organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Water-induced pseudo-quadruple hydrogen-bonding motifs in xanthine–inorganic acid complexes

CROSSMARK_Color_square_no_text.svg

aLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India
*Correspondence e-mail: sshiya@yahoo.com

(Received 1 July 2011; accepted 7 September 2011; online 15 September 2011)

In xanthinium nitrate hydrate [systematic name: 2,6-dioxo-1,2,3,6-tetrahydro-9H-purin-7-ium nitrate monohydrate], C5H5N4O2+·NO3·H2O, (I), and xanthinium hydrogen sulfate hydrate [systematic name: 2,6-dioxo-1,2,3,6-tetrahydro-9H-purin-7-ium hydrogen sulfate monohydrate], C5H5N4O2+·HSO4·H2O, (II), the xanthine mol­ecules are protonated at the imine N atom with the transfer of an H atom from the inorganic acid. The asymmetric unit of (I) contains a xanthinium cation, a nitrate anion and one water mol­ecule, while that of (II) contains two crystallographically independent xanthinium cations, two hydrogen sulfate anions and two water mol­ecules. A pseudo-quadruple hydrogen-bonding motif is formed between the xanthinium cations and the water mol­ecules via N—H⋯O and O—H⋯O hydrogen bonds in both structures, and leads to the formation of one-dimensional polymeric tapes. These cation–water tapes are further connected by the respective anions and aggregate into two-dimensional hydrogen-bonded sheets in (I) and three-dimensional arrangements in (II).

Comment

Quadruple hydrogen-bonding motifs (dimeric units held together by four hydrogen bonds between the self-complementary DADA arrays; D = donors and A = acceptor) have received considerable attention in recent decades due to their greater stability compared with double or triple hydrogen-bonding motifs (Beijer et al., 1998[Beijer, F. H., Kooijman, H., Spek, A. L., Sijbesma, R. P. & Meijer, E. W. (1998). Angew. Chem. Int. Ed. 37, 75-78.]). This binding pattern is widely utilized to construct dynamic supra­molecular polymers (Corbin & Zimmerman, 1998[Corbin, P. S. & Zimmerman, S. C. (1998). J. Am. Chem. Soc. 120, 9710-9711.], 2000[Corbin, P. S. & Zimmerman, S. C. (2000). J. Am. Chem. Soc. 122, 3779-3780.]). Recently, Lafitte et al. (2006[Lafitte, V. G. H., Aliev, A. E., Horton, P. N., Hursthouse, M. B., Bala, K., Golding, P. & Hailes, H. C. (2006). J. Am. Chem. Soc. 128, 6544-6545.]) reported a new quadruple hydrogen-bonding module based on a ureido-substituted cytosine moiety. Xanthine (3,7-dihydro­purine-2,6-dione) is a purine base found in most tissues and fluids in the human body and in other organisms. Xanthine and its nucleotide counterpart xanthosine monophosphate are important inter­mediates in the metabolism of purines and their nucleotides in cells. A number of mild stimulants are derived from xanthine, including caffeine and theobromine. Xanthine exists as the 2,6-diketone tautomer at neutral pH. It can adopt 14 tautomeric forms through either keto–enol transformation or proton exchange at the ring N atoms. X-ray experiments show that the sodium salt of xanthine is found mainly in the N9-H (ammonium) dioxo tautomeric form in the solid state (Mizuno et al., 1969[Mizuno, M., Fujiwara, T. & Tomita, K. (1969). Bull. Chem. Soc. Jpn, 42, 3099-3105.]). It was also predicted, on the basis of both semi-empirical and ab initio calculations, that the N7-H (iminium) dioxo tautomeric form of xanthine would be energetically favoured over the N9-H tautomer in the gas phase (Nonella et al., 1993[Nonella, M., Hanggi, G. & Dubler, E. (1993). J. Mol. Struct. (THEOCHEM), 279, 173-190.]). We report here two xanthine–inorganic acid complexes, namely xanthinium nitrate hydrate, (I)[link], and xanthinium hydrogen sulfate hydrate, (II)[link], in continuation of our ongoing studies of hydrogen-bonded inter­actions and mol­ecular recognition of nucleobases in the solid state (Sridhar & Ravikumar, 2007[Sridhar, B. & Ravikumar, K. (2007). Acta Cryst. C63, o212-o214.], 2008[Sridhar, B. & Ravikumar, K. (2008). Acta Cryst. C64, o566-o569.], 2010[Sridhar, B. & Ravikumar, K. (2010). Crystallogr. Rep. 55, 240-246.]; Sridhar et al., 2009[Sridhar, B., Ravikumar, K. & Varghese, B. (2009). Acta Cryst. C65, o202-o206.]).

[Scheme 1]

In compounds (I)[link] and (II)[link], the bond lengths and angles (Tables 1[link] and 3[link]) are all normal for their types (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The asymmetric unit of (I)[link] contains a xanthinium cation, a nitrate anion and one water mol­ecule (Fig. 1[link]). In (II)[link], the asymmetric unit contains two crystallographically independent xanthinium cations (A and B), two hydrogen sulfate anions (A and B) and two water mol­ecules (O1W and O2W) (Fig. 2[link]). The sulfate anions of (II)[link] exhibit a slightly distorted tetra­hedral geometry, with bond lengths and angles typical of those found in several crystal structures of this kind (Cambridge Structural Database, Version 5.32; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). Within the anion, the S—OH distance (Table 3[link]) and its participation in the hydrogen bond show that the H-atom site is static, rather than mobile between the O atoms. The O—S—O angles (Table 3[link]) are typical of those found in hydrogen sulfate anions in crystalline salts.

As expected, xanthine forms protonated units in (I)[link] and (II)[link] with the transfer of an H atom from the inorganic acid. A similar situation is observed in xanthin­ium perchlorate dihydrate (Biradha et al., 2010[Biradha, K., Samai, S., Maity, A. C. & Goswami, S. (2010). Cryst. Growth Des. 10, 937-942.]).

Details of the hydrogen-bonding geometries in (I)[link] and (II)[link] are listed in Tables 2[link] and 4[link]. A number of inter­molecular hydro­gen bonds stabilize the crystal structure of each compound.

In (I)[link] and (II)[link], the xanthinium cations and water mol­ecules are inter­linked by six hydrogen bonds (two N—H⋯O and four O—H⋯O), forming a pseudo-quadruple hydrogen-bonding motif. This motif can be defined in the form of three fused R32(8), R22(8) and R32(8) rings (Fig. 3[link]), in order, using graph-set notation (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The xanthinium cations of (I)[link] are held together by N—H⋯O hydrogen bonds, forming a centrosymmetric dimer [R22(8) motif]. This centrosymmetric dimer is further connected to either side of the water mol­ecules by O—H⋯O hydrogen bonds [R32(8) motifs]. In (II)[link], the two symmetry-independent xanthinium cations are inter­linked by two inter­molecular N—H⋯O hydrogen bonds to form a noncentrosymmetric dimer, which is further linked by two water mol­ecules through inter­molecular O—H⋯O hydrogen bonds.

In (I)[link], the pseudo-quadruple hydrogen-bonding motif is further connected to its translation-related motif at (x + 1, y + 1, z) by an N—H⋯O hydrogen bond involving atom N7 of the xanthinium cation and the water molecule, producing an R44(14) ring motif. This N—H⋯O hydrogen bond leads to the formation of a one-dimensional polymeric tape parallel to the [110] axis (Fig. 3[link]a). Similarly, in (II)[link], the pseudo-quadruple hydrogen-bonding motif is linked to its neighbouring motif by N—H⋯O hydrogen bonds [R44(14) motif], generating a one-dimensional polymeric tape parallel to the [10[\overline 1]] axis (Fig. 3[link]b).

The crystal packing of (I)[link] reveals the involvement of the nitrate anion in crosslinking the stacks of one-dimensional polymeric tapes into two-dimensional hydrogen-bonded sheets parallel to the (1[\overline{1}][\overline{2}]) plane (Fig. 4[link]). The water mol­ecule is involved in three-centred hydrogen bonding (Jeffrey & Saenger, 1991[Jeffrey, J. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer Verlag.]) with the cation and anion to produce an R22(6) motif (Fig. 1[link]). Each pseudo-quadruple hydrogen-bonding motif is inter­linked to its inversion-related motif by inter­molecular N—H⋯O hydrogen bonds involving atom N9 of the xanthin­ium cation and atom O3 of the nitrate anion. This N—H⋯O hydrogen bond generates a centrosymmetric tetra­mer and produces a characteristic R44(16) ring motif. Thus, the combination of N—H⋯O and O—H⋯O hydrogen bonds involving the xanthinium cation, nitrate anion and water mol­ecule forms a centrosymmetric hexa­mer to produce another R66(20) ring motif and these aggregate into supra­molecular two-dimensional hydrogen-bonded sheets.

In (II)[link], the O—H⋯O hydrogen bonds inter­connect two hydrogen sulfate anions into an [–HOSO–HOSO–]n chain along the c axis with a C22(8) graph set. Each anion is involved in two such hydrogen bonds, acting as an H-atom donor in one of them and as an H-atom acceptor in the other. Atoms N3A and N9A of the xanthinium cation link atoms O2A and O2B of the hydrogen sulfate chain through inter­molecular N—H⋯O inter­actions, forming an R32(10) motif, while atoms N3B and N9B of the cation link the symmetry-related atoms O4B(−x + 3, y − [{1\over 2}], −z + 1) and O4A(−x + 3, y − [{1\over 2}], −z + 2) of the hydrogen sulfate anions to form an R33(12) motif. Thus, the infinite anion–anion chain along the crystallographic c axis inter­links the pairs of cation–cation dimers, leading to the formation of a three-dimensional hydrogen-bonded network (Fig. 5[link]). The two water mol­ecules are involved in three-centred hydrogen bonding with the cations and anions to produce an R23(8) motif, thus completing the three-dimensional hydrogen-bonded network (Fig. 6[link]).

Overall, in (I)[link], the stacking of the parallel mol­ecular tapes is aligned parallel to the (1[\overline{1}][\overline{2}]) plane, while in (II)[link], the parallel cation–cation dimers are bridged by sulfate anions to form a three-dimensional structure. It is inter­esting to note that similar cation–cation dimers are observed in the structure of the dixanthinium tetra­chlorido­zinc(II) complex (Hanggi et al., 1992[Hanggi, G., Schmalle, H. & Dubler, E. (1992). Inorg. Chim. Acta, 197, 135-140.]), in which the cation–cation dimers are bridged by [ZnCl4]2− anions. Weak C—H⋯O inter­actions are also observed in both structures.

[Figure 1]
Figure 1
The mol­ecular components of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2]
Figure 2
The mol­ecular components of (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
(a) A view of the one-dimensional polymeric tapes of (I)[link], formed along [110] by N—H⋯O and O—H⋯O inter­actions involving the cations and water mol­ecules. [Symmetry codes: (i) −x + 2, −y + 1, −z + 2; (ii) x + 1, y + 1, z.] (b). A view of the one-dimensional polymeric tapes of (II)[link], formed along [10[\overline 1]] by N—H⋯O and O—H⋯O inter­actions involving the cations and water mol­ecules. [Symmetry codes: (i) x + 1, y, z − 1; (iii) x − 1, y, z + 1.] For the sake of clarity, the nitrate anion in (I)[link], the two hydrogen sulfate anions in (II)[link] and H atoms not involved in hydrogen bonding have been omitted. Only atoms involved in hydrogen bonding are labelled.
[Figure 4]
Figure 4
The crystal structure of (I)[link], showing the two-dimensional hydrogen-bonded sheets built from cations, anions and water mol­ecules. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. Only atoms involved in hydrogen bonding are labelled. [Symmetry codes: (i) −x + 2, −y + 1, −z + 2; (ii) x + 1, y + 1, z; (iii) −x + 1, −y + 2, −z + 1.]
[Figure 5]
Figure 5
Part of the crystal structure of (II)[link], showing the three-dimensional hydrogen-bonded networks formed by pairs of cation–cation dimers and the infinite anion–anion chain along the crystallographic c axis. For the sake of clarity, the two water mol­ecules (O1W and O2W) and H atoms not involved in hydrogen bonding have been omitted.
[Figure 6]
Figure 6
Part of the crystal structure of (II)[link], showing the hydrogen-bonding inter­actions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) x + 1, y, z − 1; (ii) −x + 3, y − [{1\over 2}], −z + 1; (iii) x − 1, y, z + 1; (iv) −x + 3, y − [{1\over 2}], −z + 2; (v) x, y, z − 1.]

Experimental

A hot aqueous solution (5 ml) of xanthine (0.150 g, 1 mmol) was mixed with either 65% nitric acid (5 ml) [for the preparation of (I)[link]] or 98% sulfuric acid (5 ml) [for the preparation of (II)[link]]. Crystals of both compounds were obtained from their respective solutions after several weeks by slow evaporation of the aqueous solvent at room temperature.

Compound (I)[link]

Crystal data
  • C5H5N4O2+·NO3·H2O

  • Mr = 233.16

  • Triclinic, [P \overline 1]

  • a = 5.0416 (7) Å

  • b = 7.4621 (10) Å

  • c = 12.1396 (16) Å

  • α = 80.248 (2)°

  • β = 80.800 (2)°

  • γ = 75.657 (2)°

  • V = 432.74 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 294 K

  • 0.21 × 0.18 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 4689 measured reflections

  • 1801 independent reflections

  • 1672 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.15

  • 1801 reflections

  • 169 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected bond angles (°) for (I)[link]

C8—N7—C5 107.89 (12)
C8—N9—C4 107.42 (12)

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O10i 0.88 (2) 1.99 (2) 2.8761 (15) 177 (2)
N3—H3N⋯O1 0.85 (2) 1.97 (2) 2.7604 (17) 153 (2)
N7—H7N⋯O1Wii 0.96 (2) 1.69 (2) 2.6233 (17) 162 (2)
N9—H9N⋯O3iii 0.92 (2) 1.88 (3) 2.7878 (17) 168 (2)
O1W—H1W⋯O10 0.80 (3) 2.24 (3) 2.8873 (16) 139 (2)
O1W—H1W⋯O1 0.80 (3) 2.27 (3) 2.8986 (18) 136 (2)
O1W—H2W⋯O11i 0.80 (3) 2.02 (3) 2.8059 (16) 170 (3)
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) x+1, y+1, z; (iii) -x+1, -y+2, -z+1.

Compound (II)[link]

Crystal data
  • C5H5N4O2+·HSO4·H2O

  • Mr = 268.21

  • Monoclinic, P 21

  • a = 5.183 (5) Å

  • b = 24.805 (5) Å

  • c = 7.701 (5) Å

  • β = 103.510 (5)°

  • V = 962.7 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 294 K

  • 0.18 × 0.15 × 0.07 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 10396 measured reflections

  • 3998 independent reflections

  • 3939 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.06

  • 3998 reflections

  • 364 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), with 1946 Friedel pairs

  • Flack parameter: 0.13 (5)

Table 3
Selected geometric parameters (Å, °) for (II)[link]

S1A—O4A 1.425 (2)
S1A—O3A 1.4453 (17)
S1A—O2A 1.4574 (17)
S1A—O1A 1.5504 (18)
S1B—O3B 1.4148 (19)
S1B—O4B 1.449 (2)
S1B—O2B 1.4877 (16)
S1B—O1B 1.5430 (19)
C8A—N7A—C5A 108.34 (17)
C8A—N9A—C4A 107.53 (18)
C8B—N7B—C5B 107.72 (18)
C8B—N9B—C4B 107.56 (17)
O4A—S1A—O3A 114.17 (12)
O4A—S1A—O2A 112.27 (13)
O3A—S1A—O2A 110.13 (10)
O4A—S1A—O1A 109.33 (11)
O3A—S1A—O1A 104.69 (12)
O2A—S1A—O1A 105.62 (11)
O3B—S1B—O4B 116.08 (13)
O3B—S1B—O2B 113.06 (12)
O4B—S1B—O2B 108.30 (11)
O3B—S1B—O1B 105.74 (13)
O4B—S1B—O1B 108.26 (13)
O2B—S1B—O1B 104.67 (11)

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1N⋯O10B 0.83 (3) 2.12 (3) 2.949 (2) 173 (2)
N3A—H2N⋯O2A 0.88 (3) 1.83 (3) 2.703 (3) 169 (3)
N7A—H3N⋯O2Wi 0.85 (2) 1.89 (2) 2.710 (3) 162 (4)
N9A—H4N⋯O2B 0.86 (3) 1.96 (3) 2.799 (3) 166 (2)
N1B—H5N⋯O10A 0.97 (4) 1.84 (4) 2.814 (2) 177 (3)
N3B—H6N⋯O4Bii 0.90 (3) 1.93 (3) 2.795 (3) 163 (2)
N7B—H7N⋯O1Wiii 0.97 (3) 1.70 (3) 2.657 (3) 167 (3)
N9B—H8N⋯O4Aiv 0.84 (2) 1.91 (2) 2.739 (3) 173 (3)
O1A—H1O⋯O2B 0.81 (2) 1.81 (2) 2.618 (3) 177 (3)
O1B—H2O⋯O3Av 0.86 (5) 1.78 (5) 2.597 (2) 157 (4)
O1W—H1W⋯O11A 0.90 (3) 1.88 (3) 2.769 (3) 169 (3)
O1W—H2W⋯O10B 0.79 (4) 2.40 (4) 2.992 (3) 133 (4)
O1W—H2W⋯O3Bii 0.79 (4) 2.49 (4) 2.897 (3) 114 (4)
O2W—H3W⋯O2A 0.74 (5) 2.36 (5) 3.016 (3) 149 (4)
O2W—H3W⋯O10A 0.74 (5) 2.57 (5) 3.092 (3) 130 (4)
O2W—H4W⋯O11B 0.79 (4) 2.08 (4) 2.867 (3) 174 (4)
Symmetry codes: (i) x+1, y, z-1; (ii) [-x+3, y-{\script{1\over 2}}, -z+1]; (iii) x-1, y, z+1; (iv) [-x+3, y-{\script{1\over 2}}, -z+2]; (v) x, y, z-1.

N-bound H atoms of the xanthinium cations of (I)[link] and (II)[link], O-bound H atoms of the hydrogen sulfate anion of (II)[link] and H atoms of the water mol­ecules of (I)[link] and (II)[link] were located in difference Fourier maps and their positions and isotropic displacement parameters refined. All other H atoms were located in difference density maps, positioned geometrically and included as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). For (II)[link], distance restraints were applied with a set value of 0.87 (2) Å for N7A—H3N and N9B—H8N, and 0.82 (2) Å for O1A—H1O. Compound (II)[link] crystallizes in the noncentrosymmetric space group P21 but the structure shows pseudosymmetry, which is fulfilled for approximately 82% of the atoms. Systematic absences show the space group to be P21/c, even though the absence condition for a c-glide is not strictly satisfied. The structure was solved in both the P21 and P21/c space groups. However, the structure refined in the space group P21/c showed poor residual factors and abnormal geometric parameters, while the structure refined in the space group P21 did not show such problems. The asymmetric unit of (II)[link] also does not show any inversion centre between the sulfate ions. Refinement in a higher symmetric space group is not possible. The value of the Flack parameter (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]) of (II)[link] may be indicative of a small amount of inversion twinning, although the precision of the value does not allow any definitive conclusion to be drawn.

For both compounds, data collection: SMART (Bruker, 2001[Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Release 3.0c. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Quadruple hydrogen-bonding motifs have received considerable attention in recent decades, due to their more stable nature compared with double or triple hydrogen-bonding motifs (Beijer et al., 1998). This binding pattern is widely utilized to construct dynamic supramolecular polymers (Corbin & Zimmerman, 1998, 2000). Recently, Lafitte et al. (2006) reported a new quadruple hydrogen-bonding module based on a ureido-substituted cytosine moiety. Xanthine (3,7-dihydropurine-2,6-dione) is a purine base found in most tissues and fluids in the human body and in other organisms. Xanthine and its nucleotide counterpart xanthosine monophosphate are important intermediates in the metabolism of purines and their nucleotides in cells. A number of mild stimulants are derived from xanthine, including caffeine and theobromine. Xanthine exists as the 2,6-diketone tautomer at neutral pH. It can adopt 14 tautomeric forms through either keto–enol transformation or proton exchange on the ring N atoms. X-ray experiments show that the sodium salt of xanthine is found mainly in the N9H dioxo tautomeric form in the solid state (Mizuno et al., 1969). It was also predicted, on the basis of both semi-empirical and ab initio calculations, that the N7H dioxo tautomeric form of xanthine would be energetically favoured over the N9H tautomer in the gas phase (Nonella et al., 1993). We report here two xanthine–inorganic acid complexes, namely xanthinium nitrate hydrate, (I, and xanthinium hydrogen sulfate hydrate, (II), in continuation of our ongoing studies of hydrogen-bonded interactions and molecular recognition of nucleobases in the solid state (Sridhar & Ravikumar, 2007, 2008, 2010; Sridhar et al., 2009).

In compounds (I) and (II), the bond lengths and angles (Tables 1 and 3) are all normal for their types (Allen et al., 1987). The asymmetric unit of (I) contains a xanthinium cation, a nitrate anion and one water molecule (Fig. 1). In (II), the asymmetric unit contains two crystallographically independent xanthinium cations (A and B), two hydrogen sulfate anions (A and B) and two water molecules (O1W and O2W) (Fig. 2).The sulfate anions of (II) exhibit a slightly distorted tetrahedral geometry, with bond lengths and angles typical of those found in several crystal structures of this kind (Cambridge Structural Database, Version?; Allen, 2002). Within the anion, the S—OH distance (Table 3) and its participation in the hydrogen bond show that the H-atom site is static, rather than mobile between the O atoms. The O—S—O angles (Table 3) are typical of those found in hydrogen sulfate anions in crystalline salts.

As expected, xanthine forms protonated units with the transfer of an H atom from the inorganic acid. Comparison of the bond lengths N7—C8 [1.3125 (19) for (I), and 1.307 (3) and 1.316 (3) for (II)] and C8—N9 [1.345 (2) for (I), and 1.338 (3) and 1.346 (3) for (II)] confirms the protonation of atom N7. A similar trend is also observed in xanthinium perchlorate dihydrate (Biradha et al., 2010)

Details of the hydrogen-bonding geometries in (I) and (II) are listed in Tables 2 and 4. A number of intermolecular hydrogen bonds stabilize the crystal structure of each compound.

In (I) and (II), the xanthinium cation and water molecule are interlinked by six hydrogen bonds (two N—H···O and four O—H···O), forming a pseudo-quadruple hydrogen-bonding motif. This motif can been defined in the form of three fused R32(8), R22(8) and R32(8) rings (Fig. 3), in order, using graph-set notation (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995). The xanthinium cations of (I) are held together by N—H···O hydrogen bonds, forming a centrosymmetric dimer [R22(8) motif]. This centrosymmetric dimer is further connected to the water molecule by O—H···O hydrogen bonds [R32(8) motif]. In (II), the two xanthinium cations are interlinked by two intermolecular N—H···O hydrogen bonds to form a noncentrosymmetric dimer, which is further linked by two water molecules through intermolecular O—H..O hydrogen bonds.

In (I), the pseudo-quadruple hydrogen-bonding motif is further connected to its translation-related motif at (x + 1, y + 1, z) by an N—H···O hydrogen bond involving atom N7 of the xanthinium cation and the water, producing an R44(14) ring motif. This N—H···O hydrogen bond leads to the formation of a one-dimensional polymeric tape parallel to the [110] axis (Fig. 3a). Similarly, in (II), the pseudo-quadruple hydrogen-bonding motif is linked to its neighbouring motif by N—H···O hydrogen bonds [R44(14) motif], generating a one-dimensional polymeric tape parallel to the [101] axis (Fig. 3b).

The crystal packing of (I) reveals the involvement of the nitrate anion in cross-linking the stacks of one-dimensional polymeric tapes into two-dimensional hydrogen-bonded sheets parallel to the (112) plane (Fig. 4). The water molecule is involved in three-centred hydrogen bonding (Jeffrey & Saenger, 1991) with the cation and anion to produce an R22(6) motif. Each pseudo-quadruple hydrogen-bonding motif is interlinked to its inversion-related motif by intermolecular N—H···O hydrogen bonds involving atom N9 of the xanthinium cation and atom O3 of the nitrate anion. This N—H···O hydrogen bond generates a centrosymmetric tetramer and produces a characteristic R44(16) ring motif. Thus, the combination of N—H···O and O—H···O hydrogen bonds involving the xanthinium cation, nitrate anion and water molecule forms a centrosymmetric hexamer to produce another R66(20) ring motif and these aggregate into supramolecular two-dimensional hydrogen-bonded sheets.

In (II), the O—H···O hydrogen bonds interconnect two hydrogen sulfate anions into an [–HOSO-HOSO–]n chain along the c axis with a C22(8) graph set. Each anion is involved in two such hydrogen bonds, acting as an H-atom donor in one of them and as an H-atom acceptor in the other. Atoms N3A and N9A of the xanthinium cation link atoms O2A and O2B of the hydrogen sulfate chain through intermolecular N—H···O interactions, forming an R32(10) motif, while atoms N3B and N9B of the cation link the symmetry-related atoms O4B(-x + 3, y - 1/2, -z + 1) and O4A(-x + 3,y - 1/2, -z + 2) of the hydrogen sulfate anions to form an R33(12) motif. Thus, the infinite anion–anion chain along the crystallographic c axis interlinks the pairs of cation–cation dimers, leading to the formation of a three-dimensional hydrogen-bonded network (Fig. 5). The two water molecules are involved in three-centred hydrogen bonding with the cations and anions to produce an R23(8) motif, thus completing the three-dimensional hydrogen-bonded network (Fig. 6).

In summary, in (I), the stacking of the parallel molecular tapes is aligned parallel to the (112) plane, while in (II), the parallel cation–cation dimers are bridged by sulfate anions to form a three-dimensional structure. It is interesting to note that similar cation–cation dimers are observed in the structure of the dixanthinium tetrachlorozinc(II) complex (Hanggi et al., 1992), in which the cation–cation dimers are bridged by ZnCl4 anions. Weak C—H···O interactions are also observed in both structures.

Related literature top

For related literature, see: Allen (2002); Allen et al. (1987); Beijer et al. (1998); Bernstein et al. (1995); Biradha et al. (2010); Corbin & Zimmerman (1998, 2000); Etter (1990); Etter, MacDonald & Bernstein (1990); Flack & Bernardinelli (2000); Hanggi et al. (1992); Jeffrey & Saenger (1991); Lafitte et al. (2006); Mizuno et al. (1969); Nonella et al. (1993); Sridhar & Ravikumar (2007, 2008, 2010); Sridhar et al. (2009).

Experimental top

A hot aqueous solution (5 ml) of xanthine (0.150 g, 1 mmol) was mixed with either 65% nitric acid (5 ml) [for the preparation of (I)] or 98% sulfuric acid (5 ml) [for the preparation of (II)]. Crystals of both compounds were obtained from their respective solutions after several weeks, by slow evaporation of the aqueous solvent at room temperature.

Refinement top

All N-bound H atoms of the xanthinium cations of (I) and (II), O-bound H atoms of the hydrogen sulfate anion of (II) and H atoms of the water molecules of (I) and (II) were located in difference Fourier maps and their positions and isotropic displacement parameters refined. All other H atoms were located in difference density maps, positioned geometrically and included as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). Distance restraints were applied with a set value of 0.87 (2) Å for N7A—H3N and N9B—H8N and 0.82 (2)Å for O1A—H1O. Compound (I) crystallizes in the noncentrosymmetric space group P21 but the structure shows pseudo-symmetry, which is fulfilled for approximately 82% of the atoms. Systematic absences show the space group to be P21/c, even though the absence condition for a c-glide is not strictly satisfied. The structure was solved in both P21 and P21/c space groups. However, the structure refined in space group P21/c showed poor residual factors and abnormal geometric parameters, while the structure refined in space group P21 did not show such problems. The asymmetric unit of (II) also does not show any inversion centre between the sulfate ions. Refinement in a higher symmetric space group is not possible. The value of the Flack & Bernardinelli (2000) parameter of (II) indicates inversion twinning.

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The molecular components of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. (a) A view of the one-dimensional polymeric tapes of (I), formed along [110] by N—H···O and O—H···O interactions involving the cations and water molecules. [Symmetry codes: (i) -x + 2, -y + 1, -z + 2; (ii) x + 1, y + 1, z.] (b). A view ofthe one-dimensional polymeric tapes of (II), formed along [101] by N—H···O and O—H···O interactions involving the cations and water molecules. [Symmetry codes: (i) x + 1, y, z - 1; (iii) x - 1, y, z + 1.] For the sake of clarity, the nitrate anion in (I), the two hydrogen sulfate anions in (II) and H atoms not involved in hydrogen bonding have been omitted. Only atoms involved in hydrogen bonding are labelled.
[Figure 4] Fig. 4. The crystal structure of (I), showing the two-dimensional hydrogen-bonded sheets built from cations, anions and water molecules. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. Only atoms involved in hydrogen bonding are labelled. [Symmetry codes: (i) -x + 2, -y + 1, -z + 2; (ii) x + 1, y + 1, z; (iii) -x + 1, -y + 2, -z + 1.]
[Figure 5] Fig. 5. Part of the crystal structure of (II), showing the three-dimensional hydrogen-bonded networks formed by pairs of cation–cation dimers and the anion–anion infinite chain along the crystallographic c axis. For the sake of clarity, the two water molecules (O1W and O2W) and H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (ii) -x + 3, y - 1/2, -z + 1; (iv) -x + 3, y - 1/2, -z + 2.]
[Figure 6] Fig. 6. Part of the crystal structure of (II), showing the hydrogen-bonding interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) x + 1, y, z - 1; (ii) -x + 3, y - 1/2, -z + 1; (iii) x - 1, y, z + 1; (iv) -x + 3, y - 1/2, -z + 2; (v) x, y, z - 1.]
(I) 2,6-dioxo-1,2,3,6-tetrahydro-9H-purin-7-ium nitrate monohydrate top
Crystal data top
C5H5N4O2+·NO3·H2OZ = 2
Mr = 233.16F(000) = 240
Triclinic, P1Dx = 1.789 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.0416 (7) ÅCell parameters from 3003 reflections
b = 7.4621 (10) Åθ = 2.8–27.9°
c = 12.1396 (16) ŵ = 0.16 mm1
α = 80.248 (2)°T = 294 K
β = 80.800 (2)°Block, colourless
γ = 75.657 (2)°0.21 × 0.18 × 0.09 mm
V = 432.74 (10) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1672 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 26.5°, θmin = 1.7°
ω scansh = 66
4689 measured reflectionsk = 99
1801 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.0657P]
where P = (Fo2 + 2Fc2)/3
1801 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C5H5N4O2+·NO3·H2Oγ = 75.657 (2)°
Mr = 233.16V = 432.74 (10) Å3
Triclinic, P1Z = 2
a = 5.0416 (7) ÅMo Kα radiation
b = 7.4621 (10) ŵ = 0.16 mm1
c = 12.1396 (16) ÅT = 294 K
α = 80.248 (2)°0.21 × 0.18 × 0.09 mm
β = 80.800 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1672 reflections with I > 2σ(I)
4689 measured reflectionsRint = 0.019
1801 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.19 e Å3
1801 reflectionsΔρmin = 0.28 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.8839 (3)0.67326 (18)0.85469 (11)0.0317 (3)
C40.9133 (3)0.95057 (18)0.73263 (10)0.0303 (3)
C51.0807 (3)0.99502 (18)0.79615 (11)0.0318 (3)
C61.1646 (3)0.87723 (18)0.89663 (11)0.0306 (3)
C81.0093 (3)1.2173 (2)0.65574 (12)0.0379 (3)
H81.01421.32700.60680.045*
N11.0543 (2)0.72169 (16)0.91742 (10)0.0335 (3)
H1N1.098 (4)0.641 (3)0.9773 (17)0.044 (5)*
N30.8151 (2)0.79268 (16)0.75885 (10)0.0327 (3)
H3N0.723 (4)0.763 (3)0.7147 (17)0.050 (5)*
N71.1373 (2)1.16338 (17)0.74592 (10)0.0362 (3)
H7N1.248 (4)1.231 (3)0.7721 (16)0.049 (5)*
N90.8699 (2)1.09049 (16)0.64468 (10)0.0345 (3)
H9N0.766 (5)1.102 (3)0.587 (2)0.067 (6)*
O100.7987 (2)0.53016 (14)0.88339 (9)0.0428 (3)
O111.3161 (2)0.90595 (15)0.95805 (9)0.0405 (3)
N100.3861 (2)0.67465 (16)0.58981 (10)0.0347 (3)
O10.5039 (3)0.60312 (17)0.67433 (10)0.0572 (4)
O20.2181 (3)0.60354 (19)0.56025 (10)0.0538 (3)
O30.4391 (3)0.82339 (16)0.53603 (10)0.0506 (3)
O1W0.4474 (3)0.29587 (19)0.85104 (12)0.0535 (3)
H1W0.515 (5)0.384 (4)0.8293 (19)0.064 (6)*
H2W0.501 (5)0.231 (4)0.906 (2)0.077 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0366 (7)0.0315 (6)0.0301 (6)0.0105 (5)0.0122 (5)0.0013 (5)
C40.0325 (6)0.0329 (6)0.0256 (6)0.0058 (5)0.0083 (5)0.0023 (5)
C50.0355 (7)0.0321 (6)0.0301 (6)0.0099 (5)0.0100 (5)0.0021 (5)
C60.0330 (6)0.0322 (6)0.0284 (6)0.0074 (5)0.0094 (5)0.0040 (5)
C80.0435 (7)0.0366 (7)0.0346 (7)0.0123 (6)0.0114 (6)0.0033 (5)
N10.0418 (6)0.0333 (6)0.0287 (6)0.0120 (5)0.0161 (5)0.0027 (5)
N30.0393 (6)0.0348 (6)0.0289 (6)0.0127 (5)0.0157 (5)0.0006 (4)
N70.0417 (6)0.0350 (6)0.0355 (6)0.0142 (5)0.0125 (5)0.0008 (5)
N90.0398 (6)0.0365 (6)0.0283 (6)0.0099 (5)0.0128 (5)0.0022 (5)
O100.0563 (6)0.0379 (6)0.0425 (6)0.0226 (5)0.0242 (5)0.0062 (4)
O110.0467 (6)0.0431 (6)0.0391 (6)0.0168 (5)0.0223 (4)0.0007 (4)
N100.0418 (6)0.0349 (6)0.0311 (6)0.0123 (5)0.0122 (5)0.0016 (4)
O10.0828 (9)0.0526 (7)0.0462 (7)0.0292 (6)0.0386 (6)0.0150 (5)
O20.0597 (7)0.0643 (7)0.0501 (7)0.0322 (6)0.0199 (5)0.0031 (6)
O30.0658 (7)0.0421 (6)0.0487 (6)0.0233 (5)0.0212 (5)0.0106 (5)
O1W0.0699 (8)0.0486 (7)0.0548 (7)0.0349 (6)0.0342 (6)0.0145 (6)
Geometric parameters (Å, º) top
C2—O101.2247 (17)C8—N91.345 (2)
C2—N31.3759 (18)C8—H80.9300
C2—N11.3799 (17)N1—H1N0.88 (2)
C4—N31.3588 (18)N3—H3N0.85 (2)
C4—C51.3604 (18)N7—H7N0.96 (2)
C4—N91.3645 (17)N9—H9N0.92 (2)
C5—N71.3761 (18)N10—O21.2298 (16)
C5—C61.4342 (18)N10—O11.2420 (16)
C6—O111.2256 (16)N10—O31.2550 (16)
C6—N11.3770 (18)O1W—H1W0.80 (3)
C8—N71.3134 (18)O1W—H2W0.80 (3)
O10—C2—N3121.77 (12)C6—N1—H1N117.2 (12)
O10—C2—N1121.24 (12)C2—N1—H1N114.8 (12)
N3—C2—N1117.00 (12)C4—N3—C2118.83 (12)
N3—C4—C5122.92 (12)C4—N3—H3N121.2 (13)
N3—C4—N9129.65 (12)C2—N3—H3N119.8 (13)
C5—C4—N9107.43 (12)C8—N7—C5107.89 (12)
C4—C5—N7107.28 (12)C8—N7—H7N125.5 (11)
C4—C5—C6121.78 (13)C5—N7—H7N126.6 (11)
N7—C5—C6130.94 (12)C8—N9—C4107.42 (12)
O11—C6—N1122.53 (12)C8—N9—H9N123.9 (15)
O11—C6—C5125.99 (13)C4—N9—H9N128.7 (15)
N1—C6—C5111.49 (11)O2—N10—O1121.01 (12)
N7—C8—N9109.99 (13)O2—N10—O3120.55 (12)
N7—C8—H8125.0O1—N10—O3118.43 (12)
N9—C8—H8125.0H1W—O1W—H2W116 (3)
C6—N1—C2127.98 (11)
N3—C4—C5—N7179.41 (12)N3—C2—N1—C60.5 (2)
N9—C4—C5—N70.20 (15)C5—C4—N3—C21.0 (2)
N3—C4—C5—C60.3 (2)N9—C4—N3—C2178.52 (13)
N9—C4—C5—C6179.26 (12)O10—C2—N3—C4179.04 (13)
C4—C5—C6—O11179.42 (13)N1—C2—N3—C41.02 (19)
N7—C5—C6—O111.8 (2)N9—C8—N7—C50.04 (16)
C4—C5—C6—N10.21 (18)C4—C5—N7—C80.15 (16)
N7—C5—C6—N1178.61 (13)C6—C5—N7—C8179.10 (14)
O11—C6—N1—C2179.51 (13)N7—C8—N9—C40.08 (16)
C5—C6—N1—C20.1 (2)N3—C4—N9—C8179.41 (14)
O10—C2—N1—C6179.57 (13)C5—C4—N9—C80.17 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10i0.88 (2)1.99 (2)2.8761 (15)177 (2)
N3—H3N···O10.85 (2)1.97 (2)2.7604 (17)153 (2)
N7—H7N···O1Wii0.96 (2)1.69 (2)2.6233 (17)162 (2)
N9—H9N···O3iii0.92 (2)1.88 (3)2.7878 (17)168 (2)
O1W—H1W···O100.80 (3)2.24 (3)2.8873 (16)139 (2)
O1W—H1W···O10.80 (3)2.27 (3)2.8986 (18)136 (2)
O1W—H2W···O11i0.80 (3)2.02 (3)2.8059 (16)170 (3)
C8—H8···O2ii0.932.473.277 (2)145
C8—H8···O2iii0.932.422.999 (2)120
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z; (iii) x+1, y+2, z+1.
(II) 2,6-dioxo-1,2,3,6-tetrahydro-9H-purin-7-ium hydrogen sulfate monohydrate top
Crystal data top
C5H5N4O2+·HO4S·H2OF(000) = 552
Mr = 268.21Dx = 1.851 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9350 reflections
a = 5.183 (5) Åθ = 2.7–28.0°
b = 24.805 (5) ŵ = 0.37 mm1
c = 7.701 (5) ÅT = 294 K
β = 103.510 (5)°Block, colourless
V = 962.7 (11) Å30.18 × 0.15 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3939 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 26.5°, θmin = 1.6°
ω scansh = 66
10396 measured reflectionsk = 3131
3998 independent reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.1425P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
3998 reflectionsΔρmax = 0.46 e Å3
364 parametersΔρmin = 0.34 e Å3
4 restraintsAbsolute structure: Flack & Bernardinelli (2000), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.13 (5)
Crystal data top
C5H5N4O2+·HO4S·H2OV = 962.7 (11) Å3
Mr = 268.21Z = 4
Monoclinic, P21Mo Kα radiation
a = 5.183 (5) ŵ = 0.37 mm1
b = 24.805 (5) ÅT = 294 K
c = 7.701 (5) Å0.18 × 0.15 × 0.07 mm
β = 103.510 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3939 reflections with I > 2σ(I)
10396 measured reflectionsRint = 0.020
3998 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080Δρmax = 0.46 e Å3
S = 1.06Δρmin = 0.34 e Å3
3998 reflectionsAbsolute structure: Flack & Bernardinelli (2000), with how many Friedel pairs?
364 parametersAbsolute structure parameter: 0.13 (5)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C2A1.3429 (4)0.46306 (8)0.6082 (3)0.0278 (4)
C4A1.3118 (4)0.51974 (8)0.3606 (3)0.0253 (4)
C5A1.4932 (4)0.49060 (8)0.2972 (2)0.0260 (4)
C6A1.6203 (4)0.44469 (8)0.3924 (3)0.0279 (4)
C8A1.3504 (4)0.55589 (9)0.1094 (3)0.0310 (4)
H8A1.32500.57850.01040.037*
N1A1.5284 (4)0.43415 (7)0.5435 (2)0.0297 (4)
H1N1.588 (5)0.4084 (10)0.609 (3)0.027 (6)*
N3A1.2384 (3)0.50759 (7)0.5137 (2)0.0279 (3)
H2N1.119 (6)0.5245 (12)0.558 (4)0.040 (7)*
N7A1.5134 (3)0.51486 (7)0.1393 (2)0.0292 (3)
H3N1.600 (7)0.5018 (15)0.068 (4)0.072 (11)*
N9A1.2251 (3)0.56058 (7)0.2428 (2)0.0281 (3)
H4N1.122 (5)0.5866 (11)0.258 (3)0.029 (6)*
O10A1.2741 (3)0.44953 (7)0.7434 (2)0.0397 (4)
O11A1.7897 (3)0.41685 (6)0.3492 (2)0.0379 (4)
C2B1.6485 (4)0.32564 (8)0.8867 (3)0.0286 (4)
C4B1.6576 (4)0.27282 (7)1.1416 (2)0.0238 (3)
C5B1.4802 (4)0.30477 (8)1.1969 (2)0.0260 (4)
C6B1.3646 (4)0.35067 (8)1.0958 (3)0.0267 (4)
C8B1.5995 (4)0.24141 (9)1.3953 (3)0.0316 (4)
H8B1.61330.22001.49610.038*
N1B1.4657 (4)0.35717 (7)0.9447 (2)0.0313 (4)
H5N1.402 (7)0.3884 (16)0.871 (5)0.069 (10)*
N3B1.7438 (3)0.28130 (7)0.9899 (2)0.0277 (3)
H6N1.825 (5)0.2571 (11)0.934 (3)0.029 (6)*
N7B1.4475 (4)0.28433 (7)1.3572 (2)0.0299 (3)
H7N1.332 (6)0.2988 (13)1.429 (4)0.050 (8)*
N9B1.7320 (3)0.23320 (7)1.2668 (2)0.0287 (3)
H8N1.812 (5)0.2049 (9)1.252 (4)0.034 (7)*
O10B1.7199 (3)0.33619 (7)0.7508 (2)0.0396 (4)
O11B1.1990 (3)0.38113 (6)1.1301 (2)0.0381 (3)
S1A0.80004 (9)0.601453 (18)0.72459 (6)0.02656 (11)
O1A0.5882 (3)0.62314 (7)0.5631 (2)0.0412 (4)
H1O0.660 (6)0.6251 (13)0.480 (3)0.051 (8)*
O2A0.8671 (4)0.54763 (7)0.6732 (2)0.0469 (4)
O3A0.6642 (3)0.59808 (7)0.8682 (2)0.0401 (3)
O4A1.0233 (4)0.63669 (9)0.7597 (3)0.0578 (5)
S1B0.84164 (9)0.686166 (18)0.22880 (6)0.02849 (12)
O1B0.6339 (4)0.68530 (9)0.0490 (2)0.0511 (4)
H2O0.658 (9)0.6528 (19)0.018 (6)0.091 (14)*
O2B0.8328 (3)0.63096 (6)0.3027 (2)0.0389 (3)
O3B0.7557 (4)0.72644 (8)0.3326 (3)0.0573 (5)
O4B1.1010 (4)0.69425 (8)0.1926 (3)0.0554 (5)
O1W2.0991 (4)0.33165 (8)0.5118 (3)0.0468 (4)
H1W2.014 (6)0.3623 (13)0.469 (4)0.044 (8)*
H2W2.066 (8)0.3192 (18)0.598 (6)0.073 (12)*
O2W0.8743 (4)0.47062 (9)0.9774 (3)0.0450 (4)
H3W0.923 (9)0.4832 (18)0.904 (6)0.077 (13)*
H4W0.973 (8)0.4471 (17)1.019 (5)0.063 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C2A0.0325 (9)0.0253 (9)0.0271 (10)0.0030 (7)0.0102 (8)0.0004 (7)
C4A0.0252 (8)0.0219 (8)0.0290 (9)0.0010 (6)0.0066 (7)0.0007 (7)
C5A0.0288 (8)0.0267 (9)0.0239 (8)0.0006 (7)0.0088 (7)0.0003 (7)
C6A0.0273 (9)0.0271 (9)0.0302 (9)0.0004 (7)0.0082 (7)0.0024 (7)
C8A0.0329 (9)0.0305 (9)0.0298 (9)0.0027 (7)0.0079 (8)0.0068 (7)
N1A0.0359 (9)0.0234 (7)0.0311 (9)0.0098 (7)0.0105 (7)0.0047 (7)
N3A0.0329 (8)0.0260 (8)0.0281 (8)0.0069 (6)0.0135 (6)0.0010 (6)
N7A0.0304 (8)0.0330 (9)0.0268 (8)0.0004 (7)0.0121 (6)0.0007 (7)
N9A0.0328 (8)0.0235 (8)0.0287 (8)0.0033 (7)0.0085 (6)0.0022 (6)
O10A0.0509 (9)0.0389 (8)0.0357 (8)0.0152 (7)0.0229 (7)0.0137 (7)
O11A0.0384 (8)0.0366 (8)0.0420 (9)0.0148 (6)0.0160 (7)0.0020 (6)
C2B0.0308 (9)0.0284 (10)0.0272 (10)0.0006 (7)0.0081 (8)0.0018 (7)
C4B0.0293 (8)0.0195 (8)0.0220 (8)0.0001 (7)0.0047 (6)0.0012 (6)
C5B0.0304 (9)0.0249 (9)0.0241 (8)0.0025 (7)0.0095 (7)0.0007 (7)
C6B0.0311 (9)0.0232 (8)0.0264 (9)0.0024 (7)0.0082 (7)0.0006 (7)
C8B0.0380 (10)0.0314 (10)0.0259 (9)0.0011 (8)0.0086 (7)0.0037 (8)
N1B0.0390 (9)0.0269 (9)0.0302 (9)0.0080 (7)0.0123 (7)0.0062 (7)
N3B0.0323 (8)0.0256 (8)0.0282 (8)0.0064 (6)0.0131 (6)0.0015 (6)
N7B0.0357 (9)0.0287 (8)0.0271 (8)0.0009 (6)0.0110 (6)0.0006 (6)
N9B0.0325 (8)0.0233 (8)0.0303 (8)0.0051 (6)0.0075 (6)0.0037 (6)
O10B0.0492 (8)0.0413 (9)0.0337 (8)0.0089 (7)0.0208 (7)0.0076 (6)
O11B0.0438 (8)0.0349 (8)0.0388 (8)0.0146 (6)0.0163 (6)0.0034 (6)
S1A0.0297 (2)0.0275 (2)0.0249 (2)0.00132 (17)0.01116 (16)0.00106 (16)
O1A0.0383 (8)0.0525 (10)0.0343 (8)0.0050 (7)0.0115 (6)0.0136 (7)
O2A0.0589 (10)0.0357 (8)0.0546 (10)0.0120 (8)0.0307 (8)0.0023 (7)
O3A0.0559 (9)0.0383 (8)0.0333 (7)0.0014 (7)0.0250 (6)0.0015 (7)
O4A0.0542 (10)0.0590 (12)0.0581 (11)0.0254 (9)0.0087 (8)0.0045 (9)
S1B0.0343 (2)0.0267 (2)0.0263 (2)0.00138 (19)0.01083 (17)0.00025 (17)
O1B0.0615 (10)0.0481 (10)0.0363 (8)0.0256 (9)0.0034 (7)0.0068 (8)
O2B0.0503 (8)0.0338 (8)0.0364 (8)0.0013 (6)0.0176 (6)0.0065 (6)
O3B0.0743 (13)0.0462 (10)0.0537 (10)0.0033 (9)0.0198 (9)0.0223 (8)
O4B0.0523 (9)0.0545 (11)0.0670 (12)0.0115 (8)0.0295 (9)0.0065 (9)
O1W0.0545 (10)0.0447 (9)0.0509 (10)0.0205 (8)0.0316 (8)0.0173 (8)
O2W0.0491 (10)0.0473 (10)0.0467 (10)0.0164 (8)0.0273 (8)0.0150 (8)
Geometric parameters (Å, º) top
C2A—O10A1.223 (3)C5B—C6B1.430 (3)
C2A—N3A1.364 (3)C6B—O11B1.218 (3)
C2A—N1A1.382 (3)C6B—N1B1.393 (3)
C4A—N3A1.355 (3)C8B—N7B1.316 (3)
C4A—C5A1.363 (3)C8B—N9B1.346 (3)
C4A—N9A1.364 (3)C8B—H8B0.9300
C5A—N7A1.383 (3)N1B—H5N0.97 (4)
C5A—C6A1.429 (3)N3B—H6N0.90 (3)
C6A—O11A1.222 (3)N7B—H7N0.97 (3)
C6A—N1A1.382 (3)N9B—H8N0.835 (17)
C8A—N7A1.309 (3)S1A—O4A1.425 (2)
C8A—N9A1.343 (3)S1A—O3A1.4453 (17)
C8A—H8A0.9300S1A—O2A1.4574 (17)
N1A—H1N0.83 (3)S1A—O1A1.5504 (18)
N3A—H2N0.88 (3)O1A—H1O0.813 (18)
N7A—H3N0.851 (19)S1B—O3B1.4148 (19)
N9A—H4N0.86 (3)S1B—O4B1.449 (2)
C2B—O10B1.217 (3)S1B—O2B1.4877 (16)
C2B—N3B1.379 (3)S1B—O1B1.5430 (19)
C2B—N1B1.381 (3)O1B—H2O0.86 (5)
C4B—C5B1.356 (3)O1W—H1W0.90 (3)
C4B—N3B1.361 (2)O1W—H2W0.79 (4)
C4B—N9B1.368 (2)O2W—H3W0.74 (5)
C5B—N7B1.381 (3)O2W—H4W0.79 (4)
O10A—C2A—N3A121.22 (19)N7B—C5B—C6B130.99 (17)
O10A—C2A—N1A122.00 (19)O11B—C6B—N1B122.10 (18)
N3A—C2A—N1A116.79 (18)O11B—C6B—C5B127.06 (19)
N3A—C4A—C5A123.42 (18)N1B—C6B—C5B110.84 (17)
N3A—C4A—N9A128.90 (18)N7B—C8B—N9B109.88 (19)
C5A—C4A—N9A107.68 (18)N7B—C8B—H8B125.1
C4A—C5A—N7A106.52 (17)N9B—C8B—H8B125.1
C4A—C5A—C6A120.87 (18)C2B—N1B—C6B128.69 (17)
N7A—C5A—C6A132.61 (17)C2B—N1B—H5N115 (2)
O11A—C6A—N1A122.22 (19)C6B—N1B—H5N116 (2)
O11A—C6A—C5A125.81 (19)C4B—N3B—C2B118.23 (17)
N1A—C6A—C5A111.97 (17)C4B—N3B—H6N126.1 (16)
N7A—C8A—N9A109.92 (18)C2B—N3B—H6N113.9 (16)
N7A—C8A—H8A125.0C8B—N7B—C5B107.72 (18)
N9A—C8A—H8A125.0C8B—N7B—H7N126.1 (19)
C6A—N1A—C2A127.68 (17)C5B—N7B—H7N126.2 (19)
C6A—N1A—H1N120.5 (18)C8B—N9B—C4B107.56 (17)
C2A—N1A—H1N111.8 (18)C8B—N9B—H8N125.5 (19)
C4A—N3A—C2A119.19 (17)C4B—N9B—H8N125.0 (19)
C4A—N3A—H2N126.7 (19)O4A—S1A—O3A114.17 (12)
C2A—N3A—H2N114.0 (19)O4A—S1A—O2A112.27 (13)
C8A—N7A—C5A108.34 (17)O3A—S1A—O2A110.13 (10)
C8A—N7A—H3N127 (3)O4A—S1A—O1A109.33 (11)
C5A—N7A—H3N124 (3)O3A—S1A—O1A104.69 (12)
C8A—N9A—C4A107.53 (18)O2A—S1A—O1A105.62 (11)
C8A—N9A—H4N126.2 (16)S1A—O1A—H1O106 (2)
C4A—N9A—H4N126.0 (16)O3B—S1B—O4B116.08 (13)
O10B—C2B—N3B121.8 (2)O3B—S1B—O2B113.06 (12)
O10B—C2B—N1B121.70 (19)O4B—S1B—O2B108.30 (11)
N3B—C2B—N1B116.47 (18)O3B—S1B—O1B105.74 (13)
C5B—C4B—N3B124.21 (17)O4B—S1B—O1B108.26 (13)
C5B—C4B—N9B107.36 (17)O2B—S1B—O1B104.67 (11)
N3B—C4B—N9B128.41 (18)S1B—O1B—H2O99 (3)
C4B—C5B—N7B107.47 (17)H1W—O1W—H2W117 (4)
C4B—C5B—C6B121.53 (18)H3W—O2W—H4W108 (4)
N3A—C4A—C5A—N7A179.50 (18)N3B—C4B—C5B—N7B178.45 (17)
N9A—C4A—C5A—N7A0.1 (2)N9B—C4B—C5B—N7B0.1 (2)
N3A—C4A—C5A—C6A0.5 (3)N3B—C4B—C5B—C6B0.8 (3)
N9A—C4A—C5A—C6A179.92 (17)N9B—C4B—C5B—C6B179.43 (17)
C4A—C5A—C6A—O11A178.08 (19)C4B—C5B—C6B—O11B177.9 (2)
N7A—C5A—C6A—O11A1.9 (4)N7B—C5B—C6B—O11B3.0 (4)
C4A—C5A—C6A—N1A2.3 (3)C4B—C5B—C6B—N1B1.8 (3)
N7A—C5A—C6A—N1A177.7 (2)N7B—C5B—C6B—N1B177.35 (19)
O11A—C6A—N1A—C2A178.6 (2)O10B—C2B—N1B—C6B179.9 (2)
C5A—C6A—N1A—C2A1.8 (3)N3B—C2B—N1B—C6B0.7 (3)
O10A—C2A—N1A—C6A179.2 (2)O11B—C6B—N1B—C2B178.6 (2)
N3A—C2A—N1A—C6A0.6 (3)C5B—C6B—N1B—C2B1.0 (3)
C5A—C4A—N3A—C2A2.2 (3)C5B—C4B—N3B—C2B1.1 (3)
N9A—C4A—N3A—C2A177.10 (19)N9B—C4B—N3B—C2B177.21 (19)
O10A—C2A—N3A—C4A177.16 (19)O10B—C2B—N3B—C4B178.88 (19)
N1A—C2A—N3A—C4A2.6 (3)N1B—C2B—N3B—C4B1.7 (3)
N9A—C8A—N7A—C5A1.1 (2)N9B—C8B—N7B—C5B0.5 (2)
C4A—C5A—N7A—C8A0.7 (2)C4B—C5B—N7B—C8B0.4 (2)
C6A—C5A—N7A—C8A179.3 (2)C6B—C5B—N7B—C8B179.6 (2)
N7A—C8A—N9A—C4A1.0 (2)N7B—C8B—N9B—C4B0.4 (2)
N3A—C4A—N9A—C8A178.83 (19)C5B—C4B—N9B—C8B0.1 (2)
C5A—C4A—N9A—C8A0.5 (2)N3B—C4B—N9B—C8B178.65 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1N···O10B0.83 (3)2.12 (3)2.949 (2)173 (2)
N3A—H2N···O2A0.88 (3)1.83 (3)2.703 (3)169 (3)
N7A—H3N···O2Wi0.85 (2)1.89 (2)2.710 (3)162 (4)
N9A—H4N···O2B0.86 (3)1.96 (3)2.799 (3)166 (2)
N1B—H5N···O10A0.97 (4)1.84 (4)2.814 (2)177 (3)
N3B—H6N···O4Bii0.90 (3)1.93 (3)2.795 (3)163 (2)
N7B—H7N···O1Wiii0.97 (3)1.70 (3)2.657 (3)167 (3)
N9B—H8N···O4Aiv0.84 (2)1.91 (2)2.739 (3)173 (3)
O1A—H1O···O2B0.81 (2)1.81 (2)2.618 (3)177 (3)
O1B—H2O···O3Av0.86 (5)1.78 (5)2.597 (2)157 (4)
O1W—H1W···O11A0.90 (3)1.88 (3)2.769 (3)169 (3)
O1W—H2W···O10B0.79 (4)2.40 (4)2.992 (3)133 (4)
O1W—H2W···O3Bii0.79 (4)2.49 (4)2.897 (3)114 (4)
O2W—H3W···O2A0.74 (5)2.36 (5)3.016 (3)149 (4)
O2W—H3W···O10A0.74 (5)2.57 (5)3.092 (3)130 (4)
O2W—H4W···O11B0.79 (4)2.08 (4)2.867 (3)174 (4)
C8A—H8A···O3Ai0.932.332.933 (3)122
C8B—H8B···O3Bvi0.932.573.118 (3)118
C8B—H8B···O4Biv0.932.593.398 (3)146
Symmetry codes: (i) x+1, y, z1; (ii) x+3, y1/2, z+1; (iii) x1, y, z+1; (iv) x+3, y1/2, z+2; (v) x, y, z1; (vi) x+2, y1/2, z+2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC5H5N4O2+·NO3·H2OC5H5N4O2+·HO4S·H2O
Mr233.16268.21
Crystal system, space groupTriclinic, P1Monoclinic, P21
Temperature (K)294294
a, b, c (Å)5.0416 (7), 7.4621 (10), 12.1396 (16)5.183 (5), 24.805 (5), 7.701 (5)
α, β, γ (°)80.248 (2), 80.800 (2), 75.657 (2)90, 103.510 (5), 90
V3)432.74 (10)962.7 (11)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.160.37
Crystal size (mm)0.21 × 0.18 × 0.090.18 × 0.15 × 0.07
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4689, 1801, 1672 10396, 3998, 3939
Rint0.0190.020
(sin θ/λ)max1)0.6280.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.15 0.030, 0.080, 1.06
No. of reflections18013998
No. of parameters169364
No. of restraints04
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.280.46, 0.34
Absolute structure?Flack & Bernardinelli (2000), with how many Friedel pairs?
Absolute structure parameter?0.13 (5)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Selected bond angles (º) for (I) top
C8—N7—C5107.89 (12)C8—N9—C4107.42 (12)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10i0.88 (2)1.99 (2)2.8761 (15)177 (2)
N3—H3N···O10.85 (2)1.97 (2)2.7604 (17)153 (2)
N7—H7N···O1Wii0.96 (2)1.69 (2)2.6233 (17)162 (2)
N9—H9N···O3iii0.92 (2)1.88 (3)2.7878 (17)168 (2)
O1W—H1W···O100.80 (3)2.24 (3)2.8873 (16)139 (2)
O1W—H1W···O10.80 (3)2.27 (3)2.8986 (18)136 (2)
O1W—H2W···O11i0.80 (3)2.02 (3)2.8059 (16)170 (3)
C8—H8···O2ii0.932.473.277 (2)145
C8—H8···O2iii0.932.422.999 (2)120
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z; (iii) x+1, y+2, z+1.
Selected geometric parameters (Å, º) for (II) top
S1A—O4A1.425 (2)S1B—O3B1.4148 (19)
S1A—O3A1.4453 (17)S1B—O4B1.449 (2)
S1A—O2A1.4574 (17)S1B—O2B1.4877 (16)
S1A—O1A1.5504 (18)S1B—O1B1.5430 (19)
C8A—N7A—C5A108.34 (17)O3A—S1A—O1A104.69 (12)
C8A—N9A—C4A107.53 (18)O2A—S1A—O1A105.62 (11)
C8B—N7B—C5B107.72 (18)O3B—S1B—O4B116.08 (13)
C8B—N9B—C4B107.56 (17)O3B—S1B—O2B113.06 (12)
O4A—S1A—O3A114.17 (12)O4B—S1B—O2B108.30 (11)
O4A—S1A—O2A112.27 (13)O3B—S1B—O1B105.74 (13)
O3A—S1A—O2A110.13 (10)O4B—S1B—O1B108.26 (13)
O4A—S1A—O1A109.33 (11)O2B—S1B—O1B104.67 (11)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1A—H1N···O10B0.83 (3)2.12 (3)2.949 (2)173 (2)
N3A—H2N···O2A0.88 (3)1.83 (3)2.703 (3)169 (3)
N7A—H3N···O2Wi0.851 (19)1.89 (2)2.710 (3)162 (4)
N9A—H4N···O2B0.86 (3)1.96 (3)2.799 (3)166 (2)
N1B—H5N···O10A0.97 (4)1.84 (4)2.814 (2)177 (3)
N3B—H6N···O4Bii0.90 (3)1.93 (3)2.795 (3)163 (2)
N7B—H7N···O1Wiii0.97 (3)1.70 (3)2.657 (3)167 (3)
N9B—H8N···O4Aiv0.835 (17)1.908 (18)2.739 (3)173 (3)
O1A—H1O···O2B0.813 (18)1.806 (18)2.618 (3)177 (3)
O1B—H2O···O3Av0.86 (5)1.78 (5)2.597 (2)157 (4)
O1W—H1W···O11A0.90 (3)1.88 (3)2.769 (3)169 (3)
O1W—H2W···O10B0.79 (4)2.40 (4)2.992 (3)133 (4)
O1W—H2W···O3Bii0.79 (4)2.49 (4)2.897 (3)114 (4)
O2W—H3W···O2A0.74 (5)2.36 (5)3.016 (3)149 (4)
O2W—H3W···O10A0.74 (5)2.57 (5)3.092 (3)130 (4)
O2W—H4W···O11B0.79 (4)2.08 (4)2.867 (3)174 (4)
C8A—H8A···O3Ai0.932.332.933 (3)122.2
C8B—H8B···O3Bvi0.932.573.118 (3)118.1
C8B—H8B···O4Biv0.932.593.398 (3)146.1
Symmetry codes: (i) x+1, y, z1; (ii) x+3, y1/2, z+1; (iii) x1, y, z+1; (iv) x+3, y1/2, z+2; (v) x, y, z1; (vi) x+2, y1/2, z+2.
 

Acknowledgements

The author thanks Dr J. S. Yadav, Director, IICT, Hyderabad, for his kind encouragement.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBeijer, F. H., Kooijman, H., Spek, A. L., Sijbesma, R. P. & Meijer, E. W. (1998). Angew. Chem. Int. Ed. 37, 75–78.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBiradha, K., Samai, S., Maity, A. C. & Goswami, S. (2010). Cryst. Growth Des. 10, 937–942.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Release 3.0c. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorbin, P. S. & Zimmerman, S. C. (1998). J. Am. Chem. Soc. 120, 9710–9711.  Web of Science CrossRef CAS Google Scholar
First citationCorbin, P. S. & Zimmerman, S. C. (2000). J. Am. Chem. Soc. 122, 3779–3780.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHanggi, G., Schmalle, H. & Dubler, E. (1992). Inorg. Chim. Acta, 197, 135–140.  Google Scholar
First citationJeffrey, J. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer Verlag.  Google Scholar
First citationLafitte, V. G. H., Aliev, A. E., Horton, P. N., Hursthouse, M. B., Bala, K., Golding, P. & Hailes, H. C. (2006). J. Am. Chem. Soc. 128, 6544–6545.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMizuno, M., Fujiwara, T. & Tomita, K. (1969). Bull. Chem. Soc. Jpn, 42, 3099–3105.  CrossRef CAS Web of Science Google Scholar
First citationNonella, M., Hanggi, G. & Dubler, E. (1993). J. Mol. Struct. (THEOCHEM), 279, 173–190.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, B. & Ravikumar, K. (2007). Acta Cryst. C63, o212–o214.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSridhar, B. & Ravikumar, K. (2008). Acta Cryst. C64, o566–o569.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSridhar, B. & Ravikumar, K. (2010). Crystallogr. Rep. 55, 240–246.  Web of Science CrossRef CAS Google Scholar
First citationSridhar, B., Ravikumar, K. & Varghese, B. (2009). Acta Cryst. C65, o202–o206.  Web of Science CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds