organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Volume 64| Part 4| April 2008| Pages o214-o216

Accurate stereochemistry for two related 22,26-epimino­cholestene derivatives

CROSSMARK_Color_square_no_text.svg

aFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, San Manuel, 72000 Puebla, Pue., Mexico, and bDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

(Received 6 February 2008; accepted 29 February 2008; online 15 March 2008)

Regioselective opening of ring E of solasodine under various conditions afforded (25R)-22,26-epimino­cholesta-5,22(N)-di­ene-3β,16β-diyl diacetate (previously known as 3,16-diacetyl pseudosolasodine B), C31H47NO4, or (22S,25R)-16β-hydr­oxy-22,26-epimino­cholesta-5-en-3β-yl acetate (a derivative of the naturally occurring alkaloid oblonginine), C29H47NO3. In both cases, the reactions are carried out with retention of chirality at the C16, C20 and C25 stereogenic centers, which are found to be S, S and R, respectively. Although pseudosolasodine was synthesized 50 years ago, these accurate assignments clarify some controversial points about the actual stereochemistry for these alkaloids. This is of particular importance in the case of oblonginine, since this compound is currently under consideration for the treatment of aphasia arising from apoplexy; the present study defines a diastereoisomerically pure compound for pharmacological studies.

Comment

Many plants of the Solanaceae family accumulate steroidal alkaloids based on the C27 cholestane skeleton, e.g. solasodine, (1)[link], and tomatidine, which are N-analogues of sapogenins (Friedman & McDonald, 1997[Friedman, M. & McDonald, G. M. (1997). Crit. Rev. Plant Sci. 16, 55-132.]). For a long time, (1)[link] has been an essential starting material for the partial synthesis of pregnane derivatives (Sato et al., 1957[Sato, Y., Latham, H. G. Jr & Mosettig, E. (1957). J. Org. Chem. 22, 1496-1500.]). 22,26-Epimino­cholestenes are also accessible from (1)[link], through a selective E-ring cleavage under reductive conditions (Bird et al., 1979[Bird, G. J., Collins, D. J., Eastwood, F. W., Exner, R. H., Romanelli, M. L. & Small, D. D. (1979). Aust. J. Chem. 32, 783-796.]) or by acidic acetolysis. For instance, Sato et al. (1957[Sato, Y., Latham, H. G. Jr & Mosettig, E. (1957). J. Org. Chem. 22, 1496-1500.]) performed a selective E-ring opening of (1)[link] by treatment with Ac2O/AcOH and ZnCl2 at 298 K over a long time period, affording the 22,26-epimino­cholestadiene framework (I)[link], also known as 3,16-diacetyl pseudosolasodine B.

During our work on sapogenin acetolysis, we probed a variety of Lewis acids with the hope of optimizing both the ability to regioselectively open ring E and the reaction rates. We have found that Et2O·BF3 gives excellent results. In this way, (I)[link] may be prepared starting from (1)[link] in quantitative yield in remarkably short reaction times (see scheme[link]). All spectroscopic and physical data for the product fit well with those of an authentic sample of pseudosolasodine B diacetate. However, an X-ray study was necessary in order to assess the absolute configuration at atom C20. This aspect should not be seen as a trivial matter, since Yang et al. (2004[Yang, Q. X., Tian, W. S. & Pan, S. (2004). Acta Chim. Sin. 62, 2171-2176.]) claimed that epimerization at C20 occurs if an acid harder than ZnCl2 is used. We, however, have never detected such an epimerization in the case of sapogenins treated under similar conditions (Sandoval-Ramírez et al., 1999[Sandoval-Ramírez, J., Castro-Méndez, A., Meza-Reyes, S., Reyes-Vázquez, F., Santillán, R. & Farfán, N. (1999). Tetrahedron Lett. 40, 5143-5146.], 2003[Sandoval-Ramírez, J., Meza-Reyes, S., del Río, R. E., Hernández-Linares, G., Suárez-Rojas, A., Rincón, S., Farfán, N. & Santillan, R. L. (2003). Steroids, 68, 199-204.]). It is also known that the reaction course may be complicated by nucleophilic attacks at atom C16 (Iglesias-Arteaga et al., 2004[Iglesias-Arteaga, M. A., Sandoval-Ramírez, J., Mata-Esma, M. Y., Viñas-Bravo, O. & Bernès, S. (2004). Tetrahedron Lett. 45, 4921-4926.]) and epimerization at atom C25 (LaCour et al., 1999[LaCour, T. G., Tong, Z. & Fuchs, P. L. (1999). Org. Lett. 1, 1815-1818.]).

[Scheme 1]

A similar controversy about stereochemistry appeared in the case of oblonginine, a naturally occurring 22,26-epimino­cholestene. The mol­ecule was first assigned a stereochemistry of 22R,25S (Kadota et al., 1995[Kadota, S., Chen, S. Z., Li, J. X., Xu, G.-J. & Namba, T. (1995). Phytochemistry, 38, 777-781.]). However, a re-examination using X-ray crystallography and high-resolution NMR spectroscopy revealed that oblonginine is (22S,25R)-22,26-epimino­cholest-5-en-3β-ol (Lowe et al., 1998[Lowe, P. R., Sadler, I. H., Wang, Z., Wang, Y., Stevens, M. F. G., Zhao, L., Chen, S. & Xu, G. (1998). Phytochemistry, 47, 887-890.]). The X-ray structure of oblonginine monohydrate reported in that paper was unfortunately not deposited with the Cambridge Structural Database (Version 5.29; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) (see refcode CADNIE). We can now confirm this assignment on the basis of the X-ray structure of a C16-functionalized oblonginine monoacetate, (II)[link], synthesized from (1)[link] following a published procedure (Kusano et al., 1970[Kusano, G., Aimi, N. & Sato, Y. (1970). J. Org. Chem. 35, 2624-2626.]; see scheme[link]).

The AD steroidal nucleus of (I)[link] exhibits the expected geometry, identical to that of solasodine (Vega-Baez et al., 2006[Vega-Baez, J. L., Sandoval-Ramírez, J., Montiel-Smith, S., Meza-Reyes, S. & Bernès, S. (2006). Acta Cryst. E62, o4741-o4743.]). The cleavage of the C22—O bond in ring E of solasodine occurs without inversion, and the stereogenic centers remain as 16S and 20S. The six-membered ring F includes a double bond (C22=N27; Table 1[link]) and exhibits a half-chair conformation [the puckering parameters are θ = 127.1 (7)° and φ = 31.7 (9)°; the puckering amplitude is 0.466 (6) Å; the atom sequence defining ring F is N27/C22–C26 (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.])]. As mentioned by Sato et al. (1957[Sato, Y., Latham, H. G. Jr & Mosettig, E. (1957). J. Org. Chem. 22, 1496-1500.]), (I)[link] should equilibrate only under constraint to its tautomeric form including a C20=N22 double bond. In the solid state, the C20—C22 bond length clearly shows that this bond is a σ single bond without participation of tautomeric forms. The absolute configuration for atom C25 is unchanged compared with the starting material, viz. 25R, with methyl atom C28 occupying an equatorial position in ring F (Fig. 1[link]).

The geometric features for the AD nucleus in (II)[link] are similar to those found in (I)[link]. Cleavage of the C22—O bond of solasodine occurs with retention of configuration for atoms C16, C20 and C25, as for (I)[link]. The 22R configuration of the spiro C atom of solasodine changes to 22S in (II)[link], owing to the formation of a C—H bond at atom C22. The main difference between (I)[link] and (II)[link] is thus the conformation of ring F (Fig. 2[link] and Table 2[link]), which now exhibits a chair form [the puckering parameters are θ = 177.6 (4)° and φ = 93 (8)°; atom sequence as for (I)[link]]. The relative positions of the NH group in ring F and the hydr­oxy substituent at atom C16 in ring D allow the formation of a rather strong intra­molecular O—H⋯N hydrogen bond [DA = 2.777 (4) Å, H⋯A = 1.93 (4) Å and D—H⋯A = 157 (5)°]. This stabilizing inter­action explains why the OH group at atom C3 in solasodine is acetyl­ated, while the OH group formed during E-ring opening is retained as a hydr­oxy group, at least when the conditions of Kusano et al. (1970[Kusano, G., Aimi, N. & Sato, Y. (1970). J. Org. Chem. 35, 2624-2626.]) are applied. Such a protection of the C16—OH functionality is not possible for diacetate (I)[link].

[Figure 1]
Figure 1
The structure of (I)[link], with displacement ellipsoids at the 30% probability level for non-H atoms.
[Figure 2]
Figure 2
The structure of (II)[link], with displacement ellipsoids at the 30% probability level for non-H atoms. Atoms O31B and C32B, disordered with O31A and C32A, have been omitted for clarity. The intra­molecular hydrogen bond is shown as a dashed line.

Experimental

For the synthesis of (I)[link], a mixture of solasodine (300 mg, 0.72 mmol), Ac2O (3.0 ml, 32 mmol), AcOH (1.0 ml, 17 mmol) and Et2O·BF3 (0.7 ml, 5.5 mmol) was stirred for 20 s at 298 K. The reaction mixture was poured into iced water and shaken vigorously. Concentrated NH4OH was added until a basic pH was obtained, and the product was extracted with CH2Cl2 (3 × 10 ml), washed with brine and water, dried over anhydrous Mg2SO4, and finally concentrated to dryness under reduced pressure. The crude product was chromatographed over silica gel using hexane/EtOAc (7:3), affording (I)[link] in quantitative yield. Suitable single crystals were obtained by slow evaporation of an AcOEt solution. Spectroscopic data are in full agreement with the crystal structure (see archived CIF). Compound (II)[link] was prepared following a literature procedure (Kusano et al., 1970[Kusano, G., Aimi, N. & Sato, Y. (1970). J. Org. Chem. 35, 2624-2626.]). Suitable single crystals of (II)[link] were obtained by slow evaporation of an AcOEt solution. Spectroscopic data are in full agreement with the crystal structure (see archived CIF).

Compound (I)[link]

Crystal data
  • C31H47NO4

  • Mr = 497.70

  • Orthorhombic, P 21 21 21

  • a = 6.1137 (16) Å

  • b = 11.6779 (14) Å

  • c = 41.330 (5) Å

  • V = 2950.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 (1) K

  • 0.60 × 0.26 × 0.16 mm

Data collection
  • Bruker P4 diffractometer

  • 3812 measured reflections

  • 3026 independent reflections

  • 1931 reflections with I > 2σ(I)

  • Rint = 0.028

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.154

  • S = 1.03

  • 3026 reflections

  • 332 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Selected geometric parameters (Å, °) for (I)[link]

C5—C6 1.329 (5)
C16—O33 1.455 (5)
C20—C21 1.523 (6)
C20—C22 1.527 (5)
C22—N27 1.282 (5)
C26—N27 1.484 (6)
C5—C6—C7 125.7 (4)
C22—N27—C26 118.9 (4)

Compound (II)[link]

Crystal data
  • C29H47NO3

  • Mr = 457.68

  • Monoclinic, C 2

  • a = 10.026 (2) Å

  • b = 7.4403 (14) Å

  • c = 35.508 (6) Å

  • β = 95.512 (18)°

  • V = 2636.4 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 (1) K

  • 0.60 × 0.40 × 0.18 mm

Data collection
  • Bruker P4 diffractometer

  • 4449 measured reflections

  • 2526 independent reflections

  • 2236 reflections with I > 2σ(I)

  • Rint = 0.043

  • 3 standard reflections every 97 reflections intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.135

  • S = 1.04

  • 2526 reflections

  • 322 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.28 e Å−3

Table 2
Selected geometric parameters (Å, °) for (II)[link]

C5—C6 1.313 (5)
C16—O33 1.435 (4)
C20—C21 1.536 (5)
C20—C22 1.557 (4)
C22—N27 1.483 (5)
C26—N27 1.466 (4)
C5—C6—C7 124.9 (3)
C22—N27—C26 112.7 (3)

Carbonyl atom O31 and methyl group C32 in (II)[link] are disordered over two sites, for which occupancies were refined and converged to 0.47 (4) and 0.53 (4) for O31A/C32A and O31B/C32B, respectively. In order to obtain a sensible geometry for this acetate group, bond lengths involving disordered sites were restrained [C30—O31 = 1.20 (1) Å (two restraints) and C30—C32 = 1.53 (1) Å (two restraints)]. All C-bonded H atoms in (II)[link] were placed in idealized positions and constrained to ride on their parent atoms, with C—H bond lengths fixed at 0.93 (H6A), 0.96 (methyl CH3), 0.97 (methyl­ene CH2) and 0.98 Å (methine CH). Uiso(H) values were calculated at 1.3Ueq(C) for methyl groups and 1.2Ueq(C) otherwise. Rigid methyl groups were allowed to rotate about their C—C bonds in order to obtain accurate torsion angles. H atoms bonded to heteroatoms N27 and O33 were found in a difference map and refined with free coordinates [Uiso(H) = 1.3Ueq(N,O)]. For (I)[link], the acetate group at atom C3 is almost certainly disordered as in (II)[link], as reflected in the displacement parameters for atoms O31 and C32. However, we were unable to model disordered sites satisfactorily. H atoms were placed in idealized positions, with C—H bond lengths fixed as for (II)[link] and with Uiso(H) values of 1.5Ueq(C) for methyl groups and 1.2Ueq(C) otherwise. In both structures, Friedel pairs [663 for (I)[link] and 394 for (II)[link]] were merged and the stereochemistry assumed from the synthesis.

For both compounds, data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Version 2.21. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Release 5.10; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-Plus; mol­ecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXTL-Plus and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Many plants of the Solanaceae family accumulate steroidal alkaloids based on the C27 cholestane skeleton, e.g. solasodine (1) and tomatidine, which are N-analogues of sapogenins (Friedman & McDonald, 1997). For a long time, (1) has been an essential starting material for the partial synthesis of pregnane derivatives (Sato et al., 1957). 22,26-Epiminocholestenes are also accessible from (1), through a selective E-ring cleavage, under reductive conditions (Bird et al., 1979) or by acidic acetolysis. For instance, Sato et al. (1957) performed a selective E-ring opening of (1) by treatment with Ac2O/AcOH and ZnCl2, at 298 K, over a long time period, affording the 22,26-epiminocholestadiene framework (I), also known as 3,16-diacetyl pseudosolasodine B.

During our work on sapogenin acetolysis, we probed a variety of Lewis acids with the hope of optimizing both the ability to regioselectively open ring E and the reaction rates. We have found that Et2O·BF3 gives excellent results. In this way, (I) may be prepared starting from (1) in quantitative yield, in remarkably short reaction times (see scheme). All spectroscopic and physical data for the product fit well with those of an authentic sample of pseudosolasodine B diacetate. However, an X-ray study was necessary in order to assess the absolute configuration at C20. This aspect should not be seen as a trivial matter, since Yang et al. (2004) claimed that epimerization at C20 occurs if an acid harder than ZnCl2 is used. We, however, have never detected such an epimerization in the case of sapogenins treated under similar conditions (Sandoval-Ramírez et al., 1999, 2003). It is also known that the reaction course may be complicated by nucleophilic attacks at C16 (Iglesias-Arteaga et al., 2004) and epimerization at C25 (LaCour et al., 1999).

A similar controversy about stereochemistry appeared in the case of oblonginine, a naturally occurring 22,26-epiminocholestene. The molecule was first assigned a sterochemistry of 22R,25S (Kadota et al., 1995). However, a re-examination using X-ray crystallography and high-resolution NMR spectroscopy revealed that oblonginine is (22S,25R)-22,26-epiminocholest-5-en-3β-ol (Lowe et al., 1998). The X-ray structure of oblonginine monohydrate reported in that paper was unfortunately not deposited with the Cambridge Structural Database [Version 5.29 (Allen, 2002); see refcode CADNIE]. We can now confirm this assignment on the basis of the X-ray structure of a C16-functionalized oblonginine monoacetate, (II), synthesized from (1) following a published procedure (Kusano et al., 1970; see scheme).

The AD steroidal nucleus of (I) exhibits the expected geometry, identical to that of solasodine (Vega-Baez et al., 2006). The cleavage of the C22—O bond in ring E of solasodine occurs without inversion, and the stereogenic centers remain as 16S and 20S. The six-membered ring F includes a double bond (C22N27; Table 1) and exhibits a half-chair conformation [puckering parameters θ = 127.1 (7)° and ϕ = 31.7 (9)°; puckering amplitude 0.466 (6) Å; atom sequence defining ring F: N27/C22–C26; Cremer & Pople, 1975]. As mentioned by Sato et al. (1957), (I) should equilibrate only under constraint to its tautomeric form including a C20N22 double bond. In the solid state, the C20—C22 bond length clearly shows that this bond is a σ single bond without participation of tautomeric forms. The absolute configuration for atom C25 is unchanged compared with the starting material, 25R, with methyl atom C28 occupying an equatorial position in ring F (Fig. 1).

The geometric features for the AD nucleus in (II) are similar to those found in (I). Cleavage of the C22—O bond of solasodine occurs with retention of configuration for atoms C16, C20 and C25, as for (I). The 22R configuration of the spiro C atom of solasodine changes to 22S in (II), owing to the formation of a C—H bond at atom C22. The main difference between (I) and (II) is thus the conformation of ring F (Fig. 2 and Table 2), which now exhibits a chair form [puckering parameters θ = 177.6 (4)° and ϕ = 93 (8)°; atom sequence as for (I)]. The relative positions of the NH group in ring F and the hydroxy substituent at atom C16 in ring D allow the formation of a rather strong intramolecular O—H···N hydrogen bond [D···A = ?, H···A = 1.93 (4) Å and D—H···A = 157 (5)°]. This stabilizing interaction explains why the OH group at atom C3 in solasodine is acetylated, while the OH group formed during E-ring opening is retained as a hydroxy group, at least when the conditions of Kusano et al. (1970) are applied. Such a protection of the C16—OH functionality is not possible for diacetate (I).

Related literature top

For related literature, see: Allen (2002); Bird et al. (1979); Cremer & Pople (1975); Friedman & McDonald (1997); Iglesias-Arteaga, Sandoval-Ramírez, Mata-Esma, Viñas-Bravo & Bernès (2004); Kadota et al. (1995); Kusano et al. (1970); LaCour, Tong & Fuchs (1999); Lowe et al. (1998); Sandoval-Ramírez, Castro-Méndez, Meza-Reyes, Reyes-Vázquez, Santillán & Farfán (1999); Sandoval-Ramírez, Meza-Reyes, del Río, Hernández-Linares, Suárez-Rojas, Rincón, Farfán & Santillan (2003); Sato et al. (1957); Vega-Baez, Sandoval-Ramírez, Montiel-Smith, Meza-Reyes & Bernès (2006); Yang et al. (2004).

Experimental top

For the synthesis of (I), a mixture of solasodine (300 mg, 0.72 mmol), Ac2O (3.0 ml, 32 mmol), AcOH (1.0 ml, 17 mmol) and Et2O·BF3 (0.7 ml, 5.5 mmol) was stirred for 20 s at 298 K. The reaction mixture was poured into iced water and shaken vigorously. Concentrated NH4OH was added until a basic pH was obtained, and the product was extracted with CH2Cl2 (3 × 10 ml), washed with brine and water, dried over anhydrous Mg2SO4, and finally concentrated to dryness under reduced pressure. The crude product was chromatographed over silica gel using hexane/EtOAc (7:3), affording (I) in quantitative yield. Suitable single crystals were obtained by slow evaporation of an AcOEt solution. Spectroscopic data are in full agreement with the crystal structure (see archived CIF).

Compound (II) was prepared following a literature procedure (Kusano et al., 1970). Suitable single crystals of (II) were obtained by slow evaporation of an AcOEt solution. Spectroscopic data are in full agreement with the crystal structure (see archived CIF).

Refinement top

Carbonyl atom O31 and methyl group C32 in (II) are disordered over two sites, for which occupancies were refined and converged to 0.47 (4) and 0.53 (4), for O31A/C32A and O31B/C32B, respectively. In order to obtain a sensible geometry for this OAc group, bond lengths involving disordered sites were restrained [C30—O31 = 1.20 (1) Å (two restraints) and C30—C32 = 1.53 (1) Å (two restraints)]. All C-bonded H atoms in (II) were placed in idealized positions and constrained to ride on their parent atoms, with C—H bond lengths fixed at 0.93 (H6A), 0.96 (methyl CH3), 0.97 (methylene CH2) and 0.98 Å (methine CH). Uiso(H) values were calculated at 1.3Ueq(C) for methyl groups and 1.2Ueq(carrier C) otherwise. Rigid methyl groups were allowed to rotate about their C—C bonds in order to obtain accurate torsion angles. H atoms bonded to heteroatoms N27 and O33 were found in a difference map and refined with free coordinates [Uiso(H) = 1.3Ueq(N,O)]. For (I), the OAc group at atom C3 is almost certainly disordered as in (II), as reflected in the displacement parameters for atoms O31 and C32. However, we were unable to model satisfactorily disordered sites. H atoms were placed in idealized positions, with C—H bond lengths fixed as for (II) and Uiso(H) values of 1.5Ueq(C) for methyl groups and 1.2Ueq(C) otherwise. In both structures, Friedel pairs [663 for (I) and 394 for (II)] were merged and the stereochemistry assumed from thesynthesis.

Computing details top

For both compounds, data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXTL-Plus (Release 5.10; Sheldrick, 2008); program(s) used to refine structure: SHELXTL-Plus (Release 5.10; Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Release 5.10; Sheldrick, 2008); software used to prepare material for publication: SHELXTL-Plus (Release 5.10; Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. The structure of (II), with displacement ellipsoids at the 30% probability level for non-H atoms. Atoms O31B and C32B, disordered with O31A and C32A, have been omitted for clarity. The intramolecular hydrogen bond is shown as a dashed line.
(I) (25R)-22,26-epiminocholesta-5,22(N)-diene-3β,16β-diyl diacetate top
Crystal data top
C31H47NO4Dx = 1.120 Mg m3
Mr = 497.70Melting point: 462 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 71 reflections
a = 6.1137 (16) Åθ = 4.8–11.4°
b = 11.6779 (14) ŵ = 0.07 mm1
c = 41.330 (5) ÅT = 296 K
V = 2950.8 (9) Å3Needle, colourless
Z = 40.60 × 0.26 × 0.16 mm
F(000) = 1088
Data collection top
Bruker P4
diffractometer
Rint = 0.028
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.0°
Graphite monochromatorh = 71
ω scansk = 113
3812 measured reflectionsl = 491
3026 independent reflections3 standard reflections every 97 reflections
1931 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0744P)2 + 0.5847P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3026 reflectionsΔρmax = 0.21 e Å3
332 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXTL-Plus, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0077 (13)
Primary atom site location: structure-invariant direct methods
Crystal data top
C31H47NO4V = 2950.8 (9) Å3
Mr = 497.70Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.1137 (16) ŵ = 0.07 mm1
b = 11.6779 (14) ÅT = 296 K
c = 41.330 (5) Å0.60 × 0.26 × 0.16 mm
Data collection top
Bruker P4
diffractometer
Rint = 0.028
3812 measured reflections3 standard reflections every 97 reflections
3026 independent reflections intensity decay: none
1931 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
3026 reflectionsΔρmin = 0.20 e Å3
332 parameters
Special details top

Experimental. m.p. 462–464 K; [α]D = +45.3° (c. 0.70, CHCl3) [Lit. +46.6°, CHCl3 (Sato et al., 1957)]. 1H-NMR, δ: 5.36 (1H, d, J=5.2 Hz, H-6), 4.58 (1H, m, H-3), 4.18 (1H, m, H-16), 2.98 (2H, ddd, J=11.3 and 3.3 Hz, H-26), 2.54 (1H, d, J=11.3 Hz, H-22), 2.20 (3H, s, CH3CO—N), 2.03 (3H, s, CH3COO-3), 1.08 (3H, d, J=7.2 Hz, H-21), 1.03 (3H, s, H-19), 0.91 (3H, s, H-18), 0.82 (3H, d, J=6.8 Hz, H-27). 13C-NMR, δ: 36.9 (C-1), 27.7 (C-2), 73.7 (C-3), 38.1 (C-4), 139.5 (C-5), 122.0 (C-6), 32.1 (C-7), 31.0 (C-8), 49.9 (C-9), 36.7 (C-10), 20.9 (C-11), 40.9 (C-12), 40.1 (C-13), 55.7 (C-14), 32.0 (C-15), 78.7 (C-16), 61.9 (C-17), 16.4 (C-18), 19.4 (C-19), 38.1 (C-20), 16.3 (C-21), 101.0 (C-22), 24.2 (C-23), 23.9 (C-24), 27.9 (C-25), 49.2 (C-26), 18.6 (C-27), 170.7 (CH3CON), 170.2 (CH3COO-3), 25.3 (CH3CON), 21.5 (CH3COO-3).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1943 (8)0.3111 (3)0.29891 (8)0.0497 (10)
H1A0.09160.25180.29260.060*
H1B0.33900.28630.29230.060*
C20.1909 (8)0.3224 (3)0.33613 (8)0.0547 (11)
H2A0.04460.34170.34340.066*
H2B0.23290.25030.34600.066*
C30.3482 (8)0.4147 (3)0.34586 (8)0.0524 (11)
H3D0.49670.39480.33890.063*
C40.2803 (8)0.5279 (3)0.33117 (8)0.0526 (11)
H4A0.38400.58670.33740.063*
H4B0.13770.54950.33950.063*
C50.2703 (6)0.5206 (3)0.29454 (9)0.0439 (9)
C60.3745 (7)0.5962 (3)0.27612 (9)0.0494 (10)
H6A0.45570.65230.28660.059*
C70.3728 (7)0.5991 (3)0.23998 (8)0.0493 (10)
H7A0.51630.57740.23210.059*
H7B0.34430.67680.23290.059*
C80.2019 (6)0.5194 (3)0.22517 (8)0.0401 (9)
H8A0.05810.55630.22630.048*
C90.1942 (7)0.4054 (3)0.24403 (8)0.0407 (9)
H9A0.34330.37470.24350.049*
C100.1368 (6)0.4220 (3)0.28035 (8)0.0399 (9)
C110.0500 (8)0.3165 (3)0.22691 (8)0.0541 (11)
H11A0.10180.33930.22910.065*
H11B0.06720.24340.23780.065*
C120.1012 (8)0.3000 (3)0.19044 (8)0.0512 (10)
H12A0.24460.26540.18810.061*
H12B0.00540.24830.18100.061*
C130.0966 (6)0.4144 (3)0.17202 (8)0.0416 (9)
C140.2562 (6)0.4941 (3)0.18971 (8)0.0420 (9)
H14A0.39640.45340.19010.050*
C150.2892 (7)0.5955 (3)0.16678 (8)0.0514 (10)
H15A0.43120.63070.17010.062*
H15B0.17650.65290.16990.062*
C160.2734 (7)0.5425 (3)0.13298 (9)0.0512 (10)
H16A0.41540.54580.12200.061*
C170.2006 (7)0.4161 (3)0.13773 (8)0.0461 (9)
H17A0.33580.37140.13940.055*
C180.1401 (7)0.4620 (4)0.17079 (9)0.0553 (11)
H18A0.18880.47900.19230.083*
H18B0.23520.40590.16130.083*
H18C0.14280.53060.15800.083*
C190.1077 (7)0.4505 (4)0.28506 (10)0.0555 (11)
H19A0.13340.47130.30720.083*
H19B0.19460.38480.27960.083*
H19C0.14720.51330.27130.083*
C200.0747 (7)0.3666 (4)0.10827 (9)0.0523 (11)
H20A0.05880.41210.10570.063*
C210.0044 (10)0.2424 (4)0.11267 (10)0.0702 (14)
H21A0.04870.21290.09250.105*
H21B0.10960.23830.12860.105*
H21C0.12730.19770.11970.105*
C220.2084 (7)0.3810 (4)0.07732 (9)0.0532 (11)
C230.4321 (8)0.3316 (5)0.07675 (11)0.0742 (15)
H23A0.42720.25520.08600.089*
H23B0.52660.37790.09030.089*
C240.5306 (10)0.3247 (5)0.04314 (11)0.0932 (17)
H24A0.68800.31600.04470.112*
H24B0.47250.25860.03180.112*
C250.4765 (11)0.4322 (6)0.02468 (12)0.100 (2)
H25B0.53740.49660.03690.120*
C260.2343 (9)0.4494 (6)0.02311 (11)0.0866 (18)
H26A0.20650.52690.01580.104*
H26B0.17570.39780.00690.104*
N270.1119 (7)0.4310 (3)0.05368 (8)0.0667 (11)
C280.5800 (12)0.4353 (8)0.00917 (14)0.154 (3)
H28A0.56300.51040.01830.231*
H28B0.50880.38020.02280.231*
H28C0.73280.41710.00760.231*
O290.3393 (6)0.4242 (3)0.38095 (6)0.0672 (9)
C300.5205 (13)0.4595 (5)0.39591 (13)0.0914 (18)
O310.6858 (10)0.4842 (6)0.38218 (12)0.146 (2)
C320.4835 (15)0.4664 (5)0.43195 (12)0.125 (3)
H32A0.61710.48830.44250.188*
H32B0.43740.39300.43990.188*
H32C0.37240.52220.43640.188*
O330.1085 (5)0.6032 (2)0.11426 (6)0.0615 (8)
C340.1731 (12)0.6719 (5)0.09065 (13)0.0834 (16)
O350.3619 (10)0.6874 (5)0.08384 (12)0.136 (2)
C360.0141 (13)0.7238 (5)0.07295 (13)0.113 (2)
H36A0.03580.75300.05250.169*
H36B0.07440.78520.08560.169*
H36C0.12430.66670.06930.169*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.065 (3)0.0377 (19)0.046 (2)0.005 (2)0.006 (2)0.0016 (16)
C20.068 (3)0.049 (2)0.047 (2)0.002 (3)0.007 (2)0.0008 (18)
C30.055 (3)0.062 (2)0.040 (2)0.005 (3)0.002 (2)0.0019 (19)
C40.061 (3)0.047 (2)0.050 (2)0.002 (2)0.003 (2)0.0052 (18)
C50.044 (2)0.0411 (19)0.046 (2)0.006 (2)0.0016 (19)0.0033 (17)
C60.048 (2)0.047 (2)0.053 (2)0.005 (2)0.008 (2)0.0023 (19)
C70.046 (2)0.047 (2)0.055 (2)0.009 (2)0.001 (2)0.0009 (18)
C80.0333 (19)0.0389 (18)0.048 (2)0.0029 (19)0.0015 (18)0.0025 (16)
C90.039 (2)0.0395 (18)0.0434 (19)0.001 (2)0.0023 (18)0.0009 (16)
C100.034 (2)0.043 (2)0.0427 (19)0.0019 (19)0.0062 (17)0.0047 (16)
C110.070 (3)0.046 (2)0.047 (2)0.014 (2)0.004 (2)0.0030 (18)
C120.061 (3)0.045 (2)0.048 (2)0.007 (2)0.004 (2)0.0001 (17)
C130.035 (2)0.043 (2)0.047 (2)0.0028 (19)0.0030 (17)0.0015 (17)
C140.039 (2)0.042 (2)0.044 (2)0.0002 (19)0.0023 (18)0.0005 (16)
C150.053 (2)0.046 (2)0.054 (2)0.010 (2)0.006 (2)0.0048 (18)
C160.048 (2)0.056 (2)0.050 (2)0.001 (2)0.006 (2)0.0066 (19)
C170.038 (2)0.051 (2)0.049 (2)0.005 (2)0.0003 (19)0.0037 (18)
C180.042 (2)0.070 (3)0.055 (2)0.003 (2)0.000 (2)0.001 (2)
C190.043 (2)0.072 (3)0.051 (2)0.001 (2)0.004 (2)0.006 (2)
C200.046 (2)0.061 (2)0.050 (2)0.004 (2)0.000 (2)0.0012 (19)
C210.091 (4)0.067 (3)0.053 (3)0.017 (3)0.008 (3)0.002 (2)
C220.050 (2)0.065 (3)0.044 (2)0.002 (2)0.003 (2)0.002 (2)
C230.062 (3)0.107 (4)0.054 (3)0.018 (3)0.009 (2)0.002 (3)
C240.078 (4)0.130 (5)0.072 (3)0.020 (4)0.021 (3)0.006 (4)
C250.088 (5)0.141 (6)0.071 (3)0.003 (5)0.029 (3)0.018 (4)
C260.081 (4)0.126 (5)0.053 (3)0.007 (4)0.015 (3)0.014 (3)
N270.064 (2)0.086 (3)0.049 (2)0.004 (2)0.0016 (19)0.0088 (19)
C280.116 (6)0.249 (10)0.097 (4)0.020 (7)0.057 (4)0.048 (5)
O290.080 (2)0.0762 (19)0.0449 (15)0.006 (2)0.0108 (17)0.0026 (14)
C300.108 (5)0.100 (4)0.067 (3)0.021 (4)0.038 (4)0.006 (3)
O310.114 (4)0.215 (6)0.110 (4)0.079 (5)0.034 (3)0.005 (3)
C320.190 (8)0.120 (4)0.066 (3)0.030 (6)0.054 (4)0.013 (3)
O330.068 (2)0.0625 (17)0.0541 (16)0.0057 (18)0.0025 (16)0.0157 (14)
C340.104 (5)0.065 (3)0.081 (3)0.006 (4)0.017 (4)0.019 (3)
O350.127 (4)0.136 (4)0.145 (4)0.010 (4)0.034 (4)0.086 (3)
C360.154 (6)0.106 (4)0.078 (4)0.041 (5)0.005 (4)0.031 (3)
Geometric parameters (Å, º) top
C1—C21.544 (5)C17—C201.552 (5)
C1—C101.546 (5)C17—H17A0.9800
C1—H1A0.9700C18—H18A0.9600
C1—H1B0.9700C18—H18B0.9600
C2—C31.500 (6)C18—H18C0.9600
C2—H2A0.9700C19—H19A0.9600
C2—H2B0.9700C19—H19B0.9600
C3—O291.456 (4)C19—H19C0.9600
C3—C41.513 (5)C20—C211.523 (6)
C3—H3D0.9800C20—C221.527 (5)
C4—C51.517 (5)C20—H20A0.9800
C4—H4A0.9700C21—H21A0.9600
C4—H4B0.9700C21—H21B0.9600
C5—C61.329 (5)C21—H21C0.9600
C5—C101.529 (5)C22—N271.282 (5)
C6—C71.494 (5)C22—C231.484 (6)
C6—H6A0.9300C23—C241.516 (6)
C7—C81.527 (5)C23—H23A0.9700
C7—H7A0.9700C23—H23B0.9700
C7—H7B0.9700C24—C251.506 (8)
C8—C141.532 (5)C24—H24A0.9700
C8—C91.543 (5)C24—H24B0.9700
C8—H8A0.9800C25—C261.495 (8)
C9—C111.536 (5)C25—C281.536 (7)
C9—C101.554 (5)C25—H25B0.9800
C9—H9A0.9800C26—N271.484 (6)
C10—C191.544 (6)C26—H26A0.9700
C11—C121.551 (5)C26—H26B0.9700
C11—H11A0.9700C28—H28A0.9600
C11—H11B0.9700C28—H28B0.9600
C12—C131.537 (5)C28—H28C0.9600
C12—H12A0.9700O29—C301.334 (7)
C12—H12B0.9700C30—O311.194 (8)
C13—C141.534 (5)C30—C321.509 (7)
C13—C181.551 (6)C32—H32A0.9600
C13—C171.554 (5)C32—H32B0.9600
C14—C151.530 (5)C32—H32C0.9600
C14—H14A0.9800O33—C341.323 (6)
C15—C161.531 (5)C34—O351.202 (8)
C15—H15A0.9700C34—C361.488 (9)
C15—H15B0.9700C36—H36A0.9600
C16—O331.455 (5)C36—H36B0.9600
C16—C171.554 (5)C36—H36C0.9600
C16—H16A0.9800
C2—C1—C10114.8 (3)O33—C16—H16A110.4
C2—C1—H1A108.6C15—C16—H16A110.4
C10—C1—H1A108.6C17—C16—H16A110.4
C2—C1—H1B108.6C20—C17—C13120.5 (3)
C10—C1—H1B108.6C20—C17—C16113.4 (3)
H1A—C1—H1B107.5C13—C17—C16104.2 (3)
C3—C2—C1108.6 (3)C20—C17—H17A105.9
C3—C2—H2A110.0C13—C17—H17A105.9
C1—C2—H2A110.0C16—C17—H17A105.9
C3—C2—H2B110.0C13—C18—H18A109.5
C1—C2—H2B110.0C13—C18—H18B109.5
H2A—C2—H2B108.3H18A—C18—H18B109.5
O29—C3—C2107.3 (3)C13—C18—H18C109.5
O29—C3—C4108.9 (3)H18A—C18—H18C109.5
C2—C3—C4110.1 (3)H18B—C18—H18C109.5
O29—C3—H3D110.2C10—C19—H19A109.5
C2—C3—H3D110.2C10—C19—H19B109.5
C4—C3—H3D110.2H19A—C19—H19B109.5
C3—C4—C5111.3 (3)C10—C19—H19C109.5
C3—C4—H4A109.4H19A—C19—H19C109.5
C5—C4—H4A109.4H19B—C19—H19C109.5
C3—C4—H4B109.4C21—C20—C22110.8 (3)
C5—C4—H4B109.4C21—C20—C17113.7 (3)
H4A—C4—H4B108.0C22—C20—C17110.5 (3)
C6—C5—C4121.0 (3)C21—C20—H20A107.2
C6—C5—C10122.5 (3)C22—C20—H20A107.2
C4—C5—C10116.5 (3)C17—C20—H20A107.2
C5—C6—C7125.7 (4)C20—C21—H21A109.5
C5—C6—H6A117.1C20—C21—H21B109.5
C7—C6—H6A117.1H21A—C21—H21B109.5
C6—C7—C8113.1 (3)C20—C21—H21C109.5
C6—C7—H7A109.0H21A—C21—H21C109.5
C8—C7—H7A109.0H21B—C21—H21C109.5
C6—C7—H7B109.0N27—C22—C23126.1 (4)
C8—C7—H7B109.0N27—C22—C20116.2 (4)
H7A—C7—H7B107.8C23—C22—C20117.6 (4)
C7—C8—C14110.7 (3)C22—C23—C24113.6 (4)
C7—C8—C9110.1 (3)C22—C23—H23A108.8
C14—C8—C9108.9 (3)C24—C23—H23A108.8
C7—C8—H8A109.1C22—C23—H23B108.8
C14—C8—H8A109.1C24—C23—H23B108.8
C9—C8—H8A109.1H23A—C23—H23B107.7
C11—C9—C8111.6 (3)C25—C24—C23109.4 (5)
C11—C9—C10113.6 (3)C25—C24—H24A109.8
C8—C9—C10112.8 (3)C23—C24—H24A109.8
C11—C9—H9A106.1C25—C24—H24B109.8
C8—C9—H9A106.1C23—C24—H24B109.8
C10—C9—H9A106.1H24A—C24—H24B108.2
C5—C10—C19107.8 (3)C26—C25—C24110.6 (6)
C5—C10—C1108.6 (3)C26—C25—C28111.4 (5)
C19—C10—C1109.8 (3)C24—C25—C28113.0 (6)
C5—C10—C9110.1 (3)C26—C25—H25B107.2
C19—C10—C9111.6 (3)C24—C25—H25B107.2
C1—C10—C9108.9 (3)C28—C25—H25B107.2
C9—C11—C12114.5 (3)N27—C26—C25116.3 (4)
C9—C11—H11A108.6N27—C26—H26A108.2
C12—C11—H11A108.6C25—C26—H26A108.2
C9—C11—H11B108.6N27—C26—H26B108.2
C12—C11—H11B108.6C25—C26—H26B108.2
H11A—C11—H11B107.6H26A—C26—H26B107.4
C13—C12—C11111.7 (3)C22—N27—C26118.9 (4)
C13—C12—H12A109.3C25—C28—H28A109.5
C11—C12—H12A109.3C25—C28—H28B109.5
C13—C12—H12B109.3H28A—C28—H28B109.5
C11—C12—H12B109.3C25—C28—H28C109.5
H12A—C12—H12B107.9H28A—C28—H28C109.5
C14—C13—C12106.2 (3)H28B—C28—H28C109.5
C14—C13—C18113.0 (3)C30—O29—C3117.0 (4)
C12—C13—C18110.2 (3)O31—C30—O29123.8 (5)
C14—C13—C1799.6 (3)O31—C30—C32125.7 (6)
C12—C13—C17117.1 (3)O29—C30—C32110.5 (6)
C18—C13—C17110.3 (3)C30—C32—H32A109.5
C15—C14—C8118.1 (3)C30—C32—H32B109.5
C15—C14—C13105.0 (3)H32A—C32—H32B109.5
C8—C14—C13115.8 (3)C30—C32—H32C109.5
C15—C14—H14A105.6H32A—C32—H32C109.5
C8—C14—H14A105.6H32B—C32—H32C109.5
C13—C14—H14A105.6C34—O33—C16118.7 (4)
C14—C15—C16104.1 (3)O35—C34—O33123.4 (6)
C14—C15—H15A110.9O35—C34—C36124.2 (6)
C16—C15—H15A110.9O33—C34—C36112.3 (6)
C14—C15—H15B110.9C34—C36—H36A109.5
C16—C15—H15B110.9C34—C36—H36B109.5
H15A—C15—H15B109.0H36A—C36—H36B109.5
O33—C16—C15109.4 (3)C34—C36—H36C109.5
O33—C16—C17109.4 (3)H36A—C36—H36C109.5
C15—C16—C17106.7 (3)H36B—C36—H36C109.5
C10—C1—C2—C357.9 (5)C12—C13—C14—C860.6 (4)
C1—C2—C3—O29179.3 (3)C18—C13—C14—C860.3 (4)
C1—C2—C3—C461.0 (4)C17—C13—C14—C8177.3 (3)
O29—C3—C4—C5175.8 (3)C8—C14—C15—C16164.1 (3)
C2—C3—C4—C558.4 (5)C13—C14—C15—C1633.3 (4)
C3—C4—C5—C6128.0 (4)C14—C15—C16—O33125.7 (3)
C3—C4—C5—C1051.5 (5)C14—C15—C16—C177.5 (4)
C4—C5—C6—C7178.7 (4)C14—C13—C17—C20168.0 (3)
C10—C5—C6—C71.9 (6)C12—C13—C17—C2078.1 (4)
C5—C6—C7—C811.2 (6)C18—C13—C17—C2049.0 (5)
C6—C7—C8—C14160.7 (3)C14—C13—C17—C1639.4 (3)
C6—C7—C8—C940.4 (4)C12—C13—C17—C16153.2 (3)
C7—C8—C9—C11171.4 (3)C18—C13—C17—C1679.7 (4)
C14—C8—C9—C1149.9 (4)O33—C16—C17—C2034.9 (4)
C7—C8—C9—C1059.3 (4)C15—C16—C17—C20153.1 (3)
C14—C8—C9—C10179.2 (3)O33—C16—C17—C1398.0 (3)
C6—C5—C10—C19106.6 (4)C15—C16—C17—C1320.2 (4)
C4—C5—C10—C1974.0 (4)C13—C17—C20—C2156.1 (5)
C6—C5—C10—C1134.5 (4)C16—C17—C20—C21179.6 (4)
C4—C5—C10—C145.0 (4)C13—C17—C20—C22178.6 (3)
C6—C5—C10—C915.3 (5)C16—C17—C20—C2254.2 (4)
C4—C5—C10—C9164.1 (3)C21—C20—C22—N27106.5 (5)
C2—C1—C10—C548.2 (5)C17—C20—C22—N27126.6 (4)
C2—C1—C10—C1969.5 (5)C21—C20—C22—C2370.7 (5)
C2—C1—C10—C9168.1 (3)C17—C20—C22—C2356.2 (5)
C11—C9—C10—C5173.9 (3)N27—C22—C23—C2410.7 (7)
C8—C9—C10—C545.6 (4)C20—C22—C23—C24166.2 (4)
C11—C9—C10—C1954.2 (4)C22—C23—C24—C2541.0 (7)
C8—C9—C10—C1974.0 (4)C23—C24—C25—C2657.2 (7)
C11—C9—C10—C167.1 (4)C23—C24—C25—C28177.1 (5)
C8—C9—C10—C1164.6 (3)C24—C25—C26—N2744.7 (8)
C8—C9—C11—C1250.0 (5)C28—C25—C26—N27171.2 (5)
C10—C9—C11—C12178.9 (3)C23—C22—N27—C264.1 (7)
C9—C11—C12—C1353.5 (5)C20—C22—N27—C26179.0 (4)
C11—C12—C13—C1454.9 (5)C25—C26—N27—C2213.5 (8)
C11—C12—C13—C1867.8 (4)C2—C3—O29—C30151.0 (4)
C11—C12—C13—C17165.0 (3)C4—C3—O29—C3089.8 (5)
C7—C8—C14—C1554.5 (4)C3—O29—C30—O310.7 (9)
C9—C8—C14—C15175.6 (4)C3—O29—C30—C32179.2 (4)
C7—C8—C14—C13179.8 (3)C15—C16—O33—C34107.5 (4)
C9—C8—C14—C1358.7 (4)C17—C16—O33—C34136.0 (4)
C12—C13—C14—C15167.1 (3)C16—O33—C34—O350.3 (8)
C18—C13—C14—C1571.9 (4)C16—O33—C34—C36177.6 (4)
C17—C13—C14—C1545.1 (3)
(II) (22S,25R)-16β-hydroxy-22,26-epiminocholesta-5-ene-3β-yl acetate top
Crystal data top
C29H47NO3F(000) = 1008
Mr = 457.68Dx = 1.153 Mg m3
Monoclinic, C2Melting point: 488 K
Hall symbol: C 2yMo Kα radiation, λ = 0.71073 Å
a = 10.026 (2) ÅCell parameters from 56 reflections
b = 7.4403 (14) Åθ = 4.0–12.5°
c = 35.508 (6) ŵ = 0.07 mm1
β = 95.512 (18)°T = 296 K
V = 2636.4 (9) Å3Plate, colourless
Z = 40.60 × 0.40 × 0.18 mm
Data collection top
Bruker P4
diffractometer
Rint = 0.043
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.3°
Graphite monochromatorh = 115
ω scansk = 18
4449 measured reflectionsl = 4242
2526 independent reflections3 standard reflections every 97 reflections
2236 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0823P)2 + 0.9528P]
where P = (Fo2 + 2Fc2)/3
2526 reflections(Δ/σ)max < 0.001
322 parametersΔρmax = 0.16 e Å3
5 restraintsΔρmin = 0.28 e Å3
Crystal data top
C29H47NO3V = 2636.4 (9) Å3
Mr = 457.68Z = 4
Monoclinic, C2Mo Kα radiation
a = 10.026 (2) ŵ = 0.07 mm1
b = 7.4403 (14) ÅT = 296 K
c = 35.508 (6) Å0.60 × 0.40 × 0.18 mm
β = 95.512 (18)°
Data collection top
Bruker P4
diffractometer
Rint = 0.043
4449 measured reflections3 standard reflections every 97 reflections
2526 independent reflections intensity decay: 2%
2236 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0495 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.16 e Å3
2526 reflectionsΔρmin = 0.28 e Å3
322 parameters
Special details top

Experimental. m.p. 488–490 K (Lit. 484.5–486; Kusano et al., 1970; Bird et al. 1979). [α]D = -71.5° (c. 0.89, CHCl3) [Lit. -67.1°, c. 1.08, CHCl3; Kusano et al., 1970; -67.7°, c. 0.87, CHCl3; Bird et al. 1979]. (Sato et al., 1957)]. 1H-NMR, δ: 5.36 (1H, d, J=4.4 Hz, H-6), 5.19 (1H, m, H-16), 4.59 (1H, m, H-3), 3.61 (1H, dd, J=16.8 Hz, J=4.7 Hz, H-26 e), 2.96 (1H, dd, J=16.8 Hz, J=9.9 Hz, H-26a), 2.56 (1H, m, H-20), 2.03 (3H, s, CH3COO-3), 1.98 (3H, s, CH3COO-16), 1.10 (3H, d, J=6.8 Hz, H-21), 1.02 (3H, s, H-19), 0.89 (3H, s, H-18), 0.87 (3H, d, J=6.4 Hz, H-27). 13C-NMR, δ: 36.7 (C-1), 27.7 (C-2), 73.8 (C-3), 37.9 (C-4), 139.6 (C-5), 122.2 (C-6), 31.5 (C-7), 31.2 (C-8), 49.7 (C-9), 36.4 (C-10), 20.6 (C-11), 39.4 (C-12), 41.9 (C-13), 54.1 (C-14), 34.5 (C-15), 75.0 (C-16), 56.2 (C-17), 12.8 (C-18), 19.2 (C-19), 40.7 (C-20), 18.7 (C-21), 173.6 (C-22), 28.2 (C-23), 27.8 (C-24), 27.2 (C-25), 55.6 (C-26), 19.0 (C-27), 170.2 (CH3COO-16), 170.4 (CH3COO-3).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3492 (3)0.4864 (5)0.35479 (8)0.0493 (8)
H1A0.36370.60130.34290.059*
H1B0.26350.44050.34390.059*
C20.3420 (4)0.5172 (6)0.39751 (9)0.0556 (9)
H2A0.42370.57390.40850.067*
H2B0.26720.59550.40150.067*
C30.3240 (4)0.3378 (7)0.41594 (8)0.0582 (10)
H3A0.24140.28120.40460.070*
C40.4414 (4)0.2165 (6)0.41110 (8)0.0526 (9)
H4A0.42890.10230.42350.063*
H4B0.52300.27090.42280.063*
C50.4541 (3)0.1857 (5)0.36919 (8)0.0400 (7)
C60.4564 (3)0.0213 (5)0.35583 (8)0.0430 (7)
H6A0.45160.07280.37290.052*
C70.4663 (3)0.0263 (4)0.31507 (8)0.0415 (7)
H7A0.38030.07130.30420.050*
H7B0.53150.12190.31380.050*
C80.5072 (3)0.1329 (4)0.29156 (8)0.0322 (6)
H8A0.60410.15120.29630.039*
C90.4344 (3)0.3048 (4)0.30230 (8)0.0340 (6)
H9A0.33840.27900.29780.041*
C100.4608 (3)0.3546 (4)0.34505 (8)0.0355 (7)
C110.4619 (3)0.4599 (4)0.27563 (8)0.0411 (7)
H11A0.55490.49570.28060.049*
H11B0.40700.56180.28130.049*
C120.4339 (3)0.4148 (4)0.23327 (8)0.0400 (7)
H12A0.33840.39700.22730.048*
H12B0.46080.51570.21840.048*
C130.5082 (3)0.2463 (4)0.22219 (8)0.0323 (6)
C140.4717 (3)0.0967 (4)0.24964 (8)0.0321 (6)
H14A0.37370.08840.24630.038*
C150.5217 (3)0.0747 (4)0.23263 (8)0.0390 (7)
H15A0.47260.17810.24050.047*
H15B0.61640.09220.24020.047*
C160.4971 (3)0.0476 (5)0.18999 (8)0.0388 (7)
H16A0.42180.12330.18010.047*
C170.4575 (3)0.1549 (4)0.18397 (7)0.0340 (7)
H17A0.35950.15850.18260.041*
C180.6609 (3)0.2811 (5)0.22415 (9)0.0436 (7)
H18A0.69610.29550.25010.057*
H18B0.67720.38840.21030.057*
H18C0.70400.18110.21330.057*
C190.5992 (3)0.4420 (5)0.35438 (9)0.0487 (8)
H19A0.61690.45490.38130.063*
H19B0.60010.55820.34270.063*
H19C0.66680.36750.34500.063*
C200.4954 (3)0.2416 (5)0.14645 (8)0.0413 (7)
H20A0.59330.23770.14690.050*
C210.4533 (4)0.4399 (5)0.14372 (9)0.0549 (9)
H21A0.46060.48280.11850.071*
H21B0.51070.50950.16130.071*
H21C0.36220.45140.14960.071*
C220.4367 (3)0.1437 (5)0.10979 (8)0.0453 (8)
H22A0.43470.23200.08930.054*
C230.2956 (3)0.0745 (6)0.11040 (9)0.0515 (9)
H23A0.23620.17430.11430.062*
H23B0.29220.00820.13140.062*
C240.2469 (4)0.0210 (7)0.07371 (10)0.0623 (11)
H24A0.15900.07200.07590.075*
H24B0.23890.06530.05310.075*
C250.3422 (5)0.1684 (6)0.06483 (10)0.0653 (11)
H25A0.34590.25630.08550.078*
C260.4811 (4)0.0895 (7)0.06371 (10)0.0642 (11)
H26A0.54330.18410.05840.077*
H26B0.47980.00160.04350.077*
N270.5267 (3)0.0035 (5)0.09981 (8)0.0550 (8)
H270.612 (4)0.034 (7)0.0961 (11)0.072*
C280.2974 (6)0.2665 (9)0.02789 (13)0.0989 (17)
H28A0.21000.31740.02940.129*
H28B0.35990.36060.02390.129*
H28C0.29400.18300.00720.129*
O290.3162 (3)0.3628 (6)0.45665 (7)0.0779 (10)
C300.1997 (5)0.3354 (7)0.47000 (10)0.0682 (12)
O31A0.112 (2)0.251 (5)0.4525 (3)0.111 (8)0.47 (4)
C32A0.1995 (10)0.3592 (14)0.51267 (11)0.082 (6)0.47 (4)
H32A0.10920.37650.51880.106*0.47 (4)
H32B0.25260.46220.52070.106*0.47 (4)
H32C0.23660.25400.52530.106*0.47 (4)
O31B0.0989 (11)0.337 (3)0.44926 (13)0.102 (5)0.53 (4)
C32B0.2252 (10)0.3606 (17)0.51282 (12)0.110 (7)0.53 (4)
H32D0.24190.48530.51840.142*0.53 (4)
H32E0.30170.29070.52230.142*0.53 (4)
H32F0.14810.32160.52470.142*0.53 (4)
O330.6154 (2)0.1028 (4)0.17336 (6)0.0516 (6)
H330.590 (4)0.103 (7)0.1484 (11)0.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0595 (19)0.055 (2)0.0339 (15)0.0155 (18)0.0060 (13)0.0070 (15)
C20.062 (2)0.068 (2)0.0380 (16)0.013 (2)0.0085 (14)0.0116 (18)
C30.064 (2)0.081 (3)0.0304 (16)0.014 (2)0.0131 (14)0.0153 (18)
C40.075 (2)0.053 (2)0.0311 (15)0.0055 (19)0.0093 (14)0.0018 (15)
C50.0408 (15)0.045 (2)0.0342 (15)0.0024 (14)0.0042 (12)0.0018 (14)
C60.0532 (19)0.0393 (18)0.0370 (15)0.0056 (15)0.0074 (13)0.0087 (14)
C70.0579 (18)0.0304 (16)0.0366 (15)0.0027 (15)0.0059 (13)0.0001 (13)
C80.0323 (13)0.0302 (15)0.0342 (14)0.0005 (12)0.0037 (11)0.0018 (12)
C90.0396 (15)0.0315 (15)0.0315 (14)0.0000 (12)0.0057 (11)0.0018 (12)
C100.0368 (15)0.0396 (17)0.0304 (13)0.0012 (13)0.0040 (11)0.0020 (13)
C110.0614 (18)0.0266 (15)0.0362 (15)0.0047 (15)0.0097 (13)0.0016 (13)
C120.0556 (18)0.0315 (16)0.0335 (14)0.0063 (14)0.0068 (12)0.0009 (13)
C130.0343 (14)0.0306 (15)0.0327 (13)0.0007 (12)0.0066 (11)0.0011 (12)
C140.0327 (13)0.0276 (15)0.0366 (14)0.0041 (12)0.0067 (11)0.0020 (12)
C150.0477 (17)0.0301 (16)0.0399 (15)0.0035 (13)0.0071 (12)0.0004 (13)
C160.0418 (15)0.0365 (17)0.0395 (15)0.0002 (14)0.0115 (12)0.0028 (13)
C170.0351 (14)0.0360 (16)0.0324 (14)0.0021 (13)0.0107 (11)0.0019 (13)
C180.0415 (16)0.0441 (19)0.0462 (16)0.0082 (14)0.0093 (12)0.0025 (15)
C190.0525 (18)0.053 (2)0.0404 (15)0.0121 (17)0.0025 (13)0.0029 (16)
C200.0502 (17)0.0423 (18)0.0332 (14)0.0012 (15)0.0129 (12)0.0030 (14)
C210.080 (2)0.045 (2)0.0417 (17)0.002 (2)0.0168 (16)0.0074 (16)
C220.0568 (18)0.0469 (19)0.0338 (15)0.0047 (16)0.0127 (13)0.0003 (15)
C230.0529 (18)0.063 (2)0.0393 (16)0.0057 (17)0.0052 (14)0.0076 (17)
C240.070 (2)0.076 (3)0.0398 (16)0.005 (2)0.0007 (15)0.0012 (19)
C250.097 (3)0.056 (2)0.0423 (18)0.003 (2)0.0021 (18)0.0071 (18)
C260.081 (3)0.070 (3)0.0431 (17)0.015 (2)0.0145 (17)0.0118 (19)
N270.0556 (16)0.070 (2)0.0405 (14)0.0086 (17)0.0121 (12)0.0102 (15)
C280.133 (4)0.095 (4)0.068 (3)0.009 (4)0.006 (3)0.032 (3)
O290.091 (2)0.111 (3)0.0349 (12)0.022 (2)0.0214 (12)0.0196 (15)
C300.086 (3)0.075 (3)0.048 (2)0.010 (3)0.030 (2)0.005 (2)
O31A0.090 (8)0.19 (2)0.053 (5)0.052 (10)0.010 (5)0.008 (6)
C32A0.095 (9)0.120 (16)0.033 (7)0.013 (10)0.023 (5)0.007 (8)
O31B0.080 (6)0.167 (13)0.066 (5)0.032 (6)0.035 (5)0.035 (6)
C32B0.190 (15)0.070 (11)0.084 (11)0.022 (10)0.089 (10)0.009 (9)
O330.0564 (13)0.0569 (16)0.0434 (11)0.0175 (12)0.0141 (10)0.0042 (12)
Geometric parameters (Å, º) top
C1—C21.543 (4)C17—H17A0.9800
C1—C101.551 (4)C18—H18A0.9600
C1—H1A0.9700C18—H18B0.9600
C1—H1B0.9700C18—H18C0.9600
C2—C31.505 (6)C19—H19A0.9600
C2—H2A0.9700C19—H19B0.9600
C2—H2B0.9700C19—H19C0.9600
C3—O291.467 (4)C20—C211.536 (5)
C3—C41.506 (6)C20—C221.557 (4)
C3—H3A0.9800C20—H20A0.9800
C4—C51.523 (4)C21—H21A0.9600
C4—H4A0.9700C21—H21B0.9600
C4—H4B0.9700C21—H21C0.9600
C5—C61.313 (5)C22—N271.483 (5)
C5—C101.526 (5)C22—C231.508 (5)
C6—C71.502 (4)C22—H22A0.9800
C6—H6A0.9300C23—C241.522 (5)
C7—C81.527 (4)C23—H23A0.9700
C7—H7A0.9700C23—H23B0.9700
C7—H7B0.9700C24—C251.507 (6)
C8—C141.521 (4)C24—H24A0.9700
C8—C91.539 (4)C24—H24B0.9700
C8—H8A0.9800C25—C261.515 (6)
C9—C111.534 (4)C25—C281.531 (6)
C9—C101.560 (4)C25—H25A0.9800
C9—H9A0.9800C26—N271.466 (4)
C10—C191.539 (4)C26—H26A0.9700
C11—C121.540 (4)C26—H26B0.9700
C11—H11A0.9700N27—H270.92 (4)
C11—H11B0.9700C28—H28A0.9600
C12—C131.529 (4)C28—H28B0.9600
C12—H12A0.9700C28—H28C0.9600
C12—H12B0.9700O29—C301.318 (5)
C13—C141.547 (4)C30—O31B1.192 (7)
C13—C181.547 (4)C30—O31A1.205 (8)
C13—C171.558 (4)C30—C32A1.526 (5)
C14—C151.517 (4)C30—C32B1.529 (4)
C14—H14A0.9800C32A—H32A0.9600
C15—C161.524 (4)C32A—H32B0.9600
C15—H15A0.9700C32A—H32C0.9600
C15—H15B0.9700C32B—H32D0.9600
C16—O331.435 (4)C32B—H32E0.9600
C16—C171.568 (5)C32B—H32F0.9600
C16—H16A0.9800O33—H330.90 (4)
C17—C201.559 (4)
C2—C1—C10114.6 (3)C15—C16—H16A109.1
C2—C1—H1A108.6C17—C16—H16A109.1
C10—C1—H1A108.6C13—C17—C20118.5 (3)
C2—C1—H1B108.6C13—C17—C16104.1 (2)
C10—C1—H1B108.6C20—C17—C16115.7 (2)
H1A—C1—H1B107.6C13—C17—H17A105.8
C3—C2—C1108.3 (3)C20—C17—H17A105.8
C3—C2—H2A110.0C16—C17—H17A105.8
C1—C2—H2A110.0C13—C18—H18A109.5
C3—C2—H2B110.0C13—C18—H18B109.5
C1—C2—H2B110.0H18A—C18—H18B109.5
H2A—C2—H2B108.4C13—C18—H18C109.5
O29—C3—C2109.6 (3)H18A—C18—H18C109.5
O29—C3—C4107.7 (3)H18B—C18—H18C109.5
C2—C3—C4110.7 (3)C10—C19—H19A109.5
O29—C3—H3A109.6C10—C19—H19B109.5
C2—C3—H3A109.6H19A—C19—H19B109.5
C4—C3—H3A109.6C10—C19—H19C109.5
C3—C4—C5109.9 (3)H19A—C19—H19C109.5
C3—C4—H4A109.7H19B—C19—H19C109.5
C5—C4—H4A109.7C21—C20—C22108.5 (3)
C3—C4—H4B109.7C21—C20—C17111.3 (3)
C5—C4—H4B109.7C22—C20—C17114.7 (3)
H4A—C4—H4B108.2C21—C20—H20A107.3
C6—C5—C4119.9 (3)C22—C20—H20A107.3
C6—C5—C10124.1 (3)C17—C20—H20A107.3
C4—C5—C10115.9 (3)C20—C21—H21A109.5
C5—C6—C7124.9 (3)C20—C21—H21B109.5
C5—C6—H6A117.5H21A—C21—H21B109.5
C7—C6—H6A117.5C20—C21—H21C109.5
C6—C7—C8112.9 (3)H21A—C21—H21C109.5
C6—C7—H7A109.0H21B—C21—H21C109.5
C8—C7—H7A109.0N27—C22—C23110.2 (3)
C6—C7—H7B109.0N27—C22—C20110.8 (3)
C8—C7—H7B109.0C23—C22—C20115.3 (2)
H7A—C7—H7B107.8N27—C22—H22A106.7
C14—C8—C7110.4 (2)C23—C22—H22A106.7
C14—C8—C9108.5 (2)C20—C22—H22A106.7
C7—C8—C9110.5 (2)C22—C23—C24111.8 (3)
C14—C8—H8A109.1C22—C23—H23A109.3
C7—C8—H8A109.1C24—C23—H23A109.3
C9—C8—H8A109.1C22—C23—H23B109.3
C11—C9—C8110.8 (2)C24—C23—H23B109.3
C11—C9—C10113.5 (2)H23A—C23—H23B107.9
C8—C9—C10113.5 (2)C25—C24—C23111.2 (3)
C11—C9—H9A106.1C25—C24—H24A109.4
C8—C9—H9A106.1C23—C24—H24A109.4
C10—C9—H9A106.1C25—C24—H24B109.4
C5—C10—C19108.3 (2)C23—C24—H24B109.4
C5—C10—C1108.9 (2)H24A—C24—H24B108.0
C19—C10—C1109.8 (3)C24—C25—C26109.1 (4)
C5—C10—C9109.8 (3)C24—C25—C28112.7 (4)
C19—C10—C9112.0 (2)C26—C25—C28110.9 (4)
C1—C10—C9108.0 (2)C24—C25—H25A108.0
C9—C11—C12114.4 (3)C26—C25—H25A108.0
C9—C11—H11A108.7C28—C25—H25A108.0
C12—C11—H11A108.7N27—C26—C25110.9 (3)
C9—C11—H11B108.7N27—C26—H26A109.5
C12—C11—H11B108.7C25—C26—H26A109.5
H11A—C11—H11B107.6N27—C26—H26B109.5
C13—C12—C11112.5 (2)C25—C26—H26B109.5
C13—C12—H12A109.1H26A—C26—H26B108.1
C11—C12—H12A109.1C22—N27—C26112.7 (3)
C13—C12—H12B109.1C26—N27—H27103 (3)
C11—C12—H12B109.1C22—N27—H27114 (3)
H12A—C12—H12B107.8C25—C28—H28A109.5
C12—C13—C14106.1 (2)C25—C28—H28B109.5
C12—C13—C18110.8 (3)H28A—C28—H28B109.5
C14—C13—C18112.7 (2)C25—C28—H28C109.5
C12—C13—C17117.1 (2)H28A—C28—H28C109.5
C14—C13—C1799.1 (2)H28B—C28—H28C109.5
C18—C13—C17110.6 (2)C30—O29—C3117.9 (3)
C15—C14—C8118.9 (2)O31B—C30—O29120.3 (7)
C15—C14—C13104.2 (2)O31A—C30—O29121.6 (9)
C8—C14—C13116.3 (2)O31A—C30—C32A120.1 (7)
C15—C14—H14A105.4O29—C30—C32A115.2 (5)
C8—C14—H14A105.4O31B—C30—C32B131.7 (7)
C13—C14—H14A105.4O29—C30—C32B105.6 (4)
C14—C15—C16104.9 (2)C30—C32A—H32A109.5
C14—C15—H15A110.8C30—C32A—H32B109.5
C16—C15—H15A110.8C30—C32A—H32C109.5
C14—C15—H15B110.8C30—C32B—H32D109.5
C16—C15—H15B110.8C30—C32B—H32E109.5
H15A—C15—H15B108.9H32D—C32B—H32E109.5
O33—C16—C15108.1 (2)C30—C32B—H32F109.5
O33—C16—C17115.3 (3)H32D—C32B—H32F109.5
C15—C16—C17106.1 (2)H32E—C32B—H32F109.5
O33—C16—H16A109.1C16—O33—H33104 (3)
C10—C1—C2—C356.5 (4)C17—C13—C14—C1546.5 (3)
C1—C2—C3—O29179.8 (3)C12—C13—C14—C858.9 (3)
C1—C2—C3—C461.5 (4)C18—C13—C14—C862.5 (3)
O29—C3—C4—C5179.9 (3)C17—C13—C14—C8179.4 (2)
C2—C3—C4—C560.2 (4)C8—C14—C15—C16167.3 (2)
C3—C4—C5—C6125.3 (4)C13—C14—C15—C1635.9 (3)
C3—C4—C5—C1053.7 (4)C14—C15—C16—O33134.4 (3)
C4—C5—C6—C7179.0 (3)C14—C15—C16—C1710.2 (3)
C10—C5—C6—C70.1 (5)C12—C13—C17—C2077.3 (3)
C5—C6—C7—C813.8 (5)C14—C13—C17—C20169.3 (2)
C6—C7—C8—C14161.3 (2)C18—C13—C17—C2050.8 (4)
C6—C7—C8—C941.3 (3)C12—C13—C17—C16152.4 (2)
C14—C8—C9—C1152.1 (3)C14—C13—C17—C1639.1 (3)
C7—C8—C9—C11173.2 (2)C18—C13—C17—C1679.4 (3)
C14—C8—C9—C10178.9 (2)O33—C16—C17—C13100.9 (3)
C7—C8—C9—C1057.8 (3)C15—C16—C17—C1318.7 (3)
C6—C5—C10—C19108.4 (4)O33—C16—C17—C2031.0 (4)
C4—C5—C10—C1972.7 (3)C15—C16—C17—C20150.5 (2)
C6—C5—C10—C1132.2 (3)C13—C17—C20—C2154.7 (4)
C4—C5—C10—C146.7 (3)C16—C17—C20—C21179.4 (3)
C6—C5—C10—C914.2 (4)C13—C17—C20—C22178.3 (3)
C4—C5—C10—C9164.7 (2)C16—C17—C20—C2256.9 (3)
C2—C1—C10—C548.2 (4)C21—C20—C22—N27148.0 (3)
C2—C1—C10—C1970.3 (4)C17—C20—C22—N2786.9 (3)
C2—C1—C10—C9167.3 (3)C21—C20—C22—C2386.0 (4)
C11—C9—C10—C5170.5 (2)C17—C20—C22—C2339.1 (4)
C8—C9—C10—C542.8 (3)N27—C22—C23—C2453.0 (4)
C11—C9—C10—C1950.1 (4)C20—C22—C23—C24179.3 (3)
C8—C9—C10—C1977.5 (3)C22—C23—C24—C2554.5 (5)
C11—C9—C10—C171.0 (3)C23—C24—C25—C2655.8 (4)
C8—C9—C10—C1161.4 (3)C23—C24—C25—C28179.5 (4)
C8—C9—C11—C1252.1 (3)C24—C25—C26—N2758.1 (4)
C10—C9—C11—C12178.9 (2)C28—C25—C26—N27177.1 (4)
C9—C11—C12—C1354.0 (3)C25—C26—N27—C2259.3 (5)
C11—C12—C13—C1453.1 (3)C23—C22—N27—C2656.1 (4)
C11—C12—C13—C1869.5 (3)C20—C22—N27—C26175.1 (3)
C11—C12—C13—C17162.5 (2)C2—C3—O29—C30109.9 (4)
C7—C8—C14—C1553.7 (3)C4—C3—O29—C30129.5 (4)
C9—C8—C14—C15175.0 (2)C3—O29—C30—O31B18.9 (14)
C7—C8—C14—C13179.6 (2)C3—O29—C30—O31A18 (2)
C9—C8—C14—C1359.2 (3)C3—O29—C30—C32A178.6 (5)
C12—C13—C14—C15168.2 (2)C3—O29—C30—C32B176.8 (6)
C18—C13—C14—C1570.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O33—H33···N270.90 (4)1.93 (4)2.777 (4)157 (5)

Experimental details

(I)(II)
Crystal data
Chemical formulaC31H47NO4C29H47NO3
Mr497.70457.68
Crystal system, space groupOrthorhombic, P212121Monoclinic, C2
Temperature (K)296296
a, b, c (Å)6.1137 (16), 11.6779 (14), 41.330 (5)10.026 (2), 7.4403 (14), 35.508 (6)
α, β, γ (°)90, 90, 9090, 95.512 (18), 90
V3)2950.8 (9)2636.4 (9)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.070.07
Crystal size (mm)0.60 × 0.26 × 0.160.60 × 0.40 × 0.18
Data collection
DiffractometerBruker P4
diffractometer
Bruker P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3812, 3026, 1931 4449, 2526, 2236
Rint0.0280.043
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.154, 1.03 0.049, 0.135, 1.04
No. of reflections30262526
No. of parameters332322
No. of restraints05
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.200.16, 0.28

Computer programs: XSCANS (Siemens, 1996), SHELXTL-Plus (Release 5.10; Sheldrick, 2008) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) for (I) top
C5—C61.329 (5)C20—C221.527 (5)
C16—O331.455 (5)C22—N271.282 (5)
C20—C211.523 (6)C26—N271.484 (6)
C5—C6—C7125.7 (4)C22—N27—C26118.9 (4)
Selected geometric parameters (Å, º) for (II) top
C5—C61.313 (5)C20—C221.557 (4)
C16—O331.435 (4)C22—N271.483 (5)
C20—C211.536 (5)C26—N271.466 (4)
C5—C6—C7124.9 (3)C22—N27—C26112.7 (3)
 

Acknowledgements

SB is grateful to Benemérita Universidad Autónoma de Puebla (BUAP) for diffractometer time. The authors thank VIEP–BUAP for grant No. 9/I/NAT/05.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBird, G. J., Collins, D. J., Eastwood, F. W., Exner, R. H., Romanelli, M. L. & Small, D. D. (1979). Aust. J. Chem. 32, 783–796.  CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFriedman, M. & McDonald, G. M. (1997). Crit. Rev. Plant Sci. 16, 55–132.  CrossRef CAS Web of Science Google Scholar
First citationIglesias-Arteaga, M. A., Sandoval-Ramírez, J., Mata-Esma, M. Y., Viñas-Bravo, O. & Bernès, S. (2004). Tetrahedron Lett. 45, 4921–4926.  Web of Science CSD CrossRef CAS Google Scholar
First citationKadota, S., Chen, S. Z., Li, J. X., Xu, G.-J. & Namba, T. (1995). Phytochemistry, 38, 777–781.  CrossRef CAS Web of Science Google Scholar
First citationKusano, G., Aimi, N. & Sato, Y. (1970). J. Org. Chem. 35, 2624–2626.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLaCour, T. G., Tong, Z. & Fuchs, P. L. (1999). Org. Lett. 1, 1815–1818.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLowe, P. R., Sadler, I. H., Wang, Z., Wang, Y., Stevens, M. F. G., Zhao, L., Chen, S. & Xu, G. (1998). Phytochemistry, 47, 887–890.  Web of Science CSD CrossRef CAS Google Scholar
First citationSandoval-Ramírez, J., Castro-Méndez, A., Meza-Reyes, S., Reyes-Vázquez, F., Santillán, R. & Farfán, N. (1999). Tetrahedron Lett. 40, 5143–5146.  Web of Science CSD CrossRef CAS Google Scholar
First citationSandoval-Ramírez, J., Meza-Reyes, S., del Río, R. E., Hernández-Linares, G., Suárez-Rojas, A., Rincón, S., Farfán, N. & Santillan, R. L. (2003). Steroids, 68, 199–204.  Web of Science CrossRef PubMed Google Scholar
First citationSato, Y., Latham, H. G. Jr & Mosettig, E. (1957). J. Org. Chem. 22, 1496–1500.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Version 2.21. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVega-Baez, J. L., Sandoval-Ramírez, J., Montiel-Smith, S., Meza-Reyes, S. & Bernès, S. (2006). Acta Cryst. E62, o4741–o4743.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, Q. X., Tian, W. S. & Pan, S. (2004). Acta Chim. Sin. 62, 2171–2176.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Volume 64| Part 4| April 2008| Pages o214-o216
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds