organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Neutron diffraction studies of the 1:1 and 2:1 cocrystals of benzene-1,2,4,5-tetra­carboxylic acid and 4,4′-bi­pyridine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, Durham DH1 3LE, England, bInstitut Laue Langevin, 6 Rue Jules Horowitz, BP156, 38042 Grenoble Cedex 9, France, and cDepartment of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China
*Correspondence e-mail: j.a.cowan@dl.ac.uk

(Received 12 January 2006; accepted 1 February 2006; online 11 March 2006)

The 1:1 and 2:1 cocrystals of benzene-1,2,4,5-tetra­carboxylic acid (BTA) and 4,4′-bipyridine (BPY) have been studied using neutron diffraction at 215 and 20 K, respectively. BTA and BPY crystallize in a 1:1 ratio with 1.8 mol­ecules of water, viz. 4,4′-bipyridinium 2,5-dicarboxy­benzene-1,4-dicarboxyl­ate 1.8-hydrate, C10H12N22+·C10H4O82−·1.8H2O, (I)[link], in the space group P[\overline{1}], with both BTA and BPY lying on inversion centres. BTA and BPY crystallize in a 2:1 ratio, viz. 4,4′-bipyridinium bis­(2,4,5-tricarboxy­benzoate), C10H12N22+·2C10H5O8, (II)[link], in the space group Cc. The crystal structure of the 1:1 cocrystal contains one short N—H⋯O hydrogen bond [N⋯O = 2.6047 (19) Å] and one intra­molecular O—H⋯O hydrogen bond [O⋯O = 2.423 (3) Å]. The crystal structure of the 2:1 cocrystal contains two N—H⋯O hydrogen bonds [N⋯O = 2.639 (3) and 2.674 (2) Å], and two intra­molecular [O⋯O = 2.404 (3) and 2.420 (3) Å] and four strong inter­molecular O—H⋯O hydrogen bonds [O⋯O = 2.613 (3), 2.718 (3), 2.628 (3) and 2.739 (3) Å].

Comment

As part of an investigation into N—H⋯O and O—H⋯N hydrogen bonds (Cowan et al., 2001a[Cowan, J. A., Howard, J. A. K. & Leech, M. A. (2001a). Acta Cryst. C57, 302-303.],b[Cowan, J. A., Howard, J. A. K. & Leech, M. A. (2001b). Acta Cryst. C57, 1196-1198.]; Cowan, Howard, Leech et al., 2001[Cowan, J. A., Howard, J. A. K., Leech, M. A., Puschmann, H. & Williams, I. D. (2001). Acta Cryst. C57, 1194-1195.]; Cowan, Howard, Leech & Williams, 2001[Cowan, J. A., Howard, J. A. K., Leech, M. A. & Williams, I. D. (2001). Acta Cryst. E57, o563-o565.]), we have produced cocrystals of benzene-1,2,4,5-tetra­carboxylic acid (BTA) and 4,4′-bipyridine (BPY). In the short N⋯O hydrogen bond observed in the cocrystal of 4-methyl­pyridine and penta­chloro­phenol (Steiner et al., 2001[Steiner, T., Majerz, I. & Wilson, C. C. (2001). Angew. Chem. Int. Ed. 40, 2651-2654.]), the H atom lies closer to the N atom at 20 K, and migrates across the hydrogen bond to lie closer to the O atom at 296 K. We have recently (Cowan et al., 2003[Cowan, J. A., Howard, J. A. K., McIntyre, G. J., Lo, S. M.-F. & Williams, I. D. (2003). Acta Cryst. B59, 794-801.]) observed an identical phenomenon of H-atom migration in one of the two short N⋯O hydrogen bonds in the 1:2 cocrystal of BTA and BPY, whose structure was first described by Lough et al. (2000[Lough, A. J., Wheatley, P. S., Ferguson, G. & Glidewell, C. (2000). Acta Cryst. B56, 261-272.]). It was speculated that similar novel behaviour may be observed in the N⋯O hydrogen bonds of the 2:1 and 1:1 cocrystals, the structures of which have recently been reported (Zhu et al., 2003[Zhu, N.-W., Zhang, R.-Q. & Sun, T.-H. (2003). Z. Kristallogr. 218, 341-342.]; Ruiz-Pérez et al., 2004[Ruiz-Pérez, C., Lorenzo-Luis, P. A., Hernández-Molina, M., Laz, M. M., Gilli, P. & Julve, J. (2004). Cryst. Growth Des. 4, 57-61.]; Fabelo et al., 2005[Fabelo, O., Cañadillas-Delgado, L., Delgado, F. S., Lorenzo-Luis, P., Laz, M. M., Julve, M. & Ruiz-Pérez, C. (2005). Cryst. Growth Des. 5, 1163-1167.]).

[Scheme 1]

BTA and BPY crystallize in a 1:1 ratio as a mol­ecular salt, (I)[link], with two mol­ecules of water, in space group P[\overline{1}]. The BTA and BPY mol­ecules are linked by strong N—H⋯O hydrogen bonds to form infinite one-dimensional chains. The disordered water mol­ecules lie in a channel along the a axis between parallel chains of BTA and BPY mol­ecules (Fig. 1[link]). The structure of (I)[link] has been discussed previously by Fabelo et al. (2005[Fabelo, O., Cañadillas-Delgado, L., Delgado, F. S., Lorenzo-Luis, P., Laz, M. M., Julve, M. & Ruiz-Pérez, C. (2005). Cryst. Growth Des. 5, 1163-1167.]).

A very short intra­molecular hydrogen bond is formed [O11—H1⋯O21, with O⋯O = 2.423 (3) Å] between the carboxylic acid group and the carboxyl­ate group. Even though the O⋯O separation is very short for an O—H⋯O hydrogen bond, the H atom is asymmetrically positioned. There is no evidence of disorder in the difference Fourier map or in the anisotropic displacement parameters of the H atom (Fig. 2[link]).

A strong charge-assisted N—H⋯O hydrogen bond [N4—H4⋯O22, with N⋯O = 2.6047 (19) Å] (Gilli et al., 1994[Gilli, P., Bertolasi, V., Ferritti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909-915.]) is formed between the BTA and BPY mol­ecules. Although this is chemically very similar to the short N—H⋯O hydrogen bond in the 2:1 cocrystal [N⋯O = 2.521 (2) Å; Lough et al., 2000[Lough, A. J., Wheatley, P. S., Ferguson, G. & Glidewell, C. (2000). Acta Cryst. B56, 261-272.]], it is much longer. Surprisingly, the longer hydrogen bond is accompanied by a parallel C—H⋯O hydrogen bond (C9—H9⋯O21) forming a commonly observed motif, while the shorter hydrogen bond has no parallel C—H⋯O bond.

The observed deterioration of the crystal below 200 K meant we could not verify the existence or absence of H-atom migration. In the observed cases, H-atom migration has been from the O atom at room temperature to the N atom at low temperature. The H-atom position at 215 K [1.102 (3) Å from the N atom] suggests that significant H-atom migration does not occur. To observe significant H-atom migration, we would expect the N—H distance to be 1.2–1.3 Å at 215 K.

The water mol­ecules were modelled as disordered over four positions, and were refined with the O—H bond lengths and the H—O—H bond angle restrained. Most of the residual nuclear density lies around the water mol­ecules and the model only approximates the true disorder. The occupancy factors of the water mol­ecules were refined and then fixed so that the isotropic displacement parameters were physically reasonable. It was not sensible to refine anisotropic displacement parameters for any of the atoms in the water mol­ecules. The overall occupancy summed to 1.8 water mol­ecules per unit cell.

BTA and BPY crystallize in a 2:1 ratio as a mol­ecular salt, (II)[link], with the formula C10H10N22+·2C10H5O8. The BTA mol­ecules are connected by O—H⋯O hydrogen bonds in a two-dimensional mesh. The BPY mol­ecules thread through gaps in the mesh and connect the layers together via N—H⋯O hydrogen bonds (Fig. 3[link]). The structure of (II)[link] has been discussed previously by Zhu et al. (2003[Zhu, N.-W., Zhang, R.-Q. & Sun, T.-H. (2003). Z. Kristallogr. 218, 341-342.]) and Ruiz-Pérez et al. (2004[Ruiz-Pérez, C., Lorenzo-Luis, P. A., Hernández-Molina, M., Laz, M. M., Gilli, P. & Julve, J. (2004). Cryst. Growth Des. 4, 57-61.]).

Our structure of (II)[link] disagrees with both published structures. The structure of Zhu et al. (2003[Zhu, N.-W., Zhang, R.-Q. & Sun, T.-H. (2003). Z. Kristallogr. 218, 341-342.]) [Cambridge Structural Database (CSD; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) refcode IRETII] was refined in the space group C2/c with one BTA mol­ecule and one half of a BPY mol­ecule in the asymmetric unit. Refinement of the low-temperature structure of (II)[link] in C2/c results in unacceptable anisotropic displacement parameters and the refined R factor was only ∼10%. It is possible that the C2/c phase occurs at room temperature, or that different crystallization conditions produce a polymorph. The heavy-atom structure and space group of Ruiz-Pérez et al. (2004[Ruiz-Pérez, C., Lorenzo-Luis, P. A., Hernández-Molina, M., Laz, M. M., Gilli, P. & Julve, J. (2004). Cryst. Growth Des. 4, 57-61.]) (CSD refcode IRETII01) agree with our structure. However, their placement of the H atoms is incorrect, including three H atoms curiously attached to the carbonyl O atoms in the carboxylic acid groups.

A short intra­molecular hydrogen bond is formed between a carboxyl­ate group and the adjacent carboxylic acid group in both BTA mol­ecules. Again, as in (I)[link], despite the very short O⋯O separation for an O—H⋯O hydrogen bond, the H atom is positioned asymmetrically. There is no evidence of disorder in the difference Fourier map or in the isotropic displacement parameters of the H atom (Fig. 4[link]). There are two relatively long N—H⋯O charge-assisted hydrogen bonds, both with ordered H-atom positions close to the N atoms. No H-atom migration is expected, for the same reasons as stated for (I)[link]. Four short but unremarkable O—H⋯O hydrogen bonds are also formed, linking the BTA mol­ecules into two-dimensional meshes. Full hydrogen-bond parameters are listed in Table 2[link].

In both (I)[link] and (II)[link], three independent short O—H⋯O intra­molecular hydrogen bonds are formed between a carboxylic acid group and an adjacent carboxyl­ate group attached to a benzene ring. These are among the shortest hydrogen bonds studied by neutron diffraction. In similar short intra­molecular hydrogen bonds studied by neutron diffraction, the H atom is rarely found to be equidistant from the O atoms (Wilson, 2000[Wilson, C. C. (2000). Single Crystal Neutron Diffraction From Molecular Materials. Singapore: World Scientific Publishing Company.]). In the crystal structure of pyridine-2,3-dicarboxylic acid, a short asymmetric intra­molecular hydrogen bond is formed and the asymmetry is ascribed to the N atom in the pyridyl ring (Kvick et al., 1974[Kvick, Å., Koetzle, T. F., Thomas, R. & Takusagawa, F. (1974). J. Chem. Phys. 60, 3866-3874.]; Takusagawa & Koetzle, 1979[Takusagawa, F. & Koetzle, T. F. (1979). Acta Cryst. B35, 2126-2135.]). Similar short intra­molecular hydrogen bonds between carboxylic acid and carboxyl­ate groups have been studied in detail by neutron diffraction and ab initio calculations in maleate ions (Hsu & Schlemper, 1980[Hsu, B. & Schlemper, E. O. (1980). Acta Cryst. B36, 3017-3023.]; Olovsson & Olovsson, 1984[Olovsson, G. & Olovsson, I. (1984). Acta Cryst. C40, 1521-1526.]; Vanhouteghem et al., 1987[Vanhouteghem, F., Lenstra, A. T. H. & Schweiss, P. (1987). Acta Cryst. B43, 523-528.]; Wilson et al., 2003[Wilson, C. C., Thomas, L. H. & Morrison, C. A. (2003). Chem. Phys. Lett. 381, 102-108.]), and the asymmetry in the H-atom position, when it occurs, is ascribed to inter­molecular effects. In imidazolium hydrogen maleate (Sakhawat Hussain et al., 1980[Sakhawat Hussain, M., Schlemper, E. O. & Fair, C. K. (1980). Acta Cryst. B36, 1104-1108.]), the H atom is found to be centred, but on deuteration the D atom is found to be asymmetrically placed. In the structure of lithium hydrogen phthalate (Küppers et al., 1985[Küppers, H., Takusagawa, F. & Koetzle, T. F. (1985). J. Chem. Phys. 82, 5636-5647.]), there are two phthalate ions forming intra­molecular hydrogen bonds, one of which is symmetrical while the other is asymmetrical with respect to the H-atom position.

The asymmetry in the intra­molecular hydrogen bonds in structures (I)[link] and (II)[link] is clearly caused by the inter­molecular N—H⋯O hydrogen bonds. The asymmetry in the hydrogen bond is also evident in the C—O distances in the carboxyl­ate/carboxylic acid groups, which are, in (I)[link], characteristic of a carboxylic acid group and a carboxyl­ate group. The carboxyl­ate group acts as the acceptor for both intra- and inter­molecular hydrogen bonds. In the cocrystal of BTA and guanidinium (Sun et al., 2002[Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2002). Acta Cryst. E58, o904-o906.]), the H atom was found in the centre of the intra­molecular hydrogen bond, although in that case the carboxyl­ate/carboxylic acid groups are both acceptors for similar inter­molecular hydrogen bonds and the C—O distances are hybrid between the carboxyl­ate/carboxylic acid cases.

Aromatic inter­actions between delocalized π-electron systems in crystal structures have long been recognized (Robertson, 1951[Robertson, J. M. (1951). Proc. R. Soc. London Ser. A, 207, 101-110.]) and are characterized by perpendicular distances of ∼3.4 Å between aromatic rings. Hunter et al. (2002[Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.]) explain ππ inter­actions by treating the π-electron system and the σ system, in which they include the nuclei and the σ electrons, as separate, and by considering the electrostatic inter­actions between them.

In structure (I)[link], the BTA mol­ecules form π-stacked columns. In (II)[link], there are no conventional ππ inter­actions; the BTA mol­ecules do not stack with the delocalized aromatic inter­actions `face-to-face', but with the aromatic rings adjacent to the ring formed by the intra­molecular hydrogen bonds. The most obvious example of a similar inter­action is in the crystal structure of diphthalimidodiethyl­amine phthalic acid hydrate (Barrett et al., 1998[Barrett, D. M. Y., Kahwa, I. A., Raduchel, B., White, A. J. P. & Williams, D. J. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 1851-1856.]), in which the phthalic acid mol­ecule is pincered between the benzene groups in the the U-shaped diphthalimidodiethyl­amine. The motif also occurs in cocrystals of BTA and 4-methyl­pyridine (Biradha & Zaworotko, 1998[Biradha, K. & Zaworotko, M. J. (1998). Cryst. Eng. 1, 67-78.]; centre–centre = 3.538 Å), phenyl­ethyl­ammonium hydrogen phthalate (Kozma et al., 1994[Kozma, D., Bocskei, Z., Simon, K. & Fogassy, E. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 1883-1886.]; centre–centre = 3.649 Å) and bis­(p-dimethyl­amino­phen­yl)phenyl­carbenium hydrogen phthalate phthalic acid (Mitchell et al., 1996[Mitchell, C. A., Lovell, S., Thomas, K., Savickas, P. & Kahr, B. (1996). Angew. Chem. Int. Ed. Engl. 35, 1021-1023.]; centre–centre = 3.713 Å). This inter­action could be inter­preted in some cases as a ππ inter­action with a large offset between the rings. The description of ππ inter­actions as electrostatic inter­actions would include those inter­actions in which the attraction is between the σ-electron system of the benzene ring and the charges in the polar C—O bonds in the hydrogen-bonded ring. Further examples, with evidence that this motif would form in preference to other possible motifs, are required to determine if these are true inter­molecular inter­actions or simply geometrical coincidences caused by other inter­actions.

One of the main aims of this study was to obtain neutron diffraction data on short N—H⋯O/O—H⋯N hydrogen bonds. The strength of the hydrogen bonds is apparently very sensitive to the inter­molecular environment. There is a variation in the N⋯O distances between 2.5220 (17) and 2.674 (2) Å in the hydrogen bonds formed between BTA and BPY in the three cocrystals of these components.

No hydrogen bonds as short as those in the 2:1 cocrystal (Lough et al., 2000[Lough, A. J., Wheatley, P. S., Ferguson, G. & Glidewell, C. (2000). Acta Cryst. B56, 261-272.]) are observed in (I)[link] and (II)[link], and therefore we do not expect H-atom migration. However, in the cocrystal of BTA and 1,7-phenanthroline (Arora & Pedireddi, 2003[Arora, K. K. & Pedireddi, V. R. (2003). J. Org. Chem. 24, 9177-9185.]), there is an N—H⋯O hydrogen bond with an N⋯O distance of 2.562 (2) Å and an N—H distance of 1.31 (3) Å at room temperature. Although this is longer than the values of 2.5220 (17) Å in the 2:1 cocrystal and 2.506 (3) Å in 4-methyl­pyridine and penta­chloro­phenol (Steiner et al., 2001[Steiner, T., Majerz, I. & Wilson, C. C. (2001). Angew. Chem. Int. Ed. 40, 2651-2654.]), it is likely that H-atom migration may be exhibited upon cooling to low temperature. Neutron diffraction is required to verify this prediction.

[Figure 1]
Figure 1
A packing diagram for (I)[link], viewed perpendicular to the hydrogen-bonded chains. Hydrogen bonds are indicated by dashed lines. The disordered water mol­ecules are visible in the large channel.
[Figure 2]
Figure 2
A plot of (I)[link] from the 215 K neutron data. Displacement ellipsoids are drawn at the 50% probability level. The heavy dashed lines indicate strong hydrogen bonds and the thin dashed line indicates a weak C—H⋯O hydrogen bond. [Symmetry codes: (i) 1 − x, 1 − y, −z; (ii) −x − 1, −y, 1 − z.]
[Figure 3]
Figure 3
A packing diagram for (II)[link], viewed along the c direction. The BPY mol­ecules are shown with hollow bonds and the BTA mol­ecules are shown with solid bonds. H atoms have been omitted for clarity. The two-dimensional BTA networks are parallel to the page and the BPY mol­ecules thread through the gaps.
[Figure 4]
Figure 4
A plot of (II)[link] from the 20 K neutron data. Displacement ellipsoids are drawn at the 50% probability level.

Experimental

Cocrystals of BTA and BPY in a 1:1 ratio [compound (I)[link]] were formed in ∼80% yield by heating BTA and BPY in a 1:1 ratio (1:1 mmol) in H2O (1 ml) for 2 d at 453 K in a 23 ml Teflon-lined Parr vessel under autogenous pressure. Phase purity was established by powder X-ray diffraction and elemental analysis. Typical crystal size was 1–2 mm3. Larger specimens of up to 5 mm3 could be obtained by cyclic heating and cooling of the bombs between 373 and 453 K. An identical procedure, using different ratios of the constituents, was used to produce 2:1 cocrystals [compound (II)[link]] of similar size.

Compound (I)[link]

Crystal data
  • C10H10N22+·C10H4O82−·1.8H2O

  • Mr = 442.40

  • Triclinic, [P \overline 1]

  • a = 3.7747 (2) Å

  • b = 10.8587 (5) Å

  • c = 11.9519 (6) Å

  • α = 99.626 (3)°

  • β = 97.726 (3)°

  • γ = 95.515 (3)°

  • V = 475.07 (4) Å3

  • Z = 1

  • Dx = 1.546 Mg m−3

  • Neutron radiation

  • λ = 1.302 Å

  • Cell parameters from 1196 reflections

  • θ = 5–55°

  • μ = 0.16 mm−1

  • T = 215 (2) K

  • Needle, brown

  • 2.0 × 0.8 × 0.5 mm

Data collection
  • D19 diffractometer, ILL

  • ω scans

  • Absorption correction: integration(D19ABS; Matthewman et al., 1982[Matthewman, J. C., Thompson, P. & Brown, P. J. (1982). J. Appl. Cryst. 15, 167-173.])Tmin = 0.861, Tmax = 0.933

  • 1983 measured reflections

  • 1654 independent reflections

  • 1426 reflections with I > 2σ(I)

  • Rint = 0.017

  • θmax = 55.0°

  • h = −2 → 4

  • k = −13 → 13

  • l = −14 → 14

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.081

  • S = 1.06

  • 1654 reflections

  • 249 parameters

  • H atoms: see below

  • w = 1/[σ2(Fo2) + (0.0297P)2 + 1.6121P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.50 fm Å−3

  • Δρmin = −0.55 fm Å−3

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H1⋯O21 1.056 (4) 1.370 (4) 2.423 (3) 174.6 (4)
N4—H4⋯O22 1.102 (3) 1.505 (3) 2.6047 (19) 175.1 (3)
C6—H6⋯O12i 1.080 (3) 2.252 (4) 3.199 (2) 145.3 (4)
C8—H8⋯O12ii 1.083 (4) 2.401 (4) 3.362 (2) 147.2 (4)
C9—H9⋯O21 1.080 (3) 2.592 (4) 3.302 (2) 122.6 (3)
O1—H1A⋯O22 0.977 (19) 2.10 (2) 2.919 (16) 140 (2)
O2—H2A⋯O22 0.971 (18) 1.922 (15) 2.851 (15) 159 (2)
O3—H3A⋯O22 0.982 (10) 1.849 (12) 2.809 (12) 164.9 (17)
O4—H4A⋯O22iii 0.97 (2) 2.031 (18) 3.00 (2) 174 (3)
Symmetry codes: (i) x-2, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z.

Compound (II)[link]

Crystal data
  • C10H10N22+·2C10H5O8

  • Mr = 664.49

  • Monoclinic, C c

  • a = 12.009 (1) Å

  • b = 15.484 (1) Å

  • c = 15.221 (1) Å

  • β = 112.273 (3)°

  • V = 2619.2 (3) Å3

  • Z = 4

  • Dx = 1.685 Mg m−3

  • Neutron radiation

  • λ = 1.3108 (1) Å

  • Cell parameters from 3055 reflections

  • θ = 5–50°

  • μ = 0.14 mm−1

  • T = 20 (2) K

  • Bar, yellow

  • 2.2 × 1.0 × 0.7 mm

Data collection
  • D19 diffractometer, ILL

  • ω scans

  • Absorption correction: Gaussian(D19ABS; Matthewman et al., 1982[Matthewman, J. C., Thompson, P. & Brown, P. J. (1982). J. Appl. Cryst. 15, 167-173.])Tmin = 0.841, Tmax = 0.891

  • 3741 measured reflections

  • 2647 independent reflections

  • 2628 reflections with I > 2σ(I)

  • Rint = 0.019

  • θmax = 55.2°

  • h = −4 → 14

  • k = −19 → 13

  • l = −19 → 17

  • 2 standard reflections every 100 reflections intensity decay: none

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.048

  • S = 1.12

  • 2647 reflections

  • 615 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0186P)2 + 12.8939P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.43 fm Å−3

  • Δρmin = −0.46 fm Å−3

  • Extinction correction: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.])

  • Extinction coefficient: 0.000155 (17)

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 92 Friedel pairs

  • Flack parameter: 0 (10)

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O22—H22⋯O11 1.079 (5) 1.333 (5) 2.404 (3) 172.6 (4)
O24—H24⋯O13 1.076 (5) 1.348 (5) 2.420 (3) 173.2 (4)
N1—H1⋯O12i 1.049 (4) 1.635 (4) 2.674 (2) 169.5 (4)
N2—H2⋯O14ii 1.050 (4) 1.665 (4) 2.639 (2) 151.9 (3)
O42—H42⋯O11iii 1.011 (5) 1.612 (5) 2.613 (3) 169.8 (4)
O52—H52⋯O21iv 1.004 (4) 1.717 (4) 2.718 (3) 174.7 (4)
O44—H44⋯O13iv 1.007 (4) 1.637 (4) 2.629 (3) 167.2 (4)
O54—H54⋯O23iii 1.004 (5) 1.740 (5) 2.739 (3) 173.2 (4)
C31—H31⋯O24v 1.085 (4) 2.228 (5) 3.191 (3) 146.7 (4)
C34—H34⋯O52iii 1.080 (4) 2.482 (5) 3.414 (3) 143.9 (4)
C34—H34⋯O22v 1.080 (4) 2.467 (4) 3.155 (3) 120.5 (3)
C35—H35⋯O22v 1.071 (4) 2.549 (5) 3.154 (3) 115.0 (3)
C35—H35⋯O43vi 1.071 (4) 2.494 (4) 3.042 (3) 110.7 (3)
C36—H36⋯O51 1.082 (4) 2.364 (5) 3.219 (3) 134.8 (3)
C36—H36⋯O21iv 1.082 (4) 2.414 (5) 3.134 (3) 122.8 (3)
C37—H37⋯O41 1.083 (4) 2.193 (5) 3.140 (3) 144.9 (4)
C38—H38⋯O41 1.081 (4) 2.351 (4) 3.420 (3) 169.7 (3)
C38—H38⋯O43 1.081 (4) 2.564 (4) 3.044 (3) 106.0 (3)
C39—H39⋯O23iii 1.082 (4) 2.592 (5) 3.108 (3) 108.4 (3)
C39—H39⋯O43 1.082 (4) 2.493 (5) 2.994 (3) 107.0 (3)
C39—H39⋯O53 1.082 (4) 2.692 (5) 3.739 (3) 162.9 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) x, y+1, z; (vi) [x, -y+1, z+{\script{1\over 2}}].

X-ray diffraction experiments were performed prior to the neutron experiments to verify the identity of the crystals. The initial structural models for the neutron refinements were taken from our X-ray diffraction results. Neutron scattering factors were taken from Sears (1992[Sears, V. F. (1992). Neutron News, 3(3), 26-37.]). All H atoms were refined with anisotropic displacement parameters except for those in the disordered water molecules in (I).

For both compounds, data collection: MAD (Barthelemy et al., 1984[Barthelemy, A., Filhol, A., Rice, P. G., Allibon, J. R. & Turfat, C. (1984). MAD. Institut Laue-Langevin, Grenoble, France.]); cell refinement: RAFD19 (Filhol, 1998[Filhol, A. (1998). RAFD19. Institut Laue-Langevin, Grenoble, France.]); data reduction: RETREAT (Wilkinson et al., 1988[Wilkinson, C., Khamis, H. W., Stansfield, R. F. D. & McIntyre, G. J. (1988). J. Appl. Cryst. 21, 471-478.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL/PC (Sheldrick, 1999[Sheldrick, G. M. (1999). SHELXTL/PC. Version 5.10 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

As part of an investigation into N—H···O and O—H···N hydrogen bonds (Cowan et al., 2001a,b; Cowan, Howard, Leech et al., 2001; Cowan, Howard, Leech & Williams, 2001), we have produced cocrystals of benzene-1,2,4,5-tetracarboxylic acid (BTA) and 4,4'-bipyridine (BPY). In the short N···O hydrogen bond observed in the cocrystal of 4-methylpyridine and pentachlorophenol (Steiner et al., 2001), the H atom lies closer to the N atom at 20 K, and migrates across the hydrogen bond to lie closer to the O atom at 296 K. We have recently (Cowan et al., 2003) observed an identical phenomenon of H-atom migration in one of the two short N···O hydrogen bonds in the 1:2 cocrystal of BTA and BPY, whose structure was first described by Lough et al. (2000). It was speculated that similar novel behaviour may be observed in the N···O hydrogen bonds of the 2:1 and 1:1 cocrystals, the structures of which have recently been reported (Zhu et al., 2003; Ruiz-Pérez et al., 2004; Fabelo et al., 2005).

BTA and BPY crystallize in a 1:1 ratio as a molecular salt, (I), with two molecules of water, in space group P1. The BTA and BPY molecules are linked by strong N—H···O hydrogen bonds to form infinite one-dimensional chains. The disordered water molecules lie in a channel along the a axis between parallel chains of BTA and BPY molecules (Fig. 1). The structure of (I) has been discussed previously by Fabelo et al. (2005).

A very short intramolecular hydrogen bond is formed [O11—-H1···O21, with O···O = 2.423 (3) Å] between the carboxylic acid group and the carboxylate group. Even though the O···O separation is very short for an O—H···O hydrogen bond, the H atom is asymmetrically positioned. There is no evidence of disorder in the difference Fourier map or in the anisotropic displacement parameters of the H atom (Fig. 2).

A strong charge-assisted N—H···O hydrogen bond [N4—H4···O22, with N···O = 2.6047 (19) Å] (Gilli et al., 1994) is formed between the BTA and BPY molecules. Although this is chemically very similar to the short N—H···O hydrogen bond in the 2:1 cocrystal [N···O = 2.521 (2) Å; Lough et al., 2000], it is much longer. Surprisingly, the longer hydrogen bond is accompanied by a parallel C—H···O hydrogen bond (C9—H9···O21) forming a commonly observed motif, while the shorter hydrogen bond has no parallel C—H···O bond.

The observed deterioration of the crystal below 200 K meant we could not verify the existence or absence of H-atom migration. In the observed cases, H-atom migration has been from the O atom at room temperature to the N atom at low temperature. The H-atom position, 1.102 (3) Å from the N atom, at 215 K suggests that significant H-atom migration does not occur. To observe significant H-atom migration, we would expect the N—H distance to be 1.2–1.3 Å at 215 K.

The water molecules were modelled as disordered over four positions, and were refined with the O—H bond lengths and the H—O—H bond angle restrained. Most of the residual nuclear density lies around the water molecules and the model only approximates the true disorder. The occupancy factors of the water molecules were refined and then fixed so that the isotropic displacement parameters were physically reasonable. It was not sensible to refine anisotropic displacement parameters for any of the atoms in the water molecules. The overall occupancy summed to 1.8 water molecules per unit cell.

BTA and BPY crystallize in a 2:1 ratio as a molecular salt, (II), with the formula 2C10H5O8·C10H10N22+. The BTA molecules are connected by O—H···O hydrogen bonds in a two-dimensional mesh. The BPY molecules thread through gaps in the mesh and connect the layers together via N—H···O hydrogen bonds (Fig. 3). The structure of (II) has been discussed previously by Zhu et al. (2003) and Ruiz-Pérez et al. (2004).

Our structure of (II) disagrees with both published structures. The structure of Zhu et al. (2003) [Cambridge Structural Database (CSD; Allen, 2002) refcode IRETII] was refined in the space group C2/c with one BTA molecule and one half of a BPY molecule in the asymmetric unit. Refinement of the low-temperature structure of (II) in C2/c results in unacceptable anisotropic displacement parameters and the refined R factor was only ~10%. It is possible that the C2/c phase occurs at room temperature, or that different crystallization conditions produce a polymorph. The heavy-atom structure and space group of Ruiz-Pérez et al. (2004) (CSD refcode IRETII01) agree with our structure. However, their placement of the H atoms is incorrect, including three H atoms curiously attached to the carbonyl O atoms in the carboxylic acid groups.

A short intramolecular hydrogen bond is formed between a carboxylate group and the adjacent carboxylic acid group in both BTA molecules. Again, as in (I), despite the very short O···O separation for an O—H···O hydrogen bond, the H atom is positioned asymmetrically. There is no evidence of disorder in the difference Fourier map or in the isotropic displacement parameters of the H atom (Fig. 4). There are two relatively long N—H···O charge-assisted hydrogen bonds, both with ordered H-atom positions close to the N atoms. No H-atom migration is expected, for the same reasons as stated for (I). Four short but unremarkable O—H···O hydrogen bonds are also formed, linking the BTA molecules into two-dimensional meshes. Full hydrogen-bond parameters are listed in Table 2.

In both (I) and (II), three independent short O—H···O intramolecular hydrogen bonds are formed between a carboxylic acid group and an adjacent carboxylate group attached to a phenyl ring. These are among the shortest hydrogen bonds studied by neutron diffraction. In similar short intramolecular hydrogen bonds studied by neutron diffraction, the H atom is rarely found to be equidistant from the O atoms (Wilson, 2000). In the crystal structure of pyridine-2,3-dicarboxylic acid, a short asymmetric intramolecular hydrogen bond is formed and the asymmetry is ascribed to the N atom in the pyridyl ring (Kvick et al., 1974; Takusagawa & Koetzle, 1979). Similar short intramolecular hydrogen bonds between carboxylic acid and carboxylate groups have been studied in detail by neutron diffraction and ab initio calculations in maleate ions (Hsu & Schlemper, 1980; Olovsson & Olovsson, 1984; Vanhouteghem et al., 1987; Wilson et al., 2003), and the asymmetry in the H-atom position, when it occurs, is ascribed to intermolecular effects. In imidazolium hydrogen maleate (Sakhawat Hussain et al., 1980), the H atom is found to be centred, but on deuteration the D atom is found to be asymmetrically placed. In the structure of lithium hydrogen phthalate (Küppers et al., 1985), there are two phthalate ions forming intramolecular hydrogen bonds, one of which is symmetrical while the other is asymmetrical with respect to the H-atom position.

The asymmetry in the intramolecular hydrogen bonds in structures (I) and (II) is clearly caused by the intermolecular N—H···O hydrogen bonds. The asymmetry in the hydrogen bond is also evident in the C—O distances in the carboxylate/carboxylic acids, which are, in (I), characteristic of a carboxylic acid group and a carboxylate group. The carboxylate group acts as the acceptor for both the intra- and intermolecular hydrogen bonds. In the cocrystal of BTA and guanidinium (Sun et al., 2002), the H atom was found in the centre of the intramolecular hydrogen bond, although in that case the carboxylate/carboxylic acid groups are both acceptors for similar intermolecular hydrogen bonds and the C—O distances are hybrid between the carboxylate/carboxylic acid cases.

Aromatic interactions between delocalized π-electron systems in crystal structures have long been recognized (Robertson, 1951) and are characterized by perpendicular distances of ~3.4 Å between aromatic rings. Hunter et al. (2002) explain ππ interactions by treating the π-electron system and the σ system, in which they include the nuclei and the σ electrons, as separate, and by considering the electrostatic interactions between them.

In structure (I), the BTA molecules form π-stacked columns. In (II), there are no conventional ππ interactions; the BTA molecules do not stack with the delocalized aromatic interactions `face to face', but with the aromatic rings adjacent to the ring formed by the intramolecular hydrogen bonds. The most obvious example of a similar interaction is in the crystal structure of diphthalimidodiethylamine phthalic acid hydrate (Barrett et al., 1998), in which the phthalic acid molecule is pincered between the phenyl groups in the the U-shaped diphthalimidodiethylamine. The motif also occurs in cocrystals of BTA and 4-methylpyridine (Biradha & Zaworotko, 1998; centre–centre = 3.538 Å), phenylethylammonium hydrogen phthalate (Kozma et al., 1994; centre–centre = 3.649 Å) and bis(p-dimethylaminophenyl)phenylcarbenium hydrogen phthalate phthalic acid (Mitchell et al., 1996; centre–centre = 3.713 Å). This interaction could be interpreted in some cases as a ππ interaction with a large offset between the rings. The description of ππ interactions as electrostatic interactions would include those interactions in which the attraction is between the σ-electron system of the phenyl ring and the charges in the polar C—O bonds in the hydrogen-bonded ring. Further examples, with evidence that this motif would form in preference to other possible motifs, are required to determine if these are true intermolecular interactions or simply geometrical coincidences caused by other interactions.

One of the main aims of this study was to obtain neutron diffraction data on short N—H···O/O—H···N hydrogen bonds. The strength of the hydrogen bonds is apparently very sensitive to the intermolecular environment. There is a variation in the N···O distances between 2.5220 (17) and 2.674 (2) Å in the hydrogen bonds formed between BTA and BPY in the three cocrystals of these components.

No hydrogen bonds as short as those in the 2:1 cocrystal (Lough et al., 2000) are observed in (I) and (II), and therefore we do not expect H-atom migration. However, in the cocrystal of BTA and 1,7-phenanthroline (Arora & Pedireddi, 2003), there is an N—H···O hydrogen bond with an N···O distance of 2.562 (2) Å and N—H = 1.31 (3) Å at room temperature. Although this is longer than the values of 2.5220 (17) Å in the 2:1 cocrystal and 2.506 (3) Å in 4-methylpyridine and pentachlorophenol (Steiner et al., 2001), it is likely that H-atom migration may be exhibited upon cooling to low temperature. Neutron diffraction is required to verify this prediction.

Experimental top

Cocrystals of BTA and BPY in a 1:1 ratio [compound (I)] were formed in \sim 80% yield by heating BTA and BPY in a 1:1 ratio (1:1 mmol) in H2O (1 ml) for 2 d at 453 K in a 23 ml Teflon-lined Parr vessel under autogenous pressure. Phase purity was established by powder X-ray diffraction and elemental analysis. Typical crystal size was 1–2 mm3. Larger specimens of up to 5 mm3 could be obtained by cyclic heating and cooling of the bombs between 373 and 453 K. An identical procedure, using different ratios of the constituents, was used to produce 2:1 cocrystals [compound (II)] of similar size.

Refinement top

X-ray diffraction experiments were performed prior to the neutron experiments to verify the identity of the crystals. The initial structural models for the neutron refinements were taken from our X-ray diffraction results. Neutron scattering factors were taken from Sears (1992). [Please give brief details of H-atom treatment, including any restraints or constraints used]

Computing details top

For both compounds, data collection: MAD (Barthelemy et al., 1984); cell refinement: RAFD19 (Filhol, 1998); data reduction: RETREAT (Wilkinson et al., 1988); program(s) used to solve structure: Please provide missing details and reference; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: Please provide missing details and reference.

Figures top
[Figure 1] Fig. 1. A packing diagram for (I), viewed perpendicular to the hydrogen-bonded chains. Hydrogen bonds are indicated by dashed lines. The disordered water molecules are visible in the large channel.
[Figure 2] Fig. 2. A plot of (I) from the 215 K neutron structure. Displacement ellipsoids are drawn at the 50% probability level. The heavy dashed lines indicate strong hydrogen bonds and the thin dashed line indicates a weak C—H···O hydrogen bond. [Symmetry codes: (i) 1 − x, 1 − y, −z; (ii) −x − 1, −y, 1 − z.]
[Figure 3] Fig. 3. A packing diagram for (II), viewed along the c direction. The BPY molecules are shown with hollow bonds and the BTA molecules are shown with solid bonds. H atoms have been omitted for clarity. The two-dimensional BTA networks are parallel to the page and the BPY molecules thread through the gaps.
[Figure 4] Fig. 4. A plot of (II) from the 20 K neutron structure. Displacement ellipsoids are drawn at the 50% probability level.
(I) 4,4'-bipyridinium 2,5-dicarboxybenzene-1,4-dicarboxylate 1.8-hydrate top
Crystal data top
C10H10N22+·C10H4O82·1.8H2OZ = 1
Mr = 442.40F(000) = 143
Triclinic, P1Dx = 1.546 Mg m3
a = 3.7747 (2) ÅNeutron radiation, λ = 1.302 Å
b = 10.8587 (5) ÅCell parameters from 1196 reflections
c = 11.9519 (6) Åθ = 5–55°
α = 99.626 (3)°µ = 0.16 mm1
β = 97.726 (3)°T = 215 K
γ = 95.515 (3)°Needle, brown
V = 475.07 (4) Å32.0 × 0.8 × 0.5 mm
Data collection top
D19
diffractometer
1426 reflections with I > 2σ(I)
Radiation source: ILL high-flux reactorRint = 0.017
Germanium monochromatorθmax = 55.0°, θmin = 3.2°
ω scansh = 24
Absorption correction: integration
(D19ABS; Matthewmann et al., 1982)
k = 1313
Tmin = 0.861, Tmax = 0.933l = 1414
1983 measured reflections3 standard reflections every 100 reflections
1654 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0297P)2 + 1.6121P]
where P = (Fo2 + 2Fc2)/3
1654 reflections(Δ/σ)max = 0.001
249 parametersΔρmax = 0.50 e Å3
15 restraintsΔρmin = 0.55 e Å3
Crystal data top
C10H10N22+·C10H4O82·1.8H2Oγ = 95.515 (3)°
Mr = 442.40V = 475.07 (4) Å3
Triclinic, P1Z = 1
a = 3.7747 (2) ÅNeutron radiation, λ = 1.302 Å
b = 10.8587 (5) ŵ = 0.16 mm1
c = 11.9519 (6) ÅT = 215 K
α = 99.626 (3)°2.0 × 0.8 × 0.5 mm
β = 97.726 (3)°
Data collection top
D19
diffractometer
1426 reflections with I > 2σ(I)
Absorption correction: integration
(D19ABS; Matthewmann et al., 1982)
Rint = 0.017
Tmin = 0.861, Tmax = 0.9333 standard reflections every 100 reflections
1983 measured reflections intensity decay: none
1654 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03615 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.50 e Å3
1654 reflectionsΔρmin = 0.55 e Å3
249 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6150 (4)0.56456 (12)0.11500 (10)0.0164 (3)
C20.4123 (4)0.44446 (12)0.09413 (10)0.0164 (3)
C30.3051 (4)0.38473 (12)0.02023 (11)0.0175 (3)
H30.1485 (9)0.2932 (3)0.0368 (3)0.0375 (7)
N40.1426 (3)0.15994 (10)0.30205 (8)0.0246 (3)
H40.0268 (9)0.2080 (3)0.2387 (3)0.0398 (7)
C50.2754 (5)0.03881 (14)0.26964 (12)0.0292 (4)
H50.2596 (14)0.0042 (4)0.1823 (3)0.0649 (13)
C60.4220 (4)0.02656 (13)0.34601 (11)0.0251 (3)
H60.5322 (13)0.1237 (3)0.3151 (3)0.0571 (11)
C70.4253 (3)0.03444 (12)0.45802 (10)0.0159 (3)
C80.2813 (4)0.16114 (13)0.48921 (12)0.0244 (3)
H80.2679 (13)0.2139 (3)0.5753 (3)0.0581 (11)
C90.1410 (4)0.22175 (14)0.40874 (13)0.0270 (3)
H90.0234 (13)0.3190 (3)0.4269 (3)0.0566 (10)
C100.7726 (4)0.65000 (13)0.22911 (11)0.0226 (3)
O110.6906 (6)0.62246 (19)0.32496 (14)0.0352 (5)
C200.2856 (4)0.37137 (13)0.18184 (11)0.0215 (3)
H10.5257 (12)0.5354 (4)0.3114 (3)0.0515 (10)
O120.9730 (6)0.74461 (18)0.22906 (15)0.0382 (5)
O210.3310 (8)0.4185 (2)0.28615 (15)0.0484 (6)
O220.1278 (6)0.26288 (17)0.14552 (15)0.0369 (5)
O10.362 (6)0.0709 (18)0.0183 (17)0.059*0.194 (11)
H1A0.291 (8)0.1570 (19)0.023 (2)0.076*0.194 (11)
H1B0.625 (8)0.054 (4)0.024 (4)0.076*0.194 (11)
O20.134 (7)0.0404 (14)0.0196 (15)0.056*0.203 (9)
H2A0.077 (7)0.1259 (14)0.0232 (15)0.048*0.203 (9)
H2B0.067 (11)0.008 (3)0.008 (3)0.059*0.203 (9)
O30.102 (7)0.0326 (12)0.0046 (16)0.076*0.235 (10)
H3A0.128 (6)0.1195 (11)0.0375 (13)0.050*0.235 (10)
H3B0.150 (8)0.002 (3)0.011 (3)0.076*0.235 (10)
O40.538 (9)0.0807 (18)0.0133 (18)0.050*0.150 (9)
H4A0.629 (7)0.1429 (19)0.040 (2)0.050*0.150 (9)
H4B0.598 (8)0.0024 (18)0.007 (3)0.050*0.150 (9)
O50.674 (11)0.057 (3)0.008 (3)0.050*0.117 (11)
H5A0.437 (13)0.062 (5)0.033 (4)0.050*0.117 (11)
H5B0.713 (15)0.027 (4)0.013 (4)0.050*0.117 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0209 (6)0.0154 (6)0.0124 (6)0.0028 (5)0.0039 (5)0.0028 (4)
C20.0212 (6)0.0153 (6)0.0129 (6)0.0023 (5)0.0043 (5)0.0040 (4)
C30.0228 (7)0.0157 (7)0.0134 (6)0.0045 (6)0.0046 (5)0.0035 (5)
H30.0484 (18)0.0269 (16)0.0341 (15)0.0136 (14)0.0077 (13)0.0058 (11)
N40.0295 (5)0.0267 (5)0.0197 (5)0.0039 (4)0.0068 (4)0.0117 (4)
H40.0475 (18)0.0404 (17)0.0342 (15)0.0048 (14)0.0102 (14)0.0168 (13)
C50.0416 (9)0.0287 (8)0.0162 (7)0.0104 (7)0.0094 (6)0.0055 (6)
H50.103 (3)0.057 (2)0.0312 (18)0.024 (2)0.030 (2)0.0011 (15)
C60.0375 (8)0.0215 (8)0.0140 (6)0.0098 (6)0.0084 (6)0.0008 (5)
H60.096 (3)0.0349 (19)0.0337 (16)0.0260 (19)0.0254 (18)0.0049 (13)
C70.0189 (6)0.0157 (6)0.0130 (6)0.0041 (5)0.0038 (5)0.0048 (5)
C80.0374 (8)0.0165 (6)0.0186 (7)0.0081 (6)0.0103 (6)0.0030 (5)
H80.101 (3)0.0343 (17)0.0346 (18)0.0196 (19)0.0258 (19)0.0042 (14)
C90.0360 (8)0.0205 (8)0.0257 (7)0.0063 (6)0.0105 (6)0.0089 (5)
H90.089 (3)0.0260 (17)0.052 (2)0.0189 (18)0.019 (2)0.0088 (14)
C100.0283 (7)0.0212 (7)0.0153 (6)0.0055 (6)0.0023 (6)0.0002 (5)
O110.0546 (12)0.0329 (11)0.0127 (8)0.0140 (10)0.0065 (8)0.0012 (6)
C200.0292 (7)0.0203 (7)0.0161 (6)0.0038 (6)0.0072 (5)0.0075 (5)
H10.080 (3)0.045 (2)0.0244 (15)0.019 (2)0.0095 (16)0.0054 (13)
O120.0511 (12)0.0319 (10)0.0227 (9)0.0237 (9)0.0025 (8)0.0016 (7)
O210.0857 (17)0.0384 (11)0.0160 (8)0.0254 (11)0.0142 (10)0.0037 (7)
O220.0607 (13)0.0261 (9)0.0223 (8)0.0168 (9)0.0127 (9)0.0069 (7)
Geometric parameters (Å, º) top
C1—C3i1.3949 (18)C9—H91.080 (3)
C1—C21.4130 (18)C10—O121.216 (2)
C1—C101.5256 (17)C10—O111.300 (2)
C2—C31.3989 (18)O11—H11.056 (4)
C2—C201.5158 (17)C20—O221.247 (2)
C3—C1i1.3949 (18)C20—O211.248 (2)
C3—H31.080 (3)O21—H11.370 (4)
N4—C51.3349 (18)O1—H1A0.977 (19)
N4—C91.3369 (19)O1—H1B0.983 (19)
N4—H41.102 (3)O2—H2A0.971 (18)
C5—C61.386 (2)O2—H2B0.972 (19)
C5—H51.082 (4)O3—H3A0.982 (10)
C6—C71.3930 (18)O3—H3B0.979 (11)
C6—H61.080 (3)O4—H4A0.97 (2)
C7—C81.3991 (18)O4—H4B0.987 (19)
C7—C7ii1.486 (2)O5—H5A0.98 (2)
C8—C91.386 (2)O5—H5B0.99 (2)
C8—H81.083 (3)
C3i—C1—C2117.78 (11)C8—C7—C7ii121.21 (14)
C3i—C1—C10112.88 (11)C9—C8—C7119.49 (12)
C2—C1—C10129.34 (11)C9—C8—H8118.0 (2)
C3—C2—C1117.70 (11)C7—C8—H8122.5 (2)
C3—C2—C20114.64 (11)N4—C9—C8120.43 (12)
C1—C2—C20127.65 (11)N4—C9—H9116.0 (2)
C1i—C3—C2124.52 (12)C8—C9—H9123.6 (3)
C1i—C3—H3117.4 (2)O12—C10—O11120.54 (15)
C2—C3—H3118.1 (2)O12—C10—C1119.15 (14)
C5—N4—C9121.66 (11)O11—C10—C1120.31 (14)
C5—N4—H4118.1 (2)C10—O11—H1111.6 (2)
C9—N4—H4120.2 (2)O22—C20—O21121.13 (15)
N4—C5—C6120.57 (13)O22—C20—C2117.40 (13)
N4—C5—H5116.6 (2)O21—C20—C2121.46 (14)
C6—C5—H5122.8 (2)C20—O21—H1113.2 (2)
C5—C6—C7119.54 (12)H1A—O1—H1B107 (2)
C5—C6—H6117.8 (2)H2A—O2—H2B111 (3)
C7—C6—H6122.6 (2)H3A—O3—H3B107.6 (15)
C6—C7—C8118.31 (11)H4A—O4—H4B108 (2)
C6—C7—C7ii120.47 (14)H5A—O5—H5B105 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H1···O211.056 (4)1.370 (4)2.423 (3)174.6 (4)
N4—H4···O221.102 (3)1.505 (3)2.6047 (19)175.1 (3)
C6—H6···O12iii1.080 (3)2.252 (4)3.199 (2)145.3 (4)
C8—H8···O12iv1.083 (4)2.401 (4)3.362 (2)147.2 (4)
C9—H9···O211.080 (3)2.592 (4)3.302 (2)122.6 (3)
O1—H1A···O220.98 (2)2.10 (2)2.919 (16)140 (2)
O2—H2A···O220.97 (2)1.92 (2)2.851 (15)159 (2)
O3—H3A···O220.98 (1)1.85 (1)2.809 (12)165 (2)
O4—H4A···O22v0.97 (2)2.03 (2)3.00 (2)174 (3)
Symmetry codes: (iii) x2, y1, z; (iv) x+1, y+1, z+1; (v) x1, y, z.
(II) 4,4'-bipyridinium bis(2,4,5-tricarboxylbenzoate) top
Crystal data top
C10H10N22+·2C10H5O8F(000) = 945
Mr = 664.49Dx = 1.685 Mg m3
Monoclinic, CcNeutron radiation, λ = 1.3108 (1) Å
a = 12.009 (1) ÅCell parameters from 3055 reflections
b = 15.484 (1) Åθ = 5–50°
c = 15.221 (1) ŵ = 0.14 mm1
β = 112.273 (3)°T = 20 K
V = 2619.2 (3) Å3Bar, yellow
Z = 42.2 × 1.0 × 0.7 mm
Data collection top
D19
diffractometer
2628 reflections with I > 2σ(I)
Radiation source: ILL high-flux reactorRint = 0.019
Germanium (115) monochromatorθmax = 55.2°, θmin = 4.2°
ω scansh = 414
Absorption correction: gaussian
(D19ABS; Matthewmann et al., 1982)
k = 1913
Tmin = 0.841, Tmax = 0.891l = 1917
3741 measured reflections2 standard reflections every 100 reflections
2647 independent reflections intensity decay: none
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0186P)2 + 12.8939P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max = 0.001
wR(F2) = 0.048Δρmax = 0.43 e Å3
S = 1.12Δρmin = 0.46 e Å3
2647 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
615 parametersExtinction coefficient: 0.000155 (17)
2 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs
Primary atom site location: X-ray structureAbsolute structure parameter: 0 (10)
Secondary atom site location: difference Fourier map
Crystal data top
C10H10N22+·2C10H5O8V = 2619.2 (3) Å3
Mr = 664.49Z = 4
Monoclinic, CcNeutron radiation, λ = 1.3108 (1) Å
a = 12.009 (1) ŵ = 0.14 mm1
b = 15.484 (1) ÅT = 20 K
c = 15.221 (1) Å2.2 × 1.0 × 0.7 mm
β = 112.273 (3)°
Data collection top
D19
diffractometer
2628 reflections with I > 2σ(I)
Absorption correction: gaussian
(D19ABS; Matthewmann et al., 1982)
Rint = 0.019
Tmin = 0.841, Tmax = 0.8912 standard reflections every 100 reflections
3741 measured reflections intensity decay: none
2647 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022All H-atom parameters refined
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0186P)2 + 12.8939P]
where P = (Fo2 + 2Fc2)/3
S = 1.12Δρmax = 0.43 e Å3
2647 reflectionsΔρmin = 0.46 e Å3
615 parametersAbsolute structure: Flack (1983), with how many Friedel pairs
2 restraintsAbsolute structure parameter: 0 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.02585 (16)0.01978 (10)0.32559 (12)0.0036 (3)
C100.10372 (16)0.05104 (11)0.34288 (12)0.0040 (3)
O110.0897 (2)0.12915 (13)0.32169 (15)0.0089 (4)
O120.17851 (19)0.02952 (13)0.37614 (14)0.0074 (4)
C20.08184 (16)0.01060 (10)0.30855 (12)0.0036 (3)
C200.14296 (17)0.07179 (11)0.29533 (12)0.0049 (3)
O210.2412 (2)0.06715 (13)0.28831 (15)0.0064 (4)
O220.0895 (2)0.14538 (13)0.28821 (15)0.0069 (4)
H220.0054 (4)0.1396 (2)0.2981 (3)0.0194 (8)
C30.14419 (16)0.08568 (10)0.30354 (12)0.0041 (3)
H30.2289 (4)0.0785 (2)0.2930 (3)0.0181 (8)
C40.10133 (16)0.16827 (11)0.30958 (12)0.0043 (3)
C400.16879 (16)0.24571 (11)0.29760 (12)0.0054 (3)
O410.11818 (19)0.30858 (13)0.25209 (14)0.0087 (4)
O420.2867 (2)0.23794 (14)0.33981 (16)0.0110 (4)
H420.3259 (4)0.2928 (3)0.3298 (3)0.0217 (8)
C50.00809 (16)0.17731 (11)0.32113 (11)0.0042 (3)
C500.05829 (16)0.26450 (11)0.33068 (12)0.0050 (3)
O510.00113 (19)0.31685 (13)0.39014 (14)0.0091 (4)
O520.16931 (19)0.27591 (13)0.26897 (14)0.0068 (4)
H520.2007 (4)0.3332 (3)0.2802 (3)0.0177 (8)
C60.06866 (17)0.10359 (11)0.33095 (12)0.0048 (3)
H60.1495 (4)0.1099 (2)0.3460 (3)0.0192 (8)
C1A0.26194 (16)0.00288 (11)0.04469 (11)0.0042 (3)
C110.33821 (16)0.07622 (11)0.03064 (12)0.0050 (3)
O130.3294 (2)0.15188 (13)0.06138 (15)0.0083 (4)
O140.40846 (19)0.05742 (13)0.00837 (14)0.0079 (4)
C2A0.15475 (16)0.00837 (11)0.06262 (12)0.0046 (3)
C210.08964 (16)0.08873 (11)0.07489 (11)0.0043 (3)
O230.01035 (19)0.08158 (13)0.07975 (15)0.0068 (4)
O240.1397 (2)0.16417 (13)0.08156 (14)0.0077 (4)
H240.2270 (4)0.1603 (2)0.0773 (3)0.0201 (8)
C3A0.09598 (16)0.06901 (11)0.06722 (12)0.0049 (4)
H3A0.0128 (4)0.0647 (2)0.0787 (3)0.0185 (8)
C4A0.14084 (16)0.14986 (11)0.05683 (11)0.0048 (3)
C410.07055 (16)0.22953 (11)0.05574 (12)0.0054 (3)
O430.10632 (19)0.30079 (12)0.04431 (14)0.0071 (4)
O440.0328 (2)0.21514 (13)0.06514 (15)0.0082 (4)
H440.0765 (4)0.2712 (2)0.0628 (3)0.0187 (8)
C5A0.24940 (17)0.15523 (11)0.04274 (12)0.0045 (3)
C510.30686 (16)0.23839 (11)0.02922 (12)0.0054 (3)
O530.2867 (2)0.26998 (13)0.04818 (14)0.0090 (4)
O540.3879 (2)0.26864 (14)0.10973 (15)0.0093 (4)
H540.4288 (4)0.3208 (3)0.0967 (3)0.0207 (8)
C6A0.30659 (16)0.07918 (11)0.03543 (12)0.0053 (4)
H6A0.3883 (4)0.0820 (3)0.0202 (3)0.0216 (8)
N10.25025 (12)0.54080 (9)0.02222 (9)0.0076 (3)
H10.2875 (4)0.5340 (3)0.0296 (3)0.0204 (8)
C300.21526 (17)0.61984 (12)0.03756 (13)0.0077 (4)
H300.2289 (4)0.6721 (3)0.0042 (3)0.0248 (9)
C310.16171 (17)0.63087 (11)0.10270 (13)0.0066 (3)
H310.1330 (4)0.6956 (3)0.1117 (3)0.0226 (8)
C320.14557 (16)0.55956 (11)0.15303 (12)0.0045 (3)
C330.09120 (15)0.57118 (11)0.22506 (12)0.0040 (3)
C340.09392 (17)0.65222 (11)0.26597 (12)0.0064 (3)
H340.1351 (4)0.7080 (2)0.2481 (3)0.0209 (8)
C350.04651 (16)0.66202 (11)0.33511 (12)0.0059 (3)
H350.0479 (4)0.7221 (3)0.3704 (3)0.0223 (8)
N20.00120 (12)0.59413 (8)0.36272 (9)0.0065 (2)
H20.0331 (4)0.5995 (2)0.4179 (3)0.0170 (7)
C360.00672 (17)0.51495 (11)0.32450 (13)0.0063 (3)
H360.0460 (4)0.4641 (3)0.3521 (3)0.0212 (8)
C370.03842 (16)0.50142 (11)0.25453 (12)0.0052 (3)
H370.0347 (4)0.4369 (2)0.2263 (3)0.0199 (8)
C380.18161 (16)0.47781 (11)0.13427 (12)0.0062 (3)
H380.1706 (4)0.4202 (2)0.1704 (3)0.0221 (8)
C390.23438 (17)0.47026 (11)0.06797 (13)0.0075 (4)
H390.2626 (4)0.4089 (3)0.0495 (3)0.0248 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0027 (8)0.0022 (7)0.0058 (7)0.0010 (6)0.0014 (6)0.0007 (6)
C100.0038 (8)0.0021 (7)0.0066 (7)0.0005 (6)0.0026 (7)0.0001 (6)
O110.0086 (11)0.0027 (9)0.0173 (10)0.0006 (7)0.0071 (9)0.0001 (7)
O120.0094 (10)0.0051 (9)0.0092 (9)0.0015 (7)0.0052 (8)0.0011 (7)
C20.0037 (8)0.0017 (7)0.0055 (7)0.0007 (6)0.0019 (6)0.0003 (5)
C200.0052 (9)0.0039 (8)0.0059 (7)0.0000 (6)0.0026 (7)0.0009 (6)
O210.0040 (10)0.0040 (9)0.0120 (9)0.0002 (7)0.0042 (8)0.0006 (7)
O220.0069 (12)0.0023 (9)0.0120 (9)0.0012 (7)0.0043 (8)0.0009 (7)
H220.019 (2)0.0144 (18)0.025 (2)0.0037 (15)0.0096 (17)0.0030 (14)
C30.0043 (9)0.0015 (7)0.0058 (7)0.0003 (6)0.0013 (6)0.0002 (6)
H30.012 (2)0.0157 (17)0.029 (2)0.0004 (14)0.0104 (16)0.0009 (14)
C40.0048 (9)0.0021 (7)0.0059 (7)0.0003 (6)0.0020 (6)0.0011 (6)
C400.0056 (9)0.0034 (7)0.0070 (8)0.0002 (6)0.0021 (6)0.0006 (6)
O410.0090 (10)0.0051 (9)0.0115 (9)0.0014 (8)0.0035 (8)0.0043 (7)
O420.0080 (11)0.0057 (10)0.0186 (11)0.0017 (8)0.0042 (9)0.0038 (8)
H420.0157 (19)0.017 (2)0.034 (2)0.0010 (16)0.0102 (16)0.0025 (16)
C50.0031 (9)0.0024 (7)0.0065 (7)0.0001 (6)0.0012 (6)0.0001 (6)
C500.0044 (9)0.0031 (7)0.0067 (8)0.0000 (6)0.0013 (7)0.0008 (6)
O510.0091 (10)0.0036 (8)0.0115 (9)0.0011 (7)0.0006 (8)0.0033 (7)
O520.0053 (10)0.0050 (10)0.0082 (9)0.0007 (8)0.0005 (8)0.0012 (7)
H520.0165 (19)0.0164 (19)0.0190 (18)0.0054 (15)0.0053 (15)0.0018 (14)
C60.0055 (9)0.0019 (7)0.0080 (8)0.0003 (6)0.0037 (7)0.0002 (6)
H60.018 (2)0.0145 (17)0.028 (2)0.0002 (15)0.0128 (17)0.0004 (14)
C1A0.0049 (9)0.0024 (8)0.0056 (7)0.0004 (6)0.0025 (7)0.0000 (5)
C110.0065 (9)0.0023 (7)0.0059 (7)0.0005 (6)0.0020 (7)0.0003 (6)
O130.0103 (11)0.0027 (8)0.0144 (10)0.0017 (7)0.0075 (8)0.0017 (7)
O140.0094 (10)0.0060 (8)0.0113 (9)0.0002 (7)0.0072 (8)0.0010 (7)
C2A0.0040 (8)0.0031 (8)0.0063 (7)0.0009 (6)0.0017 (7)0.0002 (6)
C210.0057 (9)0.0013 (7)0.0050 (7)0.0002 (6)0.0011 (7)0.0010 (6)
O230.0044 (10)0.0046 (9)0.0116 (9)0.0012 (7)0.0034 (8)0.0018 (7)
O240.0094 (13)0.0018 (9)0.0123 (10)0.0015 (7)0.0045 (8)0.0007 (7)
H240.022 (2)0.0125 (17)0.027 (2)0.0007 (14)0.0104 (17)0.0018 (14)
C3A0.0071 (10)0.0004 (7)0.0067 (7)0.0005 (6)0.0022 (7)0.0012 (5)
H3A0.019 (2)0.0136 (17)0.028 (2)0.0009 (14)0.0137 (17)0.0002 (14)
C4A0.0049 (8)0.0030 (8)0.0068 (8)0.0006 (6)0.0024 (6)0.0004 (6)
C410.0061 (9)0.0023 (8)0.0076 (8)0.0007 (6)0.0024 (6)0.0000 (6)
O430.0087 (10)0.0017 (8)0.0127 (9)0.0001 (7)0.0060 (8)0.0007 (7)
O440.0076 (10)0.0059 (10)0.0127 (10)0.0012 (8)0.0057 (8)0.0005 (7)
H440.021 (2)0.0115 (19)0.029 (2)0.0027 (16)0.0155 (16)0.0004 (14)
C5A0.0052 (8)0.0018 (8)0.0070 (7)0.0003 (6)0.0027 (7)0.0002 (6)
C510.0064 (9)0.0027 (7)0.0071 (8)0.0003 (6)0.0025 (7)0.0000 (6)
O530.0117 (10)0.0090 (9)0.0060 (9)0.0001 (8)0.0028 (7)0.0032 (7)
O540.0080 (10)0.0085 (10)0.0092 (9)0.0023 (8)0.0009 (8)0.0010 (7)
H540.020 (2)0.0157 (19)0.0241 (19)0.0026 (16)0.0062 (17)0.0026 (15)
C6A0.0070 (10)0.0014 (8)0.0072 (8)0.0006 (6)0.0023 (7)0.0015 (6)
H6A0.022 (2)0.0182 (18)0.029 (2)0.0029 (15)0.0143 (18)0.0008 (15)
N10.0079 (6)0.0097 (6)0.0067 (6)0.0012 (5)0.0045 (5)0.0023 (5)
H10.026 (2)0.0220 (18)0.0228 (18)0.0014 (16)0.0194 (17)0.0022 (15)
C300.0096 (9)0.0063 (8)0.0079 (8)0.0001 (6)0.0039 (7)0.0014 (6)
H300.038 (3)0.018 (2)0.026 (2)0.0016 (17)0.0207 (19)0.0092 (15)
C310.0083 (9)0.0047 (9)0.0080 (8)0.0002 (7)0.0044 (7)0.0012 (6)
H310.032 (2)0.0123 (19)0.028 (2)0.0036 (16)0.0174 (18)0.0002 (15)
C320.0048 (8)0.0041 (8)0.0049 (7)0.0001 (6)0.0022 (6)0.0001 (6)
C330.0038 (8)0.0029 (7)0.0061 (7)0.0001 (6)0.0028 (6)0.0002 (6)
C340.0086 (9)0.0039 (8)0.0078 (8)0.0018 (6)0.0042 (7)0.0022 (6)
H340.031 (2)0.0102 (17)0.0250 (19)0.0073 (16)0.0150 (17)0.0027 (14)
C350.0070 (9)0.0051 (8)0.0065 (8)0.0001 (6)0.0034 (7)0.0008 (6)
H350.033 (2)0.0147 (19)0.0241 (19)0.0036 (16)0.0166 (17)0.0088 (14)
N20.0076 (6)0.0050 (6)0.0086 (6)0.0004 (5)0.0049 (5)0.0008 (4)
H20.0207 (19)0.0194 (17)0.0167 (17)0.0002 (15)0.0137 (15)0.0030 (13)
C360.0077 (9)0.0046 (8)0.0082 (7)0.0007 (6)0.0049 (7)0.0010 (6)
H360.030 (2)0.0148 (17)0.0245 (19)0.0080 (16)0.0172 (17)0.0014 (14)
C370.0072 (8)0.0015 (8)0.0078 (8)0.0012 (6)0.0040 (7)0.0002 (6)
H370.029 (2)0.0108 (18)0.0259 (18)0.0021 (15)0.0176 (17)0.0066 (14)
C380.0078 (9)0.0044 (8)0.0073 (7)0.0003 (6)0.0039 (7)0.0009 (6)
H380.034 (2)0.0080 (17)0.031 (2)0.0001 (15)0.0197 (19)0.0020 (15)
C390.0098 (9)0.0042 (8)0.0113 (8)0.0003 (6)0.0071 (7)0.0018 (7)
H390.035 (2)0.016 (2)0.030 (2)0.0019 (16)0.0202 (19)0.0038 (15)
Geometric parameters (Å, º) top
C1—C61.410 (2)C3A—H3A1.080 (4)
C1—C21.419 (3)C4A—C5A1.402 (3)
C1—C101.527 (2)C4A—C411.491 (2)
C10—O121.232 (3)C41—O431.220 (3)
C10—O111.279 (3)C41—O441.321 (3)
O11—H221.330 (5)O44—H441.007 (4)
C2—C31.400 (2)C5A—C6A1.389 (2)
C2—C201.523 (2)C5A—C511.511 (2)
C20—O211.226 (3)C51—O531.212 (3)
C20—O221.292 (3)C51—O541.328 (3)
O22—H221.079 (5)O54—H541.004 (5)
C3—C41.394 (2)C6A—H6A1.091 (5)
C3—H31.093 (4)N1—C301.343 (2)
C4—C51.397 (2)N1—C391.347 (2)
C4—C401.496 (2)N1—H11.049 (4)
C40—O411.216 (3)C30—C311.382 (3)
C40—O421.320 (3)C30—H301.080 (4)
O42—H421.011 (5)C31—C321.399 (2)
C5—C61.392 (2)C31—H311.085 (4)
C5—C501.508 (2)C32—C381.402 (2)
C50—O511.215 (3)C32—C331.484 (2)
C50—O521.320 (3)C33—C341.396 (2)
O52—H521.004 (4)C33—C371.409 (2)
C6—H61.083 (5)C34—C351.382 (3)
C1A—C6A1.407 (2)C34—H341.080 (4)
C1A—C2A1.416 (3)C35—N21.339 (2)
C1A—C111.524 (2)C35—H351.071 (4)
C11—O141.236 (3)N2—C361.348 (2)
C11—O131.281 (3)N2—H21.050 (4)
O13—H241.348 (5)C36—C371.382 (2)
C2A—C3A1.406 (2)C36—H361.082 (4)
C2A—C211.518 (2)C37—H371.082 (4)
C21—O231.236 (3)C38—C391.385 (2)
C21—O241.300 (3)C38—H381.081 (4)
O24—H241.076 (5)C39—H391.082 (4)
C3A—C4A1.395 (2)
C6—C1—C2118.71 (15)C3A—C4A—C41120.14 (16)
C6—C1—C10112.98 (15)C5A—C4A—C41120.30 (16)
C2—C1—C10128.28 (15)O43—C41—O44124.33 (19)
O12—C10—O11123.07 (19)O43—C41—C4A121.42 (18)
O12—C10—C1117.76 (16)O44—C41—C4A114.22 (16)
O11—C10—C1119.16 (17)C41—O44—H44110.4 (3)
C10—O11—H22113.1 (2)C6A—C5A—C4A118.60 (16)
C3—C2—C1118.02 (15)C6A—C5A—C51116.51 (16)
C3—C2—C20113.20 (15)C4A—C5A—C51124.79 (16)
C1—C2—C20128.78 (15)O53—C51—O54124.13 (19)
O21—C20—O22120.56 (19)O53—C51—C5A122.87 (17)
O21—C20—C2119.35 (17)O54—C51—C5A112.79 (15)
O22—C20—C2120.04 (17)C51—O54—H54110.1 (3)
C20—O22—H22112.1 (3)C5A—C6A—C1A122.62 (16)
C4—C3—C2122.64 (16)C5A—C6A—H6A119.7 (3)
C4—C3—H3119.3 (3)C1A—C6A—H6A117.7 (3)
C2—C3—H3118.0 (3)C30—N1—C39122.29 (15)
C3—C4—C5119.24 (16)C30—N1—H1118.2 (3)
C3—C4—C40119.76 (15)C39—N1—H1119.5 (3)
C5—C4—C40120.89 (15)N1—C30—C31119.93 (16)
O41—C40—O42124.24 (19)N1—C30—H30117.0 (3)
O41—C40—C4122.30 (18)C31—C30—H30123.1 (3)
O42—C40—C4113.46 (17)C30—C31—C32119.62 (16)
C40—O42—H42108.9 (3)C30—C31—H31117.5 (3)
C6—C5—C4119.08 (16)C32—C31—H31122.9 (3)
C6—C5—C50118.66 (16)C31—C32—C38118.93 (15)
C4—C5—C50122.09 (15)C31—C32—C33120.00 (15)
O51—C50—O52125.03 (19)C38—C32—C33121.07 (14)
O51—C50—C5122.37 (18)C34—C33—C37118.99 (16)
O52—C50—C5112.60 (16)C34—C33—C32119.73 (15)
C50—O52—H52109.9 (3)C37—C33—C32121.27 (15)
C5—C6—C1122.14 (17)C35—C34—C33119.46 (16)
C5—C6—H6119.7 (2)C35—C34—H34117.7 (3)
C1—C6—H6118.1 (2)C33—C34—H34122.8 (3)
C6A—C1A—C2A118.84 (16)N2—C35—C34120.11 (15)
C6A—C1A—C11112.75 (16)N2—C35—H35116.8 (3)
C2A—C1A—C11128.39 (16)C34—C35—H35123.0 (3)
O14—C11—O13123.80 (19)C35—N2—C36122.38 (14)
O14—C11—C1A116.60 (16)C35—N2—H2121.2 (2)
O13—C11—C1A119.56 (17)C36—N2—H2116.4 (3)
C11—O13—H24111.2 (2)N2—C36—C37120.07 (16)
C3A—C2A—C1A117.96 (16)N2—C36—H36116.9 (3)
C3A—C2A—C21113.62 (15)C37—C36—H36123.1 (3)
C1A—C2A—C21128.39 (16)C36—C37—C33118.97 (16)
O23—C21—O24120.46 (19)C36—C37—H37118.5 (3)
O23—C21—C2A119.43 (17)C33—C37—H37122.5 (3)
O24—C21—C2A120.11 (17)C39—C38—C32119.11 (16)
C21—O24—H24112.1 (3)C39—C38—H38118.6 (3)
C4A—C3A—C2A122.43 (17)C32—C38—H38122.3 (3)
C4A—C3A—H3A119.6 (3)N1—C39—C38120.10 (16)
C2A—C3A—H3A117.9 (3)N1—C39—H39117.3 (3)
C3A—C4A—C5A119.48 (16)C38—C39—H39122.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H22···O111.079 (5)1.333 (5)2.404 (3)172.6 (4)
O24—H24···O131.076 (5)1.348 (5)2.420 (3)173.2 (4)
N1—H1···O12i1.049 (4)1.635 (4)2.674 (2)169.5 (4)
N2—H2···O14ii1.050 (4)1.665 (4)2.639 (2)151.9 (3)
O42—H42···O11iii1.011 (5)1.612 (5)2.613 (3)169.8 (4)
O52—H52···O21iv1.004 (4)1.717 (4)2.718 (3)174.7 (4)
O44—H44···O13iv1.007 (4)1.637 (4)2.629 (3)167.2 (4)
O54—H54···O23iii1.004 (5)1.740 (5)2.739 (3)173.2 (4)
C31—H31···O24v1.085 (4)2.228 (5)3.191 (3)146.7 (4)
C34—H34···O52iii1.080 (4)2.482 (5)3.414 (3)143.9 (4)
C34—H34···O22v1.080 (4)2.467 (4)3.155 (3)120.5 (3)
C35—H35···O22v1.071 (4)2.549 (5)3.154 (3)115.0 (3)
C35—H35···O43vi1.071 (4)2.494 (4)3.042 (3)110.7 (3)
C36—H36···O511.082 (4)2.364 (5)3.219 (3)134.8 (3)
C36—H36···O21iv1.082 (4)2.414 (5)3.134 (3)122.8 (3)
C37—H37···O411.083 (4)2.193 (5)3.140 (3)144.9 (4)
C38—H38···O411.081 (4)2.351 (4)3.420 (3)169.7 (3)
C38—H38···O431.081 (4)2.564 (4)3.044 (3)106.0 (3)
C39—H39···O23iii1.082 (4)2.592 (5)3.108 (3)108.4 (3)
C39—H39···O431.082 (4)2.493 (5)2.994 (3)107.0 (3)
C39—H39···O531.082 (4)2.692 (5)3.739 (3)162.9 (4)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x1/2, y+1/2, z; (v) x, y+1, z; (vi) x, y+1, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC10H10N22+·C10H4O82·1.8H2OC10H10N22+·2C10H5O8
Mr442.40664.49
Crystal system, space groupTriclinic, P1Monoclinic, Cc
Temperature (K)21520
a, b, c (Å)3.7747 (2), 10.8587 (5), 11.9519 (6)12.009 (1), 15.484 (1), 15.221 (1)
α, β, γ (°)99.626 (3), 97.726 (3), 95.515 (3)90, 112.273 (3), 90
V3)475.07 (4)2619.2 (3)
Z14
Radiation typeNeutron, λ = 1.302 ÅNeutron, λ = 1.3108 (1) Å
µ (mm1)0.160.14
Crystal size (mm)2.0 × 0.8 × 0.52.2 × 1.0 × 0.7
Data collection
DiffractometerD19
diffractometer
D19
diffractometer
Absorption correctionIntegration
(D19ABS; Matthewmann et al., 1982)
Gaussian
(D19ABS; Matthewmann et al., 1982)
Tmin, Tmax0.861, 0.9330.841, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
1983, 1654, 1426 3741, 2647, 2628
Rint0.0170.019
(sin θ/λ)max1)0.6290.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.081, 1.06 0.022, 0.048, 1.12
No. of reflections16542647
No. of parameters249615
No. of restraints152
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementAll H-atom parameters refined
w = 1/[σ2(Fo2) + (0.0297P)2 + 1.6121P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0186P)2 + 12.8939P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.50, 0.550.43, 0.46
Absolute structure?Flack (1983), with how many Friedel pairs
Absolute structure parameter?0 (10)

Computer programs: MAD (Barthelemy et al., 1984), RAFD19 (Filhol, 1998), RETREAT (Wilkinson et al., 1988), Please provide missing details and reference, SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O11—H1···O211.056 (4)1.370 (4)2.423 (3)174.6 (4)
N4—H4···O221.102 (3)1.505 (3)2.6047 (19)175.1 (3)
C6—H6···O12i1.080 (3)2.252 (4)3.199 (2)145.3 (4)
C8—H8···O12ii1.083 (4)2.401 (4)3.362 (2)147.2 (4)
C9—H9···O211.080 (3)2.592 (4)3.302 (2)122.6 (3)
O1—H1A···O220.977 (19)2.10 (2)2.919 (16)140 (2)
O2—H2A···O220.971 (18)1.922 (15)2.851 (15)159 (2)
O3—H3A···O220.982 (10)1.849 (12)2.809 (12)164.9 (17)
O4—H4A···O22iii0.97 (2)2.031 (18)3.00 (2)174 (3)
Symmetry codes: (i) x2, y1, z; (ii) x+1, y+1, z+1; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O22—H22···O111.079 (5)1.333 (5)2.404 (3)172.6 (4)
O24—H24···O131.076 (5)1.348 (5)2.420 (3)173.2 (4)
N1—H1···O12i1.049 (4)1.635 (4)2.674 (2)169.5 (4)
N2—H2···O14ii1.050 (4)1.665 (4)2.639 (2)151.9 (3)
O42—H42···O11iii1.011 (5)1.612 (5)2.613 (3)169.8 (4)
O52—H52···O21iv1.004 (4)1.717 (4)2.718 (3)174.7 (4)
O44—H44···O13iv1.007 (4)1.637 (4)2.629 (3)167.2 (4)
O54—H54···O23iii1.004 (5)1.740 (5)2.739 (3)173.2 (4)
C31—H31···O24v1.085 (4)2.228 (5)3.191 (3)146.7 (4)
C34—H34···O52iii1.080 (4)2.482 (5)3.414 (3)143.9 (4)
C34—H34···O22v1.080 (4)2.467 (4)3.155 (3)120.5 (3)
C35—H35···O22v1.071 (4)2.549 (5)3.154 (3)115.0 (3)
C35—H35···O43vi1.071 (4)2.494 (4)3.042 (3)110.7 (3)
C36—H36···O511.082 (4)2.364 (5)3.219 (3)134.8 (3)
C36—H36···O21iv1.082 (4)2.414 (5)3.134 (3)122.8 (3)
C37—H37···O411.083 (4)2.193 (5)3.140 (3)144.9 (4)
C38—H38···O411.081 (4)2.351 (4)3.420 (3)169.7 (3)
C38—H38···O431.081 (4)2.564 (4)3.044 (3)106.0 (3)
C39—H39···O23iii1.082 (4)2.592 (5)3.108 (3)108.4 (3)
C39—H39···O431.082 (4)2.493 (5)2.994 (3)107.0 (3)
C39—H39···O531.082 (4)2.692 (5)3.739 (3)162.9 (4)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x1/2, y+1/2, z; (v) x, y+1, z; (vi) x, y+1, z+1/2.
 

Footnotes

Present address: Synchrotron Radiation Department, Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, England.

Acknowledgements

JAC thanks the ILL and EPSRC for PhD funding. JAKH thanks the EPSRC for a Senior Research Fellowship.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArora, K. K. & Pedireddi, V. R. (2003). J. Org. Chem. 24, 9177–9185.  Web of Science CSD CrossRef Google Scholar
First citationBarrett, D. M. Y., Kahwa, I. A., Raduchel, B., White, A. J. P. & Williams, D. J. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 1851–1856.  CSD CrossRef Google Scholar
First citationBarthelemy, A., Filhol, A., Rice, P. G., Allibon, J. R. & Turfat, C. (1984). MAD. Institut Laue–Langevin, Grenoble, France.  Google Scholar
First citationBiradha, K. & Zaworotko, M. J. (1998). Cryst. Eng. 1, 67–78.  CrossRef CAS Google Scholar
First citationCowan, J. A., Howard, J. A. K. & Leech, M. A. (2001a). Acta Cryst. C57, 302–303.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCowan, J. A., Howard, J. A. K. & Leech, M. A. (2001b). Acta Cryst. C57, 1196–1198.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCowan, J. A., Howard, J. A. K., Leech, M. A., Puschmann, H. & Williams, I. D. (2001). Acta Cryst. C57, 1194–1195.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCowan, J. A., Howard, J. A. K., Leech, M. A. & Williams, I. D. (2001). Acta Cryst. E57, o563–o565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCowan, J. A., Howard, J. A. K., McIntyre, G. J., Lo, S. M.-F. & Williams, I. D. (2003). Acta Cryst. B59, 794–801.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFabelo, O., Cañadillas-Delgado, L., Delgado, F. S., Lorenzo-Luis, P., Laz, M. M., Julve, M. & Ruiz-Pérez, C. (2005). Cryst. Growth Des. 5, 1163–1167.  Web of Science CSD CrossRef CAS Google Scholar
First citationFilhol, A. (1998). RAFD19. Institut Laue–Langevin, Grenoble, France.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGilli, P., Bertolasi, V., Ferritti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909–915.  CrossRef CAS Web of Science Google Scholar
First citationHsu, B. & Schlemper, E. O. (1980). Acta Cryst. B36, 3017–3023.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.  Google Scholar
First citationKozma, D., Bocskei, Z., Simon, K. & Fogassy, E. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 1883–1886.  CrossRef Google Scholar
First citationKüppers, H., Takusagawa, F. & Koetzle, T. F. (1985). J. Chem. Phys. 82, 5636–5647.  CSD CrossRef Google Scholar
First citationKvick, Å., Koetzle, T. F., Thomas, R. & Takusagawa, F. (1974). J. Chem. Phys. 60, 3866–3874.  CSD CrossRef CAS Web of Science Google Scholar
First citationLough, A. J., Wheatley, P. S., Ferguson, G. & Glidewell, C. (2000). Acta Cryst. B56, 261–272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatthewman, J. C., Thompson, P. & Brown, P. J. (1982). J. Appl. Cryst. 15, 167–173.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMitchell, C. A., Lovell, S., Thomas, K., Savickas, P. & Kahr, B. (1996). Angew. Chem. Int. Ed. Engl. 35, 1021–1023.  CSD CrossRef CAS Web of Science Google Scholar
First citationOlovsson, G. & Olovsson, I. (1984). Acta Cryst. C40, 1521–1526.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRobertson, J. M. (1951). Proc. R. Soc. London Ser. A, 207, 101–110.  CrossRef CAS Google Scholar
First citationRuiz-Pérez, C., Lorenzo-Luis, P. A., Hernández-Molina, M., Laz, M. M., Gilli, P. & Julve, J. (2004). Cryst. Growth Des. 4, 57–61.  Google Scholar
First citationSakhawat Hussain, M., Schlemper, E. O. & Fair, C. K. (1980). Acta Cryst. B36, 1104–1108.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSears, V. F. (1992). Neutron News, 3(3), 26–37.  CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1999). SHELXTL/PC. Version 5.10 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSteiner, T., Majerz, I. & Wilson, C. C. (2001). Angew. Chem. Int. Ed. 40, 2651–2654.  Web of Science CrossRef CAS Google Scholar
First citationSun, Y.-Q., Zhang, J. & Yang, G.-Y. (2002). Acta Cryst. E58, o904–o906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTakusagawa, F. & Koetzle, T. F. (1979). Acta Cryst. B35, 2126–2135.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationVanhouteghem, F., Lenstra, A. T. H. & Schweiss, P. (1987). Acta Cryst. B43, 523–528.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWilkinson, C., Khamis, H. W., Stansfield, R. F. D. & McIntyre, G. J. (1988). J. Appl. Cryst. 21, 471–478.  CrossRef Web of Science IUCr Journals Google Scholar
First citationWilson, C. C. (2000). Single Crystal Neutron Diffraction From Molecular Materials. Singapore: World Scientific Publishing Company.  Google Scholar
First citationWilson, C. C., Thomas, L. H. & Morrison, C. A. (2003). Chem. Phys. Lett. 381, 102–108.  Web of Science CrossRef CAS Google Scholar
First citationZhu, N.-W., Zhang, R.-Q. & Sun, T.-H. (2003). Z. Kristallogr. 218, 341–342.  CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds