organic compounds
Extensive hydrogen and halogen bonding, and absence of intramolecular hydrogen bonding between alcohol and nitro groups in a series of endo-nitronorbornanol compounds
aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, PO Wits 2050, South Africa
*Correspondence e-mail: andreas.lemmerer@wits.ac.za
The influence of the substituent at the C2 position on the hydrogen-bonding patterns is compared for a series of five related compounds, namely (±)-3-exo,6-exo-dibromo-5-endo-hydroxy-3-endo-nitrobicyclo[2.2.1]heptane-2-exo-carbonitrile, C8H8Br2N2O3, (II), (±)-3-exo,6-exo-dibromo-6-endo-nitro-5-exo-phenylbicyclo[2.2.1]heptan-2-endo-ol, C13H13Br2NO3, (III), (±)-methyl 3-exo,6-exo-dibromo-5-endo-hydroxy-3-endo-nitrobicyclo[2.2.1]heptane-2-exo-carboxylate, C9H11Br2NO5, (IV), (±)-methyl 3-exo,6-exo-dibromo-7-diphenylmethylidene-5-endo-hydroxy-3-endo-nitrobicyclo[2.2.1]heptane-2-exo-carboxylate, C22H19Br2NO5, (V), and (±)-methyl 3-exo,6-exo-dibromo-5-endo-hydroxy-3-endo-nitro-7-oxabicyclo[2.2.1]heptane-2-exo-carboxylate, C8H9Br2NO6, (VI). The hydrogen-bonding motif in all five compounds is a chain, formed by O—H⋯O hydrogen bonds in (III), (IV), (V) and (VI), and by O—H⋯N hydrogen bonds in (II). All compounds except (III) contain a number of Br⋯Br and Br⋯O halogen bonds that connect the chains to each other to form two-dimensional sheets or three-dimensional networks. None of the compounds features intramolecular hydrogen bonding between the alcohol and nitro functional groups, as was found in the related compound (±)-methyl 3-exo,6-exo-dichloro-5-endo-hydroxy-3-endo-nitrobicyclo[2.2.1]heptane-2-exo-carboxylate, (I) [Boeyens, Denner & Michael (1984b). J. Chem. Soc. Perkin Trans. 2, pp. 767–770]. The of (V) exhibits whole-molecule disorder.
Comment
Although hydrogen bonding between hydroxy and nitro groups is not uncommon (Desiraju, 2002), intramolecular hydrogen bonding between these groups is largely confined to systems in which they find themselves in enforced proximity, as in 2-nitrophenols (Baitinger et al., 1964; Heintz et al., 2007; Litwinienko et al., 2009). We have been interested in hydrogen bonding in nitronorbornanol systems for several years (Boeyens et al., 1984a; Michael et al., 1994). In particular, when both groups are constrained to occupy the endo cavity of the norbornane skeleton, the likelihood of intramolecular hydrogen bonding is high, as we have found, for example, in 3-exo,6-exo-dichloro-5-endo-hydroxy-3-endo-nitrobicyclo[2.2.1]heptane-2-exo-carbonitrile, (I) (Boeyens et al., 1984b). We previously determined the room-temperature of the corresponding dibromo compound 3-exo,6-exo-dibromo-5-endo-hydroxy-3-endo-nitrobicyclo[2.2.1]heptane-2-exo-carbonitrile, (II) (Blom et al., 1980), but owing to the limitations of the techniques available at the time, we were unable to locate H atoms and to establish unambiguously whether or not the hydrogen bonding was intramolecular. We report here a redetermination of the of compound (II) at low temperature, as well as the structures of three analogous dibrominated endo-nitronorbornanols, (III)–(V), and the related 7-oxanorbornanol, (VI), in order to elucidate their hydrogen-bonding patterns and to establish whether there is any intra- or intermolecular hydrogen bonding between the alcohol and nitro functionalities.
The distances and angles within the five compounds reported (Fig. 1) are generally as expected (Allen et al., 1987). In all five structures, hydrogen bonds play a part in controlling the supramolecular assembly of the molecules (Desiraju, , 2002). All five compounds contain an alcohol group and a number of good hydrogen-bonding acceptor functional groups including nitro, ester and ether units as well as Br atoms. Furthermore, a number of halogen-type C—Br⋯A (A = Br or O; Metrangelo et al., 2005) interactions are also present (Fig. 2).
Compound (II) crystallizes in the polar Cc. The O1—H1⋯N2 hydrogen bond forms a C(8) (Bernstein et al., 1995) chain along the [010] direction. Adjacent chains of this type are connected by a Br2⋯O2 halogen interaction along the [001] direction (Fig. 3) and by a Br1⋯Br2 halogen interaction (Table 6) along the [100] direction to form a three-dimensional network.
In compound (III), the O1—H1⋯O2 hydrogen bond forms C(7) chains along the [010] direction, containing molecules related by the twofold screw axis along (0.5, y, 0.75) (Fig. 4). Compound (III) has no short Br⋯Br contacts and does not form a higher-dimensional network.
In the , C(8) chains are formed along the [10] direction, utilizing the O1—H1⋯O4 hydrogen bond (Fig. 5a). Adjacent chains of this type are connected to form a three-dimensional network by Br2⋯Br2 interactions along the [001] direction and by Br1⋯O1 interactions along the [010] direction (Table 6, and Figs. 5a and 5b).
of compound (IV)The entire molecule of compound (V) is disordered over two sets of atomic positions and the two parts, labelled A and B (Fig. 1), have equal site-occupancy factors. The only substantial conformational difference between the two disorder components is the orientations of the aromatic rings relative to the nitronorbornanol unit. Molecule A has torsion angles of −46.9 (15)° (C7A—C10A—C17A—C22A) and 120.9 (12)° (C7A—C10A—C11A—C16A), as compared to angles of −61.3 (14)° (C7B—C10B—C17B—C22B) and 139.4 (12)° (C7B—C10B—C11B—C16B) in molecule B. Nonetheless, the intermolecular hydrogen and halogen bonding is similar between the two molecules (Tables 4 and 6). The O1A—H1A⋯O3A hydrogen bond in molecule A forms C(7) chains from alcohol atom O1A to nitro atom O3A. The chains run along the [010] direction (Fig. 6), generated by the twofold screw axis in the P21/c. The molecules within the chains are further connected by Br2A⋯O3A halogen bonds (Table 6 and Fig. 6). (V) contains no Br⋯Br halogen bonds. The hydrogen bonding of molecule B is not shown in Fig. 6.
In the , the O1—H1⋯O4 hydrogen bond forms C(8) chains along the [01] direction (Fig. 7a). Adjacent hydrogen-bonded chains are connected by Br1⋯O1 interactions along the [100] direction to form sheets (Fig. 7a). Two adjacent sheets are then connected by Br2⋯Br2 halogen bonds along [010] (Table 6) to form bilayers of sheets (Fig. 7b).
of compound (VI)Compound (II), which is the dibromo analogue of (I), does not contain an intramolecular O—H⋯O(nitro) hydrogen bond as observed in (I). Instead, it forms a C(8) hydrogen-bonded chain with the nitrile N atom as acceptor on a neighbouring molecule. Nonetheless, the O atoms of the nitro group are utilized in intermolecular interactions, in this case halogen bonding with the Br atoms to form two-dimensional sheets which are further linked into a three-dimensional network via Br⋯Br interactions. Compound (III) has the nitrile group replaced by a phenyl group, and this seems to have an influence on the lack of any halogen bonding observed in (III) because of the steric increase of the phenyl group next to one of the Br atoms. The absence of any good hydrogen-bonding acceptor at the 2-position leaves only the nitro group or the alcohol O atom as candidates and, indeed, in (III), there is an intermolecular O—H⋯O(nitro) hydrogen bond forming C(7) chains. Similar chains are formed by (V), which at the same time uses the second O atom of the nitro group in halogen bonding to strengthen the chain motif. Compounds (IV) and (VI) have the same intermolecular hydrogen bonding from the alcohol to the ester carbonyl group, and similar packing of the chains into larger architectures. (IV) has chains connected in three dimensions by the halogen-bond interactions, whereas (VI) has bilayers of hydrogen-bonded sheets using similar Br⋯Br and Br⋯O interactions. The halogen bonds observed in these compounds all have X⋯A distances less than the van der Waals radii sum (3.70 Å for Br⋯Br contacts and 3.37 Å for Br⋯O contacts).
Experimental
The syntheses and spectroscopic characterization of the five compounds (II)–(VI) by bromination of the corresponding endo-nitronorbonenes have been reported previously (Michael et al., 1991). In these syntheses, transannular by the nitro group during bromination of the alkene bond is responsible for the introduction of the endo-hydroxy group in a regiospecific and totally stereoselective manner. Crystals of (II) were grown from methanol, (III) from benzene, (IV) from benzene, (V) from ethyl acetate/hexane (1:1 v/v) and (VI) from acetone, all by slow evaporation.
Compound (II)
Crystal data
|
Compound (III)
Crystal data
|
Refinement
|
Compound (IV)
Crystal data
|
Refinement
|
Compound (V)
Crystal data
|
Refinement
|
Compound (VI)
Crystal data
|
Refinement
|
The whole-molecule disorder of (V) was modelled by finding alternative positions for all the atoms in the molecule. The corresponding bonded distance and the one-angle nonbonded distances in the two disorder components were restrained to have the same values, subject to s.u. values of 0.005 and 0.01 Å, respectively. The atomic displacement parameters were restrained to be equal for each of the atom pairs C1A/C1B, C2A/C2B, C3A/C3B, C5A/C5B, O1A/O1B, C6A/C6B, C7A/C7B, C8A/C8B, C9A/C9B, O2A/O2B, O3A/O3B, C10A/C10B and C11A/C11B. of the site occupancies gave values of 0.501 (8) and 0.499 (8): the occupancies were thereafter both fixed at 0.50. For all compounds, all C—H atoms were refined using a riding model, with distances of 0.95 (aromatic), 1.00 (aliphatic CH), 0.99 (CH2) and 0.98 Å (CH3), and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). H atoms on O atoms which are involved in hydrogen-bonding interactions were located in difference maps for all compounds except (IV) and (V) (which were refined using a riding model) and their positions allowed to refine freely, with Uiso(H) = 1.5Ueq(O) for all compounds. The value of the Flack x parameter (Flack, 1983) for (II), viz. 0.003 (19), confirms the correct orientation of the structure with respect to the two polar-axis directions in the Cc.
For all compounds, data collection: SMART-NT (Bruker, 1998); cell SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
10.1107/S0108270111024140/gd3390sup1.cif
contains datablocks global, II, III, IV, V, VI. DOI:Structure factors: contains datablock II. DOI: 10.1107/S0108270111024140/gd3390IIsup2.hkl
Structure factors: contains datablock III. DOI: 10.1107/S0108270111024140/gd3390IIIsup3.hkl
Structure factors: contains datablock IV. DOI: 10.1107/S0108270111024140/gd3390IVsup4.hkl
Structure factors: contains datablock V. DOI: 10.1107/S0108270111024140/gd3390Vsup5.hkl
Structure factors: contains datablock VI. DOI: 10.1107/S0108270111024140/gd3390VIsup6.hkl
Supporting information file. DOI: 10.1107/S0108270111024140/gd3390IIsup7.mol
Supporting information file. DOI: 10.1107/S0108270111024140/gd3390IIIsup8.mol
Supporting information file. DOI: 10.1107/S0108270111024140/gd3390IVsup9.mol
Supporting information file. DOI: 10.1107/S0108270111024140/gd3390Vsup10.mol
Supporting information file. DOI: 10.1107/S0108270111024140/gd3390VIsup11.mol
The syntheses and spectroscopic characterization of the five compounds (II)–(VI) by bromination of the corresponding endo-nitronorbonenes have been reported previously (Michael et al., 1991). In these syntheses, transannular
by the nitro group during bromination of the alkene bond is responsible for the introduction of the endo hydroxyl group in a regiospecific and totally stereoselective manner. Crystals of (II) were grown from methanol, (III) from benzene, (IV) from benzene, (V) from 1:1 ethylacetate/hexane and (VI) from acetone, by slow evaporation.The whole-molecule disorder of (V) was modelled by finding alternative positions for all the atoms in the molecule. The corresponding bonded distance and the one-angle non-bonded distances in the two disorder components were restrained to have the same values, subject to s.u.s of 0.005 and 0.01 Å, respectively. The atomic displacement parameters were restrained to be equal for each of the atom pairs C1A/C1B, C2A/C2B, C3A/C3B, C5A/C5B, O1A/O1B, C6A/C6B, C7A/C7B, C8A/C8B, C9A/C9B, O2A/O2B, O3A/O3B, C10A/C10B and C11A/C11B.
of the site occupancies gave values of 0.501 (8) and 0.499 (8): the occupancies were thereafter both fixed at 0.50. For all compounds, all C—H atoms were refined using a riding model, with distances of 0.95 Å (aromatic), 1.00 Å (aliphatic CH) and 0.99 Å (CH2), 0.98 Å (CH3) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). H atoms on O atoms which are involved in hydrogen-bonding interactions were located in difference maps for all compounds except (IV) and (V) (which where refined using a riding model) and their positions allowed to refine freely, with Uiso(H) = 1.5Ueq(O) for all compounds. The value of the Flack x parameter (Flack, 1983) for (II), 0.003 (19), confirms the correct orientation of the structure with respect to the two polar axis directions in Cc.For all compounds, data collection: SMART-NT (Bruker, 1998); cell
SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).Fig. 1. The molecular structures and atom-labelling schemes for (a) (II), (b) (III), (c) (IV), (d) and (e) respectively, for molecules A and B of (V), and (f) (VI). Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms are drawn as small spheres of arbitrary radii. | |
Fig. 2. The three types of halogen bonding observed in this study of nitronorbornanols. | |
Fig. 3. The C(8) hydrogen-bonded chain of (II), showing the Br···O halogen-bonded interactions along the [001] direction. The Br···Br halogen bonds along the [100] direction are not shown. Atoms marked with the superscripts (i) and (ii) are at the symmetry positions (x - 1/2, y + 1/2, z) and (x + 1, -y + 1, z + 1/2), respectively. H atoms not involved in hydrogen-bonding interactions are omitted for clarity. | |
Fig. 4. The C(7) hydrogen-bonded chain of (III). Atoms marked with the superscript (i) are at the symmetry position (-x + 1, y + 1/2, -z + 3/2). H atoms not involved in hydrogen-bonding interactions are omitted for clarity. | |
Fig. 5. (a) The C(8) hydrogen-bonded chain of (IV) as well as the Br···O halogen bonds [resulting in the formation of?] to form a two-dimensional sheet. (b) The sheets are then connected to a three-dimensional network by Br···Br halogen bonds. Atoms marked with the superscripts (i), (ii) and (iii) are at the symmetry positions (x - 1, y + 1, z), (x, y - 1, z), (-x + 1, -y + 2, -z + 1), respectively. H atoms not involved in hydrogen-bonding interactions are omitted for clarity. | |
Fig. 6. The C(7) hydrogen-bonded chain of (V). Note how the halogen bonding connects every second molecule involved in hydrogen-bonded interactions within the chain (by translation only). Only the hydrogen bonding of molecule A is shown. Molecule B has similar interactions but [these?] are not shown in the figure. Atoms marked with the superscripts (i) and (ii) are at the symmetry positions (-x + 1, y + 1/2, -z + 1/2) and (x, y + 1, z), respectively. H atoms not involved in hydrogen-bonding interactions are omitted for clarity. | |
Fig. 7. (a) The C(8) hydrogen-bonded chains of (VI) connected by Br···O halogen bonds to form two-dimensional sheets. (b) The sheets form bilayers through further Br···Br halogen bonding. Atoms marked with the superscripts (i), (ii) and (iii) are at the symmetry positions (x - 1, y, z - 1), (x + 1, y, z) and (-x + 2, -y, -z + 2), respectively. H atoms not involved in hydrogenbonding interactions are omitted for clarity. |
C8H8Br2N2O3 | F(000) = 656 |
Mr = 339.98 | Dx = 2.149 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 850 reflections |
a = 6.6517 (8) Å | θ = 2.5–28.2° |
b = 16.084 (2) Å | µ = 7.70 mm−1 |
c = 9.8254 (14) Å | T = 173 K |
β = 91.825 (6)° | Block, yellow |
V = 1050.6 (2) Å3 | 0.6 × 0.2 × 0.2 mm |
Z = 4 |
Bruker SMART 1K CCD area-detector diffractometer | 1945 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.067 |
ω scans | θmax = 28.0°, θmin = 2.5° |
Absorption correction: integration (XPREP; Bruker, 1999) | h = −8→8 |
Tmin = 0.075, Tmax = 0.301 | k = −21→17 |
3346 measured reflections | l = −10→12 |
2038 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.116 | w = 1/[σ2(Fo2) + (0.0914P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
2038 reflections | Δρmax = 1.20 e Å−3 |
139 parameters | Δρmin = −0.94 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 765 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.003 (19) |
C8H8Br2N2O3 | V = 1050.6 (2) Å3 |
Mr = 339.98 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 6.6517 (8) Å | µ = 7.70 mm−1 |
b = 16.084 (2) Å | T = 173 K |
c = 9.8254 (14) Å | 0.6 × 0.2 × 0.2 mm |
β = 91.825 (6)° |
Bruker SMART 1K CCD area-detector diffractometer | 2038 independent reflections |
Absorption correction: integration (XPREP; Bruker, 1999) | 1945 reflections with I > 2σ(I) |
Tmin = 0.075, Tmax = 0.301 | Rint = 0.067 |
3346 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.116 | Δρmax = 1.20 e Å−3 |
S = 1.04 | Δρmin = −0.94 e Å−3 |
2038 reflections | Absolute structure: Flack (1983), 765 Friedel pairs |
139 parameters | Absolute structure parameter: 0.003 (19) |
2 restraints |
Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 1999) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5593 (9) | 0.3530 (4) | 0.5982 (6) | 0.0187 (11) | |
H1A | 0.6952 | 0.3306 | 0.6247 | 0.022* | |
C2 | 0.4484 (9) | 0.3079 (4) | 0.4748 (6) | 0.0195 (11) | |
H2 | 0.479 | 0.3385 | 0.3892 | 0.023* | |
C3 | 0.2221 (8) | 0.3221 (3) | 0.5061 (6) | 0.0176 (11) | |
C4 | 0.2295 (9) | 0.3867 (4) | 0.6192 (6) | 0.0197 (11) | |
H4 | 0.1001 | 0.3943 | 0.6666 | 0.024* | |
C5 | 0.3266 (10) | 0.4690 (4) | 0.5676 (7) | 0.0218 (11) | |
H5 | 0.3106 | 0.5143 | 0.6362 | 0.026* | |
C6 | 0.5531 (9) | 0.4451 (3) | 0.5579 (7) | 0.0212 (12) | |
H6 | 0.5968 | 0.4518 | 0.4621 | 0.025* | |
C7 | 0.4034 (8) | 0.3507 (4) | 0.7097 (6) | 0.0200 (11) | |
H7A | 0.4399 | 0.387 | 0.788 | 0.024* | |
H7B | 0.3757 | 0.2935 | 0.7416 | 0.024* | |
C8 | 0.5089 (10) | 0.2208 (4) | 0.4591 (7) | 0.0218 (12) | |
N1 | 0.0955 (8) | 0.3456 (3) | 0.3808 (6) | 0.0238 (11) | |
N2 | 0.5591 (10) | 0.1542 (4) | 0.4456 (7) | 0.0319 (13) | |
O1 | 0.2507 (9) | 0.4953 (3) | 0.4383 (6) | 0.0294 (11) | |
H1 | 0.185 (17) | 0.541 (7) | 0.449 (11) | 0.044* | |
O2 | −0.0749 (8) | 0.3697 (4) | 0.3984 (6) | 0.0370 (12) | |
O3 | 0.1674 (8) | 0.3368 (4) | 0.2676 (5) | 0.0363 (12) | |
Br1 | 0.08836 (7) | 0.22101 (4) | 0.56746 (6) | 0.02728 (18) | |
Br2 | 0.72707 (9) | 0.51130 (4) | 0.68145 (7) | 0.03009 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.022 (3) | 0.019 (2) | 0.015 (3) | 0.003 (2) | 0.001 (2) | 0.002 (2) |
C2 | 0.021 (2) | 0.020 (3) | 0.018 (3) | 0.005 (2) | 0.003 (2) | 0.000 (2) |
C3 | 0.019 (2) | 0.021 (2) | 0.013 (3) | 0.002 (2) | 0.003 (2) | 0.000 (2) |
C4 | 0.023 (2) | 0.024 (3) | 0.012 (3) | 0.005 (2) | 0.005 (2) | 0.000 (2) |
C5 | 0.028 (3) | 0.020 (2) | 0.018 (3) | 0.002 (2) | 0.003 (2) | −0.004 (2) |
C6 | 0.025 (3) | 0.019 (2) | 0.020 (3) | 0.000 (2) | 0.005 (2) | −0.001 (2) |
C7 | 0.023 (3) | 0.020 (3) | 0.017 (3) | 0.001 (2) | 0.000 (2) | 0.002 (2) |
C8 | 0.024 (3) | 0.027 (3) | 0.015 (3) | 0.006 (2) | 0.003 (2) | −0.004 (2) |
N1 | 0.027 (2) | 0.027 (3) | 0.018 (3) | 0.006 (2) | −0.004 (2) | 0.0000 (19) |
N2 | 0.037 (3) | 0.025 (3) | 0.034 (4) | 0.007 (2) | 0.010 (3) | −0.002 (2) |
O1 | 0.043 (3) | 0.025 (2) | 0.020 (2) | 0.012 (2) | 0.002 (2) | 0.0058 (17) |
O2 | 0.023 (2) | 0.052 (3) | 0.036 (3) | 0.012 (2) | −0.002 (2) | 0.005 (2) |
O3 | 0.042 (3) | 0.056 (3) | 0.011 (2) | 0.010 (3) | 0.000 (2) | −0.004 (2) |
Br1 | 0.0276 (3) | 0.0262 (3) | 0.0282 (3) | −0.0045 (2) | 0.0032 (2) | 0.0022 (2) |
Br2 | 0.0306 (3) | 0.0264 (3) | 0.0334 (4) | −0.0056 (3) | 0.0014 (2) | −0.0062 (3) |
C1—C6 | 1.533 (8) | C4—H4 | 1 |
C1—C7 | 1.533 (8) | C5—O1 | 1.416 (9) |
C1—C2 | 1.576 (9) | C5—C6 | 1.561 (8) |
C1—H1A | 1 | C5—H5 | 1 |
C2—C8 | 1.468 (8) | C6—Br2 | 1.964 (6) |
C2—C3 | 1.562 (7) | C6—H6 | 1 |
C2—H2 | 1 | C7—H7A | 0.99 |
C3—N1 | 1.516 (8) | C7—H7B | 0.99 |
C3—C4 | 1.521 (8) | C8—N2 | 1.131 (9) |
C3—Br1 | 1.957 (6) | N1—O2 | 1.215 (7) |
C4—C7 | 1.548 (8) | N1—O3 | 1.233 (7) |
C4—C5 | 1.565 (9) | O1—H1 | 0.86 (12) |
C6—C1—C7 | 101.3 (4) | O1—C5—C6 | 109.6 (5) |
C6—C1—C2 | 103.8 (5) | O1—C5—C4 | 113.8 (5) |
C7—C1—C2 | 103.2 (5) | C6—C5—C4 | 102.7 (5) |
C6—C1—H1A | 115.6 | O1—C5—H5 | 110.2 |
C7—C1—H1A | 115.6 | C6—C5—H5 | 110.2 |
C2—C1—H1A | 115.6 | C4—C5—H5 | 110.2 |
C8—C2—C3 | 115.4 (5) | C1—C6—C5 | 103.9 (5) |
C8—C2—C1 | 113.4 (5) | C1—C6—Br2 | 110.7 (4) |
C3—C2—C1 | 102.2 (4) | C5—C6—Br2 | 112.3 (4) |
C8—C2—H2 | 108.5 | C1—C6—H6 | 109.9 |
C3—C2—H2 | 108.5 | C5—C6—H6 | 109.9 |
C1—C2—H2 | 108.5 | Br2—C6—H6 | 109.9 |
N1—C3—C4 | 115.3 (5) | C1—C7—C4 | 95.2 (5) |
N1—C3—C2 | 113.0 (5) | C1—C7—H7A | 112.7 |
C4—C3—C2 | 103.6 (5) | C4—C7—H7A | 112.7 |
N1—C3—Br1 | 102.2 (4) | C1—C7—H7B | 112.7 |
C4—C3—Br1 | 110.3 (4) | C4—C7—H7B | 112.7 |
C2—C3—Br1 | 112.9 (4) | H7A—C7—H7B | 110.2 |
C3—C4—C7 | 99.8 (5) | N2—C8—C2 | 178.5 (7) |
C3—C4—C5 | 110.2 (4) | O2—N1—O3 | 123.7 (6) |
C7—C4—C5 | 101.2 (5) | O2—N1—C3 | 117.4 (5) |
C3—C4—H4 | 114.6 | O3—N1—C3 | 118.9 (5) |
C7—C4—H4 | 114.6 | C5—O1—H1 | 108 (7) |
C5—C4—H4 | 114.6 | ||
C6—C1—C2—C8 | 154.7 (5) | C7—C4—C5—C6 | 32.8 (6) |
C7—C1—C2—C8 | −100.0 (5) | C7—C1—C6—C5 | −36.9 (6) |
C6—C1—C2—C3 | −80.4 (5) | C2—C1—C6—C5 | 69.8 (6) |
C7—C1—C2—C3 | 24.9 (5) | C7—C1—C6—Br2 | 83.8 (5) |
C8—C2—C3—N1 | −99.2 (6) | C2—C1—C6—Br2 | −169.5 (3) |
C1—C2—C3—N1 | 137.3 (5) | O1—C5—C6—C1 | −119.1 (6) |
C8—C2—C3—C4 | 135.5 (5) | C4—C5—C6—C1 | 2.2 (6) |
C1—C2—C3—C4 | 11.9 (5) | O1—C5—C6—Br2 | 121.2 (5) |
C8—C2—C3—Br1 | 16.2 (7) | C4—C5—C6—Br2 | −117.5 (4) |
C1—C2—C3—Br1 | −107.4 (4) | C6—C1—C7—C4 | 56.4 (5) |
N1—C3—C4—C7 | −168.0 (5) | C2—C1—C7—C4 | −50.8 (5) |
C2—C3—C4—C7 | −44.1 (5) | C3—C4—C7—C1 | 58.4 (5) |
Br1—C3—C4—C7 | 77.0 (5) | C5—C4—C7—C1 | −54.6 (5) |
N1—C3—C4—C5 | −62.1 (6) | C4—C3—N1—O2 | −50.6 (8) |
C2—C3—C4—C5 | 61.8 (6) | C2—C3—N1—O2 | −169.4 (6) |
Br1—C3—C4—C5 | −177.1 (4) | Br1—C3—N1—O2 | 69.0 (6) |
C3—C4—C5—O1 | 46.3 (6) | C4—C3—N1—O3 | 131.7 (6) |
C7—C4—C5—O1 | 151.2 (5) | C2—C3—N1—O3 | 12.9 (8) |
C3—C4—C5—C6 | −72.2 (6) | Br1—C3—N1—O3 | −108.7 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N2i | 0.86 (12) | 2.01 (12) | 2.858 (8) | 169 (10) |
Symmetry code: (i) x−1/2, y+1/2, z. |
C13H13Br2NO3 | F(000) = 768 |
Mr = 391.06 | Dx = 1.917 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1017 reflections |
a = 15.945 (2) Å | θ = 3.1–28.3° |
b = 6.7578 (10) Å | µ = 5.99 mm−1 |
c = 13.194 (2) Å | T = 173 K |
β = 107.655 (9)° | Block, colourless |
V = 1354.7 (4) Å3 | 0.4 × 0.3 × 0.14 mm |
Z = 4 |
Bruker SMART 1K CCD area-detector diffractometer | 2786 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ω scans | θmax = 28°, θmin = 2.7° |
Absorption correction: integration (XPREP; Bruker, 1999) | h = −21→21 |
Tmin = 0.110, Tmax = 0.467 | k = −8→8 |
18725 measured reflections | l = −17→17 |
3256 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.052 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0279P)2 + 0.2753P] where P = (Fo2 + 2Fc2)/3 |
3256 reflections | (Δ/σ)max = 0.001 |
175 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.64 e Å−3 |
C13H13Br2NO3 | V = 1354.7 (4) Å3 |
Mr = 391.06 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.945 (2) Å | µ = 5.99 mm−1 |
b = 6.7578 (10) Å | T = 173 K |
c = 13.194 (2) Å | 0.4 × 0.3 × 0.14 mm |
β = 107.655 (9)° |
Bruker SMART 1K CCD area-detector diffractometer | 3256 independent reflections |
Absorption correction: integration (XPREP; Bruker, 1999) | 2786 reflections with I > 2σ(I) |
Tmin = 0.110, Tmax = 0.467 | Rint = 0.042 |
18725 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 0 restraints |
wR(F2) = 0.052 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.34 e Å−3 |
3256 reflections | Δρmin = −0.64 e Å−3 |
175 parameters |
Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 1999) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.27775 (12) | 0.6233 (3) | 0.57508 (14) | 0.0177 (4) | |
H1A | 0.2464 | 0.752 | 0.5536 | 0.021* | |
C2 | 0.26315 (12) | 0.5247 (3) | 0.67562 (14) | 0.0162 (3) | |
H2 | 0.3126 | 0.5677 | 0.7387 | 0.019* | |
C3 | 0.27825 (12) | 0.3023 (3) | 0.65528 (14) | 0.0170 (4) | |
C4 | 0.31402 (12) | 0.3024 (3) | 0.55985 (14) | 0.0175 (4) | |
H4 | 0.3133 | 0.1705 | 0.5252 | 0.021* | |
C5 | 0.40313 (12) | 0.4131 (3) | 0.58711 (14) | 0.0184 (4) | |
H5 | 0.4287 | 0.3992 | 0.527 | 0.022* | |
C6 | 0.37772 (12) | 0.6322 (3) | 0.59711 (15) | 0.0185 (4) | |
H6 | 0.4065 | 0.6807 | 0.6711 | 0.022* | |
C7 | 0.25286 (12) | 0.4594 (3) | 0.48955 (14) | 0.0190 (4) | |
H7A | 0.2694 | 0.4928 | 0.4251 | 0.023* | |
H7B | 0.1899 | 0.4223 | 0.47 | 0.023* | |
C8 | 0.17800 (12) | 0.5797 (3) | 0.69702 (15) | 0.0183 (4) | |
C9 | 0.10191 (13) | 0.6295 (3) | 0.61630 (16) | 0.0231 (4) | |
H9 | 0.1018 | 0.6243 | 0.5443 | 0.028* | |
C10 | 0.02572 (14) | 0.6869 (3) | 0.63967 (19) | 0.0300 (5) | |
H10 | −0.0254 | 0.7225 | 0.5837 | 0.036* | |
C11 | 0.02444 (15) | 0.6920 (3) | 0.7441 (2) | 0.0315 (5) | |
H11 | −0.0273 | 0.7318 | 0.7601 | 0.038* | |
C12 | 0.09923 (15) | 0.6388 (3) | 0.82525 (18) | 0.0311 (5) | |
H12 | 0.0982 | 0.6393 | 0.8969 | 0.037* | |
C13 | 0.17549 (14) | 0.5849 (3) | 0.80255 (16) | 0.0255 (4) | |
H13 | 0.2266 | 0.5511 | 0.859 | 0.031* | |
N1 | 0.33908 (11) | 0.1948 (2) | 0.75250 (13) | 0.0215 (3) | |
O1 | 0.46362 (9) | 0.3399 (2) | 0.68204 (12) | 0.0265 (3) | |
H1 | 0.5070 (18) | 0.397 (4) | 0.697 (2) | 0.04* | |
O2 | 0.36379 (9) | 0.0287 (2) | 0.73598 (12) | 0.0284 (3) | |
O3 | 0.35737 (11) | 0.2750 (2) | 0.83909 (11) | 0.0316 (3) | |
Br1 | 0.171486 (13) | 0.13845 (3) | 0.624805 (16) | 0.02452 (6) | |
Br2 | 0.410813 (13) | 0.80248 (3) | 0.494432 (17) | 0.02799 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0166 (9) | 0.0155 (9) | 0.0211 (9) | 0.0021 (7) | 0.0060 (7) | 0.0008 (7) |
C2 | 0.0148 (8) | 0.0156 (9) | 0.0178 (8) | 0.0002 (7) | 0.0044 (7) | −0.0019 (7) |
C3 | 0.0152 (9) | 0.0161 (9) | 0.0183 (9) | −0.0003 (7) | 0.0028 (7) | −0.0001 (7) |
C4 | 0.0176 (9) | 0.0168 (9) | 0.0179 (9) | 0.0015 (7) | 0.0051 (7) | −0.0032 (7) |
C5 | 0.0162 (9) | 0.0201 (10) | 0.0192 (9) | 0.0037 (7) | 0.0058 (7) | 0.0019 (7) |
C6 | 0.0180 (9) | 0.0195 (10) | 0.0195 (9) | −0.0004 (7) | 0.0080 (7) | 0.0013 (7) |
C7 | 0.0180 (9) | 0.0212 (10) | 0.0162 (9) | 0.0017 (7) | 0.0029 (7) | −0.0005 (7) |
C8 | 0.0188 (9) | 0.0133 (9) | 0.0240 (9) | −0.0006 (7) | 0.0082 (7) | −0.0017 (7) |
C9 | 0.0210 (10) | 0.0241 (10) | 0.0255 (10) | 0.0024 (8) | 0.0092 (8) | 0.0032 (8) |
C10 | 0.0192 (10) | 0.0283 (12) | 0.0426 (13) | 0.0042 (8) | 0.0093 (9) | 0.0061 (9) |
C11 | 0.0256 (11) | 0.0255 (11) | 0.0518 (14) | 0.0016 (9) | 0.0243 (10) | −0.0019 (10) |
C12 | 0.0334 (12) | 0.0353 (13) | 0.0308 (11) | −0.0033 (10) | 0.0188 (10) | −0.0080 (9) |
C13 | 0.0240 (10) | 0.0276 (11) | 0.0252 (10) | −0.0011 (8) | 0.0078 (8) | −0.0056 (8) |
N1 | 0.0187 (8) | 0.0223 (9) | 0.0239 (8) | 0.0019 (7) | 0.0072 (7) | 0.0052 (7) |
O1 | 0.0144 (7) | 0.0310 (8) | 0.0290 (8) | −0.0004 (6) | −0.0011 (6) | 0.0094 (6) |
O2 | 0.0258 (8) | 0.0197 (7) | 0.0380 (8) | 0.0073 (6) | 0.0071 (6) | 0.0047 (6) |
O3 | 0.0399 (9) | 0.0345 (9) | 0.0175 (7) | 0.0037 (7) | 0.0041 (6) | 0.0018 (6) |
Br1 | 0.01824 (10) | 0.01887 (11) | 0.03580 (12) | −0.00312 (7) | 0.00719 (8) | −0.00286 (8) |
Br2 | 0.02564 (11) | 0.02399 (12) | 0.03997 (13) | 0.00349 (8) | 0.01839 (9) | 0.00903 (9) |
C1—C6 | 1.532 (2) | C6—H6 | 1 |
C1—C7 | 1.545 (3) | C7—H7A | 0.99 |
C1—C2 | 1.564 (2) | C7—H7B | 0.99 |
C1—H1A | 1 | C8—C9 | 1.391 (3) |
C2—C8 | 1.515 (2) | C8—C13 | 1.405 (3) |
C2—C3 | 1.558 (2) | C9—C10 | 1.396 (3) |
C2—H2 | 1 | C9—H9 | 0.95 |
C3—C4 | 1.532 (2) | C10—C11 | 1.385 (3) |
C3—N1 | 1.536 (2) | C10—H10 | 0.95 |
C3—Br1 | 1.9676 (18) | C11—C12 | 1.387 (3) |
C4—C7 | 1.546 (3) | C11—H11 | 0.95 |
C4—C5 | 1.549 (3) | C12—C13 | 1.386 (3) |
C4—H4 | 1 | C12—H12 | 0.95 |
C5—O1 | 1.418 (2) | C13—H13 | 0.95 |
C5—C6 | 1.551 (3) | N1—O3 | 1.217 (2) |
C5—H5 | 1 | N1—O2 | 1.231 (2) |
C6—Br2 | 1.9675 (18) | O1—H1 | 0.76 (3) |
C6—C1—C7 | 100.87 (14) | C5—C6—Br2 | 111.61 (12) |
C6—C1—C2 | 105.65 (14) | C1—C6—H6 | 110 |
C7—C1—C2 | 104.04 (14) | C5—C6—H6 | 110 |
C6—C1—H1A | 114.9 | Br2—C6—H6 | 110 |
C7—C1—H1A | 114.9 | C1—C7—C4 | 94.51 (13) |
C2—C1—H1A | 114.9 | C1—C7—H7A | 112.8 |
C8—C2—C3 | 117.58 (15) | C4—C7—H7A | 112.8 |
C8—C2—C1 | 115.21 (15) | C1—C7—H7B | 112.8 |
C3—C2—C1 | 101.22 (13) | C4—C7—H7B | 112.8 |
C8—C2—H2 | 107.4 | H7A—C7—H7B | 110.3 |
C3—C2—H2 | 107.4 | C9—C8—C13 | 118.17 (18) |
C1—C2—H2 | 107.4 | C9—C8—C2 | 122.65 (17) |
C4—C3—N1 | 112.85 (14) | C13—C8—C2 | 119.16 (17) |
C4—C3—C2 | 104.89 (14) | C8—C9—C10 | 120.89 (19) |
N1—C3—C2 | 113.81 (14) | C8—C9—H9 | 119.6 |
C4—C3—Br1 | 110.30 (12) | C10—C9—H9 | 119.6 |
N1—C3—Br1 | 101.10 (11) | C11—C10—C9 | 120.2 (2) |
C2—C3—Br1 | 114.13 (12) | C11—C10—H10 | 119.9 |
C3—C4—C7 | 99.72 (14) | C9—C10—H10 | 119.9 |
C3—C4—C5 | 110.68 (15) | C10—C11—C12 | 119.53 (19) |
C7—C4—C5 | 100.08 (15) | C10—C11—H11 | 120.2 |
C3—C4—H4 | 114.8 | C12—C11—H11 | 120.2 |
C7—C4—H4 | 114.8 | C13—C12—C11 | 120.4 (2) |
C5—C4—H4 | 114.8 | C13—C12—H12 | 119.8 |
O1—C5—C4 | 111.54 (15) | C11—C12—H12 | 119.8 |
O1—C5—C6 | 112.53 (16) | C12—C13—C8 | 120.7 (2) |
C4—C5—C6 | 103.66 (14) | C12—C13—H13 | 119.6 |
O1—C5—H5 | 109.7 | C8—C13—H13 | 119.6 |
C4—C5—H5 | 109.7 | O3—N1—O2 | 124.99 (17) |
C6—C5—H5 | 109.7 | O3—N1—C3 | 118.98 (16) |
C1—C6—C5 | 103.30 (14) | O2—N1—C3 | 116.00 (15) |
C1—C6—Br2 | 111.91 (12) | C5—O1—H1 | 112 (2) |
C6—C1—C2—C8 | 153.54 (15) | C4—C5—C6—C1 | 0.19 (17) |
C7—C1—C2—C8 | −100.68 (17) | O1—C5—C6—Br2 | 119.16 (14) |
C6—C1—C2—C3 | −78.50 (16) | C4—C5—C6—Br2 | −120.20 (13) |
C7—C1—C2—C3 | 27.28 (17) | C6—C1—C7—C4 | 57.05 (16) |
C8—C2—C3—C4 | 135.65 (16) | C2—C1—C7—C4 | −52.28 (16) |
C1—C2—C3—C4 | 9.25 (17) | C3—C4—C7—C1 | 56.91 (15) |
C8—C2—C3—N1 | −100.53 (18) | C5—C4—C7—C1 | −56.32 (15) |
C1—C2—C3—N1 | 133.06 (15) | C3—C2—C8—C9 | −89.7 (2) |
C8—C2—C3—Br1 | 14.8 (2) | C1—C2—C8—C9 | 29.6 (3) |
C1—C2—C3—Br1 | −111.58 (13) | C3—C2—C8—C13 | 91.6 (2) |
N1—C3—C4—C7 | −166.71 (15) | C1—C2—C8—C13 | −149.18 (18) |
C2—C3—C4—C7 | −42.28 (17) | C13—C8—C9—C10 | 1.3 (3) |
Br1—C3—C4—C7 | 81.04 (15) | C2—C8—C9—C10 | −177.45 (19) |
N1—C3—C4—C5 | −61.97 (19) | C8—C9—C10—C11 | −1.0 (3) |
C2—C3—C4—C5 | 62.46 (18) | C9—C10—C11—C12 | −0.3 (3) |
Br1—C3—C4—C5 | −174.21 (12) | C10—C11—C12—C13 | 1.4 (3) |
C3—C4—C5—O1 | 52.3 (2) | C11—C12—C13—C8 | −1.2 (3) |
C7—C4—C5—O1 | 156.77 (15) | C9—C8—C13—C12 | −0.2 (3) |
C3—C4—C5—C6 | −69.04 (18) | C2—C8—C13—C12 | 178.59 (19) |
C7—C4—C5—C6 | 35.46 (16) | C4—C3—N1—O3 | 132.10 (18) |
C7—C1—C6—C5 | −35.91 (17) | C2—C3—N1—O3 | 12.7 (2) |
C2—C1—C6—C5 | 72.17 (17) | Br1—C3—N1—O3 | −110.11 (16) |
C7—C1—C6—Br2 | 84.28 (15) | C4—C3—N1—O2 | −49.8 (2) |
C2—C1—C6—Br2 | −167.64 (12) | C2—C3—N1—O2 | −169.18 (15) |
O1—C5—C6—C1 | −120.45 (16) | Br1—C3—N1—O2 | 68.00 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.76 (3) | 2.17 (3) | 2.927 (2) | 171 (3) |
Symmetry code: (i) −x+1, y+1/2, −z+3/2. |
C9H11Br2NO5 | Z = 2 |
Mr = 373.01 | F(000) = 364 |
Triclinic, P1 | Dx = 2.125 Mg m−3 Dm = 0 Mg m−3 Dm measured by not measured |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.7221 (2) Å | Cell parameters from 3264 reflections |
b = 7.7353 (3) Å | θ = 2.8–28.1° |
c = 12.1546 (5) Å | µ = 6.96 mm−1 |
α = 88.296 (3)° | T = 173 K |
β = 80.595 (3)° | Plate, colourless |
γ = 69.323 (3)° | 0.28 × 0.12 × 0.04 mm |
V = 583.08 (4) Å3 |
Bruker SMART 1K CCD area-detector diffractometer | 2244 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.083 |
ω scans | θmax = 28°, θmin = 1.7° |
Absorption correction: integration (XPREP; Bruker, 1999) | h = −8→8 |
Tmin = 0.318, Tmax = 0.770 | k = −10→10 |
7104 measured reflections | l = −16→16 |
2805 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.07 | H-atom parameters constrained |
S = 0.96 | w = 1/[σ2(Fo2) + (0.0307P)2] where P = (Fo2 + 2Fc2)/3 |
2805 reflections | (Δ/σ)max = 0.001 |
155 parameters | Δρmax = 1.44 e Å−3 |
0 restraints | Δρmin = −1.41 e Å−3 |
C9H11Br2NO5 | γ = 69.323 (3)° |
Mr = 373.01 | V = 583.08 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.7221 (2) Å | Mo Kα radiation |
b = 7.7353 (3) Å | µ = 6.96 mm−1 |
c = 12.1546 (5) Å | T = 173 K |
α = 88.296 (3)° | 0.28 × 0.12 × 0.04 mm |
β = 80.595 (3)° |
Bruker SMART 1K CCD area-detector diffractometer | 2805 independent reflections |
Absorption correction: integration (XPREP; Bruker, 1999) | 2244 reflections with I > 2σ(I) |
Tmin = 0.318, Tmax = 0.770 | Rint = 0.083 |
7104 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.07 | H-atom parameters constrained |
S = 0.96 | Δρmax = 1.44 e Å−3 |
2805 reflections | Δρmin = −1.41 e Å−3 |
155 parameters |
Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 1999) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3951 (5) | 0.5479 (4) | 0.3174 (2) | 0.0160 (6) | |
H1A | 0.5446 | 0.4904 | 0.3347 | 0.019* | |
C2 | 0.3608 (4) | 0.4824 (4) | 0.2044 (2) | 0.0134 (5) | |
H2 | 0.3888 | 0.5654 | 0.1439 | 0.016* | |
C3 | 0.1156 (4) | 0.5112 (4) | 0.2278 (2) | 0.0148 (6) | |
C4 | 0.0339 (5) | 0.6194 (4) | 0.3391 (2) | 0.0159 (6) | |
H4 | −0.1122 | 0.624 | 0.3759 | 0.019* | |
C5 | 0.0621 (5) | 0.8099 (4) | 0.3296 (2) | 0.0166 (6) | |
H5 | −0.0098 | 0.8851 | 0.4 | 0.02* | |
C6 | 0.3099 (5) | 0.7587 (4) | 0.3168 (2) | 0.0159 (6) | |
H6 | 0.3662 | 0.8023 | 0.2441 | 0.019* | |
C7 | 0.2179 (5) | 0.5129 (4) | 0.4032 (2) | 0.0187 (6) | |
H7A | 0.2378 | 0.3802 | 0.4096 | 0.022* | |
H7B | 0.2019 | 0.5693 | 0.4777 | 0.022* | |
C8 | 0.5091 (5) | 0.2857 (4) | 0.1755 (2) | 0.0167 (6) | |
C9 | 0.6991 (6) | 0.0704 (4) | 0.0305 (3) | 0.0297 (7) | |
H9A | 0.7142 | 0.0555 | −0.0506 | 0.044* | |
H9B | 0.6508 | −0.0258 | 0.0671 | 0.044* | |
H9C | 0.8384 | 0.0594 | 0.0504 | 0.044* | |
N1 | −0.0081 (4) | 0.6094 (3) | 0.1355 (2) | 0.0171 (5) | |
O1 | −0.0071 (3) | 0.9136 (3) | 0.23726 (18) | 0.0201 (4) | |
H1 | −0.1391 | 0.9764 | 0.253 | 0.03* | |
O2 | −0.2044 (3) | 0.6620 (3) | 0.15927 (19) | 0.0247 (5) | |
O3 | 0.0929 (4) | 0.6255 (3) | 0.04607 (18) | 0.0252 (5) | |
O4 | 0.5898 (4) | 0.1785 (3) | 0.24275 (19) | 0.0243 (5) | |
O5 | 0.5423 (3) | 0.2503 (3) | 0.06654 (17) | 0.0214 (5) | |
Br1 | 0.05890 (5) | 0.27961 (4) | 0.23778 (3) | 0.02055 (9) | |
Br2 | 0.39158 (5) | 0.86070 (5) | 0.44082 (3) | 0.02960 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0126 (14) | 0.0165 (14) | 0.0170 (14) | −0.0015 (12) | −0.0048 (11) | 0.0001 (11) |
C2 | 0.0122 (13) | 0.0117 (13) | 0.0154 (14) | −0.0031 (11) | −0.0022 (10) | 0.0002 (11) |
C3 | 0.0147 (14) | 0.0124 (13) | 0.0180 (14) | −0.0051 (12) | −0.0044 (11) | 0.0022 (11) |
C4 | 0.0156 (14) | 0.0170 (14) | 0.0158 (14) | −0.0063 (12) | −0.0034 (11) | 0.0017 (11) |
C5 | 0.0174 (15) | 0.0124 (13) | 0.0164 (14) | −0.0010 (12) | −0.0016 (11) | −0.0047 (11) |
C6 | 0.0160 (14) | 0.0150 (14) | 0.0174 (14) | −0.0042 (12) | −0.0071 (11) | −0.0034 (11) |
C7 | 0.0204 (15) | 0.0200 (15) | 0.0157 (14) | −0.0059 (13) | −0.0052 (11) | 0.0017 (12) |
C8 | 0.0142 (14) | 0.0153 (14) | 0.0203 (15) | −0.0057 (12) | −0.0002 (11) | −0.0033 (12) |
C9 | 0.0285 (18) | 0.0214 (17) | 0.0286 (19) | 0.0024 (15) | 0.0001 (14) | −0.0070 (14) |
N1 | 0.0215 (14) | 0.0106 (12) | 0.0215 (14) | −0.0068 (11) | −0.0076 (10) | 0.0004 (10) |
O1 | 0.0192 (11) | 0.0146 (10) | 0.0270 (12) | −0.0046 (9) | −0.0089 (9) | 0.0036 (9) |
O2 | 0.0151 (12) | 0.0245 (12) | 0.0342 (13) | −0.0039 (10) | −0.0101 (9) | 0.0009 (10) |
O3 | 0.0317 (13) | 0.0302 (13) | 0.0182 (11) | −0.0150 (11) | −0.0084 (9) | 0.0047 (10) |
O4 | 0.0239 (12) | 0.0170 (11) | 0.0265 (12) | 0.0008 (10) | −0.0067 (9) | 0.0003 (9) |
O5 | 0.0244 (12) | 0.0153 (11) | 0.0190 (11) | −0.0016 (9) | −0.0002 (9) | −0.0033 (9) |
Br1 | 0.02076 (16) | 0.01412 (15) | 0.02957 (18) | −0.00897 (12) | −0.00580 (12) | 0.00232 (12) |
Br2 | 0.02740 (19) | 0.02775 (19) | 0.0349 (2) | −0.00640 (15) | −0.01387 (14) | −0.01265 (15) |
C1—C6 | 1.526 (4) | C5—H5 | 1 |
C1—C7 | 1.544 (4) | C6—Br2 | 1.961 (3) |
C1—C2 | 1.556 (4) | C6—H6 | 1 |
C1—H1A | 1 | C7—H7A | 0.99 |
C2—C8 | 1.509 (4) | C7—H7B | 0.99 |
C2—C3 | 1.562 (4) | C8—O4 | 1.199 (4) |
C2—H2 | 1 | C8—O5 | 1.327 (4) |
C3—C4 | 1.527 (4) | C9—O5 | 1.446 (4) |
C3—N1 | 1.528 (4) | C9—H9A | 0.98 |
C3—Br1 | 1.955 (3) | C9—H9B | 0.98 |
C4—C7 | 1.540 (4) | C9—H9C | 0.98 |
C4—C5 | 1.549 (4) | N1—O3 | 1.212 (3) |
C4—H4 | 1 | N1—O2 | 1.222 (3) |
C5—O1 | 1.405 (4) | O1—H1 | 0.84 |
C5—C6 | 1.552 (4) | ||
C6—C1—C7 | 100.8 (2) | C4—C5—H5 | 109.8 |
C6—C1—C2 | 106.0 (2) | C6—C5—H5 | 109.8 |
C7—C1—C2 | 103.5 (2) | C1—C6—C5 | 103.5 (2) |
C6—C1—H1A | 115 | C1—C6—Br2 | 110.54 (19) |
C7—C1—H1A | 115 | C5—C6—Br2 | 111.78 (19) |
C2—C1—H1A | 115 | C1—C6—H6 | 110.3 |
C8—C2—C1 | 110.6 (2) | C5—C6—H6 | 110.3 |
C8—C2—C3 | 114.9 (2) | Br2—C6—H6 | 110.3 |
C1—C2—C3 | 101.8 (2) | C4—C7—C1 | 94.4 (2) |
C8—C2—H2 | 109.7 | C4—C7—H7A | 112.9 |
C1—C2—H2 | 109.7 | C1—C7—H7A | 112.9 |
C3—C2—H2 | 109.7 | C4—C7—H7B | 112.9 |
C4—C3—N1 | 112.7 (2) | C1—C7—H7B | 112.9 |
C4—C3—C2 | 103.9 (2) | H7A—C7—H7B | 110.3 |
N1—C3—C2 | 114.1 (2) | O4—C8—O5 | 125.1 (3) |
C4—C3—Br1 | 110.72 (17) | O4—C8—C2 | 123.8 (3) |
N1—C3—Br1 | 102.39 (16) | O5—C8—C2 | 111.1 (3) |
C2—C3—Br1 | 113.37 (19) | O5—C9—H9A | 109.5 |
C3—C4—C7 | 99.8 (2) | O5—C9—H9B | 109.5 |
C3—C4—C5 | 111.1 (2) | H9A—C9—H9B | 109.5 |
C7—C4—C5 | 100.7 (2) | O5—C9—H9C | 109.5 |
C3—C4—H4 | 114.5 | H9A—C9—H9C | 109.5 |
C7—C4—H4 | 114.5 | H9B—C9—H9C | 109.5 |
C5—C4—H4 | 114.5 | O3—N1—O2 | 125.7 (3) |
O1—C5—C4 | 116.1 (2) | O3—N1—C3 | 118.7 (2) |
O1—C5—C6 | 107.8 (2) | O2—N1—C3 | 115.5 (2) |
C4—C5—C6 | 103.2 (2) | C5—O1—H1 | 109.5 |
O1—C5—H5 | 109.8 | C8—O5—C9 | 114.6 (2) |
C6—C1—C2—C8 | 158.6 (2) | C7—C1—C6—Br2 | 83.1 (2) |
C7—C1—C2—C8 | −95.7 (3) | C2—C1—C6—Br2 | −169.26 (16) |
C6—C1—C2—C3 | −78.8 (2) | O1—C5—C6—C1 | −121.9 (2) |
C7—C1—C2—C3 | 26.8 (3) | C4—C5—C6—C1 | 1.4 (3) |
C8—C2—C3—C4 | 129.5 (2) | O1—C5—C6—Br2 | 119.1 (2) |
C1—C2—C3—C4 | 10.0 (3) | C4—C5—C6—Br2 | −117.6 (2) |
C8—C2—C3—N1 | −107.4 (3) | C3—C4—C7—C1 | 58.0 (2) |
C1—C2—C3—N1 | 133.0 (2) | C5—C4—C7—C1 | −55.9 (2) |
C8—C2—C3—Br1 | 9.3 (3) | C6—C1—C7—C4 | 57.2 (2) |
C1—C2—C3—Br1 | −110.3 (2) | C2—C1—C7—C4 | −52.4 (3) |
N1—C3—C4—C7 | −167.3 (2) | C1—C2—C8—O4 | 21.4 (4) |
C2—C3—C4—C7 | −43.2 (2) | C3—C2—C8—O4 | −93.2 (3) |
Br1—C3—C4—C7 | 78.8 (2) | C1—C2—C8—O5 | −156.8 (2) |
N1—C3—C4—C5 | −61.7 (3) | C3—C2—C8—O5 | 88.6 (3) |
C2—C3—C4—C5 | 62.3 (3) | C4—C3—N1—O3 | 131.6 (2) |
Br1—C3—C4—C5 | −175.64 (18) | C2—C3—N1—O3 | 13.5 (3) |
C3—C4—C5—O1 | 47.2 (3) | Br1—C3—N1—O3 | −109.5 (2) |
C7—C4—C5—O1 | 152.2 (3) | C4—C3—N1—O2 | −49.8 (3) |
C3—C4—C5—C6 | −70.5 (3) | C2—C3—N1—O2 | −168.0 (2) |
C7—C4—C5—C6 | 34.5 (3) | Br1—C3—N1—O2 | 69.1 (2) |
C7—C1—C6—C5 | −36.7 (3) | O4—C8—O5—C9 | −3.8 (4) |
C2—C1—C6—C5 | 70.9 (3) | C2—C8—O5—C9 | 174.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.84 | 1.96 | 2.752 (3) | 157 |
Symmetry code: (i) x−1, y+1, z. |
C22H19Br2NO5 | F(000) = 1072 |
Mr = 537.2 | Dx = 1.675 Mg m−3 Dm = 0 Mg m−3 Dm measured by not measured |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3493 reflections |
a = 15.8724 (8) Å | θ = 2.6–26.1° |
b = 9.0341 (4) Å | µ = 3.84 mm−1 |
c = 15.0064 (7) Å | T = 173 K |
β = 98.219 (2)° | Needle, brown |
V = 2129.71 (17) Å3 | 0.3 × 0.1 × 0.06 mm |
Z = 4 |
Bruker SMART 1K CCD area-detector diffractometer | 3059 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.078 |
ω scans | θmax = 28°, θmin = 1.3° |
Absorption correction: integration (XPREP; Bruker, 1999) | h = −20→15 |
Tmin = 0.509, Tmax = 0.817 | k = −11→11 |
17671 measured reflections | l = −19→19 |
5119 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.057 | H-atom parameters constrained |
S = 0.82 | w = 1/[σ2(Fo2) + (0.0158P)2] where P = (Fo2 + 2Fc2)/3 |
5119 reflections | (Δ/σ)max = 0.001 |
467 parameters | Δρmax = 0.45 e Å−3 |
83 restraints | Δρmin = −0.43 e Å−3 |
C22H19Br2NO5 | V = 2129.71 (17) Å3 |
Mr = 537.2 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.8724 (8) Å | µ = 3.84 mm−1 |
b = 9.0341 (4) Å | T = 173 K |
c = 15.0064 (7) Å | 0.3 × 0.1 × 0.06 mm |
β = 98.219 (2)° |
Bruker SMART 1K CCD area-detector diffractometer | 5119 independent reflections |
Absorption correction: integration (XPREP; Bruker, 1999) | 3059 reflections with I > 2σ(I) |
Tmin = 0.509, Tmax = 0.817 | Rint = 0.078 |
17671 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 83 restraints |
wR(F2) = 0.057 | H-atom parameters constrained |
S = 0.82 | Δρmax = 0.45 e Å−3 |
5119 reflections | Δρmin = −0.43 e Å−3 |
467 parameters |
Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 1999) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1A | 0.3573 (4) | 0.3060 (6) | 0.4454 (5) | 0.0254 (6) | 0.5 |
H1A1 | 0.3535 | 0.3516 | 0.5054 | 0.03* | 0.5 |
C2A | 0.3783 (5) | 0.1379 (6) | 0.4466 (5) | 0.0221 (7) | 0.5 |
H2A | 0.441 | 0.1262 | 0.447 | 0.027* | 0.5 |
C3A | 0.3324 (3) | 0.0877 (6) | 0.3539 (5) | 0.0226 (8) | 0.5 |
C4A | 0.3119 (5) | 0.2321 (7) | 0.3025 (5) | 0.019 (3) | 0.5 |
H4A | 0.2718 | 0.2225 | 0.2449 | 0.023* | 0.5 |
C5A | 0.3951 (7) | 0.3174 (8) | 0.2950 (6) | 0.0247 (8) | 0.5 |
H5A | 0.3833 | 0.4018 | 0.2519 | 0.03* | 0.5 |
C6A | 0.4217 (5) | 0.3767 (5) | 0.3921 (6) | 0.0269 (6) | 0.5 |
H6A | 0.4806 | 0.3427 | 0.4159 | 0.032* | 0.5 |
C7A | 0.2779 (4) | 0.3197 (9) | 0.3760 (4) | 0.0225 (7) | 0.5 |
C8A | 0.3536 (12) | 0.0554 (9) | 0.5266 (6) | 0.0281 (11) | 0.5 |
C9A | 0.351 (2) | −0.1792 (17) | 0.5958 (18) | 0.0427 (8) | 0.5 |
H9A1 | 0.2952 | −0.1484 | 0.6106 | 0.064* | 0.5 |
H9A2 | 0.3941 | −0.1664 | 0.6487 | 0.064* | 0.5 |
H9A3 | 0.3483 | −0.2835 | 0.5777 | 0.064* | 0.5 |
C10A | 0.2049 (5) | 0.3894 (13) | 0.3769 (4) | 0.0273 (7) | 0.5 |
C11A | 0.1804 (8) | 0.4544 (10) | 0.4609 (4) | 0.0365 (9) | 0.5 |
C12A | 0.1677 (6) | 0.3657 (8) | 0.5332 (5) | 0.049 (3) | 0.5 |
H12A | 0.1776 | 0.2621 | 0.5313 | 0.059* | 0.5 |
C13A | 0.1404 (6) | 0.4292 (10) | 0.6084 (5) | 0.069 (3) | 0.5 |
H13A | 0.136 | 0.3695 | 0.6597 | 0.083* | 0.5 |
C14A | 0.1203 (8) | 0.5733 (12) | 0.6100 (6) | 0.072 (4) | 0.5 |
H14A | 0.0946 | 0.6125 | 0.6583 | 0.086* | 0.5 |
C15A | 0.1375 (6) | 0.6655 (10) | 0.5396 (5) | 0.079 (5) | 0.5 |
H15A | 0.131 | 0.7697 | 0.5437 | 0.095* | 0.5 |
C16A | 0.1638 (6) | 0.6039 (10) | 0.4651 (4) | 0.059 (3) | 0.5 |
H16A | 0.1707 | 0.6652 | 0.4152 | 0.07* | 0.5 |
C17A | 0.1434 (4) | 0.4138 (9) | 0.2933 (4) | 0.024 (2) | 0.5 |
C18A | 0.0572 (4) | 0.3908 (9) | 0.2938 (4) | 0.047 (2) | 0.5 |
H18A | 0.0374 | 0.3596 | 0.3476 | 0.056* | 0.5 |
C19A | −0.0002 (4) | 0.4130 (10) | 0.2163 (4) | 0.062 (2) | 0.5 |
H19A | −0.0591 | 0.3945 | 0.2166 | 0.075* | 0.5 |
C20A | 0.0278 (4) | 0.4620 (9) | 0.1388 (4) | 0.053 (2) | 0.5 |
H20A | −0.0119 | 0.4799 | 0.0863 | 0.063* | 0.5 |
C21A | 0.1124 (4) | 0.4847 (9) | 0.1370 (4) | 0.041 (2) | 0.5 |
H21A | 0.1321 | 0.5128 | 0.0826 | 0.049* | 0.5 |
C22A | 0.1695 (4) | 0.4664 (11) | 0.2154 (5) | 0.033 (3) | 0.5 |
H22A | 0.2277 | 0.4907 | 0.2154 | 0.039* | 0.5 |
N1A | 0.3830 (5) | −0.0234 (9) | 0.3053 (6) | 0.022 (2) | 0.5 |
O1A | 0.4573 (8) | 0.2237 (18) | 0.2677 (14) | 0.0325 (10) | 0.5 |
H1A | 0.4949 | 0.2749 | 0.2481 | 0.049* | 0.5 |
O2A | 0.3551 (8) | −0.049 (2) | 0.2269 (8) | 0.036 (2) | 0.5 |
O3A | 0.4484 (8) | −0.075 (2) | 0.3461 (10) | 0.028 (2) | 0.5 |
O4A | 0.3141 (16) | 0.1077 (19) | 0.5811 (11) | 0.034 (4) | 0.5 |
O5A | 0.3729 (16) | −0.0882 (12) | 0.5217 (13) | 0.028 (4) | 0.5 |
Br1A | 0.22575 (17) | −0.0178 (4) | 0.3625 (3) | 0.0363 (5) | 0.5 |
Br2A | 0.4151 (2) | 0.5928 (3) | 0.39687 (10) | 0.0300 (7) | 0.5 |
C1B | 0.3620 (4) | 0.3021 (6) | 0.4479 (5) | 0.0254 (6) | 0.5 |
H1B1 | 0.3552 | 0.3489 | 0.5069 | 0.03* | 0.5 |
C2B | 0.3892 (5) | 0.1363 (6) | 0.4527 (5) | 0.0221 (7) | 0.5 |
H2B | 0.4525 | 0.1309 | 0.4567 | 0.027* | 0.5 |
C3B | 0.3491 (3) | 0.0794 (6) | 0.3592 (5) | 0.0226 (8) | 0.5 |
C4B | 0.3227 (5) | 0.2199 (7) | 0.3058 (4) | 0.026 (4) | 0.5 |
H4B | 0.2841 | 0.2039 | 0.2479 | 0.032* | 0.5 |
C5B | 0.4021 (7) | 0.3157 (8) | 0.2985 (6) | 0.0247 (8) | 0.5 |
H5B | 0.387 | 0.3983 | 0.2548 | 0.03* | 0.5 |
C6B | 0.4250 (5) | 0.3783 (5) | 0.3953 (6) | 0.0269 (6) | 0.5 |
H6B | 0.4847 | 0.3507 | 0.4205 | 0.032* | 0.5 |
C7B | 0.2834 (4) | 0.3044 (9) | 0.3773 (4) | 0.0225 (7) | 0.5 |
C8B | 0.3626 (12) | 0.0548 (9) | 0.5322 (6) | 0.0281 (11) | 0.5 |
C9B | 0.351 (2) | −0.1818 (17) | 0.5959 (18) | 0.0427 (8) | 0.5 |
H9B1 | 0.2887 | −0.1814 | 0.5798 | 0.064* | 0.5 |
H9B2 | 0.3659 | −0.1451 | 0.6576 | 0.064* | 0.5 |
H9B3 | 0.3722 | −0.283 | 0.5918 | 0.064* | 0.5 |
C10B | 0.2090 (5) | 0.3729 (13) | 0.3713 (4) | 0.0273 (7) | 0.5 |
C11B | 0.1810 (9) | 0.4593 (10) | 0.4464 (4) | 0.0365 (9) | 0.5 |
C12B | 0.1977 (6) | 0.4121 (8) | 0.5352 (5) | 0.045 (3) | 0.5 |
H12B | 0.2275 | 0.322 | 0.549 | 0.054* | 0.5 |
C13B | 0.1713 (5) | 0.4952 (9) | 0.6041 (5) | 0.051 (3) | 0.5 |
H13B | 0.179 | 0.4565 | 0.6636 | 0.062* | 0.5 |
C14B | 0.1353 (7) | 0.6289 (9) | 0.5883 (6) | 0.050 (3) | 0.5 |
H14B | 0.1269 | 0.6931 | 0.6364 | 0.06* | 0.5 |
C15B | 0.1106 (6) | 0.6704 (9) | 0.4984 (5) | 0.069 (3) | 0.5 |
H15B | 0.0743 | 0.7533 | 0.4847 | 0.083* | 0.5 |
C16B | 0.1384 (5) | 0.5920 (9) | 0.4304 (5) | 0.047 (2) | 0.5 |
H16B | 0.1282 | 0.6297 | 0.3708 | 0.057* | 0.5 |
C17B | 0.1479 (4) | 0.3639 (9) | 0.2859 (4) | 0.026 (2) | 0.5 |
C18B | 0.0679 (4) | 0.3028 (9) | 0.2855 (4) | 0.052 (2) | 0.5 |
H18B | 0.0514 | 0.2668 | 0.3399 | 0.062* | 0.5 |
C19B | 0.0117 (4) | 0.2940 (10) | 0.2059 (5) | 0.076 (3) | 0.5 |
H19B | −0.0421 | 0.248 | 0.2056 | 0.091* | 0.5 |
C20B | 0.0335 (4) | 0.3516 (11) | 0.1275 (4) | 0.069 (2) | 0.5 |
H20B | −0.0063 | 0.3491 | 0.0738 | 0.082* | 0.5 |
C21B | 0.1119 (5) | 0.4121 (10) | 0.1266 (5) | 0.058 (3) | 0.5 |
H21B | 0.1275 | 0.4501 | 0.0722 | 0.07* | 0.5 |
C22B | 0.1689 (4) | 0.4178 (11) | 0.2060 (5) | 0.030 (3) | 0.5 |
H22B | 0.2236 | 0.4598 | 0.2051 | 0.037* | 0.5 |
N1B | 0.4068 (5) | −0.0233 (10) | 0.3133 (6) | 0.024 (2) | 0.5 |
O1B | 0.4686 (8) | 0.2307 (18) | 0.2723 (15) | 0.0325 (10) | 0.5 |
H1B | 0.4802 | 0.2618 | 0.2228 | 0.049* | 0.5 |
O2B | 0.3822 (8) | −0.052 (2) | 0.2345 (8) | 0.036 (2) | 0.5 |
O3B | 0.4723 (8) | −0.069 (2) | 0.3570 (10) | 0.028 (2) | 0.5 |
O4B | 0.3321 (16) | 0.1131 (18) | 0.5917 (11) | 0.032 (4) | 0.5 |
O5B | 0.3889 (16) | −0.0859 (11) | 0.5337 (13) | 0.026 (3) | 0.5 |
Br1B | 0.24718 (18) | −0.0420 (4) | 0.3638 (3) | 0.0327 (4) | 0.5 |
Br2B | 0.4108 (2) | 0.5935 (3) | 0.39699 (15) | 0.0510 (9) | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1A | 0.0311 (16) | 0.0237 (14) | 0.0206 (12) | 0.0090 (12) | 0.0012 (12) | −0.0045 (11) |
C2A | 0.025 (2) | 0.0225 (13) | 0.0173 (14) | 0.0043 (12) | −0.0011 (13) | −0.0016 (11) |
C3A | 0.024 (2) | 0.0248 (14) | 0.0193 (13) | −0.0001 (15) | 0.0050 (16) | −0.0013 (12) |
C4A | 0.018 (5) | 0.014 (5) | 0.024 (6) | −0.002 (4) | −0.003 (4) | 0.010 (4) |
C5A | 0.029 (2) | 0.0201 (13) | 0.0258 (14) | 0.0041 (12) | 0.0065 (14) | −0.0003 (11) |
C6A | 0.0317 (17) | 0.0179 (13) | 0.0295 (14) | 0.0062 (11) | −0.0009 (12) | −0.0033 (11) |
C7A | 0.0261 (16) | 0.0224 (18) | 0.0184 (12) | 0.0007 (12) | 0.0016 (12) | 0.0014 (12) |
C8A | 0.029 (3) | 0.0330 (17) | 0.0192 (16) | 0.0079 (14) | −0.0063 (18) | 0.0014 (12) |
C9A | 0.055 (2) | 0.0391 (19) | 0.0351 (16) | 0.0090 (15) | 0.0090 (16) | 0.0158 (15) |
C10A | 0.0262 (16) | 0.034 (2) | 0.0217 (14) | 0.0008 (13) | 0.0016 (12) | 0.0038 (12) |
C11A | 0.0218 (16) | 0.058 (2) | 0.029 (2) | 0.0145 (15) | 0.002 (2) | −0.0001 (19) |
C12A | 0.039 (6) | 0.087 (7) | 0.020 (4) | 0.019 (5) | 0.005 (3) | 0.003 (4) |
C13A | 0.043 (6) | 0.133 (10) | 0.033 (4) | 0.043 (7) | 0.007 (4) | 0.006 (5) |
C14A | 0.044 (7) | 0.134 (12) | 0.040 (5) | 0.046 (8) | 0.014 (4) | −0.003 (6) |
C15A | 0.070 (8) | 0.126 (11) | 0.034 (6) | 0.070 (7) | −0.017 (6) | −0.037 (7) |
C16A | 0.056 (6) | 0.089 (7) | 0.027 (4) | 0.024 (5) | −0.010 (4) | −0.007 (4) |
C17A | 0.027 (4) | 0.024 (6) | 0.021 (3) | 0.008 (3) | 0.002 (3) | −0.002 (3) |
C18A | 0.033 (4) | 0.079 (6) | 0.029 (3) | −0.001 (4) | 0.004 (3) | 0.006 (4) |
C19A | 0.021 (4) | 0.114 (7) | 0.047 (4) | −0.010 (4) | −0.008 (3) | −0.004 (5) |
C20A | 0.052 (5) | 0.078 (5) | 0.023 (3) | 0.012 (4) | −0.012 (3) | −0.003 (4) |
C21A | 0.037 (5) | 0.058 (6) | 0.025 (3) | 0.002 (4) | 0.000 (3) | 0.002 (3) |
C22A | 0.036 (4) | 0.025 (7) | 0.036 (4) | 0.005 (3) | 0.001 (3) | −0.001 (3) |
N1A | 0.029 (4) | 0.017 (3) | 0.019 (4) | −0.003 (3) | −0.003 (3) | 0.000 (3) |
O1A | 0.035 (3) | 0.0252 (15) | 0.040 (2) | 0.0010 (17) | 0.016 (2) | −0.0019 (10) |
O2A | 0.043 (7) | 0.0382 (14) | 0.0228 (19) | 0.001 (5) | −0.007 (3) | −0.0133 (17) |
O3A | 0.028 (6) | 0.0259 (16) | 0.027 (3) | 0.008 (5) | −0.006 (3) | −0.0022 (19) |
O4A | 0.034 (8) | 0.044 (5) | 0.023 (6) | 0.016 (4) | 0.003 (6) | 0.004 (4) |
O5A | 0.037 (8) | 0.028 (4) | 0.018 (5) | −0.001 (3) | −0.001 (6) | 0.007 (3) |
Br1A | 0.0378 (13) | 0.0390 (11) | 0.0306 (5) | −0.0126 (8) | −0.0002 (9) | 0.0037 (7) |
Br2A | 0.0443 (13) | 0.0242 (13) | 0.0187 (6) | −0.0016 (10) | −0.0050 (7) | −0.0064 (7) |
C1B | 0.0311 (16) | 0.0237 (14) | 0.0206 (12) | 0.0090 (12) | 0.0012 (12) | −0.0045 (11) |
C2B | 0.025 (2) | 0.0225 (13) | 0.0173 (14) | 0.0043 (12) | −0.0011 (13) | −0.0016 (11) |
C3B | 0.024 (2) | 0.0248 (14) | 0.0193 (13) | −0.0001 (15) | 0.0050 (16) | −0.0013 (12) |
C4B | 0.032 (6) | 0.033 (7) | 0.012 (6) | 0.000 (5) | −0.004 (4) | −0.008 (4) |
C5B | 0.029 (2) | 0.0201 (13) | 0.0258 (14) | 0.0041 (12) | 0.0065 (14) | −0.0003 (11) |
C6B | 0.0317 (17) | 0.0179 (13) | 0.0295 (14) | 0.0062 (11) | −0.0009 (12) | −0.0033 (11) |
C7B | 0.0261 (16) | 0.0224 (18) | 0.0184 (12) | 0.0007 (12) | 0.0016 (12) | 0.0014 (12) |
C8B | 0.029 (3) | 0.0330 (17) | 0.0192 (16) | 0.0079 (14) | −0.0063 (18) | 0.0014 (12) |
C9B | 0.055 (2) | 0.0391 (19) | 0.0351 (16) | 0.0090 (15) | 0.0090 (16) | 0.0158 (15) |
C10B | 0.0262 (16) | 0.034 (2) | 0.0217 (14) | 0.0008 (13) | 0.0016 (12) | 0.0038 (12) |
C11B | 0.0218 (16) | 0.058 (2) | 0.029 (2) | 0.0145 (15) | 0.002 (2) | −0.0001 (19) |
C12B | 0.046 (7) | 0.048 (4) | 0.041 (5) | 0.024 (5) | 0.009 (4) | 0.008 (4) |
C13B | 0.055 (7) | 0.068 (6) | 0.032 (4) | 0.018 (5) | 0.010 (4) | 0.006 (4) |
C14B | 0.057 (7) | 0.046 (5) | 0.059 (8) | 0.009 (4) | 0.044 (6) | −0.001 (6) |
C15B | 0.082 (8) | 0.080 (6) | 0.050 (6) | 0.048 (5) | 0.028 (5) | 0.013 (5) |
C16B | 0.051 (6) | 0.057 (5) | 0.038 (4) | 0.030 (4) | 0.018 (4) | 0.010 (4) |
C17B | 0.026 (4) | 0.015 (5) | 0.036 (4) | 0.007 (3) | 0.002 (3) | 0.002 (3) |
C18B | 0.033 (5) | 0.074 (6) | 0.047 (4) | −0.017 (4) | −0.003 (3) | 0.008 (4) |
C19B | 0.042 (5) | 0.110 (8) | 0.070 (6) | −0.023 (5) | −0.008 (4) | −0.010 (6) |
C20B | 0.051 (6) | 0.099 (7) | 0.047 (5) | 0.001 (5) | −0.022 (4) | 0.011 (5) |
C21B | 0.070 (7) | 0.064 (7) | 0.036 (4) | −0.003 (5) | −0.009 (4) | 0.009 (4) |
C22B | 0.033 (4) | 0.023 (6) | 0.034 (4) | 0.000 (3) | 0.002 (3) | 0.003 (4) |
N1B | 0.021 (4) | 0.025 (4) | 0.026 (4) | −0.006 (3) | 0.003 (4) | −0.010 (3) |
O1B | 0.035 (3) | 0.0252 (15) | 0.040 (2) | 0.0010 (17) | 0.016 (2) | −0.0019 (10) |
O2B | 0.043 (7) | 0.0382 (14) | 0.0228 (19) | 0.001 (5) | −0.007 (3) | −0.0133 (17) |
O3B | 0.028 (6) | 0.0259 (16) | 0.027 (3) | 0.008 (5) | −0.006 (3) | −0.0022 (19) |
O4B | 0.042 (10) | 0.042 (4) | 0.010 (3) | 0.013 (4) | −0.001 (5) | −0.001 (3) |
O5B | 0.036 (8) | 0.028 (4) | 0.012 (4) | 0.013 (4) | −0.005 (5) | 0.002 (2) |
Br1B | 0.0307 (11) | 0.0349 (9) | 0.0315 (5) | −0.0055 (6) | 0.0011 (8) | 0.0044 (6) |
Br2B | 0.0619 (18) | 0.0167 (13) | 0.0736 (13) | 0.0005 (12) | 0.0067 (10) | −0.0048 (10) |
C1A—C7A | 1.520 (4) | C1B—C7B | 1.518 (4) |
C1A—C6A | 1.525 (4) | C1B—C6B | 1.524 (4) |
C1A—C2A | 1.555 (4) | C1B—C2B | 1.557 (4) |
C1A—H1A1 | 1 | C1B—H1B1 | 1 |
C2A—C8A | 1.511 (4) | C2B—C8B | 1.512 (4) |
C2A—C3A | 1.544 (4) | C2B—C3B | 1.543 (4) |
C2A—H2A | 1 | C2B—H2B | 1 |
C3A—C4A | 1.527 (5) | C3B—C4B | 1.527 (5) |
C3A—N1A | 1.534 (4) | C3B—N1B | 1.535 (4) |
C3A—Br1A | 1.963 (3) | C3B—Br1B | 1.963 (3) |
C4A—C7A | 1.518 (4) | C4B—C7B | 1.522 (4) |
C4A—C5A | 1.546 (4) | C4B—C5B | 1.545 (4) |
C4A—H4A | 1 | C4B—H4B | 1 |
C5A—O1A | 1.406 (4) | C5B—O1B | 1.406 (4) |
C5A—C6A | 1.553 (4) | C5B—C6B | 1.553 (4) |
C5A—H5A | 1 | C5B—H5B | 1 |
C6A—Br2A | 1.957 (3) | C6B—Br2B | 1.957 (3) |
C6A—H6A | 1 | C6B—H6B | 1 |
C7A—C10A | 1.321 (4) | C7B—C10B | 1.325 (4) |
C8A—O4A | 1.197 (4) | C8B—O4B | 1.197 (4) |
C8A—O5A | 1.338 (4) | C8B—O5B | 1.337 (4) |
C9A—O5A | 1.465 (6) | C9B—O5B | 1.466 (6) |
C9A—H9A1 | 0.98 | C9B—H9B1 | 0.98 |
C9A—H9A2 | 0.98 | C9B—H9B2 | 0.98 |
C9A—H9A3 | 0.98 | C9B—H9B3 | 0.98 |
C10A—C17A | 1.492 (4) | C10B—C11B | 1.490 (4) |
C10A—C11A | 1.492 (4) | C10B—C17B | 1.495 (4) |
C11A—C16A | 1.379 (6) | C11B—C16B | 1.381 (6) |
C11A—C12A | 1.387 (6) | C11B—C12B | 1.387 (6) |
C12A—C13A | 1.390 (5) | C12B—C13B | 1.390 (5) |
C12A—H12A | 0.95 | C12B—H12B | 0.95 |
C13A—C14A | 1.341 (9) | C13B—C14B | 1.343 (9) |
C13A—H13A | 0.95 | C13B—H13B | 0.95 |
C14A—C15A | 1.403 (9) | C14B—C15B | 1.401 (9) |
C14A—H14A | 0.95 | C14B—H14B | 0.95 |
C15A—C16A | 1.366 (7) | C15B—C16B | 1.366 (7) |
C15A—H15A | 0.95 | C15B—H15B | 0.95 |
C16A—H16A | 0.95 | C16B—H16B | 0.95 |
C17A—C22A | 1.378 (5) | C17B—C22B | 1.379 (5) |
C17A—C18A | 1.384 (5) | C17B—C18B | 1.384 (5) |
C18A—C19A | 1.387 (6) | C18B—C19B | 1.387 (6) |
C18A—H18A | 0.95 | C18B—H18B | 0.95 |
C19A—C20A | 1.376 (6) | C19B—C20B | 1.376 (6) |
C19A—H19A | 0.95 | C19B—H19B | 0.95 |
C20A—C21A | 1.361 (6) | C20B—C21B | 1.361 (6) |
C20A—H20A | 0.95 | C20B—H20B | 0.95 |
C21A—C22A | 1.389 (5) | C21B—C22B | 1.390 (5) |
C21A—H21A | 0.95 | C21B—H21B | 0.95 |
C22A—H22A | 0.95 | C22B—H22B | 0.95 |
N1A—O2A | 1.219 (4) | N1B—O2B | 1.220 (4) |
N1A—O3A | 1.221 (5) | N1B—O3B | 1.221 (5) |
O1A—H1A | 0.84 | O1B—H1B | 0.84 |
C7A—C1A—C6A | 99.2 (3) | C6B—C1B—H1B1 | 115.4 |
C7A—C1A—C2A | 104.1 (3) | C2B—C1B—H1B1 | 115.4 |
C6A—C1A—C2A | 104.9 (3) | C8B—C2B—C3B | 115.4 (5) |
C7A—C1A—H1A1 | 115.6 | C8B—C2B—C1B | 113.5 (4) |
C6A—C1A—H1A1 | 115.6 | C3B—C2B—C1B | 101.7 (3) |
C2A—C1A—H1A1 | 115.6 | C8B—C2B—H2B | 108.6 |
C8A—C2A—C3A | 115.4 (5) | C3B—C2B—H2B | 108.6 |
C8A—C2A—C1A | 114.4 (4) | C1B—C2B—H2B | 108.6 |
C3A—C2A—C1A | 101.7 (3) | C4B—C3B—N1B | 113.8 (4) |
C8A—C2A—H2A | 108.3 | C4B—C3B—C2B | 104.3 (3) |
C3A—C2A—H2A | 108.3 | N1B—C3B—C2B | 114.5 (4) |
C1A—C2A—H2A | 108.3 | C4B—C3B—Br1B | 108.5 (4) |
C4A—C3A—N1A | 114.0 (4) | N1B—C3B—Br1B | 103.0 (3) |
C4A—C3A—C2A | 104.1 (3) | C2B—C3B—Br1B | 112.9 (3) |
N1A—C3A—C2A | 114.1 (4) | C7B—C4B—C3B | 99.0 (3) |
C4A—C3A—Br1A | 109.0 (3) | C7B—C4B—C5B | 101.0 (3) |
N1A—C3A—Br1A | 103.2 (3) | C3B—C4B—C5B | 109.8 (4) |
C2A—C3A—Br1A | 112.6 (3) | C7B—C4B—H4B | 115 |
C7A—C4A—C3A | 98.6 (3) | C3B—C4B—H4B | 115 |
C7A—C4A—C5A | 100.9 (3) | C5B—C4B—H4B | 115 |
C3A—C4A—C5A | 109.9 (4) | O1B—C5B—C4B | 111.5 (5) |
C7A—C4A—H4A | 115.1 | O1B—C5B—C6B | 112.0 (5) |
C3A—C4A—H4A | 115.1 | C4B—C5B—C6B | 102.8 (3) |
C5A—C4A—H4A | 115.1 | O1B—C5B—H5B | 110.1 |
O1A—C5A—C4A | 111.3 (5) | C4B—C5B—H5B | 110.1 |
O1A—C5A—C6A | 111.9 (5) | C6B—C5B—H5B | 110.1 |
C4A—C5A—C6A | 103.0 (3) | C1B—C6B—C5B | 103.7 (3) |
O1A—C5A—H5A | 110.1 | C1B—C6B—Br2B | 110.9 (3) |
C4A—C5A—H5A | 110.1 | C5B—C6B—Br2B | 111.2 (3) |
C6A—C5A—H5A | 110.1 | C1B—C6B—H6B | 110.3 |
C1A—C6A—C5A | 103.5 (3) | C5B—C6B—H6B | 110.3 |
C1A—C6A—Br2A | 110.8 (4) | Br2B—C6B—H6B | 110.3 |
C5A—C6A—Br2A | 111.7 (3) | C10B—C7B—C1B | 133.6 (4) |
C1A—C6A—H6A | 110.2 | C10B—C7B—C4B | 129.7 (4) |
C5A—C6A—H6A | 110.2 | C1B—C7B—C4B | 96.1 (3) |
Br2A—C6A—H6A | 110.2 | O4B—C8B—O5B | 124.3 (5) |
C10A—C7A—C4A | 131.2 (4) | O4B—C8B—C2B | 124.3 (5) |
C10A—C7A—C1A | 132.4 (4) | O5B—C8B—C2B | 110.8 (4) |
C4A—C7A—C1A | 96.3 (3) | O5B—C9B—H9B1 | 109.5 |
O4A—C8A—O5A | 124.5 (6) | O5B—C9B—H9B2 | 109.5 |
O4A—C8A—C2A | 124.7 (5) | H9B1—C9B—H9B2 | 109.5 |
O5A—C8A—C2A | 110.4 (4) | O5B—C9B—H9B3 | 109.5 |
C7A—C10A—C17A | 122.1 (4) | H9B1—C9B—H9B3 | 109.5 |
C7A—C10A—C11A | 122.1 (4) | H9B2—C9B—H9B3 | 109.5 |
C17A—C10A—C11A | 115.8 (4) | C7B—C10B—C11B | 123.6 (4) |
C16A—C11A—C12A | 118.7 (4) | C7B—C10B—C17B | 119.7 (4) |
C16A—C11A—C10A | 119.9 (5) | C11B—C10B—C17B | 116.8 (4) |
C12A—C11A—C10A | 121.2 (5) | C16B—C11B—C12B | 117.1 (4) |
C11A—C12A—C13A | 119.6 (5) | C16B—C11B—C10B | 121.0 (4) |
C11A—C12A—H12A | 120.2 | C12B—C11B—C10B | 121.9 (4) |
C13A—C12A—H12A | 120.2 | C11B—C12B—C13B | 120.8 (5) |
C14A—C13A—C12A | 121.2 (6) | C11B—C12B—H12B | 119.6 |
C14A—C13A—H13A | 119.4 | C13B—C12B—H12B | 119.6 |
C12A—C13A—H13A | 119.4 | C14B—C13B—C12B | 121.3 (6) |
C13A—C14A—C15A | 119.4 (7) | C14B—C13B—H13B | 119.3 |
C13A—C14A—H14A | 120.3 | C12B—C13B—H13B | 119.3 |
C15A—C14A—H14A | 120.3 | C13B—C14B—C15B | 117.6 (6) |
C16A—C15A—C14A | 119.3 (7) | C13B—C14B—H14B | 121.2 |
C16A—C15A—H15A | 120.3 | C15B—C14B—H14B | 121.2 |
C14A—C15A—H15A | 120.3 | C16B—C15B—C14B | 120.3 (7) |
C15A—C16A—C11A | 121.2 (6) | C16B—C15B—H15B | 119.8 |
C15A—C16A—H16A | 119.4 | C14B—C15B—H15B | 119.8 |
C11A—C16A—H16A | 119.4 | C15B—C16B—C11B | 121.5 (6) |
C22A—C17A—C18A | 118.3 (4) | C15B—C16B—H16B | 119.2 |
C22A—C17A—C10A | 121.6 (4) | C11B—C16B—H16B | 119.2 |
C18A—C17A—C10A | 120.1 (4) | C22B—C17B—C18B | 118.2 (4) |
C17A—C18A—C19A | 120.3 (4) | C22B—C17B—C10B | 121.3 (5) |
C17A—C18A—H18A | 119.8 | C18B—C17B—C10B | 120.5 (4) |
C19A—C18A—H18A | 119.8 | C17B—C18B—C19B | 120.2 (5) |
C20A—C19A—C18A | 120.1 (5) | C17B—C18B—H18B | 119.9 |
C20A—C19A—H19A | 119.9 | C19B—C18B—H18B | 119.9 |
C18A—C19A—H19A | 119.9 | C20B—C19B—C18B | 120.4 (5) |
C21A—C20A—C19A | 120.3 (5) | C20B—C19B—H19B | 119.8 |
C21A—C20A—H20A | 119.9 | C18B—C19B—H19B | 119.8 |
C19A—C20A—H20A | 119.9 | C21B—C20B—C19B | 120.1 (5) |
C20A—C21A—C22A | 119.4 (5) | C21B—C20B—H20B | 119.9 |
C20A—C21A—H21A | 120.3 | C19B—C20B—H20B | 119.9 |
C22A—C21A—H21A | 120.3 | C20B—C21B—C22B | 119.4 (5) |
C17A—C22A—C21A | 121.3 (5) | C20B—C21B—H21B | 120.3 |
C17A—C22A—H22A | 119.3 | C22B—C21B—H21B | 120.3 |
C21A—C22A—H22A | 119.3 | C17B—C22B—C21B | 121.6 (5) |
O2A—N1A—O3A | 125.2 (5) | C17B—C22B—H22B | 119.2 |
O2A—N1A—C3A | 116.2 (5) | C21B—C22B—H22B | 119.2 |
O3A—N1A—C3A | 118.5 (5) | O2B—N1B—O3B | 125.3 (5) |
C8A—O5A—C9A | 114.9 (6) | O2B—N1B—C3B | 115.8 (5) |
C7B—C1B—C6B | 99.6 (3) | O3B—N1B—C3B | 118.9 (5) |
C7B—C1B—C2B | 103.8 (3) | C5B—O1B—H1B | 109.5 |
C6B—C1B—C2B | 105.1 (3) | C8B—O5B—C9B | 114.6 (6) |
C7B—C1B—H1B1 | 115.4 | ||
C7A—C1A—C2A—C8A | −103.1 (7) | C7B—C1B—C2B—C8B | −100.9 (7) |
C6A—C1A—C2A—C8A | 153.3 (7) | C6B—C1B—C2B—C8B | 155.0 (7) |
C7A—C1A—C2A—C3A | 22.0 (5) | C7B—C1B—C2B—C3B | 23.8 (5) |
C6A—C1A—C2A—C3A | −81.7 (4) | C6B—C1B—C2B—C3B | −80.4 (4) |
C8A—C2A—C3A—C4A | 138.6 (6) | C8B—C2B—C3B—C4B | 135.7 (6) |
C1A—C2A—C3A—C4A | 14.3 (5) | C1B—C2B—C3B—C4B | 12.4 (5) |
C8A—C2A—C3A—N1A | −96.4 (6) | C8B—C2B—C3B—N1B | −99.3 (7) |
C1A—C2A—C3A—N1A | 139.2 (5) | C1B—C2B—C3B—N1B | 137.3 (5) |
C8A—C2A—C3A—Br1A | 20.8 (6) | C8B—C2B—C3B—Br1B | 18.1 (7) |
C1A—C2A—C3A—Br1A | −103.6 (4) | C1B—C2B—C3B—Br1B | −105.2 (4) |
N1A—C3A—C4A—C7A | −170.4 (4) | N1B—C3B—C4B—C7B | −169.4 (5) |
C2A—C3A—C4A—C7A | −45.4 (4) | C2B—C3B—C4B—C7B | −44.0 (4) |
Br1A—C3A—C4A—C7A | 75.0 (4) | Br1B—C3B—C4B—C7B | 76.6 (4) |
N1A—C3A—C4A—C5A | −65.4 (5) | N1B—C3B—C4B—C5B | −64.2 (5) |
C2A—C3A—C4A—C5A | 59.6 (4) | C2B—C3B—C4B—C5B | 61.2 (4) |
Br1A—C3A—C4A—C5A | 179.9 (4) | Br1B—C3B—C4B—C5B | −178.2 (3) |
C7A—C4A—C5A—O1A | 150.3 (7) | C7B—C4B—C5B—O1B | 151.3 (7) |
C3A—C4A—C5A—O1A | 46.9 (8) | C3B—C4B—C5B—O1B | 47.5 (8) |
C7A—C4A—C5A—C6A | 30.3 (5) | C7B—C4B—C5B—C6B | 31.1 (5) |
C3A—C4A—C5A—C6A | −73.1 (5) | C3B—C4B—C5B—C6B | −72.7 (5) |
C7A—C1A—C6A—C5A | −39.6 (5) | C7B—C1B—C6B—C5B | −38.7 (5) |
C2A—C1A—C6A—C5A | 67.7 (5) | C2B—C1B—C6B—C5B | 68.5 (5) |
C7A—C1A—C6A—Br2A | 80.3 (5) | C7B—C1B—C6B—Br2B | 80.7 (5) |
C2A—C1A—C6A—Br2A | −172.4 (4) | C2B—C1B—C6B—Br2B | −172.0 (4) |
O1A—C5A—C6A—C1A | −113.9 (8) | O1B—C5B—C6B—C1B | −115.2 (8) |
C4A—C5A—C6A—C1A | 5.8 (5) | C4B—C5B—C6B—C1B | 4.6 (6) |
O1A—C5A—C6A—Br2A | 126.9 (7) | O1B—C5B—C6B—Br2B | 125.6 (7) |
C4A—C5A—C6A—Br2A | −113.5 (5) | C4B—C5B—C6B—Br2B | −114.6 (5) |
C3A—C4A—C7A—C10A | −125.1 (11) | C6B—C1B—C7B—C10B | −113.3 (12) |
C5A—C4A—C7A—C10A | 122.6 (12) | C2B—C1B—C7B—C10B | 138.4 (11) |
C3A—C4A—C7A—C1A | 57.5 (4) | C6B—C1B—C7B—C4B | 57.8 (4) |
C5A—C4A—C7A—C1A | −54.8 (4) | C2B—C1B—C7B—C4B | −50.5 (4) |
C6A—C1A—C7A—C10A | −119.0 (11) | C3B—C4B—C7B—C10B | −131.0 (11) |
C2A—C1A—C7A—C10A | 133.0 (11) | C5B—C4B—C7B—C10B | 116.7 (11) |
C6A—C1A—C7A—C4A | 58.4 (4) | C3B—C4B—C7B—C1B | 57.4 (4) |
C2A—C1A—C7A—C4A | −49.6 (4) | C5B—C4B—C7B—C1B | −55.0 (4) |
C3A—C2A—C8A—O4A | −111 (2) | C3B—C2B—C8B—O4B | −125 (2) |
C1A—C2A—C8A—O4A | 7 (2) | C1B—C2B—C8B—O4B | −8 (2) |
C3A—C2A—C8A—O5A | 61.7 (17) | C3B—C2B—C8B—O5B | 64.3 (17) |
C1A—C2A—C8A—O5A | 179.2 (15) | C1B—C2B—C8B—O5B | −178.9 (15) |
C4A—C7A—C10A—C17A | −10.1 (16) | C1B—C7B—C10B—C11B | −7.8 (18) |
C1A—C7A—C10A—C17A | 166.4 (7) | C4B—C7B—C10B—C11B | −176.2 (7) |
C4A—C7A—C10A—C11A | 172.6 (7) | C1B—C7B—C10B—C17B | 173.0 (7) |
C1A—C7A—C10A—C11A | −10.9 (17) | C4B—C7B—C10B—C17B | 4.5 (15) |
C7A—C10A—C11A—C16A | 120.9 (12) | C7B—C10B—C11B—C16B | 139.4 (12) |
C17A—C10A—C11A—C16A | −56.6 (14) | C17B—C10B—C11B—C16B | −41.3 (15) |
C7A—C10A—C11A—C12A | −64.1 (17) | C7B—C10B—C11B—C12B | −39.3 (18) |
C17A—C10A—C11A—C12A | 118.5 (11) | C17B—C10B—C11B—C12B | 139.9 (11) |
C16A—C11A—C12A—C13A | −1.4 (17) | C16B—C11B—C12B—C13B | 0.8 (17) |
C10A—C11A—C12A—C13A | −176.5 (9) | C10B—C11B—C12B—C13B | 179.6 (10) |
C11A—C12A—C13A—C14A | 4.8 (17) | C11B—C12B—C13B—C14B | −5.5 (16) |
C12A—C13A—C14A—C15A | −8.4 (18) | C12B—C13B—C14B—C15B | 11.7 (15) |
C13A—C14A—C15A—C16A | 8.7 (17) | C13B—C14B—C15B—C16B | −13.5 (15) |
C14A—C15A—C16A—C11A | −5.5 (15) | C14B—C15B—C16B—C11B | 9.3 (16) |
C12A—C11A—C16A—C15A | 1.8 (16) | C12B—C11B—C16B—C15B | −2.8 (17) |
C10A—C11A—C16A—C15A | 177.0 (8) | C10B—C11B—C16B—C15B | 178.4 (10) |
C7A—C10A—C17A—C22A | −46.9 (15) | C7B—C10B—C17B—C22B | −61.3 (14) |
C11A—C10A—C17A—C22A | 130.6 (9) | C11B—C10B—C17B—C22B | 119.4 (9) |
C7A—C10A—C17A—C18A | 136.4 (10) | C7B—C10B—C17B—C18B | 119.7 (11) |
C11A—C10A—C17A—C18A | −46.1 (12) | C11B—C10B—C17B—C18B | −59.6 (12) |
C22A—C17A—C18A—C19A | 3.3 (13) | C22B—C17B—C18B—C19B | 1.3 (14) |
C10A—C17A—C18A—C19A | −179.9 (8) | C10B—C17B—C18B—C19B | −179.7 (8) |
C17A—C18A—C19A—C20A | −1.7 (14) | C17B—C18B—C19B—C20B | −2.8 (15) |
C18A—C19A—C20A—C21A | 1.9 (14) | C18B—C19B—C20B—C21B | 2.8 (16) |
C19A—C20A—C21A—C22A | −3.7 (14) | C19B—C20B—C21B—C22B | −1.3 (16) |
C18A—C17A—C22A—C21A | −5.2 (14) | C18B—C17B—C22B—C21B | 0.2 (15) |
C10A—C17A—C22A—C21A | 178.0 (8) | C10B—C17B—C22B—C21B | −178.9 (8) |
C20A—C21A—C22A—C17A | 5.5 (14) | C20B—C21B—C22B—C17B | −0.2 (16) |
C4A—C3A—N1A—O2A | −50.0 (14) | C4B—C3B—N1B—O2B | −49.7 (14) |
C2A—C3A—N1A—O2A | −169.5 (13) | C2B—C3B—N1B—O2B | −169.5 (13) |
Br1A—C3A—N1A—O2A | 68.0 (14) | Br1B—C3B—N1B—O2B | 67.6 (14) |
C4A—C3A—N1A—O3A | 127.7 (14) | C4B—C3B—N1B—O3B | 130.4 (14) |
C2A—C3A—N1A—O3A | 8.2 (15) | C2B—C3B—N1B—O3B | 10.7 (15) |
Br1A—C3A—N1A—O3A | −114.2 (14) | Br1B—C3B—N1B—O3B | −112.3 (15) |
O4A—C8A—O5A—C9A | −7 (4) | O4B—C8B—O5B—C9B | 22 (4) |
C2A—C8A—O5A—C9A | −179 (2) | C2B—C8B—O5B—C9B | −167 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1A—H1A···O3Ai | 0.84 | 2.24 | 3.03 (2) | 157 |
O1B—H1B···O3Bi | 0.84 | 2.14 | 2.90 (3) | 151 |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
C8H9Br2NO6 | F(000) = 728 |
Mr = 374.98 | Dx = 2.209 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 921 reflections |
a = 7.8071 (13) Å | θ = 3.2–28.4° |
b = 22.760 (4) Å | µ = 7.21 mm−1 |
c = 6.7673 (10) Å | T = 173 K |
β = 110.32 (1)° | Block, colourless |
V = 1127.7 (3) Å3 | 0.42 × 0.4 × 0.2 mm |
Z = 4 |
Bruker SMART 1K CCD area-detector diffractometer | 2453 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.085 |
ω scans | θmax = 28°, θmin = 2.8° |
Absorption correction: integration (XPREP; Bruker, 1999) | h = −10→9 |
Tmin = 0.092, Tmax = 0.290 | k = −30→30 |
12168 measured reflections | l = −8→8 |
2715 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.076 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.22 | w = 1/[σ2(Fo2) + 1.494P] where P = (Fo2 + 2Fc2)/3 |
2715 reflections | (Δ/σ)max = 0.001 |
158 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.92 e Å−3 |
C8H9Br2NO6 | V = 1127.7 (3) Å3 |
Mr = 374.98 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.8071 (13) Å | µ = 7.21 mm−1 |
b = 22.760 (4) Å | T = 173 K |
c = 6.7673 (10) Å | 0.42 × 0.4 × 0.2 mm |
β = 110.32 (1)° |
Bruker SMART 1K CCD area-detector diffractometer | 2715 independent reflections |
Absorption correction: integration (XPREP; Bruker, 1999) | 2453 reflections with I > 2σ(I) |
Tmin = 0.092, Tmax = 0.290 | Rint = 0.085 |
12168 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.076 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.22 | Δρmax = 0.47 e Å−3 |
2715 reflections | Δρmin = −0.92 e Å−3 |
158 parameters |
Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 1999) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4596 (4) | 0.08700 (13) | 0.8249 (4) | 0.0151 (5) | |
H1A | 0.5191 | 0.078 | 0.9782 | 0.018* | |
C2 | 0.5255 (4) | 0.14527 (13) | 0.7547 (4) | 0.0149 (5) | |
H2 | 0.4442 | 0.1785 | 0.7618 | 0.018* | |
C3 | 0.4978 (4) | 0.13033 (13) | 0.5217 (4) | 0.0157 (5) | |
C4 | 0.3934 (4) | 0.07166 (13) | 0.4912 (4) | 0.0165 (6) | |
H4 | 0.3931 | 0.0491 | 0.3643 | 0.02* | |
C5 | 0.2012 (4) | 0.07874 (14) | 0.5083 (4) | 0.0178 (6) | |
H5 | 0.1302 | 0.0415 | 0.4642 | 0.021* | |
C6 | 0.2510 (4) | 0.08814 (13) | 0.7492 (4) | 0.0171 (5) | |
H6 | 0.2061 | 0.1271 | 0.7788 | 0.02* | |
C7 | 0.7230 (4) | 0.15867 (13) | 0.8883 (4) | 0.0177 (6) | |
C8 | 0.9566 (4) | 0.22856 (17) | 0.9698 (6) | 0.0302 (7) | |
H8A | 0.9912 | 0.2171 | 1.1181 | 0.045* | |
H8B | 0.9735 | 0.271 | 0.9603 | 0.045* | |
H8C | 1.0334 | 0.2076 | 0.9052 | 0.045* | |
N1 | 0.3988 (3) | 0.17724 (11) | 0.3625 (4) | 0.0180 (5) | |
O1 | 0.0960 (3) | 0.12686 (10) | 0.4001 (4) | 0.0221 (5) | |
H1 | 0.029 (6) | 0.1174 (19) | 0.269 (7) | 0.033* | |
O2 | 0.3489 (3) | 0.16231 (11) | 0.1774 (3) | 0.0270 (5) | |
O3 | 0.3757 (3) | 0.22552 (10) | 0.4268 (4) | 0.0286 (5) | |
O4 | 0.8248 (3) | 0.12368 (10) | 1.0054 (4) | 0.0251 (5) | |
O5 | 0.7660 (3) | 0.21368 (10) | 0.8594 (3) | 0.0229 (5) | |
O6 | 0.4935 (3) | 0.04365 (9) | 0.6866 (3) | 0.0183 (4) | |
Br1 | 0.72464 (4) | 0.118459 (15) | 0.46861 (5) | 0.02389 (10) | |
Br2 | 0.16270 (4) | 0.025117 (16) | 0.88365 (5) | 0.02651 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0163 (13) | 0.0148 (13) | 0.0129 (12) | −0.0008 (10) | 0.0035 (10) | −0.0011 (10) |
C2 | 0.0173 (13) | 0.0132 (13) | 0.0138 (12) | 0.0008 (10) | 0.0049 (10) | −0.0008 (10) |
C3 | 0.0156 (13) | 0.0179 (14) | 0.0136 (12) | 0.0022 (10) | 0.0049 (10) | 0.0002 (11) |
C4 | 0.0185 (13) | 0.0152 (14) | 0.0148 (12) | 0.0007 (11) | 0.0043 (11) | −0.0025 (11) |
C5 | 0.0132 (12) | 0.0198 (14) | 0.0170 (13) | −0.0006 (11) | 0.0011 (10) | 0.0019 (11) |
C6 | 0.0193 (13) | 0.0156 (14) | 0.0165 (12) | −0.0021 (11) | 0.0064 (11) | 0.0010 (11) |
C7 | 0.0200 (14) | 0.0182 (14) | 0.0149 (12) | −0.0021 (11) | 0.0061 (11) | −0.0023 (11) |
C8 | 0.0223 (15) | 0.0312 (18) | 0.0323 (17) | −0.0119 (14) | 0.0037 (13) | −0.0040 (15) |
N1 | 0.0182 (11) | 0.0177 (12) | 0.0183 (11) | −0.0012 (10) | 0.0065 (10) | 0.0031 (10) |
O1 | 0.0178 (10) | 0.0269 (12) | 0.0182 (10) | 0.0058 (9) | 0.0019 (8) | 0.0042 (9) |
O2 | 0.0322 (12) | 0.0320 (13) | 0.0139 (10) | 0.0021 (10) | 0.0043 (9) | 0.0024 (9) |
O3 | 0.0377 (13) | 0.0173 (11) | 0.0289 (12) | 0.0041 (10) | 0.0091 (10) | 0.0018 (10) |
O4 | 0.0201 (11) | 0.0254 (12) | 0.0229 (11) | −0.0031 (9) | −0.0012 (9) | 0.0047 (9) |
O5 | 0.0202 (10) | 0.0196 (11) | 0.0251 (11) | −0.0041 (9) | 0.0033 (9) | −0.0005 (9) |
O6 | 0.0220 (10) | 0.0151 (10) | 0.0158 (9) | 0.0046 (8) | 0.0039 (8) | −0.0002 (8) |
Br1 | 0.01801 (14) | 0.03388 (19) | 0.02190 (16) | 0.00381 (12) | 0.00963 (12) | −0.00164 (13) |
Br2 | 0.02506 (16) | 0.03039 (18) | 0.02249 (16) | −0.00843 (13) | 0.00624 (12) | 0.00615 (13) |
C1—O6 | 1.446 (3) | C5—C6 | 1.554 (4) |
C1—C6 | 1.528 (4) | C5—H5 | 1 |
C1—C2 | 1.555 (4) | C6—Br2 | 1.948 (3) |
C1—H1A | 1 | C6—H6 | 1 |
C2—C7 | 1.523 (4) | C7—O4 | 1.207 (4) |
C2—C3 | 1.553 (4) | C7—O5 | 1.328 (4) |
C2—H2 | 1 | C8—O5 | 1.454 (4) |
C3—N1 | 1.523 (4) | C8—H8A | 0.98 |
C3—C4 | 1.540 (4) | C8—H8B | 0.98 |
C3—Br1 | 1.944 (3) | C8—H8C | 0.98 |
C4—O6 | 1.431 (3) | N1—O3 | 1.218 (4) |
C4—C5 | 1.553 (4) | N1—O2 | 1.223 (3) |
C4—H4 | 1 | O1—H1 | 0.89 (4) |
C5—O1 | 1.411 (4) | ||
O6—C1—C6 | 102.0 (2) | C4—C5—C6 | 101.3 (2) |
O6—C1—C2 | 103.3 (2) | O1—C5—H5 | 109.9 |
C6—C1—C2 | 108.1 (2) | C4—C5—H5 | 109.9 |
O6—C1—H1A | 114.1 | C6—C5—H5 | 109.9 |
C6—C1—H1A | 114.1 | C1—C6—C5 | 101.4 (2) |
C2—C1—H1A | 114.1 | C1—C6—Br2 | 109.9 (2) |
C7—C2—C3 | 113.7 (2) | C5—C6—Br2 | 112.9 (2) |
C7—C2—C1 | 111.3 (2) | C1—C6—H6 | 110.8 |
C3—C2—C1 | 100.3 (2) | C5—C6—H6 | 110.8 |
C7—C2—H2 | 110.4 | Br2—C6—H6 | 110.8 |
C3—C2—H2 | 110.4 | O4—C7—O5 | 125.2 (3) |
C1—C2—H2 | 110.4 | O4—C7—C2 | 123.9 (3) |
N1—C3—C4 | 113.5 (2) | O5—C7—C2 | 110.9 (2) |
N1—C3—C2 | 115.0 (2) | O5—C8—H8A | 109.5 |
C4—C3—C2 | 101.9 (2) | O5—C8—H8B | 109.5 |
N1—C3—Br1 | 103.75 (18) | H8A—C8—H8B | 109.5 |
C4—C3—Br1 | 109.16 (19) | O5—C8—H8C | 109.5 |
C2—C3—Br1 | 113.77 (19) | H8A—C8—H8C | 109.5 |
O6—C4—C3 | 99.7 (2) | H8B—C8—H8C | 109.5 |
O6—C4—C5 | 102.1 (2) | O3—N1—O2 | 125.6 (3) |
C3—C4—C5 | 112.3 (2) | O3—N1—C3 | 118.8 (2) |
O6—C4—H4 | 113.8 | O2—N1—C3 | 115.6 (2) |
C3—C4—H4 | 113.8 | C5—O1—H1 | 111 (3) |
C5—C4—H4 | 113.8 | C7—O5—C8 | 114.2 (3) |
O1—C5—C4 | 116.4 (2) | C4—O6—C1 | 97.5 (2) |
O1—C5—C6 | 109.0 (2) | ||
O6—C1—C2—C7 | −93.9 (3) | O6—C1—C6—Br2 | 84.0 (2) |
C6—C1—C2—C7 | 158.5 (2) | C2—C1—C6—Br2 | −167.60 (18) |
O6—C1—C2—C3 | 26.7 (2) | O1—C5—C6—C1 | −121.4 (2) |
C6—C1—C2—C3 | −80.8 (3) | C4—C5—C6—C1 | 1.9 (3) |
C7—C2—C3—N1 | −109.0 (3) | O1—C5—C6—Br2 | 121.1 (2) |
C1—C2—C3—N1 | 132.1 (2) | C4—C5—C6—Br2 | −115.6 (2) |
C7—C2—C3—C4 | 127.8 (2) | C3—C2—C7—O4 | −99.5 (3) |
C1—C2—C3—C4 | 8.9 (3) | C1—C2—C7—O4 | 12.9 (4) |
C7—C2—C3—Br1 | 10.5 (3) | C3—C2—C7—O5 | 81.0 (3) |
C1—C2—C3—Br1 | −108.5 (2) | C1—C2—C7—O5 | −166.5 (2) |
N1—C3—C4—O6 | −166.4 (2) | C4—C3—N1—O3 | 128.5 (3) |
C2—C3—C4—O6 | −42.2 (2) | C2—C3—N1—O3 | 11.8 (4) |
Br1—C3—C4—O6 | 78.4 (2) | Br1—C3—N1—O3 | −113.1 (2) |
N1—C3—C4—C5 | −59.0 (3) | C4—C3—N1—O2 | −51.5 (3) |
C2—C3—C4—C5 | 65.2 (3) | C2—C3—N1—O2 | −168.2 (2) |
Br1—C3—C4—C5 | −174.12 (18) | Br1—C3—N1—O2 | 66.9 (3) |
O6—C4—C5—O1 | 150.8 (2) | O4—C7—O5—C8 | 4.9 (4) |
C3—C4—C5—O1 | 44.9 (3) | C2—C7—O5—C8 | −175.6 (3) |
O6—C4—C5—C6 | 32.7 (3) | C3—C4—O6—C1 | 59.7 (2) |
C3—C4—C5—C6 | −73.2 (3) | C5—C4—O6—C1 | −55.8 (2) |
O6—C1—C6—C5 | −35.7 (3) | C6—C1—O6—C4 | 57.5 (2) |
C2—C1—C6—C5 | 72.8 (3) | C2—C1—O6—C4 | −54.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.89 (4) | 1.94 (4) | 2.774 (3) | 156 (4) |
Symmetry code: (i) x−1, y, z−1. |
Experimental details
(II) | (III) | (IV) | (V) | |
Crystal data | ||||
Chemical formula | C8H8Br2N2O3 | C13H13Br2NO3 | C9H11Br2NO5 | C22H19Br2NO5 |
Mr | 339.98 | 391.06 | 373.01 | 537.2 |
Crystal system, space group | Monoclinic, Cc | Monoclinic, P21/c | Triclinic, P1 | Monoclinic, P21/c |
Temperature (K) | 173 | 173 | 173 | 173 |
a, b, c (Å) | 6.6517 (8), 16.084 (2), 9.8254 (14) | 15.945 (2), 6.7578 (10), 13.194 (2) | 6.7221 (2), 7.7353 (3), 12.1546 (5) | 15.8724 (8), 9.0341 (4), 15.0064 (7) |
α, β, γ (°) | 90, 91.825 (6), 90 | 90, 107.655 (9), 90 | 88.296 (3), 80.595 (3), 69.323 (3) | 90, 98.219 (2), 90 |
V (Å3) | 1050.6 (2) | 1354.7 (4) | 583.08 (4) | 2129.71 (17) |
Z | 4 | 4 | 2 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 7.70 | 5.99 | 6.96 | 3.84 |
Crystal size (mm) | 0.6 × 0.2 × 0.2 | 0.4 × 0.3 × 0.14 | 0.28 × 0.12 × 0.04 | 0.3 × 0.1 × 0.06 |
Data collection | ||||
Diffractometer | Bruker SMART 1K CCD area-detector diffractometer | Bruker SMART 1K CCD area-detector diffractometer | Bruker SMART 1K CCD area-detector diffractometer | Bruker SMART 1K CCD area-detector diffractometer |
Absorption correction | Integration (XPREP; Bruker, 1999) | Integration (XPREP; Bruker, 1999) | Integration (XPREP; Bruker, 1999) | Integration (XPREP; Bruker, 1999) |
Tmin, Tmax | 0.075, 0.301 | 0.110, 0.467 | 0.318, 0.770 | 0.509, 0.817 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3346, 2038, 1945 | 18725, 3256, 2786 | 7104, 2805, 2244 | 17671, 5119, 3059 |
Rint | 0.067 | 0.042 | 0.083 | 0.078 |
(sin θ/λ)max (Å−1) | 0.660 | 0.661 | 0.661 | 0.661 |
Refinement | ||||
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.116, 1.04 | 0.022, 0.052, 1.04 | 0.039, 0.07, 0.96 | 0.033, 0.057, 0.82 |
No. of reflections | 2038 | 3256 | 2805 | 5119 |
No. of parameters | 139 | 175 | 155 | 467 |
No. of restraints | 2 | 0 | 0 | 83 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.20, −0.94 | 0.34, −0.64 | 1.44, −1.41 | 0.45, −0.43 |
Absolute structure | Flack (1983), 765 Friedel pairs | ? | ? | ? |
Absolute structure parameter | 0.003 (19) | ? | ? | ? |
(VI) | |
Crystal data | |
Chemical formula | C8H9Br2NO6 |
Mr | 374.98 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 7.8071 (13), 22.760 (4), 6.7673 (10) |
α, β, γ (°) | 90, 110.32 (1), 90 |
V (Å3) | 1127.7 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.21 |
Crystal size (mm) | 0.42 × 0.4 × 0.2 |
Data collection | |
Diffractometer | Bruker SMART 1K CCD area-detector diffractometer |
Absorption correction | Integration (XPREP; Bruker, 1999) |
Tmin, Tmax | 0.092, 0.290 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12168, 2715, 2453 |
Rint | 0.085 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.076, 1.22 |
No. of reflections | 2715 |
No. of parameters | 158 |
No. of restraints | 0 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.47, −0.92 |
Absolute structure | ? |
Absolute structure parameter | ? |
Computer programs: SMART-NT (Bruker, 1998), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N2i | 0.86 (12) | 2.01 (12) | 2.858 (8) | 169 (10) |
Symmetry code: (i) x−1/2, y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.76 (3) | 2.17 (3) | 2.927 (2) | 171 (3) |
Symmetry code: (i) −x+1, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.84 | 1.96 | 2.752 (3) | 157 |
Symmetry code: (i) x−1, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1A—H1A···O3Ai | 0.84 | 2.24 | 3.03 (2) | 157 |
O1B—H1B···O3Bi | 0.84 | 2.14 | 2.90 (3) | 151 |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.89 (4) | 1.94 (4) | 2.774 (3) | 156 (4) |
Symmetry code: (i) x−1, y, z−1. |
Compound | Interaction | X···X | θ1 | θ2 | Type |
(II) | C3—Br1···Br2i | 3.663 (2) | 138 | 99 | II |
C6—Br2···O2ii | 3.205 (2) | 155 | III | ||
(IV) | C6—Br2···Br2iii | 3.453 (4) | 155 | 155 | I |
C3—Br1···O1iv | 3.017 (3) | 176 | III | ||
(V) | C6A—Br2A···O3Av | 3.159 (2) | 158 | III | |
C6B—Br2B···O3Bv | 3.258 (2) | 152 | III | ||
(VI) | C6—Br2···Br2vi | 3.608 (10) | 149 | 149 | I |
C3—Br1···O1vii | 3.097 (5) | 168 | III |
Symmetry codes: (i) x-1/2, y-1/2, z; (ii) x+1, -y+1, z+1/2; (iii) -x+1, -y+2, -z+1; (iv) x, y-1, z; (v) x, y+1, z; (vi) -x+2, -y, -z+2; (vii) x+1, y, z. |
Acknowledgements
This material is based upon work supported financially by the National Research Foundation, Pretoria (GUN 65559). Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and therefore the NRF does not accept any liability in regard thereto. This work was also supported by the University of the Witwatersrand, which is thanked for providing the infrastructure required to do this work.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Baitinger, W. F., Schleyer, P. R., Murty, T. S. S. R. & Robinson, L. (1964). Tetrahedron, 20, 1635–1647. CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Blom, N. F., Edwards, D. M. F., Field, J. S. & Michael, J. P. (1980). J. Chem. Soc. Chem. Commun. pp. 1240–1241. CrossRef Google Scholar
Boeyens, J. C. A., Denner, L. & Michael, J. P. (1984a). J. Chem. Soc. Perkin Trans. 2, pp. 1569–1573. CrossRef Google Scholar
Boeyens, J. C. A., Denner, L. & Michael, J. P. (1984b). J. Chem. Soc. Perkin Trans. 2, pp. 767–770. CrossRef Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (1999). SAINT-Plus (including XPREP). Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449. CrossRef CAS PubMed Web of Science Google Scholar
Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Heintz, A., Kapteina, S. & Verevkin, S. P. (2007). J. Phys. Chem. A, 111, 6552–6562. Web of Science CrossRef PubMed CAS Google Scholar
Litwinienko, G., DiLabio, G. A., Mulder, P., Korth, H.-G. & Ingold, K. U. (2009). J. Phys. Chem. A, 113, 6275–6288. Web of Science CrossRef PubMed CAS Google Scholar
Metrangelo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395. Web of Science PubMed Google Scholar
Michael, J. P., Billing, D. G. & Maqutu, T. L. (1994). J. Chem. Crystallogr. 24, 311–314. CrossRef CAS Google Scholar
Michael, J. P., Blom, N. F. & Glintenkamp, L. A. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 1855–1862. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
Although hydrogen bonding between hydroxy and nitro groups is not uncommon (Desiraju, 2002), intramolecular hydrogen bonding between these groups is largely confined to systems in which they find themselves in enforced proximity, as in 2-nitrophenols (Baitinger et al., 1964; Heintz et al., 2007; Litwinienko et al., 2009). We have been interested in hydrogen bonding in nitronorbornanol systems for several years (Boeyens et al., 1984a; Michael et al., 1994). In particular, when both groups are constrained to occupy the endo cavity of the norbornane skeleton, the likelihood of intramolecular hydrogen bonding is high, as we have found, for example, in 3-exo,6-exo-dichloro-5-endo-hydroxy-3-endo-nitrobicyclo[2.2.1]heptane-2-exo-carbonitrile, (I) (Boeyens et al., 1984b). We previously determined the room-temperature crystal structure of the corresponding dibromo compound 3-exo,6-exo-dibromo-5-endo-hydroxy-3-endo-nitrobicyclo[2.2.1]heptane-2-exo-carbonitrile, (II) (Blom et al., 1980), but owing to the limitations of the techniques available at the time, we were unable to locate hydrogen atoms and to establish unambiguously whether or not the hydrogen bonding was intramolecular. Here we report a redetermination of the crystal structure of compound (II) at low temperature, as well as the structures of three analogous dibrominated endo-nitronorbornanols (III)–(V) and the related 7-oxanorbornanol, (VI), in order to elucidate their hydrogen-bonding patterns and to establish whether there is any intramolecular or intermolecular hydrogen bonding between the alcohol and nitro functionalities.
The distances and angles within the five compounds reported (Fig. 1) are generally as expected (Allen et al., 1987). In all five structures, hydrogen bonds play a part in controlling the supramolecular assembly of the molecules (Desiraju, 1996, 2002). All five compounds contain an alcohol group and a number of good hydrogen-bonding acceptor functional groups including nitro, ester and ether units as well as Br atoms. Furthermore, a number of halogen-type C—Br···A (A = Br or O; Metrangelo et al., 2005) interactions are also present (Fig. 2).
Compound (II) crystallizes in the polar space group Cc. The O1—H1···N2 hydrogen bond forms a C(8) (Bernstein et al., 1995) chain along the [010] direction. Adjacent chains of this type are connected by a Br2···O2 halogen interaction along the [001]direction (Fig. 3) and by a Br1···Br2 halogen interaction (Table 6) along the [100] direction to form a three-dimensional network.
In compound (III) the O1—H1···O2 hydrogen bond forms C(7) chains along the [010] direction, containing molecules related by the twofold screw axis along (0.5, y, 0.75) (Fig. 4). Compound (III) has no short Br···Br contacts and does not form a higher-dimensional network.
In the crystal structure of compound (IV), C(8) chains are formed along the [110] direction, utilizing the O1—H1···O4 hydrogen bond (Fig. 5a). Adjacent chains of this type are connected to form a three-dimensional network by Br2···Br2 interactions along the [001] direction and by Br1···O1 interactions along the [010] direction (Table 6) (Figs. 5a and 5b).
The entire molecule of compound (V) is disordered over two sets of atomic positions and the two parts, labelled A and B (Fig. 1), have equal site-occupancy factors. The only substantial conformational difference between the two disorder components is the orientations of the aromatic rings relative to the nitronorbornanol unit. Molecule A has torsion angles of -46.9 (15)° (C7A—C10A—C17A—C22A) and 120.9 (12)° (C7A—C10A—C11A—C16A), as compared to angles of -61.3 (14)° (C7B—C10B—C17B—C22B) and 139.4 (12)° (C7B—C10B—C11B—C16B) in molecule B. Nonetheless, the intermolecular hydrogen and halogen bonding is similar between the two molecules (Tables 4 and 6). The O1A—H1A···O3A hydrogen bond in molecule A forms C(7) chains from the alcohol O1A to the nitro oxygen O3A. The chains run along the [010] direction (Fig. 6), generated by the twofold screw axis in the space group P21/c. The molecules within the chains are further connected by Br2A···O3A halogen bonds (Table 6 and Fig. 6). (V) contains no Br···Br halogen bonds. The hydrogen bonding of molecule B is not shown in Fig. 6.
In the crystal structure of compound (VI) the O1—H1···O4 hydrogen bond forms C(8) chains along the [101] direction (Fig. 7a). Adjacent hydrogen-bonded chains are connected by Br1···O1 interactions along the [100] direction to form sheets (Fig. 7a). Two adjacent sheets are then connected by Br2···Br2 halogen bonds along [010] (Table 6) to form bilayers of sheets (Fig. 7b).
Compound (II), which is the dibromo analogue of (I), does not contain an intramolecular O—H···O(nitro) hydrogen bond as observed in (I). Instead, it forms a C(8) hydrogen-bonded chain with the nitrile N as acceptor atom on a neighbouring molecule. Nonetheless, the O atoms of the nitro group are utilized in intermolecular interactions, in this case halogen bonding with the bromine atoms to form two-dimensional sheets which are further linked into a three-dimensional network via Br···Br interactions. Compound (III) has the nitrile group replaced by a phenyl group, and this seems to have an influence on the lack of any halogen bonding observed in (III) due to the steric increase of the phenyl group next to one of the bromine atoms. The absence of any good hydrogen-bonding acceptor at the 2-position leaves only the nitro group or the alcohol O as candidates, and indeed, in (III) there is an intermolecular O—H···O(nitro) hydrogen bond forming C(7) chains. Similar chains are formed by (V), which at the same time uses the second O atom of the nitro group in halogen bonding to strengthen the chain motif. Compounds (IV) and (VI) have the same intermolecular hydrogen bonding from the alcohol to the ester carbonyl, and similar packing of the chains into larger architectures. (IV) has chains connected in three dimensions by the halogen-bond interactions, whereas (VI) has bilayers of hydrogenbonded sheets using similar Br···Br and Br···O interactions. The halogen bonds observed in these compounds all have X···A distances less than the van der Waals radii sum (3.70 Å for Br···Br contacts and 3.37 Å for Br···O contacts).