metal-organic compounds
Methyl 2-(4-ferrocenylbenzamido)thiophene-3-carboxylate and ethyl 2-(4-ferrocenylbenzamido)-1,3-thiazole-4-acetate, a unique ferrocene derivative containing a thiazole moiety
aSchool of Chemical Sciences, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland, bSchool of Chemical Sciences, Dublin City University, Dublin 9, Ireland, and cDepartment of Chemistry, 80 St George Street, University of Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: john.gallagher@dcu.ie, peter.kenny@dcu.ie
The conformations and hydrogen bonding in the thiophene and thiazole title compounds, [Fe(C5H5)(C20H14NO3S)], (I), and [Fe(C5H5)(C19H17N2O3S)], (II), are discussed. The sequence (C5H4)–(C6H4)–(CONH)–(C4H2S)–(CO2Me) of rings and moieties in (I) is close to being planar; all consecutive interplanar angles are less than 10°. An intramolecular N—H⋯O=Cester hydrogen bond [graph set S(6), N⋯O = 2.768 (2) Å and N—H⋯O = 134 (2)°] effects the molecular planarity, and aggregation occurs via hydrogen-bonded chains formed from intermolecular Car—H⋯O=Cester/amide interactions along [010], with C⋯O distances ranging from 3.401 (3) to 3.577 (2) Å. The thiazole system in (II) crystallizes with two molecules in the these differ in the conformation along their long molecular axes; for example, the interplanar angle between the phenylene (C6H4) and thiazole (C3NS) rings is 8.1 (2)° in one molecule and 27.66 (14)° in the other. Intermolecular N—H⋯O=Cester hydrogen bonds [N⋯O = 2.972 (4) and 2.971 (3) Å], each augmented by a Cphenylene—H⋯O=Cester interaction [3.184 (5) and 3.395 (4) Å], form motifs with graph set (7) and generate chains along [100]. The amide C=O groups do not participate in hydrogen bonding. Compound (II) is the first reported ferrocenyl-containing thiazole structure.
Comment
Ferrocene (Fc) and its derivatives continue to attract much attention in coordination chemistry, with important roles encompassing both structural and electronic capabilities (Adams, 1999). Integration of ferrocene into new hybrid systems has expanded the potential of organometallic materials with a range of feasible applications (Togni & Halterman, 1998; Togni & Hayashi, 1995; Hudson et al., 2001). We report here the structures of two 4-ferrocenylbenzamide systems with terminal thiophenecarboxylate, (I), and thiazoleacetate groups, (II).
A view of (I) with the atomic numbering scheme is shown in Fig. 1. Bond lengths and angles are in accord with anticipated values (Allen, 2002). In (I), the Fe—C bond lengths for the substituted η5-C5H4 ring are in the range 2.038 (2)–2.054 (2) Å and are similar to those in the η5-C5H5 ring [2.037 (2)–2.054 (2) Å]; the Fe⋯Cg1 and Fe⋯Cg2 distances are 1.6462 (10) and 1.6525 (10) Å, respectively, the Cg1⋯Fe1⋯Cg2 angle is 177.20 (5)°, and the C5/C5 interplanar angle is 3.81 (15)° [Cg1 and Cg2 are the η5-C5H4 and η5(C5H5) ring centroids, respectively]. The η5C5 rings are slightly staggered from eclipsed geometry, with the five C1n⋯Cg1⋯Cg2⋯C2n pseudo-torsion angles in the range 12.24 (16)–12.79 (15)° (n = 1–5).
The related 4-FcC6H4CO2R carboxylates [R = Me (Savage et al., 2002), Et and iPr (Anderson et al., 2003)] have conformations that can be defined by the interplanar angles between the η5-C5H4 and C6H4 rings, and between the C6H4 ring and carboxylate CO2R group. These are, respectively, 9.35 (13) and 8.5 (2)° for Me, 6.88 (12) and 2.59 (17)° for Et, and 10.5 (2) and 19.5 (5)° for iPr. In (I), the (C5H4)–(C6H4)–(CONH)–(C4H2S)–(CO2Me) system has interplanar angles between successive C5H4, C6H4, CONH, C4H2S and CO2Me moieties of 9.36 (11), 8.79 (17), 1.97 (14) and 6.33 (11)°, respectively. Apart from slight twisting, no ring bending occurs along the long molecular axis as a result of steric effects; this situation is in contrast to that found in 2-(ferrocenyl)thiophene-3-carboxylic acid (Gallagher et al., 2001), where significant bending from linearity occurs in the thienyl ring relative to the η5-C5H4 ring to which it is bonded.
Methyl 2-[(ferrocenylcarbonyl)amino]thiophene-3-carboxylate, (C5H5)Fe(C5H4)–(CONH)–(C4H2S)–(CO2Me), (III) (Alley et al., 2005), differs from (I) in that it does not have the 1,4-phenylene C6H4 ring between the C5H4 and CONH groups. Geometric data are comparable in the two structures, with maximum differences within 0.01 Å and 2° for the amidothiophenecarboxylate residues. The C—S—C and S—C—N(H) angles are 90.98 (10) and 123.58 (15)° in (I), and 90.93 (11) and 123.54 (16)° in (III); the Cambridge Structural Database (CSD; Version 5.26 of February 2005; Allen, 2002) average for thiophene C—S—C angles is 92.0° (range 88.7–97.9°). For S—C=Ccarboxy angles, the average is 111.4° (range 105.5–113.9°); the equivalent S1—C2=C3 angles in (I) and (III) are 111.89 (15) and 111.94 (15)°, respectively (Allen, 2002). CSD analysis shows that both (I) and (III) have regular amidothiophenecarboxylate moieties.
An intramolecular N—H⋯O=Cester hydrogen bond (Table 1) forms a ring in (I), with graph set S(6) (Bernstein et al., 1995), thus enforcing planarity along the molecular axis; the N⋯O distance is 2.768 (2) Å, slightly longer than the corresponding value [2.727 (2) Å] in (III). Molecules of (I) assemble as one-dimensional chains along the b-axis direction through C—H⋯O=C interactions, as shown in Fig. 2 with details in Table 1. These generate (7) and R32(15) motifs that, in combination with the S(6) ring, produce a larger R22(20) ring. Overall, the comprises one-dimensional chains, aggregating via weak C7—H7C⋯π(thienyl)iii contacts (H7C⋯Cg3iii = 2.83 Å; symmetry code as in Table 1), which link pairs of screw-axis-related chains to form a ladder extending along [010]; there are normal van der Waals separations between pairs of ladders. Examination of (I) with PLATON (Spek, 2002) reveals no solvent-accessible voids in the and a packing index of 72.6.
Compound (II) is the first structurally characterized ferrocene derivative containing a thiazole moiety to be reported, and this compound crystallizes with two molecules (A and B) in the of P, as shown in Figs. 3(a) and 3(b). The conformations of these molecules differ slightly along their long molecular axes with respect to the orientations of the amidothiazoleacetate groups, and there is some minor ethoxy disorder [0.915 (7):0.085 (7)] in molecule A. Bond lengths and angles are unexceptional and are comparable to data available from corresponding fragments available in the CSD.
In (II), the Fe—C bond lengths for the η5-C5H4 ring in A are in the range 2.031 (4)–2.048 (3) Å and are similar to those [2.033 (3)–2.040 (4) Å] for the η5-C5H5 ring. Molecule B has similar values [2.032 (4)–2.047 (3) Å] for the substituted ring but two contrasting Fe⋯η5-C5H5 bond lengths [i.e. Fe1—C23B/C24B = 2.005 (4)/2.023 (5) Å]. These Fe—C C atoms have the largest Ueq values, cf. 0.0785 (17) and 0.0733 (15) Å2 versus an average Ueq of 0.043 Å2 for all 48 C atoms present (Spek, 2002); however, no disorder is present and the bond-length contraction must be a result of a small measure of librational motion and ring slippage (0.06 Å). The Fe⋯Cg1/Cg2 distances are 1.6407 (17) and 1.6450 (18) Å in A, and 1.6400 (17) and 1.644 (2) Å in B, the Cg1⋯Fe1⋯Cg2 angles are 178.76 (9) and 178.96 (10)°, and both C5/C5 interplanar angles are 1.6 (3)° [Cg1 and Cg2 are defined as for (I) above]. The η5C5 rings deviate from eclipsed geometry, with five C1n⋯Cg1⋯Cg2⋯C2n (n = 1–5) pseudo-torsion angles ranging from 13.5 (3) to 14.5 (3)° in A and from 5.7 (3) to 7.3 (3)° in B, in the same sense as in A.
A minor conformational difference between molecules A and B is in the orientation of the Fc—C6H4– moiety with respect to the CONH–(thiazolyl)–CO2Et fragment, resulting in the O1A—C1A—C34A—C33A [171.9 (3)°] and O1B—C1B—C34B—C33B [161.3 (3)°] torsion angles being significantly different. The amidothiazole groups adopt similar conformations in the two molecules, with N—H cis to N and C=O cis to S. A search of the CSD for this fragment gave 11 hits all with this same orientation, indicating that this is a preferred solid-state conformation. The cis-oriented pairs of N⋯N and O⋯S distances are 2.333 (4) and 2.342 (4) Å, and 2.669 (2) and 2.660 (3) Å, respectively, and are oriented in a suitable fashion for bidentate coordination to metal systems. As found for (I), molecule A contains consecutive ring and moiety planes that are essentially coplanar along the long molecular axis; however, in molecule B, the interplanar twists are larger; for example, the C6H4 and amide O=C—N(H) group planes are inclined at an angle of 17.2 (3)° (Figs. 3a and 3b). In tandem, slight bending occurs along the long molecular axis in molecule A, as evidenced by the C11n—C31n⋯C34n angle [176.4 (2)°; n = A or B], in contrast to the near linear value [178.46 (19)°] in B.
In (II), intermolecular Namide—H⋯O=Cester hydrogen bonds link the molecules, forming chains extending along [100], as shown in Fig. 4 with details in Table 2. This interaction, in combination with C—H⋯O=Cester interactions, results in hydrogen-bonded rings with graph set (7), augmented by weaker secondary contacts C7B*⋯N2A and C7A⋯N2B (involving thiazole N atoms). Combination with the N—H⋯O=C hydrogen bonds produces rings with graph sets R22(9) and, overall for the pairs of rings, R22(12). The chains are linked into a ladder structure extending along [100] by C5A—H5A⋯π(thiaz-B)# interactions [symmetry code: (#) −x, −y, 1 − z; C5A⋯π(thiaz-centroid) = 3.511 (4) Å]. No comparable C5B⋯π(thiaz-A) interaction is present; the thiazole S atoms and amide C=O groups are not involved in hydrogen bonding. The packing index is 68.9 based on the major conformation of molecule A.
Of interest for comparison with (II) are the high-precision structural data for the molecular structure of thiazole (IV) from a combined analysis of gas-phase electron diffraction data, and ab initio calculations (Bone et al., 1999). The corresponding mean values for (II) are S—C(C) = 1.713 (2) Å, S—C(N) = 1.730 (6) Å, C—N = 1.391 (2) Å and C=N = 1.299 (2) Å, demonstrating that the thiazole groups are relatively unperturbed through molecular or crystal packing forces in (II) and are comparable to the gas-phase structure data for (IV).
A search for amidothienyl and amidothiazolyl fragments in crystal structures in the CSD reveals seven and 21 systems (with coordinates), respectively. A search for structures incorporating the ferrocenyl moiety (as C5FeC5) and a thiophene-type heteroaromatic ring yielded 30 structures; when the thiophene-type ring was replaced with a thiazole heteroaromatic ring, there were no hits. This lack of structural data is somewhat unusual given the vast output of structural ferrocene research to date (Adams, 1999; Allen 2002). For comparison, a CSD search with ferrocene and pyridinyl (as C5N) gives a total of 335 structures, revealing the wealth of structural data available for N-heteroaromatic groups, such as pyridine donor ligands, in ferrocene chemistry when compared with S-heteroaromatic systems, such as thiazole (Allen, 2002). Studies are in progress to extend the synthetic, structural and electrochemistry of these new systems in coordination chemistry.
Experimental
Compounds (I) and (II) were synthesized according to standard coupling procedures using 4-ferrocenylbenzoic acid as its acid chloride and methyl 2-aminothiophene-3-carboxylate or ethyl 2-amino-4-thiazoleacetate in yields of ca 30 and 26%, respectively. Recrystallization, in both cases, was undertaken from petroleum spirits/Et2O to produce red plates, (I) (m.p. 487–489 K), and an orange crystalline solid, (II) (421–423 K). Crystals suitable for X-ray diffraction studies were grown by diffusion of pentane vapour into a CH2Cl2 solution of the appropriate compound. Although the syntheses are uncomplicated, problems arose during the purification of (I) as it decomposes on both silica and alumina to give the starting materials plus a third compound, identified by 1H and 13C NMR as methyl 4-ferrocenylbenzoate. Isolation of modest quantities of (I) was achieved by repeated recrystallization of column fractions, though the eventual overall yield was poor.
Compound (I)
Crystal data
|
Data collection
Refinement
|
Compound (II)
Crystal data
|
Data collection
|
Refinement
|
|
Compound (I) crystallized in the monoclinic system; P21/n was assigned from the and confirmed by the analysis. Compound (II) crystallized in the triclinic system; P was assumed and confirmed by the analysis, and the was chosen so as to show clearly the overall similarity of the two independent molecules A and B. It became obvious during the of (II) that there was some slight disorder at the terminal O3A—C7A—C8A moiety and this was allowed for. In the final cycles, the bond lengths of the disordered ester group of molecule A were restrained via soft DFIX restraints to be the same as in the ordered molecule B; a common isotropic displacement parameter of 0.035 Å2 was assigned to the minor-occupancy atoms. The final refined occupancies for the major and minor conformers were 0.915 (7) and 0.085 (7). In (I) and (II) [except for atom H1 bonded to N1 in (I)], all H atoms bound to C and N atoms were treated as riding, with Uiso(H) values of 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the remainder (methyl C—H = 0.98 Å, methylene C—H = 0.99 Å, aromatic C—H = 0.95 Å and amide N—H = 0.88 Å). The N1—H1 distance in (I) refined to 0.81 (2) Å.
For both compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; structure solution: SHELXS97 (Sheldrick, 1997); structure SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002) and ORTEX (McArdle, 1995); publication software: SHELXL97, NRCVAX (Gabe et al., 1989) and PREP8 (Ferguson, 1998).
Supporting information
10.1107/S010827010501783X/fg1846sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: 10.1107/S010827010501783X/fg1846Isup2.hkl
Structure factors: contains datablock II. DOI: 10.1107/S010827010501783X/fg1846IIsup3.hkl
Compounds (I) and (II) were synthesized by standard coupling procedures using 4-(ferrocenyl)benzoic acid as its acid chloride, with methyl 2-aminothiophene-3-carboxylate or ethyl 2-amino-4-thiazoleacetate in yields of ca 30 and 26%, respectively. Recrystallizations for both compounds were undertaken from petroleum spirits/Et2O to produce red plates (I) (m.p. 487–489 K) and an orange crystalline solid (II) (421–423 K). Crystals suitable for X-ray diffraction studies were grown by diffusion of pentane vapour into a CH2Cl2 solution of the appropriate compound. Although the syntheses are uncomplicated, problems arose during the purification of (I), as it decomposes on both silica and alumina to give the starting materials plus a third compound, identified by 1H and 13C NMR as methyl para-ferrocenyl benzoate. Isolation of modest quantities of (I) was achieved by repeated recrystallizations of column fractions though the eventual overall yield was poor.
Compound (I) crystallized in the monoclinic system; 1 was assumed and confirmed by the analysis, and the was chosen so as to show clearly the overall similarity of the two independent molecules A and B. It became obvious during the of (II) that there was some slight disorder at the terminal O3A—C7A—C8A moiety and this was allowed for. In the final cycles, the bond lengths of the disordered ester group of molecule A were restrained via soft DFIX restraints to be the same as in the ordered molecule B; a common isotropic displacement parameter of 0.035 Å2 was assigned to the minor-occupancy atoms. The final refined occupancies for the major and minor conformers are 0.915 (7) and 0.085 (7). In (I) and (II) [except for atom H1 bonded to N1 in (I)], all H atoms bound to C and N atoms were treated as riding, with Uiso(H) values of 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the remainder [methyl C—H = 0.98 Å, methylene C—H 0.99 Å, aromatic C—H = 0.95 Å and amide N—H 0.88 Å]. The N1—H1 distance in (I) refined to 0.81 (2) Å.
P21/n was assigned from the and confirmed by the analysis. Compound (II) crystallized in the triclinic system; PFor both compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002) and ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97, NRCVAX (Gabe et al., 1989) and PREP8 (Ferguson, 1998).Fig. 1. A view of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. A view of the hydrogen-bond interactions (dashed lines) in the crystal structure of (I). [Symmetry codes: (*) x, 1 + y, z; (#) x, −1 + y, z.] | |
Fig. 3. (a) A view of the major conformer of molecule A in (II) and (b) a view of molecule B in (II), with the atomic numbering schemes. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 4. The hydrogen-bonding pattern involving molecules A and B in (II). Hyddrogen bonds are shown as dashed lines. [Symmetry codes: (*) 1 − x, 1 − y, 1 − z; ($) −x, 1 − y, 1 − z.] |
C23H19FeNO3S | F(000) = 920 |
Mr = 445.30 | Dx = 1.569 Mg m−3 |
Monoclinic, P21/n | Melting point: 488 K |
Hall symbol: -p 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 10.1428 (3) Å | Cell parameters from 6335 reflections |
b = 8.0965 (2) Å | θ = 2.6–27.5° |
c = 23.0557 (7) Å | µ = 0.94 mm−1 |
β = 95.4912 (14)° | T = 150 K |
V = 1884.67 (9) Å3 | Plate, red |
Z = 4 | 0.22 × 0.16 × 0.10 mm |
Nonius KappaCCD diffractometer | 4313 independent reflections |
Radiation source: fine-focus sealed X-ray tube | 3441 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
ϕ scan and ω scans with κ offsets | θmax = 27.5°, θmin = 2.7° |
Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) | h = −13→13 |
Tmin = 0.820, Tmax = 0.912 | k = −10→10 |
6335 measured reflections | l = −25→29 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.033P)2 + 1.226P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
4313 reflections | Δρmax = 0.35 e Å−3 |
268 parameters | Δρmin = −0.63 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0024 (6) |
C23H19FeNO3S | V = 1884.67 (9) Å3 |
Mr = 445.30 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.1428 (3) Å | µ = 0.94 mm−1 |
b = 8.0965 (2) Å | T = 150 K |
c = 23.0557 (7) Å | 0.22 × 0.16 × 0.10 mm |
β = 95.4912 (14)° |
Nonius KappaCCD diffractometer | 4313 independent reflections |
Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) | 3441 reflections with I > 2σ(I) |
Tmin = 0.820, Tmax = 0.912 | Rint = 0.049 |
6335 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.35 e Å−3 |
4313 reflections | Δρmin = −0.63 e Å−3 |
268 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Planes data (I) ############### Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 8.3764(0.0065)x + 1.0490(0.0092)y + 10.7730(0.0232)z = 0.4034(0.0035) * 0.0000(0.0014) C21 * −0.0003(0.0014) C22 * 0.0005(0.0014) C23 * −0.0005(0.0014) C24 * 0.0003(0.0014) C25 1.6524(0.0010) Fe1 2.6428(0.0084) C1 2.9039(0.0091) O1 2.2242(0.0092) N1 2.3050(0.0117) S1 Rms deviation of fitted atoms = 0.0004 8.4960(0.0058)x + 1.4976(0.0083)y + 9.9470(0.0215)z = 3.5060(0.0033) Angle to previous plane (with approximate e.s.d.) = 3.81(0.15) * 0.0010(0.0013) C11 * −0.0006(0.0013) C12 * 0.0000(0.0013) C13 * 0.0007(0.0013) C14 * −0.0011(0.0013) C15 − 1.6460(0.0010) Fe1 − 0.1921(0.0075) C1 0.1180(0.0081) O1 − 0.5751(0.0082) N1 − 0.3236(0.0104) S1 Rms deviation of fitted atoms = 0.0008 9.2707(0.0036)x + 0.8962(0.0070)y + 6.9405(0.0191)z = 3.3457(0.0013) Angle to previous plane (with approximate e.s.d.) = 9.36(0.11) * 0.0057(0.0015) C31 * −0.0046(0.0015) C32 * −0.0013(0.0014) C33 * 0.0063(0.0014) C34 * −0.0052(0.0015) C35 * −0.0008(0.0015) C36 0.0340(0.0033) C1 0.2008(0.0037) O1 − 0.1415(0.0037) N1 0.0170(0.0033) C11 Rms deviation of fitted atoms = 0.0045 9.7991(0.0022)x + 0.1600(0.0080)y + 3.7750(0.0191)z = 3.3261(0.0074) Angle to previous plane (with approximate e.s.d.) = 9.71(0.07) * 0.0032(0.0012) C2 * −0.0030(0.0013) C3 * 0.0010(0.0014) C4 * 0.0009(0.0013) C5 * −0.0021(0.0010) S1 − 1.8223(0.0107) Fe1 − 0.0218(0.0040) C1 − 0.0182(0.0034) O1 0.0168(0.0033) N1 Rms deviation of fitted atoms = 0.0023 9.7142(0.0070)x + 0.0456(0.0241)y + 4.4864(0.0555)z = 3.2045(0.0161) Angle to previous plane (with approximate e.s.d.) = 1.97(0.14) * 0.0000(0.0000) C1 * 0.0000(0.0000) O1 * 0.0000(0.0000) N1 0.0029(0.0177) C31 0.1743(0.0154) C32 − 0.0057(0.0076) C34 Rms deviation of fitted atoms = 0.0000 9.7142 (0.0070)x + 0.0456(0.0241)y + 4.4864(0.0555)z = 3.2045(0.0161) Angle to previous plane (with approximate e.s.d.) = 0.00(0.19) * 0.0000(0.0000) C1 * 0.0000(0.0000) O1 * 0.0000(0.0000) N1 − 0.0580(0.0063) C2 − 0.1401(0.0138) C4 − 0.1312(0.0150) C5 − 0.0762(0.0098) S1 Rms deviation of fitted atoms = 0.0000 9.2707(0.0036)x + 0.8962(0.0070)y + 6.9405(0.0191)z = 3.3457(0.0013) Angle to previous plane (with approximate e.s.d.) = 8.79(0.17) * 0.0057(0.0015) C31 * −0.0046(0.0015) C32 * −0.0013(0.0014) C33 * 0.0063(0.0014) C34 * −0.0052(0.0015) C35 * −0.0008(0.0015) C36 0.0340(0.0033) C1 0.2008(0.0037) O1 − 0.1415(0.0037) N1 − 0.0047(0.0052) S1 Rms deviation of fitted atoms = 0.0045 9.7991(0.0022)x + 0.1600(0.0080)y + 3.7750(0.0191)z = 3.3261(0.0074) Angle to previous plane (with approximate e.s.d.) = 9.71(0.07) * 0.0032(0.0012) C2 * −0.0030(0.0013) C3 * 0.0010(0.0014) C4 * 0.0009(0.0013) C5 * −0.0021(0.0010) S1 − 1.8223(0.0107) Fe1 − 0.0218(0.0040) C1 − 0.0182(0.0034) O1 0.0168(0.0033) N1 Rms deviation of fitted atoms = 0.0023 9.5253(0.0054)x − 0.3900(0.0276)y + 5.7354(0.0435)z = 2.5870(0.0068) Angle to previous plane (with approximate e.s.d.) = 6.33(0.11) * 0.0000(0.0000) O2 * 0.0000(0.0000) O3 * 0.0000(0.0000) C6 0.0262(0.0067) C7 − 0.1572(0.0105) C4 0.6556(0.0094) C31 0.6559(0.0069) C33 0.4292(0.0108) C34 Rms deviation of fitted atoms = 0.0000 Distances and angles in (I) ########################### Distance M.·O 7.8520 (0.0015) Fe1 - O1 8.6858 (0.0015) Fe1 - O2 10.9332 (0.0015) Fe1 - O3 Distance M.·S 10.1770 (0.0006) Fe1 - S1 Angle MCC 124.38 (0.07) Fe1 - C11 - C1 Angle CCC 179.40 (0.15) C11 - C31 - C34 177.94 (0.13) C11 - C31 - C1 175.38 (0.13) C11 - C34 - C1 Dihedral angle MCCC −80.61 (0.23) Fe1 - C11 - C31 - C32 99.11 (0.21) Fe1 - C11 - C31 - C36 |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.10728 (3) | −0.22659 (3) | 0.129472 (12) | 0.01830 (10) | |
S1 | 0.36891 (5) | 0.75731 (6) | −0.10918 (2) | 0.02415 (14) | |
O1 | 0.33126 (17) | 0.60101 (18) | −0.00909 (7) | 0.0302 (4) | |
O2 | 0.38773 (15) | 0.22531 (17) | −0.17757 (6) | 0.0244 (3) | |
O3 | 0.44198 (15) | 0.35213 (18) | −0.25904 (6) | 0.0265 (3) | |
N1 | 0.36581 (17) | 0.4273 (2) | −0.08213 (7) | 0.0199 (4) | |
C1 | 0.3398 (2) | 0.4583 (2) | −0.02603 (9) | 0.0211 (4) | |
C2 | 0.37838 (19) | 0.5489 (2) | −0.12352 (9) | 0.0193 (4) | |
C3 | 0.4003 (2) | 0.5189 (2) | −0.18075 (9) | 0.0207 (4) | |
C4 | 0.4106 (2) | 0.6685 (3) | −0.21286 (10) | 0.0252 (5) | |
C5 | 0.3958 (2) | 0.8042 (3) | −0.18006 (10) | 0.0285 (5) | |
C6 | 0.4087 (2) | 0.3515 (3) | −0.20382 (9) | 0.0210 (4) | |
C7 | 0.4538 (2) | 0.1914 (3) | −0.28508 (10) | 0.0321 (5) | |
C11 | 0.2705 (2) | −0.0775 (2) | 0.13321 (8) | 0.0186 (4) | |
C12 | 0.2063 (2) | −0.0661 (2) | 0.18613 (9) | 0.0205 (4) | |
C13 | 0.2050 (2) | −0.2262 (3) | 0.21145 (9) | 0.0221 (4) | |
C14 | 0.2673 (2) | −0.3375 (3) | 0.17507 (9) | 0.0226 (4) | |
C15 | 0.3074 (2) | −0.2470 (2) | 0.12701 (9) | 0.0201 (4) | |
C21 | −0.0227 (2) | −0.1230 (3) | 0.06705 (10) | 0.0326 (5) | |
C22 | −0.0858 (2) | −0.1486 (3) | 0.11858 (10) | 0.0269 (5) | |
C23 | −0.0804 (2) | −0.3205 (3) | 0.13123 (10) | 0.0271 (5) | |
C24 | −0.0143 (2) | −0.4002 (3) | 0.08752 (11) | 0.0324 (5) | |
C25 | 0.0216 (2) | −0.2782 (3) | 0.04774 (10) | 0.0344 (6) | |
C31 | 0.28777 (19) | 0.0561 (2) | 0.09125 (9) | 0.0196 (4) | |
C32 | 0.3309 (2) | 0.0234 (2) | 0.03631 (9) | 0.0206 (4) | |
C33 | 0.3480 (2) | 0.1500 (3) | −0.00238 (9) | 0.0214 (4) | |
C34 | 0.3223 (2) | 0.3137 (2) | 0.01192 (9) | 0.0197 (4) | |
C35 | 0.2775 (2) | 0.3456 (3) | 0.06595 (9) | 0.0248 (5) | |
C36 | 0.2608 (2) | 0.2202 (3) | 0.10520 (9) | 0.0235 (4) | |
H1 | 0.362 (2) | 0.334 (3) | −0.0948 (10) | 0.022 (6)* | |
H4 | 0.4262 | 0.6721 | −0.2528 | 0.030* | |
H5 | 0.3997 | 0.9138 | −0.1945 | 0.034* | |
H7A | 0.5255 | 0.1298 | −0.2633 | 0.048* | |
H7B | 0.4736 | 0.2043 | −0.3256 | 0.048* | |
H7C | 0.3704 | 0.1310 | −0.2840 | 0.048* | |
H12 | 0.1710 | 0.0315 | 0.2015 | 0.025* | |
H13 | 0.1686 | −0.2540 | 0.2467 | 0.027* | |
H14 | 0.2799 | −0.4524 | 0.1817 | 0.027* | |
H15 | 0.3513 | −0.2914 | 0.0959 | 0.024* | |
H21 | −0.0119 | −0.0197 | 0.0486 | 0.039* | |
H22 | −0.1246 | −0.0658 | 0.1407 | 0.032* | |
H23 | −0.1151 | −0.3728 | 0.1634 | 0.032* | |
H24 | 0.0028 | −0.5153 | 0.0853 | 0.039* | |
H25 | 0.0672 | −0.2970 | 0.0142 | 0.041* | |
H32 | 0.3486 | −0.0871 | 0.0256 | 0.025* | |
H33 | 0.3777 | 0.1254 | −0.0393 | 0.026* | |
H35 | 0.2581 | 0.4561 | 0.0761 | 0.030* | |
H36 | 0.2306 | 0.2455 | 0.1419 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.01750 (16) | 0.02174 (17) | 0.01567 (16) | −0.00155 (11) | 0.00158 (11) | 0.00031 (11) |
S1 | 0.0305 (3) | 0.0196 (3) | 0.0228 (3) | −0.0015 (2) | 0.0047 (2) | −0.0005 (2) |
O1 | 0.0476 (10) | 0.0200 (8) | 0.0246 (8) | −0.0027 (7) | 0.0112 (7) | −0.0018 (6) |
O2 | 0.0288 (8) | 0.0211 (7) | 0.0240 (8) | −0.0011 (6) | 0.0067 (6) | 0.0002 (6) |
O3 | 0.0333 (9) | 0.0269 (8) | 0.0201 (8) | −0.0032 (7) | 0.0076 (6) | −0.0039 (6) |
N1 | 0.0247 (9) | 0.0178 (9) | 0.0173 (9) | −0.0012 (7) | 0.0031 (7) | 0.0000 (7) |
C1 | 0.0190 (10) | 0.0232 (11) | 0.0212 (11) | −0.0027 (8) | 0.0025 (8) | −0.0015 (8) |
C2 | 0.0189 (10) | 0.0188 (10) | 0.0199 (11) | −0.0009 (8) | 0.0004 (8) | 0.0005 (8) |
C3 | 0.0195 (10) | 0.0211 (10) | 0.0214 (11) | −0.0006 (8) | 0.0021 (8) | 0.0005 (8) |
C4 | 0.0285 (12) | 0.0257 (11) | 0.0221 (11) | −0.0034 (9) | 0.0049 (9) | 0.0045 (8) |
C5 | 0.0339 (13) | 0.0243 (11) | 0.0276 (12) | −0.0046 (9) | 0.0044 (10) | 0.0059 (9) |
C6 | 0.0189 (10) | 0.0256 (11) | 0.0188 (10) | −0.0007 (8) | 0.0027 (8) | −0.0011 (8) |
C7 | 0.0337 (13) | 0.0337 (13) | 0.0299 (13) | −0.0033 (10) | 0.0080 (10) | −0.0121 (10) |
C11 | 0.0187 (10) | 0.0210 (10) | 0.0161 (10) | −0.0024 (8) | 0.0017 (8) | −0.0021 (7) |
C12 | 0.0210 (10) | 0.0233 (10) | 0.0168 (10) | −0.0013 (8) | 0.0000 (8) | −0.0031 (8) |
C13 | 0.0222 (10) | 0.0290 (11) | 0.0146 (10) | −0.0006 (8) | −0.0002 (8) | 0.0025 (8) |
C14 | 0.0230 (11) | 0.0228 (10) | 0.0215 (11) | 0.0010 (8) | −0.0005 (8) | 0.0030 (8) |
C15 | 0.0162 (10) | 0.0236 (11) | 0.0205 (10) | 0.0007 (8) | 0.0022 (8) | −0.0002 (8) |
C21 | 0.0283 (12) | 0.0415 (14) | 0.0265 (12) | −0.0038 (10) | −0.0050 (10) | 0.0109 (10) |
C22 | 0.0195 (11) | 0.0338 (12) | 0.0267 (12) | 0.0017 (9) | −0.0007 (9) | 0.0003 (9) |
C23 | 0.0197 (11) | 0.0342 (12) | 0.0271 (12) | −0.0064 (9) | 0.0010 (9) | 0.0019 (9) |
C24 | 0.0258 (12) | 0.0318 (12) | 0.0382 (14) | −0.0064 (10) | −0.0036 (10) | −0.0106 (10) |
C25 | 0.0263 (12) | 0.0579 (16) | 0.0182 (11) | −0.0042 (11) | −0.0019 (9) | −0.0073 (10) |
C31 | 0.0167 (10) | 0.0202 (10) | 0.0220 (11) | −0.0028 (8) | 0.0027 (8) | −0.0008 (8) |
C32 | 0.0237 (11) | 0.0186 (10) | 0.0196 (11) | 0.0006 (8) | 0.0036 (8) | −0.0022 (8) |
C33 | 0.0225 (11) | 0.0237 (10) | 0.0188 (10) | −0.0005 (8) | 0.0053 (8) | −0.0015 (8) |
C34 | 0.0191 (10) | 0.0208 (10) | 0.0191 (10) | −0.0010 (8) | 0.0008 (8) | −0.0007 (8) |
C35 | 0.0302 (12) | 0.0193 (10) | 0.0258 (12) | 0.0003 (9) | 0.0078 (9) | −0.0031 (8) |
C36 | 0.0285 (11) | 0.0234 (10) | 0.0196 (11) | −0.0001 (9) | 0.0076 (9) | −0.0031 (8) |
Fe1—C11 | 2.044 (2) | C3—C4 | 1.429 (3) |
Fe1—C12 | 2.038 (2) | C3—C6 | 1.462 (3) |
Fe1—C13 | 2.048 (2) | C4—C5 | 1.350 (3) |
Fe1—C14 | 2.054 (2) | C11—C12 | 1.440 (3) |
Fe1—C15 | 2.042 (2) | C11—C15 | 1.433 (3) |
Fe1—C21 | 2.037 (2) | C12—C13 | 1.422 (3) |
Fe1—C22 | 2.050 (2) | C13—C14 | 1.420 (3) |
Fe1—C23 | 2.054 (2) | C14—C15 | 1.420 (3) |
Fe1—C24 | 2.051 (2) | C21—C22 | 1.418 (3) |
Fe1—C25 | 2.041 (2) | C21—C25 | 1.420 (4) |
S1—C2 | 1.724 (2) | C22—C23 | 1.422 (3) |
S1—C5 | 1.724 (2) | C23—C24 | 1.418 (3) |
O1—C1 | 1.225 (2) | C24—C25 | 1.419 (3) |
O2—C6 | 1.216 (2) | C31—C32 | 1.404 (3) |
O3—C6 | 1.348 (2) | C31—C36 | 1.401 (3) |
O3—C7 | 1.443 (3) | C32—C33 | 1.380 (3) |
N1—C1 | 1.368 (3) | C33—C34 | 1.396 (3) |
N1—C2 | 1.385 (3) | C34—C35 | 1.390 (3) |
C1—C34 | 1.482 (3) | C35—C36 | 1.381 (3) |
C11—C31 | 1.473 (3) | N1—H1 | 0.81 (2) |
C2—C3 | 1.381 (3) | ||
C2—S1—C5 | 90.98 (10) | C24—Fe1—C14 | 110.61 (9) |
C6—O3—C7 | 115.33 (17) | C21—Fe1—C23 | 68.15 (9) |
C1—N1—C2 | 124.05 (18) | C12—Fe1—C23 | 128.64 (9) |
C1—N1—H1 | 120.4 (17) | C25—Fe1—C23 | 68.23 (9) |
C2—N1—H1 | 114.8 (17) | C15—Fe1—C23 | 153.64 (9) |
O1—C1—N1 | 119.99 (19) | C11—Fe1—C23 | 165.07 (9) |
O1—C1—C34 | 122.73 (19) | C13—Fe1—C23 | 110.48 (9) |
N1—C1—C34 | 117.27 (17) | C22—Fe1—C23 | 40.54 (9) |
S1—C2—N1 | 123.58 (15) | C24—Fe1—C23 | 40.42 (9) |
S1—C2—C3 | 111.89 (15) | C14—Fe1—C23 | 121.11 (9) |
N1—C2—C3 | 124.53 (18) | C15—C11—C12 | 106.82 (17) |
C2—C3—C4 | 111.85 (18) | C15—C11—C31 | 126.11 (18) |
C2—C3—C6 | 122.12 (18) | C12—C11—C31 | 126.97 (18) |
C4—C3—C6 | 126.02 (19) | C15—C11—Fe1 | 69.42 (11) |
C3—C4—C5 | 112.5 (2) | C12—C11—Fe1 | 69.12 (11) |
S1—C5—C4 | 112.82 (17) | C31—C11—Fe1 | 123.56 (14) |
O2—C6—O3 | 123.01 (18) | C13—C12—C11 | 108.20 (18) |
O2—C6—C3 | 125.35 (19) | C13—C12—Fe1 | 70.03 (11) |
O3—C6—C3 | 111.63 (17) | C11—C12—Fe1 | 69.57 (11) |
C21—Fe1—C12 | 115.89 (9) | C14—C13—C12 | 108.25 (18) |
C21—Fe1—C25 | 40.75 (10) | C14—C13—Fe1 | 69.95 (12) |
C12—Fe1—C25 | 149.59 (9) | C12—C13—Fe1 | 69.23 (11) |
C21—Fe1—C15 | 126.25 (9) | C13—C14—C15 | 108.12 (18) |
C12—Fe1—C15 | 68.85 (8) | C13—C14—Fe1 | 69.55 (12) |
C25—Fe1—C15 | 107.10 (9) | C15—C14—Fe1 | 69.30 (12) |
C21—Fe1—C11 | 104.69 (9) | C14—C15—C11 | 108.60 (18) |
C12—Fe1—C11 | 41.31 (8) | C14—C15—Fe1 | 70.14 (12) |
C25—Fe1—C11 | 115.55 (9) | C11—C15—Fe1 | 69.52 (11) |
C15—Fe1—C11 | 41.06 (8) | C22—C21—C25 | 108.4 (2) |
C21—Fe1—C13 | 151.00 (9) | C22—C21—Fe1 | 70.21 (13) |
C12—Fe1—C13 | 40.74 (8) | C25—C21—Fe1 | 69.79 (13) |
C25—Fe1—C13 | 167.86 (9) | C21—C22—C23 | 107.6 (2) |
C15—Fe1—C13 | 68.38 (8) | C21—C22—Fe1 | 69.20 (13) |
C11—Fe1—C13 | 69.02 (8) | C23—C22—Fe1 | 69.88 (12) |
C21—Fe1—C22 | 40.59 (9) | C24—C23—C22 | 108.1 (2) |
C12—Fe1—C22 | 106.78 (9) | C24—C23—Fe1 | 69.67 (12) |
C25—Fe1—C22 | 68.46 (9) | C22—C23—Fe1 | 69.58 (12) |
C15—Fe1—C22 | 164.07 (9) | C23—C24—C25 | 108.1 (2) |
C11—Fe1—C22 | 125.70 (9) | C23—C24—Fe1 | 69.91 (12) |
C13—Fe1—C22 | 118.99 (9) | C25—C24—Fe1 | 69.34 (13) |
C21—Fe1—C24 | 68.25 (10) | C24—C25—C21 | 107.7 (2) |
C12—Fe1—C24 | 167.65 (9) | C24—C25—Fe1 | 70.07 (13) |
C25—Fe1—C24 | 40.59 (10) | C21—C25—Fe1 | 69.45 (13) |
C15—Fe1—C24 | 119.07 (9) | C36—C31—C32 | 118.07 (18) |
C11—Fe1—C24 | 150.81 (9) | C36—C31—C11 | 120.53 (18) |
C13—Fe1—C24 | 130.71 (9) | C32—C31—C11 | 121.40 (18) |
C22—Fe1—C24 | 68.22 (9) | C33—C32—C31 | 120.82 (18) |
C21—Fe1—C14 | 165.43 (9) | C32—C33—C34 | 120.95 (19) |
C12—Fe1—C14 | 68.50 (8) | C35—C34—C33 | 118.19 (18) |
C25—Fe1—C14 | 128.95 (9) | C35—C34—C1 | 116.73 (18) |
C15—Fe1—C14 | 40.56 (8) | C33—C34—C1 | 125.09 (18) |
C11—Fe1—C14 | 68.86 (8) | C36—C35—C34 | 121.46 (19) |
C13—Fe1—C14 | 40.49 (8) | C35—C36—C31 | 120.51 (19) |
C22—Fe1—C14 | 153.65 (9) | ||
C2—N1—C1—O1 | −2.9 (3) | C31—C11—C15—C14 | −176.65 (19) |
C2—N1—C1—C34 | 176.86 (18) | C25—C21—C22—C23 | 0.0 (2) |
C1—N1—C2—C3 | −177.7 (2) | C21—C22—C23—C24 | −0.1 (2) |
C1—N1—C2—S1 | 2.5 (3) | C22—C23—C24—C25 | 0.1 (2) |
C5—S1—C2—C3 | −0.46 (17) | C23—C24—C25—C21 | −0.1 (3) |
C5—S1—C2—N1 | 179.34 (18) | C22—C21—C25—C24 | 0.0 (3) |
N1—C2—C3—C4 | −179.22 (19) | C15—C11—C31—C36 | −173.1 (2) |
S1—C2—C3—C4 | 0.6 (2) | C12—C11—C31—C36 | 11.2 (3) |
N1—C2—C3—C6 | 1.8 (3) | Fe1—C11—C31—C36 | 99.1 (2) |
S1—C2—C3—C6 | −178.42 (16) | C15—C11—C31—C32 | 7.2 (3) |
C2—C3—C4—C5 | −0.4 (3) | C12—C11—C31—C32 | −168.55 (19) |
C6—C3—C4—C5 | 178.5 (2) | Fe1—C11—C31—C32 | −80.6 (2) |
C3—C4—C5—S1 | 0.1 (3) | C36—C31—C32—C33 | 0.9 (3) |
C2—S1—C5—C4 | 0.21 (19) | C11—C31—C32—C33 | −179.33 (19) |
C7—O3—C6—O2 | −1.2 (3) | C31—C32—C33—C34 | −0.3 (3) |
C7—O3—C6—C3 | 179.41 (17) | C32—C33—C34—C35 | −0.7 (3) |
C2—C3—C6—O2 | 6.0 (3) | C32—C33—C34—C1 | 178.9 (2) |
C4—C3—C6—O2 | −172.9 (2) | O1—C1—C34—C35 | 8.6 (3) |
C2—C3—C6—O3 | −174.58 (18) | N1—C1—C34—C35 | −171.15 (19) |
C4—C3—C6—O3 | 6.6 (3) | O1—C1—C34—C33 | −171.0 (2) |
C15—C11—C12—C13 | 0.2 (2) | N1—C1—C34—C33 | 9.2 (3) |
C31—C11—C12—C13 | 176.56 (19) | C33—C34—C35—C36 | 1.1 (3) |
C11—C12—C13—C14 | −0.1 (2) | C1—C34—C35—C36 | −178.5 (2) |
C12—C13—C14—C15 | −0.1 (2) | C34—C35—C36—C31 | −0.5 (3) |
C13—C14—C15—C11 | 0.2 (2) | C32—C31—C36—C35 | −0.6 (3) |
C12—C11—C15—C14 | −0.2 (2) | C11—C31—C36—C35 | 179.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.81 (2) | 2.14 (2) | 2.768 (2) | 134 (2) |
C5—H5···O2i | 0.95 | 2.56 | 3.411 (3) | 150 |
C15—H15···O1ii | 0.95 | 2.56 | 3.401 (3) | 147 |
C32—H32···O1ii | 0.95 | 2.65 | 3.577 (2) | 165 |
C7—H7C···Cg3iii | 0.98 | 2.83 | 3.604 (2) | 136 |
Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) −x+1/2, y−1/2, −z−1/2. |
C24H22FeN2O3S | Z = 4 |
Mr = 474.36 | F(000) = 984 |
Triclinic, P1 | Dx = 1.476 Mg m−3 |
Hall symbol: -P 1 | Melting point: 422 K |
a = 12.7466 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.8752 (8) Å | Cell parameters from 12087 reflections |
c = 13.5661 (7) Å | θ = 2.6–27.5° |
α = 91.811 (3)° | µ = 0.83 mm−1 |
β = 106.096 (3)° | T = 150 K |
γ = 92.735 (3)° | Needle, red |
V = 2134.35 (18) Å3 | 0.20 × 0.07 × 0.04 mm |
Nonius KappaCCD diffractometer | 9714 independent reflections |
Radiation source: fine-focus sealed X-ray tube | 5617 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.069 |
ϕ scan and ω scans with κ offsets | θmax = 27.5°, θmin = 2.6° |
Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) | h = −16→16 |
Tmin = 0.851, Tmax = 0.967 | k = −16→16 |
15129 measured reflections | l = −16→17 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.127 | w = 1/[σ2(Fo2) + (0.0472P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.001 |
9714 reflections | Δρmax = 0.35 e Å−3 |
573 parameters | Δρmin = −0.47 e Å−3 |
6 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0015 (4) |
C24H22FeN2O3S | γ = 92.735 (3)° |
Mr = 474.36 | V = 2134.35 (18) Å3 |
Triclinic, P1 | Z = 4 |
a = 12.7466 (4) Å | Mo Kα radiation |
b = 12.8752 (8) Å | µ = 0.83 mm−1 |
c = 13.5661 (7) Å | T = 150 K |
α = 91.811 (3)° | 0.20 × 0.07 × 0.04 mm |
β = 106.096 (3)° |
Nonius KappaCCD diffractometer | 9714 independent reflections |
Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) | 5617 reflections with I > 2σ(I) |
Tmin = 0.851, Tmax = 0.967 | Rint = 0.069 |
15129 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 6 restraints |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.35 e Å−3 |
9714 reflections | Δρmin = −0.47 e Å−3 |
573 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Fe1 | 0.10206 (4) | 0.65069 (4) | 0.89920 (4) | 0.03399 (14) | |
S1A | 0.72421 (6) | 0.54294 (7) | 0.60277 (7) | 0.0378 (2) | |
O1A | 0.56479 (17) | 0.48700 (19) | 0.68635 (17) | 0.0388 (6) | |
O2A | 0.96302 (18) | 0.7918 (2) | 0.50731 (18) | 0.0442 (6) | |
N1A | 0.51968 (19) | 0.6159 (2) | 0.57640 (19) | 0.0320 (6) | |
H1A | 0.4684 | 0.6568 | 0.5456 | 0.038* | |
N2A | 0.63768 (19) | 0.6924 (2) | 0.4917 (2) | 0.0327 (6) | |
C1A | 0.4973 (2) | 0.5486 (3) | 0.6456 (2) | 0.0317 (8) | |
C2A | 0.6182 (2) | 0.6227 (3) | 0.5527 (2) | 0.0298 (7) | |
C3A | 0.7421 (2) | 0.6839 (3) | 0.4806 (2) | 0.0309 (7) | |
C4A | 0.7989 (2) | 0.6089 (3) | 0.5347 (2) | 0.0362 (8) | |
H4A | 0.8714 | 0.5943 | 0.5351 | 0.043* | |
C5A | 0.7758 (2) | 0.7565 (3) | 0.4093 (3) | 0.0372 (8) | |
H51 | 0.7408 | 0.7303 | 0.3377 | 0.045* | |
H52 | 0.7478 | 0.8256 | 0.4181 | 0.045* | |
C6A | 0.8968 (3) | 0.7697 (3) | 0.4249 (2) | 0.0383 (8) | |
O3A | 0.92290 (18) | 0.7616 (3) | 0.33630 (19) | 0.0426 (10) | 0.915 (7) |
C7A | 1.0400 (3) | 0.7803 (4) | 0.3411 (4) | 0.0507 (13) | 0.915 (7) |
H71 | 1.0471 | 0.8030 | 0.2741 | 0.061* | 0.915 (7) |
H72 | 1.0745 | 0.8355 | 0.3942 | 0.061* | 0.915 (7) |
C8A | 1.0942 (4) | 0.6815 (5) | 0.3669 (4) | 0.0626 (16) | 0.915 (7) |
H81 | 1.1705 | 0.6903 | 0.3653 | 0.094* | 0.915 (7) |
H82 | 1.0561 | 0.6262 | 0.3166 | 0.094* | 0.915 (7) |
H83 | 1.0919 | 0.6627 | 0.4357 | 0.094* | 0.915 (7) |
C11A | 0.0997 (2) | 0.5680 (3) | 0.7683 (2) | 0.0334 (8) | |
C12A | 0.0684 (3) | 0.5021 (3) | 0.8399 (3) | 0.0366 (8) | |
H12A | 0.1045 | 0.4426 | 0.8685 | 0.044* | |
C13A | −0.0255 (3) | 0.5413 (3) | 0.8604 (3) | 0.0386 (8) | |
H13A | −0.0634 | 0.5124 | 0.9053 | 0.046* | |
C14A | −0.0535 (3) | 0.6309 (3) | 0.8030 (3) | 0.0420 (9) | |
H14A | −0.1132 | 0.6725 | 0.8027 | 0.050* | |
C15A | 0.0233 (2) | 0.6474 (3) | 0.7463 (2) | 0.0364 (8) | |
H15A | 0.0239 | 0.7022 | 0.7012 | 0.044* | |
C21A | 0.2610 (3) | 0.6949 (3) | 0.9703 (3) | 0.0500 (10) | |
H21A | 0.3229 | 0.6718 | 0.9516 | 0.060* | |
C22A | 0.2129 (3) | 0.6474 (3) | 1.0400 (3) | 0.0467 (10) | |
H22A | 0.2360 | 0.5869 | 1.0765 | 0.056* | |
C23A | 0.1237 (3) | 0.7062 (3) | 1.0458 (3) | 0.0513 (10) | |
H23A | 0.0759 | 0.6922 | 1.0872 | 0.062* | |
C24A | 0.1180 (3) | 0.7893 (3) | 0.9795 (3) | 0.0563 (11) | |
H24A | 0.0659 | 0.8411 | 0.9683 | 0.068* | |
C25A | 0.2035 (3) | 0.7817 (3) | 0.9327 (3) | 0.0526 (11) | |
H25A | 0.2191 | 0.8274 | 0.8843 | 0.063* | |
C31A | 0.1972 (2) | 0.5610 (3) | 0.7307 (2) | 0.0314 (7) | |
C32A | 0.2219 (3) | 0.6345 (3) | 0.6658 (3) | 0.0394 (9) | |
H32A | 0.1729 | 0.6874 | 0.6420 | 0.047* | |
C33A | 0.3170 (3) | 0.6313 (3) | 0.6357 (3) | 0.0405 (9) | |
H33A | 0.3323 | 0.6817 | 0.5912 | 0.049* | |
C34A | 0.3906 (2) | 0.5548 (3) | 0.6702 (2) | 0.0305 (7) | |
C35A | 0.3651 (3) | 0.4808 (3) | 0.7328 (3) | 0.0419 (9) | |
H35A | 0.4137 | 0.4272 | 0.7558 | 0.050* | |
C36A | 0.2703 (3) | 0.4835 (3) | 0.7623 (3) | 0.0425 (9) | |
H36A | 0.2543 | 0.4316 | 0.8051 | 0.051* | |
O3C | 0.9272 (19) | 0.699 (2) | 0.366 (2) | 0.035* | 0.085 (7) |
C7C | 1.032 (2) | 0.734 (4) | 0.349 (4) | 0.035* | 0.085 (7) |
H73 | 1.0568 | 0.8052 | 0.3793 | 0.042* | 0.085 (7) |
H74 | 1.0284 | 0.7323 | 0.2751 | 0.042* | 0.085 (7) |
C8C | 1.105 (5) | 0.655 (4) | 0.404 (4) | 0.035* | 0.085 (7) |
H84 | 1.1804 | 0.6850 | 0.4262 | 0.052* | 0.085 (7) |
H85 | 1.1003 | 0.5942 | 0.3579 | 0.052* | 0.085 (7) |
H86 | 1.0818 | 0.6351 | 0.4641 | 0.052* | 0.085 (7) |
Fe2 | 0.37355 (3) | 0.23279 (4) | 0.07428 (4) | 0.03324 (14) | |
S1B | −0.30369 (7) | −0.00479 (8) | 0.25740 (7) | 0.0422 (2) | |
O1B | −0.14071 (18) | −0.0188 (2) | 0.17146 (18) | 0.0463 (7) | |
O2B | −0.3855 (2) | 0.2100 (2) | 0.5140 (2) | 0.0561 (7) | |
O3B | −0.3776 (2) | 0.1416 (2) | 0.66424 (18) | 0.0487 (7) | |
N1B | −0.0847 (2) | 0.0488 (2) | 0.3338 (2) | 0.0368 (7) | |
H1B | −0.0300 | 0.0777 | 0.3831 | 0.044* | |
N2B | −0.1961 (2) | 0.0458 (2) | 0.4451 (2) | 0.0380 (7) | |
C1B | −0.0669 (3) | 0.0227 (3) | 0.2415 (3) | 0.0355 (8) | |
C2B | −0.1859 (2) | 0.0317 (3) | 0.3530 (3) | 0.0348 (8) | |
C3B | −0.3053 (3) | 0.0267 (3) | 0.4423 (3) | 0.0359 (8) | |
C4B | −0.3734 (3) | 0.0010 (3) | 0.3484 (3) | 0.0448 (9) | |
H4B | −0.4502 | −0.0122 | 0.3346 | 0.054* | |
C5B | −0.3346 (3) | 0.0336 (3) | 0.5422 (3) | 0.0419 (9) | |
H53 | −0.2710 | 0.0146 | 0.5980 | 0.050* | |
H54 | −0.3956 | −0.0183 | 0.5388 | 0.050* | |
C6B | −0.3677 (2) | 0.1390 (3) | 0.5694 (3) | 0.0348 (8) | |
C7B | −0.4060 (3) | 0.2413 (4) | 0.7034 (3) | 0.0587 (12) | |
H75 | −0.4678 | 0.2698 | 0.6519 | 0.070* | |
H76 | −0.3426 | 0.2926 | 0.7183 | 0.070* | |
C8B | −0.4369 (3) | 0.2198 (4) | 0.7985 (3) | 0.0707 (15) | |
H87 | −0.5078 | 0.1803 | 0.7809 | 0.106* | |
H88 | −0.4422 | 0.2857 | 0.8345 | 0.106* | |
H89 | −0.3813 | 0.1791 | 0.8430 | 0.106* | |
C11B | 0.3496 (2) | 0.1131 (3) | 0.1621 (2) | 0.0318 (7) | |
C12B | 0.3789 (3) | 0.0753 (3) | 0.0738 (3) | 0.0367 (8) | |
H12B | 0.3361 | 0.0270 | 0.0222 | 0.044* | |
C13B | 0.4829 (3) | 0.1221 (3) | 0.0762 (3) | 0.0405 (9) | |
H13B | 0.5213 | 0.1109 | 0.0263 | 0.049* | |
C14B | 0.5192 (3) | 0.1880 (3) | 0.1658 (3) | 0.0396 (9) | |
H14B | 0.5866 | 0.2284 | 0.1870 | 0.048* | |
C15B | 0.4376 (2) | 0.1834 (3) | 0.2183 (2) | 0.0344 (8) | |
H15B | 0.4408 | 0.2208 | 0.2806 | 0.041* | |
C21B | 0.2282 (3) | 0.3007 (3) | 0.0225 (3) | 0.0483 (10) | |
H21B | 0.1605 | 0.2788 | 0.0340 | 0.058* | |
C22B | 0.2649 (3) | 0.2662 (4) | −0.0599 (3) | 0.0557 (11) | |
H22B | 0.2278 | 0.2173 | −0.1136 | 0.067* | |
C23B | 0.3684 (4) | 0.3183 (5) | −0.0478 (4) | 0.0785 (17) | |
H23B | 0.4142 | 0.3107 | −0.0919 | 0.094* | |
C24B | 0.3910 (4) | 0.3841 (4) | 0.0428 (4) | 0.0733 (15) | |
H24B | 0.4545 | 0.4291 | 0.0698 | 0.088* | |
C25B | 0.3040 (3) | 0.3709 (3) | 0.0844 (3) | 0.0587 (11) | |
H25B | 0.2979 | 0.4048 | 0.1456 | 0.070* | |
C31B | 0.2456 (2) | 0.0904 (3) | 0.1871 (2) | 0.0314 (7) | |
C32B | 0.2212 (2) | 0.1389 (3) | 0.2701 (2) | 0.0318 (8) | |
H32B | 0.2735 | 0.1878 | 0.3133 | 0.038* | |
C33B | 0.1223 (2) | 0.1177 (3) | 0.2919 (2) | 0.0318 (8) | |
H33B | 0.1077 | 0.1515 | 0.3495 | 0.038* | |
C34B | 0.0448 (2) | 0.0467 (3) | 0.2290 (2) | 0.0323 (8) | |
C35B | 0.0693 (3) | −0.0022 (3) | 0.1463 (3) | 0.0468 (10) | |
H35B | 0.0172 | −0.0510 | 0.1029 | 0.056* | |
C36B | 0.1676 (3) | 0.0189 (3) | 0.1262 (3) | 0.0477 (10) | |
H36B | 0.1827 | −0.0162 | 0.0695 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0359 (3) | 0.0337 (3) | 0.0330 (3) | 0.0011 (2) | 0.0111 (2) | −0.0004 (2) |
S1A | 0.0320 (4) | 0.0398 (6) | 0.0421 (5) | 0.0052 (4) | 0.0098 (4) | 0.0083 (4) |
O1A | 0.0388 (12) | 0.0366 (16) | 0.0425 (14) | 0.0057 (11) | 0.0128 (11) | 0.0094 (11) |
O2A | 0.0441 (13) | 0.0513 (18) | 0.0396 (14) | −0.0107 (12) | 0.0189 (11) | −0.0104 (12) |
O3A | 0.0380 (14) | 0.058 (3) | 0.0358 (15) | 0.0060 (13) | 0.0157 (12) | 0.0045 (15) |
N1A | 0.0302 (13) | 0.0336 (18) | 0.0334 (15) | 0.0028 (11) | 0.0107 (12) | 0.0036 (13) |
N2A | 0.0318 (14) | 0.0322 (18) | 0.0336 (15) | 0.0015 (12) | 0.0085 (12) | −0.0001 (13) |
C1A | 0.0315 (16) | 0.032 (2) | 0.0306 (17) | −0.0017 (14) | 0.0079 (14) | −0.0061 (15) |
C2A | 0.0279 (16) | 0.032 (2) | 0.0288 (16) | 0.0020 (13) | 0.0067 (13) | −0.0031 (15) |
C3A | 0.0286 (16) | 0.033 (2) | 0.0311 (17) | −0.0023 (13) | 0.0091 (14) | −0.0034 (15) |
C4A | 0.0297 (16) | 0.040 (2) | 0.041 (2) | 0.0014 (15) | 0.0133 (15) | 0.0044 (17) |
C5A | 0.0359 (17) | 0.039 (2) | 0.0411 (19) | 0.0025 (15) | 0.0186 (15) | 0.0009 (17) |
C6A | 0.0448 (19) | 0.036 (2) | 0.039 (2) | −0.0005 (16) | 0.0216 (17) | −0.0022 (17) |
C7A | 0.049 (2) | 0.057 (4) | 0.053 (3) | −0.004 (2) | 0.026 (2) | 0.003 (3) |
C8A | 0.053 (3) | 0.075 (5) | 0.055 (4) | 0.012 (3) | 0.005 (3) | −0.002 (3) |
C11A | 0.0362 (17) | 0.032 (2) | 0.0316 (18) | 0.0002 (14) | 0.0099 (14) | 0.0008 (15) |
C12A | 0.0371 (18) | 0.037 (2) | 0.0357 (19) | −0.0021 (15) | 0.0109 (15) | 0.0003 (16) |
C13A | 0.0359 (18) | 0.042 (2) | 0.0404 (19) | −0.0047 (15) | 0.0162 (15) | 0.0024 (17) |
C14A | 0.0301 (17) | 0.056 (3) | 0.041 (2) | 0.0048 (16) | 0.0114 (15) | 0.0024 (18) |
C15A | 0.0354 (17) | 0.041 (2) | 0.0335 (18) | 0.0057 (15) | 0.0094 (15) | 0.0078 (16) |
C21A | 0.043 (2) | 0.058 (3) | 0.044 (2) | −0.0107 (19) | 0.0064 (17) | −0.005 (2) |
C22A | 0.049 (2) | 0.047 (3) | 0.039 (2) | −0.0056 (18) | 0.0046 (17) | 0.0006 (18) |
C23A | 0.062 (2) | 0.054 (3) | 0.040 (2) | −0.009 (2) | 0.0217 (19) | −0.014 (2) |
C24A | 0.074 (3) | 0.035 (3) | 0.056 (3) | 0.002 (2) | 0.015 (2) | −0.012 (2) |
C25A | 0.062 (2) | 0.048 (3) | 0.044 (2) | −0.018 (2) | 0.0126 (19) | −0.002 (2) |
C31A | 0.0367 (17) | 0.029 (2) | 0.0285 (16) | −0.0013 (14) | 0.0101 (14) | −0.0013 (15) |
C32A | 0.0394 (18) | 0.041 (2) | 0.043 (2) | 0.0138 (16) | 0.0169 (16) | 0.0126 (17) |
C33A | 0.0449 (19) | 0.039 (2) | 0.043 (2) | 0.0039 (16) | 0.0195 (16) | 0.0131 (17) |
C34A | 0.0357 (17) | 0.029 (2) | 0.0265 (16) | 0.0003 (14) | 0.0088 (14) | −0.0024 (14) |
C35A | 0.0454 (19) | 0.038 (2) | 0.051 (2) | 0.0126 (16) | 0.0244 (17) | 0.0152 (18) |
C36A | 0.047 (2) | 0.036 (2) | 0.053 (2) | 0.0091 (16) | 0.0255 (17) | 0.0175 (18) |
Fe2 | 0.0322 (2) | 0.0350 (3) | 0.0354 (3) | 0.0050 (2) | 0.0132 (2) | 0.0056 (2) |
S1B | 0.0348 (4) | 0.0496 (6) | 0.0448 (5) | 0.0034 (4) | 0.0152 (4) | 0.0034 (4) |
O1B | 0.0416 (13) | 0.0576 (19) | 0.0410 (14) | −0.0107 (12) | 0.0173 (11) | −0.0112 (13) |
O2B | 0.0802 (19) | 0.0459 (18) | 0.0618 (17) | 0.0311 (15) | 0.0456 (15) | 0.0245 (15) |
O3B | 0.0612 (16) | 0.0533 (19) | 0.0373 (14) | 0.0206 (13) | 0.0198 (12) | 0.0068 (13) |
N1B | 0.0349 (15) | 0.042 (2) | 0.0371 (16) | −0.0043 (13) | 0.0178 (12) | −0.0043 (14) |
N2B | 0.0427 (16) | 0.0363 (19) | 0.0418 (17) | −0.0002 (13) | 0.0235 (13) | 0.0009 (14) |
C1B | 0.0403 (18) | 0.033 (2) | 0.0385 (19) | 0.0003 (15) | 0.0200 (16) | −0.0003 (16) |
C2B | 0.0366 (17) | 0.030 (2) | 0.043 (2) | −0.0014 (14) | 0.0203 (15) | 0.0023 (16) |
C3B | 0.0389 (18) | 0.028 (2) | 0.050 (2) | 0.0081 (14) | 0.0260 (16) | 0.0061 (16) |
C4B | 0.0351 (18) | 0.049 (3) | 0.058 (2) | 0.0105 (16) | 0.0240 (18) | 0.009 (2) |
C5B | 0.0461 (19) | 0.036 (2) | 0.057 (2) | 0.0086 (16) | 0.0335 (18) | 0.0153 (18) |
C6B | 0.0297 (16) | 0.038 (2) | 0.043 (2) | 0.0092 (14) | 0.0169 (15) | 0.0091 (17) |
C7B | 0.061 (2) | 0.067 (3) | 0.051 (2) | 0.021 (2) | 0.018 (2) | −0.007 (2) |
C8B | 0.055 (2) | 0.098 (4) | 0.059 (3) | −0.011 (2) | 0.020 (2) | −0.030 (3) |
C11B | 0.0329 (16) | 0.029 (2) | 0.0358 (18) | 0.0049 (14) | 0.0129 (14) | 0.0023 (15) |
C12B | 0.0399 (18) | 0.033 (2) | 0.044 (2) | 0.0046 (15) | 0.0221 (16) | −0.0020 (16) |
C13B | 0.0397 (18) | 0.043 (2) | 0.047 (2) | 0.0074 (16) | 0.0256 (16) | 0.0036 (18) |
C14B | 0.0323 (17) | 0.044 (2) | 0.044 (2) | 0.0035 (15) | 0.0124 (15) | 0.0075 (18) |
C15B | 0.0352 (17) | 0.037 (2) | 0.0311 (17) | 0.0080 (14) | 0.0087 (14) | 0.0004 (15) |
C21B | 0.043 (2) | 0.055 (3) | 0.048 (2) | 0.0124 (18) | 0.0117 (18) | 0.013 (2) |
C22B | 0.066 (3) | 0.058 (3) | 0.040 (2) | 0.021 (2) | 0.0048 (19) | 0.007 (2) |
C23B | 0.075 (3) | 0.109 (5) | 0.078 (3) | 0.046 (3) | 0.052 (3) | 0.066 (3) |
C24B | 0.056 (3) | 0.051 (3) | 0.101 (4) | 0.000 (2) | 0.001 (3) | 0.038 (3) |
C25B | 0.065 (3) | 0.047 (3) | 0.060 (3) | 0.022 (2) | 0.007 (2) | 0.007 (2) |
C31B | 0.0332 (16) | 0.028 (2) | 0.0353 (18) | 0.0033 (13) | 0.0136 (14) | 0.0052 (15) |
C32B | 0.0324 (16) | 0.035 (2) | 0.0294 (17) | 0.0051 (14) | 0.0103 (14) | −0.0002 (15) |
C33B | 0.0343 (17) | 0.036 (2) | 0.0278 (16) | 0.0072 (14) | 0.0125 (14) | −0.0001 (15) |
C34B | 0.0346 (17) | 0.032 (2) | 0.0334 (18) | 0.0006 (14) | 0.0148 (14) | 0.0043 (15) |
C35B | 0.051 (2) | 0.047 (3) | 0.048 (2) | −0.0161 (18) | 0.0287 (18) | −0.0203 (19) |
C36B | 0.054 (2) | 0.049 (3) | 0.048 (2) | −0.0103 (18) | 0.0324 (18) | −0.0149 (19) |
Fe1—C11A | 2.034 (3) | C33A—H33A | 0.9500 |
Fe1—C12A | 2.031 (4) | C35A—H35A | 0.9500 |
Fe1—C13A | 2.040 (3) | C36A—H36A | 0.9500 |
Fe1—C14A | 2.048 (3) | Fe2—C11B | 2.040 (3) |
Fe1—C15A | 2.036 (3) | Fe2—C12B | 2.032 (4) |
Fe1—C21A | 2.033 (3) | Fe2—C13B | 2.037 (3) |
Fe1—C22A | 2.040 (4) | Fe2—C14B | 2.047 (3) |
Fe1—C23A | 2.033 (4) | Fe2—C15B | 2.033 (3) |
Fe1—C24A | 2.033 (4) | Fe2—C21B | 2.041 (4) |
Fe1—C25A | 2.035 (4) | Fe2—C23B | 2.005 (4) |
S1A—C2A | 1.735 (3) | Fe2—C22B | 2.031 (4) |
S1A—C4A | 1.716 (3) | Fe2—C24B | 2.023 (5) |
O1A—C1A | 1.226 (4) | Fe2—C25B | 2.042 (4) |
O2A—C6A | 1.215 (4) | S1B—C2B | 1.724 (3) |
O3A—C6A | 1.335 (3) | S1B—C4B | 1.711 (4) |
O3A—C7A | 1.483 (3) | O1B—C1B | 1.224 (4) |
N1A—C1A | 1.374 (4) | O2B—C6B | 1.192 (4) |
N1A—C2A | 1.379 (4) | O3B—C6B | 1.327 (4) |
N2A—C2A | 1.300 (4) | O3B—C7B | 1.472 (5) |
N2A—C3A | 1.390 (4) | N1B—C1B | 1.367 (4) |
C1A—C34A | 1.493 (4) | N1B—C2B | 1.394 (4) |
C3A—C4A | 1.346 (5) | N2B—C2B | 1.299 (4) |
C3A—C5A | 1.498 (5) | N2B—C3B | 1.393 (4) |
C5A—C6A | 1.498 (4) | C1B—C34B | 1.498 (4) |
C7A—C8A | 1.482 (5) | C3B—C4B | 1.348 (5) |
C11A—C12A | 1.435 (5) | C3B—C5B | 1.504 (5) |
C11A—C15A | 1.426 (5) | C5B—C6B | 1.505 (5) |
C11A—C31A | 1.473 (4) | C7B—C8B | 1.480 (6) |
C12A—C13A | 1.414 (5) | C11B—C12B | 1.428 (4) |
C13A—C14A | 1.416 (5) | C11B—C15B | 1.430 (4) |
C14A—C15A | 1.416 (5) | C11B—C31B | 1.475 (4) |
C21A—C22A | 1.403 (5) | C12B—C13B | 1.421 (4) |
C21A—C25A | 1.398 (6) | C13B—C14B | 1.414 (5) |
C22A—C23A | 1.415 (5) | C14B—C15B | 1.413 (4) |
C23A—C24A | 1.412 (6) | C21B—C25B | 1.369 (6) |
C24A—C25A | 1.411 (6) | C21B—C22B | 1.395 (5) |
C31A—C32A | 1.395 (5) | C22B—C23B | 1.417 (6) |
C31A—C36A | 1.394 (5) | C23B—C24B | 1.423 (7) |
C32A—C33A | 1.384 (4) | C24B—C25B | 1.382 (6) |
C33A—C34A | 1.394 (5) | C31B—C32B | 1.387 (4) |
C34A—C35A | 1.382 (5) | C31B—C36B | 1.388 (5) |
C35A—C36A | 1.376 (4) | C32B—C33B | 1.389 (4) |
O3C—C7C | 1.474 (5) | C33B—C34B | 1.392 (4) |
C7C—C8C | 1.480 (6) | C34B—C35B | 1.385 (4) |
N1A—H1A | 0.8800 | C35B—C36B | 1.372 (5) |
C4A—H4A | 0.9500 | N1B—H1B | 0.8800 |
C5A—H51 | 0.9900 | C4B—H4B | 0.9500 |
C5A—H52 | 0.9900 | C5B—H53 | 0.9900 |
C7A—H71 | 0.9900 | C5B—H54 | 0.9900 |
C7A—H72 | 0.9900 | C7B—H75 | 0.9900 |
C8A—H81 | 0.9800 | C7B—H76 | 0.9900 |
C8A—H82 | 0.9800 | C8B—H87 | 0.9800 |
C8A—H83 | 0.9800 | C8B—H88 | 0.9800 |
C7C—H73 | 0.9900 | C8B—H89 | 0.9800 |
C7C—H74 | 0.9900 | C12B—H12B | 0.9500 |
C8C—H84 | 0.9800 | C13B—H13B | 0.9500 |
C8C—H85 | 0.9800 | C14B—H14B | 0.9500 |
C8C—H86 | 0.9800 | C15B—H15B | 0.9500 |
C12A—H12A | 0.9500 | C21B—H21B | 0.9500 |
C13A—H13A | 0.9500 | C22B—H22B | 0.9500 |
C14A—H14A | 0.9500 | C23B—H23B | 0.9500 |
C15A—H15A | 0.9500 | C24B—H24B | 0.9500 |
C21A—H21A | 0.9500 | C25B—H25B | 0.9500 |
C22A—H22A | 0.9500 | C32B—H32B | 0.9500 |
C23A—H23A | 0.9500 | C33B—H33B | 0.9500 |
C24A—H24A | 0.9500 | C35B—H35B | 0.9500 |
C25A—H25A | 0.9500 | C36B—H36B | 0.9500 |
C32A—H32A | 0.9500 | ||
C12A—Fe1—C23A | 129.21 (16) | C7C—C8C—H86 | 109.5 |
C12A—Fe1—C24A | 167.90 (16) | H84—C8C—H86 | 109.5 |
C23A—Fe1—C24A | 40.64 (16) | H85—C8C—H86 | 109.5 |
C12A—Fe1—C21A | 117.36 (16) | C23B—Fe2—C24B | 41.4 (2) |
C23A—Fe1—C21A | 67.86 (16) | C23B—Fe2—C22B | 41.09 (19) |
C24A—Fe1—C21A | 67.83 (17) | C24B—Fe2—C22B | 68.62 (19) |
C12A—Fe1—C11A | 41.34 (13) | C23B—Fe2—C12B | 124.5 (2) |
C23A—Fe1—C11A | 167.01 (16) | C24B—Fe2—C12B | 163.3 (2) |
C24A—Fe1—C11A | 150.01 (17) | C22B—Fe2—C12B | 106.53 (16) |
C21A—Fe1—C11A | 106.95 (14) | C23B—Fe2—C15B | 156.0 (2) |
C12A—Fe1—C25A | 150.07 (16) | C24B—Fe2—C15B | 120.95 (18) |
C23A—Fe1—C25A | 68.22 (17) | C22B—Fe2—C15B | 161.75 (16) |
C24A—Fe1—C25A | 40.58 (16) | C12B—Fe2—C15B | 68.65 (14) |
C21A—Fe1—C25A | 40.21 (16) | C23B—Fe2—C13B | 107.31 (17) |
C11A—Fe1—C25A | 116.12 (15) | C24B—Fe2—C13B | 126.50 (18) |
C12A—Fe1—C15A | 68.87 (14) | C22B—Fe2—C13B | 120.21 (16) |
C23A—Fe1—C15A | 151.46 (16) | C12B—Fe2—C13B | 40.88 (13) |
C24A—Fe1—C15A | 117.54 (16) | C15B—Fe2—C13B | 68.44 (14) |
C21A—Fe1—C15A | 128.10 (15) | C23B—Fe2—C11B | 161.5 (2) |
C11A—Fe1—C15A | 41.03 (13) | C24B—Fe2—C11B | 155.0 (2) |
C25A—Fe1—C15A | 107.50 (16) | C22B—Fe2—C11B | 123.82 (16) |
C12A—Fe1—C22A | 107.94 (16) | C12B—Fe2—C11B | 41.07 (13) |
C23A—Fe1—C22A | 40.67 (15) | C15B—Fe2—C11B | 41.11 (13) |
C24A—Fe1—C22A | 68.34 (17) | C13B—Fe2—C11B | 69.12 (13) |
C21A—Fe1—C22A | 40.29 (14) | C23B—Fe2—C21B | 67.67 (17) |
C11A—Fe1—C22A | 127.82 (15) | C24B—Fe2—C21B | 66.66 (17) |
C25A—Fe1—C22A | 68.12 (16) | C22B—Fe2—C21B | 40.06 (15) |
C15A—Fe1—C22A | 166.15 (14) | C12B—Fe2—C21B | 120.64 (15) |
C12A—Fe1—C13A | 40.66 (13) | C15B—Fe2—C21B | 126.02 (14) |
C23A—Fe1—C13A | 109.56 (15) | C13B—Fe2—C21B | 155.43 (15) |
C24A—Fe1—C13A | 129.98 (16) | C11B—Fe2—C21B | 107.60 (14) |
C21A—Fe1—C13A | 151.38 (17) | C23B—Fe2—C25B | 68.1 (2) |
C11A—Fe1—C13A | 68.89 (13) | C24B—Fe2—C25B | 39.76 (19) |
C25A—Fe1—C13A | 167.69 (16) | C22B—Fe2—C25B | 67.55 (17) |
C15A—Fe1—C13A | 68.29 (14) | C12B—Fe2—C25B | 154.80 (16) |
C22A—Fe1—C13A | 118.70 (15) | C15B—Fe2—C25B | 108.87 (16) |
C12A—Fe1—C14A | 68.61 (15) | C13B—Fe2—C25B | 163.52 (16) |
C23A—Fe1—C14A | 118.91 (15) | C11B—Fe2—C25B | 120.32 (16) |
C24A—Fe1—C14A | 108.94 (17) | C21B—Fe2—C25B | 39.19 (16) |
C21A—Fe1—C14A | 166.50 (16) | C23B—Fe2—C14B | 120.93 (17) |
C11A—Fe1—C14A | 68.89 (13) | C24B—Fe2—C14B | 109.01 (16) |
C25A—Fe1—C14A | 128.93 (17) | C22B—Fe2—C14B | 155.79 (15) |
C15A—Fe1—C14A | 40.57 (13) | C12B—Fe2—C14B | 68.44 (14) |
C22A—Fe1—C14A | 152.17 (15) | C15B—Fe2—C14B | 40.54 (13) |
C13A—Fe1—C14A | 40.53 (14) | C13B—Fe2—C14B | 40.52 (14) |
C2A—S1A—C4A | 88.04 (16) | C11B—Fe2—C14B | 68.89 (13) |
C6A—O3A—C7A | 116.9 (3) | C21B—Fe2—C14B | 162.92 (15) |
C1A—N1A—C2A | 123.5 (3) | C25B—Fe2—C14B | 126.99 (16) |
C1A—N1A—H1A | 118.2 | C4B—S1B—C2B | 88.03 (17) |
C2A—N1A—H1A | 118.2 | C6B—O3B—C7B | 116.6 (3) |
C2A—N2A—C3A | 110.1 (3) | C1B—N1B—C2B | 122.9 (3) |
O1A—C1A—N1A | 120.1 (3) | C1B—N1B—H1B | 118.6 |
O1A—C1A—C34A | 121.9 (3) | C2B—N1B—H1B | 118.6 |
N1A—C1A—C34A | 118.0 (3) | C2B—N2B—C3B | 109.0 (3) |
N2A—C2A—N1A | 121.0 (3) | O1B—C1B—N1B | 120.4 (3) |
N2A—C2A—S1A | 115.6 (2) | O1B—C1B—C34B | 121.4 (3) |
N1A—C2A—S1A | 123.3 (3) | N1B—C1B—C34B | 118.2 (3) |
C4A—C3A—N2A | 114.7 (3) | N2B—C2B—N1B | 120.8 (3) |
C4A—C3A—C5A | 128.6 (3) | N2B—C2B—S1B | 116.6 (2) |
N2A—C3A—C5A | 116.7 (3) | N1B—C2B—S1B | 122.6 (2) |
C3A—C4A—S1A | 111.6 (2) | C4B—C3B—N2B | 115.0 (3) |
C3A—C4A—H4A | 124.2 | C4B—C3B—C5B | 127.1 (3) |
S1A—C4A—H4A | 124.2 | N2B—C3B—C5B | 117.9 (3) |
C6A—C5A—C3A | 114.6 (3) | C3B—C4B—S1B | 111.3 (2) |
C6A—C5A—H51 | 108.6 | C3B—C4B—H4B | 124.4 |
C3A—C5A—H51 | 108.6 | S1B—C4B—H4B | 124.4 |
C6A—C5A—H52 | 108.6 | C3B—C5B—C6B | 114.6 (3) |
C3A—C5A—H52 | 108.6 | C3B—C5B—H53 | 108.6 |
H51—C5A—H52 | 107.6 | C6B—C5B—H53 | 108.6 |
O2A—C6A—O3A | 123.7 (3) | C3B—C5B—H54 | 108.6 |
O2A—C6A—C5A | 124.2 (3) | C6B—C5B—H54 | 108.6 |
O3A—C6A—C5A | 111.9 (3) | H53—C5B—H54 | 107.6 |
C8A—C7A—O3A | 107.9 (4) | O2B—C6B—O3B | 124.0 (3) |
C8A—C7A—H71 | 110.1 | O2B—C6B—C5B | 125.8 (3) |
O3A—C7A—H71 | 110.1 | O3B—C6B—C5B | 110.2 (3) |
C8A—C7A—H72 | 110.1 | O3B—C7B—C8B | 106.8 (4) |
O3A—C7A—H72 | 110.1 | O3B—C7B—H75 | 110.4 |
H71—C7A—H72 | 108.4 | C8B—C7B—H75 | 110.4 |
C15A—C11A—C12A | 107.0 (3) | O3B—C7B—H76 | 110.4 |
C15A—C11A—C31A | 126.0 (3) | C8B—C7B—H76 | 110.4 |
C12A—C11A—C31A | 126.8 (3) | H75—C7B—H76 | 108.6 |
C15A—C11A—Fe1 | 69.58 (19) | C7B—C8B—H87 | 109.5 |
C12A—C11A—Fe1 | 69.21 (19) | C7B—C8B—H88 | 109.5 |
C31A—C11A—Fe1 | 122.6 (2) | H87—C8B—H88 | 109.5 |
C13A—C12A—C11A | 108.0 (3) | C7B—C8B—H89 | 109.5 |
C13A—C12A—Fe1 | 70.0 (2) | H87—C8B—H89 | 109.5 |
C11A—C12A—Fe1 | 69.5 (2) | H88—C8B—H89 | 109.5 |
C13A—C12A—H12A | 126.0 | C12B—C11B—C15B | 106.6 (3) |
C11A—C12A—H12A | 126.0 | C12B—C11B—C31B | 126.9 (3) |
Fe1—C12A—H12A | 126.1 | C15B—C11B—C31B | 126.3 (3) |
C12A—C13A—C14A | 108.6 (3) | C12B—C11B—Fe2 | 69.2 (2) |
C12A—C13A—Fe1 | 69.31 (19) | C15B—C11B—Fe2 | 69.18 (19) |
C14A—C13A—Fe1 | 70.0 (2) | C31B—C11B—Fe2 | 123.3 (2) |
C12A—C13A—H13A | 125.7 | C13B—C12B—C11B | 108.5 (3) |
C14A—C13A—H13A | 125.7 | C13B—C12B—Fe2 | 69.7 (2) |
Fe1—C13A—H13A | 126.5 | C11B—C12B—Fe2 | 69.8 (2) |
C13A—C14A—C15A | 107.8 (3) | C13B—C12B—H12B | 125.8 |
C13A—C14A—Fe1 | 69.42 (19) | C11B—C12B—H12B | 125.8 |
C15A—C14A—Fe1 | 69.25 (18) | Fe2—C12B—H12B | 126.3 |
C13A—C14A—H14A | 126.1 | C14B—C13B—C12B | 108.0 (3) |
C15A—C14A—H14A | 126.1 | C14B—C13B—Fe2 | 70.1 (2) |
Fe1—C14A—H14A | 126.8 | C12B—C13B—Fe2 | 69.38 (19) |
C14A—C15A—C11A | 108.7 (3) | C14B—C13B—H13B | 126.0 |
C14A—C15A—Fe1 | 70.18 (19) | C12B—C13B—H13B | 126.0 |
C11A—C15A—Fe1 | 69.40 (18) | Fe2—C13B—H13B | 126.1 |
C14A—C15A—H15A | 125.7 | C15B—C14B—C13B | 108.1 (3) |
C11A—C15A—H15A | 125.7 | C15B—C14B—Fe2 | 69.20 (18) |
Fe1—C15A—H15A | 126.3 | C13B—C14B—Fe2 | 69.36 (19) |
C25A—C21A—C22A | 109.1 (4) | C15B—C14B—H14B | 126.0 |
C25A—C21A—Fe1 | 70.0 (2) | C13B—C14B—H14B | 126.0 |
C22A—C21A—Fe1 | 70.1 (2) | Fe2—C14B—H14B | 127.0 |
C25A—C21A—H21A | 125.4 | C14B—C15B—C11B | 108.8 (3) |
C22A—C21A—H21A | 125.4 | C14B—C15B—Fe2 | 70.26 (19) |
Fe1—C21A—H21A | 126.0 | C11B—C15B—Fe2 | 69.72 (18) |
C21A—C22A—C23A | 107.3 (4) | C14B—C15B—H15B | 125.6 |
C21A—C22A—Fe1 | 69.6 (2) | C11B—C15B—H15B | 125.6 |
C23A—C22A—Fe1 | 69.4 (2) | Fe2—C15B—H15B | 126.0 |
C21A—C22A—H22A | 126.4 | C25B—C21B—C22B | 110.0 (4) |
C23A—C22A—H22A | 126.4 | C25B—C21B—Fe2 | 70.5 (2) |
Fe1—C22A—H22A | 126.2 | C22B—C21B—Fe2 | 69.6 (2) |
C24A—C23A—C22A | 108.0 (4) | C25B—C21B—H21B | 125.0 |
C24A—C23A—Fe1 | 69.7 (2) | C22B—C21B—H21B | 125.0 |
C22A—C23A—Fe1 | 69.9 (2) | Fe2—C21B—H21B | 126.5 |
C24A—C23A—H23A | 126.0 | C21B—C22B—C23B | 106.5 (4) |
C22A—C23A—H23A | 126.0 | C21B—C22B—Fe2 | 70.3 (2) |
Fe1—C23A—H23A | 126.0 | C23B—C22B—Fe2 | 68.5 (2) |
C25A—C24A—C23A | 107.9 (4) | C21B—C22B—H22B | 126.7 |
C25A—C24A—Fe1 | 69.8 (2) | C23B—C22B—H22B | 126.7 |
C23A—C24A—Fe1 | 69.7 (2) | Fe2—C22B—H22B | 126.0 |
C25A—C24A—H24A | 126.1 | C22B—C23B—C24B | 107.1 (4) |
C23A—C24A—H24A | 126.1 | C22B—C23B—Fe2 | 70.4 (2) |
Fe1—C24A—H24A | 126.0 | C24B—C23B—Fe2 | 70.0 (3) |
C21A—C25A—C24A | 107.7 (4) | C22B—C23B—H23B | 126.4 |
C21A—C25A—Fe1 | 69.8 (2) | C24B—C23B—H23B | 126.4 |
C24A—C25A—Fe1 | 69.6 (2) | Fe2—C23B—H23B | 124.8 |
C21A—C25A—H25A | 126.1 | C25B—C24B—C23B | 107.8 (4) |
C24A—C25A—H25A | 126.1 | C25B—C24B—Fe2 | 70.9 (3) |
Fe1—C25A—H25A | 126.0 | C23B—C24B—Fe2 | 68.7 (3) |
C36A—C31A—C32A | 117.7 (3) | C25B—C24B—H24B | 126.1 |
C36A—C31A—C11A | 121.1 (3) | C23B—C24B—H24B | 126.1 |
C32A—C31A—C11A | 121.1 (3) | Fe2—C24B—H24B | 126.0 |
C33A—C32A—C31A | 120.9 (3) | C21B—C25B—C24B | 108.5 (4) |
C33A—C32A—H32A | 119.5 | C21B—C25B—Fe2 | 70.4 (2) |
C31A—C32A—H32A | 119.5 | C24B—C25B—Fe2 | 69.4 (3) |
C32A—C33A—C34A | 120.6 (3) | C21B—C25B—H25B | 125.8 |
C32A—C33A—H33A | 119.7 | C24B—C25B—H25B | 125.8 |
C34A—C33A—H33A | 119.7 | Fe2—C25B—H25B | 126.1 |
C35A—C34A—C33A | 118.5 (3) | C32B—C31B—C36B | 117.6 (3) |
C35A—C34A—C1A | 117.4 (3) | C32B—C31B—C11B | 122.3 (3) |
C33A—C34A—C1A | 124.1 (3) | C36B—C31B—C11B | 120.1 (3) |
C36A—C35A—C34A | 120.9 (3) | C31B—C32B—C33B | 121.7 (3) |
C36A—C35A—H35A | 119.6 | C31B—C32B—H32B | 119.2 |
C34A—C35A—H35A | 119.6 | C33B—C32B—H32B | 119.2 |
C35A—C36A—C31A | 121.3 (3) | C32B—C33B—C34B | 119.8 (3) |
C35A—C36A—H36A | 119.3 | C32B—C33B—H33B | 120.1 |
C31A—C36A—H36A | 119.3 | C34B—C33B—H33B | 120.1 |
O3C—C7C—C8C | 101 (3) | C35B—C34B—C33B | 118.6 (3) |
O3C—C7C—H73 | 111.5 | C35B—C34B—C1B | 117.0 (3) |
C8C—C7C—H73 | 111.5 | C33B—C34B—C1B | 124.3 (3) |
O3C—C7C—H74 | 111.5 | C36B—C35B—C34B | 120.9 (3) |
C8C—C7C—H74 | 111.5 | C36B—C35B—H35B | 119.5 |
H73—C7C—H74 | 109.3 | C34B—C35B—H35B | 119.5 |
C7C—C8C—H84 | 109.5 | C35B—C36B—C31B | 121.4 (3) |
C7C—C8C—H85 | 109.5 | C35B—C36B—H36B | 119.3 |
H84—C8C—H85 | 109.5 | C31B—C36B—H36B | 119.3 |
C2A—N1A—C1A—O1A | −3.4 (5) | C6A—O3A—O3C—C7C | −122 (3) |
C2A—N1A—C1A—C34A | 175.3 (3) | C7A—O3A—O3C—C7C | −6 (3) |
C3A—N2A—C2A—N1A | 179.6 (3) | O3A—O3C—C7C—C8C | 172 (4) |
C3A—N2A—C2A—S1A | 0.9 (3) | C2B—N1B—C1B—O1B | −0.9 (5) |
C1A—N1A—C2A—N2A | −175.5 (3) | C2B—N1B—C1B—C34B | 178.9 (3) |
C1A—N1A—C2A—S1A | 3.1 (4) | C3B—N2B—C2B—N1B | 178.0 (3) |
C4A—S1A—C2A—N2A | −0.5 (3) | C3B—N2B—C2B—S1B | 0.0 (4) |
C4A—S1A—C2A—N1A | −179.2 (3) | C1B—N1B—C2B—N2B | 171.5 (3) |
C2A—N2A—C3A—C4A | −0.8 (4) | C1B—N1B—C2B—S1B | −10.6 (5) |
C2A—N2A—C3A—C5A | 177.8 (3) | C4B—S1B—C2B—N2B | 0.8 (3) |
N2A—C3A—C4A—S1A | 0.4 (4) | C4B—S1B—C2B—N1B | −177.2 (3) |
C5A—C3A—C4A—S1A | −178.0 (3) | C2B—N2B—C3B—C4B | −1.2 (5) |
C2A—S1A—C4A—C3A | 0.0 (3) | C2B—N2B—C3B—C5B | 177.1 (3) |
C4A—C3A—C5A—C6A | −20.6 (5) | N2B—C3B—C4B—S1B | 1.8 (4) |
N2A—C3A—C5A—C6A | 161.0 (3) | C5B—C3B—C4B—S1B | −176.3 (3) |
O3C—O3A—C6A—O2A | 89.9 (17) | C2B—S1B—C4B—C3B | −1.4 (3) |
C7A—O3A—C6A—O2A | 0.4 (6) | C4B—C3B—C5B—C6B | −89.9 (5) |
O3C—O3A—C6A—C5A | −94.5 (17) | N2B—C3B—C5B—C6B | 92.0 (4) |
C7A—O3A—C6A—C5A | 176.0 (3) | C7B—O3B—C6B—O2B | −3.9 (5) |
C3A—C5A—C6A—O2A | −51.5 (5) | C7B—O3B—C6B—C5B | 178.0 (3) |
C3A—C5A—C6A—O3A | 132.9 (3) | C3B—C5B—C6B—O2B | 10.3 (5) |
O3C—O3A—C7A—C8A | 12.9 (12) | C3B—C5B—C6B—O3B | −171.6 (3) |
C6A—O3A—C7A—C8A | 84.6 (5) | C6B—O3B—C7B—C8B | 167.5 (3) |
C12A—Fe1—C11A—C15A | 118.4 (3) | C23B—Fe2—C11B—C12B | 44.7 (5) |
C23A—Fe1—C11A—C15A | 166.4 (6) | C24B—Fe2—C11B—C12B | −170.9 (3) |
C24A—Fe1—C11A—C15A | −54.4 (4) | C22B—Fe2—C11B—C12B | 75.7 (2) |
C21A—Fe1—C11A—C15A | −129.2 (2) | C15B—Fe2—C11B—C12B | −118.2 (3) |
C25A—Fe1—C11A—C15A | −86.9 (2) | C13B—Fe2—C11B—C12B | −37.45 (18) |
C22A—Fe1—C11A—C15A | −168.6 (2) | C21B—Fe2—C11B—C12B | 116.7 (2) |
C13A—Fe1—C11A—C15A | 80.8 (2) | C25B—Fe2—C11B—C12B | 157.6 (2) |
C14A—Fe1—C11A—C15A | 37.2 (2) | C14B—Fe2—C11B—C12B | −81.0 (2) |
C23A—Fe1—C11A—C12A | 48.0 (7) | C23B—Fe2—C11B—C15B | 162.9 (5) |
C24A—Fe1—C11A—C12A | −172.7 (3) | C24B—Fe2—C11B—C15B | −52.7 (4) |
C21A—Fe1—C11A—C12A | 112.4 (2) | C22B—Fe2—C11B—C15B | −166.2 (2) |
C25A—Fe1—C11A—C12A | 154.7 (2) | C12B—Fe2—C11B—C15B | 118.2 (3) |
C15A—Fe1—C11A—C12A | −118.4 (3) | C13B—Fe2—C11B—C15B | 80.7 (2) |
C22A—Fe1—C11A—C12A | 73.0 (2) | C21B—Fe2—C11B—C15B | −125.1 (2) |
C13A—Fe1—C11A—C12A | −37.60 (19) | C25B—Fe2—C11B—C15B | −84.2 (2) |
C14A—Fe1—C11A—C12A | −81.2 (2) | C14B—Fe2—C11B—C15B | 37.19 (19) |
C12A—Fe1—C11A—C31A | −121.2 (4) | C23B—Fe2—C11B—C31B | −76.6 (6) |
C23A—Fe1—C11A—C31A | −73.2 (7) | C24B—Fe2—C11B—C31B | 67.8 (5) |
C24A—Fe1—C11A—C31A | 66.0 (4) | C22B—Fe2—C11B—C31B | −45.6 (3) |
C21A—Fe1—C11A—C31A | −8.8 (3) | C12B—Fe2—C11B—C31B | −121.3 (3) |
C25A—Fe1—C11A—C31A | 33.4 (3) | C15B—Fe2—C11B—C31B | 120.5 (3) |
C15A—Fe1—C11A—C31A | 120.4 (4) | C13B—Fe2—C11B—C31B | −158.7 (3) |
C22A—Fe1—C11A—C31A | −48.2 (4) | C21B—Fe2—C11B—C31B | −4.6 (3) |
C13A—Fe1—C11A—C31A | −158.8 (3) | C25B—Fe2—C11B—C31B | 36.3 (3) |
C14A—Fe1—C11A—C31A | 157.6 (3) | C14B—Fe2—C11B—C31B | 157.7 (3) |
C15A—C11A—C12A—C13A | 0.1 (4) | C15B—C11B—C12B—C13B | −0.1 (4) |
C31A—C11A—C12A—C13A | 175.5 (3) | C31B—C11B—C12B—C13B | 175.8 (3) |
Fe1—C11A—C12A—C13A | 59.7 (2) | Fe2—C11B—C12B—C13B | 59.2 (3) |
C15A—C11A—C12A—Fe1 | −59.6 (2) | C15B—C11B—C12B—Fe2 | −59.3 (2) |
C31A—C11A—C12A—Fe1 | 115.8 (3) | C31B—C11B—C12B—Fe2 | 116.6 (3) |
C23A—Fe1—C12A—C13A | 73.3 (3) | C23B—Fe2—C12B—C13B | 75.9 (3) |
C24A—Fe1—C12A—C13A | 43.4 (8) | C24B—Fe2—C12B—C13B | 46.8 (6) |
C21A—Fe1—C12A—C13A | 156.1 (2) | C22B—Fe2—C12B—C13B | 117.3 (2) |
C11A—Fe1—C12A—C13A | −119.1 (3) | C15B—Fe2—C12B—C13B | −81.3 (2) |
C25A—Fe1—C12A—C13A | −169.4 (3) | C11B—Fe2—C12B—C13B | −119.8 (3) |
C15A—Fe1—C12A—C13A | −80.9 (2) | C21B—Fe2—C12B—C13B | 158.5 (2) |
C22A—Fe1—C12A—C13A | 113.4 (2) | C25B—Fe2—C12B—C13B | −170.4 (3) |
C14A—Fe1—C12A—C13A | −37.2 (2) | C14B—Fe2—C12B—C13B | −37.6 (2) |
C23A—Fe1—C12A—C11A | −167.5 (2) | C23B—Fe2—C12B—C11B | −164.3 (2) |
C24A—Fe1—C12A—C11A | 162.5 (7) | C24B—Fe2—C12B—C11B | 166.6 (5) |
C21A—Fe1—C12A—C11A | −84.8 (2) | C22B—Fe2—C12B—C11B | −122.9 (2) |
C25A—Fe1—C12A—C11A | −50.3 (4) | C15B—Fe2—C12B—C11B | 38.48 (17) |
C15A—Fe1—C12A—C11A | 38.26 (18) | C13B—Fe2—C12B—C11B | 119.8 (3) |
C22A—Fe1—C12A—C11A | −127.4 (2) | C21B—Fe2—C12B—C11B | −81.7 (2) |
C13A—Fe1—C12A—C11A | 119.1 (3) | C25B—Fe2—C12B—C11B | −50.6 (4) |
C14A—Fe1—C12A—C11A | 81.9 (2) | C14B—Fe2—C12B—C11B | 82.19 (19) |
C11A—C12A—C13A—C14A | −0.1 (4) | C11B—C12B—C13B—C14B | 0.5 (4) |
Fe1—C12A—C13A—C14A | 59.2 (2) | Fe2—C12B—C13B—C14B | 59.7 (3) |
C11A—C12A—C13A—Fe1 | −59.3 (2) | C11B—C12B—C13B—Fe2 | −59.2 (2) |
C23A—Fe1—C13A—C12A | −128.0 (2) | C23B—Fe2—C13B—C14B | 117.6 (3) |
C24A—Fe1—C13A—C12A | −169.2 (2) | C24B—Fe2—C13B—C14B | 76.0 (3) |
C21A—Fe1—C13A—C12A | −48.6 (4) | C22B—Fe2—C13B—C14B | 160.6 (2) |
C11A—Fe1—C13A—C12A | 38.2 (2) | C12B—Fe2—C13B—C14B | −119.2 (3) |
C25A—Fe1—C13A—C12A | 154.6 (7) | C15B—Fe2—C13B—C14B | −37.3 (2) |
C15A—Fe1—C13A—C12A | 82.4 (2) | C11B—Fe2—C13B—C14B | −81.6 (2) |
C22A—Fe1—C13A—C12A | −84.3 (2) | C21B—Fe2—C13B—C14B | −168.3 (3) |
C14A—Fe1—C13A—C12A | 120.0 (3) | C25B—Fe2—C13B—C14B | 46.4 (6) |
C12A—Fe1—C13A—C14A | −120.0 (3) | C23B—Fe2—C13B—C12B | −123.2 (3) |
C23A—Fe1—C13A—C14A | 112.0 (2) | C24B—Fe2—C13B—C12B | −164.9 (3) |
C24A—Fe1—C13A—C14A | 70.8 (3) | C22B—Fe2—C13B—C12B | −80.2 (3) |
C21A—Fe1—C13A—C14A | −168.6 (3) | C15B—Fe2—C13B—C12B | 81.9 (2) |
C11A—Fe1—C13A—C14A | −81.8 (2) | C11B—Fe2—C13B—C12B | 37.6 (2) |
C25A—Fe1—C13A—C14A | 34.6 (8) | C21B—Fe2—C13B—C12B | −49.2 (4) |
C15A—Fe1—C13A—C14A | −37.6 (2) | C25B—Fe2—C13B—C12B | 165.5 (5) |
C22A—Fe1—C13A—C14A | 155.6 (2) | C14B—Fe2—C13B—C12B | 119.2 (3) |
C12A—C13A—C14A—C15A | 0.1 (4) | C12B—C13B—C14B—C15B | −0.7 (4) |
Fe1—C13A—C14A—C15A | 58.8 (2) | Fe2—C13B—C14B—C15B | 58.5 (2) |
C12A—C13A—C14A—Fe1 | −58.7 (2) | C12B—C13B—C14B—Fe2 | −59.2 (2) |
C12A—Fe1—C14A—C13A | 37.3 (2) | C23B—Fe2—C14B—C15B | 159.8 (3) |
C23A—Fe1—C14A—C13A | −86.7 (3) | C24B—Fe2—C14B—C15B | 115.7 (3) |
C24A—Fe1—C14A—C13A | −130.1 (2) | C22B—Fe2—C14B—C15B | −164.3 (4) |
C21A—Fe1—C14A—C13A | 156.2 (6) | C12B—Fe2—C14B—C15B | −81.9 (2) |
C11A—Fe1—C14A—C13A | 81.8 (2) | C13B—Fe2—C14B—C15B | −119.8 (3) |
C25A—Fe1—C14A—C13A | −171.1 (2) | C11B—Fe2—C14B—C15B | −37.7 (2) |
C15A—Fe1—C14A—C13A | 119.4 (3) | C21B—Fe2—C14B—C15B | 43.5 (6) |
C22A—Fe1—C14A—C13A | −50.8 (4) | C25B—Fe2—C14B—C15B | 75.1 (3) |
C12A—Fe1—C14A—C15A | −82.1 (2) | C23B—Fe2—C14B—C13B | −80.4 (3) |
C23A—Fe1—C14A—C15A | 153.9 (2) | C24B—Fe2—C14B—C13B | −124.4 (3) |
C24A—Fe1—C14A—C15A | 110.5 (2) | C22B—Fe2—C14B—C13B | −44.5 (5) |
C21A—Fe1—C14A—C15A | 36.8 (8) | C12B—Fe2—C14B—C13B | 37.9 (2) |
C11A—Fe1—C14A—C15A | −37.6 (2) | C15B—Fe2—C14B—C13B | 119.8 (3) |
C25A—Fe1—C14A—C15A | 69.6 (3) | C11B—Fe2—C14B—C13B | 82.2 (2) |
C22A—Fe1—C14A—C15A | −170.2 (3) | C21B—Fe2—C14B—C13B | 163.4 (5) |
C13A—Fe1—C14A—C15A | −119.4 (3) | C25B—Fe2—C14B—C13B | −165.1 (2) |
C13A—C14A—C15A—C11A | 0.0 (4) | C13B—C14B—C15B—C11B | 0.6 (4) |
Fe1—C14A—C15A—C11A | 58.9 (2) | Fe2—C14B—C15B—C11B | 59.3 (2) |
C13A—C14A—C15A—Fe1 | −58.9 (2) | C13B—C14B—C15B—Fe2 | −58.6 (3) |
C12A—C11A—C15A—C14A | 0.0 (4) | C12B—C11B—C15B—C14B | −0.3 (4) |
C31A—C11A—C15A—C14A | −175.5 (3) | C31B—C11B—C15B—C14B | −176.3 (3) |
Fe1—C11A—C15A—C14A | −59.4 (2) | Fe2—C11B—C15B—C14B | −59.6 (2) |
C12A—C11A—C15A—Fe1 | 59.3 (2) | C12B—C11B—C15B—Fe2 | 59.3 (2) |
C31A—C11A—C15A—Fe1 | −116.1 (3) | C31B—C11B—C15B—Fe2 | −116.7 (3) |
C12A—Fe1—C15A—C14A | 81.4 (2) | C23B—Fe2—C15B—C14B | −46.9 (5) |
C23A—Fe1—C15A—C14A | −53.7 (4) | C24B—Fe2—C15B—C14B | −83.3 (3) |
C24A—Fe1—C15A—C14A | −87.4 (3) | C22B—Fe2—C15B—C14B | 159.3 (5) |
C21A—Fe1—C15A—C14A | −169.8 (2) | C12B—Fe2—C15B—C14B | 81.4 (2) |
C11A—Fe1—C15A—C14A | 119.9 (3) | C13B—Fe2—C15B—C14B | 37.3 (2) |
C25A—Fe1—C15A—C14A | −130.2 (2) | C11B—Fe2—C15B—C14B | 119.8 (3) |
C22A—Fe1—C15A—C14A | 160.5 (6) | C21B—Fe2—C15B—C14B | −165.5 (2) |
C13A—Fe1—C15A—C14A | 37.6 (2) | C25B—Fe2—C15B—C14B | −125.4 (2) |
C12A—Fe1—C15A—C11A | −38.54 (19) | C23B—Fe2—C15B—C11B | −166.7 (4) |
C23A—Fe1—C15A—C11A | −173.6 (3) | C24B—Fe2—C15B—C11B | 156.9 (2) |
C24A—Fe1—C15A—C11A | 152.7 (2) | C22B—Fe2—C15B—C11B | 39.4 (6) |
C21A—Fe1—C15A—C11A | 70.3 (3) | C12B—Fe2—C15B—C11B | −38.44 (18) |
C25A—Fe1—C15A—C11A | 109.9 (2) | C13B—Fe2—C15B—C11B | −82.5 (2) |
C22A—Fe1—C15A—C11A | 40.6 (7) | C21B—Fe2—C15B—C11B | 74.7 (2) |
C13A—Fe1—C15A—C11A | −82.4 (2) | C25B—Fe2—C15B—C11B | 114.8 (2) |
C14A—Fe1—C15A—C11A | −119.9 (3) | C14B—Fe2—C15B—C11B | −119.8 (3) |
C12A—Fe1—C21A—C25A | 154.1 (2) | C23B—Fe2—C21B—C25B | −82.3 (3) |
C23A—Fe1—C21A—C25A | −82.0 (3) | C24B—Fe2—C21B—C25B | −37.3 (3) |
C24A—Fe1—C21A—C25A | −38.0 (2) | C22B—Fe2—C21B—C25B | −121.3 (4) |
C11A—Fe1—C21A—C25A | 110.6 (2) | C12B—Fe2—C21B—C25B | 159.7 (3) |
C15A—Fe1—C21A—C25A | 70.4 (3) | C15B—Fe2—C21B—C25B | 75.0 (3) |
C22A—Fe1—C21A—C25A | −120.2 (4) | C13B—Fe2—C21B—C25B | −165.2 (3) |
C13A—Fe1—C21A—C25A | −172.5 (3) | C11B—Fe2—C21B—C25B | 116.7 (3) |
C14A—Fe1—C21A—C25A | 40.7 (8) | C14B—Fe2—C21B—C25B | 41.4 (6) |
C12A—Fe1—C21A—C22A | −85.7 (3) | C23B—Fe2—C21B—C22B | 39.0 (3) |
C23A—Fe1—C21A—C22A | 38.2 (2) | C24B—Fe2—C21B—C22B | 84.0 (3) |
C24A—Fe1—C21A—C22A | 82.2 (3) | C12B—Fe2—C21B—C22B | −79.0 (3) |
C11A—Fe1—C21A—C22A | −129.2 (2) | C15B—Fe2—C21B—C22B | −163.7 (3) |
C25A—Fe1—C21A—C22A | 120.2 (4) | C13B—Fe2—C21B—C22B | −43.9 (5) |
C15A—Fe1—C21A—C22A | −169.4 (2) | C11B—Fe2—C21B—C22B | −122.0 (3) |
C13A—Fe1—C21A—C22A | −52.3 (4) | C25B—Fe2—C21B—C22B | 121.3 (4) |
C14A—Fe1—C21A—C22A | 160.9 (6) | C14B—Fe2—C21B—C22B | 162.7 (5) |
C25A—C21A—C22A—C23A | −0.1 (4) | C25B—C21B—C22B—C23B | −0.2 (5) |
Fe1—C21A—C22A—C23A | −59.4 (2) | Fe2—C21B—C22B—C23B | −59.2 (3) |
C25A—C21A—C22A—Fe1 | 59.3 (3) | C25B—C21B—C22B—Fe2 | 59.0 (3) |
C12A—Fe1—C22A—C21A | 111.4 (3) | C23B—Fe2—C22B—C21B | −117.7 (4) |
C23A—Fe1—C22A—C21A | −118.6 (4) | C24B—Fe2—C22B—C21B | −78.7 (3) |
C24A—Fe1—C22A—C21A | −80.8 (3) | C12B—Fe2—C22B—C21B | 118.2 (3) |
C11A—Fe1—C22A—C21A | 69.8 (3) | C15B—Fe2—C22B—C21B | 46.5 (6) |
C25A—Fe1—C22A—C21A | −37.0 (2) | C13B—Fe2—C22B—C21B | 160.5 (2) |
C15A—Fe1—C22A—C21A | 37.1 (8) | C11B—Fe2—C22B—C21B | 76.6 (3) |
C13A—Fe1—C22A—C21A | 154.4 (2) | C25B—Fe2—C22B—C21B | −35.7 (3) |
C14A—Fe1—C22A—C21A | −170.6 (3) | C14B—Fe2—C22B—C21B | −167.7 (3) |
C12A—Fe1—C22A—C23A | −130.0 (2) | C24B—Fe2—C22B—C23B | 39.0 (3) |
C24A—Fe1—C22A—C23A | 37.8 (2) | C12B—Fe2—C22B—C23B | −124.0 (3) |
C21A—Fe1—C22A—C23A | 118.6 (4) | C15B—Fe2—C22B—C23B | 164.2 (5) |
C11A—Fe1—C22A—C23A | −171.6 (2) | C13B—Fe2—C22B—C23B | −81.7 (3) |
C25A—Fe1—C22A—C23A | 81.6 (3) | C11B—Fe2—C22B—C23B | −165.6 (3) |
C15A—Fe1—C22A—C23A | 155.6 (6) | C21B—Fe2—C22B—C23B | 117.7 (4) |
C13A—Fe1—C22A—C23A | −87.1 (3) | C25B—Fe2—C22B—C23B | 82.0 (3) |
C14A—Fe1—C22A—C23A | −52.0 (4) | C14B—Fe2—C22B—C23B | −50.0 (5) |
C21A—C22A—C23A—C24A | 0.0 (4) | C21B—C22B—C23B—C24B | −0.3 (5) |
Fe1—C22A—C23A—C24A | −59.5 (3) | Fe2—C22B—C23B—C24B | −60.7 (3) |
C21A—C22A—C23A—Fe1 | 59.5 (2) | C21B—C22B—C23B—Fe2 | 60.4 (3) |
C12A—Fe1—C23A—C24A | −170.8 (2) | C24B—Fe2—C23B—C22B | −117.5 (4) |
C21A—Fe1—C23A—C24A | 81.3 (3) | C12B—Fe2—C23B—C22B | 74.7 (3) |
C11A—Fe1—C23A—C24A | 149.9 (6) | C15B—Fe2—C23B—C22B | −167.9 (3) |
C25A—Fe1—C23A—C24A | 37.8 (2) | C13B—Fe2—C23B—C22B | 116.4 (3) |
C15A—Fe1—C23A—C24A | −49.0 (4) | C11B—Fe2—C23B—C22B | 40.6 (6) |
C22A—Fe1—C23A—C24A | 119.1 (3) | C21B—Fe2—C23B—C22B | −38.0 (3) |
C13A—Fe1—C23A—C24A | −129.3 (2) | C25B—Fe2—C23B—C22B | −80.4 (3) |
C14A—Fe1—C23A—C24A | −85.8 (3) | C14B—Fe2—C23B—C22B | 158.5 (2) |
C12A—Fe1—C23A—C22A | 70.1 (3) | C22B—Fe2—C23B—C24B | 117.5 (4) |
C24A—Fe1—C23A—C22A | −119.1 (3) | C12B—Fe2—C23B—C24B | −167.8 (2) |
C21A—Fe1—C23A—C22A | −37.8 (2) | C15B—Fe2—C23B—C24B | −50.3 (5) |
C11A—Fe1—C23A—C22A | 30.8 (8) | C13B—Fe2—C23B—C24B | −126.1 (3) |
C25A—Fe1—C23A—C22A | −81.3 (3) | C11B—Fe2—C23B—C24B | 158.1 (4) |
C15A—Fe1—C23A—C22A | −168.1 (3) | C21B—Fe2—C23B—C24B | 79.5 (3) |
C13A—Fe1—C23A—C22A | 111.6 (2) | C25B—Fe2—C23B—C24B | 37.1 (3) |
C14A—Fe1—C23A—C22A | 155.1 (2) | C14B—Fe2—C23B—C24B | −83.9 (3) |
C22A—C23A—C24A—C25A | 0.1 (4) | C22B—C23B—C24B—C25B | 0.7 (5) |
Fe1—C23A—C24A—C25A | −59.6 (3) | Fe2—C23B—C24B—C25B | −60.3 (3) |
C22A—C23A—C24A—Fe1 | 59.7 (3) | C22B—C23B—C24B—Fe2 | 61.0 (3) |
C12A—Fe1—C24A—C25A | 155.5 (7) | C23B—Fe2—C24B—C25B | 118.9 (4) |
C23A—Fe1—C24A—C25A | 119.0 (4) | C22B—Fe2—C24B—C25B | 80.2 (3) |
C21A—Fe1—C24A—C25A | 37.6 (2) | C12B—Fe2—C24B—C25B | 156.3 (5) |
C11A—Fe1—C24A—C25A | −48.0 (4) | C15B—Fe2—C24B—C25B | −82.5 (3) |
C15A—Fe1—C24A—C25A | −85.0 (3) | C13B—Fe2—C24B—C25B | −167.3 (2) |
C22A—Fe1—C24A—C25A | 81.2 (3) | C11B—Fe2—C24B—C25B | −44.9 (5) |
C13A—Fe1—C24A—C25A | −168.8 (2) | C21B—Fe2—C24B—C25B | 36.7 (2) |
C14A—Fe1—C24A—C25A | −128.4 (3) | C14B—Fe2—C24B—C25B | −125.5 (3) |
C12A—Fe1—C24A—C23A | 36.5 (9) | C22B—Fe2—C24B—C23B | −38.7 (2) |
C21A—Fe1—C24A—C23A | −81.4 (3) | C12B—Fe2—C24B—C23B | 37.3 (7) |
C11A—Fe1—C24A—C23A | −167.0 (3) | C15B—Fe2—C24B—C23B | 158.6 (2) |
C25A—Fe1—C24A—C23A | −119.0 (4) | C13B—Fe2—C24B—C23B | 73.7 (3) |
C15A—Fe1—C24A—C23A | 156.0 (2) | C11B—Fe2—C24B—C23B | −163.8 (3) |
C22A—Fe1—C24A—C23A | −37.8 (2) | C21B—Fe2—C24B—C23B | −82.2 (3) |
C13A—Fe1—C24A—C23A | 72.2 (3) | C25B—Fe2—C24B—C23B | −118.9 (4) |
C14A—Fe1—C24A—C23A | 112.6 (2) | C14B—Fe2—C24B—C23B | 115.6 (3) |
C22A—C21A—C25A—C24A | 0.1 (4) | C22B—C21B—C25B—C24B | 0.6 (5) |
Fe1—C21A—C25A—C24A | 59.5 (3) | Fe2—C21B—C25B—C24B | 59.1 (3) |
C22A—C21A—C25A—Fe1 | −59.4 (2) | C22B—C21B—C25B—Fe2 | −58.5 (3) |
C23A—C24A—C25A—C21A | −0.1 (4) | C23B—C24B—C25B—C21B | −0.8 (5) |
Fe1—C24A—C25A—C21A | −59.6 (3) | Fe2—C24B—C25B—C21B | −59.7 (3) |
C23A—C24A—C25A—Fe1 | 59.5 (3) | C23B—C24B—C25B—Fe2 | 58.9 (3) |
C12A—Fe1—C25A—C21A | −51.1 (4) | C23B—Fe2—C25B—C21B | 81.0 (3) |
C23A—Fe1—C25A—C21A | 81.0 (3) | C24B—Fe2—C25B—C21B | 119.6 (4) |
C24A—Fe1—C25A—C21A | 118.9 (4) | C22B—Fe2—C25B—C21B | 36.5 (2) |
C11A—Fe1—C25A—C21A | −85.6 (3) | C12B—Fe2—C25B—C21B | −44.6 (5) |
C15A—Fe1—C25A—C21A | −129.0 (2) | C15B—Fe2—C25B—C21B | −124.4 (2) |
C22A—Fe1—C25A—C21A | 37.0 (2) | C13B—Fe2—C25B—C21B | 158.0 (5) |
C13A—Fe1—C25A—C21A | 163.0 (6) | C11B—Fe2—C25B—C21B | −80.6 (3) |
C14A—Fe1—C25A—C21A | −168.7 (2) | C14B—Fe2—C25B—C21B | −165.9 (2) |
C12A—Fe1—C25A—C24A | −170.0 (3) | C23B—Fe2—C25B—C24B | −38.6 (3) |
C23A—Fe1—C25A—C24A | −37.8 (2) | C22B—Fe2—C25B—C24B | −83.1 (3) |
C21A—Fe1—C25A—C24A | −118.9 (4) | C12B—Fe2—C25B—C24B | −164.2 (4) |
C11A—Fe1—C25A—C24A | 155.6 (2) | C15B—Fe2—C25B—C24B | 116.0 (3) |
C15A—Fe1—C25A—C24A | 112.2 (3) | C13B—Fe2—C25B—C24B | 38.4 (7) |
C22A—Fe1—C25A—C24A | −81.8 (3) | C11B—Fe2—C25B—C24B | 159.8 (3) |
C13A—Fe1—C25A—C24A | 44.1 (8) | C21B—Fe2—C25B—C24B | −119.6 (4) |
C14A—Fe1—C25A—C24A | 72.4 (3) | C14B—Fe2—C25B—C24B | 74.5 (3) |
C15A—C11A—C31A—C36A | 175.8 (3) | C12B—C11B—C31B—C32B | −173.8 (3) |
C12A—C11A—C31A—C36A | 1.3 (5) | C15B—C11B—C31B—C32B | 1.3 (5) |
Fe1—C11A—C31A—C36A | 88.6 (4) | Fe2—C11B—C31B—C32B | −86.1 (4) |
C15A—C11A—C31A—C32A | −1.3 (5) | C12B—C11B—C31B—C36B | 5.8 (5) |
C12A—C11A—C31A—C32A | −175.8 (3) | C15B—C11B—C31B—C36B | −179.1 (3) |
Fe1—C11A—C31A—C32A | −88.5 (4) | Fe2—C11B—C31B—C36B | 93.5 (4) |
C36A—C31A—C32A—C33A | −1.2 (5) | C36B—C31B—C32B—C33B | −0.4 (5) |
C11A—C31A—C32A—C33A | 176.0 (3) | C11B—C31B—C32B—C33B | 179.2 (3) |
C31A—C32A—C33A—C34A | −0.4 (5) | C31B—C32B—C33B—C34B | −0.4 (5) |
C32A—C33A—C34A—C35A | 1.7 (5) | C32B—C33B—C34B—C35B | 0.7 (5) |
C32A—C33A—C34A—C1A | −177.1 (3) | C32B—C33B—C34B—C1B | −176.2 (3) |
O1A—C1A—C34A—C35A | −6.8 (5) | O1B—C1B—C34B—C35B | −15.6 (5) |
N1A—C1A—C34A—C35A | 174.4 (3) | N1B—C1B—C34B—C35B | 164.6 (3) |
O1A—C1A—C34A—C33A | 171.9 (3) | O1B—C1B—C34B—C33B | 161.3 (3) |
N1A—C1A—C34A—C33A | −6.8 (5) | N1B—C1B—C34B—C33B | −18.5 (5) |
C33A—C34A—C35A—C36A | −1.3 (5) | C33B—C34B—C35B—C36B | −0.2 (6) |
C1A—C34A—C35A—C36A | 177.5 (3) | C1B—C34B—C35B—C36B | 176.9 (4) |
C34A—C35A—C36A—C31A | −0.3 (6) | C34B—C35B—C36B—C31B | −0.7 (6) |
C32A—C31A—C36A—C35A | 1.6 (5) | C32B—C31B—C36B—C35B | 1.0 (6) |
C11A—C31A—C36A—C35A | −175.7 (3) | C11B—C31B—C36B—C35B | −178.7 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O2Bi | 0.88 | 2.12 | 2.972 (4) | 162 |
N1B—H1B···O2Aii | 0.88 | 2.18 | 2.971 (3) | 149 |
C33A—H33A···O2Bi | 0.95 | 2.24 | 3.184 (5) | 173 |
C33B—H33B···O2Aii | 0.95 | 2.46 | 3.395 (4) | 167 |
C7A—H72···N2Bii | 0.99 | 2.68 | 3.654 (6) | 168 |
C7B—H75···N2Ai | 0.99 | 2.56 | 3.536 (5) | 169 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | C23H19FeNO3S | C24H22FeN2O3S |
Mr | 445.30 | 474.36 |
Crystal system, space group | Monoclinic, P21/n | Triclinic, P1 |
Temperature (K) | 150 | 150 |
a, b, c (Å) | 10.1428 (3), 8.0965 (2), 23.0557 (7) | 12.7466 (4), 12.8752 (8), 13.5661 (7) |
α, β, γ (°) | 90, 95.4912 (14), 90 | 91.811 (3), 106.096 (3), 92.735 (3) |
V (Å3) | 1884.67 (9) | 2134.35 (18) |
Z | 4 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.94 | 0.83 |
Crystal size (mm) | 0.22 × 0.16 × 0.10 | 0.20 × 0.07 × 0.04 |
Data collection | ||
Diffractometer | Nonius KappaCCD diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) | Multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.820, 0.912 | 0.851, 0.967 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6335, 4313, 3441 | 15129, 9714, 5617 |
Rint | 0.049 | 0.069 |
(sin θ/λ)max (Å−1) | 0.650 | 0.650 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.088, 1.06 | 0.050, 0.127, 1.00 |
No. of reflections | 4313 | 9714 |
No. of parameters | 268 | 573 |
No. of restraints | 0 | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.63 | 0.35, −0.47 |
Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2002) and ORTEX (McArdle, 1995), SHELXL97, NRCVAX (Gabe et al., 1989) and PREP8 (Ferguson, 1998).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.81 (2) | 2.14 (2) | 2.768 (2) | 134 (2) |
C5—H5···O2i | 0.95 | 2.56 | 3.411 (3) | 150 |
C15—H15···O1ii | 0.95 | 2.56 | 3.401 (3) | 147 |
C32—H32···O1ii | 0.95 | 2.65 | 3.577 (2) | 165 |
C7—H7C···Cg3iii | 0.98 | 2.83 | 3.604 (2) | 136 |
Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) −x+1/2, y−1/2, −z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O2Bi | 0.88 | 2.12 | 2.972 (4) | 162 |
N1B—H1B···O2Aii | 0.88 | 2.18 | 2.971 (3) | 149 |
C33A—H33A···O2Bi | 0.95 | 2.24 | 3.184 (5) | 173 |
C33B—H33B···O2Aii | 0.95 | 2.46 | 3.395 (4) | 167 |
C7A—H72···N2Bii | 0.99 | 2.68 | 3.654 (6) | 168 |
C7B—H75···N2Ai | 0.99 | 2.56 | 3.536 (5) | 169 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
SA, JFG and PTMK thank Dublin City University and the Department of Education, Ireland, for funding the National Institute for Cellular Biotechnology (PRTLI programme, round #3, 2001–2008).
References
Adams, R. D. (1999). J. Organomet. Chem. 619, 1–875. Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Alley, S., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, m201–m203. Web of Science CSD CrossRef IUCr Journals Google Scholar
Anderson, F. P., Gallagher, J. F., Kenny, P. T. M., Ryan, C. & Savage, D. (2003). Acta Cryst. C59, m13–m15. CSD CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bone, S. F., Smart, B. A., Gierens, H., Morrison, C. A., Brain, P. T. & Rankin, D. W. H. (1999). Phys. Chem. Chem. Phys. 1, 2421–2426. Web of Science CrossRef CAS Google Scholar
Ferguson, G. (1998). PREP8. University of Guelph, Canada. Google Scholar
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gallagher, J. F., Hudson, R. D. A. & Manning, A. R. (2001). Acta Cryst. C57, 28–30. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Hudson, R. D. A., Asselsbergh, I., Clays, K., Cuffe, L. P., Gallagher, J. F., Manning, A. R., Persoons, A. & Wostyn, K. (2001). J. Organomet. Chem. 637, 435–444. Web of Science CSD CrossRef Google Scholar
McArdle, P. (1995). J. Appl. Cryst. 28, 65. CrossRef IUCr Journals Google Scholar
Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Savage, D., Gallagher, J. F., Ida, Y. & Kenny, P. T. M. (2002). Inorg. Chem. Commun. 5, 1034–1040. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2002). PLATON. University of Utrecht, The Netherlands. Google Scholar
Togni, A. & Halterman, R. L. (1998). Editors. Metallocenes. Weinheim, Germany: Wiley-VCH. Google Scholar
Togni, A. & Hayashi, T. (1995). Editors. Ferrocenes: Homogeneous Catalysis – Organic Synthesis – Materials Science. Weinheim, Germany: VCH. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
Ferrocene and its derivatives continue to attract much attention in coordination chemistry with important roles encompassing both structural and electronic capabilities (Adams, 1999). Integration of ferrocene into new hybrid systems has expanded the potential of organometallic materials with a range of feasible applications (Togni & Halterman, 1998; Togni & Hayashi, 1995; Hudson et al., 2001). We report here the structures of two 4-ferrocenylbenzoylamide systems with terminal thienyl methyl carboxylate, (I), and thiazolyl acetate groups, (II).
A view of (I) with the atomic numbering scheme is shown in Fig. 1. Bond lengths and angles are in accord with anticipated values (Allen, 2002). In (I), the Fe—C bond lengths for the substituted η5(C5H4) ring are in the range 2.038 (2)–2.054 (2) Å and are similar to those in the η5(C5H5) ring [2.037 (2)–2.054 (2) Å]; the Fe···Cg1 and Fe···Cg2 distances are 1.6462 (10) and 1.6525 (10) Å, respectively, the Cg1···Fe1···Cg2 angle is 177.20 (5)°, and the C5/C5 interplanar angle is 3.81 (15)° [Cg1 and Cg2 are the η5(C5H4) and η5(C5H5) ring centroids, respectively]. The η5-C5 rings are slightly staggered from eclipsed geometry, with the five C1n···Cg1···Cg2···C2n torsion angles in the range 12.24 (16)–12.79 (15)° (n = 1–5).
The related 4-FcC6H4CO2R carboxylates [R = Me (Savage et al., 2002), Et and iPr (Anderson et al., 2003)] have conformations that can be defined by the interplanar angles between the η5(C5H4) and (C6H4) rings and between the (C6H4) ring and carboxylate (CO2R) groups. These are, respectively, 9.35 (13) and 8.5 (2)° (Me), 6.88 (12) and 2.59 (17)° (Et), and 10.5 (2) and 19.5 (5)° (iPr). In (I), the (C5H4)–C6H4–CONH–(C4H2S)–CO2Me system has interplanar angles between successive (C5H4), (C6H4), (CONH), (C4H2S) and (CO2Me) moieties of 9.36 (11), 8.79 (17), 1.97 (14) and 6.33 (11)°, respectively. Apart from small twisting, no ring bending occurs along the long molecular axis as a result of steric effects; this situation is in contrast to that found (Gallagher et al., 2001) in 2-(ferrocenyl)thiophene-3-carboxylic acid, where significant bending from linearity occurs in the thienyl ring relative to the η5(C5H4) ring to which it is bonded.
Methyl 2-{2-[(ferrocenylcarbonyl)amino]-1-thienyl}-3-carboxylate, (C5H5)Fe(C5H4)–CONH-(C4H2S)–CO2Me, (III) (Alley et al., 2005), differs from (I) in that it does not have the 1,4-phenylene (C6H4) ring between the (C5H4) and CONH groups. Geometric data are comparable in the two structures, with maximum differences within 0.01 Å and 2° for the amidothienyl carboxylate residues. Angles involving S, for example C—S—C and S—C—N(H), are 90.98 (10) and 123.58 (15)° in (I), and 90.93 (11) and 123.54 (16)° in (III); the Cambridge Structural Database (CSD; Version 5.26 of February 2005; Allen, 2002) average for thienyl C—S—C angles is 92.0° (range 88.7–97.9°). For S—C═Ccarboxy angles, the average is 111.4° (range 105.5–113.9°); the equivalent S1—C2═C3 angles in (I) and (III) are 111.89 (15) and 111.94 (15)° (Allen, 2002). CSD analysis shows that both (I) and (III) have regular amidothienyl carboxylate moieties.
An intramolecular N—H···O═Cester hydrogen bond (Table 1) forms a ring in (I), graph set S(6), (Bernstein et al., 1995) thus enforcing planarity along the molecular axis; the N···O distance is 2.768 (2) Å, slightly longer than the corresponding value [2.727 (2) Å] in (III). Molecules of (I) assemble as one-dimensional chains along the b-axis direction through C—H···O═C interactions, as shown in Fig. 2 with details in Table 1. These generate R12(7) and R23(15) motifs that in combination with the S(6) ring produce a larger R22(20) ring. Overall, the crystal structure comprises one-dimensional chains, aggregating via weak C7—H7C···π(thienyl)iii contacts (H7C···Cg3iii = 2.83 Å; symmetry code as in Table 1), which link pairs of screw-axis related chains to form a ladder extending along [010]; there are normal van der Waals separations between pairs of ladders. Examination of (I) with PLATON (Spek, 2002) reveals no solvent accessible voids in the crystal structure and a packing index of 72.6.
Compound (II) is the first structurally characterized ferrocene derivative containing a thiazole moiety to be reported and this compound crystallizes with two molecules (A and B) in the asymmetric unit of space group P1, as shown in Figs. 3(a) and 3(b). Their conformations differ slightly along their long molecular axes with respect to the orientations of the amidothiazolylcarboxylate groups and there is some minor ethoxy disorder [0.915 (7):0.085 (7)] in molecule A. Bond lengths and angles are unexceptional and are comparable to data available from corresponding fragments available in the CSD.
In (II), the Fe—C bond lengths for the η5(C5H4) ring in A are 2.031 (4)–2.048 (3) Å and are similar to those [2.033 (3)–2.040 (4) Å] for the η5(C5H5) ring. Molecule B has similar values [2.032 (4)–2.047 (3) Å] for the substituted ring, but two contrasting Fe···η5(C5H5) bond lengths [i.e. Fe1—C23B/C24B = 2.005 (4)/2.023 (5) Å]. This Fe—C pair have the largest Ueq values, of 0.0785 (17) and 0.0733 (15) Å2, compared with an average Ueq of 0.043 Å2 for all 48 C atoms present (Spek, 2002); however, no disorder is present and the bond-length contraction must be due to a small measure of librational motion and ring slippage (0.06 Å). The Fe···Cg1/Cg2 distances are 1.6407 (17) and 1.6450 (18) Å (in A), and 1.6400 (17) and 1.644 (2) Å (in B), the Cg1···Fe1···Cg2 angles are 178.76 (9) and 178.96 (10)°, and both C5/C5 interplanar angles are 1.6 (3)° [Cg1 and Cg2 are defined as for (I) above]. The η5-C5 rings deviate from eclipsed geometry, with five C1n···Cg1···Cg2···C2n (n = 1–5) torsion angles from 13.5 (3) to 14.5 (3)° in A and 5.7 (3) to 7.3 (3)° in B, in the same sense as in A.
A minor conformational difference between molecules A and B is in the orientation of the Fc—C6H4– moiety with respect to the CONH–(thiazolyl)–CO2Et fragment, resulting in the O1A—C1A—C34A—C33A [171.9 (3)°] and O1B—C1B—C34B—C33B [161.3 (3)°] torsion angles being significantly different. The amido(thiazolyl) groups adopt similar conformations in both molecules with N—H cis to N and C═O cis to S. A search of the CSD for this fragment gave 11 hits all with this same orientation, indicating that this is a preferred solid-state conformation. The cis-oriented pairs of N···N and O···S distances are 2.333 (4) and 2.342 (4) Å, and 2.669 (2) and 2.660 (3) Å, respectively, and are oriented in a suitable fashion for bidentate coordination to metal systems. As found for (I), molecule A contains consecutive ring and moiety planes that are essentially coplanar along the long molecular axis; however, in B, the interplanar twists are larger; for example, the C6H4 and amide O═C—N(H) group planes are inclined at 17.2 (3)° (Figs. 3a and 3b). In tandem, slight bending occurs along the long molecular axis in A, as evidenced by the C11n—C31n···C34n angle [176.4 (2)°; n = A or B], in contrast to the near linear value [178.46 (19)°] in B.
In (II), intermolecular amideN—H···O═Cester hydrogen bonds link the molecules, forming chains extending along [100], as shown in Fig. 4 with details in Table 2. This interaction, in combination with C—H···O═ Cester interactions, results in hydrogen-bonded rings with graph set R12(7), augmented by weaker secondary contacts C7B*···N2A and C7A···N2B (involving thiazolyl N atoms). Combination with the N—H···O═C hydrogen bonds produces rings with graph sets R22(9) and, overall for the pairs of rings, R22(12). The chains are linked into a ladder structure extending along [100] by C5A—H5A···π(thiaz-B)# interactions [symmetry code: (#) = −x,-y,1 − z; C5A···π(thiaz-centroid) = 3.511 (4) Å]. No comparable C5B···π(thiaz-A) interaction is present; the thiazolyl S atoms and amide C═O groups are not involved in hydrogen bonding. The packing index is 68.9 and based on the major conformation of molecule A.
Of interest for comparison with (II) are the high-precision structural data for the molecular structure of thiazole (IV) from a combined analysis of gas-phase electron diffraction data, rotational constants and ab-initio calculations (Bone et al., 1999). The corresponding mean values from (II) are S—C(C) = 1.713 (2) Å, S—C(N) = 1.730 (6) Å, C—N = 1.391 (2) Å and C═N = 1.299 (2) Å, demonstrating that the thiazole groups are relatively unperturbed through molecular or crystal packing forces in (II) and are comparable to the gas-phase structure data for (IV).
A search for amidothienyl and amidothiazolyl fragments in crystal structures in the CSD reveals seven and 21 systems (with coordinates), respectively. A search for structures incorporating the ferrocenyl moiety (as C5FeC5) and a thiophene-type heteroaromatic ring yielded 30 structures; when the thiophene-type ring was replaced with a thiazole heteroaromatic ring, there were no hits. This lack of structural data is somewhat unusual given the vast output of structural ferrocene research to date (Adams, 1999; Allen 2002). For comparison, a CSD search with ferrocene and pyridinyl (as C5N) gives a total of 335 structures, revealing the wealth of structural data available for N-heteroaromatic groups, such as pyridine donor ligands in ferrocene chemistry, when compared with S-heteroaromatic systems, such as thiazole (Allen, 2002). Studies are in progress to extend the synthetic, structural and electrochemistry of these new systems in coordination chemistry.