. 2[link]). The Tl1O6 groups do not bond to other Tl1-centred polyhedra, but make four bonds to Tl2-centred moieties. Finally, the thallium/oxygen layers are decorated on both sides of the sheet by Se atoms (as parts of selenite groups).

When viewed down [100] (Fig. 3[link]), the (001) layers are seen to be significantly corrugated, with the SeIV lone pairs of electrons appearing to point into the interlayer regions of the structure. This suggests that, at least in part, the Se lone pairs are responsible for the layered nature of (I).

[Figure 1]
Figure 1
A view of a fragment of (I), showing 50% probability displacement ellipsoids. Symmetry codes are as given in Table 1[link].
[Figure 2]
Figure 2
Part of an (001) layer in (I), showing the [100] chains of Tl2O7 groups (dark shading) crosslinked by the Tl1O6 octa­hedra (light shading). Se and O atoms are represented by large and small spheres, respectively.
[Figure 3]
Figure 3
The unit-cell packing in (I), projected on to (100). Drawing conventions are as in Fig. 2[link].

Experimental

Tl2O3 (0.761 g, 1.66 mmol) was added to a 0.5 M H2SeO3 (20 ml) aqueous solution (i.e. dissolved SeO2) and heated to 353 K in a plastic bottle. Thin colourless plates and shards of (I) grew over a few days and were recovered by vacuum filtration; they were accompanied by a small amount of black residue of Tl2O3. [Caution! All thallium compounds are exceedingly toxic. All appropriate safety precautions must be taken during their handling, especially with respect to dust contamination.]

Crystal data
  • Tl2(SeO3)3

  • Mr = 789.62

  • Monoclinic, P 21 /n

  • a = 4.5666 (3) Å

  • b = 11.2194 (10) Å

  • c = 16.7595 (13) Å

  • β = 96.549 (6)°

  • V = 853.06 (12) Å3

  • Z = 4

  • Dx = 6.148 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1734 reflections

  • θ = 2.9–27.5°

  • μ = 50.56 mm−1

  • T = 120 (2) K

  • Shard, colourless

  • 0.13 × 0.05 × 0.01 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan(SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.053, Tmax = 0.632

  • 10219 measured reflections

  • 1948 independent reflections

  • 1690 reflections with I > 2σ(I)

  • Rint = 0.059

  • θmax = 27.5°

  • h = −5 → 5

  • k = −14 → 14

  • l = −21 → 21

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.121

  • S = 1.08

  • 1948 reflections

  • 127 parameters

  • w = 1/[σ2(Fo2) + (0.0696P)2 + 26.3163P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 2.53 e Å−3

  • Δρmin = −3.22 e Å−3

Table 1
Selected geometric parameters (Å, °)

Tl1—O2 2.131 (10)
Tl1—O9i 2.229 (10)
Tl1—O5 2.231 (10)
Tl1—O6ii 2.251 (10)
Tl1—O8iii 2.269 (10)
Tl1—O4iii 2.298 (10)
Tl2—O3iv 2.198 (10)
Tl2—O7 2.207 (11)
Tl2—O4 2.280 (11)
Tl2—O1 2.293 (10)
Tl2—O5 2.299 (10)
Tl2—O9 2.382 (10)
Tl2—O1iv 2.496 (10)
Se1—O3 1.706 (10)
Se1—O1 1.718 (10)
Se1—O2 1.724 (11)
Se2—O6 1.650 (10)
Se2—O5 1.734 (10)
Se2—O4 1.743 (10)
Se3—O8 1.681 (10)
Se3—O7 1.713 (10)
Se3—O9 1.725 (10)
Se1—O1—Tl2 121.2 (5) 
Se1—O1—Tl2ii 93.5 (4)
Tl2—O1—Tl2ii 144.9 (5)
Se1—O2—Tl1 132.3 (6)
Se1—O3—Tl2ii 105.1 (5)
Se2—O4—Tl2 102.8 (5)
Se2—O4—Tl1v 132.4 (6)
Tl2—O4—Tl1v 124.4 (5)
Se2—O5—Tl1 124.8 (5)
Se2—O5—Tl2 102.4 (4)
Tl1—O5—Tl2 127.0 (5)
Se2—O6—Tl1iv 130.6 (6)
Se3—O7—Tl2 102.8 (5)
Se3—O8—Tl1v 130.8 (5)
Se3—O9—Tl1vi 122.3 (5)
Se3—O9—Tl2 95.8 (4)
Tl1vi—O9—Tl2 140.8 (5)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x+1, y, z; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

The highest difference peak is 0.94 Å from O2 and 1.40 Å from Tl1; the deepest hole is 0.92 Å from O5 and 1.38 Å from Tl2.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and ATOMS (Dowty, 2000[Dowty, E. (2000). ATOMS for Windows. Version 5.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Inorganic selenites containing the pyramidal (SeO3)2− ion are of ongoing crystallochemical interest because of the way the inherently asymmetric selenite ion packs into extended structures and the space requirements of the SeIV lone pair of electrons (Wontcheu & Schleid, 2005). Metal selenites have also been studied for their potentially useful physical properties, such as second-harmonic generation (Ok & Halasyamani, 2002). As part of our ongoing studies of metal selenites (Johnston & Harrison, 2004a,b), we report here the structure of the title compound, Tl2(SeO3)3, (I).

A compound of the same stoichiometry as (I) was first reported almost 100 years ago (Marino, 1909). Much later, Gospodinov (1984) reported a lemon-yellow compound of stoichiometry Tl2(SeO3)3, although its crystal structure was not determined. The simulated X-ray powder pattern of (I) (colourless compound) does not match the powder data reported by Gospodinov. Thus, the yellow phase could represent a second polymorph of Tl2(SeO3)3. We could find no other detailed structural studies of thallium(III) selenites, although the structures of thallium(I) `trihydroselenite', TlH3(SeO3)2 (Shuvalov et al., 1983) and thallium(I) selenate, Tl2SeO4 (Fabry & Breczewski, 1993) have been determined from single-crystal data.

There are two Tl, three Se and nine O atoms in the asymmetric unit of (I), all of which occupy general positions in the unit cell. The three selenite groups show their expected (Verma, 1999) pyramidal coordination (Table 1), with the unobserved lone pair of electrons assumed to occupy the fourth tetrahedral vertex about each Se atom. The mean Se—O bond lengths are 1.716 (2), 1.709 (2) and 1.706 (2) Å, for Se1, Se2 and Se3, respectively. The bond-valence sums (BVS) for the Se atoms, calculated using the Brown (1996) formalism, are 3.88, 3.98 and 3.99 for Se1, Se2 and Se3, respectively. These are in satisfactory agreement with the expected value of 4.00. The Se atoms are displaced from the plane formed by their three attached O atoms by 0.794 (6) Å (Se1), 0.807 (6) Å (Se2) and 0.794(60 Å (Se3). The O—Se—O bond angles in (I) show somewhat more variation than is typical for selenite groups (Johnston & Harrison, 2004a) [for Se1, θ = 95.4 (5)–102.7 (5)°, range = 7.3°; for Se2, θ = 89.7 (5)–107.3 (5)°, range = 17.6°; for Se3, θ = 93.4 (5)–103.9 (5)°, range = 10.5°]. These distortions in the O—Se—O bond angles correlate well with their edge-sharing connectivity to adjacent thallium polyhedra (see below).

Atom Tl1 is approximately octahedrally coordinated by six O atoms. The mean Tl—O bond length of 2.24 (2) Å is in excellent agreement with the value of 2.25 Å expected on the basis of the ionic radius sum for TlIII and O—II (Shannon, 1976). The BVS for Tl1 is 3.28, compared with an expected value of 3.00 for TlIII. This discrepancy perhaps suggests a degree of `overbonding' for this species, assuming that the BVS parameters for this species are reliable. The next-nearest O atom is 3.45 Å away from Tl1.

The coordination about atom Tl2 is unusual (Fig. 1). There are seven near-neighbour O atoms, with the Tl2—O1iv bond of 2.496 (10) Å being significantly longer than the other six [mean = 2.28 (2) Å] (see Table 1 for symmetry codes). However, we feel that it is appropriate to consider it to be a bond because it contributes a significant 0.27 valence units to the Tl2 BVS of 3.20. The next-nearest neighbouring O atom is 3.78 Å distant from Tl2. There are no fewer than three edge-sharing selenite groups bonded to Tl2, involving the six shorter Tl2—O bonds. The three acute O—Se—O bond angles noted above are involved in these three edge-sharing interactions and the corresponding O—Tl2—O edge-sharing bond angles are grouped in the narrow range of 64.7 (3)–66.0 (4)°. The Tl2O7 polyhedron could be described as a very distorted pentagonal bipyramid, with atoms O5 and O7 in the axial positions [θ(O5—Tl2—O7) = 166.0 (4)°]. The equatorial atoms Tl2, O1, O1iv and O3 are approximately coplanar (r.m.s. deviation from the best plane is 0.008 Å). However, atom O9, and especially atom O4, are substantially displaced from their nominal equatorial positions by 0.632 (15) and −1.179 (16) Å, respectively.

Of the nine O atoms in the structure of (I), four {O1 [bond angle sum 359.6 (5)°], O4 [359.6 (6)°], O5 [354.2 (6)°] and O9 [358.9 (5)°]} are tri-coordinate to two Tl plus one Se neighbours. There is a wide variation in these angles, e.g. the Tl—O1—Tl angle is the most obtuse around O1, whereas a Tl—O4—Se angle is the largest around O4 (Table 1). The remaining five O atoms form bi-coordinate Tl—O—Se bridges [mean θ(Tl—O—Se) = 120.3°]. The bi-coordinate bond-angle distribution is sharply bimodal, with two angles of around 104° and three angles of around 131° (Table 1).

The polyhedral connectivity in (I) results in corner sharing (involving the long Tl2—O1 bond) chains of the Tl2O7 groups propagating in the [100] direction. These are crosslinked by the Tl1O6 groups to form (001) sheets (Fig. 2). The Tl1O6 groups do not bond to other Tl1-centred polyhedra, but make four bonds to Tl2-centred moieties. Finally, the thallium/oxygen layers are decorated on both sides of the sheet by Se atoms (as parts of selenite groups).

When viewed down [100] (Fig. 3), the (001) layers are seen to be significantly corrugated, with the SeIV lone pairs of electrons appearing to point into the inter-layer regions of the structure. This suggests that, at least in part, the Se lone pairs are responsible for the layered nature of (I).

Experimental top

Tl2O3 (0.761 g, 1.66 mmol) was added to 0.5 M H2SeO3 (20 ml) aqueous solution (i.e. dissolved SeO2) and heated to 353 K in a plastic bottle. Thin colourless plates and shards of (I) grew over a few days and were recovered by vacuum filtration, accompanied by a small amount of black residue of Tl2O3. Caution! All thallium compounds are exceedingly toxic. All appropriate safety precautions must be taken during their handling, especially with respect to dust contamination.

Refinement top

The highest difference peak is 0.94 Å from O2 and 1.40 Å from Tl1; the deepest difference hole is 0.92 Å from O5 and 1.38 Å from Tl2.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO (Otwinowski & Minor 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 2000); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of a fragment of (I), showing 50% displacement ellipsoids. Symmetry codes are as given in Table 1.
[Figure 2] Fig. 2. Part of an (001) layer in (I), showing the [100] chains of Tl2O7 groups (dark shading) crosslinked by the Tl1O6 octahedra (light shading). Se and O atoms are represented by large and small spheres, respectively.
[Figure 3] Fig. 3. The unit-cell packing in (I), projected onto (100). Drawing conventions are as in Fig. 2.
dithallium(III) triselenium(IV) oxide top
Crystal data top
Tl2(SeO3)3F(000) = 1344
Mr = 789.62Dx = 6.148 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1734 reflections
a = 4.5666 (3) Åθ = 2.9–27.5°
b = 11.2194 (10) ŵ = 50.56 mm1
c = 16.7595 (13) ÅT = 120 K
β = 96.549 (6)°Shard, colourless
V = 853.06 (12) Å30.13 × 0.05 × 0.01 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
1948 independent reflections
Radiation source: fine-focus sealed tube1690 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω and ϕ scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 55
Tmin = 0.053, Tmax = 0.632k = 1414
10219 measured reflectionsl = 2121
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.044Secondary atom site location: difference Fourier map
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0696P)2 + 26.3163P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
1948 reflectionsΔρmax = 2.53 e Å3
127 parametersΔρmin = 3.22 e Å3
Crystal data top
Tl2(SeO3)3V = 853.06 (12) Å3
Mr = 789.62Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.5666 (3) ŵ = 50.56 mm1
b = 11.2194 (10) ÅT = 120 K
c = 16.7595 (13) Å0.13 × 0.05 × 0.01 mm
β = 96.549 (6)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1948 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1690 reflections with I > 2σ(I)
Tmin = 0.053, Tmax = 0.632Rint = 0.059
10219 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0696P)2 + 26.3163P]
where P = (Fo2 + 2Fc2)/3
S = 1.08Δρmax = 2.53 e Å3
1948 reflectionsΔρmin = 3.22 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tl10.32538 (11)0.43917 (4)0.20541 (3)0.01094 (19)
Tl20.76747 (11)0.64964 (4)0.37514 (3)0.01019 (18)
Se10.2205 (3)0.44351 (11)0.41081 (9)0.0105 (3)
Se20.8131 (3)0.67867 (12)0.18924 (9)0.0106 (3)
Se30.7198 (3)0.89568 (12)0.45399 (8)0.0102 (3)
O10.297 (2)0.5895 (9)0.3902 (7)0.016 (2)
O20.217 (3)0.3759 (10)0.3183 (6)0.018 (2)
O30.145 (2)0.4663 (9)0.4177 (7)0.017 (2)
O40.940 (2)0.7586 (9)0.2755 (6)0.017 (2)
O50.677 (2)0.5697 (8)0.2484 (6)0.012 (2)
O61.099 (2)0.6081 (9)0.1597 (6)0.013 (2)
O70.892 (2)0.7637 (9)0.4808 (7)0.019 (2)
O80.974 (2)0.9728 (8)0.4102 (6)0.014 (2)
O90.507 (2)0.8338 (8)0.3728 (6)0.012 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tl10.0118 (3)0.0083 (3)0.0125 (3)0.00085 (17)0.0008 (2)0.00000 (17)
Tl20.0112 (3)0.0080 (3)0.0115 (3)0.00027 (18)0.0015 (2)0.00023 (17)
Se10.0114 (7)0.0085 (6)0.0117 (7)0.0005 (5)0.0021 (5)0.0009 (5)
Se20.0113 (7)0.0091 (6)0.0113 (7)0.0006 (5)0.0012 (5)0.0010 (5)
Se30.0115 (7)0.0076 (6)0.0117 (7)0.0001 (5)0.0022 (5)0.0018 (5)
O10.010 (5)0.013 (5)0.024 (6)0.005 (4)0.000 (4)0.002 (4)
O20.032 (7)0.017 (5)0.010 (5)0.001 (4)0.015 (5)0.001 (4)
O30.006 (5)0.017 (5)0.027 (6)0.002 (4)0.004 (4)0.010 (4)
O40.022 (6)0.014 (5)0.014 (6)0.004 (4)0.004 (4)0.001 (4)
O50.020 (6)0.010 (5)0.007 (5)0.005 (4)0.003 (4)0.002 (4)
O60.013 (5)0.010 (5)0.015 (5)0.002 (4)0.000 (4)0.002 (4)
O70.019 (6)0.013 (5)0.024 (6)0.005 (4)0.004 (5)0.001 (4)
O80.016 (5)0.007 (5)0.020 (6)0.001 (4)0.006 (4)0.001 (4)
O90.013 (5)0.009 (4)0.015 (6)0.007 (4)0.002 (4)0.004 (4)
Geometric parameters (Å, º) top
Tl1—O22.131 (10)Se1—O11.718 (10)
Tl1—O9i2.229 (10)Se1—O21.724 (11)
Tl1—O52.231 (10)Se2—O61.650 (10)
Tl1—O6ii2.251 (10)Se2—O51.734 (10)
Tl1—O8iii2.269 (10)Se2—O41.743 (10)
Tl1—O4iii2.298 (10)Se3—O81.681 (10)
Tl2—O3iv2.198 (10)Se3—O71.713 (10)
Tl2—O72.207 (11)Se3—O91.725 (10)
Tl2—O42.280 (11)O1—Tl2ii2.496 (10)
Tl2—O12.293 (10)O3—Tl2ii2.198 (10)
Tl2—O52.299 (10)O4—Tl1v2.298 (10)
Tl2—O92.382 (10)O6—Tl1iv2.251 (10)
Tl2—O1iv2.496 (10)O8—Tl1v2.269 (10)
Se1—O31.706 (10)O9—Tl1vi2.229 (10)
O2—Tl1—O9i97.7 (4)O7—Tl2—O1iv85.2 (4)
O2—Tl1—O599.4 (4)O4—Tl2—O1iv78.9 (4)
O9i—Tl1—O5162.8 (4)O1—Tl2—O1iv144.9 (5)
O2—Tl1—O6ii116.0 (4)O5—Tl2—O1iv93.4 (4)
O9i—Tl1—O6ii89.5 (3)O9—Tl2—O1iv135.4 (3)
O5—Tl1—O6ii80.9 (4)O3—Se1—O195.4 (5)
O2—Tl1—O8iii166.3 (4)O3—Se1—O2102.6 (6)
O9i—Tl1—O8iii84.3 (4)O1—Se1—O2102.7 (5)
O5—Tl1—O8iii79.7 (4)O6—Se2—O5100.4 (5)
O6ii—Tl1—O8iii77.5 (4)O6—Se2—O4107.3 (5)
O2—Tl1—O4iii74.6 (4)O5—Se2—O489.7 (5)
O9i—Tl1—O4iii83.7 (3)O8—Se3—O7103.9 (5)
O5—Tl1—O4iii103.1 (4)O8—Se3—O9102.5 (5)
O6ii—Tl1—O4iii168.2 (4)O7—Se3—O993.4 (5)
O8iii—Tl1—O4iii92.2 (4)Se1—O1—Tl2121.2 (5)
O3iv—Tl2—O7105.2 (4)Se1—O1—Tl2ii93.5 (4)
O3iv—Tl2—O4132.4 (4)Tl2—O1—Tl2ii144.9 (5)
O7—Tl2—O4101.4 (4)Se1—O2—Tl1132.3 (6)
O3iv—Tl2—O180.0 (4)Se1—O3—Tl2ii105.1 (5)
O7—Tl2—O1104.0 (4)Se2—O4—Tl2102.8 (5)
O4—Tl2—O1130.1 (4)Se2—O4—Tl1v132.4 (6)
O3iv—Tl2—O586.7 (4)Tl2—O4—Tl1v124.4 (5)
O7—Tl2—O5166.0 (4)Se2—O5—Tl1124.8 (5)
O4—Tl2—O564.7 (3)Se2—O5—Tl2102.4 (4)
O1—Tl2—O585.1 (4)Tl1—O5—Tl2127.0 (5)
O3iv—Tl2—O9152.7 (4)Se2—O6—Tl1iv130.6 (6)
O7—Tl2—O966.0 (4)Se3—O7—Tl2102.8 (5)
O4—Tl2—O974.7 (4)Se3—O8—Tl1v130.8 (5)
O1—Tl2—O977.6 (4)Se3—O9—Tl1vi122.3 (5)
O5—Tl2—O9106.6 (4)Se3—O9—Tl295.8 (4)
O3iv—Tl2—O1iv64.9 (3)Tl1vi—O9—Tl2140.8 (5)
O3iv—Tl2—Se2—O642.9 (5)O3iv—Tl2—O4—Se262.6 (7)
O7—Tl2—Se2—O699.4 (5)O7—Tl2—O4—Se2174.4 (5)
O4—Tl2—Se2—O691.8 (6)O1—Tl2—O4—Se254.9 (7)
O1—Tl2—Se2—O6129.3 (5)O5—Tl2—O4—Se23.8 (4)
O5—Tl2—Se2—O681.8 (6)O9—Tl2—O4—Se2113.4 (5)
O9—Tl2—Se2—O6154.0 (5)O1iv—Tl2—O4—Se2102.9 (5)
O1iv—Tl2—Se2—O618.5 (4)Se3—Tl2—O4—Se2146.9 (5)
Se3—Tl2—Se2—O6127.1 (4)Se1iv—Tl2—O4—Se282.0 (5)
Se1iv—Tl2—Se2—O613.1 (4)O3iv—Tl2—O4—Tl1v123.2 (6)
O3iv—Tl2—Se2—O538.9 (6)O7—Tl2—O4—Tl1v0.2 (7)
O7—Tl2—Se2—O5178.8 (6)O1—Tl2—O4—Tl1v119.3 (6)
O4—Tl2—Se2—O5173.6 (7)O5—Tl2—O4—Tl1v177.9 (7)
O1—Tl2—Se2—O547.5 (6)O9—Tl2—O4—Tl1v60.7 (5)
O9—Tl2—Se2—O5124.1 (6)O1iv—Tl2—O4—Tl1v83.0 (6)
O1iv—Tl2—Se2—O5100.3 (6)Se3—Tl2—O4—Tl1v27.3 (5)
Se3—Tl2—Se2—O5151.1 (5)Se1iv—Tl2—O4—Tl1v103.8 (5)
Se1iv—Tl2—Se2—O568.7 (5)Se2—Tl2—O4—Tl1v174.1 (10)
O3iv—Tl2—Se2—O4134.7 (6)O6—Se2—O5—Tl193.5 (7)
O7—Tl2—Se2—O47.6 (6)O4—Se2—O5—Tl1159.0 (7)
O1—Tl2—Se2—O4138.9 (6)Tl2—Se2—O5—Tl1154.5 (9)
O5—Tl2—Se2—O4173.6 (7)O6—Se2—O5—Tl2112.0 (5)
O9—Tl2—Se2—O462.3 (6)O4—Se2—O5—Tl24.5 (5)
O1iv—Tl2—Se2—O473.3 (6)O2—Tl1—O5—Se2165.4 (6)
Se3—Tl2—Se2—O435.3 (5)O9i—Tl1—O5—Se26.6 (17)
Se1iv—Tl2—Se2—O4104.9 (5)O6ii—Tl1—O5—Se250.4 (6)
O3iv—Tl2—Se3—O8123.7 (5)O8iii—Tl1—O5—Se228.5 (6)
O7—Tl2—Se3—O898.8 (7)O4iii—Tl1—O5—Se2118.3 (6)
O4—Tl2—Se3—O824.7 (5)O2—Tl1—O5—Tl217.2 (6)
O1—Tl2—Se3—O8154.5 (5)O9i—Tl1—O5—Tl2154.8 (9)
O5—Tl2—Se3—O865.3 (5)O6ii—Tl1—O5—Tl297.9 (6)
O9—Tl2—Se3—O897.3 (6)O8iii—Tl1—O5—Tl2176.7 (6)
O1iv—Tl2—Se3—O851.2 (5)O4iii—Tl1—O5—Tl293.5 (6)
Se1iv—Tl2—Se3—O879.5 (4)O3iv—Tl2—O5—Se2144.5 (5)
Se2—Tl2—Se3—O843.0 (4)O7—Tl2—O5—Se23.7 (19)
O3iv—Tl2—Se3—O724.9 (7)O4—Tl2—O5—Se23.8 (4)
O4—Tl2—Se3—O7123.6 (6)O1—Tl2—O5—Se2135.2 (5)
O1—Tl2—Se3—O7106.7 (6)O9—Tl2—O5—Se259.7 (5)
O5—Tl2—Se3—O7164.1 (7)O1iv—Tl2—O5—Se279.9 (5)
O9—Tl2—Se3—O7163.8 (7)Se3—Tl2—O5—Se241.8 (7)
O1iv—Tl2—Se3—O747.6 (6)Se1iv—Tl2—O5—Se2112.5 (4)
Se1iv—Tl2—Se3—O719.3 (6)O3iv—Tl2—O5—Tl161.8 (6)
Se2—Tl2—Se3—O7141.8 (5)O7—Tl2—O5—Tl1150.0 (13)
O3iv—Tl2—Se3—O9138.9 (6)O4—Tl2—O5—Tl1157.5 (7)
O7—Tl2—Se3—O9163.8 (7)O1—Tl2—O5—Tl118.5 (6)
O4—Tl2—Se3—O972.6 (5)O9—Tl2—O5—Tl194.0 (6)
O1—Tl2—Se3—O957.2 (5)O1iv—Tl2—O5—Tl1126.4 (6)
O5—Tl2—Se3—O932.1 (6)Se3—Tl2—O5—Tl1112.0 (5)
O1iv—Tl2—Se3—O9148.5 (5)Se1iv—Tl2—O5—Tl193.8 (5)
Se1iv—Tl2—Se3—O9176.8 (5)Se2—Tl2—O5—Tl1153.7 (9)
Se2—Tl2—Se3—O954.4 (5)O5—Se2—O6—Tl1iv13.9 (8)
O3—Se1—O1—Tl2177.6 (7)O4—Se2—O6—Tl1iv79.1 (8)
O2—Se1—O1—Tl278.2 (7)Tl2—Se2—O6—Tl1iv31.7 (8)
Tl2ii—Se1—O1—Tl2174.4 (8)O8—Se3—O7—Tl291.4 (5)
O3—Se1—O1—Tl2ii8.0 (5)O9—Se3—O7—Tl212.4 (6)
O2—Se1—O1—Tl2ii96.2 (5)O3iv—Tl2—O7—Se3162.3 (5)
O3iv—Tl2—O1—Se18.4 (6)O4—Tl2—O7—Se357.6 (6)
O7—Tl2—O1—Se1111.7 (7)O1—Tl2—O7—Se379.1 (5)
O4—Tl2—O1—Se1129.9 (6)O5—Tl2—O7—Se350.6 (18)
O5—Tl2—O1—Se179.1 (7)O9—Tl2—O7—Se39.8 (4)
O9—Tl2—O1—Se1172.7 (7)O1iv—Tl2—O7—Se3135.3 (5)
O1iv—Tl2—O1—Se19.8 (15)Se1iv—Tl2—O7—Se3165.4 (4)
Se3—Tl2—O1—Se1144.1 (6)Se2—Tl2—O7—Se353.4 (7)
Se1iv—Tl2—O1—Se14.8 (7)O7—Se3—O8—Tl1v66.3 (8)
Se2—Tl2—O1—Se1102.4 (6)O9—Se3—O8—Tl1v30.5 (8)
O3iv—Tl2—O1—Tl2ii178.6 (10)Tl2—Se3—O8—Tl1v21.0 (7)
O7—Tl2—O1—Tl2ii78.2 (9)O8—Se3—O9—Tl1vi76.8 (7)
O4—Tl2—O1—Tl2ii40.3 (11)O7—Se3—O9—Tl1vi178.1 (6)
O5—Tl2—O1—Tl2ii91.1 (9)Tl2—Se3—O9—Tl1vi170.6 (8)
O9—Tl2—O1—Tl2ii17.1 (8)O8—Se3—O9—Tl293.8 (5)
O1iv—Tl2—O1—Tl2ii180.0O7—Se3—O9—Tl211.2 (5)
Se3—Tl2—O1—Tl2ii45.8 (9)O3iv—Tl2—O9—Se385.7 (9)
Se1iv—Tl2—O1—Tl2ii175.0 (7)O7—Tl2—O9—Se39.5 (4)
Se2—Tl2—O1—Tl2ii67.8 (9)O4—Tl2—O9—Se3100.7 (5)
O3—Se1—O2—Tl1105.3 (9)O1—Tl2—O9—Se3121.2 (5)
O1—Se1—O2—Tl16.8 (10)O5—Tl2—O9—Se3157.8 (4)
Tl2ii—Se1—O2—Tl161.3 (9)O1iv—Tl2—O9—Se344.9 (7)
O9i—Tl1—O2—Se1145.9 (8)Se1iv—Tl2—O9—Se39.3 (13)
O5—Tl1—O2—Se131.7 (9)Se2—Tl2—O9—Se3130.3 (4)
O6ii—Tl1—O2—Se152.7 (10)O3iv—Tl2—O9—Tl1vi106.9 (10)
O8iii—Tl1—O2—Se1116.5 (15)O7—Tl2—O9—Tl1vi177.0 (9)
O4iii—Tl1—O2—Se1132.8 (9)O4—Tl2—O9—Tl1vi66.7 (7)
O1—Se1—O3—Tl2ii9.4 (6)O1—Tl2—O9—Tl1vi71.4 (8)
O2—Se1—O3—Tl2ii94.9 (6)O5—Tl2—O9—Tl1vi9.6 (8)
O6—Se2—O4—Tl2105.4 (5)O1iv—Tl2—O9—Tl1vi122.5 (7)
O5—Se2—O4—Tl24.5 (5)Se3—Tl2—O9—Tl1vi167.4 (11)
O6—Se2—O4—Tl1v81.2 (8)Se1iv—Tl2—O9—Tl1vi158.1 (4)
O5—Se2—O4—Tl1v178.0 (8)Se2—Tl2—O9—Tl1vi37.1 (7)
Tl2—Se2—O4—Tl1v173.5 (11)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1, y, z; (iii) x+3/2, y1/2, z+1/2; (iv) x+1, y, z; (v) x+3/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaTl2(SeO3)3
Mr789.62
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)4.5666 (3), 11.2194 (10), 16.7595 (13)
β (°) 96.549 (6)
V3)853.06 (12)
Z4
Radiation typeMo Kα
µ (mm1)50.56
Crystal size (mm)0.13 × 0.05 × 0.01
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.053, 0.632
No. of measured, independent and
observed [I > 2σ(I)] reflections
10219, 1948, 1690
Rint0.059
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.121, 1.08
No. of reflections1948
No. of parameters127
w = 1/[σ2(Fo2) + (0.0696P)2 + 26.3163P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.53, 3.22

Computer programs: COLLECT (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO (Otwinowski & Minor 1997) and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 2000), SHELXL97.

Selected geometric parameters (Å, º) top
Tl1—O22.131 (10)Tl2—O92.382 (10)
Tl1—O9i2.229 (10)Tl2—O1iv2.496 (10)
Tl1—O52.231 (10)Se1—O31.706 (10)
Tl1—O6ii2.251 (10)Se1—O11.718 (10)
Tl1—O8iii2.269 (10)Se1—O21.724 (11)
Tl1—O4iii2.298 (10)Se2—O61.650 (10)
Tl2—O3iv2.198 (10)Se2—O51.734 (10)
Tl2—O72.207 (11)Se2—O41.743 (10)
Tl2—O42.280 (11)Se3—O81.681 (10)
Tl2—O12.293 (10)Se3—O71.713 (10)
Tl2—O52.299 (10)Se3—O91.725 (10)
Se1—O1—Tl2121.2 (5)Se2—O5—Tl2102.4 (4)
Se1—O1—Tl2ii93.5 (4)Tl1—O5—Tl2127.0 (5)
Tl2—O1—Tl2ii144.9 (5)Se2—O6—Tl1iv130.6 (6)
Se1—O2—Tl1132.3 (6)Se3—O7—Tl2102.8 (5)
Se1—O3—Tl2ii105.1 (5)Se3—O8—Tl1v130.8 (5)
Se2—O4—Tl2102.8 (5)Se3—O9—Tl1vi122.3 (5)
Se2—O4—Tl1v132.4 (6)Se3—O9—Tl295.8 (4)
Tl2—O4—Tl1v124.4 (5)Tl1vi—O9—Tl2140.8 (5)
Se2—O5—Tl1124.8 (5)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1, y, z; (iii) x+3/2, y1/2, z+1/2; (iv) x+1, y, z; (v) x+3/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the EPSRC National Crystallography Service (University of Southampton) for the data collection.

References

First citationBrown, I. D. (1996). J. Appl. Cryst. 29, 479–480.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (2000). ATOMS for Windows. Version 5.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.  Google Scholar
First citationFábry, J. & Breczewski, T. (1993). Acta Cryst. C49, 1724–1727.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGospodinov, G. G. (1984). Thermochim. Acta, 77, 445–450.  CrossRef CAS Web of Science Google Scholar
First citationJohnston, M. G. & Harrison, W. T. A. (2004a). J. Solid State Chem. 177, 4316–4324.  Web of Science CrossRef CAS Google Scholar
First citationJohnston, M. G. & Harrison, W. T. A. (2004b). J. Solid State Chem. 177, 4680–4686.  Web of Science CrossRef CAS Google Scholar
First citationMarino, L. (1909). Z. Anorg. Chem. 62, 173–179.  CrossRef Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOk, K. M. & Halasyamani, P. S. (2002). Chem. Mater. 14, 2360–2364.  Web of Science CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationShuvalov, L. A., Bondarenko, V. V., Varikash, V. M., Gridnev, S. A., Makarova, I. P. & Simonov, V. I. (1983). Kristallografiya, 28, 1124–1131.  CAS Google Scholar
First citationVerma, V. P. (1999). Thermochim. Acta, 327, 63–102.  Web of Science CrossRef CAS Google Scholar
First citationWontcheu, J. & Schleid, T. (2005). Z. Anorg. Allg. Chem. 631, 309–315.  Web of Science CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds