organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Volume 64| Part 9| September 2008| Pages o478-o480

Imidazolium-based ionic liquid salts: 3,3′-di­methyl-1,1′-(1,4-phenyl­ene­di­methyl­ene)diimidazolium bis­­(tetra­fluoro­borate) and 3,3′-di-n-butyl-1,1′-(1,4-phenyl­enedi­methyl­ene)di­imid­azolium bis­­(tri­fluoro­methane­sulfonate)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 17 July 2008; accepted 22 July 2008; online 9 August 2008)

Crystallization of the ionic liquid 3,3′-dimethyl-1,1′-(1,4-phenyl­enedimethyl­ene)diimidazolium bis­(tetra­fluoro­borate), C16H20N42+·2BF4, (I)[link], from its solution in water has permitted the first single-crystal study of an imidazolium-based ionic liquid having a tetra­fluoro­borate ion as counter-ion. Despite the expecta­tion that the anion would not participate in nonclassical hydrogen bonding, the ionic liquid features C—H⋯F hydrogen bonds. The dication lies about a center of inversion. The ionic liquid 3,3′-di-n-butyl-1,1′-(1,4-phenyl­enedimethyl­ene)diimidazolium bis­(trifluoro­methane­sulfonate), C22H32N42+·2CF3SO3, (II), features both C—H⋯F and C—H⋯O hydrogen bonds.

Comment

Some ionic liquids incorporate an imidazolium group, as this feature appears to confer limited crystallinity despite the homogenous appearance of these ionic liquids. An understanding of the liquid–crystalline state of such compounds has been provided by the crystal structure of the prototype ionic liquid 1-butyl-3-methyl­imidazolium chloride. The solid-state structure shows weak hydrogen bonding between the cations and chloride anions (Saha et al., 2003[Saha, S., Hayashi, S., Kobayashi, A. & Hamaguchi, H. (2003). Chem. Lett. 32, 740-741.]). A better understanding of the solid-state versus liquid-state structures is furnished by the crystal structure of the hexa­fluoro­phosphate salt of 1-butyl-3-methyl­imidazolium (Dibrov & Kochi, 2006[Dibrov, S. M. & Kochi, J. K. (2006). Acta Cryst. C62, o19-o21.]). As the hexa­fluoro­phosphate anion does not normally participate in nonclassical hydrogen bonding, the crystal structure probably better represents the inter-ionic inter­actions of the liquid–crystalline state.

Our inter­est in the 3,3′-dimethyl-1,1′-(1,4-phenyl­ene­di­methyl­ene)diimidazolium dication arises from several reports on the applications of this class of ionic liquids. For example, 1-n-butyl-3-methyl­imidazolium tetra­fluoro­borate possesses an excellent gas-absorption property. As these studies have suggested that the nature of the anion influences this property (Aki et al., 2004[Aki, S. N. V., Mellein, B. R., Saurer, E. M. & Brennecke, J. F. (2004). J. Phys. Chem. B, 108, 20355-20365.]; Anthony et al., 2005[Anthony, J. L., Anderson, J. L., Maginn, E. J. & Brennecke, J. F. (2005). J. Phys. Chem. B, 109, 6366-6374.]; Galán Sánchez et al., 2007[Galán Sánchez, L. N., Meindersma, G. & de Haan, A. B. (2007). Trans. IChemE, 85, 31-39.]), we synthesized several 3,3′-dimethyl-1,1′-(1,4-phenyl­enedimethyl­ene)diimidazolium salts, viz. with the hexa­fluoro­phosphate, tetra­fluoro­borate and tri­fluoro­methyl­sulfonate anions, and examined their 13C NMR properties in

[Scheme 1]
various solvents (Ganesan & Alias, 2008[Ganesan, K. & Alias, Y. (2008). Int. J. Mol. Sci. 9, 1207-1213.]). We expect this class of compounds, which possess a rigid phenyl­enedimethyl­ene link between the imidazolium rings, to possess superior physical properties as studies on other compounds have shown the connection between chain length and physical properties (Holbrey & Seddon, 1999[Holbrey, J. D. & Seddon, K. R. (1999). J. Chem. Soc. Dalton Trans. pp. 2133-2139.]).

3,3′-Dimethyl-1,1′-(1,4-phenyl­enedimethyl­ene)diimid­a­z­ol­ium bis­(tetra­fluoro­borate), (I)[link], exists as a dication and a mono­anion (Fig. 1[link]) that inter­act weakly through C—H⋯F hydrogen bonding. The anion forms several contacts that are less than the sum of the van der Waals radii of hydrogen (1.2 Å) and fluorine (1.5 Å) (Table 1[link]). Two of the three hydrogen bonds, both from the imidazolium group, are significantly short (2.33 and 2.37 Å); moreover, these two hydrogen bonds are almost linear (171 and 162°, respectively). All distances between adjacent phenyl­ene rings or between adjacent imidazolium rings exceed 4 Å. The bond dimensions of the dication are similar to those found in the hexa­chloro­platinate(IV) (Li & Liu, 2003[Li, D.-C. & Liu, D.-J. (2003). Anal. Sci. 19, 1089-1090.]), tetra­thio­cyanato­cadmate(II) (Liu et al., 2002[Liu, F.-H., Chen, W.-Z. & You, X.-Z. (2002). J. Solid State Chem. 169, 199-207.]), tetra­seleno­cyano­cadmate (Liu & Li, 2003[Liu, D.-J. & Li, D. C. (2003). Appl. Organomet. Chem. 17, 811-812.]) and tetra­chloro­argentate (Wang et al., 2005[Wang, J.-W., Xu, F.-B., Li, Q.-S., Song, H.-B. & Zhang, Z.-Z. (2005). Acta Cryst. E61, m367-m369.]) salts.

The bond dimensions of the tetra­fluoro­borate counter-anions are marginally different from those found in more flexible dications, viz. in 1,1′-methyl­enebis(3-methyl­imid­az­ol­ium) dipicrate (Jin et al., 2006[Jin, C.-M., Wu, L.-Y., Han, D.-Y. & Hu, Y.-J. (2006). Acta Cryst. E62, o5619-o5620.]) and 3,3′-dimethyl-1,1′-ethyl­enediimidazolium dibromide (Jin et al., 2007[Jin, H.-S., Wang, H.-J., Zhang, Y., Zuo, Y.-J. & Zhong, C.-M. (2007). Acta Cryst. E63, o1880-o1881.]). The N—Cmethyl­ene distance [1.470 (3) Å] is lengthened compared with those found in the dipicrate salt [1.457 (2) and 1.458 (2) Å] and the N—Cethyl­ene distance found in the dibromide salt [1.461 (2) Å].

3,3′-Di-n-butyl-1,1′-(1,4-phenyl­enedimethyl­ene)diimid­az­ol­ium bis­(trifluoro­methane­sulfonate), (II), also has the dication inter­acting with the monoanions (Fig. 2[link]) through weak C—H⋯F hydrogen bonds. The imidazolium–phenyl­ene­di­methyl­ene–imidazolium portion has a Z shape, with the butyl substituents at either end. One of the butyl groups has the usual zigzag shape, whereas the other has a U shape. The C—H⋯F inter­actions are somewhat longer and the hydrogen bonds more bent; however, two short linear C—H⋯O hydrogen bonds are present that are comparable with classical hydrogen bonds (Table 2[link]).

In the present study, because the two anions do not engage in strong hydrogen bonding, the ionic liquid state then probably requires cation–anion inter­actions for long-range crystallinity.

[Figure 1]
Figure 1
Displacement ellipsoid plot (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) of (I)[link] at the 70% probability level. H atoms are drawn as spheres of arbitrary radii. The dication lies on a center of inversion at (½, ½, ½).
[Figure 2]
Figure 2
Displacement ellipsoid plot (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) of (II) at the 70% probability level. H atoms are drawn as spheres of arbitrary radii.

Experimental

The syntheses of the title compounds have been detailed in the study by Ganesan & Alias (2008[Ganesan, K. & Alias, Y. (2008). Int. J. Mol. Sci. 9, 1207-1213.]). Crystals of both (I)[link] and (II) were grown from solutions in water.

Compound (I)[link]

Crystal data
  • C16H20N42+·2BF4

  • Mr = 441.98

  • Monoclinic, P 21 /c

  • a = 4.9517 (2) Å

  • b = 12.8674 (5) Å

  • c = 15.2828 (6) Å

  • β = 92.806 (3)°

  • V = 972.58 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 100 (2) K

  • 0.36 × 0.08 × 0.06 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 8044 measured reflections

  • 2231 independent reflections

  • 1364 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.120

  • S = 1.02

  • 2231 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F1 0.95 2.59 3.367 (3) 140
C3—H3⋯F2i 0.95 2.33 3.272 (3) 171
C4—H4⋯F3ii 0.95 2.37 3.287 (3) 162
C4—H4⋯F4ii 0.95 2.48 3.278 (3) 141
Symmetry codes: (i) -x, -y, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Compound (II)[link]

Crystal data
  • C22H32N42+·2CF3SO3

  • Mr = 650.66

  • Triclinic, [P \overline 1]

  • a = 10.3833 (1) Å

  • b = 12.0470 (2) Å

  • c = 13.6933 (2) Å

  • α = 100.752 (1)°

  • β = 105.194 (1)°

  • γ = 111.970 (1)°

  • V = 1453.36 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 (2) K

  • 0.44 × 0.22 × 0.07 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.878, Tmax = 0.982

  • 18621 measured reflections

  • 6636 independent reflections

  • 5673 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.101

  • S = 1.02

  • 6636 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.53 e Å−3

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4a⋯O3 0.99 2.50 3.397 (2) 150
C5—H5⋯O2i 0.95 2.46 3.243 (2) 139
C6—H6⋯F1i 0.95 2.45 3.261 (2) 143
C6—H6⋯O4 0.95 2.44 3.166 (2) 133
C7—H7⋯O1ii 0.95 2.25 3.188 (2) 168
C10—H10⋯F3ii 0.95 2.47 3.365 (2) 157
C16—H16⋯O5iii 0.95 2.29 3.135 (2) 147
C18—H18⋯O3iv 0.95 2.46 2.956 (2) 112
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z; (iv) x, y, z+1.

Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and included in the refinement in the riding model approximation, with Uiso(H) values set at 1.2–1.5Ueq(C).

For both compounds, data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 (Version 2.1-4) and SAINT (Version 7.34A). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 (Version 2.1-4) and SAINT (Version 7.34A). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Some ionic liquids incorporate an imidazolium group as this feature appears to confer limited crystallinity despite their homogenous appearance. An understanding of the liquid–crystalline state of such compounds has been provided by the crystal structure of the prototype ionic liquid 1-butyl-3-methylimidazolium chloride. The solid-state structures shows weak hydrogen bonds between the cations and chloride anions (Saha et al., 2003). A better understanding of the solid-state versus the liquid-state structures is furnished by the crystal structure of the hexafluorophosphate salt (Dibrov & Kochi, 2006). As the hexafluorophosphate anion does not normally participate in nonclassical hydrogen bonding, the crystal structure probably better represents the inter-ionic interactions of the liquid–crystalline state.

Our interest in the 3,3'-dimethyl-1,1'-(1,4-phenylenedimethylene)di-1H-imidazolium dication arises from several reports on the applications of this class of ionic liquids. For example, 1-n-butyl-3-methylimidazolium tetrafluoroborate possesses an excellent gas-absorption property. As other studies have suggested that the nature of the anion influences this property (Aki et al., 2004; Anthony et al., 2005; Galán Sánchez et al., 2007), we synthesized several 3,3'-dimethyl-1,1'-(1,4-phenylenedimethylene)di-1H-imidazolium salts, viz. with the hexafluorophosphate, tetrafluoroborate and trifluoromethylsulfonate anions, and examined their 13C NMR properties in various solvents (Ganesan & Alias, 2008). We expect this class of compounds, which possess a rigid phenylenedimethylene link between the imidazolium rings, to possess superior physical properties as studies on other compounds have shown the connection between chain length and physical properties (Holbrey & Seddon, 1999).

3,3'-Dimethyl-1,1'-(1,4-phenylenedimethylene)di-1H-imidazolium bis(tetrafluoroborate), (I), exists as a dication and a monoanion (Fig. 1) that interact weakly through C—H···F hydrogen bonding. The anion forms several contacts that are less than the sum of the van der Waals radii of hydrogen (1.2Å) and fluorine (1.5Å) (Table 1). Two of the three hydrogen bonds, from the imidazolium group, are significantly short (2.33 and 2.37Å); moreover, the two hydrogen bonds are almost linear (171 and 162°, respectively). All distances between adjacent phenylene rings or between adjacent imidazoliumyl rings exceed 4Å. The bond dimensions of the dication are similar to those found in the hexachloroplatinate(IV) (Li & Liu, 2003), tetrathiocyanatocadmate(II) (Liu et al., 2002), tetraselenocyanocadmate (Liu & Li, 2003) and tetrachloroargentate (Wang et al., 2005) salts.

The bond dimensions of the tetrafluoroborate counter-anions are marginally different from those found in more flexible dications, viz. 1,1'-methylenebis(3-methylimidazolium) dipicrate (Jin et al., 2006) and 3,3'-dimethyl-1,1'-ethylenediimidazolium dibromide (Jin et al., 2007). The N—Cmethylene distance [1.470 (3)Å] is lengthened compared with those [1.457 (2) and 1.458 (2)Å] found in the dipicrate salt and the N—Cethylene distance [1.461 (2)Å] found in the dibromide salt.

3,3'-Di-n-butyl-1,1'-(1,4-phenylenedimethylene)di-1H-imidazolium bis(trifluoromethanesulfonate), (II), also has the dication interacting with the monoanions (Fig. 2) through weak C—H···F hydrogen bonds. The imidazolium–phenylenedimethylene–imidazolium portion has a Z shape, with the butyl substituents at either ends. One of the butyl groups has the usual zigzag conformation, whereas the other has has a U conformation. The C—H···F interactions are somewhat longer and the hydrogen bonds more bent; however, two short linear C—H···O hydrogen bonds are present that are comparable with classical hydrogen bonds (Table 2).

In the present study, because the two anions do not engage in strong hydrogen bonding, the ionic liquid state then probably requires cation–anion interactions for long-range crystallinity.

Related literature top

For related literature, see: Aki et al. (2004); Anthony et al. (2005); Dibrov & Kochi (2006); Galán Sánchez, Meindersma & de Haan (2007); Ganesan & Alias (2008); Jin et al. (2006, 2007); Li & Liu (2003); Liu & Li (2003); Liu et al. (2002); Saha et al. (2003); Wang et al. (2005).

Experimental top

The synthesis of the title compounds have been detailed in the study by Ganesan & Alias (2008). Crystals of both (I) and (II) were grown from solutions in water.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99Å) and were included in the refinement in the riding model approximation, with Uiso(H) values set at 1.2–1.5Ueq(C).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of (I) at the 70% probability level. H atoms are drawn as spheres of arbitrary radii. The dication lies on a center of inversion at (1/2, 1/2, 1/2).
[Figure 2] Fig. 2. Displacement ellipsoid plot (Barbour, 2001) of (II) at the 70% probability level. H atoms are drawn as spheres of arbitrary radii.
(I) 3,3'-dimethyl-1,1'-(1,4-phenylenedimethylene)di-1H-imidazolium bis(tetrafluoroborate) top
Crystal data top
C16H20N42+·2BF4F(000) = 452
Mr = 441.98Dx = 1.509 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1143 reflections
a = 4.9517 (2) Åθ = 3.1–21.1°
b = 12.8674 (5) ŵ = 0.14 mm1
c = 15.2828 (6) ÅT = 100 K
β = 92.806 (3)°Prism, colorless
V = 972.58 (7) Å30.36 × 0.08 × 0.06 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
1364 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.075
Graphite monochromatorθmax = 27.5°, θmin = 2.1°
ω scansh = 46
8044 measured reflectionsk = 1616
2231 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0322P)2 + 0.1741P]
where P = (Fo2 + 2Fc2)/3
2231 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C16H20N42+·2BF4V = 972.58 (7) Å3
Mr = 441.98Z = 2
Monoclinic, P21/cMo Kα radiation
a = 4.9517 (2) ŵ = 0.14 mm1
b = 12.8674 (5) ÅT = 100 K
c = 15.2828 (6) Å0.36 × 0.08 × 0.06 mm
β = 92.806 (3)°
Data collection top
Bruker SMART APEX
diffractometer
1364 reflections with I > 2σ(I)
8044 measured reflectionsRint = 0.075
2231 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.02Δρmax = 0.24 e Å3
2231 reflectionsΔρmin = 0.30 e Å3
137 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.0369 (3)0.09457 (12)0.37770 (8)0.0479 (4)
F20.3740 (3)0.18188 (11)0.30416 (8)0.0428 (4)
F30.0400 (3)0.25596 (11)0.32458 (9)0.0465 (4)
F40.0191 (3)0.12118 (10)0.23071 (8)0.0385 (4)
B10.0979 (5)0.16353 (19)0.30921 (15)0.0249 (6)
N10.4613 (4)0.12459 (13)0.35072 (11)0.0290 (5)
N20.6742 (4)0.23055 (13)0.43856 (11)0.0247 (4)
C10.3753 (6)0.06816 (18)0.27075 (15)0.0440 (7)
H1A0.44300.10410.21970.066*
H1B0.17740.06530.26560.066*
H1C0.44820.00260.27350.066*
C20.3762 (5)0.10498 (17)0.43359 (14)0.0325 (6)
H20.24840.05400.44910.039*
C30.5081 (5)0.17169 (16)0.48851 (14)0.0305 (5)
H30.49000.17710.54990.037*
C40.6401 (5)0.20069 (16)0.35528 (14)0.0272 (5)
H40.72960.22940.30730.033*
C50.8375 (5)0.31988 (16)0.46940 (14)0.0285 (5)
H5A0.96900.33790.42500.034*
H5B0.94030.30110.52430.034*
C60.6599 (5)0.41291 (16)0.48553 (13)0.0237 (5)
C70.4668 (5)0.44517 (16)0.42275 (13)0.0284 (5)
H70.44410.40790.36920.034*
C80.3062 (5)0.53107 (16)0.43693 (13)0.0280 (5)
H80.17280.55170.39360.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0565 (11)0.0587 (9)0.0288 (7)0.0192 (8)0.0049 (7)0.0132 (6)
F20.0309 (8)0.0568 (10)0.0407 (8)0.0030 (7)0.0027 (6)0.0077 (6)
F30.0471 (10)0.0460 (9)0.0465 (9)0.0092 (7)0.0026 (7)0.0130 (6)
F40.0456 (10)0.0459 (9)0.0241 (7)0.0010 (7)0.0022 (6)0.0057 (5)
B10.0257 (15)0.0292 (13)0.0199 (12)0.0030 (11)0.0028 (11)0.0017 (10)
N10.0373 (12)0.0221 (9)0.0275 (10)0.0010 (8)0.0002 (9)0.0018 (7)
N20.0308 (11)0.0208 (9)0.0228 (9)0.0004 (8)0.0027 (8)0.0015 (7)
C10.0584 (19)0.0326 (13)0.0396 (14)0.0025 (13)0.0102 (13)0.0096 (11)
C20.0372 (15)0.0257 (12)0.0352 (13)0.0006 (11)0.0063 (11)0.0089 (9)
C30.0387 (14)0.0266 (12)0.0269 (11)0.0027 (11)0.0064 (10)0.0053 (9)
C40.0318 (14)0.0251 (11)0.0252 (11)0.0011 (10)0.0059 (10)0.0009 (9)
C50.0295 (13)0.0283 (12)0.0275 (11)0.0035 (10)0.0025 (10)0.0007 (9)
C60.0258 (12)0.0222 (11)0.0233 (10)0.0047 (9)0.0019 (9)0.0029 (8)
C70.0366 (14)0.0280 (12)0.0200 (10)0.0004 (10)0.0038 (10)0.0034 (8)
C80.0307 (13)0.0288 (12)0.0238 (11)0.0006 (10)0.0063 (10)0.0015 (9)
Geometric parameters (Å, º) top
F1—B11.394 (3)C2—C31.347 (3)
F2—B11.386 (3)C2—H20.9500
F3—B11.386 (3)C3—H30.9500
F4—B11.391 (3)C4—H40.9500
N1—C41.320 (3)C5—C61.513 (3)
N1—C21.378 (3)C5—H5A0.9900
N1—C11.467 (3)C5—H5B0.9900
N2—C41.332 (3)C6—C71.385 (3)
N2—C31.376 (3)C6—C8i1.390 (3)
N2—C51.470 (3)C7—C81.385 (3)
C1—H1A0.9800C7—H70.9500
C1—H1B0.9800C8—C6i1.390 (3)
C1—H1C0.9800C8—H80.9500
F2—B1—F3109.86 (19)C2—C3—N2106.84 (19)
F2—B1—F4109.65 (18)C2—C3—H3126.6
F3—B1—F4109.02 (18)N2—C3—H3126.6
F2—B1—F1109.10 (19)N1—C4—N2108.52 (19)
F3—B1—F1109.40 (18)N1—C4—H4125.7
F4—B1—F1109.80 (19)N2—C4—H4125.7
C4—N1—C2108.78 (18)N2—C5—C6110.85 (19)
C4—N1—C1125.3 (2)N2—C5—H5A109.5
C2—N1—C1125.9 (2)C6—C5—H5A109.5
C4—N2—C3108.68 (19)N2—C5—H5B109.5
C4—N2—C5125.01 (18)C6—C5—H5B109.5
C3—N2—C5125.93 (17)H5A—C5—H5B108.1
N1—C1—H1A109.5C7—C6—C8i119.0 (2)
N1—C1—H1B109.5C7—C6—C5120.77 (18)
H1A—C1—H1B109.5C8i—C6—C5120.16 (18)
N1—C1—H1C109.5C8—C7—C6120.87 (18)
H1A—C1—H1C109.5C8—C7—H7119.6
H1B—C1—H1C109.5C6—C7—H7119.6
C3—C2—N1107.2 (2)C7—C8—C6i120.1 (2)
C3—C2—H2126.4C7—C8—H8120.0
N1—C2—H2126.4C6i—C8—H8120.0
C4—N1—C2—C30.2 (3)C5—N2—C4—N1173.92 (19)
C1—N1—C2—C3178.3 (2)C4—N2—C5—C6100.0 (2)
N1—C2—C3—N20.6 (3)C3—N2—C5—C672.2 (3)
C4—N2—C3—C20.8 (3)N2—C5—C6—C749.6 (3)
C5—N2—C3—C2174.0 (2)N2—C5—C6—C8i132.1 (2)
C2—N1—C4—N20.3 (3)C8i—C6—C7—C80.9 (3)
C1—N1—C4—N2177.8 (2)C5—C6—C7—C8179.2 (2)
C3—N2—C4—N10.6 (3)C6—C7—C8—C6i0.9 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F10.952.593.367 (3)140
C3—H3···F2ii0.952.333.272 (3)171
C4—H4···F3iii0.952.373.287 (3)162
C4—H4···F4iii0.952.483.278 (3)141
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y+1/2, z+1/2.
(II) 3,3'-di-n-butyl-1,1'-(1,4-phenylenedimethylene)di-1H-imidazolium bis(trifluoromethanesulfonate) top
Crystal data top
C22H32N42+·2CF3O3SZ = 2
Mr = 650.66F(000) = 676
Triclinic, P1Dx = 1.487 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3833 (1) ÅCell parameters from 9889 reflections
b = 12.0470 (2) Åθ = 2.3–28.3°
c = 13.6933 (2) ŵ = 0.27 mm1
α = 100.752 (1)°T = 100 K
β = 105.194 (1)°Prism, colorless
γ = 111.970 (1)°0.44 × 0.22 × 0.07 mm
V = 1453.36 (4) Å3
Data collection top
Bruker SMART APEX
diffractometer
6636 independent reflections
Radiation source: fine-focus sealed tube5673 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.878, Tmax = 0.982k = 1515
18621 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.5009P]
where P = (Fo2 + 2Fc2)/3
6636 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C22H32N42+·2CF3O3Sγ = 111.970 (1)°
Mr = 650.66V = 1453.36 (4) Å3
Triclinic, P1Z = 2
a = 10.3833 (1) ÅMo Kα radiation
b = 12.0470 (2) ŵ = 0.27 mm1
c = 13.6933 (2) ÅT = 100 K
α = 100.752 (1)°0.44 × 0.22 × 0.07 mm
β = 105.194 (1)°
Data collection top
Bruker SMART APEX
diffractometer
6636 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5673 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 0.982Rint = 0.035
18621 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.02Δρmax = 0.61 e Å3
6636 reflectionsΔρmin = 0.53 e Å3
379 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35898 (4)0.60056 (3)0.40873 (3)0.02218 (9)
S20.19275 (4)0.80463 (3)0.89593 (3)0.02267 (10)
O40.20342 (16)0.70622 (12)0.82642 (11)0.0471 (4)
O50.30956 (14)0.92924 (11)0.92008 (9)0.0351 (3)
O60.04659 (14)0.79708 (15)0.87344 (11)0.0451 (3)
F10.12047 (11)0.52767 (13)0.24022 (9)0.0540 (3)
F20.24536 (16)0.72806 (14)0.31126 (12)0.0657 (4)
F30.32545 (13)0.62352 (17)0.21915 (9)0.0669 (4)
F40.13506 (13)0.65721 (10)1.01335 (9)0.0435 (3)
F50.21473 (17)0.85268 (12)1.09557 (9)0.0622 (4)
F60.36549 (15)0.7829 (2)1.06021 (15)0.0957 (7)
O10.50364 (12)0.70784 (11)0.44797 (9)0.0307 (2)
O20.27230 (13)0.60151 (12)0.47503 (9)0.0338 (3)
O30.35967 (15)0.48197 (12)0.36869 (11)0.0442 (3)
N10.12621 (14)0.33416 (12)0.51096 (10)0.0230 (3)
N20.25131 (13)0.45401 (11)0.67469 (10)0.0216 (2)
N30.28240 (13)0.17453 (11)1.10979 (9)0.0202 (2)
N40.46277 (13)0.18255 (11)1.23701 (9)0.0198 (2)
C10.0529 (2)0.09095 (18)0.31598 (15)0.0428 (4)
H1A0.01800.15150.24500.064*
H1B0.01000.12770.35490.064*
H1C0.15640.07120.35540.064*
C20.04383 (18)0.02908 (15)0.30444 (12)0.0281 (3)
H2A0.06040.00830.26270.034*
H2B0.10670.06540.26450.034*
C30.09533 (18)0.12680 (15)0.41241 (12)0.0277 (3)
H3A0.03350.08930.45260.033*
H3B0.19990.14770.45340.033*
C40.0859 (2)0.24743 (15)0.40443 (12)0.0306 (3)
H4A0.15420.28950.36990.037*
H4B0.01680.22690.35940.037*
C50.03659 (17)0.38007 (15)0.54414 (13)0.0264 (3)
H50.06190.36250.50260.032*
C60.11439 (17)0.45476 (15)0.64665 (13)0.0261 (3)
H60.08100.49930.69090.031*
C70.25546 (16)0.38050 (14)0.59125 (12)0.0227 (3)
H70.33750.36390.58950.027*
C80.36507 (17)0.50969 (14)0.78388 (12)0.0270 (3)
H8A0.37120.59220.81880.032*
H8B0.46380.52410.78030.032*
C90.32536 (16)0.42248 (14)0.84876 (11)0.0228 (3)
C100.37125 (17)0.32777 (15)0.84560 (12)0.0266 (3)
H100.43520.32340.80810.032*
C110.32457 (17)0.23983 (15)0.89656 (12)0.0254 (3)
H110.35580.17490.89320.031*
C120.23232 (15)0.24606 (14)0.95255 (10)0.0204 (3)
C130.19133 (18)0.34377 (16)0.95932 (12)0.0281 (3)
H130.13140.35070.99970.034*
C140.23738 (19)0.43124 (15)0.90740 (13)0.0302 (3)
H140.20840.49750.91210.036*
C150.17564 (16)0.14543 (14)1.00239 (11)0.0234 (3)
H15A0.07940.13771.00750.028*
H15B0.15770.06340.95610.028*
C160.38742 (16)0.13506 (13)1.13235 (11)0.0217 (3)
H160.40530.08221.08230.026*
C170.40518 (16)0.25546 (14)1.28251 (11)0.0221 (3)
H170.43830.30021.35620.026*
C180.29276 (16)0.25131 (14)1.20272 (11)0.0217 (3)
H180.23250.29321.20940.026*
C190.57912 (16)0.15253 (15)1.29570 (11)0.0236 (3)
H19A0.66710.23171.34440.028*
H19B0.61060.10921.24460.028*
C200.52204 (18)0.06855 (15)1.35970 (12)0.0255 (3)
H20A0.43200.00921.31110.031*
H20B0.49340.11311.41210.031*
C210.63929 (19)0.03276 (17)1.41846 (13)0.0312 (3)
H21A0.73230.11061.46210.037*
H21B0.60370.01081.46750.037*
C220.6731 (2)0.05213 (19)1.34335 (16)0.0391 (4)
H22A0.74900.07211.38480.059*
H22B0.71010.00891.29540.059*
H22C0.58190.13041.30120.059*
C230.25700 (18)0.62153 (19)0.28899 (14)0.0356 (4)
C240.22960 (19)0.77210 (18)1.02249 (14)0.0355 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02255 (18)0.02017 (18)0.02409 (17)0.01139 (14)0.00857 (13)0.00360 (13)
S20.02470 (18)0.02235 (19)0.02051 (17)0.01095 (15)0.00926 (13)0.00338 (13)
O40.0627 (9)0.0263 (7)0.0530 (8)0.0135 (6)0.0400 (7)0.0005 (6)
O50.0468 (7)0.0236 (6)0.0294 (6)0.0086 (5)0.0187 (5)0.0048 (5)
O60.0339 (7)0.0700 (10)0.0448 (7)0.0321 (7)0.0145 (6)0.0283 (7)
F10.0225 (5)0.0804 (9)0.0379 (6)0.0105 (5)0.0040 (4)0.0097 (6)
F20.0703 (9)0.0662 (9)0.0821 (10)0.0468 (8)0.0210 (7)0.0447 (8)
F30.0375 (6)0.1312 (13)0.0353 (6)0.0310 (8)0.0212 (5)0.0363 (7)
F40.0540 (7)0.0349 (6)0.0590 (7)0.0239 (5)0.0321 (6)0.0271 (5)
F50.0985 (10)0.0415 (7)0.0259 (5)0.0098 (7)0.0265 (6)0.0062 (5)
F60.0346 (7)0.1609 (18)0.1122 (13)0.0419 (9)0.0186 (7)0.1031 (13)
O10.0229 (5)0.0292 (6)0.0323 (6)0.0094 (5)0.0072 (4)0.0022 (5)
O20.0354 (6)0.0398 (7)0.0327 (6)0.0173 (6)0.0195 (5)0.0138 (5)
O30.0448 (7)0.0269 (6)0.0566 (8)0.0221 (6)0.0125 (6)0.0001 (6)
N10.0278 (6)0.0220 (6)0.0246 (6)0.0128 (5)0.0127 (5)0.0109 (5)
N20.0240 (6)0.0198 (6)0.0242 (6)0.0101 (5)0.0114 (5)0.0095 (5)
N30.0241 (6)0.0183 (6)0.0179 (5)0.0083 (5)0.0084 (5)0.0062 (4)
N40.0239 (6)0.0190 (6)0.0191 (5)0.0102 (5)0.0098 (5)0.0075 (4)
C10.0492 (11)0.0344 (10)0.0332 (9)0.0233 (9)0.0015 (8)0.0004 (7)
C20.0284 (7)0.0262 (8)0.0254 (7)0.0089 (6)0.0097 (6)0.0056 (6)
C30.0297 (8)0.0242 (8)0.0238 (7)0.0103 (6)0.0058 (6)0.0055 (6)
C40.0434 (9)0.0280 (8)0.0224 (7)0.0161 (7)0.0136 (7)0.0098 (6)
C50.0255 (7)0.0263 (8)0.0347 (8)0.0147 (6)0.0138 (6)0.0145 (6)
C60.0293 (7)0.0251 (8)0.0337 (8)0.0164 (6)0.0177 (6)0.0128 (6)
C70.0249 (7)0.0243 (7)0.0272 (7)0.0139 (6)0.0145 (6)0.0126 (6)
C80.0288 (7)0.0200 (7)0.0258 (7)0.0061 (6)0.0075 (6)0.0070 (6)
C90.0240 (7)0.0182 (7)0.0211 (6)0.0066 (6)0.0059 (5)0.0050 (5)
C100.0252 (7)0.0310 (8)0.0323 (8)0.0160 (6)0.0163 (6)0.0137 (6)
C110.0274 (7)0.0273 (8)0.0300 (7)0.0177 (6)0.0130 (6)0.0119 (6)
C120.0206 (6)0.0209 (7)0.0164 (6)0.0081 (6)0.0041 (5)0.0047 (5)
C130.0369 (8)0.0315 (8)0.0280 (7)0.0217 (7)0.0192 (6)0.0114 (6)
C140.0448 (9)0.0265 (8)0.0318 (8)0.0236 (7)0.0199 (7)0.0113 (6)
C150.0236 (7)0.0228 (7)0.0193 (6)0.0078 (6)0.0050 (5)0.0065 (5)
C160.0290 (7)0.0190 (7)0.0197 (6)0.0116 (6)0.0112 (5)0.0070 (5)
C170.0257 (7)0.0221 (7)0.0207 (6)0.0107 (6)0.0119 (5)0.0066 (5)
C180.0246 (7)0.0206 (7)0.0211 (6)0.0097 (6)0.0110 (5)0.0057 (5)
C190.0265 (7)0.0259 (7)0.0238 (7)0.0147 (6)0.0106 (6)0.0113 (6)
C200.0338 (8)0.0280 (8)0.0258 (7)0.0184 (7)0.0173 (6)0.0134 (6)
C210.0386 (9)0.0349 (9)0.0277 (7)0.0205 (7)0.0124 (7)0.0175 (7)
C220.0436 (10)0.0466 (11)0.0519 (11)0.0332 (9)0.0270 (9)0.0279 (9)
C230.0241 (7)0.0534 (11)0.0317 (8)0.0166 (8)0.0123 (6)0.0172 (8)
C240.0291 (8)0.0407 (10)0.0351 (8)0.0136 (7)0.0077 (7)0.0184 (8)
Geometric parameters (Å, º) top
S1—O31.4350 (12)C4—H4B0.9900
S1—O21.4376 (11)C5—C61.350 (2)
S1—O11.4424 (12)C5—H50.9500
S1—C231.8216 (17)C6—H60.9500
S2—O61.4310 (12)C7—H70.9500
S2—O41.4340 (12)C8—C91.510 (2)
S2—O51.4408 (12)C8—H8A0.9900
S2—C241.8226 (17)C8—H8B0.9900
F1—C231.325 (2)C9—C141.384 (2)
F2—C231.321 (2)C9—C101.389 (2)
F3—C231.3314 (19)C10—C111.383 (2)
F4—C241.323 (2)C10—H100.9500
F5—C241.341 (2)C11—C121.3886 (19)
F6—C241.315 (2)C11—H110.9500
N1—C71.3260 (19)C12—C131.389 (2)
N1—C51.3752 (19)C12—C151.506 (2)
N1—C41.4761 (19)C13—C141.388 (2)
N2—C71.3299 (18)C13—H130.9500
N2—C61.3760 (19)C14—H140.9500
N2—C81.4791 (19)C15—H15A0.9900
N3—C161.3330 (18)C15—H15B0.9900
N3—C181.3788 (17)C16—H160.9500
N3—C151.4754 (17)C17—C181.351 (2)
N4—C161.3284 (18)C17—H170.9500
N4—C171.3788 (18)C18—H180.9500
N4—C191.4707 (18)C19—C201.516 (2)
C1—C21.518 (2)C19—H19A0.9900
C1—H1A0.9800C19—H19B0.9900
C1—H1B0.9800C20—C211.524 (2)
C1—H1C0.9800C20—H20A0.9900
C2—C31.524 (2)C20—H20B0.9900
C2—H2A0.9900C21—C221.514 (2)
C2—H2B0.9900C21—H21A0.9900
C3—C41.514 (2)C21—H21B0.9900
C3—H3A0.9900C22—H22A0.9800
C3—H3B0.9900C22—H22B0.9800
C4—H4A0.9900C22—H22C0.9800
O3—S1—O2115.55 (8)C11—C10—C9120.56 (13)
O3—S1—O1113.96 (7)C11—C10—H10119.7
O2—S1—O1114.84 (7)C9—C10—H10119.7
O3—S1—C23103.19 (9)C10—C11—C12120.26 (13)
O2—S1—C23103.63 (7)C10—C11—H11119.9
O1—S1—C23103.44 (8)C12—C11—H11119.9
O6—S2—O4115.72 (9)C11—C12—C13119.17 (14)
O6—S2—O5114.78 (9)C11—C12—C15119.56 (13)
O4—S2—O5114.35 (7)C13—C12—C15121.26 (13)
O6—S2—C24102.42 (8)C14—C13—C12120.39 (13)
O4—S2—C24103.22 (9)C14—C13—H13119.8
O5—S2—C24103.96 (8)C12—C13—H13119.8
C7—N1—C5108.42 (13)C9—C14—C13120.34 (14)
C7—N1—C4125.51 (13)C9—C14—H14119.8
C5—N1—C4126.07 (13)C13—C14—H14119.8
C7—N2—C6108.63 (12)N3—C15—C12111.74 (12)
C7—N2—C8125.57 (12)N3—C15—H15A109.3
C6—N2—C8125.19 (12)C12—C15—H15A109.3
C16—N3—C18109.07 (12)N3—C15—H15B109.3
C16—N3—C15125.81 (12)C12—C15—H15B109.3
C18—N3—C15125.08 (12)H15A—C15—H15B107.9
C16—N4—C17108.93 (12)N4—C16—N3108.12 (12)
C16—N4—C19125.32 (12)N4—C16—H16125.9
C17—N4—C19125.52 (12)N3—C16—H16125.9
C2—C1—H1A109.5C18—C17—N4107.16 (12)
C2—C1—H1B109.5C18—C17—H17126.4
H1A—C1—H1B109.5N4—C17—H17126.4
C2—C1—H1C109.5C17—C18—N3106.71 (12)
H1A—C1—H1C109.5C17—C18—H18126.6
H1B—C1—H1C109.5N3—C18—H18126.6
C1—C2—C3111.95 (13)N4—C19—C20110.74 (12)
C1—C2—H2A109.2N4—C19—H19A109.5
C3—C2—H2A109.2C20—C19—H19A109.5
C1—C2—H2B109.2N4—C19—H19B109.5
C3—C2—H2B109.2C20—C19—H19B109.5
H2A—C2—H2B107.9H19A—C19—H19B108.1
C4—C3—C2113.64 (13)C19—C20—C21111.66 (13)
C4—C3—H3A108.8C19—C20—H20A109.3
C2—C3—H3A108.8C21—C20—H20A109.3
C4—C3—H3B108.8C19—C20—H20B109.3
C2—C3—H3B108.8C21—C20—H20B109.3
H3A—C3—H3B107.7H20A—C20—H20B108.0
N1—C4—C3111.08 (12)C22—C21—C20112.62 (13)
N1—C4—H4A109.4C22—C21—H21A109.1
C3—C4—H4A109.4C20—C21—H21A109.1
N1—C4—H4B109.4C22—C21—H21B109.1
C3—C4—H4B109.4C20—C21—H21B109.1
H4A—C4—H4B108.0H21A—C21—H21B107.8
C6—C5—N1107.39 (13)C21—C22—H22A109.5
C6—C5—H5126.3C21—C22—H22B109.5
N1—C5—H5126.3H22A—C22—H22B109.5
C5—C6—N2106.80 (13)C21—C22—H22C109.5
C5—C6—H6126.6H22A—C22—H22C109.5
N2—C6—H6126.6H22B—C22—H22C109.5
N1—C7—N2108.76 (12)F2—C23—F1107.89 (15)
N1—C7—H7125.6F2—C23—F3108.10 (17)
N2—C7—H7125.6F1—C23—F3106.88 (15)
N2—C8—C9110.24 (12)F2—C23—S1111.54 (13)
N2—C8—H8A109.6F1—C23—S1111.57 (13)
C9—C8—H8A109.6F3—C23—S1110.67 (12)
N2—C8—H8B109.6F6—C24—F4107.96 (16)
C9—C8—H8B109.6F6—C24—F5108.05 (17)
H8A—C8—H8B108.1F4—C24—F5106.62 (14)
C14—C9—C10119.20 (14)F6—C24—S2111.40 (13)
C14—C9—C8120.99 (14)F4—C24—S2111.95 (12)
C10—C9—C8119.73 (13)F5—C24—S2110.66 (12)
C1—C2—C3—C4179.15 (15)C17—N4—C16—N30.59 (16)
C7—N1—C4—C358.86 (19)C19—N4—C16—N3174.18 (13)
C5—N1—C4—C3120.77 (16)C18—N3—C16—N41.04 (16)
C2—C3—C4—N1175.68 (13)C15—N3—C16—N4178.79 (13)
C7—N1—C5—C60.35 (17)C16—N4—C17—C180.09 (16)
C4—N1—C5—C6179.33 (14)C19—N4—C17—C18174.85 (13)
N1—C5—C6—N20.31 (17)N4—C17—C18—N30.71 (16)
C7—N2—C6—C50.16 (17)C16—N3—C18—C171.09 (16)
C8—N2—C6—C5171.61 (13)C15—N3—C18—C17178.86 (13)
C5—N1—C7—N20.25 (17)C16—N4—C19—C20106.80 (15)
C4—N1—C7—N2179.43 (13)C17—N4—C19—C2067.12 (18)
C6—N2—C7—N10.06 (16)N4—C19—C20—C21178.19 (12)
C8—N2—C7—N1171.35 (13)C19—C20—C21—C2267.24 (18)
C7—N2—C8—C991.08 (17)O3—S1—C23—F2180.00 (12)
C6—N2—C8—C978.95 (17)O2—S1—C23—F259.16 (14)
N2—C8—C9—C1489.64 (17)O1—S1—C23—F261.00 (13)
N2—C8—C9—C1087.09 (17)O3—S1—C23—F159.26 (14)
C14—C9—C10—C112.7 (2)O2—S1—C23—F161.58 (14)
C8—C9—C10—C11174.04 (14)O1—S1—C23—F1178.26 (12)
C9—C10—C11—C120.7 (2)O3—S1—C23—F359.61 (16)
C10—C11—C12—C131.9 (2)O2—S1—C23—F3179.55 (14)
C10—C11—C12—C15176.61 (14)O1—S1—C23—F359.40 (16)
C11—C12—C13—C142.4 (2)O6—S2—C24—F6175.94 (16)
C15—C12—C13—C14176.07 (14)O4—S2—C24—F663.52 (17)
C10—C9—C14—C132.2 (2)O5—S2—C24—F656.14 (17)
C8—C9—C14—C13174.53 (15)O6—S2—C24—F463.07 (14)
C12—C13—C14—C90.4 (3)O4—S2—C24—F457.48 (14)
C16—N3—C15—C1293.16 (17)O5—S2—C24—F4177.14 (12)
C18—N3—C15—C1284.23 (17)O6—S2—C24—F555.71 (14)
C11—C12—C15—N386.12 (16)O4—S2—C24—F5176.26 (12)
C13—C12—C15—N395.39 (16)O5—S2—C24—F564.08 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4a···O30.992.503.397 (2)150
C5—H5···O2i0.952.463.243 (2)139
C6—H6···F1i0.952.453.261 (2)143
C6—H6···O40.952.443.166 (2)133
C7—H7···O1ii0.952.253.188 (2)168
C10—H10···F3ii0.952.473.365 (2)157
C16—H16···O5iii0.952.293.135 (2)147
C18—H18···O3iv0.952.462.956 (2)112
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC16H20N42+·2BF4C22H32N42+·2CF3O3S
Mr441.98650.66
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)100100
a, b, c (Å)4.9517 (2), 12.8674 (5), 15.2828 (6)10.3833 (1), 12.0470 (2), 13.6933 (2)
α, β, γ (°)90, 92.806 (3), 90100.752 (1), 105.194 (1), 111.970 (1)
V3)972.58 (7)1453.36 (4)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.140.27
Crystal size (mm)0.36 × 0.08 × 0.060.44 × 0.22 × 0.07
Data collection
DiffractometerBruker SMART APEX
diffractometer
Bruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.878, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
8044, 2231, 1364 18621, 6636, 5673
Rint0.0750.035
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.120, 1.02 0.035, 0.101, 1.02
No. of reflections22316636
No. of parameters137379
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.300.61, 0.53

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F10.952.593.367 (3)140
C3—H3···F2i0.952.333.272 (3)171
C4—H4···F3ii0.952.373.287 (3)162
C4—H4···F4ii0.952.483.278 (3)141
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C4—H4a···O30.992.503.397 (2)150
C5—H5···O2i0.952.463.243 (2)139
C6—H6···F1i0.952.453.261 (2)143
C6—H6···O40.952.443.166 (2)133
C7—H7···O1ii0.952.253.188 (2)168
C10—H10···F3ii0.952.473.365 (2)157
C16—H16···O5iii0.952.293.135 (2)147
C18—H18···O3iv0.952.462.956 (2)112
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x, y, z+1.
 

Acknowledgements

The authors thank the University of Malaya for financial support of this study (Research University grant Nos. TA 0009/2007 A and TA 0009/2008 A).

References

First citationAki, S. N. V., Mellein, B. R., Saurer, E. M. & Brennecke, J. F. (2004). J. Phys. Chem. B, 108, 20355–20365.  Web of Science CrossRef CAS Google Scholar
First citationAnthony, J. L., Anderson, J. L., Maginn, E. J. & Brennecke, J. F. (2005). J. Phys. Chem. B, 109, 6366–6374.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 (Version 2.1-4) and SAINT (Version 7.34A). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDibrov, S. M. & Kochi, J. K. (2006). Acta Cryst. C62, o19–o21.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGalán Sánchez, L. N., Meindersma, G. & de Haan, A. B. (2007). Trans. IChemE, 85, 31–39.  Google Scholar
First citationGanesan, K. & Alias, Y. (2008). Int. J. Mol. Sci. 9, 1207–1213.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHolbrey, J. D. & Seddon, K. R. (1999). J. Chem. Soc. Dalton Trans. pp. 2133–2139.  Web of Science CrossRef Google Scholar
First citationJin, C.-M., Wu, L.-Y., Han, D.-Y. & Hu, Y.-J. (2006). Acta Cryst. E62, o5619–o5620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, H.-S., Wang, H.-J., Zhang, Y., Zuo, Y.-J. & Zhong, C.-M. (2007). Acta Cryst. E63, o1880–o1881.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, D.-C. & Liu, D.-J. (2003). Anal. Sci. 19, 1089–1090.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, D.-J. & Li, D. C. (2003). Appl. Organomet. Chem. 17, 811–812.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, F.-H., Chen, W.-Z. & You, X.-Z. (2002). J. Solid State Chem. 169, 199–207.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaha, S., Hayashi, S., Kobayashi, A. & Hamaguchi, H. (2003). Chem. Lett. 32, 740–741.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-W., Xu, F.-B., Li, Q.-S., Song, H.-B. & Zhang, Z.-Z. (2005). Acta Cryst. E61, m367–m369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Volume 64| Part 9| September 2008| Pages o478-o480
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds