research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Crystallographic study of self-organization in the solid state including quasi-aromatic pseudo-ring stacking inter­actions in 1-benzoyl-3-(3,4-di­meth­oxy­phen­yl)thio­urea and 1-benzoyl-3-(2-hy­dr­oxy­prop­yl)thio­urea

CROSSMARK_Color_square_no_text.svg

aDepartment of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
*Correspondence e-mail: andrzej.okuniewski@pg.gda.pl

Edited by E. Y. Cheung, Amgen Inc., USA (Received 22 September 2016; accepted 5 December 2016; online 1 January 2017)

1-Benzoyl­thio­ureas contain both carbonyl and thio­carbonyl functional groups and are of interest for their biological activity, metal coordination ability and involvement in hydrogen-bond formation. Two novel 1-benzoyl­thio­urea derivatives, namely 1-benzoyl-3-(3,4-di­meth­oxy­phen­yl)thio­urea, C16H16N2O3S, (I), and 1-benzoyl-3-(2-hy­droxy­prop­yl)thio­urea, C11H14N2O2S, (II), have been synthesized and characterized. Compound (I) crystallizes in the space group P[\overline{1}], while (II) crystallizes in the space group P21/c. In both structures, intra­molecular N—H⋯O hydrogen bonding is present. The resulting six-membered pseudo-rings are quasi-aromatic and, in each case, inter­act with phenyl rings via stacking-type inter­actions. C—H⋯O, C—H⋯S and C—H⋯π inter­actions are also present. In (I), there is one mol­ecule in the asymmetric unit. Pairs of mol­ecules are connected via two inter­molecular N—H⋯S hydrogen bonds, forming centrosymmetric dimers. In (II), there are two symmetry-independent mol­ecules that differ mainly in the relative orientations of the phenyl rings with respect to the thiourea cores. Additional strong hydrogen-bond donor and acceptor –OH groups participate in the formation of inter­molecular N—H⋯O and O—H⋯S hydrogen bonds that join mol­ecules into chains extending in the [001] direction.

1. Introduction

A few years ago, we became inter­ested in the properties and crystal structures of thio­ureas (Okuniewski et al., 2011a[Okuniewski, A., Chojnacki, J. & Becker, B. (2011a). Acta Cryst. E67, o55.],b[Okuniewski, A., Dąbrowska, A. & Chojnacki, J. (2011b). Acta Cryst. E67, o925.]; Mietlarek-Kropidłowska et al., 2012[Mietlarek-Kropidłowska, A., Chojnacki, J. & Becker, B. (2012). Acta Cryst. E68, o2521.]). Recently, we have focused our attention on especially inter­esting 1-benzoyl­thio­ureas as they simultaneously contain carbonyl and thio­carbonyl functions (Okuniewski et al., 2012[Okuniewski, A., Chojnacki, J. & Becker, B. (2012). Acta Cryst. E68, o619-o620.]). Because of their biological activity, metal coordination ability and involvement in hydrogen-bond formation (Aly et al., 2007[Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E.-A. F. (2007). J. Sulfur Chem. 28, 73-93.]; Saeed et al., 2013[Saeed, A., Flörke, U. & Erben, M. F. (2013). J. Sulfur Chem. 35, 318-355.], 2016[Saeed, A., Qamar, R., Fattah, T. A., Flörke, U. & Erben, M. F. (2016). Res. Chem. Intermed. doi:10.1007s11164-016-2811-5.]), they are the subject of extensive research, with several hundred structures deposited to the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

In most structures of 3-monosubstituted 1-benzoyl­thio­ureas, intra­molecular N—H⋯O hydrogen bonds are present and form six-membered pseudo-rings. These rings exhibit some aromatic properties and, for this reason, are called quasi-aromatic (Karabıyık et al., 2012[Karabıyık, H., Karabıyık, H. & Ocak İskeleli, N. (2012). Acta Cryst. B68, 71-79.]). For some time, we have been searching for novel examples of such quasi-aromatic ring inter­actions. For this reason, we have prepared two 1-ben­zoyl­thio­urea derivatives that contain such rings. The first compound contains an aromatic substituent, while the second contains an aliphatic substituent, both with additional O atoms that can participate in hydrogen bonding. The compounds are 1-benzoyl-3-(3,4-di­meth­oxy­phen­yl)thio­urea, (I)[link], and 1-ben­zoyl-3-(2-hy­droxy­prop­yl)thio­urea, (II)[link], and the crystal structures were determined by single-crystal X-ray diffraction.

[Scheme 1]

2. Experimental

2.1. Synthesis and crystallization

Both title compounds were synthesized according to a procedure proposed by Douglass & Dains (1934[Douglass, I. B. & Dains, F. B. (1934). J. Am. Chem. Soc. 56, 719-721.]). Ammonium thio­cyanate (46 mmol, 3.50 g) and dry acetone (30 ml) were placed in a two-necked flask. Through a dropping funnel, benzoyl chloride (40 mmol, 4.64 ml) in acetone (20 ml) was added with stirring. When addition was complete, the mixture was refluxed for an additional 15 min and then amine [40 mmol; 6.13 g of 3,4-di­meth­oxy­aniline for (I)[link] and 3.09 ml of 1-amino­propan-2-ol for (II)] in acetone (20 ml) was added through the dropping funnel. The mixture was poured carefully into cold water (500 ml) with stirring. In the case of (I)[link], the resulting precipitate was filtered on a Büchner funnel. The crude product was recrystallized from acetone. In the case of (II)[link], the resulting oil was extracted with toluene, dried with anhydrous magnesium sulfate and left to evaporate slowly. In both cases, colourless single crystals suitable for X-ray diffraction analysis were isolated.

2.2. Analytic and spectroscopic data

2.2.1. 1-Benzoyl-3-(3,4-di­meth­oxy­phen­yl)thio­urea, (I)

For (I)[link], yield 79%; m.p. 403 (1) K; 1H NMR (500 MHz, COMe2-d6): δ 12.71 (s, 1H), 10.22 (s, 1H), 8.10–6.95 (m, 8H), 3.85 (s, 6H); 1H NMR (400 MHz, CDCl3): δ 12.52 (s, 1H), 9.15 (s, 1H), 7.94–6.89 (m, 8H), 3.91 (s, 3H), 3.90 (s, 3H); 13C NMR (101 MHz, CDCl3): δ 178.09, 167.01, 148.84, 147.70, 133.73, 131.64, 130.80, 129.21 (2C), 127.51 (2C), 116.35, 110.90, 108.18, 56.06 (2C).

2.2.2. 1-Benzoyl-3-(2-hy­droxy­prop­yl)thio­urea, (II)

For (II)[link], yield 66%; m.p. 408 (1) K; 1H NMR (500 MHz, COMe2-d6): δ 11.10 (s, 1H), 10.05 (s, 1H), 8.10–7.50 (m, 5H), 4.23 (d, J = 4.8 Hz, 1H), 4.16–4.05 (m, 1H), 3.92–3.84 (m, 1H), 3.55–3.46 (m, 1H), 1.24 (d, J = 6.3 Hz, 3H); 1H NMR (400 MHz, CDCl3): δ 11.03 (t, J = 5.4 Hz, 1H), 9.30 (s, 1H), 7.88–7.25 (m, 5H), 4.25–4.12 (m, 1H), 3.91 (ddd, J = 13.8, 6.0, 3.5 Hz, 1H), 3.57 (ddd, J = 13.8, 7.9, 5.0 Hz, 1H), 2.89 (s, 1H), 1.28 (d, J = 6.3 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 180.44, 167.02, 133.51, 131.71, 129.02 (2C), 127.61 (2C), 66.10, 52.65, 21.16.

2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were placed at calculated positions (C—H = 0.93–0.98 Å, N—H = 0.86 Å and O—H = 0.82 Å) and were treated as riding on their parent atoms, with Uiso(H) values set at 1.2–1.5Ueq(C), 1.2Ueq(N) or 1.5Ueq(O).

Table 1
Experimental details

  (I) (II)
Crystal data
Chemical formula C16H16N2O3S C11H14N2O2S
Mr 316.37 238.3
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 293 293
a, b, c (Å) 6.5450 (4), 9.3526 (6), 12.7820 (8) 22.4150 (17), 8.1479 (5), 13.4592 (9)
α, β, γ (°) 94.047 (5), 93.143 (5), 95.735 (5) 90, 102.618 (7), 90
V3) 775.05 (8) 2398.8 (3)
Z 2 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.22 0.26
Crystal size (mm) 0.73 × 0.41 × 0.27 0.52 × 0.46 × 0.14
 
Data collection
Diffractometer Agilent Xcalibur (Sapphire2, large Be window) Agilent Xcalibur (Sapphire2, large Be window)
Absorption correction Analytical [CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Santa Clara, USA.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Analytical [CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Santa Clara, USA.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.923, 0.959 0.911, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 4858, 3039, 1883 8922, 4710, 2847
Rint 0.026 0.038
(sin θ/λ)max−1) 0.617 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.209, 1.04 0.066, 0.220, 1.04
No. of reflections 3039 4710
No. of parameters 201 293
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.25 0.71, −0.30
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Santa Clara, USA.]), SHELXS2013 (Sheldrick, 2015[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]a), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]b), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

3. Results and discussion

The mol­ecules of compounds (I)[link] and (II)[link] (Figs. 1[link] and 2[link]) both adopt an S-type conformation (Woldu & Dillen, 2008[Woldu, M. G. & Dillen, J. (2008). Theor. Chem. Acc. 121, 71-82.]), with intra­molecular N—H⋯O hydrogen bonds (for their parameters, see Tables 2[link] and 3[link]) forming an S(6) motif (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]) that is common among 3-monosubstituted 1-acyl­thio­ureas (Okuniewski et al., 2012[Okuniewski, A., Chojnacki, J. & Becker, B. (2012). Acta Cryst. E68, o619-o620.]). The resulting six-membered pseudo-rings are quasi-aromatic (Karabıyık et al., 2012[Karabıyık, H., Karabıyık, H. & Ocak İskeleli, N. (2012). Acta Cryst. B68, 71-79.]). The HOMA indices of aromaticity (Krygowski, 1993[Krygowski, T. M. (1993). J. Chem. Inf. Model. 33, 70-78.]) are equal to 0.80 [(I), CgS1], 0.74 [(II), CgS1] and 0.78 [(II), CgS3], indicating that such motifs are rather aromatic. The mean HOMA value for O/C/N/C/N/H hydrogen-bridged chelate rings that inter­act with phenyl groups in the 153 compounds deposited to the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) is equal to 0.78 (5) (Okuniewski et al., 2015[Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47-57.]).

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 1.9 2.633 (3) 143
N1—H1⋯S1i 0.86 2.79 3.485 (3) 139
C14—H14⋯O2ii 0.93 2.52 3.453 (4) 178
C22—H22⋯S1 0.93 2.54 3.203 (3) 129
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+2, y+1, z.

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.2 2.977 (3) 151
N2—H2⋯O1 0.86 1.94 2.632 (3) 137
O2—H2A⋯S1ii 0.82 2.66 3.242 (3) 130
N3—H3⋯O4i 0.86 2.21 2.999 (4) 153
N4—H4⋯O3 0.86 1.96 2.640 (4) 135
O4—H4A⋯S3ii 0.82 2.41 3.161 (3) 152
C15—H15⋯O1i 0.93 2.53 3.265 (4) 136
C36—H36⋯O4i 0.93 2.57 3.412 (5) 150
C21—H21B⋯S3ii 0.97 2.98 3.844 (4) 149
C23—H23C⋯S3ii 0.96 2.98 3.842 (4) 150
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The structure of the centrosymmetric dimer found in (I)[link]. Displacement ellipsoids are drawn at the 50% probability level. Selected hydrogen bonds are marked with dashed lines. [Symmetry code: (i) −x + 1, −y + 1, −z.]
[Figure 2]
Figure 2
The structure of the two symmetry-independent mol­ecules found in (II)[link]. Displacement ellipsoids are drawn at the 50% probability level. Selected hydrogen bonds are marked with dashed lines.

Compound (I)[link] is a derivative of 1-benzoyl-3-phenyl­thio­urea (Yamin & Yusof, 2003[Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151-o152.]) substituted with two meth­oxy groups (Fig. 1[link]). It crystallizes in the space group P[\overline{1}] with one mol­ecule in the asymmetric unit. The (MeO)2C6H3NHC(S)NHC(O) fragment is almost flat (the maximum distances from the mean plane d are 0.26 Å for atoms S1 and C3). The planarity of this fragment is reinforced by intra­molecular a C22—H22⋯S1 inter­action [motif S(6)]. The phenyl ring of the benzoyl group is twisted; it forms a dihedral angle of 31° with the mean plane of the thio­urea core, i.e. the NC(S)N fragment.

The mol­ecules are connected via N1—H1⋯S1i hydrogen bonds (Fig. 3[link] and Table 2[link]) into centrosymmetric dimers with an R22(8) motif. Additionally, quite strong C14—H14⋯O2ii inter­actions connect mol­ecules into chains with a C(13) motif extending in the [210] direction.

[Figure 3]
Figure 3
Hydrogen bonds, C—H⋯(O,S) inter­actions and selected motifs present in the structures of (I)[link] (top) and (II)[link] (bottom), viewed in the [0[\overline{1}]0] direction. In the case of (II)[link], the background colours correspond to the colour codes of symmetrically independent mol­ecules (for designations, see Fig. 2[link]).

The quasi-aromatic pseudo-rings form inter­actions with phenyl groups [CgS1⋯Cg1iii (d = 4.10 Å and α = 30°) and CgS1⋯Cg2iv (d = 3.83 Å and α = 8°); symmetry codes: (iii) x − 1, y, z; (iv) x + 1, y, z], so mol­ecules are stacked one over another. These inter­actions are depicted in Fig. 4[link].

[Figure 4]
Figure 4
Stacking-type inter­actions found in (I)[link] and (II)[link]. Ordinary aromatic rings are drawn as gray planes, while quasiaromatic pseudo-rings are coloured green. Centroid–centroid distances are marked with bold dashed lines and their values are provided in Å.

Compound (II)[link] is a hy­droxy derivative of 1-benzoyl-3-propyl­thio­urea (Dago et al., 1989[Dago, A., Shepelev, Yu., Fajardo, F., Alvarez, F. & Pomés, R. (1989). Acta Cryst. C45, 1192-1194.]). Its mol­ecules are chiral, but the crystal is formed out of a racemic mixture that crystallizes in the centrosymmetric space group P21/c. In the asymmetric unit, there are two similar mol­ecules (mol­ecule A refers to the mol­ecule containing atom S1, while the second mol­ecule, containing atom S3, will be referred to as B; see: Fig. 2[link]). The planes of the phenyl rings in both mol­ecules are at different dihedral angles in relation to the mean plane of the thio­urea core, viz. ca 19° for mol­ecule A and ca 5° for mol­ecule B. If these two mol­ecules are superimposed with respect to the NC(S)NC(O) group (r.m.s. deviation = 0.033 Å), then it is revealed that the conformations of the CH2CH(OH)CH3 groups are also slightly different.

Strong hydrogen-bond donor and acceptor –OH groups participate in the formation of inter­molecular hydrogen bonds that join the mol­ecules of (II)[link] into chains extending in the [001] direction with a C(7)R22(6) motif: N1—H1⋯O2i and O2—H2A⋯S1ii for mol­ecule A and N3—H3⋯O4i and O4—H4A⋯S3ii for mol­ecule B (Table 3[link]). Hydrogen bonds are formed only within the symmetry equivalents of mol­ecules, so that two types of chains can be distinguished, i.e.AAA⋯ and ⋯BBB⋯ (Fig. 3[link]), both of [\scr p]c11 (R5) rod group symmetry (Inter­national Tables for Crystallography, 2010[International Tables for Crystallography (2010). Vol. E, Subperiodic Groups, edited by V. Kopský & D. B. Litvin, 2nd ed. Chichester: John Wiley and Sons.]).

Chains of B mol­ecules are additionally stabilized by a C36—H36⋯O4i inter­action, while a greater twist of the phenyl ring in mol­ecule A causes the corresponding inter­action to be insignificant. On the other hand, in the chains of A mol­ecules, the C15—H15⋯O1i inter­action is stronger than the corresponding inter­action in mol­ecule B (Fig. 3[link]). Overall, mol­ecules B form stronger inter­actions with each other (−23.7 kJ mol−1) than do mol­ecules A (−22.5 kJ mol−1). The energies were estimated as counterpoise BSSE-corrected (Boys & Bernardi, 1970[Boys, S. F. & Bernardi, F. (1970). Mol. Phys. 19, 553-566.]) differences of half of the energy of the dimer and the energy of isolated mol­ecules, with normalized C—H (1.089 Å), N—H (1.015 Å) and O—H (0.993 Å) bond lengths, in GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, Connecticut, USA. https://www.gaussian.com.]) at the MP2/6-31+G(d,p) level of theory. Chains A and B are inter­connected by weak acceptor-bifurcated inter­actions, i.e. C21—H21B⋯S3ii and C23—H23C⋯S3ii (Fig. 3[link] and Table 3[link]).

In (II)[link], like in (I)[link], quasi-aromatic pseudo-rings are involved in all parallel-displaced stacking-type inter­actions with phenyl rings [CgS1⋯Cg1iii (d = 3.91 Å and α = 18°) and CgS3⋯Cg3iv (d = 3.68 Å and α = 8°); symmetry codes: (iii) −x, −y + 1, −z + 1; (iv) −x + 1, −y + 2, −z + 1;], but also with each other [CgS1⋯CgS1iv (d = 4.06 Å, α = 0° and slippage = 2.52 Å), CgS3⋯CgS3v (d = 4.00 Å, α = 0° and slippage = 2.14 Å); symmetry code: (v) −x + 1, −y + 1, −z + 1]. In the latter two inter­actions, the mid-points of the centroid–centroid distances are the centres of inversion. Stacking inter­actions for (II)[link] are depicted in Fig. 4[link].

4. Conclusions

Both achiral (I)[link] and racemic (II)[link] crystallize in centrosymmetric space groups. Intra­molecular N—H⋯O hydrogen bonds allow the formation of quasi-aromatic pseudo-rings. In both (I)[link] and (II)[link], all the stacking inter­actions involve such rings (they inter­act with phenyl rings or with each other). Weak C—H⋯(O,S) inter­actions also play an important role in the formation of the three-dimensional structures of the crystals. Our results are further confirmation that hydrogen-bridged chelate rings are formed readily within 3-monosubstituted 1-benzoyl­thio­ureas and that such quasi-aromatic rings have a significant contribution to the stabilization of the crystal structures.

Supporting information


Computing details top

For both compounds, data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS2016 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

(I) N-[(3,4-Dimethoxyphenyl)carbamothioyl]benzamide top
Crystal data top
C16H16N2O3SZ = 2
Mr = 316.37F(000) = 332
Triclinic, P1Dx = 1.356 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5450 (4) ÅCell parameters from 1629 reflections
b = 9.3526 (6) Åθ = 2.7–26.2°
c = 12.7820 (8) ŵ = 0.22 mm1
α = 94.047 (5)°T = 293 K
β = 93.143 (5)°Prism, colourless
γ = 95.735 (5)°0.73 × 0.41 × 0.27 mm
V = 775.05 (8) Å3
Data collection top
Agilent Xcalibur (Sapphire2, large Be window)
diffractometer
3039 independent reflections
Graphite monochromator1883 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.026
ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2013), based on expressions derived by Clark & Reid (1995)]
h = 68
Tmin = 0.923, Tmax = 0.959k = 1110
4858 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.209 w = 1/[σ2(Fo2) + (0.1069P)2 + 0.0208P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3039 reflectionsΔρmax = 0.59 e Å3
201 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32892 (14)0.32856 (10)0.05322 (7)0.0746 (4)
C10.4131 (5)0.4076 (3)0.1704 (2)0.0525 (8)
N10.5964 (4)0.4994 (3)0.1768 (2)0.0573 (7)
H10.6577930.5046030.1192020.069*
C100.6924 (5)0.5822 (3)0.2617 (3)0.0532 (8)
O10.6254 (3)0.5821 (3)0.34928 (18)0.0712 (7)
C110.8843 (4)0.6730 (3)0.2414 (2)0.0539 (8)
C120.9348 (5)0.7985 (4)0.3058 (3)0.0662 (10)
H120.8474060.8236650.3574320.079*
C131.1126 (6)0.8867 (4)0.2942 (3)0.0781 (11)
H131.1450540.9707340.3377920.094*
C141.2425 (5)0.8490 (5)0.2174 (3)0.0797 (12)
H141.3630190.9079380.2095130.096*
C151.1947 (5)0.7253 (4)0.1527 (3)0.0740 (11)
H151.2826630.7010040.1010480.089*
C161.0151 (5)0.6361 (4)0.1640 (3)0.0635 (9)
H160.9827910.5523920.1200940.076*
N20.3251 (4)0.3968 (3)0.26128 (19)0.0560 (7)
H20.3971180.4420460.3139600.067*
C210.1357 (4)0.3255 (3)0.2886 (2)0.0502 (8)
C220.0066 (5)0.2298 (3)0.2205 (2)0.0544 (8)
H220.0431780.2075740.1524550.065*
C230.1769 (5)0.1676 (3)0.2545 (2)0.0539 (8)
C240.2322 (5)0.2002 (3)0.3560 (3)0.0537 (8)
C250.1021 (5)0.2949 (4)0.4232 (3)0.0621 (9)
H250.1381850.3175990.4912890.075*
C260.0820 (5)0.3560 (4)0.3894 (3)0.0597 (9)
H260.1699780.4182720.4354040.072*
C20.2492 (6)0.0273 (4)0.0926 (3)0.0800 (12)
H2A0.2350140.1092370.0513990.120*
H2B0.3513840.0442830.0585490.120*
H2C0.1198440.0124690.0992790.120*
O20.3101 (3)0.0704 (3)0.19344 (18)0.0705 (7)
C30.4927 (6)0.1837 (5)0.4788 (3)0.0822 (12)
H3A0.4027700.1599680.5354110.123*
H3B0.6287170.1374930.4852110.123*
H3C0.4965860.2862050.4815800.123*
O30.4187 (3)0.1352 (3)0.38104 (18)0.0715 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0804 (7)0.0811 (7)0.0543 (6)0.0276 (5)0.0185 (5)0.0112 (5)
C10.0475 (18)0.0529 (19)0.056 (2)0.0036 (14)0.0098 (14)0.0031 (15)
N10.0499 (15)0.0656 (18)0.0532 (16)0.0093 (13)0.0125 (12)0.0025 (13)
C100.0481 (18)0.059 (2)0.0511 (19)0.0005 (15)0.0031 (14)0.0002 (15)
O10.0658 (15)0.0902 (18)0.0508 (14)0.0209 (12)0.0091 (11)0.0049 (12)
C110.0447 (18)0.059 (2)0.056 (2)0.0046 (14)0.0013 (14)0.0027 (15)
C120.063 (2)0.071 (2)0.061 (2)0.0083 (18)0.0038 (16)0.0002 (17)
C130.073 (3)0.073 (3)0.081 (3)0.018 (2)0.010 (2)0.009 (2)
C140.051 (2)0.091 (3)0.093 (3)0.021 (2)0.002 (2)0.026 (2)
C150.050 (2)0.091 (3)0.083 (3)0.0012 (19)0.0157 (18)0.021 (2)
C160.052 (2)0.067 (2)0.071 (2)0.0025 (16)0.0069 (16)0.0079 (18)
N20.0535 (15)0.0650 (18)0.0453 (15)0.0131 (13)0.0068 (12)0.0015 (12)
C210.0500 (18)0.0528 (19)0.0462 (18)0.0044 (14)0.0094 (13)0.0029 (13)
C220.0534 (18)0.063 (2)0.0443 (17)0.0072 (15)0.0099 (14)0.0006 (14)
C230.0507 (19)0.0526 (19)0.056 (2)0.0052 (14)0.0073 (14)0.0011 (15)
C240.0498 (18)0.0535 (19)0.059 (2)0.0003 (15)0.0186 (15)0.0057 (15)
C250.071 (2)0.061 (2)0.055 (2)0.0026 (17)0.0228 (16)0.0009 (16)
C260.062 (2)0.063 (2)0.0510 (19)0.0061 (16)0.0082 (15)0.0026 (15)
C20.075 (2)0.097 (3)0.059 (2)0.022 (2)0.0073 (18)0.016 (2)
O20.0577 (14)0.0827 (17)0.0639 (15)0.0223 (12)0.0134 (11)0.0108 (12)
C30.066 (2)0.108 (3)0.074 (3)0.001 (2)0.0301 (19)0.005 (2)
O30.0632 (15)0.0813 (17)0.0683 (16)0.0092 (12)0.0278 (12)0.0020 (12)
Geometric parameters (Å, º) top
S1—C11.663 (3)C21—C261.372 (4)
C1—N21.330 (4)C21—C221.389 (4)
C1—N11.399 (4)C22—C231.387 (4)
N1—C101.372 (4)C22—H220.9300
N1—H10.8600C23—O21.365 (4)
C10—O11.224 (4)C23—C241.387 (4)
C10—C111.490 (4)C24—O31.373 (3)
C11—C121.386 (4)C24—C251.382 (5)
C11—C161.391 (4)C25—C261.386 (4)
C12—C131.379 (5)C25—H250.9300
C12—H120.9300C26—H260.9300
C13—C141.384 (6)C2—O21.414 (4)
C13—H130.9300C2—H2A0.9600
C14—C151.373 (5)C2—H2B0.9600
C14—H140.9300C2—H2C0.9600
C15—C161.392 (4)C3—O31.426 (4)
C15—H150.9300C3—H3A0.9600
C16—H160.9300C3—H3B0.9600
N2—C211.421 (3)C3—H3C0.9600
N2—H20.8600
N2—C1—N1114.3 (3)C26—C21—N2116.0 (3)
N2—C1—S1127.9 (2)C22—C21—N2124.3 (3)
N1—C1—S1117.8 (2)C23—C22—C21119.7 (3)
C10—N1—C1129.3 (3)C23—C22—H22120.1
C10—N1—H1115.3C21—C22—H22120.1
C1—N1—H1115.3O2—C23—C22123.4 (3)
O1—C10—N1122.4 (3)O2—C23—C24116.1 (3)
O1—C10—C11121.6 (3)C22—C23—C24120.4 (3)
N1—C10—C11116.1 (3)O3—C24—C25124.8 (3)
C12—C11—C16119.3 (3)O3—C24—C23115.8 (3)
C12—C11—C10117.2 (3)C25—C24—C23119.4 (3)
C16—C11—C10123.5 (3)C24—C25—C26120.1 (3)
C13—C12—C11120.9 (3)C24—C25—H25119.9
C13—C12—H12119.5C26—C25—H25119.9
C11—C12—H12119.5C21—C26—C25120.6 (3)
C12—C13—C14119.5 (4)C21—C26—H26119.7
C12—C13—H13120.3C25—C26—H26119.7
C14—C13—H13120.3O2—C2—H2A109.5
C15—C14—C13120.4 (3)O2—C2—H2B109.5
C15—C14—H14119.8H2A—C2—H2B109.5
C13—C14—H14119.8O2—C2—H2C109.5
C14—C15—C16120.3 (3)H2A—C2—H2C109.5
C14—C15—H15119.9H2B—C2—H2C109.5
C16—C15—H15119.9C23—O2—C2117.0 (2)
C11—C16—C15119.6 (3)O3—C3—H3A109.5
C11—C16—H16120.2O3—C3—H3B109.5
C15—C16—H16120.2H3A—C3—H3B109.5
C1—N2—C21132.8 (3)O3—C3—H3C109.5
C1—N2—H2113.6H3A—C3—H3C109.5
C21—N2—H2113.6H3B—C3—H3C109.5
C26—C21—C22119.7 (3)C24—O3—C3116.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.902.633 (3)143
N1—H1···S1i0.862.793.485 (3)139
C22—H22···S10.932.543.203 (3)129
C14—H14···O2ii0.932.523.453 (4)178
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z.
(II) N-[(2-Hydroxypropyl)carbamothioyl]benzamide top
Crystal data top
C11H14N2O2SF(000) = 1008
Mr = 238.3Dx = 1.32 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2940 reflections
a = 22.4150 (17) Åθ = 3.0–27.0°
b = 8.1479 (5) ŵ = 0.26 mm1
c = 13.4592 (9) ÅT = 293 K
β = 102.618 (7)°Prism, colourless
V = 2398.8 (3) Å30.52 × 0.46 × 0.14 mm
Z = 8
Data collection top
Agilent Xcalibur (Sapphire2, large Be window)
diffractometer
4710 independent reflections
Graphite monochromator2847 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.038
ω scansθmax = 26°, θmin = 2.7°
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2013), based on expressions derived by Clark & Reid (1995)]
h = 2726
Tmin = 0.911, Tmax = 0.971k = 105
8922 measured reflectionsl = 1216
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.220 w = 1/[σ2(Fo2) + (0.1058P)2 + 0.9789P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4710 reflectionsΔρmax = 0.71 e Å3
293 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19684 (4)0.87980 (15)0.50453 (8)0.0834 (4)
C10.13064 (15)0.8780 (4)0.5415 (2)0.0551 (8)
N10.08038 (11)0.7993 (3)0.47955 (18)0.0544 (6)
H10.0863820.7575290.4238760.065*
C100.02251 (13)0.7809 (4)0.4973 (2)0.0536 (7)
O10.00807 (11)0.8385 (3)0.57212 (18)0.0733 (7)
C110.02165 (14)0.6848 (4)0.4201 (2)0.0513 (7)
C120.07310 (15)0.6253 (4)0.4510 (3)0.0628 (9)
H120.0785470.6480680.5161160.075*
C130.11598 (17)0.5328 (4)0.3850 (3)0.0715 (10)
H130.1500340.4923470.4059360.086*
C140.10823 (17)0.5005 (4)0.2880 (3)0.0694 (9)
H140.1370380.4377500.2438000.083*
C150.05831 (17)0.5604 (4)0.2565 (3)0.0691 (9)
H150.0535700.5393440.1907480.083*
C160.01498 (16)0.6522 (4)0.3224 (2)0.0601 (8)
H160.0189030.6922690.3007050.072*
N20.12153 (12)0.9439 (3)0.62596 (19)0.0591 (7)
H20.0857670.9341340.6388070.071*
C210.16758 (15)1.0322 (4)0.6993 (2)0.0606 (8)
H21A0.1740531.1395700.6723340.073*
H21B0.2059560.9727130.7107850.073*
C220.14791 (16)1.0517 (4)0.7982 (2)0.0632 (9)
H220.1083361.1080480.7826860.076*
C230.19148 (17)1.1614 (5)0.8704 (3)0.0723 (10)
H23A0.1794881.1660570.9346290.108*
H23B0.1904531.2698220.8421650.108*
H23C0.2321871.1181070.8803910.108*
O20.13845 (13)0.9014 (3)0.8418 (2)0.0840 (8)
H2A0.1715190.8611590.8689990.126*
S30.31682 (5)0.65289 (16)0.35460 (8)0.0899 (4)
C30.38036 (16)0.6539 (4)0.4467 (2)0.0604 (8)
N30.43299 (12)0.7287 (3)0.42895 (19)0.0606 (7)
H30.4292050.7762660.3708660.073*
C300.49006 (15)0.7366 (4)0.4918 (2)0.0583 (8)
O30.50078 (11)0.6740 (4)0.57620 (19)0.0813 (8)
C310.53756 (15)0.8255 (4)0.4511 (2)0.0577 (8)
C320.59318 (17)0.8526 (5)0.5187 (3)0.0763 (11)
H320.5990710.8153940.5854560.092*
C330.63991 (19)0.9348 (5)0.4869 (3)0.0855 (12)
H330.6769640.9532830.5323250.103*
C340.63133 (18)0.9883 (5)0.3887 (3)0.0778 (11)
H340.6625251.0443060.3675950.093*
C350.57669 (18)0.9599 (5)0.3207 (3)0.0820 (11)
H350.5712950.9953350.2536410.098*
C360.53014 (16)0.8791 (5)0.3522 (3)0.0730 (10)
H360.4933140.8604390.3061770.088*
N40.38426 (13)0.5899 (3)0.5372 (2)0.0658 (8)
H40.4190020.5919000.5797200.079*
C410.33257 (17)0.5161 (5)0.5688 (3)0.0723 (10)
H41A0.3171940.4252660.5238170.087*
H41B0.3000980.5964510.5632760.087*
C420.34964 (17)0.4567 (5)0.6734 (3)0.0744 (10)
H420.3795160.3686190.6741850.089*
C430.29559 (19)0.3810 (6)0.7075 (3)0.0959 (14)
H43A0.3084360.3427230.7763530.144*
H43B0.2800740.2904450.6638560.144*
H43C0.2640750.4619390.7039960.144*
O40.37882 (12)0.5781 (4)0.7412 (2)0.0909 (9)
H4A0.3535210.6457070.7506450.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0569 (6)0.1220 (9)0.0779 (7)0.0110 (5)0.0288 (5)0.0136 (6)
C10.0531 (18)0.0614 (18)0.0516 (17)0.0057 (15)0.0131 (14)0.0080 (14)
N10.0511 (15)0.0676 (16)0.0471 (13)0.0035 (13)0.0163 (12)0.0003 (12)
C100.0463 (17)0.0658 (18)0.0505 (16)0.0060 (15)0.0145 (14)0.0035 (14)
O10.0551 (14)0.1070 (18)0.0625 (14)0.0042 (13)0.0234 (11)0.0203 (13)
C110.0478 (17)0.0562 (17)0.0502 (16)0.0087 (14)0.0115 (13)0.0036 (13)
C120.0552 (19)0.077 (2)0.0576 (19)0.0030 (17)0.0150 (16)0.0076 (16)
C130.060 (2)0.074 (2)0.080 (2)0.0027 (18)0.0150 (19)0.0137 (19)
C140.067 (2)0.061 (2)0.074 (2)0.0034 (18)0.0016 (18)0.0027 (17)
C150.079 (2)0.071 (2)0.059 (2)0.001 (2)0.0166 (18)0.0064 (17)
C160.064 (2)0.0615 (18)0.0571 (18)0.0009 (16)0.0192 (16)0.0009 (15)
N20.0488 (15)0.0744 (17)0.0548 (15)0.0031 (13)0.0130 (12)0.0024 (13)
C210.0554 (19)0.073 (2)0.0521 (17)0.0063 (16)0.0102 (15)0.0043 (15)
C220.062 (2)0.069 (2)0.0584 (19)0.0039 (17)0.0130 (16)0.0015 (16)
C230.066 (2)0.085 (2)0.063 (2)0.0008 (19)0.0075 (17)0.0092 (18)
O20.0850 (18)0.0949 (19)0.0745 (17)0.0147 (16)0.0226 (15)0.0151 (14)
S30.0696 (7)0.1317 (10)0.0633 (6)0.0337 (6)0.0031 (5)0.0118 (6)
C30.062 (2)0.0653 (19)0.0564 (19)0.0084 (16)0.0195 (16)0.0024 (15)
N30.0547 (16)0.0760 (18)0.0521 (15)0.0081 (14)0.0137 (12)0.0068 (13)
C300.0555 (19)0.0667 (19)0.0538 (18)0.0005 (16)0.0141 (15)0.0007 (16)
O30.0641 (16)0.113 (2)0.0638 (15)0.0126 (14)0.0075 (12)0.0215 (14)
C310.0533 (19)0.0629 (19)0.0570 (18)0.0002 (15)0.0122 (15)0.0021 (15)
C320.068 (2)0.098 (3)0.062 (2)0.021 (2)0.0129 (18)0.0093 (19)
C330.069 (2)0.106 (3)0.081 (3)0.028 (2)0.015 (2)0.015 (2)
C340.069 (2)0.070 (2)0.100 (3)0.0127 (19)0.030 (2)0.003 (2)
C350.069 (2)0.097 (3)0.083 (3)0.005 (2)0.022 (2)0.026 (2)
C360.0507 (19)0.090 (2)0.076 (2)0.0053 (19)0.0087 (17)0.0187 (19)
N40.0625 (17)0.0811 (19)0.0542 (16)0.0181 (15)0.0138 (13)0.0022 (13)
C410.068 (2)0.091 (2)0.059 (2)0.022 (2)0.0153 (17)0.0016 (18)
C420.067 (2)0.097 (3)0.061 (2)0.018 (2)0.0192 (17)0.003 (2)
C430.074 (3)0.144 (4)0.072 (3)0.028 (3)0.022 (2)0.017 (2)
O40.0747 (18)0.133 (3)0.0643 (16)0.0221 (17)0.0133 (14)0.0206 (16)
Geometric parameters (Å, º) top
S1—C11.665 (3)S3—C31.671 (4)
C1—N21.313 (4)C3—N41.311 (4)
C1—N11.402 (4)C3—N31.394 (4)
N1—C101.378 (4)N3—C301.373 (4)
N1—H10.8600N3—H30.8600
C10—O11.217 (4)C30—O31.220 (4)
C10—C111.491 (4)C30—C311.488 (4)
C11—C161.382 (4)C31—C361.376 (5)
C11—C121.395 (4)C31—C321.391 (5)
C12—C131.381 (5)C32—C331.387 (5)
C12—H120.9300C32—H320.9300
C13—C141.379 (5)C33—C341.364 (6)
C13—H130.9300C33—H330.9300
C14—C151.370 (5)C34—C351.379 (5)
C14—H140.9300C34—H340.9300
C15—C161.383 (5)C35—C361.377 (5)
C15—H150.9300C35—H350.9300
C16—H160.9300C36—H360.9300
N2—C211.453 (4)N4—C411.449 (4)
N2—H20.8600N4—H40.8600
C21—C221.500 (4)C41—C421.459 (5)
C21—H21A0.9700C41—H41A0.9700
C21—H21B0.9700C41—H41B0.9700
C22—O21.394 (4)C42—O41.407 (4)
C22—C231.511 (5)C42—C431.517 (5)
C22—H220.9800C42—H420.9800
C23—H23A0.9600C43—H43A0.9600
C23—H23B0.9600C43—H43B0.9600
C23—H23C0.9600C43—H43C0.9600
O2—H2A0.8200O4—H4A0.8200
N2—C1—N1116.4 (3)N4—C3—N3116.5 (3)
N2—C1—S1124.9 (3)N4—C3—S3124.1 (3)
N1—C1—S1118.7 (2)N3—C3—S3119.4 (2)
C10—N1—C1127.7 (3)C30—N3—C3128.7 (3)
C10—N1—H1116.1C30—N3—H3115.7
C1—N1—H1116.1C3—N3—H3115.7
O1—C10—N1122.2 (3)O3—C30—N3121.5 (3)
O1—C10—C11121.5 (3)O3—C30—C31122.3 (3)
N1—C10—C11116.3 (3)N3—C30—C31116.2 (3)
C16—C11—C12119.0 (3)C36—C31—C32118.9 (3)
C16—C11—C10124.8 (3)C36—C31—C30124.5 (3)
C12—C11—C10116.2 (3)C32—C31—C30116.6 (3)
C13—C12—C11120.2 (3)C33—C32—C31120.3 (4)
C13—C12—H12119.9C33—C32—H32119.9
C11—C12—H12119.9C31—C32—H32119.9
C14—C13—C12119.9 (3)C34—C33—C32119.8 (4)
C14—C13—H13120.0C34—C33—H33120.1
C12—C13—H13120.0C32—C33—H33120.1
C15—C14—C13120.3 (3)C33—C34—C35120.4 (4)
C15—C14—H14119.8C33—C34—H34119.8
C13—C14—H14119.8C35—C34—H34119.8
C14—C15—C16120.1 (3)C36—C35—C34119.9 (4)
C14—C15—H15120.0C36—C35—H35120.0
C16—C15—H15120.0C34—C35—H35120.0
C11—C16—C15120.5 (3)C31—C36—C35120.7 (3)
C11—C16—H16119.8C31—C36—H36119.7
C15—C16—H16119.8C35—C36—H36119.7
C1—N2—C21124.7 (3)C3—N4—C41122.9 (3)
C1—N2—H2117.7C3—N4—H4118.6
C21—N2—H2117.7C41—N4—H4118.6
N2—C21—C22110.6 (3)N4—C41—C42111.3 (3)
N2—C21—H21A109.5N4—C41—H41A109.4
C22—C21—H21A109.5C42—C41—H41A109.4
N2—C21—H21B109.5N4—C41—H41B109.4
C22—C21—H21B109.5C42—C41—H41B109.4
H21A—C21—H21B108.1H41A—C41—H41B108.0
O2—C22—C21112.4 (3)O4—C42—C41112.3 (3)
O2—C22—C23112.7 (3)O4—C42—C43112.2 (3)
C21—C22—C23111.1 (3)C41—C42—C43111.6 (3)
O2—C22—H22106.7O4—C42—H42106.7
C21—C22—H22106.7C41—C42—H42106.7
C23—C22—H22106.7C43—C42—H42106.7
C22—C23—H23A109.5C42—C43—H43A109.5
C22—C23—H23B109.5C42—C43—H43B109.5
H23A—C23—H23B109.5H43A—C43—H43B109.5
C22—C23—H23C109.5C42—C43—H43C109.5
H23A—C23—H23C109.5H43A—C43—H43C109.5
H23B—C23—H23C109.5H43B—C43—H43C109.5
C22—O2—H2A109.5C42—O4—H4A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.202.977 (3)151
N2—H2···O10.861.942.632 (3)137
O2—H2A···S1ii0.822.663.242 (3)130
N3—H3···O4i0.862.212.999 (4)153
N4—H4···O30.861.962.640 (4)135
O4—H4A···S3ii0.822.413.161 (3)152
C15—H15···O1i0.932.533.265 (4)136
C16—H16···O2i0.932.723.420 (5)132
C35—H35···O3i0.932.913.531 (5)126
C36—H36···O4i0.932.573.412 (5)150
C21—H21B···S3ii0.972.983.844 (3)149
C23—H23C···S3ii0.962.983.842 (4)150
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.
 

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Santa Clara, USA.  Google Scholar
First citationAly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E.-A. F. (2007). J. Sulfur Chem. 28, 73–93.  CrossRef CAS Google Scholar
First citationBoys, S. F. & Bernardi, F. (1970). Mol. Phys. 19, 553–566.  CrossRef CAS Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDago, A., Shepelev, Yu., Fajardo, F., Alvarez, F. & Pomés, R. (1989). Acta Cryst. C45, 1192–1194.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDouglass, I. B. & Dains, F. B. (1934). J. Am. Chem. Soc. 56, 719–721.  CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, Connecticut, USA. https://www.gaussian.comGoogle Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationInternational Tables for Crystallography (2010). Vol. E, Subperiodic Groups, edited by V. Kopský & D. B. Litvin, 2nd ed. Chichester: John Wiley and Sons.  Google Scholar
First citationKarabıyık, H., Karabıyık, H. & Ocak İskeleli, N. (2012). Acta Cryst. B68, 71–79.  CSD CrossRef IUCr Journals Google Scholar
First citationKrygowski, T. M. (1993). J. Chem. Inf. Model. 33, 70–78.  CrossRef CAS Google Scholar
First citationMietlarek-Kropidłowska, A., Chojnacki, J. & Becker, B. (2012). Acta Cryst. E68, o2521.  CSD CrossRef IUCr Journals Google Scholar
First citationOkuniewski, A., Chojnacki, J. & Becker, B. (2011a). Acta Cryst. E67, o55.  CSD CrossRef IUCr Journals Google Scholar
First citationOkuniewski, A., Chojnacki, J. & Becker, B. (2012). Acta Cryst. E68, o619–o620.  CSD CrossRef IUCr Journals Google Scholar
First citationOkuniewski, A., Dąbrowska, A. & Chojnacki, J. (2011b). Acta Cryst. E67, o925.  CSD CrossRef IUCr Journals Google Scholar
First citationOkuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaeed, A., Flörke, U. & Erben, M. F. (2013). J. Sulfur Chem. 35, 318–355.  CrossRef Google Scholar
First citationSaeed, A., Qamar, R., Fattah, T. A., Flörke, U. & Erben, M. F. (2016). Res. Chem. Intermed. doi:10.1007s11164-016-2811-5.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoldu, M. G. & Dillen, J. (2008). Theor. Chem. Acc. 121, 71–82.  CrossRef CAS Google Scholar
First citationYamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151–o152.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds