metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Ethyl­ene­diaminium niobium oxyfluoride

aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: pl@st-and.ac.uk

(Received 1 June 2005; accepted 7 June 2005; online 22 June 2005)

The title compound, bis­(ethyl­ene­diaminium) μ-oxo-bis[tetrafluorooxoniobium(V)], (C2H10N2)2[Nb2O3F8], is a novel organically templated niobium oxyfluoride. It consists of isolated [Nb2O3F8]4− octa­hedral dimers charge balanced by ethyl­ene­diaminium cations, two of which lie about inversion centres. Two NbO2F4 octa­hedra are fused through a common O atom to form the dimers. Characteristic short terminal Nb=O bond lengths and longer Nb—F and bridging Nb—O bond lengths are observed, which result in the out-of-centre distortion of the octa­hedra, a manifestation of the second-order Jahn–Teller effect. Extensive hydrogen bonding between the dimers and the organic template is exhibited.

Comment

The title compound, (I)[link], is the first organically templated niobium oxyfluoride. It also appears to be the first example of isolated dimeric niobium oxyfluoride units. In purely inorganic niobium oxyfluorides, a variety of building units have been reported: isolated [NbOF5]2− octa­hedra are found in Li2NbOF5 (Galy et al., 1969[Galy, J., Andersson, S. & Portier, J. (1969). Acta Chem. Scand. 23, 2949-2954.]), and isolated penta­gonal bipy­ramidal NbF7 and NbOF6 units are found in Rb5Nb3OF18 (Agulyanskii et al., 1991[Agulyanskii, A. I., Zavodnik, V. E., Kuznetsov, V. Ya., Sidorov, N. V., Stefanovich, S. Yu., Tsikaeva, D. V. & Kalinnikov, V. T. (1991). Izv. Akad. Nauk SSSR Neorg. Mater. 27, 1055-1060.]) and Ba4Nb2O3F12 (Crosnier-Lopez & Fourquet, 1993[Crosnier-Lopez, M. P. & Fourquet, J. L. (1993). J. Solid State Chem. 103, 131-138.]), respectively. The latter compound also contains cis corner-sharing octa­hedral tetra­mers. O-Atom-linked trans vertex-sharing chains are found in (NH4)[NbOF4] (Pakhomov & Kaidalova, 1974[Pakhomov, V. I. & Kaidalova, T. A. (1974). Kristallografiya, 19, 733-736.]). Welk et al. (2002[Welk, M. E., Norquist A. J., Arnold, F. P., Stern, C. L. & Poeppelmeier, K. R. (2002). Inorg. Chem. 41, 5119-5125.]) have exploited metal-organic complexes in `directing' otherwise isolated [NbOF5]2− ions into specific crystallographic orientations.

[Scheme 1]

The main feature of most of the previously reported niobium oxyfluorides is the out-of-centre octa­hedral distortion. Electronic and bond-network effects lead to the characteristic short Nb=O bond length and the longer Nb—X bond length trans to it. Along with non-centrosymmetry, the off-centre distortion is important in the non-linear properties of the structure. In the [NbOF5]2− anion (e.g. Izumi et al., 2005[Izumi, H. K., Kirsch, J. E., Stern, C. L. & Poeppelmeier, K. R. (2005). Inorg. Chem. 44, 884-895.]), the Nb atom is displaced from the centre of the octa­hedron towards the O atom to form a short Nb=O bond and a longer Nb—F bond.

(C2H10N2)2[Nb2O3F8] (Fig. 1[link]) is built up from diprotonated ethyl­ene­diamine cations and dimeric [Nb2O3F8]4− units. Each dimer consists of two NbO2F4 octa­hedra, which share corners with each other via one O atom.

Bond-valence sums (Table 2[link]) show that some of the F atoms are heavily underbonded, and this is compensated by substantial hydrogen bonding (Table 1[link]) to the organic cations. For example, the two F atoms trans to the short Nb=O bonds (F1 and F6) accept three hydrogen bonds, while the two trans to the bridging O atom (F2 and F8) accept two each. Similarly, atom O1 is hydrogen bonded to two NH groups, while atom O2 is only bound to one, compatible with a small s(ij) of 1.48 for the Nb1—O1 bond and a larger s(ij) of 1.61 for the Nb2—O2 bond. The bridging O3 atom does not require hydrogen bonding. All H atoms of the ethyl­ene­diaminium moieties partake in hydrogen bonding. In one of the octa­hedra (Nb1) there is a slight tendency for displacement of Nb towards an edge (O1–O3) rather than a vertex of the octa­hedron.

The complex hydrogen-bonding scheme results in the crystal packing shown in Fig. 2[link]. The dimers are aligned along the [010] direction in a herring-bone fashion.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 1 − x, −y, 1 − z.]
[Figure 2]
Figure 2
Projection of the structure down [010], showing the stacking of the dimers and cations.

Experimental

Niobium pentoxide (0.2658 g), water (5 ml) and a 40% solution of HF (0.5 ml) were heated in a poly­propyl­ene bottle at 373 K for 1 h. The contents of the bottle were washed into a Teflon-lined steel autoclave with ethyl­ene glycol (5 ml). To this mixture was added ethyl­ene­diamine (0.25 ml) to give a pH of 4. The mixture was heated at 463 K for 5 d. The pH increased to 6.5 over this time. The final product was filtered off, washed with water and allowed to dry overnight at room temperature.

Crystal data
  • (C2H10N2)2[Nb2O3F8]

  • Mr = 510.06

  • Monoclinic, P 21 /n

  • a = 11.7121 (12) Å

  • b = 10.1984 (10) Å

  • c = 11.9712 (12) Å

  • β = 93.438 (2)°

  • V = 1427.3 (2) Å3

  • Z = 4

  • Dx = 2.374 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 72 reflections

  • θ = 12–28°

  • μ = 1.71 mm−1

  • T = 125 (2) K

  • Prism, colourless

  • 0.1 × 0.1 × 0.03 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.829, Tmax = 0.950

  • 9021 measured reflections

  • 2608 independent reflections

  • 2419 reflections with I > 2σ(I)

  • Rint = 0.022

  • θmax = 25.4°

  • h = −14 → 13

  • k = −12 → 12

  • l = −13 → 14

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.060

  • S = 1.10

  • 2608 reflections

  • 190 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0284P)2 + 3.2384P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H9⋯F1iii 0.91 2.05 2.831 (3) 142
N1—H10⋯F1iv 0.91 1.82 2.697 (3) 161
N1—H9⋯F4iii 0.91 2.17 2.922 (3) 140
N1—H11⋯O1v 0.91 2.04 2.830 (3) 144
N2—H12⋯F6vi 0.91 2.02 2.857 (3) 153
N2—H13⋯F2v 0.91 1.93 2.752 (3) 150
N2—H14⋯F6iv 0.91 1.87 2.690 (3) 148
N3—H15⋯F6 0.91 2.13 2.889 (3) 140
N3—H15⋯F8 0.91 2.16 2.862 (3) 133
N3—H16⋯O2iii 0.91 1.83 2.719 (3) 164
N3—H17⋯F4vii 0.91 2.03 2.779 (3) 139
N3—H17⋯F3viii 0.91 2.09 2.792 (3) 133
N4—H18⋯O1vii 0.91 2.32 3.005 (4) 132
N4—H18⋯F8 0.91 2.37 2.909 (3) 118
N4—H18⋯F7 0.91 2.40 2.927 (3) 117
N4—H19⋯F2ix 0.91 1.87 2.759 (3) 165
N4—H19⋯F1ix 0.91 2.53 3.113 (3) 122
N4—H20⋯F5vi 0.91 1.90 2.791 (3) 165
Symmetry codes: (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) x+1, y, z; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (viii) -x, -y+1, -z+1; (ix) -x, -y, -z+1.

Table 2
Bond valence parameters

Atom Σ s(ij)
Nb1 5.22
Nb2 5.29
F1 0.54b
F2 0.60b
F3 0.82b
F4 0.77b
F5 0.76b
F6 0.44b
F7 0.81b
F8 0.74b
O1 1.48a
O2 1.61a
O3 1.95a
Notes: s(ij) values calculated for B = 0.37; (a) empirical (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]); (b) extrapolated (Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]).

Crystals of (I)[link] are monoclinic, in the space group P21/n, which was chosen from the systematic absences. H atoms were refined as riding on their carrier atoms [C—H = 0.99 Å, N—H = 0.91 Å, and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(N)].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SHELXTL (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Version 2.1. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, (I), is the first organically templated niobium oxyfluoride. It also appears to be the first example of isolated dimeric niobium oxyfluoride units. In purely inorganic niobium oxyfluorides, a variety of building units have been reported; isolated [NbOF5]2− octahedra are found in Li2NbOF5 (Galy et al., 1969), and isolated pentagonal bipyramidal NbF7 and NbOF6 units are found in Rb5Nb3OF18 (Agulyanskii et al., 1991) and Ba4Nb2O3F12 (Crosnier-Lopez & Fourquet, 1993), respectively. The latter compound also contains cis corner-sharing octahedral tetramers. O-atom-linked trans vertex-sharing chains are found in [NH4][NbOF4] (Pakhomov & Kaidalova, 1974). Poeppelmeier and coworkers (Welk et al., 2002) have exploited metal–organic complexes in `directing' otherwise isolated [NbOF5]2− ions into specific crystallographic orientations.

The main feature of most of the previously reported niobium oxofluorides is the out-of-centre octahedral distortion. Electronic effects and bond network effects lead to the characteristic short NbO bond length and the longer Nb—X bond length trans to it. Along with non-centrosymmetry, the off-centre distortion is important in the non-linear properties of the structure. In the [NbOF5]2− anion (e.g. Izumi et al., 2005), the Nb atom is displaced from the center of the octahedron towards the O atom to form a short NbO bond and a longer Nb—F bond.

(C2H10N2)2[Nb2O3F8] (Fig. 1) is built up from diprotonated ethylenediamine cations and dimeric [Nb2O3F8]4− units. Each dimer consists of two NbO2F4 octahedra, which share corners with each other via one O atom.

Bond-valence sums (Table 2) show that some of the F atoms are heavily underbonded, and this is compensated by substantial hydrogen bonding to the organic cations. For example, the two F atoms trans to the short Nb O bonds (F1 and F6) accept three hydrogen bonds, while the two trans to the bridging O atom (F2 and F8) accept two each. Similarly, atom O1 is hydrogen bonded to two NH groups, while atom O2 is only bound to one, compatible with a small s(ij) of 1.48 for the Nb1—O1 bond, and a larger s(ij) of 1.61 for the Nb2—O2 bond. The bridging O3 atom does not require hydrogen bonding. All H atoms of the ethylenediammonium moieties partake in hydrogen bonding. In one of the octahedra (Nb1) there is a slight tendency for displacement of Nb towards an edge (O1/O3) rather than a vertex of the octahedron.

The complex hydrogen-bonding scheme results in the crystal packing shown in Fig. 2. The dimers are aligned along the [010] direction in a herringbone fashion.

Experimental top

Niobium pentoxide (0.2658 g), water (5 ml) and a 40% solution of HF (0.5 ml) was heated in a polypropylene bottle at 373 K for 1 h. The contents of the bottle were washed into a Teflon-lined steel autoclave with ethylene glycol (5 ml). To this mixture was added ethylenediamine (0.25 ml) to give a pH of 4. The mixture was heated at 463 K for 5 d. The pH increased to 6.5 over this time. The final product was filtered off, washed in water and allowed to dry overnight at room temperature.

Refinement top

Crystals of (I) are monoclinic, in the space group P21/n, which was chosen from the systematic absences. H atoms were refined as riding on their carrier atoms [C—H = 0.99 Å, N—H = 0.91 Å, and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(N)].

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT? and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: program (reference)?.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with tdisplacement ellipsoids drawn at 50% probability level. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 1 − x, −y, 1 − z.]
[Figure 2] Fig. 2. Projection of the structure down [010], showing the stacking of the dimers and cations.
bis(ethylenediaminium) diniobium trioxide octafluoride top
Crystal data top
(C2H10N2)2[Nb2O3F8]F(000) = 1000
Mr = 510.06Dx = 2.374 Mg m3
Monoclinic, P21/nMelting point: not measured K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.7121 (12) ÅCell parameters from 72 reflections
b = 10.1984 (10) Åθ = 12–28°
c = 11.9712 (12) ŵ = 1.71 mm1
β = 93.438 (2)°T = 125 K
V = 1427.3 (2) Å3Prism, colourless
Z = 40.1 × 0.1 × 0.03 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2608 independent reflections
Radiation source: sealed tube2419 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 0.83 pixels mm-1θmax = 25.4°, θmin = 2.4°
ϕ and ω scansh = 1413
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 1212
Tmin = 0.829, Tmax = 0.950l = 1314
9021 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0284P)2 + 3.2384P]
where P = (Fo2 + 2Fc2)/3
2608 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
(C2H10N2)2[Nb2O3F8]V = 1427.3 (2) Å3
Mr = 510.06Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.7121 (12) ŵ = 1.71 mm1
b = 10.1984 (10) ÅT = 125 K
c = 11.9712 (12) Å0.1 × 0.1 × 0.03 mm
β = 93.438 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2608 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2419 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.950Rint = 0.022
9021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.10Δρmax = 0.52 e Å3
2608 reflectionsΔρmin = 0.57 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nb10.17207 (2)0.21651 (3)0.27665 (2)0.01009 (9)
Nb20.14196 (2)0.25446 (3)0.28676 (2)0.00937 (9)
F10.12504 (15)0.12615 (17)0.42995 (14)0.0141 (4)
F20.32349 (15)0.13283 (19)0.31959 (15)0.0178 (4)
F30.20968 (17)0.36420 (18)0.36999 (16)0.0194 (4)
F40.12574 (16)0.04264 (17)0.22446 (15)0.0164 (4)
F50.17347 (16)0.43056 (18)0.22768 (15)0.0163 (4)
F60.11837 (15)0.36782 (17)0.43726 (15)0.0145 (4)
F70.12141 (15)0.10116 (17)0.38028 (15)0.0165 (4)
F80.30005 (15)0.25464 (17)0.35584 (15)0.0148 (4)
O10.23627 (19)0.2669 (2)0.14641 (19)0.0150 (5)
O20.16808 (19)0.1754 (2)0.16245 (19)0.0178 (5)
O30.02119 (18)0.2823 (2)0.26320 (19)0.0138 (5)
C10.4741 (3)0.3018 (3)0.1796 (3)0.0154 (7)
H10.40600.35570.19330.018*
H20.52100.29480.25100.018*
C20.4361 (3)0.1666 (3)0.1420 (3)0.0145 (6)
H30.38200.13150.19510.017*
H40.39490.17300.06750.017*
C30.4614 (3)0.4421 (3)0.4861 (3)0.0140 (6)
H50.47380.41070.40950.017*
H60.48000.36950.53910.017*
C40.4621 (3)0.0600 (3)0.5047 (3)0.0150 (7)
H70.47850.10240.57840.018*
H80.47890.12400.44570.018*
N10.5417 (2)0.3679 (3)0.0954 (2)0.0138 (5)
H90.56390.44850.12120.021*
H100.49810.37700.03030.021*
H110.60460.31900.08290.021*
N20.5341 (2)0.0736 (2)0.1353 (2)0.0125 (5)
H120.50750.00610.11160.019*
H130.57070.06520.20420.019*
H140.58380.10500.08620.019*
N30.3404 (2)0.4813 (3)0.4936 (2)0.0124 (5)
H150.29420.41140.47690.019*
H160.32340.54740.44420.019*
H170.32920.50930.56430.019*
N40.3392 (2)0.0214 (3)0.4926 (2)0.0152 (6)
H180.29460.09380.49840.023*
H190.32380.03670.54750.023*
H200.32420.01660.42450.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb10.00884 (15)0.01156 (14)0.00975 (15)0.00028 (10)0.00053 (10)0.00018 (10)
Nb20.00891 (15)0.01045 (14)0.00870 (15)0.00046 (10)0.00011 (10)0.00057 (10)
F10.0151 (9)0.0175 (9)0.0094 (9)0.0009 (7)0.0029 (7)0.0007 (7)
F20.0122 (9)0.0276 (10)0.0133 (9)0.0051 (8)0.0015 (7)0.0038 (8)
F30.0225 (10)0.0177 (9)0.0183 (10)0.0070 (8)0.0031 (8)0.0034 (8)
F40.0222 (10)0.0142 (9)0.0126 (9)0.0008 (7)0.0013 (8)0.0021 (7)
F50.0181 (10)0.0157 (9)0.0153 (10)0.0035 (7)0.0019 (8)0.0021 (7)
F60.0161 (10)0.0169 (9)0.0106 (9)0.0026 (7)0.0016 (7)0.0024 (7)
F70.0157 (10)0.0149 (9)0.0191 (10)0.0017 (7)0.0024 (8)0.0041 (7)
F80.0115 (9)0.0186 (9)0.0141 (10)0.0009 (7)0.0008 (7)0.0007 (7)
O10.0110 (11)0.0200 (11)0.0138 (12)0.0014 (9)0.0010 (9)0.0031 (9)
O20.0151 (12)0.0238 (12)0.0145 (12)0.0017 (9)0.0005 (9)0.0069 (9)
O30.0096 (11)0.0169 (11)0.0149 (12)0.0005 (8)0.0019 (9)0.0013 (9)
C10.0170 (16)0.0160 (15)0.0136 (16)0.0009 (13)0.0048 (13)0.0006 (13)
C20.0095 (15)0.0172 (16)0.0171 (17)0.0010 (12)0.0039 (12)0.0016 (13)
C30.0116 (16)0.0138 (15)0.0167 (16)0.0004 (13)0.0017 (13)0.0016 (12)
C40.0146 (16)0.0174 (16)0.0129 (16)0.0007 (13)0.0006 (12)0.0001 (12)
N10.0132 (13)0.0138 (13)0.0140 (14)0.0004 (10)0.0017 (11)0.0009 (10)
N20.0145 (14)0.0128 (12)0.0103 (13)0.0016 (10)0.0015 (10)0.0000 (10)
N30.0120 (14)0.0147 (13)0.0104 (13)0.0011 (10)0.0007 (10)0.0006 (10)
N40.0136 (14)0.0195 (14)0.0127 (14)0.0023 (11)0.0016 (11)0.0031 (11)
Geometric parameters (Å, º) top
Nb1—O11.766 (2)C3—C3i1.513 (6)
Nb1—O31.906 (2)C3—H50.9900
Nb1—F31.9417 (18)C3—H60.9900
Nb1—F41.9671 (18)C4—N41.491 (4)
Nb1—F22.0609 (18)C4—C4ii1.520 (6)
Nb1—F12.0975 (17)C4—H70.9900
Nb2—O21.736 (2)C4—H80.9900
Nb2—O31.936 (2)N1—H90.9100
Nb2—F71.9462 (18)N1—H100.9100
Nb2—F51.9731 (18)N1—H110.9100
Nb2—F81.9821 (18)N2—H120.9100
Nb2—F62.1723 (18)N2—H130.9100
C1—N11.481 (4)N2—H140.9100
C1—C21.510 (4)N3—H150.9100
C1—H10.9900N3—H160.9100
C1—H20.9900N3—H170.9100
C2—N21.495 (4)N4—H180.9100
C2—H30.9900N4—H190.9100
C2—H40.9900N4—H200.9100
C3—N31.481 (4)
O1—Nb1—O399.84 (10)N2—C2—H4109.1
O1—Nb1—F3100.55 (9)C1—C2—H4109.1
O3—Nb1—F391.08 (9)H3—C2—H4107.8
O1—Nb1—F495.32 (9)N3—C3—C3i109.7 (3)
O3—Nb1—F490.90 (9)N3—C3—H5109.7
F3—Nb1—F4163.42 (8)C3i—C3—H5109.7
O1—Nb1—F290.77 (9)N3—C3—H6109.7
O3—Nb1—F2169.39 (9)C3i—C3—H6109.7
F3—Nb1—F287.10 (8)H5—C3—H6108.2
F4—Nb1—F287.93 (8)N4—C4—C4ii110.1 (3)
O1—Nb1—F1167.34 (9)N4—C4—H7109.6
O3—Nb1—F191.86 (8)C4ii—C4—H7109.6
F3—Nb1—F183.92 (8)N4—C4—H8109.6
F4—Nb1—F179.56 (7)C4ii—C4—H8109.6
F2—Nb1—F177.56 (7)H7—C4—H8108.1
O2—Nb2—O399.58 (10)C1—N1—H9109.5
O2—Nb2—F798.88 (10)C1—N1—H10109.5
O3—Nb2—F792.67 (8)H9—N1—H10109.5
O2—Nb2—F593.96 (10)C1—N1—H11109.5
O3—Nb2—F591.06 (8)H9—N1—H11109.5
F7—Nb2—F5165.84 (8)H10—N1—H11109.5
O2—Nb2—F898.62 (9)C2—N2—H12109.5
O3—Nb2—F8161.80 (9)C2—N2—H13109.5
F7—Nb2—F884.57 (8)H12—N2—H13109.5
F5—Nb2—F887.62 (7)C2—N2—H14109.5
O2—Nb2—F6174.89 (9)H12—N2—H14109.5
O3—Nb2—F682.48 (8)H13—N2—H14109.5
F7—Nb2—F685.65 (7)C3—N3—H15109.5
F5—Nb2—F681.30 (7)C3—N3—H16109.5
F8—Nb2—F679.37 (7)H15—N3—H16109.5
Nb1—O3—Nb2148.01 (12)C3—N3—H17109.5
N1—C1—C2111.9 (3)H15—N3—H17109.5
N1—C1—H1109.2H16—N3—H17109.5
C2—C1—H1109.2C4—N4—H18109.5
N1—C1—H2109.2C4—N4—H19109.5
C2—C1—H2109.2H18—N4—H19109.5
H1—C1—H2107.9C4—N4—H20109.5
N2—C2—C1112.4 (3)H18—N4—H20109.5
N2—C2—H3109.1H19—N4—H20109.5
C1—C2—H3109.1
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H9···F1iii0.912.052.831 (3)142
N1—H10···F1iv0.911.822.697 (3)161
N1—H9···F4iii0.912.172.922 (3)140
N1—H11···O1v0.912.042.830 (3)144
N1—H11···F6iv0.912.593.221 (3)127
N2—H12···F6vi0.912.022.857 (3)153
N2—H12···O3vi0.912.633.216 (3)123
N2—H13···F2v0.911.932.752 (3)150
N2—H14···F6iv0.911.872.690 (3)148
N3—H15···F60.912.132.889 (3)140
N3—H15···F80.912.162.862 (3)133
N3—H16···O2iii0.911.832.719 (3)164
N3—H17···F4vii0.912.032.779 (3)139
N3—H17···F3viii0.912.092.792 (3)133
N4—H18···O1vii0.912.323.005 (4)132
N4—H18···F80.912.372.909 (3)118
N4—H18···F70.912.402.927 (3)117
N4—H19···F2ix0.911.872.759 (3)165
N4—H19···F1ix0.912.533.113 (3)122
N4—H20···F5vi0.911.902.791 (3)165
Symmetry codes: (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z1/2; (v) x+1, y, z; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x, y+1, z+1; (ix) x, y, z+1.

Experimental details

Crystal data
Chemical formula(C2H10N2)2[Nb2O3F8]
Mr510.06
Crystal system, space groupMonoclinic, P21/n
Temperature (K)125
a, b, c (Å)11.7121 (12), 10.1984 (10), 11.9712 (12)
β (°) 93.438 (2)
V3)1427.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.1 × 0.1 × 0.03
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.829, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
9021, 2608, 2419
Rint0.022
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.060, 1.10
No. of reflections2608
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.57

Computer programs: SMART (Bruker, 1997), SMART, SAINT? and SHELXTL (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), WinGX (Farrugia, 1999), program (reference)?.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H9···F1i0.912.052.831 (3)142
N1—H10···F1ii0.911.822.697 (3)161
N1—H9···F4i0.912.172.922 (3)140
N1—H11···O1iii0.912.042.830 (3)144
N2—H12···F6iv0.912.022.857 (3)153
N2—H13···F2iii0.911.932.752 (3)150
N2—H14···F6ii0.911.872.690 (3)148
N3—H15···F60.912.132.889 (3)140
N3—H15···F80.912.162.862 (3)133
N3—H16···O2i0.911.832.719 (3)164
N3—H17···F4v0.912.032.779 (3)139
N3—H17···F3vi0.912.092.792 (3)133
N4—H18···O1v0.912.323.005 (4)132
N4—H18···F80.912.372.909 (3)118
N4—H18···F70.912.402.927 (3)117
N4—H19···F2vii0.911.872.759 (3)165
N4—H19···F1vii0.912.533.113 (3)122
N4—H20···F5iv0.911.902.791 (3)165
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y, z; (iv) x+1/2, y1/2, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x, y+1, z+1; (vii) x, y, z+1.
Bond valence parameters. top
AtomΣ s(ij)
Nb15.22
Nb25.29
F10.54b
F20.60b
F30.82b
F40.77b
F50.76b
F60.44b
F70.81b
F80.74b
O11.48a
O21.61a
O31.95a
s(ij) values calculated for B = 0.37: (a) Brown & Altermatt (1985) empirical; (b) Brese & O'Keeffe (1991) extrapolated.
 

Acknowledgements

The authors thank Professor Alex Slawin for assistance in data collection, and the University of St Andrews for funding.

References

First citationAgulyanskii, A. I., Zavodnik, V. E., Kuznetsov, V. Ya., Sidorov, N. V., Stefanovich, S. Yu., Tsikaeva, D. V. & Kalinnikov, V. T. (1991). Izv. Akad. Nauk SSSR Neorg. Mater. 27, 1055–1060.  CAS Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Version 2.1. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrosnier-Lopez, M. P. & Fourquet, J. L. (1993). J. Solid State Chem. 103, 131–138.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGaly, J., Andersson, S. & Portier, J. (1969). Acta Chem. Scand. 23, 2949–2954.  CrossRef CAS Web of Science Google Scholar
First citationIzumi, H. K., Kirsch, J. E., Stern, C. L. & Poeppelmeier, K. R. (2005). Inorg. Chem. 44, 884–895.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPakhomov, V. I. & Kaidalova, T. A. (1974). Kristallografiya, 19, 733–736.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWelk, M. E., Norquist A. J., Arnold, F. P., Stern, C. L. & Poeppelmeier, K. R. (2002). Inorg. Chem. 41, 5119–5125.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds