organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Solvent-dependent polymorphism in isomeric N-(nitro­benzyl­­idene)iodo­anilines

aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 18 May 2005; accepted 20 May 2005; online 22 June 2005)

Three of the nine isomeric N-(nitro­benzyl­idene)iodo­anilines, C13H9IN2O2, have been found, when crystallized from acetone, to yield polymorphs which differ from those obtained upon crystallization from ethanol. In the second polymorph of 2-iodo-N-(2-nitro­benzyl­idene)aniline, the mol­ecules are disordered across inversion centres in space group C2/c, but there are no direction-specific inter­actions between the mol­ecules. In the second polymorph of 2-iodo-N-(3-nitro­benzyl­idene)aniline, the mol­ecules adopt a different conformation from those in the first polymorph, and they are linked into sheets by a combination of a three-centre iodo–nitro inter­action and an aromatic ππ stacking inter­action, both of which are absent from the supramolecular structure of the first polymorph. The second polymorph of 3-iodo-N-(2-nitro­benzyl­idene)aniline crystallizes with Z′ = 2 in space group P21, and the mol­ecules are linked into sheets by one C—H⋯O hydrogen bond and two C—H⋯π(arene) hydrogen bonds.

Comment

We have recently described the mol­ecular and supramolecular structures of the isomeric N-(nitro­benzyl­idene)iodo­anilines (Glidewell et al., 2002[Glidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864-876.]), all of which were crystallized from ethanol. Of the nine possible isomers, we were able to determine the structures of eight, but the final isomer, 4-iodo-N-(4-nitro­benzyl­idene)­aniline, which crystallized from ethanol with Z′ = 2 in space group Fdd2, proved to be intractably disordered. The supramolecular aggregation patterns in the other isomers ranged from isolated mol­ecules with no direction-specific inter­actions between them in 2-iodo-N-(2-nitro­benzyl­idene)­aniline, via chains and sheets, to a three-dimensional framework built from a combination of C—H⋯O hydrogen bonds and iodo–nitro and aromatic ππ stacking inter­actions in 4-iodo-N-(3-nitro­benzyl­idene)­aniline. Of the eight structurally characterized isomers, only 3-iodo-N-(3-nitro­benzyl­idene)­aniline and 3-iodo-N-(4-nitro­benzyl­idene)­aniline showed any similarity in their patterns of inter­molecular aggregation.

[Scheme 1]

We have now crystallized the same nine isomers from acetone instead of ethanol. 4-Iodo-N-(4-nitro­benzyl­idene)­aniline remains an intra­cta­ble problem, and no suitable crystals of 3-iodo-N-(3-nitro­benzyl­idene­aniline were obtained from acetone. Of the remaining seven isomers, four proved to crystallize exactly as from ethanol, but three gave different polymorphs, for each of which the crystallization characteristics and supramolecular aggregation are entirely different from those previously observed for these isomers. We employ here for the polymorphs crystallized from acetone the same numbering of the isomers as that used previously (Glidewell et al., 2002[Glidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864-876.]), thus 2-iodo-N-(2-nitro­benzyl­idene)­aniline is denoted (I)[link], 2-iodo-N-(3-nitro­benzyl­idene)­aniline is denoted (II)[link] and 3-iodo-N-(2-nitro­benzyl­idene)­aniline is denoted (IV)[link], with the corresponding designations (Ia), (IIa) and (IVa) denoting the polymorphs previously crystallized from ethanol. Crystallization from acetone of 2-iodo-N-(4-nitro­benzyl­idene)­aniline [isomer (III)], 3-iodo-N-(4-nitro­benzyl­idene)­aniline [isomer (VI)], 4-iodo-N-(2-nitro­benzyl­idene)­aniline [isomer (VII)] and 4-iodo-N-(3-nitro­benzyl­idene)­aniline [isomer (VIII)] gave materials identical in each case to those previously obtained by crystallization from ethanol.

2-Iodo-N-(2-nitro­benzyl­idene)­aniline (Fig. 1[link]) crystallizes from acetone as polymorph (I)[link], in space group C2/c with Z′ = [{1\over 2}]. The mol­ecules lie across centres of inversion, so that the mol­ecules and, in particular, the iodo and nitro substituents and the –CH=N– bridge are all disordered over two sets of atomic sites having equal occupancy. By contrast, the polymorph obtained from ethanol solution, (Ia), crystallizes with Z′ = 1 in space group P21/n, in a unit cell of entirely different dimensions and with fully ordered mol­ecules.

The framework torsion angles defining the twist of the ar­yl rings away from the central spacer unit (Table 1[link]) are rather different for the two orientations of the mol­ecule in polymorph (I)[link], and different again from the corresponding torsion angles in polymorph (Ia). In neither (I)[link] nor (Ia) are there any direction-specific inter­molecular inter­actions.

The second form of 2-iodo-N-(3-nitro­benzyl­idene)­aniline, polymorph (II)[link] (Fig. 2[link]), proved to be a conformational polymorph of the previously reported form (IIa). Polymorphs (II)[link] and (IIa) both crystallize in space group P21/c and, at 120 (2) K, their unit-cell volumes are almost identical. However, the unit-cell shapes are rather different, with the b value for (IIa) [22.6230 (7) Å] about 50% larger than that for (II)[link]. For polymorph (II)[link], there is no phase change between 120 (2) and 298 (2) K; data sets were collected at both temperatures, and both led to the same structure. However, we discuss here mainly the details of the refinement at 298 (2) K, as this proved to be the more satisfactory of the two.

The overall mol­ecular conformation of (II)[link] can be defined in terms of the leading torsion angles (Table 1[link]). The central spacer unit is effectively planar, but both ar­yl rings are significantly rotated away from the plane of this central unit, as found also for (IIa). On the other hand, the nitro group shows only a small deviation from coplanarity with the adjacent aryl ring. The principal difference between polymorphs (II)[link] and (IIa) is that in (II)[link] the nitro and iodo substituents are on opposite edges of the mol­ecule, while in (IIa) they are on the same edge (see scheme[link]). Hence, (II)[link] and (IIa) may be described as conformational polymorphs.

The supramolecular structure of (II)[link] is dominated by three-centre iodo–nitro inter­actions augmented by rather weak aromatic ππ stacking inter­actions. Atom I2 in the mol­ecule at (x, y, z) forms rather long and nearly symmetric I⋯O contacts with atoms O1 and O2 in the mol­ecule at (1 − x, y − [{1\over 2}], [{1\over 2}] − z), with I2⋯O1i = 3.527 (3) Å, I2⋯O2i = 3.537 (3) Å, C22—I2⋯O1i = 146.8 (2)°, C22—I2⋯O2i = 164.0 (2)° and O1i⋯I2⋯O2i = 35.3 (2)° at 298 (2) K [symmetry code: (i) 1 − x, y − [{1\over 2}], [{1\over 2}] − z]. The corresponding values at 120 (2) K are 3.410 (8) Å, 3.491 (9) Å, 144.4 (2)°, 163.9 (2)° and 36.5 (2)°, respectively. The I⋯O distances are towards the upper end of the range reported for such inter­actions (Allen et al., 1994[Allen, F. H., Goud, B. S., Hoy, V. J., Howard, J. A. K. & Desiraju, G. R. (1994). J. Chem. Soc. Chem. Commun. pp. 2729-2730.]; Thalladi et al., 1996[Thalladi, V. R., Goud, B. S., Hoy, V. J., Allen, F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401-402.]; Masciocchi et al., 1998[Masciocchi, N., Bergamo, M. & Sironi, A. (1998). Chem. Commun. pp. 1347-1348.]; Ranganathan & Pedireddi, 1998[Ranganathan, A. & Pedireddi, V. R. (1998). Tetrahedron Lett. 39, 1803-1806.]; McWilliam et al., 2001[McWilliam, S. A., Skakle, J. M. S., Low, J. N., Wardell, J. L., Garden, S. J., Pinto, A. C., Torres, J. C. & Glidewell, C. (2001). Acta Cryst. C57, 942-945.]; Kelly et al., 2002[Kelly, C. J., Skakle, J. M. S., Wardell, J. L., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 94-108.]; Garden et al., 2002[Garden, S. J., Fontes, S. P., Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 701-709.]; Glidewell et al., 2002[Glidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864-876.]), but, in general, such distances are longer in three-centre inter­actions, as in (II)[link], than in two-centre inter­actions.

Propagation of the iodo–nitro inter­action then produces a chain running parallel to the [010] direction and generated by the 21 screw axis along ([{1\over 2}], y, [{1\over 4}]) (Fig. 3[link]). A second such chain, antiparallel to the first and related to it by inversion, is generated by the screw axis along ([{1\over 2}], −y, [{3\over 4}]). Adopting the recently described (Starbuck et al., 1999[Starbuck, J., Norman, N. C. & Orpen, A. G. (1999). New J. Chem. 23, 969-972.]) extension of the graph-set notation (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Motherwell et al., 1999[Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044-1056.]) originally introduced to codify hydrogen-bonded networks, and regarding the negatively polarized O atoms of a nitro group as donors and the positively polarized I atoms as acceptors, we can describe these chains as being of C(10)[R12(4)] type.

The [010] chains are linked by a single rather weak ππ stacking inter­action. The iodinated C21–C26 rings in the mol­ecules at (x, y, z) and (2 − x, −y, 1 − z) are parallel, with an inter­planar spacing of 3.651 (2) Å. The ring-centroid separation is 3.920 (2) Å, corresponding to a near-ideal centroid offset of 1.427 (2) Å (Fig. 4[link]). The two mol­ecules in question lie in the [010] chains along ([{1\over 2}], y, [{1\over 4}]) and ([{3\over 2}], −y, [{3\over 4}]), respectively, and propagation of this inter­action by the space group thus links [010] chains into a ([\overline{1}]02) sheet. There are no significant direction-specific inter­actions between adjacent sheets. In particular, C—H⋯O, C—H⋯N and C—H⋯π(arene) hydrogen bonds are all absent.

The inter­molecular inter­actions in (II)[link] may be contrasted briefly with those in polymorph (IIa). In the structure of (IIa), there are neither iodo–nitro inter­actions nor aromatic ππ stacking inter­actions. Instead, the mol­ecules are linked into a chain of rings, generated by translation, by means of two independent C—H⋯O hydrogen bonds, a form of inter­action absent from the structure of (II)[link].

3-Iodo-N-(2-nitro­benzyl­idene)aniline crystallizes from acetone solution as polymorph (IV)[link], in space group P21 with Z′ = 2 (Fig. 5[link]). When crystallized from ethanol, this isomer forms a different polymorph, (IVa), in space group P21/c with Z′ = 1.

The two independent mol­ecules in (IV)[link] are linked within the selected asymmetric unit by a single C—H⋯O hydrogen bond (Table 2[link]), and they adopt conformations which are similar but by no means identical, as shown by the leading torsion angles (Table 1[link]). These angles and the unique C—H⋯O hydrogen bond suffice to preclude the possibility of additional crystallographic symmetry. The two mol­ecules themselves have no internal symmetry and hence they are chiral. In the absence of any twinning, only a single enantiomorph of each mol­ecule is present in any individual crystal. The mol­ecules in polymorph (IVa) adopt a somewhat different conformation from those in polymorph (IV)[link], but again the mol­ecules are chiral. However, in space group P21/c, both enantiomers are present in each crystal of (IVa).

The bimolecular aggregates in (IV)[link] (Fig. 5[link]) are linked into sheets by two independent C—H⋯π(arene) hydrogen bonds (Table 2[link]). Atoms C25 and C45 at (x, y, z) act as donors to the C21–C26 and C41–C46 rings at (2 − x, [{1\over 2}] + y, 1 − z) and (1 − x, y − [{1\over 2}], −z), respectively, so forming two similar chains, both running parallel to the [010] direction and generated by the 21 screw axes along (1, y, [{1\over 2}]) and ([{1\over 2}], y, 0), respectively. The combination of these two chains, together with the C—H⋯O hydrogen bond linking the two mol­ecules in the asymmetric unit, then generates a sheet parallel to (10[\overline{1}]) (Fig. 6[link]).

There are neither iodo–nitro inter­actions nor aromatic ππ stacking inter­actions in the structure of (IV)[link], but adjacent sheets are weakly linked by a dipolar nitro–nitro inter­action. The bimolecular aggregates at (x, y, z) and (1 − x, y − [{1\over 2}], 1 − z) lie in adjacent (10[\overline{1}]) sheets and nitro groups in the two independent mol­ecules form a dipolar inter­action, with dimensions O11⋯N32i = 2.828 (5) Å and N12—O11⋯N32i = 137.6 (3)° [symmetry code: (i) 1 − x, y − [{1\over 2}], 1 − z].

We have commented previously (Glidewell et al., 2002[Glidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864-876.]) on the challenge to the attempted prediction of mol­ecular crystal structures (Lommerse et al., 2000[Lommerse, J. P. M., Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2000). Acta Cryst. B56, 697-714.]; Motherwell et al., 2002[Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Dzyabchenko, A., Erk, P., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Lommerse, J. P. M., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2002). Acta Cryst. B58, 647-761.]) posed by series of positional isomeric compounds, such as the many isomers of N-(nitro­benzyl­idene)iodo­anilines and related series. The severity of this challenge is markedly enhanced by the observation of solvent-related and/or conformational polymorphism within such a series.

[Figure 1]
Figure 1
The two independent orientations of the mol­ecule of isomer (I)[link], showing the atom-labelling scheme. In orientation 1, the bonds are shown as solid lines, and in orientation 2, the bonds are shown as dashed lines. The solid bond C11_1—C12_1 is effectively hidden behind the dashed bond C21_2—C22_2. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecule of isomer (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
Part of the crystal structure of isomer (II)[link], showing the formation of a chain along [010]. For the sake of clarity, the H atoms have been omitted. Atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (1 − x, y − [{1\over 2}], [{1\over 2}] − z), (1 − x, [{1\over 2}] + y, [{1\over 2}] − z), (x, 1 + y, z) and (x, y − 1, z), respectively.
[Figure 4]
Figure 4
Part of the crystal structure of isomer (II)[link], showing the aromatic ππ stacking inter­action which links [010] chains into sheets. For the sake of clarity, the H atoms and the unit-cell box have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (2 − x, −y, 1 − z).
[Figure 5]
Figure 5
The two independent mol­ecules of isomer (IV)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6]
Figure 6
A stereoview of part of the crystal structure of isomer (IV)[link], showing the formation of a (10[\overline{1}]) sheet. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

Experimental

The title compounds were prepared as described previously by Glidewell et al. (2002[Glidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864-876.]). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in acetone.

Isomer (I)[link]

Crystal data
  • C52H36I4N8O8

  • Mr = 1408.49

  • Monoclinic, C 2/c

  • a = 22.4142 (15) Å

  • b = 3.8614 (2) Å

  • c = 14.6957 (10) Å

  • β = 107.423 (3)°

  • V = 1213.56 (13) Å3

  • Z = 1

  • Dx = 1.927 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1356 reflections

  • θ = 3.8–27.4°

  • μ = 2.64 mm−1

  • T = 120 (2) K

  • Plate, brown

  • 0.38 × 0.16 × 0.04 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.434, Tmax = 0.902

  • 6295 measured reflections

  • 1356 independent reflections

  • 1154 reflections with I > 2σ(I)

  • Rint = 0.046

  • θmax = 27.4°

  • h = −28 → 28

  • k = −4 → 4

  • l = −18 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.107

  • S = 1.15

  • 1356 reflections

  • 78 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0295P)2 + 7.4382P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.51 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0036 (6)

Isomer (II)[link]

Crystal data
  • C13H9IN2O2

  • Mr = 352.12

  • Monoclinic, P 21 /c

  • a = 12.6830 (7) Å

  • b = 14.9491 (8) Å

  • c = 6.8707 (4) Å

  • β = 97.849 (1)°

  • V = 1290.48 (12) Å3

  • Z = 4

  • Dx = 1.812 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4608 reflections

  • θ = 2.1–32.5°

  • μ = 2.48 mm−1

  • T = 298 (2) K

  • Needle, yellow

  • 0.36 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Bruker, 2000[Bruker (2000). SADABS (Version 2.03) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.455, Tmax = 0.672

  • 13098 measured reflections

  • 4608 independent reflections

  • 2450 reflections with I > 2σ(I)

  • Rint = 0.064

  • θmax = 32.5°

  • h = −13 → 19

  • k = −21 → 22

  • l = −10 → 9

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.082

  • S = 0.89

  • 4608 reflections

  • 163 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0348P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.90 e Å−3

Isomer (IV)[link]

Crystal data
  • C13H9IN2O2

  • Mr = 352.12

  • Monoclinic, P 21

  • a = 12.5676 (4) Å

  • b = 7.8818 (2) Å

  • c = 13.5110 (4) Å

  • β = 109.6328 (13)°

  • V = 1260.53 (6) Å3

  • Z = 4

  • Dx = 1.855 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5566 reflections

  • θ = 3.0–27.6°

  • μ = 2.54 mm−1

  • T = 120 (2) K

  • Plate, orange

  • 0.35 × 0.18 × 0.07 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.471, Tmax = 0.843

  • 13813 measured reflections

  • 5566 independent reflections

  • 5412 reflections with I > 2σ(I)

  • Rint = 0.036

  • θmax = 27.6°

  • h = −16 → 13

  • k = −10 → 10

  • l = −17 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.067

  • S = 1.04

  • 5566 reflections

  • 325 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.041P)2 + 0.3994P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.78 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 2424 Friedel pairs

  • Flack parameter: −0.001 (17)

Table 1
Selected torsion angles (°) for the polymorphic forms of isomers (I)[link], (II)[link] and (IV)[link]

A is the torsion angle N1—C17—C11—C12, B is C17—N1—C21—C22, C is N3—C37—C31—C32 and D is C37—N3—C41—C42.

Compound A B C D
(I)[link], mol­ecule 1 −169 (2) 175 (2)    
(I)[link], mol­ecule 2 130.5 (17) −134.4 (16)    
(Ia[link])a 156.9 (4) −150.7 (4)    
(II)[link] −162.5 (2) −135.8 (3)    
(IIa[link])a 14.0 (7) 146.3 (5)    
(IV)[link] −151.9 (3) −31.8 (5) −141.9 (4) −39.8 (5)
(IVa[link])a 157.6 (3) −40.3 (4)    
Reference: (a) Glidewell et al. (2002[Glidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864-876.]).

Table 2
Hydrogen-bond geometry (Å, °) for polymorph (IV)[link]

Cg1 is the centroid of ring C21–C26 and Cg2 is the centroid of ring C41–C46.

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25⋯Cg1i 0.95 2.76 3.587 (5) 146
C35—H35⋯O11 0.95 2.52 3.305 (5) 140
C45—H45⋯Cg2ii 0.95 2.97 3.740 (4) 139
Symmetry codes: (i) [2-x, y+{\script{1\over 2}}, 1-z]; (ii) [1-x, y-{\script{1\over 2}}, -z].

For isomer (I)[link], the systematic absences permitted C2/c and Cc as possible space groups; C2/c was selected and confirmed by the subsequent structure analysis. Structure solution and refinement in Cc gave exactly the same result as in C2/c, with missing symmetry strongly indicated by the ADDSYM option in PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]). Because the mol­ecules in (I)[link] are disordered across centres of inversion, the final structural model involved two complete mol­ecules lying across inversion centres, with the nitro and iodo substituents and the central –CH=N– bridge occupying the two alternative sets of sites. Accordingly, each atom site in this model had occupancy [{1\over 4}], and in consequence of the low occupancy on the one hand and the very close proximity of the C atom sites for the two mol­ecular orientations on the other, the independent ar­yl rings were constrained to be planar rigid hexa­gons, with the immediate substituents also coplanar with the rings. In addition, apart from the I atoms, it was necessary to restrict the refinement to isotropic displacement parameters for the non-H atoms. Tight DFIX restraints (SHELXL97; Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]) were applied to the central C(aryl)—C, C=N and N—C(aryl) distances, using the average values for bonds of these types derived from a survey of the Cambridge Structural Database (Version 5.26, February 2005 update; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); the average values from 50 error-free and non-disordered structures were C=N = 1.268 Å, C(aryl)—N = 1.419 Å and C(aryl)—C = 1.465 Å. For isomer (II)[link], the space group P21/c was uniquely assigned from the systematic absences. Data sets were collected at both 120 (2) and 298 (2) K; the cell dimensions at 120 (2) K are a = 12.6116 (4), b = 14.7953 (4) and c = 6.7520 (2) Å, β = 98.934 (2)° and V = 1244.59 (6) Å3. Refinement of the low-temperature data gave the same structure as obtained from the 298 (2) K data, but with a somewhat higher R value for fewer data, and significantly higher residual densities. For isomer (IV)[link], the systematic absences permitted P21/m and P21 as possible space groups; P21 was selected and confirmed by the subsequent structure analysis. All H atoms were located from difference maps and subsequently treated as riding atoms, with C—H distances of 0.93 Å at 298 (2) K and 0.95 Å at 120 (2) K, and with Uiso(H) = 1.2Ueq(C,N). For (IV)[link], the absolute configurations of the mol­ecules in the crystal selected for data collection were established by means of the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]) for isomers (I)[link] and (IV)[link]; SMART (Bruker, 1998[Bruker (1998). SMART (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.]) for isomer (II)[link]. Cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT for (I)[link] and (IV)[link]; SAINT (Bruker, 2000[Bruker (2000). SADABS (Version 2.03) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]) for (II)[link]. Data reduction: DENZO and COLLECT for (I)[link] and (IV)[link]; SAINT for (II)[link]. Structure solution: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]) for (I)[link] and (IV)[link]; SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]) for (II)[link]. Structure refinement: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]) for (I)[link] and (IV)[link]; SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]) for (II)[link]. For all compounds, molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); publication software: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

We have recently described the molecular and supramolecular structures of the isomeric nitrobenzylidene–iodoanilines (Glidewell et al., 2002), all of which were crystallized from ethanol. Of the nine possible isomers, we were able to determine the structures of eight, but the final isomer, 4-nitrobenzylidene-4'-iodoaniline, which crystallized from ethanol with Z' = 2 in space group Fdd2, proved to be intractably disordered. The supramolecular aggregation patterns in the other isomers ranged from isolated molecules with no direction-specific interactions between them in 2-nitrobenzylidene-2'-iodoaniline, via chains and sheets, to a three-dimensional framework built from a combination of C—H···O hydrogen bonds and iodo···nitro and aromatic ππ stacking interactions in 3-nitrobenzylidene-4'-iodoaniline. Of the eight structurally characterized isomers, only 3-nitrobenzylidene-3'-iodoaniline and 4-nitrobenzylidene-3'-iodoaniline showed any similarity in their patterns of intermolecular aggregation.

We have now crystallized the same nine isomers from acetone instead of ethanol. 4-Nitrobenzylidene-4'-iodoaniline remains an intractable problem, and no suitable crystals of 3-nitrobenzylidene-3'-iodoaniline were obtained from acetone. Of the remaining seven isomers, four proved to crystallize exactly as from ethanol, but three gave different polymorphs, for each of which the crystallization characteristics and supramolecular aggregation are entirely different from those previously observed for these isomers. We employ here for the polymorphs crystallized from acetone the same numbering of the isomers as that used previously (Glidewell et al., 2002), thus 2-nitrobenzylidene-2'-iodoaniline is denoted (I), 3-nitrobenzylidene-2'-iodoaniline is denoted (II) and 2-nitrobenzylidene-3'-iodoaniline is denoted (IV), with the corresponding designations (Ia), (IIa) and (IVa) denoting the polymorphs previously crystallized from ethanol. Crystallization from acetone of 4-nitrobenzylidene-2'-iodoaniline [isomer (III)], 4-nitrobenzylidene-3'-iodoaniline [isomer (VI)], 2-nitrobenzylidene-4'-iodoaniline [isomer (VII)] and 3-nitrobenzylidene-4'-iodoaniline [isomer (VIII)] gave materials identical in each case to those previously obtained by crystallization from ethanol.

2-Nitrobenzylidene-2'-iodoaniline (Fig. 1) crystallizes from acetone, polymorph (I), in space group C2/c with Z' = 1/2. The molecules lie across centres of inversion, so that the molecules and, in particular, the iodo and nitro substituents and the –CHN– bridge are all disordered over two sets of atomic sites having equal occupancy. By contrast, the polymorph obtained from ethanol solution, (Ia), crystallizes with Z' = 1 in space group P21/n, in a unit cell of entirely different dimensions and with fully ordered molecules.

The framework torsion angles defining the twist of the aryl rings away from the central spacer unit (Table 1) are rather different for the two orientations of the molecule in polymorph (I), and different again from the corresponding torsion angles in polymorph (Ia). In neither (I) nor (Ia) are there any direction-specific intermolecular interactions.

The second form of 3-nitrobenzylidene-2'-iodoaniline, polymorph (II) (Fig. 2), proved to be a conformational polymorph of the previously reported form (IIa). Polymorphs (II) and (IIa) both crystallize in space group P21/c and, at 120 (2) K, their unit-cell volumes are almost identical. However, the unit-cell shapes are rather different, with the b value for (IIa) [22.6230 (7) Å] about 50% larger than that for (II). For polymorph (II), there is no phase change between 120 (2) K and 298 (2) K: data sets were collected at both temperatures, and both led to the same structure. However, we discuss here mainly the details of the 298 (2) K refinement, as this proved to be the more satisfactory of the two.

The overall molecular conformation of (II) can be defined in terms of the leading torsion angles (Table 1). The central spacer unit is effectively planar, but both aryl rings are significantly rotated away from the plane of this central unit, as found also for (IIa). On the other hand, the nitro group shows only a small deviation from coplanarity with the adjacent aryl ring. The principal difference between polymorphs (II) and (IIa) is that in (II), the nitro and iodo substituents are on opposite edges of the molecule, while in (IIa), they are on the same edge (see scheme). Hence (II) and (IIa) may be described as conformational polymorphs.

The supramolecular structure of (II) is dominated by three-centre iodo···nitro interactions augmented by rather weak aromatic ππ stacking interactions. Atom I2 in the molecule at (x, y, z) forms rather long and nearly symmetric I···O contacts with atoms O1 and O2 in the molecule at (1 − x, y − 1/2, 1/2 − z), with I2···O1i 3.527 (3) Å, I2···O2i 3.537 (3) Å, C22—I2···O1i 146.8 (2)°, C22—I2···O2i 164.0 (2)° and O1i···I2···O2i 35.3 (2)° at 298 (2) K [symmetry code: (i) 1 − x, y − 1/2, 1/2 − z]. The corresponding values at 120 (2) K are 3.410 (8) Å, 3.491 (9) Å, 144.4 (2)°, 163.9 (2)° and 36.5 (2)°, respectively. The I···O distances are towards the upper end of the range reported for such interactions (Allen et al., 1994; Thalladi et al., 1996; Masciocchi et al., 1998; Ranganathan & Pedireddi, 1998; McWilliam et al., 2001; Kelly et al., 2002; Garden et al., 2002; Glidewell et al., 2002), but in general such distances are longer in three-centre interactions, as in (II), than in two-centre interactions.

Propagation of the iodo···nitro interaction then produces a chain running parallel to the [010] direction and generated by the 21 screw axis along (1/2, y, 1/4) (Fig. 3). A second such chain, antiparallel to the first and related to it by inversion, is generated by the screw axis along (1/2, −y, 3/4). Adopting the recently described (Starbuck et al., 1999) extension of the graph-set notation (Etter, 1990; Bernstein et al., 1995; Motherwell et al., 1999) originally introduced to codify hydrogen-bonded networks, and regarding the negatively polarized O atoms of a nitro group as donors and the positively polarized I atoms as acceptors, we can describe these chains as being of C(10)[R12(4)] type.

The [010] chains are linked by a single rather weak ππ stacking interaction. The iodinated rings C21–C26 in the molecules at (x, y, z) and (2 − x, −y, 1 − z) are parallel, with an interplanar spacing of 3.651 (2) Å. The ring-centroid separation is 3.920 (2) Å, corresponding to a near-ideal centroid offset of 1.427 (2) Å (Fig. 4). The two molecules in question lie in the [010] chains along (1/2, y, 1/4) and (3/2, −y, 3/4), respectively, and propagation of this interaction by the space group thus links [010] chains into a (102) sheet. There are no significant direction-specific interactions between adjacent sheets. In particular, C—H···O, C—H···N and C—H···π(arene) hydrogen bonds are all absent.

The intermolecular interactions in (II) may be contrasted briefly with those in polymorph (IIa). In the structure of (IIa), there are neither iodo···nitro interactions nor aromatic ππ stacking interactions. Instead, the molecules are linked into a chain of rings, generated by translation, by means of two independent C—H···O hydrogen bonds, a form of interaction absent from the structure of (II).

2-Nitrobenzylidene-3'-iodoaniline crystallizes from acetone solution, polymorph (IV), in space group P21 with Z' = 2 (Fig. 5). When crystallized from ethanol, this isomer forms a different polymorph, (IVa), in space group P21/c with Z' = 1.

The two independent molecules in (IV) are linked within the selected asymmetric unit by a single C—H···O hydrogen bond (Table 2), and they adopt conformations which are similar but by no means identical, as shown by the leading torsion angles (Table 1). These angles and the unique C—H···O hydrogen bond suffice to preclude the possibility of additional crystallographic symmetry. The two molecules themselves have no internal symmetry and hence they are chiral. In the absence of any twinning, only a single enantiomorph of each molecule is present in any individual crystal. The molecules in polymorph (IVa) adopt a somewhat different conformation from those in polymorph (IV), but again the molecules are chiral. However, in space group P21/c, both enantiomers are present in each crystal of (IVa).

The bimolecular aggregates in (IV) (Fig. 5) are linked into sheets by two independent C—H···π(arene) hydrogen bonds (Table 2). Atoms C25 and C45 at (x, y, z) act as donors to the rings C21–C26 and C41–C46 at (2 − x, 1/2 + y, 1 − z) and (1 − x, y − 1/2, −z), respectively, so forming two similar chains, both running parallel to the [010] direction and generated by the 21 screw axes along (1, y, 1/2) and (1/2, y, 0), respectively. The combination of these two chains, together with the C—H···O hydrogen bond linking the two molecules in the asymmetric unit, then generates a sheet parallel to (101) (Fig. 6).

There are neither iodo···nitro interactions nor aromatic ππ stacking interactions in the structure of (IV), but adjacent sheets are weakly linked by a dipolar nitro···nitro interaction. The bimolecular aggregates at (x, y, z) and (1 − x, y − 1/2, 1 − z) lie in adjacent (101) sheets and nitro groups in the two independent molecules form a dipolar interaction, with dimensions O11···N32i 2.828 (5) Å and N12—O11···N32i 137.6 (3)° [symmetry code: (i) 1 − x, y − 1/2, 1 − z].

We have commented previously (Glidewell et al., 2002) on the challenge to the attempted prediction of molecular crystal structures (Lommerse et al., 2000; Motherwell et al., 2002) posed by series of positional isomeric compounds, such as the many isomers of nitrobenzylidene–iodoanilines and related series. The severity of this challenge is markedly enhanced by the observation of solvent-related and/or conformational polymorphism within such a series.

Table 1. Selected torsion angles (°) for the polymorphic forms of isomers (I), (II) and (IV)

Table 2. Hydrogen-bond parameters (Å, °) for polymorph (IV). Cg1 is the centroid of ring C21–C26 and Cg2 is the centroid of ring C41–C46

Experimental top

The title compounds were prepared as described previously by Glidewell et al. (2002). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in acetone.

Refinement top

For isomer (I), the systematic absences permitted C2/c and Cc as possible space groups; C2/c was selected, and confirmed by the subsequent structure analysis. Structure solution and refinement in Cc gave exactly the same result as in C2/c, with missing symmetry strongly indicated by the ADDSYM option in PLATON (Spek, 2003). Because the molecules in (I) are disordered across centres of inversion, the final structural model involved two complete molecules lying across inversion centres, with the nitro and iodo substituents and the central –CHN– bridge occupying the two alternative sets of sites. Accordingly, each atom site in this model had occupancy 1/4, and in consequence of the low occupancy on the one hand and the very close proximity of the C atom sites for the two molecular orientations on the other, the independent aryl rings were constrained to be planar rigid hexagons, with the immediate substituents also coplanar with the rings. In addition, apart from the I atoms, it was necessary to restrict the refinement to isotropic displacement parameters for the non-H atoms. Tight DFIX restraints were applied to the central C(aryl)—C, CN and NC(aryl) distances, using the average values for bonds of these types derived from a survey of the Cambridge Structural Database (Version 5.26, February 2005 update; Allen, 2002); the average values from 50 error-free and non-disordered structures were CN 1.268 Å, C(aryl)—N 1.419 Å and C(aryl)—C 1.465 Å. For isomer (II), the space group P21/c was uniquely assigned from the systematic absences. Data sets were collected at both 120 (2) K and 298 (2) K; the cell dimensions at 120 (2) are a = 12.6116 (4), b = 14.7953 (4) and c = 6.7520 (2) Å, β = 98.934 (2)° and V = 1244.59 (6) Å3. Refinement of the low-temperature data gave the same structure as obtained from the 298 (2) K data, but with a somewhat higher R value for fewer data, and significantly higher residual densities. For isomer (IV), the systematic absences permitted P21/m and P21 as possible space groups; P21 was selected, and confirmed by the subsequent structure analysis. All H atoms were located from difference maps and subsequently treated as riding atoms, with C—H distances of 0.93 Å at 298 (2) K and 0.95 Å at 120 (2) K, and with Uiso(H) = 1.2Ueq(C,N). For (IV), the absolute configurations of the molecules in the crystal selected for data collection were established by means of the Flack parameter (Flack, 1983).

Computing details top

Data collection: COLLECT (Nonius, 1999) for (I), (IV); SMART (Bruker, 1998) for (II). Cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT for (I), (IV); SAINT (Bruker, 2000) for (II). Data reduction: DENZO and COLLECT for (I), (IV); SAINT for (II). Program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997) for (I), (IV); SHELXS97 (Sheldrick, 1997) for (II). Program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997) for (I), (IV); SHELXL97 (Sheldrick, 1997) for (II). For all compounds, molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The two independent orientations of the molecule of isomer (I), showing the atom-labelling scheme. In orientation 1, the bonds are shown as solid lines, and in orientation 2, the bonds are shown as dashed lines. The solid bond C11_1—C12_1 is effectively hidden behind the dashed bond C21_2—C22_2. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecule of isomer (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. Part of the crystal structure of isomer (II), showing the formation of a chain along [010]. For the sake of clarity, the H atoms have been omitted. The atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (1 − x, y − 1/2, 1/2 − z), (1 − x, 1/2 + y, 1/2 − z), (x, 1 + y,z) and (x, y − 1, z), respectively.
[Figure 4] Fig. 4. Part of the crystal structure of isomer (II), showing the aromatic ππ stacking interaction which links [010] chains into sheets. For the sake of clarity, the H atoms and the unit-cell box have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (2 − x, −y, 1 − z).
[Figure 5] Fig. 5. The two independent molecules of isomer (IV), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of isomer (IV), showing the formation of a (101) sheet. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.
(I) 2-iodo-N-(2-nitrobenzylidene)aniline top
Crystal data top
C52H36I4N8O8F(000) = 680
Mr = 1408.49Dx = 1.927 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1356 reflections
a = 22.4142 (15) Åθ = 3.8–27.4°
b = 3.8614 (2) ŵ = 2.64 mm1
c = 14.6957 (10) ÅT = 120 K
β = 107.423 (3)°Plate, brown
V = 1213.56 (13) Å30.38 × 0.16 × 0.04 mm
Z = 1
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
1356 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1154 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 9.091 pixels mm-1θmax = 27.4°, θmin = 3.8°
ϕ and ω scansh = 2828
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 44
Tmin = 0.434, Tmax = 0.902l = 1817
6295 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0295P)2 + 7.4382P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
1356 reflectionsΔρmax = 0.50 e Å3
78 parametersΔρmin = 0.51 e Å3
68 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0036 (6)
Crystal data top
C52H36I4N8O8V = 1213.56 (13) Å3
Mr = 1408.49Z = 1
Monoclinic, C2/cMo Kα radiation
a = 22.4142 (15) ŵ = 2.64 mm1
b = 3.8614 (2) ÅT = 120 K
c = 14.6957 (10) Å0.38 × 0.16 × 0.04 mm
β = 107.423 (3)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
1356 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1154 reflections with I > 2σ(I)
Tmin = 0.434, Tmax = 0.902Rint = 0.046
6295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04368 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.15Δρmax = 0.50 e Å3
1356 reflectionsΔρmin = 0.51 e Å3
78 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I2_10.9190 (5)0.479 (2)0.6312 (5)0.0272 (8)0.25
O1_10.6262 (6)0.048 (3)0.3586 (8)0.0325 (19)*0.25
O2_10.5372 (5)0.011 (3)0.3825 (9)0.0340 (19)*0.25
N1_10.7759 (5)0.317 (4)0.5017 (9)0.0290 (15)*0.25
N2_10.5919 (6)0.071 (9)0.4092 (16)0.0293 (19)*0.25
C11_10.6760 (6)0.314 (6)0.5315 (10)0.0253 (12)*0.25
C12_10.6127 (6)0.232 (6)0.5018 (11)0.0236 (12)*0.25
C13_10.5769 (6)0.279 (7)0.5634 (13)0.0244 (13)*0.25
H13_10.53370.22240.54320.029*0.25
C14_10.6043 (8)0.408 (7)0.6547 (12)0.0259 (14)*0.25
H14_10.57990.44020.69680.031*0.25
C15_10.6676 (8)0.491 (7)0.6843 (10)0.0268 (15)*0.25
H15_10.68640.57900.74670.032*0.25
C16_10.7034 (6)0.444 (7)0.6227 (11)0.0254 (13)*0.25
H16_10.74670.50010.64300.030*0.25
C17_10.7169 (5)0.292 (7)0.4704 (11)0.0290 (15)*0.25
H17_10.69820.25690.40390.035*0.25
C21_10.8160 (6)0.212 (4)0.4483 (9)0.0253 (12)*0.25
C22_10.8788 (6)0.285 (6)0.4923 (10)0.0236 (12)*0.25
C23_10.9225 (6)0.229 (8)0.4437 (14)0.0244 (13)*0.25
H23_10.96540.27910.47380.029*0.25
C24_10.9034 (8)0.100 (8)0.3512 (14)0.0259 (14)*0.25
H24_10.93320.06230.31800.031*0.25
C25_10.8406 (9)0.027 (6)0.3072 (9)0.0268 (15)*0.25
H25_10.82760.06090.24390.032*0.25
C26_10.7969 (6)0.083 (5)0.3557 (9)0.0254 (13)*0.25
H26_10.75400.03290.32570.030*0.25
I2_20.5767 (5)0.070 (2)0.3531 (5)0.0272 (8)0.25
O1_20.8673 (5)0.546 (3)0.6197 (9)0.0325 (19)*0.25
O2_20.9615 (5)0.385 (3)0.6195 (9)0.0340 (19)*0.25
N1_20.7199 (8)0.319 (9)0.4786 (15)0.0290 (15)*0.25
N2_20.9044 (5)0.401 (8)0.5849 (13)0.0293 (19)*0.25
C11_20.8190 (6)0.151 (5)0.4572 (12)0.0253 (12)*0.25
C12_20.8819 (6)0.238 (5)0.4920 (10)0.0236 (12)*0.25
C13_20.9217 (6)0.173 (5)0.4374 (13)0.0244 (13)*0.25
H13_20.96470.23320.46110.029*0.25
C14_20.8986 (8)0.021 (4)0.3480 (12)0.0259 (14)*0.25
H14_20.92580.02370.31070.031*0.25
C15_20.8357 (9)0.067 (5)0.3133 (10)0.0268 (15)*0.25
H15_20.81990.17110.25220.032*0.25
C16_20.7959 (6)0.002 (5)0.3679 (13)0.0254 (13)*0.25
H16_20.75290.06160.34410.030*0.25
C17_20.7730 (9)0.176 (8)0.5099 (17)0.0290 (15)*0.25
H17_20.78390.07790.57200.035*0.25
C21_20.6795 (6)0.336 (7)0.5366 (13)0.0253 (12)*0.25
C22_20.6172 (7)0.249 (6)0.4935 (9)0.0236 (12)*0.25
C23_20.5736 (5)0.291 (6)0.5428 (10)0.0244 (13)*0.25
H23_20.53110.23100.51330.029*0.25
C24_20.5922 (7)0.420 (7)0.6353 (10)0.0259 (14)*0.25
H24_20.56240.44870.66900.031*0.25
C25_20.6545 (8)0.507 (7)0.6785 (10)0.0268 (15)*0.25
H25_20.66720.59550.74170.032*0.25
C26_20.6981 (6)0.465 (8)0.6292 (13)0.0254 (13)*0.25
H26_20.74060.52460.65870.030*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I2_10.0364 (12)0.032 (2)0.011 (2)0.0052 (13)0.0035 (15)0.0109 (12)
I2_20.0364 (12)0.032 (2)0.011 (2)0.0052 (13)0.0035 (15)0.0109 (12)
Geometric parameters (Å, º) top
I2_1—C22_12.106 (10)I2_2—C22_22.105 (9)
O1_1—N2_11.222 (14)O1_2—N2_21.233 (13)
O2_1—N2_11.214 (13)O2_2—N2_21.229 (13)
N1_1—C17_11.2678 (11)N1_2—C17_21.2678 (10)
N1_1—C21_11.4194 (10)N1_2—C21_21.4194 (10)
N2_1—C12_11.441 (14)N2_2—C12_21.450 (14)
C11_1—C12_11.3900C11_2—C12_21.3900
C11_1—C16_11.3900C11_2—C16_21.3900
C11_1—C17_11.4653 (10)C11_2—C17_21.4653 (10)
C12_1—C13_11.3900C12_2—C13_21.3900
C13_1—C14_11.3900C13_2—C14_21.3900
C13_1—H13_10.9500C13_2—H13_20.9500
C14_1—C15_11.3900C14_2—C15_21.3900
C14_1—H14_10.9500C14_2—H14_20.9500
C15_1—C16_11.3900C15_2—C16_21.3900
C15_1—H15_10.9500C15_2—H15_20.9500
C16_1—H16_10.9500C16_2—H16_20.9500
C17_1—H17_10.9500C17_2—H17_20.9500
C21_1—C22_11.3900C21_2—C22_21.3900
C21_1—C26_11.3900C21_2—C26_21.3900
C22_1—C23_11.3900C22_2—C23_21.3900
C23_1—C24_11.3900C23_2—C24_21.3900
C23_1—H23_10.9500C23_2—H23_20.9500
C24_1—C25_11.3900C24_2—C25_21.3900
C24_1—H24_10.9500C24_2—H24_20.9500
C25_1—C26_11.3900C25_2—C26_21.3900
C25_1—H25_10.9500C25_2—H25_20.9500
C26_1—H26_10.9500C26_2—H26_20.9500
C17_1—N1_1—C21_1122.8 (9)C17_2—N1_2—C21_2120.1 (12)
O2_1—N2_1—O1_1122.9 (14)O2_2—N2_2—O1_2126.8 (13)
O2_1—N2_1—C12_1115.3 (11)O2_2—N2_2—C12_2113.2 (11)
O1_1—N2_1—C12_1121.5 (12)O1_2—N2_2—C12_2119.9 (11)
C12_1—C11_1—C16_1120.0C12_2—C11_2—C16_2120.0
C12_1—C11_1—C17_1124.1 (10)C12_2—C11_2—C17_2125.9 (13)
C16_1—C11_1—C17_1115.8 (10)C16_2—C11_2—C17_2113.9 (13)
C11_1—C12_1—C13_1120.0C11_2—C12_2—C13_2120.0
C11_1—C12_1—N2_1114.0 (9)C11_2—C12_2—N2_2118.7 (10)
C13_1—C12_1—N2_1125.8 (9)C13_2—C12_2—N2_2121.3 (10)
C14_1—C13_1—C12_1120.0C14_2—C13_2—C12_2120.0
C14_1—C13_1—H13_1120.0C14_2—C13_2—H13_2120.0
C12_1—C13_1—H13_1120.0C12_2—C13_2—H13_2120.0
C13_1—C14_1—C15_1120.0C13_2—C14_2—C15_2120.0
C13_1—C14_1—H14_1120.0C13_2—C14_2—H14_2120.0
C15_1—C14_1—H14_1120.0C15_2—C14_2—H14_2120.0
C14_1—C15_1—C16_1120.0C16_2—C15_2—C14_2120.0
C14_1—C15_1—H15_1120.0C16_2—C15_2—H15_2120.0
C16_1—C15_1—H15_1120.0C14_2—C15_2—H15_2120.0
C15_1—C16_1—C11_1120.0C15_2—C16_2—C11_2120.0
C15_1—C16_1—H16_1120.0C11_2—C16_2—H16_2120.0
C11_1—C16_1—H16_1120.0N1_2—C17_2—C11_2124.8 (13)
N1_1—C17_1—C11_1123.3 (11)N1_2—C17_2—H17_2117.6
N1_1—C17_1—H17_1118.4C11_2—C17_2—H17_2117.6
C11_1—C17_1—H17_1118.4C22_2—C21_2—C26_2120.0
C22_1—C21_1—C26_1120.0C22_2—C21_2—N1_2116.7 (12)
C22_1—C21_1—N1_1113.9 (10)C26_2—C21_2—N1_2123.0 (12)
C26_1—C21_1—N1_1125.7 (10)C23_2—C22_2—C21_2120.0
C23_1—C22_1—C21_1120.0C23_2—C22_2—I2_2112.6 (7)
C23_1—C22_1—I2_1113.0 (8)C21_2—C22_2—I2_2127.3 (7)
C21_1—C22_1—I2_1127.0 (8)C22_2—C23_2—C24_2120.0
C24_1—C23_1—C22_1120.0C22_2—C23_2—H23_2120.0
C24_1—C23_1—H23_1120.0C24_2—C23_2—H23_2120.0
C22_1—C23_1—H23_1120.0C25_2—C24_2—C23_2120.0
C23_1—C24_1—C25_1120.0C25_2—C24_2—H24_2120.0
C23_1—C24_1—H24_1120.0C23_2—C24_2—H24_2120.0
C25_1—C24_1—H24_1120.0C24_2—C25_2—C26_2120.0
C26_1—C25_1—C24_1120.0C24_2—C25_2—H25_2120.0
C26_1—C25_1—H25_1120.0C26_2—C25_2—H25_2120.0
C24_1—C25_1—H25_1120.0C25_2—C26_2—C21_2120.0
C25_1—C26_1—C21_1120.0C25_2—C26_2—H26_2120.0
C25_1—C26_1—H26_1120.0C21_2—C26_2—H26_2120.0
C21_1—C26_1—H26_1120.0
C16_1—C11_1—C12_1—C13_10.0C16_2—C11_2—C12_2—C13_20.0
C17_1—C11_1—C12_1—C13_1176.6 (18)C17_2—C11_2—C12_2—C13_2174.3 (18)
C16_1—C11_1—C12_1—N2_1174.6 (18)C16_2—C11_2—C12_2—N2_2179.2 (17)
C17_1—C11_1—C12_1—N2_19 (2)C17_2—C11_2—C12_2—N2_27 (2)
O2_1—N2_1—C12_1—C11_1178 (2)O2_2—N2_2—C12_2—C11_2162 (2)
O1_1—N2_1—C12_1—C11_18 (4)O1_2—N2_2—C12_2—C11_220 (3)
O2_1—N2_1—C12_1—C13_14 (4)O2_2—N2_2—C12_2—C13_219 (3)
O1_1—N2_1—C12_1—C13_1178 (2)O1_2—N2_2—C12_2—C13_2159 (2)
C11_1—C12_1—C13_1—C14_10.0C11_2—C12_2—C13_2—C14_20.0
N2_1—C12_1—C13_1—C14_1174 (2)N2_2—C12_2—C13_2—C14_2179.2 (18)
C12_1—C13_1—C14_1—C15_10.0C12_2—C13_2—C14_2—C15_20.0
C13_1—C14_1—C15_1—C16_10.0C13_2—C14_2—C15_2—C16_20.0
C14_1—C15_1—C16_1—C11_10.0C14_2—C15_2—C16_2—C11_20.0
C12_1—C11_1—C16_1—C15_10.0C12_2—C11_2—C16_2—C15_20.0
C17_1—C11_1—C16_1—C15_1176.8 (16)C17_2—C11_2—C16_2—C15_2175.0 (16)
C21_1—N1_1—C17_1—C11_1163.8 (18)C21_2—N1_2—C17_2—C11_2179 (3)
C12_1—C11_1—C17_1—N1_1169 (2)C12_2—C11_2—C17_2—N1_2130.5 (17)
C16_1—C11_1—C17_1—N1_114 (3)C16_2—C11_2—C17_2—N1_255 (2)
C17_1—N1_1—C21_1—C22_1175 (2)C17_2—N1_2—C21_2—C22_2134.4 (16)
C17_1—N1_1—C21_1—C26_13 (3)C17_2—N1_2—C21_2—C26_252 (2)
C26_1—C21_1—C22_1—C23_10.0C26_2—C21_2—C22_2—C23_20.0
N1_1—C21_1—C22_1—C23_1173.2 (14)N1_2—C21_2—C22_2—C23_2173.8 (17)
C26_1—C21_1—C22_1—I2_1179.8 (16)C26_2—C21_2—C22_2—I2_2177.1 (15)
N1_1—C21_1—C22_1—I2_17.0 (18)N1_2—C21_2—C22_2—I2_23 (2)
C21_1—C22_1—C23_1—C24_10.0C21_2—C22_2—C23_2—C24_20.0
I2_1—C22_1—C23_1—C24_1179.8 (14)I2_2—C22_2—C23_2—C24_2177.5 (13)
C22_1—C23_1—C24_1—C25_10.0C22_2—C23_2—C24_2—C25_20.0
C23_1—C24_1—C25_1—C26_10.0C23_2—C24_2—C25_2—C26_20.0
C24_1—C25_1—C26_1—C21_10.0C24_2—C25_2—C26_2—C21_20.0
C22_1—C21_1—C26_1—C25_10.0C22_2—C21_2—C26_2—C25_20.0
N1_1—C21_1—C26_1—C25_1172.3 (15)N1_2—C21_2—C26_2—C25_2173.4 (18)
(II) 2-iodo-N-(3-nitrobenzylidene)aniline top
Crystal data top
C13H9IN2O2F(000) = 680
Mr = 352.12Dx = 1.812 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4608 reflections
a = 12.6830 (7) Åθ = 2.1–32.5°
b = 14.9491 (8) ŵ = 2.48 mm1
c = 6.8707 (4) ÅT = 298 K
β = 97.849 (1)°Needle, yellow
V = 1290.48 (12) Å30.36 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4608 independent reflections
Radiation source: fine-focus sealed X-ray tube2450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scansθmax = 32.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1319
Tmin = 0.455, Tmax = 0.672k = 2122
13098 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0348P)2]
where P = (Fo2 + 2Fc2)/3
4608 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
C13H9IN2O2V = 1290.48 (12) Å3
Mr = 352.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6830 (7) ŵ = 2.48 mm1
b = 14.9491 (8) ÅT = 298 K
c = 6.8707 (4) Å0.36 × 0.18 × 0.16 mm
β = 97.849 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4608 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2450 reflections with I > 2σ(I)
Tmin = 0.455, Tmax = 0.672Rint = 0.064
13098 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 0.89Δρmax = 0.79 e Å3
4608 reflectionsΔρmin = 0.90 e Å3
163 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.76265 (17)0.12282 (14)0.5188 (3)0.0467 (5)
C110.6058 (2)0.18813 (16)0.6148 (3)0.0410 (5)
C120.5486 (2)0.26700 (17)0.6235 (3)0.0438 (6)
C130.4427 (2)0.26105 (19)0.6486 (3)0.0488 (6)
N30.3816 (2)0.3442 (2)0.6543 (3)0.0690 (7)
O10.2869 (2)0.3382 (2)0.6670 (5)0.1134 (11)
O20.4270 (2)0.41503 (17)0.6443 (4)0.0871 (8)
C140.3928 (2)0.1801 (2)0.6689 (4)0.0588 (7)
C150.4511 (3)0.1026 (2)0.6656 (4)0.0616 (7)
C160.5565 (2)0.10644 (19)0.6375 (4)0.0528 (7)
C170.7167 (2)0.19115 (16)0.5747 (3)0.0439 (6)
C210.8711 (2)0.12850 (16)0.4900 (4)0.0464 (6)
C220.9046 (2)0.09053 (17)0.3247 (4)0.0482 (6)
I20.793039 (17)0.032092 (13)0.10659 (3)0.06265 (9)
C231.0106 (2)0.0916 (2)0.2988 (5)0.0616 (8)
C241.0848 (3)0.1292 (2)0.4380 (5)0.0710 (9)
C251.0536 (3)0.1677 (2)0.6025 (5)0.0702 (9)
C260.9478 (2)0.16719 (19)0.6299 (4)0.0592 (7)
H120.58080.32230.61270.053*
H140.32110.17800.68440.071*
H150.41930.04750.68230.074*
H160.59510.05370.63360.063*
H170.75400.24480.59110.053*
H231.03160.06660.18630.074*
H241.15630.12870.42120.085*
H251.10400.19420.69580.084*
H260.92740.19280.74240.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0429 (12)0.0481 (11)0.0504 (12)0.0001 (10)0.0116 (9)0.0040 (10)
C110.0417 (14)0.0483 (13)0.0335 (12)0.0011 (11)0.0066 (10)0.0007 (10)
C120.0487 (15)0.0505 (13)0.0324 (12)0.0040 (12)0.0064 (10)0.0002 (10)
C130.0478 (15)0.0692 (17)0.0290 (12)0.0152 (14)0.0043 (10)0.0041 (11)
N30.0679 (19)0.095 (2)0.0455 (14)0.0342 (17)0.0119 (12)0.0000 (14)
O10.0694 (18)0.143 (3)0.135 (2)0.0514 (19)0.0371 (16)0.033 (2)
O20.098 (2)0.0696 (15)0.0929 (18)0.0329 (15)0.0108 (15)0.0113 (13)
C140.0410 (15)0.092 (2)0.0442 (15)0.0052 (16)0.0099 (12)0.0074 (15)
C150.0618 (19)0.0660 (17)0.0598 (17)0.0179 (17)0.0182 (14)0.0073 (15)
C160.0575 (18)0.0515 (14)0.0519 (15)0.0032 (14)0.0166 (13)0.0059 (13)
C170.0429 (14)0.0444 (12)0.0447 (13)0.0006 (11)0.0077 (11)0.0000 (11)
C210.0427 (15)0.0422 (12)0.0551 (15)0.0038 (11)0.0101 (12)0.0008 (11)
C220.0458 (15)0.0442 (13)0.0560 (15)0.0029 (12)0.0116 (12)0.0002 (12)
I20.06302 (14)0.06371 (13)0.06164 (14)0.00208 (10)0.01000 (9)0.01261 (9)
C230.0524 (18)0.0639 (17)0.073 (2)0.0044 (15)0.0244 (15)0.0034 (15)
C240.0425 (17)0.078 (2)0.095 (2)0.0012 (16)0.0193 (17)0.0018 (19)
C250.0460 (18)0.072 (2)0.090 (2)0.0007 (16)0.0028 (16)0.0125 (18)
C260.0526 (17)0.0592 (16)0.0661 (18)0.0015 (15)0.0092 (14)0.0098 (14)
Geometric parameters (Å, º) top
N1—C171.261 (3)C15—H150.93
N1—C211.419 (3)C16—H160.93
C11—C121.390 (3)C17—H170.93
C11—C161.391 (4)C21—C221.387 (4)
C11—C171.470 (3)C21—C261.396 (4)
C12—C131.380 (4)C22—C231.380 (4)
C12—H120.93C22—I22.105 (3)
C13—C141.382 (4)C23—C241.368 (4)
C13—N31.468 (4)C23—H230.93
N3—O21.213 (4)C24—C251.374 (4)
N3—O11.219 (4)C24—H240.93
C14—C151.376 (4)C25—C261.380 (4)
C14—H140.93C25—H250.93
C15—C161.377 (4)C26—H260.93
C17—N1—C21119.4 (2)N1—C17—C11121.7 (2)
C12—C11—C16119.6 (2)N1—C17—H17119.2
C12—C11—C17120.0 (2)C11—C17—H17119.2
C16—C11—C17120.3 (2)C22—C21—C26118.1 (3)
C13—C12—C11118.3 (2)C22—C21—N1120.0 (2)
C13—C12—H12120.9C26—C21—N1121.7 (2)
C11—C12—H12120.9C23—C22—C21120.9 (3)
C12—C13—C14122.4 (3)C23—C22—I2119.0 (2)
C12—C13—N3118.4 (3)C21—C22—I2120.11 (19)
C14—C13—N3119.2 (3)C24—C23—C22120.2 (3)
O2—N3—O1123.3 (3)C24—C23—H23119.9
O2—N3—C13118.7 (3)C22—C23—H23119.9
O1—N3—C13118.0 (4)C23—C24—C25120.0 (3)
C15—C14—C13118.7 (3)C23—C24—H24120.0
C15—C14—H14120.6C25—C24—H24120.0
C13—C14—H14120.6C24—C25—C26120.3 (3)
C14—C15—C16120.1 (3)C24—C25—H25119.9
C14—C15—H15120.0C26—C25—H25119.9
C16—C15—H15120.0C25—C26—C21120.5 (3)
C15—C16—C11120.9 (3)C25—C26—H26119.8
C15—C16—H16119.6C21—C26—H26119.8
C11—C16—H16119.6
C16—C11—C12—C132.0 (4)C12—C13—N3—O22.8 (4)
C17—C11—C12—C13175.8 (2)C14—C13—N3—O2177.1 (3)
C11—C12—C13—C141.2 (4)C12—C13—N3—O1176.5 (3)
C11—C12—C13—N3178.9 (2)C14—C13—N3—O13.6 (4)
C12—C13—C14—C150.6 (4)C26—C21—C22—C230.4 (4)
N3—C13—C14—C15179.3 (2)N1—C21—C22—C23176.8 (2)
C13—C14—C15—C161.6 (4)C26—C21—C22—I2179.4 (2)
C14—C15—C16—C110.9 (4)N1—C21—C22—I24.2 (3)
C12—C11—C16—C151.0 (4)C21—C22—C23—C240.9 (4)
C17—C11—C16—C15176.8 (2)I2—C22—C23—C24179.9 (2)
C21—N1—C17—C11177.4 (2)C22—C23—C24—C251.3 (5)
N1—C17—C11—C12162.5 (2)C23—C24—C25—C261.2 (5)
C16—C11—C17—N115.3 (4)C24—C25—C26—C210.7 (5)
C17—N1—C21—C22135.8 (3)C22—C21—C26—C250.3 (4)
C17—N1—C21—C2647.9 (4)N1—C21—C26—C25176.7 (3)
(IV) 3-iodo-N-(2-nitrobenzylidene)aniline top
Crystal data top
C13H9IN2O2F(000) = 680
Mr = 352.12Dx = 1.855 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5566 reflections
a = 12.5676 (4) Åθ = 3.0–27.6°
b = 7.8818 (2) ŵ = 2.54 mm1
c = 13.5110 (4) ÅT = 120 K
β = 109.6328 (13)°Plate, orange
V = 1260.53 (6) Å30.35 × 0.18 × 0.07 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
5566 independent reflections
Radiation source: Bruker Nonius FR91 rotating anode5412 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.0°
ϕ and ω scansh = 1613
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1010
Tmin = 0.471, Tmax = 0.843l = 1717
13813 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.041P)2 + 0.3994P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5566 reflectionsΔρmax = 0.76 e Å3
325 parametersΔρmin = 0.78 e Å3
1 restraintAbsolute structure: Flack (1983), with 2424 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (17)
Crystal data top
C13H9IN2O2V = 1260.53 (6) Å3
Mr = 352.12Z = 4
Monoclinic, P21Mo Kα radiation
a = 12.5676 (4) ŵ = 2.54 mm1
b = 7.8818 (2) ÅT = 120 K
c = 13.5110 (4) Å0.35 × 0.18 × 0.07 mm
β = 109.6328 (13)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
5566 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
5412 reflections with I > 2σ(I)
Tmin = 0.471, Tmax = 0.843Rint = 0.036
13813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.76 e Å3
S = 1.04Δρmin = 0.78 e Å3
5566 reflectionsAbsolute structure: Flack (1983), with 2424 Friedel pairs
325 parametersAbsolute structure parameter: 0.001 (17)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I230.685601 (19)0.69379 (3)0.311324 (19)0.02840 (7)
O110.7070 (2)0.5744 (4)0.7437 (2)0.0309 (6)
O120.6151 (3)0.5694 (4)0.8523 (3)0.0393 (7)
N10.9177 (2)0.8794 (4)0.7200 (2)0.0220 (6)
N120.6953 (3)0.6161 (5)0.8272 (3)0.0239 (6)
C110.8516 (3)0.8232 (5)0.8623 (3)0.0206 (6)
C120.7826 (3)0.7216 (4)0.8999 (3)0.0200 (7)
C130.7949 (3)0.7099 (5)1.0049 (3)0.0250 (7)
C140.8818 (3)0.7996 (5)1.0773 (3)0.0292 (9)
C150.9520 (3)0.9013 (6)1.0435 (3)0.0284 (8)
C160.9363 (3)0.9148 (5)0.9369 (3)0.0246 (7)
C170.8345 (3)0.8465 (4)0.7497 (3)0.0194 (6)
C210.8988 (3)0.8988 (5)0.6108 (3)0.0219 (7)
C220.8152 (3)0.8108 (4)0.5335 (3)0.0185 (6)
C230.8076 (3)0.8318 (5)0.4285 (3)0.0207 (6)
C240.8793 (3)0.9399 (5)0.4004 (3)0.0244 (7)
C250.9605 (3)1.0280 (6)0.4779 (3)0.0280 (8)
C260.9719 (3)1.0070 (5)0.5826 (3)0.0240 (7)
I430.177098 (19)0.76129 (3)0.159688 (17)0.02636 (7)
O310.1585 (2)0.7581 (4)0.2415 (2)0.0333 (6)
O320.1292 (3)0.9286 (4)0.3552 (3)0.0429 (8)
N30.3954 (2)0.5262 (4)0.2363 (2)0.0194 (6)
N320.1821 (2)0.8161 (5)0.3296 (3)0.0256 (7)
C310.3629 (3)0.6579 (4)0.3840 (3)0.0210 (7)
C320.2814 (3)0.7443 (5)0.4124 (3)0.0215 (7)
C330.2832 (3)0.7575 (6)0.5149 (3)0.0303 (8)
C340.3690 (4)0.6772 (6)0.5934 (3)0.0347 (9)
C350.4506 (4)0.5848 (6)0.5669 (3)0.0344 (9)
C360.4487 (3)0.5765 (5)0.4652 (3)0.0267 (8)
C370.3683 (3)0.6585 (4)0.2760 (3)0.0195 (7)
C410.3944 (3)0.5402 (5)0.1313 (3)0.0185 (7)
C420.3105 (3)0.6305 (5)0.0543 (3)0.0194 (6)
C430.3095 (3)0.6305 (4)0.0479 (3)0.0201 (7)
C440.3906 (3)0.5456 (5)0.0770 (3)0.0232 (7)
C450.4735 (3)0.4548 (5)0.0002 (3)0.0251 (8)
C460.4748 (3)0.4495 (4)0.1019 (3)0.0215 (7)
H130.74500.64181.02740.030*
H140.89290.79081.15030.035*
H151.01130.96241.09320.034*
H160.98410.98750.91450.030*
H170.76080.83670.69930.023*
H220.76440.73810.55170.022*
H240.87280.95330.32870.029*
H251.00931.10400.45920.034*
H261.02941.06620.63540.029*
H330.22680.82030.53120.036*
H340.37240.68490.66460.042*
H350.50820.52690.62040.041*
H360.50600.51520.44910.032*
H370.35120.75990.23560.023*
H420.25450.69130.07260.023*
H440.38990.54900.14750.028*
H450.53000.39580.01880.030*
H460.53040.38400.15270.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I230.02815 (12)0.03010 (13)0.02336 (12)0.00451 (9)0.00393 (9)0.00073 (10)
O110.0325 (14)0.0302 (15)0.0324 (15)0.0034 (11)0.0139 (13)0.0080 (12)
O120.0382 (16)0.0386 (18)0.0493 (19)0.0155 (14)0.0257 (15)0.0079 (14)
N10.0206 (14)0.0241 (15)0.0214 (14)0.0006 (11)0.0070 (12)0.0002 (12)
N120.0267 (15)0.0187 (14)0.0302 (16)0.0025 (12)0.0148 (14)0.0003 (13)
C110.0220 (16)0.0183 (15)0.0217 (16)0.0061 (13)0.0076 (13)0.0017 (13)
C120.0181 (14)0.016 (2)0.0262 (17)0.0049 (11)0.0077 (13)0.0018 (11)
C130.0296 (17)0.0210 (17)0.0269 (18)0.0074 (14)0.0131 (15)0.0081 (14)
C140.037 (2)0.028 (2)0.0231 (17)0.0122 (15)0.0109 (16)0.0025 (14)
C150.0250 (18)0.032 (2)0.0235 (19)0.0035 (15)0.0016 (15)0.0036 (15)
C160.0188 (16)0.0222 (17)0.0297 (19)0.0036 (13)0.0040 (14)0.0027 (14)
C170.0169 (15)0.0203 (16)0.0199 (16)0.0011 (12)0.0045 (13)0.0002 (13)
C210.0199 (16)0.0219 (17)0.0237 (18)0.0015 (14)0.0074 (14)0.0017 (14)
C220.0176 (15)0.0191 (16)0.0197 (15)0.0003 (12)0.0073 (13)0.0024 (12)
C230.0194 (15)0.0220 (15)0.0183 (16)0.0022 (14)0.0032 (13)0.0015 (13)
C240.0264 (18)0.0265 (18)0.0226 (17)0.0008 (14)0.0112 (15)0.0016 (14)
C250.0258 (18)0.031 (2)0.031 (2)0.0040 (16)0.0150 (17)0.0006 (16)
C260.0215 (17)0.0246 (19)0.0267 (19)0.0017 (14)0.0092 (15)0.0014 (14)
I430.03226 (13)0.02367 (11)0.01918 (11)0.00423 (9)0.00339 (9)0.00004 (9)
O310.0265 (13)0.0326 (13)0.0350 (15)0.0023 (12)0.0025 (11)0.0030 (14)
O320.0447 (18)0.0342 (17)0.062 (2)0.0106 (14)0.0338 (17)0.0048 (15)
N30.0143 (13)0.0238 (14)0.0201 (14)0.0012 (11)0.0057 (11)0.0007 (11)
N320.0219 (15)0.0241 (17)0.0329 (17)0.0003 (11)0.0121 (13)0.0006 (13)
C310.0191 (15)0.0270 (19)0.0152 (15)0.0044 (13)0.0034 (12)0.0031 (12)
C320.0238 (16)0.0207 (19)0.0207 (15)0.0063 (13)0.0082 (13)0.0029 (13)
C330.039 (2)0.0281 (17)0.0301 (18)0.0074 (18)0.0199 (16)0.0066 (17)
C340.046 (2)0.037 (2)0.0210 (17)0.019 (2)0.0117 (17)0.0060 (17)
C350.034 (2)0.040 (2)0.0226 (19)0.0106 (18)0.0016 (17)0.0018 (17)
C360.0237 (17)0.029 (2)0.0226 (18)0.0059 (14)0.0019 (14)0.0011 (14)
C370.0191 (15)0.0219 (18)0.0169 (15)0.0004 (12)0.0052 (12)0.0003 (12)
C410.0168 (15)0.0185 (16)0.0193 (17)0.0033 (13)0.0049 (14)0.0006 (13)
C420.0167 (15)0.0219 (16)0.0212 (16)0.0024 (12)0.0086 (13)0.0021 (13)
C430.0206 (16)0.0169 (15)0.0212 (16)0.0035 (13)0.0049 (13)0.0025 (13)
C440.0290 (18)0.0221 (16)0.0225 (17)0.0015 (14)0.0140 (15)0.0015 (13)
C450.0246 (19)0.0241 (18)0.031 (2)0.0026 (14)0.0154 (17)0.0025 (15)
C460.0186 (16)0.0209 (17)0.0250 (18)0.0010 (13)0.0075 (14)0.0012 (13)
Geometric parameters (Å, º) top
C11—C121.395 (5)C31—C321.387 (5)
C11—C161.397 (5)C31—C361.408 (5)
C11—C171.475 (5)C31—C371.484 (5)
C12—C131.379 (5)C32—C331.380 (5)
C12—N121.461 (5)C32—N321.480 (5)
C13—C141.390 (6)C33—C341.386 (6)
C13—H130.95C33—H330.95
C14—C151.379 (6)C34—C351.399 (7)
C14—H140.95C34—H340.95
C15—C161.390 (6)C35—C361.369 (6)
C15—H150.95C35—H350.95
C16—H160.95C36—H360.95
N12—O121.222 (4)N32—O311.215 (4)
N12—O111.231 (4)N32—O321.226 (5)
C17—N11.267 (4)C37—N31.270 (4)
C17—H170.95C37—H370.95
N1—C211.421 (5)N3—C411.420 (5)
C21—C221.393 (5)C41—C461.400 (5)
C21—C261.396 (5)C41—C421.401 (5)
C22—C231.399 (5)C42—C431.377 (5)
C22—H220.95C42—H420.95
C23—C241.383 (5)C43—C441.382 (5)
C23—I232.100 (4)C43—I432.103 (4)
C24—C251.379 (5)C44—C451.396 (6)
C24—H240.95C44—H440.95
C25—C261.384 (6)C45—C461.375 (6)
C25—H250.95C45—H450.95
C26—H260.95C46—H460.95
C12—C11—C16116.8 (3)C32—C31—C36116.9 (3)
C12—C11—C17123.6 (3)C32—C31—C37123.6 (3)
C16—C11—C17119.5 (3)C36—C31—C37119.4 (3)
C13—C12—C11123.0 (3)C33—C32—C31123.3 (4)
C13—C12—N12116.9 (3)C33—C32—N32117.1 (3)
C11—C12—N12120.0 (3)C31—C32—N32119.4 (3)
C12—C13—C14118.7 (3)C32—C33—C34118.7 (4)
C12—C13—H13120.6C32—C33—H33120.7
C14—C13—H13120.6C34—C33—H33120.7
C15—C14—C13120.1 (3)C33—C34—C35119.4 (4)
C15—C14—H14120.0C33—C34—H34120.3
C13—C14—H14120.0C35—C34—H34120.3
C14—C15—C16120.3 (4)C36—C35—C34121.0 (4)
C14—C15—H15119.8C36—C35—H35119.5
C16—C15—H15119.8C34—C35—H35119.5
C15—C16—C11121.1 (4)C35—C36—C31120.7 (4)
C15—C16—H16119.5C35—C36—H36119.7
C11—C16—H16119.5C31—C36—H36119.7
O12—N12—O11122.5 (4)O31—N32—O32124.8 (3)
O12—N12—C12119.2 (3)O31—N32—C32117.6 (3)
O11—N12—C12118.3 (3)O32—N32—C32117.6 (3)
N1—C17—C11120.2 (3)N3—C37—C31121.3 (3)
N1—C17—H17119.9N3—C37—H37119.4
C11—C17—H17119.9C31—C37—H37119.4
C17—N1—C21118.9 (3)C37—N3—C41116.4 (3)
C22—C21—C26119.9 (3)C46—C41—C42119.0 (3)
C22—C21—N1123.1 (3)C46—C41—N3118.6 (3)
C26—C21—N1117.0 (3)C42—C41—N3122.2 (3)
C21—C22—C23118.6 (3)C43—C42—C41119.7 (3)
C21—C22—H22120.7C43—C42—H42120.2
C23—C22—H22120.7C41—C42—H42120.2
C24—C23—C22121.5 (3)C42—C43—C44121.7 (3)
C24—C23—I23119.4 (3)C42—C43—I43117.3 (3)
C22—C23—I23119.2 (3)C44—C43—I43120.9 (3)
C25—C24—C23119.1 (3)C43—C44—C45118.4 (3)
C25—C24—H24120.4C43—C44—H44120.8
C23—C24—H24120.4C45—C44—H44120.8
C24—C25—C26120.8 (4)C46—C45—C44121.0 (3)
C24—C25—H25119.6C46—C45—H45119.5
C26—C25—H25119.6C44—C45—H45119.5
C25—C26—C21120.1 (4)C45—C46—C41120.2 (3)
C25—C26—H26120.0C45—C46—H46119.9
C21—C26—H26120.0C41—C46—H46119.9
C16—C11—C12—C130.3 (5)C36—C31—C32—C332.0 (5)
C17—C11—C12—C13175.6 (3)C37—C31—C32—C33173.2 (4)
C16—C11—C12—N12177.3 (3)C36—C31—C32—N32173.2 (3)
C17—C11—C12—N126.9 (5)C37—C31—C32—N3211.6 (5)
C11—C12—C13—C141.8 (5)C31—C32—C33—C341.6 (6)
N12—C12—C13—C14175.8 (3)N32—C32—C33—C34173.7 (4)
C12—C13—C14—C151.6 (5)C32—C33—C34—C350.4 (6)
C13—C14—C15—C160.0 (6)C33—C34—C35—C361.9 (6)
C14—C15—C16—C111.5 (6)C34—C35—C36—C311.5 (6)
C12—C11—C16—C151.4 (5)C32—C31—C36—C350.4 (5)
C17—C11—C16—C15177.4 (3)C37—C31—C36—C35175.0 (3)
C13—C12—N12—O1224.4 (5)C33—C32—N32—O31155.1 (4)
C11—C12—N12—O12157.9 (4)C31—C32—N32—O3120.4 (5)
C13—C12—N12—O11153.9 (3)C33—C32—N32—O3224.2 (5)
C11—C12—N12—O1123.8 (5)C31—C32—N32—O32160.3 (3)
C12—C11—C17—N1151.9 (3)C32—C31—C37—N3141.9 (4)
C16—C11—C17—N132.4 (5)C36—C31—C37—N343.0 (5)
C11—C17—N1—C21179.2 (3)C31—C37—N3—C41178.1 (3)
C17—N1—C21—C2231.8 (5)C37—N3—C41—C46145.5 (3)
C17—N1—C21—C26150.8 (3)C37—N3—C41—C4239.8 (5)
C26—C21—C22—C230.8 (5)C46—C41—C42—C431.0 (5)
N1—C21—C22—C23176.5 (3)N3—C41—C42—C43175.7 (3)
C21—C22—C23—C241.4 (5)C41—C42—C43—C441.0 (5)
C21—C22—C23—I23177.9 (3)C41—C42—C43—I43177.7 (3)
C22—C23—C24—C250.4 (5)C42—C43—C44—C451.5 (5)
I23—C23—C24—C25178.9 (3)I43—C43—C44—C45177.2 (3)
C23—C24—C25—C261.1 (6)C43—C44—C45—C460.1 (6)
C24—C25—C26—C211.6 (6)C44—C45—C46—C412.1 (6)
C22—C21—C26—C250.6 (6)C42—C41—C46—C452.5 (5)
N1—C21—C26—C25178.1 (4)N3—C41—C46—C45177.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···Cg1i0.952.763.587 (5)146
C35—H35···O110.952.523.305 (5)140
C45—H45···Cg2ii0.952.973.740 (4)139
Symmetry codes: (i) x+2, y+1/2, z+1; (ii) x+1, y1/2, z.

Experimental details

(I)(II)(IV)
Crystal data
Chemical formulaC52H36I4N8O8C13H9IN2O2C13H9IN2O2
Mr1408.49352.12352.12
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/cMonoclinic, P21
Temperature (K)120298120
a, b, c (Å)22.4142 (15), 3.8614 (2), 14.6957 (10)12.6830 (7), 14.9491 (8), 6.8707 (4)12.5676 (4), 7.8818 (2), 13.5110 (4)
β (°) 107.423 (3) 97.849 (1) 109.6328 (13)
V3)1213.56 (13)1290.48 (12)1260.53 (6)
Z144
Radiation typeMo KαMo KαMo Kα
µ (mm1)2.642.482.54
Crystal size (mm)0.38 × 0.16 × 0.040.36 × 0.18 × 0.160.35 × 0.18 × 0.07
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker SMART 1000 CCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Bruker, 2000)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.434, 0.9020.455, 0.6720.471, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
6295, 1356, 1154 13098, 4608, 2450 13813, 5566, 5412
Rint0.0460.0640.036
(sin θ/λ)max1)0.6460.7570.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.107, 1.15 0.039, 0.082, 0.89 0.025, 0.067, 1.04
No. of reflections135646085566
No. of parameters78163325
No. of restraints6801
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.510.79, 0.900.76, 0.78
Absolute structure??Flack (1983), with 2424 Friedel pairs
Absolute structure parameter??0.001 (17)

Computer programs: COLLECT (Nonius, 1999), SMART (Bruker, 1998), DENZO (Otwinowski & Minor, 1997) and COLLECT, SAINT (Bruker, 2000), DENZO and COLLECT, SAINT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
C25—H25···Cg1i0.952.763.587 (5)146
C35—H35···O110.952.523.305 (5)140
C45—H45···Cg2ii0.952.973.740 (4)139
Symmetry codes: (i) x+2, y+1/2, z+1; (ii) x+1, y1/2, z.
Selected torsion angles (°) for the polymorphic forms of isomers (I), (II) and (IV) top
N1-C17-C11-C12C17-N1-C21-C22N3-C37-C31-C32C37-N3-C41-C42
(I), molecule 1-169 (2)175 (2)
(I), molecule 2130.5 (17)-134.4 (16)
(Ia)i156.9 (4)-150.7 (4)
(II)-162.5 (2)-135.8 (3)
(IIa)a14.0 (7)146.3 (5)
(IV)-151.9 (3)-31.8 (5)-141.9 (4)-39.8 (5)
(IVa)a157.6 (3)-40.3 (4)
Reference: (a) Glidewell et al., 2002).
 

Acknowledgements

JNL thanks NCR Self-Service Dundee for grants which have provided computing facilities for this work. JLW thanks CNPq and FAPERJ for financial support. The authors thank the University of Aberdeen for funding the purchase of the diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Goud, B. S., Hoy, V. J., Howard, J. A. K. & Desiraju, G. R. (1994). J. Chem. Soc. Chem. Commun. pp. 2729–2730.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SADABS (Version 2.03) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGarden, S. J., Fontes, S. P., Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 701–709.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864–876.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKelly, C. J., Skakle, J. M. S., Wardell, J. L., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 94–108.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLommerse, J. P. M., Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2000). Acta Cryst. B56, 697–714.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationMcWilliam, S. A., Skakle, J. M. S., Low, J. N., Wardell, J. L., Garden, S. J., Pinto, A. C., Torres, J. C. & Glidewell, C. (2001). Acta Cryst. C57, 942–945.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMasciocchi, N., Bergamo, M. & Sironi, A. (1998). Chem. Commun. pp. 1347–1348.  Web of Science CSD CrossRef Google Scholar
First citationMotherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Dzyabchenko, A., Erk, P., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Lommerse, J. P. M., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2002). Acta Cryst. B58, 647–761.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMotherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044–1056.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRanganathan, A. & Pedireddi, V. R. (1998). Tetrahedron Lett. 39, 1803–1806.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarbuck, J., Norman, N. C. & Orpen, A. G. (1999). New J. Chem. 23, 969–972.  Web of Science CrossRef Google Scholar
First citationThalladi, V. R., Goud, B. S., Hoy, V. J., Allen, F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401–402.  CSD CrossRef Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds