metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

A mixed iron(III)/lithium alkoxide

aWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: a.r.kennedy@strath.ac.uk

(Received 5 May 2005; accepted 3 June 2005; online 22 June 2005)

The heterometallic alkoxide catena-poly[[tetra-μ2-tert-butoxo-1:2κ4O:O;1:3κ4O:O-bis(tetrahydrofuran)-2κO,3κO-iron(III)dilithium(I)]-μ-bromo], [FeLi2Br(C4H9O)4(C4H8O)2]n, forms a one-dimensional chain through an a-glide. This conformation is achieved through the formation of FeIII/O/Li/O rings and Li—Br—Li bridges.

Comment

Currently, our group is investigating the synthetic and structural synergic effects that can be harnessed by mixing an alkali metal and magnesium in the same mol­ecular amide environment [for pertinent recent examples, see Hevia et al. (2005[Hevia, E., Honeyman, G. W., Kennedy, A. R., Mulvey, R. E. & Sherrington, D. C. (2005). Angew. Chem. Int. Ed. 44, 68-72.]) and Andrikopoulos et al. (2004[Andrikopoulos, P. C., Armstrong, D. R., Clegg, W., Gilfillan, C. J., Hevia, E., Kennedy, A. R., Mulvey, R. E., O'Hara, C. T., Parkinson, J. A. & Tooke, D. M. (2004). J. Am. Chem. Soc. 126, 11612-11620.])]. One possible outcome of this mixed-metal-induced synergy is to generate `inverse crown' ring systems in which Lewis acidic polymetallic cationic host rings surround Lewis basic anionic cores, as recently described for the oxo-centred 2,2,6,6-tetra­methyl­piperidinide (TMP) inverse crown `ether' [Na2Mg2O(TMP)4] (Kennedy et al., 2003[Kennedy, A. R., MacLellan, J. G. & Mulvey, R. E. (2003). Acta Cryst. C59, m302-m303.]). Germane to the work reported here, another type of inverse crown motif involves a chair-shaped octa­gonal ring that is face-capped on opposite sides of the chair by, for example, alkoxide ligands, as demonstrated by the mixed lithium–magnesium diisopropyl­amide­octoxide [{LiMg[N(iPr)2]2nOctO}2] (Drewette et al., 2002[Drewette, K. J., Henderson, K. W., Kennedy, A. R., Mulvey, R. E., O'Hara, C. T. & Rowlings, R. B. (2002). Chem. Commun. pp. 1176-1177.]). This motif bears a

[Scheme 1]
close similarity to that of the mixed sodium–iron(II) butoxide [{(THF)NaFe(tBuO)3}2] (THF is tetra­hydro­furan) reported by Gun'ko et al. (2002[Gun'ko, Y. K., Cristmann, U. & Kessler, V. G. (2002). Inorg. Chem. pp. 1029-1031.]), which, in our terminology, could be regarded as an all-alkoxide inverse crown. Wishing to pursue this structural analogy further, we attempted to prepare the lithium congener [{(THF)xLiFe(tBuO)3}2] by carrying out a metathetical reaction between FeBr2 and three molar equivalents of tBuOLi in THF solution. This attempt failed as the metathesis did not go to completion and the iron in the product oxidized to FeIII, presumably as a result of the strong oxidizing nature of alkoxide ligands. The product obtained was the bromide-containing compound [{(THF)2Li2Fe(tBuO)4Br}], (I)[link]. Such heterometallic alkoxide compounds are of inter­est as precursors to oxide-based materials (Bradley, 1989[Bradley, D. C. (1989). Chem. Rev. 89, 1317-1322.]; Bradley et al., 2001[Bradley, D. C., Mehrotra, R. C., Rothwell, I. P. & Singh, A. (2001). In Alkoxo and Aryloxo Derivatives of Metals. London: Academic Press.]).

The asymmetric unit of (I)[link] (Fig. 1[link]) consists of a central FeIII atom bonded to four tBuO ligands that bridge two Li atoms. The coordination about atom Fe1 is considerably distorted from tetra­hedral geometry [O—Fe1—O = 89.60 (5)–121.60 (5)°; Table 1[link]], the narrowest angles, as expected, being those inter­nal to the Fe/O/Li/O rings. The Fe—O bond lengths span a tight range [1.8616 (11)–1.8687 (11) Å], and are significantly shorter than those that bridge Fe atoms in [(tBuO)2Fe(μ-tBuO)2Fe(tBuO)2] (1.958–1.961 Å; Spandl et al., 2003[Spandl, J., Kusserow, M. & Bradgam, I. (2003). Z. Anorg. Allg. Chem. 629, 968-974.]). This difference presumably reflects greater competition for the O-atom electron density between two Fe atoms as opposed to between an Fe and an Li atom. In (I)[link], the Li—OBu distances [1.958 (3)–1.991 (3) Å] are greater than the Fe—OBu distances. This configuration contrasts with that of one of the few known structures featuring alkoxides bridging between FeIII and Li atoms. In [(Bu2CHO)2Fe(μ-Bu2CHO)2Li(Bu2CHOH)] (Bochmann et al., 1980[Bochmann, M., Wilkinson, G., Young, G. B., Hursthouse, M. B. & Malik, K. M. A. (1980). J. Chem. Soc. Dalton Trans. pp. 1863-1871.]), the situation is reversed, with Fe—O bridges of 1.908 and 1.934 Å, and Li—O distances of 1.870 and 1.874 Å; the difference appears to be that lithium is three-coordinate in this complex and four-coordinate in (I)[link]. In (I)[link], the bonding at each Li atom is completed by complexation of a THF mol­ecule and of a Br atom, thus forming an Li—Br—Li bridge that extends (I)[link] into a one-dimensional polymer, propagating through an a-glide (Fig. 2[link]).

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], with 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2]
Figure 2
An illustration of the propagation of (I)[link] in the a direction to form a polymeric chain.

Experimental

FeBr2 (1.078 g, 5 mmol) and Li(tBuO) (1.20 g, 15 mmol) were weighed out in a glove-box and transferred to a Schlenk tube filled with dry argon. The tube was placed on a vacuum line and cooled to 273 K in an ice bath. THF (20 ml) was added via syringe and the brown mixture was stirred at room temperature overnight. The next day, the mixture was filtered through Celite to remove LiBr and washed with THF (10 ml). The solution was reduced in volume under vacuum and left to stand overnight. A large crop of crystals formed in the dark-brown solution. The crystals were not single, and so were redissolved by gentle heating and placed in a water bath to cool slowly. Overnight, suitable higher-quality crystals of (I)[link] formed (yield 18.15%). Microanalysis expected: C 49.17, H 8.94%; found: C 48.36, H 8.60%.

Crystal data
  • [FeLi2Br(C4H9O)4(C4H8O)2]

  • Mr = 586.30

  • Monoclinic, P 21 /a

  • a = 18.4449 (5) Å

  • b = 9.0987 (3) Å

  • c = 18.6750 (5) Å

  • β = 90.535 (2)°

  • V = 3133.99 (16) Å3

  • Z = 4

  • Dx = 1.243 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 34588 reflections

  • θ = 1.0–27.5°

  • μ = 1.79 mm−1

  • T = 123 (2) K

  • Prism, pale yellow

  • 0.50 × 0.45 × 0.40 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan(SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.])Tmin = 0.460, Tmax = 0.497

  • 35132 measured reflections

  • 7143 independent reflections

  • 5934 reflections with I > 2σ(I)

  • Rint = 0.039

  • θmax = 27.5°

  • h = −23 → 23

  • k = −11 → 11

  • l = −24 → 24

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.070

  • S = 1.03

  • 7143 reflections

  • 319 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0243P)2 + 1.8098P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

Fe1—O4 1.8616 (11)
Fe1—O1 1.8653 (11)
Fe1—O3 1.8680 (11)
Fe1—O2 1.8687 (11)
Br1—Li2 2.471 (3)
Br1—Li1i 2.472 (3)
O2—Li1 1.973 (3)
O1—Li1 1.970 (3)
O4—Li2 1.958 (3)
O3—Li2 1.991 (3)
O5—Li1 1.963 (3)
O6—Li2 1.979 (3)
O4—Fe1—O1 118.19 (5)
O4—Fe1—O3 89.80 (5)
O1—Fe1—O3 121.60 (5)
O4—Fe1—O2 120.97 (5)
O1—Fe1—O2 89.60 (5)
O3—Fe1—O2 119.94 (5)
Li2—Br1—Li1i 161.93 (10)
Fe1—O2—Li1 92.77 (10)
Fe1—O1—Li1 92.96 (10)
Fe1—O4—Li2 93.87 (10)
Fe1—O3—Li2 92.61 (9)
O4—Li2—O6 116.21 (16)
O4—Li2—O3 83.60 (11)
O6—Li2—O3 113.49 (15)
O4—Li2—Br1 118.39 (13)
O6—Li2—Br1 101.04 (11)
O3—Li2—Br1 124.83 (14)
O5—Li1—O1 115.21 (15)
O5—Li1—O2 111.73 (15)
O1—Li1—O2 83.71 (11)
O5—Li1—Br1ii 104.79 (12)
O1—Li1—Br1ii 112.23 (13)
O2—Li1—Br1ii 128.44 (14)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

All H atoms were constrained to an idealized geometry using a riding model [for CH3, Uiso(H) = 1.5Ueq(C) and C—H = 0.98 Å; for CH2, Uiso(H) = 1.2Ueq(C) and C—H = 0.99 Å].

Data collection: DENZO (Hooft, 1988[Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.]) and COLLECT (Otwin­owski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Currently, our group is investigating the synthetic and structural synergic effects that can be harnessed by mixing an alkali metal and magnesium in the same molecular amide environment [for pertinent recent examples, see Hevia et al. (2005) and Andrikopoulos et al. (2004)]. One possible outcome of this mixed-metal-induced synergy is to generate `inverse crown' ring systems, in which Lewis acidic polymetallic cationic host rings surround Lewis basic anionic cores, as recently described for the oxo-centred 2,2,6,6-tetramethylpiperidinido (TMP) inverse crown `ether' [Na2Mg2O(TMP)4] (Kennedy et al., 2003). Germane to the work reported here, another type of inverse crown motif involves a chair-shaped octagonal ring that is face-capped on opposite sides of the chair by, for example, alkoxide ligands, as demonstrated by the mixed lithium–magnesium–diisopropylamideoctoxide [{LiMg[N(iPr)2]2nOctO}2] (Drewette et al., 2002). This motif bears a close similarity to that of the mixed sodium–iron(II) butoxide [{(THF)NaFe(tBuO)3}2] (THF is tetrahydrofuran) reported by Gun'ko et al. (2002), which, in our terminology, could be regarded as an all-alkoxide inverse crown. Wishing to pursue this structural analogy further, we attempted to prepare the lithium congener [{(THF)xLiFe(tBuO)3}2] by carrying out a metathetical reaction between FeBr2 and three molar equivalents of tBuOLi in THF solution. This attempt failed as the metathesis did not go to full completion and the iron in the product oxidized to FeIII, presumably as a result of the strong oxidizing nature of alkoxide ligands. The product obtained was the bromide-containing compound [{(THF)2Li2Fe(tBuO)4Br}], (I). Such heterometallic alkoxide compounds are of interest as precursors to oxide-based materials (Bradley, 1989; Bradley et al., 2001).

The asymmetric unit of (I) (Fig. 1) consists of a central FeIII atom bonded to four tBuO ligands that bridge two Li atoms. The coordination about atom Fe1 is considerably distorted from tetrahedral geometry [O—Fe1—O = 89.60 (5)–121.60 (5)°], the narrowest angles, as expected, being those internal to the Fe/O/Li/O rings. The Fe—O bond lengths span a tight range [1.8616 (11)–1.8687 (11) Å], and are significantly shorter than those that bridge between Fe atoms in [(tBuO)2Fe(µ-tBuO)2Fe(tBuO)2] (1.958–1.961 Å; Spandl et al., 2003). This presumably reflects greater competition for the O-atom electron density between two Fe atoms as opposed to between an Fe and an Li atom. In (I), the Li—OBu distances [1.958 (3) to 1.991 (3) Å] are greater than the Fe—OBu distances. This configuration contrasts with that of one of the few known structures featuring alkoxides bridging between FeIII and Li atoms. In [(Bu2CHO)2Fe(µ-Bu2CHO)2Li(Bu2CHOH)] (Bochmann et al., 1980), the situation is reversed, with Fe—O bridges of 1.908 and 1.934 Å, and Li—O distances of 1.870 and 1.874 Å. The difference appears to be that Li is three-coordinate in that complex and four-coordinate in (I). The bonding at each Li atom is completed by complexation of a THF molecule and of a Br atom, thus forming an Li—Br—Li bridge that extends (I) to a one-dimensional polymer, propagating through an a glide (Fig. 2).

Experimental top

FeBr2 (1.078 g, 5 mmol) and Li(tBuO) (1.20 g, 15 mmol) were weighed out in a glove box and transferred to a Schlenk tube filled with dry argon. The tube was placed on the vacuum line and cooled to 273 K in an ice bath. THF (20 ml) was added by syringe and the brown mixture was stirred at room temperature overnight. The next day the mixture was filtered through celite to remove LiBr and washed with THF (10 ml). The solution was reduced in volume under vacuum and left to stand overnight. A large crop of crystals formed in the dark-brown solution. The crystals were not single and so were redissolved by gentle heating and placed in a water bath to cool slowly. Overnight, suitable higher quality crystals of (I) formed (yield 18.15%). Microanalysis expected: C 49.17, H 8.94%; found: C 48.36, H 8.60%.

Refinement top

All H atoms were constrained to an idealized geometry with a riding model [for CH3, Uiso(H) = 1.5Ueq(C) and C—H = 0.98 Å; for CH2, Uiso(H) = 1.2Ueq(C) and C—H = 0.99 Å].

Computing details top

Data collection: DENZO (Hooft, 1988) and COLLECT (Otwinowski & Minor, 1997); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of (I), showing the propagation in the a direction to form a polymeric chain.
catena-poly[bromotetrakis(µ2-tert-butoxo)- bis(tetrahydrofuran-?O)iron(III)dilithium] top
Crystal data top
[FeLi2(C4H9O)4(C4H8O)2Br]F(000) = 1244
Mr = 586.30Dx = 1.243 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
a = 18.4449 (5) ÅCell parameters from 34588 reflections
b = 9.0987 (3) Åθ = 1.0–27.5°
c = 18.6750 (5) ŵ = 1.79 mm1
β = 90.535 (2)°T = 123 K
V = 3133.99 (16) Å3Prism, pale yellow
Z = 40.50 × 0.45 × 0.40 mm
Data collection top
Nonius KappaCCD
diffractometer
7143 independent reflections
Radiation source: fine-focus sealed tube5934 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω and ϕ scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 2323
Tmin = 0.460, Tmax = 0.497k = 1111
35132 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0243P)2 + 1.8098P]
where P = (Fo2 + 2Fc2)/3
7143 reflections(Δ/σ)max = 0.001
319 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[FeLi2(C4H9O)4(C4H8O)2Br]V = 3133.99 (16) Å3
Mr = 586.30Z = 4
Monoclinic, P21/aMo Kα radiation
a = 18.4449 (5) ŵ = 1.79 mm1
b = 9.0987 (3) ÅT = 123 K
c = 18.6750 (5) Å0.50 × 0.45 × 0.40 mm
β = 90.535 (2)°
Data collection top
Nonius KappaCCD
diffractometer
7143 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
5934 reflections with I > 2σ(I)
Tmin = 0.460, Tmax = 0.497Rint = 0.039
35132 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.03Δρmax = 0.50 e Å3
7143 reflectionsΔρmin = 0.59 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.004391 (11)0.62290 (2)0.252100 (12)0.01628 (6)
Br10.246920 (10)0.76341 (3)0.272467 (11)0.04186 (7)
C10.11111 (9)0.39475 (18)0.31172 (9)0.0217 (3)
C100.03391 (11)0.7477 (2)0.45656 (10)0.0351 (4)
C110.05598 (9)0.8653 (2)0.37460 (10)0.0291 (4)
C120.07361 (11)0.9495 (2)0.37392 (11)0.0367 (5)
C130.10691 (9)0.42806 (19)0.17431 (9)0.0235 (4)
C140.16164 (11)0.5067 (2)0.12615 (10)0.0369 (5)
C150.14285 (11)0.2996 (2)0.21295 (10)0.0348 (4)
C160.04334 (10)0.3735 (2)0.13026 (10)0.0314 (4)
C170.14965 (10)0.4358 (2)0.08254 (10)0.0336 (4)
C180.20745 (11)0.3271 (2)0.06097 (11)0.0387 (5)
C190.27246 (10)0.4255 (2)0.04821 (10)0.0365 (5)
C20.13224 (12)0.4638 (2)0.38322 (10)0.0368 (5)
C200.26455 (10)0.5416 (2)0.10565 (11)0.0355 (4)
C210.13519 (10)0.3753 (2)0.41428 (10)0.0336 (4)
C220.19103 (11)0.2821 (2)0.45153 (12)0.0388 (5)
C230.25324 (10)0.3881 (2)0.46549 (10)0.0339 (4)
C240.23548 (13)0.5219 (3)0.42235 (13)0.0508 (6)
C30.05064 (11)0.2840 (2)0.32207 (13)0.0417 (5)
C40.17671 (10)0.3205 (2)0.27845 (10)0.0345 (4)
C50.03529 (9)0.85518 (19)0.13741 (9)0.0255 (4)
C60.03792 (12)0.9190 (3)0.15602 (13)0.0483 (6)
C70.03414 (15)0.7930 (3)0.06182 (11)0.0499 (6)
C80.09395 (13)0.9719 (3)0.14379 (14)0.0519 (6)
C90.02279 (9)0.81807 (19)0.38293 (9)0.0232 (3)
Li10.14693 (15)0.6409 (3)0.20543 (15)0.0251 (6)
Li20.13684 (15)0.6223 (3)0.30454 (15)0.0253 (6)
O10.08740 (6)0.50801 (12)0.26390 (6)0.0203 (2)
O20.05346 (6)0.73899 (13)0.18572 (6)0.0222 (2)
O30.04130 (6)0.71087 (13)0.32999 (6)0.0212 (2)
O40.08204 (6)0.52915 (13)0.22755 (6)0.0212 (2)
O50.18755 (6)0.55285 (15)0.11866 (6)0.0303 (3)
O60.17497 (6)0.48943 (15)0.37917 (6)0.0306 (3)
H10A0.00200.66210.46160.053*
H10B0.08450.71640.46100.053*
H10C0.02230.81940.49410.053*
H11A0.06250.91010.32740.044*
H11B0.08760.77920.37920.044*
H11C0.06850.93700.41190.044*
H12A0.12400.91610.37620.055*
H12B0.06510.99620.32750.055*
H12C0.06431.02070.41230.055*
H14A0.13810.59020.10280.055*
H14B0.20210.54220.15510.055*
H14C0.17990.43840.08970.055*
H15A0.18300.33630.24190.052*
H15B0.10710.25100.24410.052*
H15C0.16140.22910.17760.052*
H16A0.00820.32440.16180.047*
H16B0.02000.45700.10670.047*
H16C0.06090.30390.09400.047*
H17A0.12350.47360.03980.040*
H17B0.11430.38910.11490.040*
H18A0.19330.27350.01690.046*
H18B0.21740.25530.09970.046*
H19A0.31850.37050.05410.044*
H19B0.27060.46950.00020.044*
H20A0.29080.51210.14990.043*
H20B0.28410.63690.08910.043*
H21A0.10040.41710.44940.040*
H21B0.10810.31600.37910.040*
H22A0.17140.24180.49700.047*
H22B0.20710.19970.42060.047*
H23A0.30000.34510.44970.041*
H23B0.25610.41240.51710.041*
H24A0.27750.54950.39180.061*
H24B0.22410.60530.45460.061*
H2A0.17000.53770.37570.055*
H2B0.15060.38740.41560.055*
H2C0.08970.51060.40440.055*
H3A0.00770.33410.34060.062*
H3B0.06650.20850.35620.062*
H3C0.03870.23780.27610.062*
H4A0.16310.27990.23160.052*
H4B0.19360.24100.30980.052*
H4C0.21560.39280.27250.052*
H6A0.07460.84120.15450.072*
H6B0.05080.99580.12140.072*
H6C0.03580.96150.20420.072*
H7A0.08100.74720.05170.075*
H7B0.02500.87250.02750.075*
H7C0.00440.71920.05760.075*
H8A0.09571.00930.19300.078*
H8B0.08301.05280.11080.078*
H8C0.14100.92880.13170.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02757 (11)0.05601 (15)0.04197 (12)0.01880 (9)0.00044 (8)0.00995 (10)
C10.0213 (8)0.0207 (8)0.0232 (8)0.0047 (7)0.0009 (6)0.0039 (7)
C100.0437 (11)0.0400 (11)0.0217 (9)0.0065 (9)0.0033 (8)0.0052 (8)
C110.0276 (9)0.0255 (9)0.0341 (10)0.0036 (7)0.0004 (7)0.0064 (8)
C120.0362 (11)0.0298 (11)0.0440 (11)0.0083 (8)0.0021 (9)0.0111 (9)
C130.0215 (8)0.0264 (9)0.0224 (8)0.0049 (7)0.0023 (6)0.0051 (7)
C140.0345 (10)0.0450 (12)0.0310 (10)0.0006 (9)0.0110 (8)0.0057 (9)
C150.0369 (10)0.0357 (11)0.0317 (10)0.0143 (9)0.0000 (8)0.0043 (8)
C160.0309 (9)0.0349 (10)0.0285 (9)0.0027 (8)0.0021 (7)0.0089 (8)
C170.0287 (10)0.0426 (12)0.0293 (10)0.0043 (9)0.0019 (7)0.0060 (8)
C180.0430 (11)0.0392 (12)0.0339 (11)0.0096 (9)0.0037 (9)0.0091 (9)
C190.0324 (10)0.0515 (13)0.0258 (9)0.0158 (9)0.0066 (8)0.0042 (9)
C20.0551 (13)0.0321 (11)0.0232 (9)0.0098 (9)0.0058 (8)0.0014 (8)
C200.0273 (9)0.0383 (11)0.0412 (11)0.0024 (8)0.0125 (8)0.0036 (9)
C210.0275 (9)0.0398 (11)0.0334 (10)0.0035 (8)0.0027 (8)0.0108 (9)
C220.0370 (11)0.0360 (11)0.0436 (12)0.0038 (9)0.0012 (9)0.0111 (9)
C230.0316 (10)0.0398 (11)0.0304 (10)0.0095 (8)0.0079 (8)0.0019 (8)
C240.0483 (13)0.0441 (13)0.0606 (15)0.0150 (11)0.0362 (11)0.0140 (11)
C30.0369 (11)0.0329 (11)0.0552 (13)0.0037 (9)0.0008 (10)0.0183 (10)
C40.0354 (10)0.0369 (11)0.0311 (10)0.0160 (9)0.0044 (8)0.0050 (8)
C50.0306 (9)0.0218 (9)0.0243 (9)0.0029 (7)0.0041 (7)0.0070 (7)
C60.0440 (12)0.0474 (13)0.0537 (14)0.0218 (11)0.0125 (10)0.0224 (11)
C70.0855 (18)0.0385 (13)0.0257 (10)0.0135 (12)0.0029 (11)0.0055 (9)
C80.0556 (14)0.0361 (12)0.0638 (15)0.0154 (11)0.0040 (12)0.0199 (11)
C90.0257 (8)0.0219 (8)0.0220 (8)0.0001 (7)0.0007 (6)0.0059 (7)
Fe10.01494 (11)0.01688 (11)0.01703 (11)0.00004 (9)0.00068 (8)0.00048 (9)
Li10.0204 (14)0.0299 (16)0.0248 (14)0.0012 (12)0.0014 (11)0.0023 (12)
Li20.0214 (14)0.0309 (16)0.0236 (14)0.0005 (12)0.0028 (11)0.0024 (12)
O10.0168 (5)0.0215 (6)0.0227 (6)0.0022 (5)0.0001 (4)0.0034 (5)
O20.0215 (6)0.0224 (6)0.0227 (6)0.0024 (5)0.0029 (4)0.0053 (5)
O30.0208 (6)0.0222 (6)0.0207 (6)0.0010 (5)0.0020 (4)0.0046 (5)
O40.0168 (5)0.0244 (6)0.0222 (6)0.0022 (5)0.0010 (4)0.0050 (5)
O50.0232 (6)0.0390 (8)0.0288 (7)0.0044 (6)0.0036 (5)0.0059 (6)
O60.0242 (6)0.0380 (8)0.0298 (7)0.0048 (5)0.0084 (5)0.0101 (6)
Geometric parameters (Å, º) top
Fe1—O41.8616 (11)C4—H4A0.9800
Fe1—O11.8653 (11)C4—H4B0.9800
Fe1—O31.8680 (11)C4—H4C0.9800
Fe1—O21.8687 (11)C22—C211.509 (3)
Fe1—Li12.782 (3)C22—H22A0.9900
Fe1—Li22.792 (3)C22—H22B0.9900
Br1—Li22.471 (3)C19—C201.514 (3)
Br1—Li1i2.472 (3)C19—C181.517 (3)
O2—C51.4277 (19)C19—H19A0.9900
O2—Li11.973 (3)C19—H19B0.9900
O1—C11.4295 (19)C21—H21A0.9900
O1—Li11.970 (3)C21—H21B0.9900
O4—C131.4271 (19)C15—H15A0.9800
O4—Li21.958 (3)C15—H15B0.9800
O3—C91.4279 (19)C15—H15C0.9800
O3—Li21.991 (3)C14—H14A0.9800
O5—C171.438 (2)C14—H14B0.9800
O5—C201.447 (2)C14—H14C0.9800
O5—Li11.963 (3)C20—H20A0.9900
O6—C241.414 (2)C20—H20B0.9900
O6—C211.428 (2)C10—H10A0.9800
O6—Li21.979 (3)C10—H10B0.9800
C9—C111.525 (2)C10—H10C0.9800
C9—C121.528 (2)C3—H3A0.9800
C9—C101.533 (2)C3—H3B0.9800
C5—C61.513 (3)C3—H3C0.9800
C5—C81.520 (3)C17—C181.512 (3)
C5—C71.521 (3)C17—H17A0.9900
C1—C31.517 (2)C17—H17B0.9900
C1—C21.523 (2)C18—H18A0.9900
C1—C41.523 (2)C18—H18B0.9900
C23—C241.498 (3)C24—H24A0.9900
C23—C221.523 (3)C24—H24B0.9900
C23—H23A0.9900C12—H12A0.9800
C23—H23B0.9900C12—H12B0.9800
C13—C161.522 (2)C12—H12C0.9800
C13—C141.524 (2)C7—H7A0.9800
C13—C151.528 (2)C7—H7B0.9800
C11—H11A0.9800C7—H7C0.9800
C11—H11B0.9800C6—H6A0.9800
C11—H11C0.9800C6—H6B0.9800
C2—H2A0.9800C6—H6C0.9800
C2—H2B0.9800C8—H8A0.9800
C2—H2C0.9800C8—H8B0.9800
C16—H16A0.9800C8—H8C0.9800
C16—H16B0.9800Li1—Br1ii2.472 (3)
C16—H16C0.9800
O4—Fe1—O1118.19 (5)H19A—C19—H19B109.1
O4—Fe1—O389.80 (5)O6—C21—C22105.69 (15)
O1—Fe1—O3121.60 (5)O6—C21—H21A110.6
O4—Fe1—O2120.97 (5)C22—C21—H21A110.6
O1—Fe1—O289.60 (5)O6—C21—H21B110.6
O3—Fe1—O2119.94 (5)C22—C21—H21B110.6
O4—Fe1—Li1139.41 (7)H21A—C21—H21B108.7
O1—Fe1—Li145.01 (7)C13—C15—H15A109.5
O3—Fe1—Li1130.78 (7)C13—C15—H15B109.5
O2—Fe1—Li145.09 (7)H15A—C15—H15B109.5
O4—Fe1—Li244.42 (7)C13—C15—H15C109.5
O1—Fe1—Li2136.48 (7)H15A—C15—H15C109.5
O3—Fe1—Li245.44 (7)H15B—C15—H15C109.5
O2—Fe1—Li2133.87 (7)O4—Li2—O6116.21 (16)
Li1—Fe1—Li2176.03 (9)O4—Li2—O383.60 (11)
Li2—Br1—Li1i161.93 (10)O6—Li2—O3113.49 (15)
C5—O2—Fe1136.50 (10)O4—Li2—Br1118.39 (13)
C5—O2—Li1130.72 (13)O6—Li2—Br1101.04 (11)
Fe1—O2—Li192.77 (10)O3—Li2—Br1124.83 (14)
C1—O1—Fe1136.37 (9)O4—Li2—Fe141.71 (6)
C1—O1—Li1128.30 (12)O6—Li2—Fe1125.94 (13)
Fe1—O1—Li192.96 (10)O3—Li2—Fe141.95 (6)
C13—O4—Fe1137.39 (10)Br1—Li2—Fe1132.95 (11)
C13—O4—Li2128.74 (13)C13—C14—H14A109.5
Fe1—O4—Li293.87 (10)C13—C14—H14B109.5
C9—O3—Fe1136.48 (10)H14A—C14—H14B109.5
C9—O3—Li2130.30 (13)C13—C14—H14C109.5
Fe1—O3—Li292.61 (9)H14A—C14—H14C109.5
C17—O5—C20110.04 (14)H14B—C14—H14C109.5
C17—O5—Li1120.12 (13)O5—C20—C19105.64 (16)
C20—O5—Li1123.39 (14)O5—C20—H20A110.6
C24—O6—C21107.16 (14)C19—C20—H20A110.6
C24—O6—Li2124.16 (15)O5—C20—H20B110.6
C21—O6—Li2125.69 (13)C19—C20—H20B110.6
O3—C9—C11110.11 (13)H20A—C20—H20B108.7
O3—C9—C12108.43 (14)C9—C10—H10A109.5
C11—C9—C12110.63 (15)C9—C10—H10B109.5
O3—C9—C10107.62 (14)H10A—C10—H10B109.5
C11—C9—C10110.17 (15)C9—C10—H10C109.5
C12—C9—C10109.81 (15)H10A—C10—H10C109.5
O2—C5—C6110.11 (14)H10B—C10—H10C109.5
O2—C5—C8107.77 (15)C1—C3—H3A109.5
C6—C5—C8110.47 (18)C1—C3—H3B109.5
O2—C5—C7108.19 (14)H3A—C3—H3B109.5
C6—C5—C7110.57 (18)C1—C3—H3C109.5
C8—C5—C7109.66 (18)H3A—C3—H3C109.5
O1—C1—C3109.73 (14)H3B—C3—H3C109.5
O1—C1—C2108.96 (14)O5—C17—C18105.58 (15)
C3—C1—C2110.17 (16)O5—C17—H17A110.6
O1—C1—C4107.72 (13)C18—C17—H17A110.6
C3—C1—C4110.18 (16)O5—C17—H17B110.6
C2—C1—C4110.04 (15)C18—C17—H17B110.6
C24—C23—C22104.69 (15)H17A—C17—H17B108.8
C24—C23—H23A110.8C17—C18—C19102.48 (17)
C22—C23—H23A110.8C17—C18—H18A111.3
C24—C23—H23B110.8C19—C18—H18A111.3
C22—C23—H23B110.8C17—C18—H18B111.3
H23A—C23—H23B108.9C19—C18—H18B111.3
O4—C13—C16110.03 (13)H18A—C18—H18B109.2
O4—C13—C14108.37 (14)O6—C24—C23108.35 (17)
C16—C13—C14110.10 (15)O6—C24—H24A110.0
O4—C13—C15107.58 (13)C23—C24—H24A110.0
C16—C13—C15110.21 (16)O6—C24—H24B110.0
C14—C13—C15110.50 (15)C23—C24—H24B110.0
C9—C11—H11A109.5H24A—C24—H24B108.4
C9—C11—H11B109.5C9—C12—H12A109.5
H11A—C11—H11B109.5C9—C12—H12B109.5
C9—C11—H11C109.5H12A—C12—H12B109.5
H11A—C11—H11C109.5C9—C12—H12C109.5
H11B—C11—H11C109.5H12A—C12—H12C109.5
C1—C2—H2A109.5H12B—C12—H12C109.5
C1—C2—H2B109.5C5—C7—H7A109.5
H2A—C2—H2B109.5C5—C7—H7B109.5
C1—C2—H2C109.5H7A—C7—H7B109.5
H2A—C2—H2C109.5C5—C7—H7C109.5
H2B—C2—H2C109.5H7A—C7—H7C109.5
C13—C16—H16A109.5H7B—C7—H7C109.5
C13—C16—H16B109.5C5—C6—H6A109.5
H16A—C16—H16B109.5C5—C6—H6B109.5
C13—C16—H16C109.5H6A—C6—H6B109.5
H16A—C16—H16C109.5C5—C6—H6C109.5
H16B—C16—H16C109.5H6A—C6—H6C109.5
C1—C4—H4A109.5H6B—C6—H6C109.5
C1—C4—H4B109.5C5—C8—H8A109.5
H4A—C4—H4B109.5C5—C8—H8B109.5
C1—C4—H4C109.5H8A—C8—H8B109.5
H4A—C4—H4C109.5C5—C8—H8C109.5
H4B—C4—H4C109.5H8A—C8—H8C109.5
C21—C22—C23103.98 (16)H8B—C8—H8C109.5
C21—C22—H22A111.0O5—Li1—O1115.21 (15)
C23—C22—H22A111.0O5—Li1—O2111.73 (15)
C21—C22—H22B111.0O1—Li1—O283.71 (11)
C23—C22—H22B111.0O5—Li1—Br1ii104.79 (12)
H22A—C22—H22B109.0O1—Li1—Br1ii112.23 (13)
C20—C19—C18102.66 (15)O2—Li1—Br1ii128.44 (14)
C20—C19—H19A111.2O5—Li1—Fe1127.14 (13)
C18—C19—H19A111.2O1—Li1—Fe142.03 (6)
C20—C19—H19B111.2O2—Li1—Fe142.13 (6)
C18—C19—H19B111.2Br1ii—Li1—Fe1127.47 (11)
O4—Fe1—O2—C549.28 (17)C24—O6—Li2—Br126.2 (2)
O1—Fe1—O2—C5172.43 (15)C21—O6—Li2—Br1175.94 (14)
O3—Fe1—O2—C560.66 (16)C24—O6—Li2—Fe1156.45 (18)
Li1—Fe1—O2—C5180.0 (2)C21—O6—Li2—Fe11.4 (3)
Li2—Fe1—O2—C55.4 (2)C9—O3—Li2—O4174.56 (14)
O4—Fe1—O2—Li1130.71 (10)Fe1—O3—Li2—O42.45 (9)
O1—Fe1—O2—Li17.57 (10)C9—O3—Li2—O669.6 (2)
O3—Fe1—O2—Li1119.35 (10)Fe1—O3—Li2—O6118.29 (14)
Li2—Fe1—O2—Li1174.63 (12)C9—O3—Li2—Br154.2 (2)
O4—Fe1—O1—C164.48 (15)Fe1—O3—Li2—Br1117.88 (14)
O3—Fe1—O1—C144.50 (16)C9—O3—Li2—Fe1172.11 (17)
O2—Fe1—O1—C1170.07 (15)Li1i—Br1—Li2—O418.0 (4)
Li1—Fe1—O1—C1162.49 (19)Li1i—Br1—Li2—O6110.1 (3)
Li2—Fe1—O1—C112.24 (19)Li1i—Br1—Li2—O3120.8 (3)
O4—Fe1—O1—Li1133.04 (10)Li1i—Br1—Li2—Fe167.0 (4)
O3—Fe1—O1—Li1117.99 (10)O1—Fe1—Li2—O484.58 (12)
O2—Fe1—O1—Li17.58 (10)O3—Fe1—Li2—O4176.34 (14)
Li2—Fe1—O1—Li1174.73 (12)O2—Fe1—Li2—O492.22 (11)
O1—Fe1—O4—C1351.89 (16)O4—Fe1—Li2—O690.36 (18)
O3—Fe1—O4—C13178.23 (16)O1—Fe1—Li2—O65.8 (2)
O2—Fe1—O4—C1356.32 (17)O3—Fe1—Li2—O685.98 (17)
Li1—Fe1—O4—C130.7 (2)O2—Fe1—Li2—O6177.41 (12)
Li2—Fe1—O4—C13179.2 (2)O4—Fe1—Li2—O3176.34 (14)
O1—Fe1—O4—Li2128.95 (10)O1—Fe1—Li2—O391.76 (11)
O3—Fe1—O4—Li22.61 (10)O2—Fe1—Li2—O391.44 (11)
O2—Fe1—O4—Li2122.85 (10)O4—Fe1—Li2—Br186.10 (17)
Li1—Fe1—O4—Li2178.45 (13)O1—Fe1—Li2—Br1170.67 (10)
O4—Fe1—O3—C9173.82 (15)O3—Fe1—Li2—Br197.56 (18)
O1—Fe1—O3—C962.65 (16)O2—Fe1—Li2—Br16.1 (2)
O2—Fe1—O3—C947.53 (16)C17—O5—C20—C199.7 (2)
Li1—Fe1—O3—C97.09 (19)Li1—O5—C20—C19161.34 (16)
Li2—Fe1—O3—C9171.25 (19)C18—C19—C20—O528.93 (19)
O4—Fe1—O3—Li22.56 (10)C20—O5—C17—C1813.8 (2)
O1—Fe1—O3—Li2126.10 (10)Li1—O5—C17—C18138.90 (16)
O2—Fe1—O3—Li2123.73 (10)O5—C17—C18—C1931.41 (19)
Li1—Fe1—O3—Li2178.34 (12)C20—C19—C18—C1736.50 (19)
Fe1—O3—C9—C113.7 (2)C21—O6—C24—C2325.7 (2)
Li2—O3—C9—C11172.23 (15)Li2—O6—C24—C23172.98 (16)
Fe1—O3—C9—C12117.46 (15)C22—C23—C24—O67.9 (3)
Li2—O3—C9—C1251.1 (2)C17—O5—Li1—O129.8 (2)
Fe1—O3—C9—C10123.82 (15)C20—O5—Li1—O1119.18 (17)
Li2—O3—C9—C1067.7 (2)C17—O5—Li1—O263.5 (2)
Fe1—O2—C5—C615.3 (2)C20—O5—Li1—O2147.54 (15)
Li1—O2—C5—C6164.72 (17)C17—O5—Li1—Br1ii153.62 (13)
Fe1—O2—C5—C8135.86 (16)C20—O5—Li1—Br1ii4.7 (2)
Li1—O2—C5—C844.1 (2)C17—O5—Li1—Fe117.9 (2)
Fe1—O2—C5—C7105.65 (18)C20—O5—Li1—Fe1166.85 (15)
Li1—O2—C5—C774.3 (2)C1—O1—Li1—O577.0 (2)
Fe1—O1—C1—C344.8 (2)Fe1—O1—Li1—O5118.31 (14)
Li1—O1—C1—C3157.67 (16)C1—O1—Li1—O2171.88 (13)
Fe1—O1—C1—C275.85 (18)Fe1—O1—Li1—O27.22 (9)
Li1—O1—C1—C281.63 (19)C1—O1—Li1—Br1ii42.8 (2)
Fe1—O1—C1—C4164.80 (12)Fe1—O1—Li1—Br1ii121.88 (11)
Li1—O1—C1—C437.7 (2)C1—O1—Li1—Fe1164.66 (16)
Fe1—O4—C13—C166.7 (2)C5—O2—Li1—O558.1 (2)
Li2—O4—C13—C16174.41 (16)Fe1—O2—Li1—O5121.88 (13)
Fe1—O4—C13—C14113.77 (16)C5—O2—Li1—O1172.79 (14)
Li2—O4—C13—C1465.2 (2)Fe1—O2—Li1—O17.21 (9)
Fe1—O4—C13—C15126.74 (15)C5—O2—Li1—Br1ii73.7 (2)
Li2—O4—C13—C1554.3 (2)Fe1—O2—Li1—Br1ii106.27 (15)
C24—C23—C22—C2111.6 (2)C5—O2—Li1—Fe1180.00 (18)
C24—O6—C21—C2233.0 (2)O4—Fe1—Li1—O55.6 (2)
Li2—O6—C21—C22165.99 (17)O1—Fe1—Li1—O587.59 (18)
C23—C22—C21—O627.0 (2)O3—Fe1—Li1—O5175.74 (12)
C13—O4—Li2—O665.2 (2)O2—Fe1—Li1—O581.67 (17)
Fe1—O4—Li2—O6115.53 (14)O4—Fe1—Li1—O181.94 (12)
C13—O4—Li2—O3178.26 (13)O3—Fe1—Li1—O196.67 (10)
Fe1—O4—Li2—O32.46 (9)O2—Fe1—Li1—O1169.27 (14)
C13—O4—Li2—Br155.4 (2)O4—Fe1—Li1—O287.32 (12)
Fe1—O4—Li2—Br1123.89 (13)O1—Fe1—Li1—O2169.27 (14)
C13—O4—Li2—Fe1179.27 (17)O3—Fe1—Li1—O294.07 (10)
C24—O6—Li2—O4155.69 (19)O4—Fe1—Li1—Br1ii163.99 (9)
C21—O6—Li2—O446.4 (2)O1—Fe1—Li1—Br1ii82.05 (15)
C24—O6—Li2—O3109.8 (2)O3—Fe1—Li1—Br1ii14.6 (2)
C21—O6—Li2—O348.1 (2)O2—Fe1—Li1—Br1ii108.69 (17)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[FeLi2(C4H9O)4(C4H8O)2Br]
Mr586.30
Crystal system, space groupMonoclinic, P21/a
Temperature (K)123
a, b, c (Å)18.4449 (5), 9.0987 (3), 18.6750 (5)
β (°) 90.535 (2)
V3)3133.99 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.79
Crystal size (mm)0.50 × 0.45 × 0.40
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.460, 0.497
No. of measured, independent and
observed [I > 2σ(I)] reflections
35132, 7143, 5934
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.070, 1.03
No. of reflections7143
No. of parameters319
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.59

Computer programs: DENZO (Hooft, 1988) and COLLECT (Otwinowski & Minor, 1997), DENZO and COLLECT, DENZO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Fe1—O41.8616 (11)O2—Li11.973 (3)
Fe1—O11.8653 (11)O1—Li11.970 (3)
Fe1—O31.8680 (11)O4—Li21.958 (3)
Fe1—O21.8687 (11)O3—Li21.991 (3)
Br1—Li22.471 (3)O5—Li11.963 (3)
Br1—Li1i2.472 (3)O6—Li21.979 (3)
O4—Fe1—O1118.19 (5)O4—Li2—O383.60 (11)
O4—Fe1—O389.80 (5)O6—Li2—O3113.49 (15)
O1—Fe1—O3121.60 (5)O4—Li2—Br1118.39 (13)
O4—Fe1—O2120.97 (5)O6—Li2—Br1101.04 (11)
O1—Fe1—O289.60 (5)O3—Li2—Br1124.83 (14)
O3—Fe1—O2119.94 (5)O5—Li1—O1115.21 (15)
Li2—Br1—Li1i161.93 (10)O5—Li1—O2111.73 (15)
Fe1—O2—Li192.77 (10)O1—Li1—O283.71 (11)
Fe1—O1—Li192.96 (10)O5—Li1—Br1ii104.79 (12)
Fe1—O4—Li293.87 (10)O1—Li1—Br1ii112.23 (13)
Fe1—O3—Li292.61 (9)O2—Li1—Br1ii128.44 (14)
O4—Li2—O6116.21 (16)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+3/2, z.
 

References

First citationAndrikopoulos, P. C., Armstrong, D. R., Clegg, W., Gilfillan, C. J., Hevia, E., Kennedy, A. R., Mulvey, R. E., O'Hara, C. T., Parkinson, J. A. & Tooke, D. M. (2004). J. Am. Chem. Soc. 126, 11612–11620.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBochmann, M., Wilkinson, G., Young, G. B., Hursthouse, M. B. & Malik, K. M. A. (1980). J. Chem. Soc. Dalton Trans. pp. 1863–1871.  CSD CrossRef Web of Science Google Scholar
First citationBradley, D. C. (1989). Chem. Rev. 89, 1317–1322.  CrossRef CAS Web of Science Google Scholar
First citationBradley, D. C., Mehrotra, R. C., Rothwell, I. P. & Singh, A. (2001). In Alkoxo and Aryloxo Derivatives of Metals. London: Academic Press.  Google Scholar
First citationDrewette, K. J., Henderson, K. W., Kennedy, A. R., Mulvey, R. E., O'Hara, C. T. & Rowlings, R. B. (2002). Chem. Commun. pp. 1176–1177.  Web of Science CSD CrossRef Google Scholar
First citationGun'ko, Y. K., Cristmann, U. & Kessler, V. G. (2002). Inorg. Chem. pp. 1029–1031.  Google Scholar
First citationHevia, E., Honeyman, G. W., Kennedy, A. R., Mulvey, R. E. & Sherrington, D. C. (2005). Angew. Chem. Int. Ed. 44, 68–72.  Web of Science CSD CrossRef CAS Google Scholar
First citationHooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKennedy, A. R., MacLellan, J. G. & Mulvey, R. E. (2003). Acta Cryst. C59, m302–m303.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpandl, J., Kusserow, M. & Bradgam, I. (2003). Z. Anorg. Allg. Chem. 629, 968–974.  Web of Science CSD CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds