research papers
Crystallographic study of self-organization in the solid state including quasi-aromatic pseudo-ring stacking interactions in 1-benzoyl-3-(3,4-dimethoxyphenyl)thiourea and 1-benzoyl-3-(2-hydroxypropyl)thiourea
aDepartment of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
*Correspondence e-mail: andrzej.okuniewski@pg.gda.pl
1-Benzoylthioureas contain both carbonyl and thiocarbonyl functional groups and are of interest for their biological activity, metal coordination ability and involvement in hydrogen-bond formation. Two novel 1-benzoylthiourea derivatives, namely 1-benzoyl-3-(3,4-dimethoxyphenyl)thiourea, C16H16N2O3S, (I), and 1-benzoyl-3-(2-hydroxypropyl)thiourea, C11H14N2O2S, (II), have been synthesized and characterized. Compound (I) crystallizes in the P, while (II) crystallizes in the P21/c. In both structures, intramolecular N—H⋯O hydrogen bonding is present. The resulting six-membered pseudo-rings are quasi-aromatic and, in each case, interact with phenyl rings via stacking-type interactions. C—H⋯O, C—H⋯S and C—H⋯π interactions are also present. In (I), there is one molecule in the Pairs of molecules are connected via two intermolecular N—H⋯S hydrogen bonds, forming centrosymmetric dimers. In (II), there are two symmetry-independent molecules that differ mainly in the relative orientations of the phenyl rings with respect to the thiourea cores. Additional strong hydrogen-bond donor and acceptor –OH groups participate in the formation of intermolecular N—H⋯O and O—H⋯S hydrogen bonds that join molecules into chains extending in the [001] direction.
1. Introduction
A few years ago, we became interested in the properties and crystal structures of thioureas (Okuniewski et al., 2011a,b; Mietlarek-Kropidłowska et al., 2012). Recently, we have focused our attention on especially interesting 1-benzoylthioureas as they simultaneously contain carbonyl and thiocarbonyl functions (Okuniewski et al., 2012). Because of their biological activity, metal coordination ability and involvement in hydrogen-bond formation (Aly et al., 2007; Saeed et al., 2013, 2016), they are the subject of extensive research, with several hundred structures deposited to the Cambridge Structural Database (CSD; Groom et al., 2016).
In most structures of 3-monosubstituted 1-benzoylthioureas, intramolecular N—H⋯O hydrogen bonds are present and form six-membered pseudo-rings. These rings exhibit some aromatic properties and, for this reason, are called quasi-aromatic (Karabıyık et al., 2012). For some time, we have been searching for novel examples of such quasi-aromatic ring interactions. For this reason, we have prepared two 1-benzoylthiourea derivatives that contain such rings. The first compound contains an aromatic substituent, while the second contains an aliphatic substituent, both with additional O atoms that can participate in hydrogen bonding. The compounds are 1-benzoyl-3-(3,4-dimethoxyphenyl)thiourea, (I), and 1-benzoyl-3-(2-hydroxypropyl)thiourea, (II), and the crystal structures were determined by single-crystal X-ray diffraction.
2. Experimental
2.1. Synthesis and crystallization
Both title compounds were synthesized according to a procedure proposed by Douglass & Dains (1934). Ammonium thiocyanate (46 mmol, 3.50 g) and dry acetone (30 ml) were placed in a two-necked flask. Through a dropping funnel, benzoyl chloride (40 mmol, 4.64 ml) in acetone (20 ml) was added with stirring. When addition was complete, the mixture was refluxed for an additional 15 min and then amine [40 mmol; 6.13 g of 3,4-dimethoxyaniline for (I) and 3.09 ml of 1-aminopropan-2-ol for (II)] in acetone (20 ml) was added through the dropping funnel. The mixture was poured carefully into cold water (500 ml) with stirring. In the case of (I), the resulting precipitate was filtered on a Büchner funnel. The crude product was recrystallized from acetone. In the case of (II), the resulting oil was extracted with toluene, dried with anhydrous magnesium sulfate and left to evaporate slowly. In both cases, colourless single crystals suitable for X-ray were isolated.
2.2. Analytic and spectroscopic data
2.2.1. 1-Benzoyl-3-(3,4-dimethoxyphenyl)thiourea, (I)
For (I), yield 79%; m.p. 403 (1) K; 1H NMR (500 MHz, COMe2-d6): δ 12.71 (s, 1H), 10.22 (s, 1H), 8.10–6.95 (m, 8H), 3.85 (s, 6H); 1H NMR (400 MHz, CDCl3): δ 12.52 (s, 1H), 9.15 (s, 1H), 7.94–6.89 (m, 8H), 3.91 (s, 3H), 3.90 (s, 3H); 13C NMR (101 MHz, CDCl3): δ 178.09, 167.01, 148.84, 147.70, 133.73, 131.64, 130.80, 129.21 (2C), 127.51 (2C), 116.35, 110.90, 108.18, 56.06 (2C).
2.2.2. 1-Benzoyl-3-(2-hydroxypropyl)thiourea, (II)
For (II), yield 66%; m.p. 408 (1) K; 1H NMR (500 MHz, COMe2-d6): δ 11.10 (s, 1H), 10.05 (s, 1H), 8.10–7.50 (m, 5H), 4.23 (d, J = 4.8 Hz, 1H), 4.16–4.05 (m, 1H), 3.92–3.84 (m, 1H), 3.55–3.46 (m, 1H), 1.24 (d, J = 6.3 Hz, 3H); 1H NMR (400 MHz, CDCl3): δ 11.03 (t, J = 5.4 Hz, 1H), 9.30 (s, 1H), 7.88–7.25 (m, 5H), 4.25–4.12 (m, 1H), 3.91 (ddd, J = 13.8, 6.0, 3.5 Hz, 1H), 3.57 (ddd, J = 13.8, 7.9, 5.0 Hz, 1H), 2.89 (s, 1H), 1.28 (d, J = 6.3 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 180.44, 167.02, 133.51, 131.71, 129.02 (2C), 127.61 (2C), 66.10, 52.65, 21.16.
2.3. Refinement
Crystal data, data collection and structure . H atoms were placed at calculated positions (C—H = 0.93–0.98 Å, N—H = 0.86 Å and O—H = 0.82 Å) and were treated as riding on their parent atoms, with Uiso(H) values set at 1.2–1.5Ueq(C), 1.2Ueq(N) or 1.5Ueq(O).
details are summarized in Table 13. Results and discussion
The molecules of compounds (I) and (II) (Figs. 1 and 2) both adopt an S-type conformation (Woldu & Dillen, 2008), with intramolecular N—H⋯O hydrogen bonds (for their parameters, see Tables 2 and 3) forming an S(6) motif (Etter, 1990) that is common among 3-monosubstituted 1-acylthioureas (Okuniewski et al., 2012). The resulting six-membered pseudo-rings are quasi-aromatic (Karabıyık et al., 2012). The HOMA indices of aromaticity (Krygowski, 1993) are equal to 0.80 [(I), CgS1], 0.74 [(II), CgS1] and 0.78 [(II), CgS3], indicating that such motifs are rather aromatic. The mean HOMA value for O/C/N/C/N/H hydrogen-bridged chelate rings that interact with phenyl groups in the 153 compounds deposited to the CSD (Groom et al., 2016) is equal to 0.78 (5) (Okuniewski et al., 2015).
|
|
Compound (I) is a derivative of 1-benzoyl-3-phenylthiourea (Yamin & Yusof, 2003) substituted with two methoxy groups (Fig. 1). It crystallizes in the P with one molecule in the The (MeO)2C6H3NHC(S)NHC(O) fragment is almost flat (the maximum distances from the mean plane d are 0.26 Å for atoms S1 and C3). The planarity of this fragment is reinforced by intramolecular a C22—H22⋯S1 interaction [motif S(6)]. The phenyl ring of the benzoyl group is twisted; it forms a dihedral angle of 31° with the mean plane of the thiourea core, i.e. the NC(S)N fragment.
The molecules are connected via N1—H1⋯S1i hydrogen bonds (Fig. 3 and Table 2) into centrosymmetric dimers with an R22(8) motif. Additionally, quite strong C14—H14⋯O2ii interactions connect molecules into chains with a C(13) motif extending in the [210] direction.
The quasi-aromatic pseudo-rings form interactions with phenyl groups [CgS1⋯Cg1iii (d = 4.10 Å and α = 30°) and CgS1⋯Cg2iv (d = 3.83 Å and α = 8°); symmetry codes: (iii) x − 1, y, z; (iv) x + 1, y, z], so molecules are stacked one over another. These interactions are depicted in Fig. 4.
Compound (II) is a hydroxy derivative of 1-benzoyl-3-propylthiourea (Dago et al., 1989). Its molecules are chiral, but the crystal is formed out of a that crystallizes in the centrosymmetric P21/c. In the there are two similar molecules (molecule A refers to the molecule containing atom S1, while the second molecule, containing atom S3, will be referred to as B; see: Fig. 2). The planes of the phenyl rings in both molecules are at different dihedral angles in relation to the mean plane of the thiourea core, viz. ca 19° for molecule A and ca 5° for molecule B. If these two molecules are superimposed with respect to the NC(S)NC(O) group (r.m.s. deviation = 0.033 Å), then it is revealed that the conformations of the CH2CH(OH)CH3 groups are also slightly different.
Strong hydrogen-bond donor and acceptor –OH groups participate in the formation of intermolecular hydrogen bonds that join the molecules of (II) into chains extending in the [001] direction with a C(7)R22(6) motif: N1—H1⋯O2i and O2—H2A⋯S1ii for molecule A and N3—H3⋯O4i and O4—H4A⋯S3ii for molecule B (Table 3). Hydrogen bonds are formed only within the symmetry equivalents of molecules, so that two types of chains can be distinguished, i.e. ⋯A—A—A⋯ and ⋯B—B—B⋯ (Fig. 3), both of c11 (R5) rod group symmetry (International Tables for Crystallography, 2010).
Chains of B molecules are additionally stabilized by a C36—H36⋯O4i interaction, while a greater twist of the phenyl ring in molecule A causes the corresponding interaction to be insignificant. On the other hand, in the chains of A molecules, the C15—H15⋯O1i interaction is stronger than the corresponding interaction in molecule B (Fig. 3). Overall, molecules B form stronger interactions with each other (−23.7 kJ mol−1) than do molecules A (−22.5 kJ mol−1). The energies were estimated as counterpoise BSSE-corrected (Boys & Bernardi, 1970) differences of half of the energy of the dimer and the energy of isolated molecules, with normalized C—H (1.089 Å), N—H (1.015 Å) and O—H (0.993 Å) bond lengths, in GAUSSIAN09 (Frisch et al., 2009) at the MP2/6-31+G(d,p) level of theory. Chains A and B are interconnected by weak acceptor-bifurcated interactions, i.e. C21—H21B⋯S3ii and C23—H23C⋯S3ii (Fig. 3 and Table 3).
In (II), like in (I), quasi-aromatic pseudo-rings are involved in all parallel-displaced stacking-type interactions with phenyl rings [CgS1⋯Cg1iii (d = 3.91 Å and α = 18°) and CgS3⋯Cg3iv (d = 3.68 Å and α = 8°); symmetry codes: (iii) −x, −y + 1, −z + 1; (iv) −x + 1, −y + 2, −z + 1;], but also with each other [CgS1⋯CgS1iv (d = 4.06 Å, α = 0° and slippage = 2.52 Å), CgS3⋯CgS3v (d = 4.00 Å, α = 0° and slippage = 2.14 Å); symmetry code: (v) −x + 1, −y + 1, −z + 1]. In the latter two interactions, the mid-points of the centroid–centroid distances are the centres of inversion. Stacking interactions for (II) are depicted in Fig. 4.
4. Conclusions
Both achiral (I) and racemic (II) crystallize in centrosymmetric space groups. Intramolecular N—H⋯O hydrogen bonds allow the formation of quasi-aromatic pseudo-rings. In both (I) and (II), all the stacking interactions involve such rings (they interact with phenyl rings or with each other). Weak C—H⋯(O,S) interactions also play an important role in the formation of the three-dimensional structures of the crystals. Our results are further confirmation that hydrogen-bridged chelate rings are formed readily within 3-monosubstituted 1-benzoylthioureas and that such quasi-aromatic rings have a significant contribution to the stabilization of the crystal structures.
Supporting information
https://doi.org/10.1107/S2053229616019495/cu3106sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2053229616019495/cu3106Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2053229616019495/cu3106IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2053229616019495/cu3106Isup5.smi
Supporting information file. DOI: https://doi.org/10.1107/S2053229616019495/cu3106IIsup4.smi
Supporting information file. DOI: https://doi.org/10.1107/S2053229616019495/cu3106Isup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229616019495/cu3106IIsup7.cml
For both compounds, data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS2016 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C16H16N2O3S | Z = 2 |
Mr = 316.37 | F(000) = 332 |
Triclinic, P1 | Dx = 1.356 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.5450 (4) Å | Cell parameters from 1629 reflections |
b = 9.3526 (6) Å | θ = 2.7–26.2° |
c = 12.7820 (8) Å | µ = 0.22 mm−1 |
α = 94.047 (5)° | T = 293 K |
β = 93.143 (5)° | Prism, colourless |
γ = 95.735 (5)° | 0.73 × 0.41 × 0.27 mm |
V = 775.05 (8) Å3 |
Agilent Xcalibur (Sapphire2, large Be window) diffractometer | 3039 independent reflections |
Graphite monochromator | 1883 reflections with I > 2σ(I) |
Detector resolution: 8.1883 pixels mm-1 | Rint = 0.026 |
ω scans | θmax = 26.0°, θmin = 2.6° |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2013), based on expressions derived by Clark & Reid (1995)] | h = −6→8 |
Tmin = 0.923, Tmax = 0.959 | k = −11→10 |
4858 measured reflections | l = −15→15 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.071 | H-atom parameters constrained |
wR(F2) = 0.209 | w = 1/[σ2(Fo2) + (0.1069P)2 + 0.0208P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3039 reflections | Δρmax = 0.59 e Å−3 |
201 parameters | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.32892 (14) | 0.32856 (10) | 0.05322 (7) | 0.0746 (4) | |
C1 | 0.4131 (5) | 0.4076 (3) | 0.1704 (2) | 0.0525 (8) | |
N1 | 0.5964 (4) | 0.4994 (3) | 0.1768 (2) | 0.0573 (7) | |
H1 | 0.657793 | 0.504603 | 0.119202 | 0.069* | |
C10 | 0.6924 (5) | 0.5822 (3) | 0.2617 (3) | 0.0532 (8) | |
O1 | 0.6254 (3) | 0.5821 (3) | 0.34928 (18) | 0.0712 (7) | |
C11 | 0.8843 (4) | 0.6730 (3) | 0.2414 (2) | 0.0539 (8) | |
C12 | 0.9348 (5) | 0.7985 (4) | 0.3058 (3) | 0.0662 (10) | |
H12 | 0.847406 | 0.823665 | 0.357432 | 0.079* | |
C13 | 1.1126 (6) | 0.8867 (4) | 0.2942 (3) | 0.0781 (11) | |
H13 | 1.145054 | 0.970734 | 0.337792 | 0.094* | |
C14 | 1.2425 (5) | 0.8490 (5) | 0.2174 (3) | 0.0797 (12) | |
H14 | 1.363019 | 0.907938 | 0.209513 | 0.096* | |
C15 | 1.1947 (5) | 0.7253 (4) | 0.1527 (3) | 0.0740 (11) | |
H15 | 1.282663 | 0.701004 | 0.101048 | 0.089* | |
C16 | 1.0151 (5) | 0.6361 (4) | 0.1640 (3) | 0.0635 (9) | |
H16 | 0.982791 | 0.552392 | 0.120094 | 0.076* | |
N2 | 0.3251 (4) | 0.3968 (3) | 0.26128 (19) | 0.0560 (7) | |
H2 | 0.397118 | 0.442046 | 0.313960 | 0.067* | |
C21 | 0.1357 (4) | 0.3255 (3) | 0.2886 (2) | 0.0502 (8) | |
C22 | 0.0066 (5) | 0.2298 (3) | 0.2205 (2) | 0.0544 (8) | |
H22 | 0.043178 | 0.207574 | 0.152455 | 0.065* | |
C23 | −0.1769 (5) | 0.1676 (3) | 0.2545 (2) | 0.0539 (8) | |
C24 | −0.2322 (5) | 0.2002 (3) | 0.3560 (3) | 0.0537 (8) | |
C25 | −0.1021 (5) | 0.2949 (4) | 0.4232 (3) | 0.0621 (9) | |
H25 | −0.138185 | 0.317599 | 0.491289 | 0.075* | |
C26 | 0.0820 (5) | 0.3560 (4) | 0.3894 (3) | 0.0597 (9) | |
H26 | 0.169978 | 0.418272 | 0.435404 | 0.072* | |
C2 | −0.2492 (6) | 0.0273 (4) | 0.0926 (3) | 0.0800 (12) | |
H2A | −0.235014 | 0.109237 | 0.051399 | 0.120* | |
H2B | −0.351384 | −0.044283 | 0.058549 | 0.120* | |
H2C | −0.119844 | −0.012469 | 0.099279 | 0.120* | |
O2 | −0.3101 (3) | 0.0704 (3) | 0.19344 (18) | 0.0705 (7) | |
C3 | −0.4927 (6) | 0.1837 (5) | 0.4788 (3) | 0.0822 (12) | |
H3A | −0.402770 | 0.159968 | 0.535411 | 0.123* | |
H3B | −0.628717 | 0.137493 | 0.485211 | 0.123* | |
H3C | −0.496586 | 0.286205 | 0.481580 | 0.123* | |
O3 | −0.4187 (3) | 0.1352 (3) | 0.38104 (18) | 0.0715 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0804 (7) | 0.0811 (7) | 0.0543 (6) | −0.0276 (5) | 0.0185 (5) | −0.0112 (5) |
C1 | 0.0475 (18) | 0.0529 (19) | 0.056 (2) | −0.0036 (14) | 0.0098 (14) | 0.0031 (15) |
N1 | 0.0499 (15) | 0.0656 (18) | 0.0532 (16) | −0.0093 (13) | 0.0125 (12) | −0.0025 (13) |
C10 | 0.0481 (18) | 0.059 (2) | 0.0511 (19) | −0.0005 (15) | 0.0031 (14) | 0.0002 (15) |
O1 | 0.0658 (15) | 0.0902 (18) | 0.0508 (14) | −0.0209 (12) | 0.0091 (11) | −0.0049 (12) |
C11 | 0.0447 (18) | 0.059 (2) | 0.056 (2) | −0.0046 (14) | 0.0013 (14) | 0.0027 (15) |
C12 | 0.063 (2) | 0.071 (2) | 0.061 (2) | −0.0083 (18) | 0.0038 (16) | −0.0002 (17) |
C13 | 0.073 (3) | 0.073 (3) | 0.081 (3) | −0.018 (2) | −0.010 (2) | 0.009 (2) |
C14 | 0.051 (2) | 0.091 (3) | 0.093 (3) | −0.021 (2) | −0.002 (2) | 0.026 (2) |
C15 | 0.050 (2) | 0.091 (3) | 0.083 (3) | 0.0012 (19) | 0.0157 (18) | 0.021 (2) |
C16 | 0.052 (2) | 0.067 (2) | 0.071 (2) | 0.0025 (16) | 0.0069 (16) | 0.0079 (18) |
N2 | 0.0535 (15) | 0.0650 (18) | 0.0453 (15) | −0.0131 (13) | 0.0068 (12) | −0.0015 (12) |
C21 | 0.0500 (18) | 0.0528 (19) | 0.0462 (18) | −0.0044 (14) | 0.0094 (13) | 0.0029 (13) |
C22 | 0.0534 (18) | 0.063 (2) | 0.0443 (17) | −0.0072 (15) | 0.0099 (14) | −0.0006 (14) |
C23 | 0.0507 (19) | 0.0526 (19) | 0.056 (2) | −0.0052 (14) | 0.0073 (14) | 0.0011 (15) |
C24 | 0.0498 (18) | 0.0535 (19) | 0.059 (2) | 0.0003 (15) | 0.0186 (15) | 0.0057 (15) |
C25 | 0.071 (2) | 0.061 (2) | 0.055 (2) | 0.0026 (17) | 0.0228 (16) | 0.0009 (16) |
C26 | 0.062 (2) | 0.063 (2) | 0.0510 (19) | −0.0061 (16) | 0.0082 (15) | −0.0026 (15) |
C2 | 0.075 (2) | 0.097 (3) | 0.059 (2) | −0.022 (2) | 0.0073 (18) | −0.016 (2) |
O2 | 0.0577 (14) | 0.0827 (17) | 0.0639 (15) | −0.0223 (12) | 0.0134 (11) | −0.0108 (12) |
C3 | 0.066 (2) | 0.108 (3) | 0.074 (3) | 0.001 (2) | 0.0301 (19) | 0.005 (2) |
O3 | 0.0632 (15) | 0.0813 (17) | 0.0683 (16) | −0.0092 (12) | 0.0278 (12) | −0.0020 (12) |
S1—C1 | 1.663 (3) | C21—C26 | 1.372 (4) |
C1—N2 | 1.330 (4) | C21—C22 | 1.389 (4) |
C1—N1 | 1.399 (4) | C22—C23 | 1.387 (4) |
N1—C10 | 1.372 (4) | C22—H22 | 0.9300 |
N1—H1 | 0.8600 | C23—O2 | 1.365 (4) |
C10—O1 | 1.224 (4) | C23—C24 | 1.387 (4) |
C10—C11 | 1.490 (4) | C24—O3 | 1.373 (3) |
C11—C12 | 1.386 (4) | C24—C25 | 1.382 (5) |
C11—C16 | 1.391 (4) | C25—C26 | 1.386 (4) |
C12—C13 | 1.379 (5) | C25—H25 | 0.9300 |
C12—H12 | 0.9300 | C26—H26 | 0.9300 |
C13—C14 | 1.384 (6) | C2—O2 | 1.414 (4) |
C13—H13 | 0.9300 | C2—H2A | 0.9600 |
C14—C15 | 1.373 (5) | C2—H2B | 0.9600 |
C14—H14 | 0.9300 | C2—H2C | 0.9600 |
C15—C16 | 1.392 (4) | C3—O3 | 1.426 (4) |
C15—H15 | 0.9300 | C3—H3A | 0.9600 |
C16—H16 | 0.9300 | C3—H3B | 0.9600 |
N2—C21 | 1.421 (3) | C3—H3C | 0.9600 |
N2—H2 | 0.8600 | ||
N2—C1—N1 | 114.3 (3) | C26—C21—N2 | 116.0 (3) |
N2—C1—S1 | 127.9 (2) | C22—C21—N2 | 124.3 (3) |
N1—C1—S1 | 117.8 (2) | C23—C22—C21 | 119.7 (3) |
C10—N1—C1 | 129.3 (3) | C23—C22—H22 | 120.1 |
C10—N1—H1 | 115.3 | C21—C22—H22 | 120.1 |
C1—N1—H1 | 115.3 | O2—C23—C22 | 123.4 (3) |
O1—C10—N1 | 122.4 (3) | O2—C23—C24 | 116.1 (3) |
O1—C10—C11 | 121.6 (3) | C22—C23—C24 | 120.4 (3) |
N1—C10—C11 | 116.1 (3) | O3—C24—C25 | 124.8 (3) |
C12—C11—C16 | 119.3 (3) | O3—C24—C23 | 115.8 (3) |
C12—C11—C10 | 117.2 (3) | C25—C24—C23 | 119.4 (3) |
C16—C11—C10 | 123.5 (3) | C24—C25—C26 | 120.1 (3) |
C13—C12—C11 | 120.9 (3) | C24—C25—H25 | 119.9 |
C13—C12—H12 | 119.5 | C26—C25—H25 | 119.9 |
C11—C12—H12 | 119.5 | C21—C26—C25 | 120.6 (3) |
C12—C13—C14 | 119.5 (4) | C21—C26—H26 | 119.7 |
C12—C13—H13 | 120.3 | C25—C26—H26 | 119.7 |
C14—C13—H13 | 120.3 | O2—C2—H2A | 109.5 |
C15—C14—C13 | 120.4 (3) | O2—C2—H2B | 109.5 |
C15—C14—H14 | 119.8 | H2A—C2—H2B | 109.5 |
C13—C14—H14 | 119.8 | O2—C2—H2C | 109.5 |
C14—C15—C16 | 120.3 (3) | H2A—C2—H2C | 109.5 |
C14—C15—H15 | 119.9 | H2B—C2—H2C | 109.5 |
C16—C15—H15 | 119.9 | C23—O2—C2 | 117.0 (2) |
C11—C16—C15 | 119.6 (3) | O3—C3—H3A | 109.5 |
C11—C16—H16 | 120.2 | O3—C3—H3B | 109.5 |
C15—C16—H16 | 120.2 | H3A—C3—H3B | 109.5 |
C1—N2—C21 | 132.8 (3) | O3—C3—H3C | 109.5 |
C1—N2—H2 | 113.6 | H3A—C3—H3C | 109.5 |
C21—N2—H2 | 113.6 | H3B—C3—H3C | 109.5 |
C26—C21—C22 | 119.7 (3) | C24—O3—C3 | 116.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1 | 0.86 | 1.90 | 2.633 (3) | 143 |
N1—H1···S1i | 0.86 | 2.79 | 3.485 (3) | 139 |
C22—H22···S1 | 0.93 | 2.54 | 3.203 (3) | 129 |
C14—H14···O2ii | 0.93 | 2.52 | 3.453 (4) | 178 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+2, y+1, z. |
C11H14N2O2S | F(000) = 1008 |
Mr = 238.3 | Dx = 1.32 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2940 reflections |
a = 22.4150 (17) Å | θ = 3.0–27.0° |
b = 8.1479 (5) Å | µ = 0.26 mm−1 |
c = 13.4592 (9) Å | T = 293 K |
β = 102.618 (7)° | Prism, colourless |
V = 2398.8 (3) Å3 | 0.52 × 0.46 × 0.14 mm |
Z = 8 |
Agilent Xcalibur (Sapphire2, large Be window) diffractometer | 4710 independent reflections |
Graphite monochromator | 2847 reflections with I > 2σ(I) |
Detector resolution: 8.1883 pixels mm-1 | Rint = 0.038 |
ω scans | θmax = 26°, θmin = 2.7° |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2013), based on expressions derived by Clark & Reid (1995)] | h = −27→26 |
Tmin = 0.911, Tmax = 0.971 | k = −10→5 |
8922 measured reflections | l = −12→16 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.066 | H-atom parameters constrained |
wR(F2) = 0.220 | w = 1/[σ2(Fo2) + (0.1058P)2 + 0.9789P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
4710 reflections | Δρmax = 0.71 e Å−3 |
293 parameters | Δρmin = −0.30 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.19684 (4) | 0.87980 (15) | 0.50453 (8) | 0.0834 (4) | |
C1 | 0.13064 (15) | 0.8780 (4) | 0.5415 (2) | 0.0551 (8) | |
N1 | 0.08038 (11) | 0.7993 (3) | 0.47955 (18) | 0.0544 (6) | |
H1 | 0.086382 | 0.757529 | 0.423876 | 0.065* | |
C10 | 0.02251 (13) | 0.7809 (4) | 0.4973 (2) | 0.0536 (7) | |
O1 | 0.00807 (11) | 0.8385 (3) | 0.57212 (18) | 0.0733 (7) | |
C11 | −0.02165 (14) | 0.6848 (4) | 0.4201 (2) | 0.0513 (7) | |
C12 | −0.07310 (15) | 0.6253 (4) | 0.4510 (3) | 0.0628 (9) | |
H12 | −0.078547 | 0.648068 | 0.516116 | 0.075* | |
C13 | −0.11598 (17) | 0.5328 (4) | 0.3850 (3) | 0.0715 (10) | |
H13 | −0.150034 | 0.492347 | 0.405936 | 0.086* | |
C14 | −0.10823 (17) | 0.5005 (4) | 0.2880 (3) | 0.0694 (9) | |
H14 | −0.137038 | 0.437750 | 0.243800 | 0.083* | |
C15 | −0.05831 (17) | 0.5604 (4) | 0.2565 (3) | 0.0691 (9) | |
H15 | −0.053570 | 0.539344 | 0.190748 | 0.083* | |
C16 | −0.01498 (16) | 0.6522 (4) | 0.3224 (2) | 0.0601 (8) | |
H16 | 0.018903 | 0.692269 | 0.300705 | 0.072* | |
N2 | 0.12153 (12) | 0.9439 (3) | 0.62596 (19) | 0.0591 (7) | |
H2 | 0.085767 | 0.934134 | 0.638807 | 0.071* | |
C21 | 0.16758 (15) | 1.0322 (4) | 0.6993 (2) | 0.0606 (8) | |
H21A | 0.174053 | 1.139570 | 0.672334 | 0.073* | |
H21B | 0.205956 | 0.972713 | 0.710785 | 0.073* | |
C22 | 0.14791 (16) | 1.0517 (4) | 0.7982 (2) | 0.0632 (9) | |
H22 | 0.108336 | 1.108048 | 0.782686 | 0.076* | |
C23 | 0.19148 (17) | 1.1614 (5) | 0.8704 (3) | 0.0723 (10) | |
H23A | 0.179488 | 1.166057 | 0.934629 | 0.108* | |
H23B | 0.190453 | 1.269822 | 0.842165 | 0.108* | |
H23C | 0.232187 | 1.118107 | 0.880391 | 0.108* | |
O2 | 0.13845 (13) | 0.9014 (3) | 0.8418 (2) | 0.0840 (8) | |
H2A | 0.171519 | 0.861159 | 0.868999 | 0.126* | |
S3 | 0.31682 (5) | 0.65289 (16) | 0.35460 (8) | 0.0899 (4) | |
C3 | 0.38036 (16) | 0.6539 (4) | 0.4467 (2) | 0.0604 (8) | |
N3 | 0.43299 (12) | 0.7287 (3) | 0.42895 (19) | 0.0606 (7) | |
H3 | 0.429205 | 0.776266 | 0.370866 | 0.073* | |
C30 | 0.49006 (15) | 0.7366 (4) | 0.4918 (2) | 0.0583 (8) | |
O3 | 0.50078 (11) | 0.6740 (4) | 0.57620 (19) | 0.0813 (8) | |
C31 | 0.53756 (15) | 0.8255 (4) | 0.4511 (2) | 0.0577 (8) | |
C32 | 0.59318 (17) | 0.8526 (5) | 0.5187 (3) | 0.0763 (11) | |
H32 | 0.599071 | 0.815394 | 0.585456 | 0.092* | |
C33 | 0.63991 (19) | 0.9348 (5) | 0.4869 (3) | 0.0855 (12) | |
H33 | 0.676964 | 0.953283 | 0.532325 | 0.103* | |
C34 | 0.63133 (18) | 0.9883 (5) | 0.3887 (3) | 0.0778 (11) | |
H34 | 0.662525 | 1.044306 | 0.367595 | 0.093* | |
C35 | 0.57669 (18) | 0.9599 (5) | 0.3207 (3) | 0.0820 (11) | |
H35 | 0.571295 | 0.995335 | 0.253641 | 0.098* | |
C36 | 0.53014 (16) | 0.8791 (5) | 0.3522 (3) | 0.0730 (10) | |
H36 | 0.493314 | 0.860439 | 0.306177 | 0.088* | |
N4 | 0.38426 (13) | 0.5899 (3) | 0.5372 (2) | 0.0658 (8) | |
H4 | 0.419002 | 0.591900 | 0.579720 | 0.079* | |
C41 | 0.33257 (17) | 0.5161 (5) | 0.5688 (3) | 0.0723 (10) | |
H41A | 0.317194 | 0.425266 | 0.523817 | 0.087* | |
H41B | 0.300098 | 0.596451 | 0.563276 | 0.087* | |
C42 | 0.34964 (17) | 0.4567 (5) | 0.6734 (3) | 0.0744 (10) | |
H42 | 0.379516 | 0.368619 | 0.674185 | 0.089* | |
C43 | 0.29559 (19) | 0.3810 (6) | 0.7075 (3) | 0.0959 (14) | |
H43A | 0.308436 | 0.342723 | 0.776353 | 0.144* | |
H43B | 0.280074 | 0.290445 | 0.663856 | 0.144* | |
H43C | 0.264075 | 0.461939 | 0.703996 | 0.144* | |
O4 | 0.37882 (12) | 0.5781 (4) | 0.7412 (2) | 0.0909 (9) | |
H4A | 0.353521 | 0.645707 | 0.750645 | 0.136* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0569 (6) | 0.1220 (9) | 0.0779 (7) | −0.0110 (5) | 0.0288 (5) | −0.0136 (6) |
C1 | 0.0531 (18) | 0.0614 (18) | 0.0516 (17) | 0.0057 (15) | 0.0131 (14) | 0.0080 (14) |
N1 | 0.0511 (15) | 0.0676 (16) | 0.0471 (13) | 0.0035 (13) | 0.0163 (12) | 0.0003 (12) |
C10 | 0.0463 (17) | 0.0658 (18) | 0.0505 (16) | 0.0060 (15) | 0.0145 (14) | 0.0035 (14) |
O1 | 0.0551 (14) | 0.1070 (18) | 0.0625 (14) | −0.0042 (13) | 0.0234 (11) | −0.0203 (13) |
C11 | 0.0478 (17) | 0.0562 (17) | 0.0502 (16) | 0.0087 (14) | 0.0115 (13) | 0.0036 (13) |
C12 | 0.0552 (19) | 0.077 (2) | 0.0576 (19) | 0.0030 (17) | 0.0150 (16) | 0.0076 (16) |
C13 | 0.060 (2) | 0.074 (2) | 0.080 (2) | −0.0027 (18) | 0.0150 (19) | 0.0137 (19) |
C14 | 0.067 (2) | 0.061 (2) | 0.074 (2) | −0.0034 (18) | 0.0016 (18) | −0.0027 (17) |
C15 | 0.079 (2) | 0.071 (2) | 0.059 (2) | −0.001 (2) | 0.0166 (18) | −0.0064 (17) |
C16 | 0.064 (2) | 0.0615 (18) | 0.0571 (18) | 0.0009 (16) | 0.0192 (16) | −0.0009 (15) |
N2 | 0.0488 (15) | 0.0744 (17) | 0.0548 (15) | −0.0031 (13) | 0.0130 (12) | −0.0024 (13) |
C21 | 0.0554 (19) | 0.073 (2) | 0.0521 (17) | −0.0063 (16) | 0.0102 (15) | 0.0043 (15) |
C22 | 0.062 (2) | 0.069 (2) | 0.0584 (19) | −0.0039 (17) | 0.0130 (16) | −0.0015 (16) |
C23 | 0.066 (2) | 0.085 (2) | 0.063 (2) | 0.0008 (19) | 0.0075 (17) | −0.0092 (18) |
O2 | 0.0850 (18) | 0.0949 (19) | 0.0745 (17) | −0.0147 (16) | 0.0226 (15) | 0.0151 (14) |
S3 | 0.0696 (7) | 0.1317 (10) | 0.0633 (6) | −0.0337 (6) | 0.0031 (5) | 0.0118 (6) |
C3 | 0.062 (2) | 0.0653 (19) | 0.0564 (19) | −0.0084 (16) | 0.0195 (16) | −0.0024 (15) |
N3 | 0.0547 (16) | 0.0760 (18) | 0.0521 (15) | −0.0081 (14) | 0.0137 (12) | 0.0068 (13) |
C30 | 0.0555 (19) | 0.0667 (19) | 0.0538 (18) | −0.0005 (16) | 0.0141 (15) | 0.0007 (16) |
O3 | 0.0641 (16) | 0.113 (2) | 0.0638 (15) | −0.0126 (14) | 0.0075 (12) | 0.0215 (14) |
C31 | 0.0533 (19) | 0.0629 (19) | 0.0570 (18) | −0.0002 (15) | 0.0122 (15) | −0.0021 (15) |
C32 | 0.068 (2) | 0.098 (3) | 0.062 (2) | −0.021 (2) | 0.0129 (18) | −0.0093 (19) |
C33 | 0.069 (2) | 0.106 (3) | 0.081 (3) | −0.028 (2) | 0.015 (2) | −0.015 (2) |
C34 | 0.069 (2) | 0.070 (2) | 0.100 (3) | −0.0127 (19) | 0.030 (2) | −0.003 (2) |
C35 | 0.069 (2) | 0.097 (3) | 0.083 (3) | −0.005 (2) | 0.022 (2) | 0.026 (2) |
C36 | 0.0507 (19) | 0.090 (2) | 0.076 (2) | −0.0053 (19) | 0.0087 (17) | 0.0187 (19) |
N4 | 0.0625 (17) | 0.0811 (19) | 0.0542 (16) | −0.0181 (15) | 0.0138 (13) | 0.0022 (13) |
C41 | 0.068 (2) | 0.091 (2) | 0.059 (2) | −0.022 (2) | 0.0153 (17) | −0.0016 (18) |
C42 | 0.067 (2) | 0.097 (3) | 0.061 (2) | −0.018 (2) | 0.0192 (17) | −0.003 (2) |
C43 | 0.074 (3) | 0.144 (4) | 0.072 (3) | −0.028 (3) | 0.022 (2) | 0.017 (2) |
O4 | 0.0747 (18) | 0.133 (3) | 0.0643 (16) | −0.0221 (17) | 0.0133 (14) | −0.0206 (16) |
S1—C1 | 1.665 (3) | S3—C3 | 1.671 (4) |
C1—N2 | 1.313 (4) | C3—N4 | 1.311 (4) |
C1—N1 | 1.402 (4) | C3—N3 | 1.394 (4) |
N1—C10 | 1.378 (4) | N3—C30 | 1.373 (4) |
N1—H1 | 0.8600 | N3—H3 | 0.8600 |
C10—O1 | 1.217 (4) | C30—O3 | 1.220 (4) |
C10—C11 | 1.491 (4) | C30—C31 | 1.488 (4) |
C11—C16 | 1.382 (4) | C31—C36 | 1.376 (5) |
C11—C12 | 1.395 (4) | C31—C32 | 1.391 (5) |
C12—C13 | 1.381 (5) | C32—C33 | 1.387 (5) |
C12—H12 | 0.9300 | C32—H32 | 0.9300 |
C13—C14 | 1.379 (5) | C33—C34 | 1.364 (6) |
C13—H13 | 0.9300 | C33—H33 | 0.9300 |
C14—C15 | 1.370 (5) | C34—C35 | 1.379 (5) |
C14—H14 | 0.9300 | C34—H34 | 0.9300 |
C15—C16 | 1.383 (5) | C35—C36 | 1.377 (5) |
C15—H15 | 0.9300 | C35—H35 | 0.9300 |
C16—H16 | 0.9300 | C36—H36 | 0.9300 |
N2—C21 | 1.453 (4) | N4—C41 | 1.449 (4) |
N2—H2 | 0.8600 | N4—H4 | 0.8600 |
C21—C22 | 1.500 (4) | C41—C42 | 1.459 (5) |
C21—H21A | 0.9700 | C41—H41A | 0.9700 |
C21—H21B | 0.9700 | C41—H41B | 0.9700 |
C22—O2 | 1.394 (4) | C42—O4 | 1.407 (4) |
C22—C23 | 1.511 (5) | C42—C43 | 1.517 (5) |
C22—H22 | 0.9800 | C42—H42 | 0.9800 |
C23—H23A | 0.9600 | C43—H43A | 0.9600 |
C23—H23B | 0.9600 | C43—H43B | 0.9600 |
C23—H23C | 0.9600 | C43—H43C | 0.9600 |
O2—H2A | 0.8200 | O4—H4A | 0.8200 |
N2—C1—N1 | 116.4 (3) | N4—C3—N3 | 116.5 (3) |
N2—C1—S1 | 124.9 (3) | N4—C3—S3 | 124.1 (3) |
N1—C1—S1 | 118.7 (2) | N3—C3—S3 | 119.4 (2) |
C10—N1—C1 | 127.7 (3) | C30—N3—C3 | 128.7 (3) |
C10—N1—H1 | 116.1 | C30—N3—H3 | 115.7 |
C1—N1—H1 | 116.1 | C3—N3—H3 | 115.7 |
O1—C10—N1 | 122.2 (3) | O3—C30—N3 | 121.5 (3) |
O1—C10—C11 | 121.5 (3) | O3—C30—C31 | 122.3 (3) |
N1—C10—C11 | 116.3 (3) | N3—C30—C31 | 116.2 (3) |
C16—C11—C12 | 119.0 (3) | C36—C31—C32 | 118.9 (3) |
C16—C11—C10 | 124.8 (3) | C36—C31—C30 | 124.5 (3) |
C12—C11—C10 | 116.2 (3) | C32—C31—C30 | 116.6 (3) |
C13—C12—C11 | 120.2 (3) | C33—C32—C31 | 120.3 (4) |
C13—C12—H12 | 119.9 | C33—C32—H32 | 119.9 |
C11—C12—H12 | 119.9 | C31—C32—H32 | 119.9 |
C14—C13—C12 | 119.9 (3) | C34—C33—C32 | 119.8 (4) |
C14—C13—H13 | 120.0 | C34—C33—H33 | 120.1 |
C12—C13—H13 | 120.0 | C32—C33—H33 | 120.1 |
C15—C14—C13 | 120.3 (3) | C33—C34—C35 | 120.4 (4) |
C15—C14—H14 | 119.8 | C33—C34—H34 | 119.8 |
C13—C14—H14 | 119.8 | C35—C34—H34 | 119.8 |
C14—C15—C16 | 120.1 (3) | C36—C35—C34 | 119.9 (4) |
C14—C15—H15 | 120.0 | C36—C35—H35 | 120.0 |
C16—C15—H15 | 120.0 | C34—C35—H35 | 120.0 |
C11—C16—C15 | 120.5 (3) | C31—C36—C35 | 120.7 (3) |
C11—C16—H16 | 119.8 | C31—C36—H36 | 119.7 |
C15—C16—H16 | 119.8 | C35—C36—H36 | 119.7 |
C1—N2—C21 | 124.7 (3) | C3—N4—C41 | 122.9 (3) |
C1—N2—H2 | 117.7 | C3—N4—H4 | 118.6 |
C21—N2—H2 | 117.7 | C41—N4—H4 | 118.6 |
N2—C21—C22 | 110.6 (3) | N4—C41—C42 | 111.3 (3) |
N2—C21—H21A | 109.5 | N4—C41—H41A | 109.4 |
C22—C21—H21A | 109.5 | C42—C41—H41A | 109.4 |
N2—C21—H21B | 109.5 | N4—C41—H41B | 109.4 |
C22—C21—H21B | 109.5 | C42—C41—H41B | 109.4 |
H21A—C21—H21B | 108.1 | H41A—C41—H41B | 108.0 |
O2—C22—C21 | 112.4 (3) | O4—C42—C41 | 112.3 (3) |
O2—C22—C23 | 112.7 (3) | O4—C42—C43 | 112.2 (3) |
C21—C22—C23 | 111.1 (3) | C41—C42—C43 | 111.6 (3) |
O2—C22—H22 | 106.7 | O4—C42—H42 | 106.7 |
C21—C22—H22 | 106.7 | C41—C42—H42 | 106.7 |
C23—C22—H22 | 106.7 | C43—C42—H42 | 106.7 |
C22—C23—H23A | 109.5 | C42—C43—H43A | 109.5 |
C22—C23—H23B | 109.5 | C42—C43—H43B | 109.5 |
H23A—C23—H23B | 109.5 | H43A—C43—H43B | 109.5 |
C22—C23—H23C | 109.5 | C42—C43—H43C | 109.5 |
H23A—C23—H23C | 109.5 | H43A—C43—H43C | 109.5 |
H23B—C23—H23C | 109.5 | H43B—C43—H43C | 109.5 |
C22—O2—H2A | 109.5 | C42—O4—H4A | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.86 | 2.20 | 2.977 (3) | 151 |
N2—H2···O1 | 0.86 | 1.94 | 2.632 (3) | 137 |
O2—H2A···S1ii | 0.82 | 2.66 | 3.242 (3) | 130 |
N3—H3···O4i | 0.86 | 2.21 | 2.999 (4) | 153 |
N4—H4···O3 | 0.86 | 1.96 | 2.640 (4) | 135 |
O4—H4A···S3ii | 0.82 | 2.41 | 3.161 (3) | 152 |
C15—H15···O1i | 0.93 | 2.53 | 3.265 (4) | 136 |
C16—H16···O2i | 0.93 | 2.72 | 3.420 (5) | 132 |
C35—H35···O3i | 0.93 | 2.91 | 3.531 (5) | 126 |
C36—H36···O4i | 0.93 | 2.57 | 3.412 (5) | 150 |
C21—H21B···S3ii | 0.97 | 2.98 | 3.844 (3) | 149 |
C23—H23C···S3ii | 0.96 | 2.98 | 3.842 (4) | 150 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2. |
References
Agilent (2013). CrysAlis PRO. Agilent Technologies, Santa Clara, USA. Google Scholar
Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E.-A. F. (2007). J. Sulfur Chem. 28, 73–93. CrossRef CAS Google Scholar
Boys, S. F. & Bernardi, F. (1970). Mol. Phys. 19, 553–566. CrossRef CAS Web of Science Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dago, A., Shepelev, Yu., Fajardo, F., Alvarez, F. & Pomés, R. (1989). Acta Cryst. C45, 1192–1194. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Douglass, I. B. & Dains, F. B. (1934). J. Am. Chem. Soc. 56, 719–721. CrossRef CAS Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, Connecticut, USA. https://www.gaussian.com. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
International Tables for Crystallography (2010). Vol. E, Subperiodic Groups, edited by V. Kopský & D. B. Litvin, 2nd ed. Chichester: John Wiley and Sons. Google Scholar
Karabıyık, H., Karabıyık, H. & Ocak İskeleli, N. (2012). Acta Cryst. B68, 71–79. CSD CrossRef IUCr Journals Google Scholar
Krygowski, T. M. (1993). J. Chem. Inf. Model. 33, 70–78. CrossRef CAS Google Scholar
Mietlarek-Kropidłowska, A., Chojnacki, J. & Becker, B. (2012). Acta Cryst. E68, o2521. CSD CrossRef IUCr Journals Google Scholar
Okuniewski, A., Chojnacki, J. & Becker, B. (2011a). Acta Cryst. E67, o55. CSD CrossRef IUCr Journals Google Scholar
Okuniewski, A., Chojnacki, J. & Becker, B. (2012). Acta Cryst. E68, o619–o620. CSD CrossRef IUCr Journals Google Scholar
Okuniewski, A., Dąbrowska, A. & Chojnacki, J. (2011b). Acta Cryst. E67, o925. CSD CrossRef IUCr Journals Google Scholar
Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57. Web of Science CSD CrossRef CAS Google Scholar
Saeed, A., Flörke, U. & Erben, M. F. (2013). J. Sulfur Chem. 35, 318–355. CrossRef Google Scholar
Saeed, A., Qamar, R., Fattah, T. A., Flörke, U. & Erben, M. F. (2016). Res. Chem. Intermed. doi:10.1007s11164-016-2811-5. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Woldu, M. G. & Dillen, J. (2008). Theor. Chem. Acc. 121, 71–82. CrossRef CAS Google Scholar
Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151–o152. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.