organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

The zwitterion of 4-nitro-2-{(E)-[2-(piperidin-1-yl)eth­yl]imino­meth­yl}­phenol

aFacultad de Ciencias Químicas, Universidad de Colima, Carretera Coquimatlán-Colima, Coquimatlán Colima, 28400, Mexico, and bUnidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s/n, Barrio La Laguna Ticomán, México DF 07340, Mexico
*Correspondence e-mail: fjmartin@ucol.mx

(Received 11 November 2008; accepted 1 December 2008; online 6 December 2008)

The title Schiff base compound, 4-nitro-1-oxo-2-{(E)-[2-(piperidin-1-yl)eth­yl]iminiometh­yl}cyclo­hexa­dienide, C14H19N3O3, exists as a zwitterion, with the H atom of the phenol group being transferred to the imine N atom. The C=O, CAr—CAr and C—N bond lengths are in agreement with the oxocyclo­hexa­dienide–iminium zwitterionic form. The iminium H atom is engaged in a strong intra­molecular hydrogen bond with the O atom of the keto group (N+—H⋯O) to form an S(6) motif. Soft C—H⋯O inter­actions in the ac plane lead to the development of hydrogen-bonded tapes, which are π-stacked through the oxocyclo­hexa­dienide ring and iminium group. The significance of this study is in providing crystallographic evidence, supported by NMR and IR data, of the predominance of the oxocyclo­hexa­dienide–iminium zwitterion form over the noncharged canonical form in the title Schiff base.

Comment

Aromatic imines and their derivatives are an important group of mol­ecules in organic chemistry, in particular those that have aryl groups bound to N or C atoms. They have been used successfully to study resonance-assisted hydrogen bonds (RAHBs; Krygowski & Stepien, 2005[Krygowski, T. M. & Stepien, B. T. (2005). Chem. Rev. 105, 3482-3512.]; Sobczyk et al., 2005[Sobczyk, L., Grabowski, S. J. & Krygowski, T. M. (2005). Chem. Rev. 105, 3513-3560.]). Imines substituted in the aromatic ring have offered the opportunity to study the substituent effects in RAHBs. In this context, the mol­ecular structure of the title compound, (I)[link] (Fig. 1[link]), is reported here.

The single-crystal structure of the title Schiff base compound is built up by discrete mol­ecules in the monoclinic space group P2/c, with one mol­ecule in the asymmetric unit. A summary of bond lengths and angles is presented in Table 1[link]. The N8—C7 and O1—C1 bond lengths are in agreement with the double-bond character for the imine (ν at 1601 cm−1) and keto-carbonyl groups (ν at 1657 cm−1), respectively (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). Moreover, the bond lengths in the C1–C6 ring show

[Scheme 1]
clear alternation in the delocalized C2–C6 portion. The nitro group is tilted out of the mean plane of the adjacent ring by −11.1 (3)°, whereas the C4—N4 distance is in the characteristic range suggesting limited conjugation with the ring. Thus, the whole geometry is in agreement with the predominace of the oxocyclo­hexa­dienide–iminium zwitterion bonding scheme (see scheme[link]) (Krygowski & Stepien, 2005[Krygowski, T. M. & Stepien, B. T. (2005). Chem. Rev. 105, 3482-3512.]), in close agreement with the reported configurations of p-nitro­phenolates of alkali metal cations (Butt et al., 1987[Butt, G. L., Mackay, M. F. & Topsom, R. D. (1987). Acta Cryst. C43, 1092-1094.]).

The iminium H atom (located in a difference map) is coplanar with the oxocyclo­hexa­dienide ring and on the same side of the mol­ecule as the O atom of the keto group, allowing the formation of an intra­molecular N—H⋯O hydrogen bond (Table 2[link]) in an S(6) motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), with dimensions in agreement with the usual values (Krygowski et al., 1997[Krygowski, T. M., Wozniak, K., Anulewicz, R., Pawlak, D., Kolodziejski, W., Grech, E. & Szady, A. (1997). J. Phys. Chem. A, 101, 9399-9404.]; Steiner 1998[Steiner, T. (1998). J. Phys. Chem. A, 102, 7041-7052.], 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]). The N8⋯O1 distance has almost the same value as the RAHB of 2.607 (3) Å found in 3-{[(di­phen­oxythiophosphor­yl)hydrazine]methyl­idene}-3,4-dihydro-2H-1-benzopyran-2,4-dione (Rybarczyk-Pirek et al., 2002[Rybarczyk-Pirek, A. J., Grabowski, S. J., Malecka, M. & Nawrot-Modranka, J. (2002). J. Phys. Chem. A, 106, 11956-11962.]). The iminium H atom is also engaged in N—H⋯O hydrogen bonding with the O atom from the keto group of a neighbouring mol­ecule, forming dimers with an almost square R22(4) motif (Fig. 2[link]).

The first dimension of the extended structure is built up by soft C—H⋯O inter­actions with the participation of one of the O atoms from the nitro group, in a monocoordinative fashion (Allen et al., 1997[Allen, F. H., Baalham, C. A., Lommerse, J. P. M., Raithby, P. R. & Sparr, E. (1997). Acta Cryst. B53, 1017-1024.]), as the acceptor of two hydrogen bonds (Table 2[link]) to form an R21(6) motif. The whole hydrogen-bonding scheme, makes up tapes propagating along the direction of the c axis. All C—H⋯ON and C⋯ON distances are shorter than the mean values of 2.7 (2) and 3.5 (2) Å, respectively, found in a study of nitro­benzenes (André et al., 1997[André, I., Foces-Foces, C., Cano, F. H. & Martinez-Ripoll, M. (1997). Acta Cryst. B53, 996-1005.]), although the C—H⋯ON angles are within the accepted range [C—H⋯O = 133 (20)°]. Even when C—H⋯O inter­actions involving an NO2 group as acceptor are half as strong as C—H⋯O inter­actions (Allen et al., 1997[Allen, F. H., Baalham, C. A., Lommerse, J. P. M., Raithby, P. R. & Sparr, E. (1997). Acta Cryst. B53, 1017-1024.]) involving a CO group as the acceptor, they play a significant role in packing owing to their co-operative action.

The second dimension is ruled by the zwitterionic nature of (I)[link]. The anionic oxocyclo­hexa­diene ring and the cationic iminium group from neighbouring tapes are overlapped. The iminium N and C atoms are 3.257 (3) and 3.462 (3) Å, respectively, from the centroid of the cyclo­hexa­dienide ring at (−x + 1, −y, −z). These short distances strongly suggest not only ion pairing but also a π-stacking inter­action between the iminium group, as acceptor, and the oxocyclo­hexa­diene ring, as the donor of electron density (Fig. 3[link]). These π-stacking interactions crosslink pairs of the hydrogen-bonded tapes described above to develop discrete centrosymmetric ribbons which propagate along the c axis.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
Hydrogen-bonded tapes formed by N—H⋯O and C—H⋯O inter­actions along the c axis. H atoms not involved in the motifs shown have been omitted for clarity. [Symmetry codes: (i) −x + 1, y, −z + [{3\over 2}]; (ii) −x + 1, y, −z + [{1\over 2}].]
[Figure 3]
Figure 3
The centrosymmetric oxocyclo­hexa­dienide–iminium π-stacked pairs of compound (I)[link]. [Symmetry code: (iii) −x + 1, −y + 1, −z + 1.]

Experimental

Compound (I)[link] was synthesized by amidation of ethyl 6-nitro-2-oxo-2H-chromene-3-carboxyl­ate (0.5 g, 1.9 mmol), prepared according to Santos-Contreras et al. (2007[Santos-Contreras, R. J., Martínez-Martínez, F. J., García-Báez, E. V., Padilla-Martínez, I. I., Peraza, A. L. & Höpfl, H. (2007). Acta Cryst. C63, o239-o242.]), with 1-(2-amino­ethyl)piperidine (0.26 ml, 1.9 mmol) and two drops of piperidine as catalyst in refluxing ethanol (10 ml) for 24 h. The resulting orange solution was treated with activated charcoal and evaporated to give 0.3 g of an orange solid in 57% yield. Crystals suitable for X-ray analysis were obtained by slow evaporation from a saturated ethyl acetate solution (m.p. 413 K). IR (cm−1): ν (C=O) 1657, (C=N) 1601, (C—NO) 1535; 1H NMR (300 MHz, CDCl3): δ 6.90 (d, H6, 3J = 9.0 Hz), 8.16 (dd, H5, 3J = 9.0 and 4J = 3.0 Hz), 8.22 (d, H3, 3J = 9.0 Hz), 11.9 (b, NH), 8.31 (s, H7), 3.74 (t, 2H, 3J = 6.2 Hz, –+NHCH2–), 2.64 (t, 2H, 3J = 6.2 Hz, –CH2N), 2.46 [m, 4H, N—(CH2)2], 1.56 (m, 4H, –CH2–), 1.46 (m, 2H, –CH2–); 13C NMR: δ 173.1 (C1), 115.6 (C2), 129.7 (C3), 137.5 (C4), 129.0 (C5), 120.9 (C6), 165.3 (C7), 58.4 (C9), 53.2 (C10), 54.8 (C12), 26.2 (C13), 24.3 (C14).

Crystal data
  • C14H19N3O3

  • Mr = 277.17

  • Monoclinic, P 2/c

  • a = 10.5688 (17) Å

  • b = 12.1887 (19) Å

  • c = 12.6816 (15) Å

  • β = 114.696 (10)°

  • V = 1484.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.20 × 0.17 × 0.12 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • 13954 measured reflections

  • 2617 independent reflections

  • 2217 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.151

  • S = 1.20

  • 2617 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Selected geometric parameters (Å, °)

O1—C1 1.257 (3)
O4A—N4 1.227 (3)
O4B—N4 1.230 (3)
N4—C4 1.442 (3)
N8—C7 1.285 (3)
N8—C9 1.454 (3)
N11—C10 1.449 (3)
N11—C12 1.451 (3)
N11—C16 1.455 (3)
C1—C2 1.447 (3)
C1—C6 1.435 (3)
C2—C3 1.395 (3)
C3—C4 1.372 (3)
C4—C5 1.406 (3)
C5—C6 1.357 (3)
C9—C10 1.514 (3)
O4A—N4—O4B 122.9 (2)
O4A—N4—C4 118.4 (2)
O4B—N4—C4 118.7 (2)
C7—N8—C9 123.6 (2)
C10—N11—C12 111.9 (2)
C10—N11—C16 112.7 (2)
C12—N11—C16 109.9 (2)
O1—C1—C6 122.3 (2)
O1—C1—C2 122.0 (2)
N4—C4—C5 119.6 (2)
N4—C4—C3 120.0 (2)
N8—C7—C2 125.0 (2)
N8—C9—C10 111.0 (2)
N11—C10—C9 112.2 (2)
N11—C12—C13 111.1 (3)
N11—C16—C15 110.9 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O1 0.90 (2) 2.02 (3) 2.674 (3) 129 (3)
N8—H8⋯O1i 0.90 (2) 2.13 (3) 2.857 (3) 137 (3)
C3—H3⋯O4Bii 0.93 2.57 3.400 (3) 149
C7—H7⋯O4Bii 0.93 2.44 3.302 (3) 155
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) [-x+1, y, -z+{\script{1\over 2}}].

The amino H atom was located in a difference Fourier map and refined with an N—H distance of 0.90 (2) Å. All other H atoms were positioned geometrically and refined using a riding model [C—H = 0.93 and 0.97 Å for aromatic and CH2 H atoms, respectively, and Uiso(H) = 1.2Ueq(C)].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and WinGX2003 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Aromatic imines and their derivatives, are an important group of molecules in organic chemistry, in particular those that have aryl groups bound to N or C atoms. They have been used successfully to study resonance-assisted hydrogen bonds (RAHBs; Krygowski & Stepien, 2005; Sobczyk et al., 2005). Imines substituted in the aromatic ring have offered the opportunity to study the substituent effects in RAHBs. In this context, the molecular structure of the title compound, (I) (Fig. 1), is reported here.

The single-crystal structure of the title Schiff base compound is built up by discrete C14H19N3O3 molecules in the monoclinic space group P2/c, with four molecules in the asymmetric unit. A summary of bond lengths and angles is listed in Table 1. The N8—C7 and O1—C9 (C1?) bond lengths are in agreement with the double-bond character for the imine (ν at 1601 cm-1) and keto-carbonyl groups (ν at 1657 cm-1), respectively (Allen, 2002). Moreover, the bond lengths in the ring (C1–C6) show clear alternation in the delocalized portion C2–C6. The nitro group is tilted out of the mean plane of the adjacent ring by -11.1 (3)°, whereas the C4—N4 distance is in the characteristic range, suggesting limited conjugation with the ring. Thus, the whole geometry is in agreement with the predominace of the ketodienide–iminium zwitterion bonding scheme (see scheme) (Krygowski & Stepien, 2005), in close agreement with p-nitrophenolates of alkali metal cations (Butt et al., 1987).

The iminium H atom (located in a difference map) is coplanar with the keto-cyclohexadienide ring and on the same side of the molecule as the O atom from the keto group, allowing the formation of an intramolecular N—H···O hydrogen bond (Table 2) in an S(6) motif (Bernstein et al., 1995), with dimensions in agreement with the accepted values (Krygowski et al., 1997; Steiner 1998, 2002). The N8···O1 distance has almost the same value as the RAHB of 2.607</span><span style=" font-weight:600;">(3) Å found in 3-{[(diphenoxy-thio-phosphoryl)hydrazine]methylidene}-3,4-dihydro-2H-1-benzopyran-2,4-dione (Rybarczyk-Pirek et al., 2002). The iminium H atom is also engaged in N···H···O hydrogen bonding with the O atom from the keto group of a neighbouring molecule, forming dimers with an almost square R22(4) motif (Fig. 2).

The first dimension is built up by soft C—H···O interactions with the participation of one of the O atoms from the nitro group, in monocoordinative fashion (Allen et al., 1997), as the acceptor of two H atoms (Table 2) to form an R12(6) motif. The whole hydrogen-bonding scheme, makes up tapes propagating along the direction of the c axis. All C—H···ON and C···ON distances are shorter than the mean values of 2.7 (2) and 3.5 (2) Å found in a study of nitrobenzenes (André et al., 1997), although the C—H···ON angles are within the accepted range [C—H···O = 133 (20)°]. Even when C—H···O interactions involving an NO2 group as the acceptor are half as strong as C—H···O interactions (Allen et al., 1997) involving a CO group as the acceptor, they play a significant role in packing owing to their cooperative action.

The second dimension is ruled by the switterionic nature of (I). The anionic keto-cyclohexadiene rin and the cationic iminium group from neighboring tapes are overlapped. The iminium N and C atoms are at 3.257 (3) and 3.462 (3) Å, respectively, from the centroid of the cyclohexadienide ring at (-x + 1, -y, -z). These short distances strongly suggest not only ion-pairing but also a π-stacking interaction between the iminium, as the acceptor, and keto-cyclohexadiene ring, as the donor of electronic density developing discrete centrosymmetric ribbons along the b axis (Fig. 3).

Related literature top

For related literature, see: Allen (2002); Bernstein et al. (1995); Butt et al. (1987); Krygowski & Stepien (2005); Krygowski et al. (1997); Rybarczyk-Pirek, Grabowski, Malecka & Nawrot-Modranka (2002); Sobczyk et al. (2005); Steiner (1998, 2002).

Experimental top

Compound (I) was synthesized by amidation of 0.5 g of ethyl-6-nitro-2-oxo-2H-chromene-3-carboxylate (1.9 mmol), prepared according with reported methodology (Santos-Contreras et al., 2007), with 0.26 ml of 1-(2-aminoethyl) piperidine (1.9 mmol) and two drops of piperidine as catalyst in 10 ml of refluxing ethanol for 24 h. The orange solution was treated with activated charcoal and then evaporated to obtain 0.3 g of an orange solid in 57% yield. Crystals suitable for X-ray analysis were obtained by slow evaporation from saturated ethyl acetate solution (m.p. 413 K). IR (cm-1): ν (CO) 1657, 1601 (CN), (C—NO) 1535; 1H NMR (300 MHz, CDCl3): δ 6.90 (d, H6, 3J = 9.0 Hz), 8.16 (dd, H5, 3J = 9.0 Hz and 4J = 3.0 Hz), 8.22 (d, H3, 3J = 9.0 Hz), 11.9 (b, NH), 8.31 (s, H7), 3.74 (t, 2H, 3J = 6.2 Hz, –+NHCH2–), 2.64 (t, 2H, 3J = 6.2 Hz, –CH2N), 2.46 (m, 4H, N—(CH2)2, 1.56 (m, 4H, –CH2–), 1.46 (m, 2H, –CH2–); 13C NMR: δ 173.1 (C1), 115.6 (C2), 129.7 (C3), 137.5 (C4), 129.0 (C5), 120.9 (C6), 165.3 (C7), 58.4 (C9), 53.2 (C10), 54.8 (C12), 26.2 (C13), 24.3 (C14).

Refinement top

The amino H atom was located in a difference Fourier map and was refined with an N—H distance restraint of 0.90 (2) Å [please check that this is the restraint; it appears to be the refined value]. All other H atoms were positioned geometrically and refined using a riding model [C—H = 0.93 and 0.97 Å for aromatic and CH2 H atoms, respectively, and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Version 1.4.2; Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX2003 (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Hydrogen-bonded tapes formed by N—H···O and C—H···O interactions along the c axis. H atoms not involved in the motifs shown have been omited for clarity. [Symmetry codes: (i) -x + 1, y, -z + 3/2; (ii) -x + 1, y, -z + 1/2.]
[Figure 3] Fig. 3. Centrosymmetric cyclohexadienide–iminium π-stacked pairs of compound (I). [Symmetry code: (iii) -x + 1, -y, -z.]
4-nitro-1-oxo-2-{(E)-[2-(piperidin-1- yl)ethyl]iminiomethyl}cyclohexadienide top
Crystal data top
C14H19N3O3F(000) = 592
Mr = 277.17Dx = 1.241 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 600 reflections
a = 10.5688 (17) Åθ = 20–25°
b = 12.1887 (19) ŵ = 0.09 mm1
c = 12.6816 (15) ÅT = 293 K
β = 114.696 (10)°Block, colorless
V = 1484.2 (4) Å30.20 × 0.17 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
Rint = 0.039
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
ϕ and ω scansh = 1212
13954 measured reflectionsk = 1414
2617 independent reflectionsl = 1515
2217 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.4948P]
where P = (Fo2 + 2Fc2)/3
2617 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C14H19N3O3V = 1484.2 (4) Å3
Mr = 277.17Z = 4
Monoclinic, P2/cMo Kα radiation
a = 10.5688 (17) ŵ = 0.09 mm1
b = 12.1887 (19) ÅT = 293 K
c = 12.6816 (15) Å0.20 × 0.17 × 0.12 mm
β = 114.696 (10)°
Data collection top
Bruker APEXII area-detector
diffractometer
2217 reflections with I > 2σ(I)
13954 measured reflectionsRint = 0.039
2617 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.20Δρmax = 0.21 e Å3
2617 reflectionsΔρmin = 0.20 e Å3
185 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61744 (16)0.56198 (15)0.71035 (13)0.0554 (6)
O4A0.90206 (18)0.6309 (2)0.37604 (17)0.0822 (9)
O4B0.70959 (19)0.71709 (18)0.27970 (16)0.0702 (7)
N40.7876 (2)0.66443 (19)0.36479 (18)0.0561 (8)
N80.36262 (19)0.63064 (16)0.56787 (17)0.0424 (6)
N110.2518 (2)0.85530 (16)0.54095 (17)0.0527 (7)
C10.6566 (2)0.58808 (18)0.63278 (18)0.0427 (7)
C20.5618 (2)0.63386 (17)0.52278 (18)0.0391 (7)
C30.6069 (2)0.65830 (18)0.43661 (19)0.0421 (7)
C40.7429 (2)0.64084 (19)0.45537 (19)0.0446 (7)
C50.8388 (2)0.5980 (2)0.5617 (2)0.0528 (8)
C60.7975 (2)0.5734 (2)0.6469 (2)0.0528 (8)
C70.4195 (2)0.65234 (18)0.49839 (19)0.0426 (7)
C90.2183 (2)0.6557 (2)0.5425 (2)0.0508 (8)
C100.2061 (3)0.7661 (2)0.5922 (2)0.0552 (9)
C120.2898 (4)0.9518 (2)0.6147 (3)0.0803 (12)
C130.3521 (5)1.0384 (3)0.5668 (4)0.1090 (18)
C140.2542 (5)1.0705 (3)0.4457 (4)0.1172 (18)
C150.2066 (4)0.9692 (3)0.3707 (3)0.0911 (14)
C160.1493 (3)0.8843 (3)0.4255 (2)0.0727 (11)
H30.544400.686600.365900.0510*
H50.930800.586500.573700.0630*
H60.862800.546000.716900.0630*
H70.363200.682500.426600.0510*
H80.413 (3)0.601 (2)0.638 (2)0.062 (8)*
H9A0.181000.599100.575400.0610*
H9B0.163700.656200.459200.0610*
H10A0.109900.778300.578800.0660*
H10B0.261800.765600.675400.0660*
H12A0.356500.931400.691900.0970*
H12B0.207800.981000.620800.0970*
H13A0.438101.011000.566300.1310*
H13B0.374301.102500.616500.1310*
H14A0.300801.120000.413600.1410*
H14B0.174201.108300.447200.1410*
H15A0.135300.989200.295200.1090*
H15B0.284500.938200.359200.1090*
H16A0.066400.912800.430700.0870*
H16B0.123200.819100.377200.0870*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0454 (9)0.0826 (13)0.0419 (9)0.0051 (8)0.0218 (8)0.0039 (8)
O4A0.0416 (11)0.143 (2)0.0713 (13)0.0046 (11)0.0327 (10)0.0041 (12)
O4B0.0609 (12)0.0993 (15)0.0530 (11)0.0059 (10)0.0265 (10)0.0108 (10)
N40.0403 (12)0.0829 (16)0.0478 (12)0.0133 (11)0.0210 (10)0.0081 (11)
N80.0357 (10)0.0482 (11)0.0445 (11)0.0036 (8)0.0180 (9)0.0009 (9)
N110.0543 (12)0.0550 (12)0.0524 (12)0.0070 (10)0.0258 (10)0.0019 (10)
C10.0388 (12)0.0492 (13)0.0396 (12)0.0023 (10)0.0159 (10)0.0088 (10)
C20.0341 (11)0.0422 (12)0.0416 (12)0.0015 (9)0.0163 (9)0.0057 (10)
C30.0377 (12)0.0463 (13)0.0395 (12)0.0027 (10)0.0133 (10)0.0019 (10)
C40.0375 (12)0.0538 (14)0.0434 (12)0.0087 (10)0.0179 (10)0.0088 (10)
C50.0317 (12)0.0747 (17)0.0514 (14)0.0037 (11)0.0168 (11)0.0077 (12)
C60.0332 (12)0.0758 (17)0.0423 (13)0.0021 (11)0.0087 (10)0.0005 (12)
C70.0395 (12)0.0441 (13)0.0429 (12)0.0010 (10)0.0158 (10)0.0007 (10)
C90.0360 (12)0.0589 (15)0.0606 (15)0.0030 (11)0.0233 (11)0.0053 (12)
C100.0510 (14)0.0662 (16)0.0586 (15)0.0128 (12)0.0329 (13)0.0053 (13)
C120.103 (2)0.068 (2)0.073 (2)0.0068 (17)0.0399 (18)0.0112 (16)
C130.149 (4)0.067 (2)0.109 (3)0.030 (2)0.052 (3)0.020 (2)
C140.168 (4)0.068 (2)0.123 (3)0.003 (3)0.068 (3)0.015 (2)
C150.108 (3)0.087 (2)0.075 (2)0.002 (2)0.035 (2)0.0193 (18)
C160.0649 (18)0.080 (2)0.0675 (18)0.0060 (15)0.0219 (15)0.0097 (16)
Geometric parameters (Å, º) top
O1—C11.257 (3)C14—C151.511 (5)
O4A—N41.227 (3)C15—C161.507 (5)
O4B—N41.230 (3)C3—H30.9300
N4—C41.442 (3)C5—H50.9300
N8—C71.285 (3)C6—H60.9300
N8—C91.454 (3)C7—H70.9300
N11—C101.449 (3)C9—H9A0.9700
N11—C121.451 (3)C9—H9B0.9700
N11—C161.455 (3)C10—H10A0.9700
N8—H80.90 (2)C10—H10B0.9700
C1—C21.447 (3)C12—H12A0.9700
C1—C61.435 (3)C12—H12B0.9700
C2—C71.421 (3)C13—H13A0.9700
C2—C31.395 (3)C13—H13B0.9700
C3—C41.372 (3)C14—H14A0.9700
C4—C51.406 (3)C14—H14B0.9700
C5—C61.357 (3)C15—H15A0.9700
C9—C101.514 (3)C15—H15B0.9700
C12—C131.500 (6)C16—H16A0.9700
C13—C141.502 (7)C16—H16B0.9700
O1···N82.674 (3)C1···H10Bi3.1000
O1···C9i3.098 (3)C3···H13Bv3.0200
O1···O1i3.043 (3)C5···H9Avi2.9200
O1···N8i2.857 (3)C9···H16B2.7600
O4A···C9ii3.134 (3)C16···H9B2.8100
O4B···C3iii3.400 (3)H3···O4B2.4400
O4B···C7iii3.302 (3)H3···H72.3400
O1···H8i2.13 (3)H3···O4Biii2.5700
O1···H82.02 (3)H5···O4A2.4600
O1···H9Ai2.7000H6···O4Aviii2.8600
O1···H10Bi2.8900H7···H32.3400
O4A···H52.4600H7···H9B2.3300
O4A···H9Bii2.5300H7···O4Biii2.4400
O4A···H6iv2.8600H8···O12.02 (3)
O4B···H32.4400H8···C12.61 (3)
O4B···H3iii2.5700H8···O1i2.13 (3)
O4B···H7iii2.4400H9A···O1i2.7000
O4B···H13Bv2.8900H9A···C5vi2.9200
N8···O12.674 (3)H9B···O4Avii2.5300
N8···N112.942 (3)H9B···C162.8100
N8···O1i2.857 (3)H9B···H72.3300
N11···N82.942 (3)H9B···H16B2.2000
N11···C73.217 (3)H10A···H16A2.3900
C1···C7vi3.299 (3)H10B···H12A2.2300
C1···C2vi3.568 (3)H10B···O1i2.8900
C2···C1vi3.568 (3)H10B···C1i3.1000
C2···C7vi3.511 (3)H12A···H10B2.2300
C2···C2vi3.472 (3)H12B···H14B2.5900
C3···O4Biii3.400 (3)H12B···H16A2.3900
C5···C9vi3.318 (3)H13A···H15B2.6000
C6···C7vi3.563 (3)H13A···H13Av2.5400
C7···C6vi3.563 (3)H13B···O4Bv2.8900
C7···C2vi3.511 (3)H13B···C3v3.0200
C7···O4Biii3.302 (3)H14B···H12B2.5900
C7···C1vi3.299 (3)H15A···H15Aix2.6000
C7···N113.217 (3)H15B···H13A2.6000
C9···O4Avii3.134 (3)H16A···H10A2.3900
C9···C5vi3.318 (3)H16A···H12B2.3900
C9···O1i3.098 (3)H16B···C92.7600
C1···H82.61 (3)H16B···H9B2.2000
O4A—N4—O4B122.9 (2)C2—C7—H7117.00
O4A—N4—C4118.4 (2)N8—C9—H9A109.00
O4B—N4—C4118.7 (2)N8—C9—H9B110.00
C7—N8—C9123.6 (2)C10—C9—H9A109.00
C10—N11—C12111.9 (2)C10—C9—H9B109.00
C10—N11—C16112.7 (2)H9A—C9—H9B108.00
C12—N11—C16109.9 (2)N11—C10—H10A109.00
C9—N8—H8116 (2)N11—C10—H10B109.00
C7—N8—H8121 (2)C9—C10—H10A109.00
O1—C1—C6122.3 (2)C9—C10—H10B109.00
O1—C1—C2122.0 (2)H10A—C10—H10B108.00
C2—C1—C6115.7 (2)N11—C12—H12A109.00
C1—C2—C7121.0 (2)N11—C12—H12B109.00
C1—C2—C3120.8 (2)C13—C12—H12A109.00
C3—C2—C7118.2 (2)C13—C12—H12B109.00
C2—C3—C4120.5 (2)H12A—C12—H12B108.00
N4—C4—C5119.6 (2)C12—C13—H13A109.00
C3—C4—C5120.5 (2)C12—C13—H13B109.00
N4—C4—C3120.0 (2)C14—C13—H13A109.00
C4—C5—C6120.2 (2)C14—C13—H13B109.00
C1—C6—C5122.4 (2)H13A—C13—H13B108.00
N8—C7—C2125.0 (2)C13—C14—H14A110.00
N8—C9—C10111.0 (2)C13—C14—H14B110.00
N11—C10—C9112.2 (2)C15—C14—H14A110.00
N11—C12—C13111.1 (3)C15—C14—H14B110.00
C12—C13—C14111.5 (4)H14A—C14—H14B108.00
C13—C14—C15109.7 (3)C14—C15—H15A109.00
C14—C15—C16111.3 (3)C14—C15—H15B109.00
N11—C16—C15110.9 (3)C16—C15—H15A109.00
C2—C3—H3120.00C16—C15—H15B109.00
C4—C3—H3120.00H15A—C15—H15B108.00
C4—C5—H5120.00N11—C16—H16A109.00
C6—C5—H5120.00N11—C16—H16B109.00
C1—C6—H6119.00C15—C16—H16A109.00
C5—C6—H6119.00C15—C16—H16B110.00
N8—C7—H7117.00H16A—C16—H16B108.00
O4B—N4—C4—C5169.0 (2)C6—C1—C2—C31.8 (3)
O4A—N4—C4—C511.1 (3)O1—C1—C6—C5177.7 (2)
O4A—N4—C4—C3167.7 (2)C3—C2—C7—N8177.8 (2)
O4B—N4—C4—C312.3 (3)C1—C2—C7—N80.5 (3)
C9—N8—C7—C2176.8 (2)C1—C2—C3—C41.0 (3)
C7—N8—C9—C1093.7 (3)C7—C2—C3—C4179.3 (2)
C10—N11—C12—C13173.5 (3)C2—C3—C4—N4178.8 (2)
C16—N11—C10—C977.0 (3)C2—C3—C4—C50.0 (3)
C12—N11—C16—C1560.1 (4)C3—C4—C5—C60.1 (4)
C16—N11—C12—C1360.5 (4)N4—C4—C5—C6178.7 (2)
C12—N11—C10—C9158.4 (3)C4—C5—C6—C10.8 (4)
C10—N11—C16—C15174.3 (3)N8—C9—C10—N1162.9 (3)
C6—C1—C2—C7180.0 (2)N11—C12—C13—C1457.5 (5)
C2—C1—C6—C51.7 (3)C12—C13—C14—C1552.8 (5)
O1—C1—C2—C3177.6 (2)C13—C14—C15—C1652.4 (5)
O1—C1—C2—C70.7 (3)C14—C15—C16—N1156.8 (4)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y, z; (iii) x+1, y, z+1/2; (iv) x, y+1, z1/2; (v) x+1, y+2, z+1; (vi) x+1, y+1, z+1; (vii) x1, y, z; (viii) x, y+1, z+1/2; (ix) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O10.90 (2)2.02 (3)2.674 (3)129 (3)
N8—H8···O1i0.90 (2)2.13 (3)2.857 (3)137 (3)
C3—H3···O4Biii0.932.573.400 (3)149
C7—H7···O4Biii0.932.443.302 (3)155
C9—H9B···O4Avii0.972.533.134 (3)120
Symmetry codes: (i) x+1, y, z+3/2; (iii) x+1, y, z+1/2; (vii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H19N3O3
Mr277.17
Crystal system, space groupMonoclinic, P2/c
Temperature (K)293
a, b, c (Å)10.5688 (17), 12.1887 (19), 12.6816 (15)
β (°) 114.696 (10)
V3)1484.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.17 × 0.12
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13954, 2617, 2217
Rint0.039
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.151, 1.20
No. of reflections2617
No. of parameters185
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Version 1.4.2; Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and WinGX2003 (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O1—C11.257 (3)N11—C161.455 (3)
O4A—N41.227 (3)C1—C21.447 (3)
O4B—N41.230 (3)C1—C61.435 (3)
N4—C41.442 (3)C2—C31.395 (3)
N8—C71.285 (3)C3—C41.372 (3)
N8—C91.454 (3)C4—C51.406 (3)
N11—C101.449 (3)C5—C61.357 (3)
N11—C121.451 (3)C9—C101.514 (3)
O4A—N4—O4B122.9 (2)O1—C1—C2122.0 (2)
O4A—N4—C4118.4 (2)N4—C4—C5119.6 (2)
O4B—N4—C4118.7 (2)N4—C4—C3120.0 (2)
C7—N8—C9123.6 (2)N8—C7—C2125.0 (2)
C10—N11—C12111.9 (2)N8—C9—C10111.0 (2)
C10—N11—C16112.7 (2)N11—C10—C9112.2 (2)
C12—N11—C16109.9 (2)N11—C12—C13111.1 (3)
O1—C1—C6122.3 (2)N11—C16—C15110.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O10.90 (2)2.02 (3)2.674 (3)129 (3)
N8—H8···O1i0.90 (2)2.13 (3)2.857 (3)137 (3)
C3—H3···O4Bii0.932.573.400 (3)149
C7—H7···O4Bii0.932.443.302 (3)155
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y, z+1/2.
 

Acknowledgements

This work was supported by CGIC–UC (Coordinación General de Investigación Científica de la Universidad de Colima) and SIP–IPN (Secretaria de Investigación y Postgrado del Instituto Politécnico Nacional).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M., Raithby, P. R. & Sparr, E. (1997). Acta Cryst. B53, 1017–1024.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAndré, I., Foces-Foces, C., Cano, F. H. & Martinez-Ripoll, M. (1997). Acta Cryst. B53, 996–1005.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButt, G. L., Mackay, M. F. & Topsom, R. D. (1987). Acta Cryst. C43, 1092–1094.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKrygowski, T. M. & Stepien, B. T. (2005). Chem. Rev. 105, 3482–3512.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrygowski, T. M., Wozniak, K., Anulewicz, R., Pawlak, D., Kolodziejski, W., Grech, E. & Szady, A. (1997). J. Phys. Chem. A, 101, 9399–9404.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRybarczyk-Pirek, A. J., Grabowski, S. J., Malecka, M. & Nawrot-Modranka, J. (2002). J. Phys. Chem. A, 106, 11956–11962.  Web of Science CSD CrossRef CAS Google Scholar
First citationSantos-Contreras, R. J., Martínez-Martínez, F. J., García-Báez, E. V., Padilla-Martínez, I. I., Peraza, A. L. & Höpfl, H. (2007). Acta Cryst. C63, o239–o242.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSobczyk, L., Grabowski, S. J. & Krygowski, T. M. (2005). Chem. Rev. 105, 3513–3560.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSteiner, T. (1998). J. Phys. Chem. A, 102, 7041–7052.  Web of Science CrossRef CAS Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds