research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Three tetra­cyclic dibenzoazepine derivatives exhibiting different mol­ecular conformations, different patterns of inter­molecular hydrogen bonding and different modes of supra­molecular aggregation

CROSSMARK_Color_square_no_text.svg

aLaboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678 Bucaramanga, Colombia, bDepartamento de Química, Universidad de los Andes, Carrera 1 No. 18A-12, Bogotá, Colombia, cDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

Edited by A. L. Spek, Utrecht University, The Netherlands (Received 7 November 2016; accepted 11 November 2016; online 1 January 2017)

The biological potential of compounds of the tricyclic dibenzo[b,e]azepine system has resulted in considerable synthetic efforts to develop efficient methods for the synthesis of new derivatives of this kind. (9RS,15RS)-9-Ethyl-11-methyl-9,13b-di­hydro­dibenzo[c,f]thia­zolo[3,2-a]azepin-3(2H)-one, C19H19NOS, (I), crystallizes as a kryptoracemate with Z′ = 2 in the space group P21, with one mol­ecule each of the (9R,15R) and (9S,15S) configurations in the asymmetric unit, while (9RS,15RS)-9-ethyl-7,12-dimethyl-9,13b-di­hydro­di­benzo[c,f]thia­zolo[3,2-a]aze­pin-3(2H)-one, C20H21NOS, (II), crystallizes with Z′ = 1 in the space group C2/c. Ethyl (13RS)-2-chloro-13-ethyl-4-oxo-8,13-di­hydro-4H-benzo[5,6]azepino[3,2,1-ij]quinoline-5-carboxyl­ate, C22H20ClNO3, (III), exhibits enanti­omeric disorder in the space group P[\overline{1}] such that the reference site is occupied by the 13R and 13S enanti­omers, with occupancies of 0.900 (6) and 0.100 (6). In each of the two independent mol­ecules in (I), the five-membered ring adopts an envelope conformation, but the corresponding ring in (II) adopts a half-chair conformation, while the six-membered ring in the major form of (III) adopts a twist-boat conformation. The conformation of the seven-membered ring in each of (I), (II) and the major form of (III) approximates to the twist-boat form. The mol­ecules of compound (I) are linked by two C—H⋯O hydrogen bonds to form two independent anti­parallel C(5) chains, with each type containing only one enanti­omer. These chains are linked into sheets by two C—H⋯π(arene) hydrogen bonds, in which the two donors are both provided by the (9R,15R) enanti­omer and the two acceptor arene rings form part of a mol­ecule of (9S,15S) configuration, precluding any additional crystallographic symmetry. The mol­ecules of compound (II) are linked by inversion-related C—H⋯π(arene) hydrogen bonds to form isolated cyclic centrosymmetric dimers. The mol­ecules of compound (III) are linked into cyclic centrosymmetric dimers by C—H⋯O hydrogen bonds and these dimers are linked into chains by a ππ stacking inter­action. Comparisons are made with some related structures.

1. Introduction

The tricyclic dibenzo[b,e]azepine system constitutes a class of nitro­gen-containing heterocyclic compounds whose chemistry continues to be of inter­est, because of the action of com­pounds containing this system as analgesics and as anti­cancer, anti­depressive, anti­histaminic, anti­muscarinic and anti­psy­chotic agents (Al-Qawasmeh et al., 2009[Al-Qawasmeh, R. A., Lee, Y., Cao, M.-Y., Gu, X., Viau, S., Lightfoot, J., Wright, J. A. & Young, A. H. (2009). Bioorg. Med. Chem. Lett. 19, 104-107.]). Examples of such compounds in current clinical use include mianserin, racemic 2-methyl-1,2,3,4,10,14b-hexa­hydro­dibenzo[c,f]pyra­zino­[1,2-a]azepine, which is a potent anti­depressant (Dinesh et al., 2014[Dinesh, N., Kaur, P. K., Swamy, K. K. & Singh, S. (2014). Exp. Parasitol. 144, 84-90.]), and epinastine, racemic 3-amino-9,13b-di­hydro-1H-dibenz[c,f]imidazo[1,5-a]azepine, which is an anti­histaminic used in the treatment of allergic conjunctivitis (Liu et al., 2004[Liu, K. K.-C., Li, J. & Sakya, S. (2004). Mini Rev. Med. Chem. 4, 1105-1125.]). The biological potential of these compounds has resulted in considerable synthetic efforts to develop efficient methods for the synthesis of new derivatives of this kind (Andrés et al., 2002[Andrés, J. I., Alonso, J. M., Fernández, J., Iturrino, L., Martínez, P., Meert, T. F. & Sipido, V. K. (2002). Bioorg. Med. Chem. Lett. 12, 3573-3577.]; Stappers et al., 2002[Stappers, F., Broeckx, R., Leurs, S., Van Den Bergh, L., Agten, J., Lambrechts, A., Van den Heuvel, D. & De Smaele, D. (2002). Org. Process Res. Dev. 6, 911-914.]; Wikström et al., 2002[Wikström, H. V., Mensonides-Harsema, M. M., Cremers, T. I. F. H., Moltzen, E. K. & Arnt, J. (2002). J. Med. Chem. 45, 3280-3285.]).

[Scheme 1]

In this context, and as part of our own inter­est in the identification of other mol­ecular entities with pharmacological potential, we have for several years studied the chemistry of the synthetically available di­hydro­dibenzo[b,e]azepines (Palma et al., 2004[Palma, A., Barajas, J. J., Kouznetsov, V. V., Stashenko, E., Bahsas, A. & Amaro-Luis, J. (2004). Synlett, pp. 2721-2724.]) as building blocks for the construction of novel fused tetra­cyclic azepine systems. Accordingly, we have re­ported the synthesis of tetra­hydro­dibenzo[c,f]thia­zolo[3,2-a]azepine derivatives, compounds in which the dibenzo[b,e]aze­pine nucleus is fused to a thia­zolidin-4-one ring (Palma et al., 2010[Palma, A., Galeano, N. & Bahsas, A. (2010). Synthesis, pp. 1291-1302.]). We are now developing a simple and efficient synthetic methodology for the preparation of derivatives of the type alkyl 4-oxobenzo[5,6]azepino[3,2,1-ij]quinoline-5-carboxyl­ate. This is a new heterocyclic system in which a benzazepine nucleus is fused to a 4-quinolone system, which is also of great inter­est for both the medicinal chemistry and pharmaceutical industries (Mugnaini et al., 2009[Mugnaini, C., Pasquini, S. & Corelli, F. (2009). Curr. Med. Chem. 16, 1746-1767.]), mainly because of their anti­bacterial activity, the best studied biological property of the so-called fluoro­quinolone anti­biotics.

We report here the mol­ecular and supra­molecular structures of three compounds containing fused tetra­cyclic azepine systems, namely 9-ethyl-11-methyl-9,13b-di­hydro­dibenzo[c,f]thia­­zolo[3,2-a]azepin-3(2H)-one, (I)[link], 9-ethyl-7,12-dimethyl-9,13b-di­hydro­dibenzo[c,f]thia­zolo[3,2-a]azepin-3(2H)-one, (II)[link], and ethyl 2-chloro-13-ethyl-4-oxo-8,13-di­hydro-4H-benzo[5,6]azepino[3,2,1-ij]quinoline-5-carboxyl­ate, (III)[link] (Figs. 1[link]–3[link][link]). Compounds (I)[link] and (II)[link] were synthesized from the corresponding di­hydro­dibenzo[b,e]azepines (A) and (B) (see Scheme 1) according to a previously described procedure (Palma et al., 2010[Palma, A., Galeano, N. & Bahsas, A. (2010). Synthesis, pp. 1291-1302.]), in which the tricyclic precursors (A) and (B) were first subjected to oxidation using pyridinium chloro­chromate, followed by cyclo­condensation with thio­glycolic acid to give (I)[link] and (II)[link]. Compound (III)[link] was synthesized from di­hydro­dibenzo[b,e]azepine (C) employing the modified Gould–Jacobs reaction, in which an alk­oxy­methyl­enemalonate derivative, here diethyl 2-(meth­oxy­methyl­ene)malonate, reacts with the amino group of the precursor with displacement of the eth­oxy unit by the N atom giving the inter­mediate (D), followed by benzannulation to give the quinolone derivative (III)[link] (see Scheme 2).

[Scheme 2]
[Figure 1]
Figure 1
The mol­ecular structures of the two independent mol­ecules of compound (I)[link], showing (a) mol­ecule 1, which has the (9R,15R) configuration, and (b) mol­ecule 2, which has the (9S,15S) configuration. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of the (9R,15R) enanti­omer of compound (II)[link]. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The mol­ecular structures of the disordered components of compound (III)[link], showing (a) the major R enanti­omer, (b) the minor S enanti­omer and (c) the two disorder components together, with the bonds in the major form shown as full lines and those in the minor form shown as broken lines. Displacement ellipsoids are drawn at the 30% probability level and, for the sake of clarity, the majority of the atom labels have been omitted from part (c).

2. Experimental

2.1. Synthesis and crystallization

Compounds (I)[link] and (II)[link] were prepared according to the method reported previously by Palma et al. (2010[Palma, A., Galeano, N. & Bahsas, A. (2010). Synthesis, pp. 1291-1302.]). For the synthesis of compound (III)[link], a solution of 2-chloro-11-ethyl-6,11-di­hydro-5H-dibenzo[b,e]azepine, (C) (0.10 mmol), and diethyl 2-(meth­oxy­methyl­ene)malonate (0.13 mmol) in tol­uene (10 ml) was heated under reflux for 15 h until the reaction was complete, as indicated by thin-layer chromatography (TLC). The solvent and the excess of diethyl 2-(meth­oxy­methyl­ene)malonate were removed from the reaction mixture under reduced pressure, and Eaton's reagent, i.e. a 7.7% solution of phospho­rus(V) oxide in methane­sulfonic acid (1.6 ml), was added to the remaining crude material. This mixture was heated at 343 K for 40 min, again with TLC monitoring, then cooled to ambient temperature and neutralized with saturated aqueous sodium carbonate solution. The neutralized mixture was extracted with ethyl acetate (3 × 50 ml) and the combined organic extracts were dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel using hepta­ne–ethyl acetate mixtures (10:1 to 1:3 v/v) to give compound (III)[link] (yield 80%, m.p. 466–467 K). Colourless crystals of compounds (I)–(III) suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in hepta­ne–ethyl acetate (2:1 v/v) for (I)[link] and (II)[link], and in ethanol–ethyl acetate (7:3 v/v) for (III)[link].

2.2. Spectroscopic data

RF = 0.27 (ethyl acetate–heptane, 1:1 v/v); IR (cm−1): 2965–2926 (C—H), 1687 [C=O(ester)], 1605 [C=O(ketone)], 1482 (C=C), 1146 (C—O); NMR (CDCl3): δ(1H) 1.02 (t, J = 7.2 Hz, 3H, 13-CH2—CH3), 1.41 (t, J = 7.2 Hz, 3H, O—CH2—CH3), 2.36–2.24 (m, 2H, 13-CH2—CH3), 4.10 (br s, 1H, 13-H), 4.39 (q, J = 7.2 Hz, 2H, O—CH2–), 4.88 (br s, 1H, 8-HB), 5.88 (br s, 1H, 8-HA), 7.22 (dd, J = 7.4, 1.4 Hz, 1H, 12-H), 7.31 (td, J = 7.4, 1.4 Hz, 1H, 10-H), 7.36 (td, J = 7.4, 1.4 Hz, 1H, 11-H), 7.40 (dd, J = 7.4, 1.4 Hz, 1H, 9-H), 7.51 (d, J = 2.4 Hz, 1H, 1-H), 8.34 (d, J = 2.4 Hz, 1H, 3-H), 8.53 (s, 1H, 6-H); δ(13C) 13.1 (13-CH2—CH3), 14.5 (O—CH2—CH3), 61.1 (O—CH2–), 61.2 (8-C), 109.6 (5-C), 126.3 (3-C), 128.1 (10-C), 129.1 (9-C, 12-C), 129.8 (11-C), 131.2 (2-C), 131.8 (8a-C), 132.3 (3a-C), 134.2 (13a-C), 137.2 (3b-C), 140.5 (12a-C), 150.1 (6-C), 165.6 (COO), 172.8 (4-C); HRMS (EI–MS, 70 eV) m/z found 381.1132, C22H2035ClNO3 requires 381.1132.

2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. For compounds (I)[link] and (II)[link], all H atoms were located in difference maps and subsequently treated as riding atoms in geometrically idealized positions, with C—H distances of 0.95 (aromatic), 0.98 (meth­yl), 0.99 (methylene) or 1.00 Å (methine) for (I)[link], and 0.93, 0.96, 0.97 or 0.98 Å for the corresponding bond types in (II)[link], and with, in each case, Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. The correct absolute configuration for compound (I)[link] was established using both the Flack x parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), x = 0.007 (6), calculated (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) using 4787 quotients of the type [(I+) − (I)]/[(I+) + (I)], and the Hooft y parameter (Hooft et al., 2010[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2010). J. Appl. Cryst. 43, 665-668.]) y = 0.001 (7). It was apparent from an early stage in the refinement of compound (III)[link] that the mol­ecules exhibited configurational disorder, such that the reference site was occupied by partial-occupancy mol­ecules of both R and S configuration having markedly unequal occupancies. For the minor component, having the S configuration, the bonded distances and the 1,3 nonbonded distances were restrained to be the same as the corresponding distances in the major component, having an R configuration, subject to s.u. values of 0.01 and 0.02 Å, respectively; in addition, the anisotropic displacement parameters for pairs of atoms occupying similar regions of physical space were constrained to be identical. The H atoms in the major component were all located in difference maps and then treated as riding atoms in geometrically idealized positions, with C—H = 0.95 (alkenyl and aromatic), 0.98 (meth­yl), 0.99 (methylene) or 1.00 Å (methine), and with Uiso(H) defined as for (I)[link] and (II)[link]. In the final analysis of variance for compound (II)[link], there was a negative value, −0.346, of K = mean(Fo2)/mean(Fc2) for the group of 409 very weak reflections having Fc/Fc(max) in the range 0.000 < Fc/Fc(max) < 0.006, and for compound (III)[link] there was a large value, 5.504, of K for the group of 382 very weak reflections having Fc/Fc(max) in the range 0.000 < Fc/Fc(max) < 0.015.

Table 1
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C19H19NOS C20H21NOS C22H20ClNO3
Mr 309.41 323.44 381.84
Crystal system, space group Monoclinic, P21 Monoclinic, C2/c Triclinic, P[\overline{1}]
Temperature (K) 100 298 120
a, b, c (Å) 11.4261 (5), 8.1847 (3), 16.8243 (6) 18.1021 (12), 12.4436 (8), 14.8429 (9) 6.8533 (16), 10.612 (5), 13.561 (3)
α, β, γ (°) 90, 93.067 (2), 90 90, 97.645 (3), 90 72.45 (4), 75.840 (19), 82.46 (2)
V3) 1571.14 (11) 3313.7 (4) 910.0 (6)
Z 4 8 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.21 0.20 0.23
Crystal size (mm) 0.40 × 0.35 × 0.22 0.23 × 0.22 × 0.20 0.26 × 0.15 × 0.13
 
Data collection
Diffractometer Bruker Kappa APEXII Bruker Kappa APEXII Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.823, 0.955 0.818, 0.961 0.845, 0.970
No. of measured, independent and observed [I > 2σ(I)] reflections 61785, 11002, 10697 30952, 3402, 2307 20183, 3776, 2195
Rint 0.025 0.048 0.154
(sin θ/λ)max−1) 0.757 0.626 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.079, 1.05 0.060, 0.168, 1.05 0.065, 0.118, 1.06
No. of reflections 11002 3402 3776
No. of parameters 401 211 322
No. of restraints 1 0 74
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.21 0.57, −0.45 0.29, −0.31
Absolute structure See §2.3[link]
Computer programs: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), SAINT (Bruker, 2006[Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]), EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

3. Results and discussion

The constitutions of compounds (I)[link] and (II)[link] are rather similar, differing only in the number and location of the methyl substituents, which are at position 11 in (I)[link] and at positions 7 and 12 in (II)[link]. Despite this close similarity, compound (I)[link] crystallizes with Z′ = 2 in the Sohncke space group P21, while (II)[link] crystallizes in the centrosymmetric space group C2/c. In mol­ecule 1 of compound (I)[link], containing atom S11 (Fig. 1[link]a), there are stereogenic centres at atoms C19 and C115; the reference mol­ecule 1 was selected as one having the R configuration at atom C19 and on this basis the configuration at atom C115 is also R, whereas the configurations at atoms C29 and C215 in mol­ecule 2 (Fig. 1[link]b) are both S. Thus, despite crystallizing in the space group P21, compound (I)[link] is a racemic mixture of (9R,15R) and (9S,15S) enanti­omers and it is therefore a kryptoracemate (Morales & Fronczek, 1996[Morales, G. A. & Fronczek, F. R. (1996). Acta Cryst. C52, 1266-1268.]; Fábián & Brock, 2010[Fábián, L. & Brock, C. P. (2010). Acta Cryst. B66, 94-103.]; Bernal & Watkins, 2015[Bernal, I. & Watkins, S. (2015). Acta Cryst. C71, 216-221.]); a search for possible additional crystallographic symmetry found none. Compound (III)[link] has a stereogenic centre at position 13 and the reference mol­ecule was selected as one having the R configuration at this site. However, it was apparent that the reference site was in fact occupied by partial-occupancy mol­ecules of both R and S configurations (Figs. 3[link]a and 3b), having occupancies of 0.900 (6) and 0.100 (6), respectively. These two enanti­omeric forms occupy similar but not quite identical locations (Fig. 3[link]c). The centrosymmetric space groups of compounds (II)[link] and (III)[link] confirm that these compounds have both crystallized as racemic mixtures. That compounds (I)–(III) are racemic is expected from the racemic nature of the precursors (A)–(C) (Palma et al., 2010[Palma, A., Galeano, N. & Bahsas, A. (2010). Synthesis, pp. 1291-1302.]), but it is inter­esting to note that for compounds (I)[link] and (II)[link], the stereochemistry at position 15 appears to be wholly controlled by that at position 9 and no evidence was found for the formation of the diastereoisomeric (9RS,15SR) forms.

In each of the two independent mol­ecules of compound (I)[link], the five-membered ring is slightly puckered out of planarity, and the ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) show that in each mol­ecule this ring adopts an envelope (Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]) conformation (Table 2[link]), with the ring folded across the line Cx2—Cx15, where x = 1 or 2 in mol­ecules 1 and 2, respectively; the difference of ca 180° between the φ2 values for the two mol­ecules in (I)[link] confirms their enanti­omeric relationship. By contrast with (I)[link], the five-membered ring in compound (II)[link] adopts a half-chair conformation in which the ring is twisted about a line through atom C3 and the approximate mid-point of the S1—C15 bond. For idealized half-chair and envelope conformations, the values of φ2 are (36k + 18)° and 36k°, respectively, where k represents an integer. Within the major disorder form of compound (III)[link], the six-membered heterocyclic ring is slightly puckered into a twist-boat conformation; for an idealized twist-boat conformation; the ring-puckering angles are θ = 90° and φ = (60k + 30)°, where k represents an integer. For the seven-membered ring in each of (I)[link], (II)[link] and the major form of (III)[link], the ring conformations are dominated by the twist-boat sin form 2 (Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]). By contrast, the most common conformation of the seven-membered ring in tricyclic di­benz­azepines is one inter­mediate between the boat and twist-boat forms (Sanabría et al., 2014[Sanabría, C. M., Palma, A., Cobo, J. & Glidewell, C. (2014). Acta Cryst. C70, 332-337.]), while the most common form in benzopyrimidoazepines is the boat form (cos form 2) (Acosta et al., 2015[Acosta, L. M., Jurado, J., Palma, A., Cobo, J. & Glidewell, C. (2015). Acta Cryst. C71, 1062-1068.]; Acosta Qu­intero, Palma et al., 2016[Acosta Quintero, L. M., Palma, A., Cobo, J. & Glidewell, C. (2016). Acta Cryst. C72, 346-357.]).

Table 2
Selected geometric parameters (Å, °)

  (I), mol­ecule 1 (I), mol­ecule 2 (II) (III), major (III), minor
Ring-puckering parameters          
Five-membered ring          
Q2 0.4627 (12) 0.3979 (12) 0.300 (3)    
φ2 359.12 (17) 178.1 (2) 339.0 (5)    
           
Six-membered ring          
Q       0.107 (8) 0.16 (7)
θ       87 (4) 112 (26)
φ       39 (4) 2(30)
           
Seven-membered rings          
Q 0.9540 (13) 0.9418 (12) 0.981 (3) 0.843 (6) 0.85 (5)
φ2 38.32 (8) 217.47 (8) 40.16 (16) 271.8 (4) 267 (4)
φ3 286.0 (3) 107.8 (3) 281.6 (7) 9.6 (10) 17 (7)
           
Dihedral angles 70.84 (4) 65.44 (4) 76.67 (9) 52.8 (2) 66 (3)
           
Torsion angles          
Cx9A—Cx9—Cx91—Cx92 −169.01 (11) 170.60 (10) −173.0 (2)    
Cy2A—Cy13—Cy31—Cy32       −69.4 (5) 42 (5)
Notes: (i) x = 1 or 2 for mol­ecules 1 and 2, respectively, in (I)[link] and x = nul for (II)[link]; y = 1 or 2 for the major- and minor-disorder forms, respectively, in (III)[link]; (ii) the ring-puckering angles are calculated for the following atom sequences: five-membered rings Sx1–Cx2–Cx3–Nx4–Cx1, six-membered rings Ny7–Cy3B–Cy3A–Cy4–Cy5–Cy6, and seven-membered rings Nx4–Cx4A–Cx8A–Cx9–Cx9A–Cx14–Cx15 in (I)[link] and (II)[link], and Ny7–Cy3B–Cy3C–Cy13–Cy2A–Cy8A–Cy8 in (III)[link]; (iii) the dihedral angles are those between the mean planes of the two aryl rings in each of (I)–(III).

In each of the five independent mol­ecular entities reported here, the dihedral angle between the two aryl rings falls within a fairly narrow range of less than 25° (Table 2[link]). The specification of the mol­ecular conformations is completed by the orientation of the ethyl substituent relative to the seven-membered ring; the torsion angles defining this orientation are very similar in compounds (I)[link] and (II)[link], except for the difference in sign between the two independent mol­ecules in (I)[link] consistent with their enanti­omeric relationship, whereas in (III)[link] this orientation is entirely different (Table 2[link] and Figs. 1[link]–3[link][link]).

Despite the close similarity between the constitutions of compounds (I)[link] and (II)[link], the supra­molecular assembly in these two compounds is entirely different. In compound (I)[link], the mol­ecules are linked into complex sheets by a combination of two C—H⋯O hydrogen bonds and two C—H⋯π(arene) hydrogen bonds (Table 3[link]), but the formation of the sheet structure is readily analysed in terms of simple substructures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). The mol­ecules of type 1 which are related by the 21 screw axis along (0, y, [1 \over 2]) are linked by C—H⋯O hydrogen bonds to form a C(5) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [010] direction. A similar C(5) chain, anti­parallel to the first chain is built from type 2 mol­ecules which are related by the 21 screw axis along (0, y, 0); thus each type of C(5) chain contains only a single enanti­omeric form. Two independent C—H⋯π(arene) hydrogen bonds, in which the donors are two adjacent C—H bonds in a type 1 mol­ecule and the acceptors are the two aryl rings of a type 2 mol­ecule, thus precluding the possibility of any additional crystallographic symmetry, link the type 1 chains along (0, y, n + [1 \over 2]) to the type 2 chains along (0, y, n), where n represents an integer in each case, to form a sheet lying parallel to (100) (Fig. 4[link]); however, there are no direction-specific inter­actions between adjacent sheets.

Table 3
Parameters (Å, °) for hydrogen bonds and short inter­molecular contacts

Cg1–Cg3 represent the centroids of the C29A/C210–C214, C24A/C25–C28/C28A and C9A/C10–C14 rings, respectively.

Compound D—H⋯A   D—H H⋯A DA D—H⋯A
(I) C115—H115⋯O13i   1.00 2.47 3.3084 (18) 141
  C215—H215⋯O23ii   1.00 2.37 3.1681 (18) 136
  C112—H112⋯Cg1iii   0.95 2.81 3.6738 (13) 152
  C113—H113⋯Cg2iii   0.95 2.85 3.7676 (14) 163
(II) C2—H2B⋯O3iv   0.97 2.57 3.120 (4) 116
  C91—H91ACg3v   0.97 2.82 3.736 (3) 157
(III) C18—H18B⋯O151vi   0.99 2.54 3.483 (9) 159
  C19—H19⋯O151vi   0.95 2.54 3.396 (12) 149
  C28—H28B⋯O251vi   0.99 2.10 3.13 (7) 159
  C29—H29⋯O251vi   0.95 2.75 3.34 (12) 124
Symmetry codes: (i) −x, y + [{1\over 2}], −z + 1; (ii) −x, y − [{1\over 2}], −z; (iii) x, y + 1, z; (iv) −x + [{1\over 2}], −y + [{1\over 2}], −z + 1; (v) −x + 1, −y + 1, −z + 1; (vi) −x + 1, −y + 2, −z + 1.
[Figure 4]
Figure 4
A stereoview of part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded sheet parallel to (100) in which chains built from C—H⋯O hydrogen bonds are linked by C—H⋯π(arene) hydrogen bonds. For the sake of clarity, H atoms which are not involved in the motifs shown have been omitted.

In contrast to the complex supra­molecular assembly in compound (I)[link], that in compound (II)[link] is extremely simple. Inversion-related pairs of mol­ecules are linked by paired C—H⋯π(arene) hydrogen bonds to form centrosymmetric dimers, each containing an enanti­omeric pair (Fig. 5[link]), but there are no direction-specific inter­actions between adjacent dimers, so that the supra­molecular assembly is finite and zero-dimensional.

[Figure 5]
Figure 5
Part of the crystal structure of compound (II)[link], showing the formation of a centrosymmetric hydrogen-bonded dimer. For the sake of clarity, the unit-cell outline and H atoms bonded to C atoms that are not involved in the motif shown have been omitted. The atom marked with an asterisk (*) is at the symmetry position (−x + 1, −y + 1, −z + 1).

The mol­ecules of compound (III)[link] are linked by C—H⋯O hydrogen bonds to form centrosymmetric dimers (Fig. 6[link]). For the major-disorder form, the hydrogen bonds generate a dimer, centred at ([1 \over 2] 1, [1 \over 2]), characterized by an outer R22(18) ring, which encloses an inner R22(14) ring flanked by two inversion-related R21(6) rings; for the minor-disorder component, only the R22(14) ring is present as the H29⋯O251i separation [symmetry code: (i) −x + 1, −y + 2, −z + 1] of 2.75 Å is above the sum of the van der Waals radii (Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]), so that the corresponding C—H⋯O contact cannot be regarded as a hydrogen bond. Dimers of this type are linked into a chain by a single ππ stacking inter­action. The chlorinated aryl rings of the mol­ecules at (x, y, z) and (−x + 2, −y + 1, −z + 1) are strictly parallel, with an inter­planar spacing of 3.368 (3) Å; the ring-centroid separation is 3.649 (4) Å, corresponding to a ring-centroid offset of 1.404 (4) Å. This inter­action links hydrogen-bonded dimers related by translation into a π-stacked chain running parallel to the [1[\overline{1}]0] direction (Fig. 7[link]).

[Scheme 3]
[Figure 6]
Figure 6
Part of the crystal structure of compound (III)[link], showing the formation by the major-disorder form of a cyclic centrosymmetric hydrogen-bonded dimer. For the sake of clarity, the unit-cell outline and H atoms bonded to C atoms that are not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (−x + 1, −y + 2, −z + 1).
[Figure 7]
Figure 7
A stereoview of part of the crystal structure of compound (III)[link], showing the formation of a π-stacked chain of hydrogen-bonded dimers running parallel to the [1[\overline{1}]0] direction. For the sake of clarity, the minor-disorder component and H atoms bonded to C atoms that are not involved in the motif shown have been omitted.

It is inter­esting briefly to compare compounds (I)–(III) reported here with the related tetra­cyclic benzopy­rim­ido­aze­pine derivatives (IV) and (V) (see Scheme 3[link]). Firstly, the syntheses of (IV) and (V) utilized a completely different approach (Acosta Qu­intero et al., 2015[Acosta Quintero, L. M., Jurado, J., Nogueras, M., Palma, A. & Cobo, J. (2015). Eur. J. Org. Chem. pp. 5360-5369.]; Acosta Qu­intero, Burgos et al., 2016[Acosta Quintero, L. M., Burgos, I., Palma, A., Cobo, J. & Glidewell, C. (2016). Acta Cryst. C72, 52-56.]) from that employed for the preparation of (I)–(III); the synthesis of compounds (I)–(III) appended an additional ring to a preformed dibenzazepine skeleton, while those for (IV) and (V) were based on the formation of the azepine ring as the final step using an N-pyrimido­indole precursor for (IV) and an N-pyrimido­quinoline precursor for (V). Secondly, the conformation of the azepine ring in compound (IV) differs from the twist-boat form which predominates in (I)–(III) and (V), as this ring contains a significant contribution from the twist-chair form. As a consequence of this, the C-methyl group occupies a quasi-equatorial position in (V), as expected, but a quasi-axial site in (IV) (Acosta Qu­intero, Palma et al., 2016[Acosta Quintero, L. M., Palma, A., Cobo, J. & Glidewell, C. (2016). Acta Cryst. C72, 346-357.]). Thirdly, the supra­molecular aggregation in the structures of (IV) and (V) differs from that in (I)–(III). The mol­ecules of compound (IV) are linked into C(5) chains by C—H⋯N hydrogen bonds, although inter­actions of this type are wholly absent from the structures of (I)–(III), and inversion-related chains of this type are linked into pairs by a ππ stacking inter­action involving the pyrimidine ring. The mol­ecules of compound (V) are linked by C—H⋯π(pyrimidine) inter­actions into cyclic centrosymmetric dimers, somewhat similar to those in the structure of compound (II)[link].

Finally, we note that although the racemic compound (IV) crystallizes in the Sohncke space group P21, it does so as a conglomerate rather than as a a kryptoracemate.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2006) for (I), (II); COLLECT (Nonius, 1998) for (III). Cell refinement: SAINT (Bruker, 2006) for (I), (II); DIRAX/LSQ (Duisenberg et al., 2000) for (III). Data reduction: SAINT (Bruker, 2006) for (I), (II); EVALCCD (Duisenberg et al., 2003) for (III). Program(s) used to solve structure: SIR92 (Altomare et al., 1994) for (I), (II); SIR2014 (Burla et al., 2015) for (III). For all compounds, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

(I) (9RS,15RS)-9-Ethyl-11-methyl-9,13b-dihydrodibenzo[c,f]thiazolo[3,2-a]azepin-3(2H)-one top
Crystal data top
C19H19NOSF(000) = 656
Mr = 309.41Dx = 1.308 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 11.4261 (5) ÅCell parameters from 11002 reflections
b = 8.1847 (3) Åθ = 1.8–32.5°
c = 16.8243 (6) ŵ = 0.21 mm1
β = 93.067 (2)°T = 100 K
V = 1571.14 (11) Å3Block, colourless
Z = 40.40 × 0.35 × 0.22 mm
Data collection top
Bruker Kappa APEXII
diffractometer
10697 reflections with I > 2σ(I)
Radiation source: high brilliance microfocus sealed tubeRint = 0.025
φ and ω scansθmax = 32.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1716
Tmin = 0.823, Tmax = 0.955k = 1212
61785 measured reflectionsl = 2525
11002 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.1585P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.37 e Å3
11002 reflectionsΔρmin = 0.21 e Å3
401 parametersAbsolute structure: Flack x determined using 4787 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.007 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S110.04257 (3)0.64856 (4)0.31677 (2)0.02072 (7)
C120.06240 (11)0.6542 (2)0.39359 (8)0.0221 (2)
H12A0.09750.76430.39730.026*
H12B0.12580.57370.38250.026*
C130.00808 (11)0.61139 (17)0.46981 (8)0.0198 (2)
O130.03273 (10)0.55030 (17)0.52867 (7)0.0298 (2)
N140.12297 (9)0.65093 (16)0.46388 (6)0.01701 (19)
C14A0.20563 (11)0.63483 (17)0.52973 (7)0.0170 (2)
C150.19005 (13)0.72209 (19)0.59932 (8)0.0221 (2)
H150.12460.79270.60320.027*
C160.27158 (15)0.7045 (2)0.66311 (8)0.0256 (3)
H160.26180.76230.71130.031*
C170.36731 (14)0.6021 (2)0.65618 (8)0.0243 (3)
H170.42410.59270.69930.029*
C180.38124 (11)0.51298 (19)0.58668 (7)0.0195 (2)
H180.44660.44220.58320.023*
C18A0.29966 (11)0.52719 (16)0.52223 (7)0.0158 (2)
C190.30872 (10)0.43915 (16)0.44299 (7)0.0151 (2)
H190.22740.40540.42520.018*
C19A0.34743 (11)0.56585 (16)0.38285 (7)0.0148 (2)
C1100.45748 (11)0.55481 (17)0.35032 (7)0.0164 (2)
H1100.50710.46550.36500.020*
C1110.49666 (11)0.67094 (17)0.29695 (7)0.0173 (2)
C1120.42386 (11)0.80170 (18)0.27585 (7)0.0185 (2)
H1120.44820.88080.23880.022*
C1130.31535 (11)0.81690 (17)0.30887 (7)0.0177 (2)
H1130.26720.90830.29510.021*
C1140.27587 (10)0.70040 (16)0.36181 (7)0.0155 (2)
C1150.15382 (11)0.72903 (16)0.38914 (7)0.0160 (2)
H1150.14150.84950.39420.019*
C1160.61535 (12)0.6532 (2)0.26305 (8)0.0246 (3)
H16A0.60570.63250.20570.037*
H16B0.65720.56150.28900.037*
H16C0.66030.75390.27240.037*
C1910.38285 (11)0.28333 (17)0.44701 (7)0.0178 (2)
H19A0.39290.24310.39230.021*
H19B0.46150.30930.47130.021*
C1920.32763 (11)0.14856 (19)0.49539 (8)0.0211 (2)
H19C0.32450.18370.55090.032*
H19D0.37490.04900.49290.032*
H19E0.24800.12650.47340.032*
S210.22593 (3)0.00063 (5)0.08726 (2)0.02161 (7)
C220.06874 (13)0.02911 (19)0.08922 (8)0.0224 (3)
H22A0.04350.11130.12980.027*
H22B0.02760.07500.10160.027*
C230.04285 (12)0.08804 (18)0.00633 (8)0.0205 (2)
O230.04535 (10)0.16254 (18)0.00951 (7)0.0317 (3)
N240.13069 (9)0.04697 (14)0.04793 (6)0.01589 (19)
C24A0.12426 (10)0.08689 (16)0.13011 (7)0.0151 (2)
C250.03501 (11)0.02280 (18)0.17405 (8)0.0196 (2)
H250.02020.05170.15030.024*
C260.02786 (12)0.06939 (18)0.25329 (9)0.0219 (2)
H260.03320.02810.28380.026*
C270.11024 (12)0.17634 (18)0.28750 (8)0.0207 (2)
H270.10570.20750.34160.025*
C280.19976 (11)0.23845 (17)0.24303 (7)0.0175 (2)
H280.25620.31040.26740.021*
C28A0.20726 (10)0.19610 (15)0.16314 (7)0.0141 (2)
C290.30020 (10)0.26061 (15)0.10960 (7)0.0140 (2)
H290.25890.28240.05670.017*
C29A0.38728 (10)0.12397 (15)0.09590 (7)0.0140 (2)
C2100.50569 (10)0.13608 (17)0.12168 (7)0.0157 (2)
H2100.53180.23160.14940.019*
C2110.58688 (10)0.01222 (18)0.10797 (7)0.0170 (2)
C2120.54650 (11)0.12996 (18)0.06995 (7)0.0183 (2)
H2120.59950.21660.06090.022*
C2130.42911 (11)0.14551 (17)0.04519 (7)0.0167 (2)
H2130.40270.24370.02010.020*
C2140.34913 (10)0.01951 (16)0.05650 (7)0.01384 (19)
C2150.22787 (10)0.04930 (15)0.01916 (7)0.0144 (2)
H2150.20880.16780.02480.017*
C2160.71526 (11)0.0308 (2)0.13229 (8)0.0233 (3)
H26A0.73470.14720.13700.035*
H26B0.76250.01950.09200.035*
H26C0.73190.02300.18370.035*
C2910.35367 (11)0.42370 (16)0.13740 (8)0.0172 (2)
H29A0.38870.41170.19220.021*
H29B0.41680.45470.10230.021*
C2920.26090 (13)0.55806 (18)0.13589 (8)0.0222 (2)
H29C0.22270.56520.08240.033*
H29D0.29820.66280.14980.033*
H29E0.20230.53240.17450.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S110.01711 (13)0.02520 (16)0.01967 (13)0.00113 (12)0.00079 (10)0.00009 (12)
C120.0153 (5)0.0253 (7)0.0256 (6)0.0012 (5)0.0011 (4)0.0039 (5)
C130.0151 (5)0.0196 (6)0.0251 (6)0.0016 (4)0.0046 (4)0.0031 (4)
O130.0208 (5)0.0394 (7)0.0298 (5)0.0007 (5)0.0080 (4)0.0110 (5)
N140.0143 (4)0.0211 (5)0.0160 (4)0.0011 (4)0.0037 (3)0.0025 (4)
C14A0.0177 (5)0.0183 (6)0.0153 (4)0.0010 (4)0.0030 (4)0.0013 (4)
C150.0276 (6)0.0210 (6)0.0183 (5)0.0014 (5)0.0063 (5)0.0008 (5)
C160.0371 (8)0.0240 (7)0.0159 (5)0.0034 (6)0.0032 (5)0.0014 (5)
C170.0291 (7)0.0283 (7)0.0151 (5)0.0049 (5)0.0018 (5)0.0008 (5)
C180.0183 (5)0.0243 (6)0.0159 (5)0.0018 (5)0.0004 (4)0.0033 (4)
C18A0.0158 (5)0.0179 (6)0.0139 (4)0.0018 (4)0.0026 (4)0.0019 (4)
C190.0138 (5)0.0174 (5)0.0142 (4)0.0006 (4)0.0015 (4)0.0014 (4)
C19A0.0147 (5)0.0173 (5)0.0126 (4)0.0003 (4)0.0019 (4)0.0004 (4)
C1100.0152 (5)0.0205 (6)0.0137 (4)0.0000 (4)0.0020 (4)0.0001 (4)
C1110.0160 (5)0.0225 (6)0.0136 (4)0.0019 (4)0.0028 (4)0.0001 (4)
C1120.0192 (5)0.0220 (6)0.0145 (5)0.0024 (5)0.0020 (4)0.0028 (4)
C1130.0182 (5)0.0186 (6)0.0162 (5)0.0007 (4)0.0013 (4)0.0028 (4)
C1140.0143 (5)0.0180 (5)0.0143 (4)0.0004 (4)0.0021 (4)0.0003 (4)
C1150.0153 (5)0.0169 (5)0.0159 (5)0.0003 (4)0.0026 (4)0.0014 (4)
C1160.0188 (5)0.0323 (7)0.0234 (6)0.0010 (6)0.0087 (4)0.0042 (5)
C1910.0158 (5)0.0195 (6)0.0181 (5)0.0020 (4)0.0025 (4)0.0030 (4)
C1920.0181 (5)0.0204 (6)0.0250 (5)0.0006 (5)0.0023 (4)0.0051 (5)
S210.02265 (14)0.02804 (18)0.01408 (12)0.00534 (12)0.00057 (10)0.00045 (11)
C220.0241 (6)0.0233 (7)0.0189 (5)0.0003 (5)0.0065 (4)0.0005 (5)
C230.0192 (5)0.0192 (6)0.0223 (5)0.0020 (5)0.0061 (4)0.0026 (5)
O230.0241 (5)0.0360 (6)0.0339 (5)0.0138 (5)0.0088 (4)0.0078 (5)
N240.0131 (4)0.0182 (5)0.0162 (4)0.0020 (4)0.0013 (3)0.0022 (4)
C24A0.0133 (5)0.0158 (5)0.0164 (5)0.0011 (4)0.0010 (4)0.0006 (4)
C250.0141 (5)0.0205 (6)0.0245 (5)0.0009 (4)0.0041 (4)0.0009 (5)
C260.0197 (6)0.0215 (6)0.0253 (6)0.0009 (5)0.0093 (5)0.0024 (5)
C270.0238 (6)0.0210 (6)0.0180 (5)0.0034 (5)0.0062 (4)0.0004 (4)
C280.0199 (5)0.0174 (6)0.0155 (5)0.0009 (4)0.0016 (4)0.0006 (4)
C28A0.0133 (4)0.0142 (5)0.0150 (4)0.0012 (4)0.0014 (4)0.0002 (4)
C290.0149 (5)0.0132 (5)0.0140 (4)0.0013 (4)0.0012 (4)0.0002 (4)
C29A0.0132 (4)0.0152 (5)0.0138 (4)0.0006 (4)0.0021 (3)0.0012 (4)
C2100.0149 (4)0.0183 (5)0.0140 (4)0.0023 (4)0.0016 (3)0.0014 (4)
C2110.0134 (4)0.0232 (6)0.0145 (4)0.0002 (4)0.0023 (4)0.0034 (4)
C2120.0159 (5)0.0226 (6)0.0167 (5)0.0034 (4)0.0037 (4)0.0007 (4)
C2130.0171 (5)0.0175 (6)0.0159 (5)0.0013 (4)0.0032 (4)0.0010 (4)
C2140.0133 (4)0.0148 (5)0.0136 (4)0.0005 (4)0.0019 (3)0.0000 (4)
C2150.0139 (5)0.0149 (5)0.0144 (4)0.0001 (4)0.0008 (4)0.0009 (4)
C2160.0131 (5)0.0336 (8)0.0231 (6)0.0003 (5)0.0002 (4)0.0015 (5)
C2910.0190 (5)0.0149 (5)0.0178 (5)0.0027 (4)0.0001 (4)0.0013 (4)
C2920.0274 (6)0.0155 (6)0.0235 (6)0.0006 (5)0.0005 (5)0.0005 (4)
Geometric parameters (Å, º) top
S11—C121.8102 (14)S21—C221.8096 (15)
S11—C1151.8348 (13)S21—C2151.8354 (12)
C12—C131.5184 (19)C22—C231.520 (2)
C12—H12A0.9900C22—H22A0.9900
C12—H12B0.9900C22—H22B0.9900
C13—O131.2238 (16)C23—O231.2196 (17)
C13—N141.3609 (16)C23—N241.3623 (16)
N14—C14A1.4229 (15)N24—C24A1.4264 (16)
N14—C1151.4702 (16)N24—C2151.4648 (16)
C14A—C151.3911 (18)C24A—C251.3937 (17)
C14A—C18A1.4003 (18)C24A—C28A1.3968 (17)
C15—C161.390 (2)C25—C261.3933 (19)
C15—H150.9500C25—H250.9500
C16—C171.387 (2)C26—C271.388 (2)
C16—H160.9500C26—H260.9500
C17—C181.3947 (19)C27—C281.3951 (18)
C17—H170.9500C27—H270.9500
C18—C18A1.3964 (17)C28—C28A1.3951 (16)
C18—H180.9500C28—H280.9500
C18A—C191.5238 (17)C28A—C291.5232 (17)
C19—C1911.5305 (18)C29—C29A1.5226 (17)
C19—C19A1.5306 (17)C29—C2911.5308 (17)
C19—H191.0000C29—H291.0000
C19A—C1101.4009 (16)C29A—C2101.4020 (16)
C19A—C1141.4056 (18)C29A—C2141.4063 (17)
C110—C1111.3975 (17)C210—C2111.4015 (18)
C110—H1100.9500C210—H2100.9500
C111—C1121.3899 (19)C211—C2121.3946 (19)
C111—C1161.5061 (18)C211—C2161.5094 (17)
C112—C1131.3911 (17)C212—C2131.3890 (18)
C112—H1120.9500C212—H2120.9500
C113—C1141.3960 (17)C213—C2141.3976 (17)
C113—H1130.9500C213—H2130.9500
C114—C1151.5098 (17)C214—C2151.5102 (16)
C115—H1151.0000C215—H2151.0000
C116—H16A0.9800C216—H26A0.9800
C116—H16B0.9800C216—H26B0.9800
C116—H16C0.9800C216—H26C0.9800
C191—C1921.5271 (19)C291—C2921.527 (2)
C191—H19A0.9900C291—H29A0.9900
C191—H19B0.9900C291—H29B0.9900
C192—H19C0.9800C292—H29C0.9800
C192—H19D0.9800C292—H29D0.9800
C192—H19E0.9800C292—H29E0.9800
C12—S11—C11588.80 (6)C22—S21—C21590.38 (6)
C13—C12—S11104.79 (9)C23—C22—S21105.42 (9)
C13—C12—H12A110.8C23—C22—H22A110.7
S11—C12—H12A110.8S21—C22—H22A110.7
C13—C12—H12B110.8C23—C22—H22B110.7
S11—C12—H12B110.8S21—C22—H22B110.7
H12A—C12—H12B108.9H22A—C22—H22B108.8
O13—C13—N14124.56 (13)O23—C23—N24124.38 (13)
O13—C13—C12124.74 (12)O23—C23—C22124.26 (12)
N14—C13—C12110.69 (11)N24—C23—C22111.36 (12)
C13—N14—C14A121.57 (11)C23—N24—C24A121.25 (11)
C13—N14—C115116.26 (10)C23—N24—C215117.10 (10)
C14A—N14—C115121.78 (10)C24A—N24—C215121.52 (10)
C15—C14A—C18A122.15 (12)C25—C24A—C28A122.04 (11)
C15—C14A—N14119.88 (12)C25—C24A—N24120.33 (11)
C18A—C14A—N14117.95 (11)C28A—C24A—N24117.59 (11)
C16—C15—C14A119.06 (14)C26—C25—C24A119.11 (12)
C16—C15—H15120.5C26—C25—H25120.4
C14A—C15—H15120.5C24A—C25—H25120.4
C17—C16—C15119.77 (13)C27—C26—C25119.76 (12)
C17—C16—H16120.1C27—C26—H26120.1
C15—C16—H16120.1C25—C26—H26120.1
C16—C17—C18120.80 (13)C26—C27—C28120.53 (12)
C16—C17—H17119.6C26—C27—H27119.7
C18—C17—H17119.6C28—C27—H27119.7
C17—C18—C18A120.40 (13)C27—C28—C28A120.72 (12)
C17—C18—H18119.8C27—C28—H28119.6
C18A—C18—H18119.8C28A—C28—H28119.6
C18—C18A—C14A117.78 (12)C28—C28A—C24A117.83 (11)
C18—C18A—C19124.48 (12)C28—C28A—C29124.36 (11)
C14A—C18A—C19117.69 (11)C24A—C28A—C29117.81 (10)
C18A—C19—C191114.75 (10)C29A—C29—C28A108.47 (10)
C18A—C19—C19A107.07 (10)C29A—C29—C291115.68 (10)
C191—C19—C19A114.52 (10)C28A—C29—C291113.64 (10)
C18A—C19—H19106.6C29A—C29—H29106.1
C191—C19—H19106.6C28A—C29—H29106.1
C19A—C19—H19106.6C291—C29—H29106.1
C110—C19A—C114118.32 (11)C210—C29A—C214118.33 (11)
C110—C19A—C19120.78 (11)C210—C29A—C29121.93 (11)
C114—C19A—C19120.83 (10)C214—C29A—C29119.74 (10)
C111—C110—C19A122.16 (12)C211—C210—C29A122.29 (12)
C111—C110—H110118.9C211—C210—H210118.9
C19A—C110—H110118.9C29A—C210—H210118.9
C112—C111—C110118.68 (11)C212—C211—C210118.26 (11)
C112—C111—C116121.09 (12)C212—C211—C216120.09 (12)
C110—C111—C116120.23 (12)C210—C211—C216121.64 (12)
C111—C112—C113120.06 (12)C213—C212—C211120.30 (12)
C111—C112—H112120.0C213—C212—H212119.9
C113—C112—H112120.0C211—C212—H212119.9
C112—C113—C114121.27 (12)C212—C213—C214121.30 (12)
C112—C113—H113119.4C212—C213—H213119.3
C114—C113—H113119.4C214—C213—H213119.3
C113—C114—C19A119.49 (11)C213—C214—C29A119.47 (11)
C113—C114—C115115.06 (11)C213—C214—C215114.60 (11)
C19A—C114—C115125.39 (11)C29A—C214—C215125.82 (11)
N14—C115—C114117.43 (10)N24—C215—C214118.07 (10)
N14—C115—S11102.84 (8)N24—C215—S21103.46 (8)
C114—C115—S11111.14 (8)C214—C215—S21109.44 (8)
N14—C115—H115108.4N24—C215—H215108.5
C114—C115—H115108.4C214—C215—H215108.5
S11—C115—H115108.4S21—C215—H215108.5
C111—C116—H16A109.5C211—C216—H26A109.5
C111—C116—H16B109.5C211—C216—H26B109.5
H16A—C116—H16B109.5H26A—C216—H26B109.5
C111—C116—H16C109.5C211—C216—H26C109.5
H16A—C116—H16C109.5H26A—C216—H26C109.5
H16B—C116—H16C109.5H26B—C216—H26C109.5
C192—C191—C19112.46 (10)C292—C291—C29110.95 (10)
C192—C191—H19A109.1C292—C291—H29A109.4
C19—C191—H19A109.1C29—C291—H29A109.4
C192—C191—H19B109.1C292—C291—H29B109.4
C19—C191—H19B109.1C29—C291—H29B109.4
H19A—C191—H19B107.8H29A—C291—H29B108.0
C191—C192—H19C109.5C291—C292—H29C109.5
C191—C192—H19D109.5C291—C292—H29D109.5
H19C—C192—H19D109.5H29C—C292—H29D109.5
C191—C192—H19E109.5C291—C292—H29E109.5
H19C—C192—H19E109.5H29C—C292—H29E109.5
H19D—C192—H19E109.5H29D—C292—H29E109.5
C115—S11—C12—C1335.23 (10)C215—S21—C22—C2330.15 (10)
S11—C12—C13—O13154.57 (14)S21—C22—C23—O23158.58 (14)
S11—C12—C13—N1425.70 (15)S21—C22—C23—N2421.43 (15)
O13—C13—N14—C14A4.8 (2)O23—C23—N24—C24A1.3 (2)
C12—C13—N14—C14A174.94 (13)C22—C23—N24—C24A178.71 (12)
O13—C13—N14—C115177.78 (14)O23—C23—N24—C215177.26 (14)
C12—C13—N14—C1151.96 (18)C22—C23—N24—C2152.73 (17)
C13—N14—C14A—C1560.13 (19)C23—N24—C24A—C2561.92 (18)
C115—N14—C14A—C15112.47 (15)C215—N24—C24A—C25113.89 (13)
C13—N14—C14A—C18A118.52 (14)C23—N24—C24A—C28A115.71 (14)
C115—N14—C14A—C18A68.89 (17)C215—N24—C24A—C28A68.49 (16)
C18A—C14A—C15—C161.2 (2)C28A—C24A—C25—C260.3 (2)
N14—C14A—C15—C16179.83 (13)N24—C24A—C25—C26177.25 (12)
C14A—C15—C16—C170.7 (2)C24A—C25—C26—C271.0 (2)
C15—C16—C17—C181.8 (2)C25—C26—C27—C280.4 (2)
C16—C17—C18—C18A1.0 (2)C26—C27—C28—C28A0.9 (2)
C17—C18—C18A—C14A0.90 (19)C27—C28—C28A—C24A1.56 (19)
C17—C18—C18A—C19178.15 (13)C27—C28—C28A—C29178.65 (12)
C15—C14A—C18A—C182.03 (19)C25—C24A—C28A—C281.00 (19)
N14—C14A—C18A—C18179.36 (12)N24—C24A—C28A—C28178.58 (11)
C15—C14A—C18A—C19179.46 (12)C25—C24A—C28A—C29179.20 (12)
N14—C14A—C18A—C191.92 (17)N24—C24A—C28A—C291.62 (17)
C18—C18A—C19—C19123.65 (17)C28—C28A—C29—C29A106.61 (13)
C14A—C18A—C19—C191159.10 (11)C24A—C28A—C29—C29A73.18 (13)
C18—C18A—C19—C19A104.63 (14)C28—C28A—C29—C29123.55 (17)
C14A—C18A—C19—C19A72.62 (13)C24A—C28A—C29—C291156.66 (11)
C18A—C19—C19A—C110113.42 (12)C28A—C29—C29A—C210117.02 (12)
C191—C19—C19A—C11015.00 (16)C291—C29—C29A—C21012.01 (16)
C18A—C19—C19A—C11463.48 (14)C28A—C29—C29A—C21462.82 (13)
C191—C19—C19A—C114168.09 (11)C291—C29—C29A—C214168.16 (10)
C114—C19A—C110—C1111.25 (18)C214—C29A—C210—C2111.41 (17)
C19—C19A—C110—C111178.23 (11)C29—C29A—C210—C211178.75 (11)
C19A—C110—C111—C1120.21 (19)C29A—C210—C211—C2122.46 (18)
C19A—C110—C111—C116179.52 (12)C29A—C210—C211—C216176.74 (11)
C110—C111—C112—C1131.25 (19)C210—C211—C212—C2131.27 (18)
C116—C111—C112—C113179.02 (13)C216—C211—C212—C213177.94 (12)
C111—C112—C113—C1141.7 (2)C211—C212—C213—C2140.92 (18)
C112—C113—C114—C19A0.62 (19)C212—C213—C214—C29A1.98 (18)
C112—C113—C114—C115176.88 (12)C212—C213—C214—C215174.33 (11)
C110—C19A—C114—C1130.82 (18)C210—C29A—C214—C2130.81 (16)
C19—C19A—C114—C113177.80 (11)C29—C29A—C214—C213179.03 (11)
C110—C19A—C114—C115178.04 (11)C210—C29A—C214—C215175.05 (11)
C19—C19A—C114—C1154.98 (19)C29—C29A—C214—C2155.11 (17)
C13—N14—C115—C114150.37 (12)C23—N24—C215—C214146.00 (12)
C14A—N14—C115—C11436.66 (18)C24A—N24—C215—C21438.03 (17)
C13—N14—C115—S1128.03 (14)C23—N24—C215—S2124.98 (13)
C14A—N14—C115—S11159.00 (11)C24A—N24—C215—S21159.05 (10)
C113—C114—C115—N14158.47 (12)C213—C214—C215—N24161.04 (10)
C19A—C114—C115—N1424.20 (18)C29A—C214—C215—N2422.92 (17)
C113—C114—C115—S1183.55 (12)C213—C214—C215—S2181.06 (12)
C19A—C114—C115—S1193.77 (13)C29A—C214—C215—S2194.98 (12)
C12—S11—C115—N1435.54 (9)C22—S21—C215—N2430.96 (9)
C12—S11—C115—C114162.03 (10)C22—S21—C215—C214157.65 (10)
C18A—C19—C191—C19266.55 (14)C29A—C29—C291—C292170.60 (10)
C19A—C19—C191—C192169.01 (11)C28A—C29—C291—C29262.94 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C115—H115···O13i1.002.473.3084 (18)141
C215—H215···O23ii1.002.373.1681 (18)136
C112—H112···Cg1iii0.952.813.6738 (13)152
C113—H113···Cg2iii0.952.853.7676 (14)163
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y1/2, z; (iii) x, y+1, z.
(II) (9RS,15RS)-9-Ethyl-7,12-dimethyl-9,13b-dihydrodibenzo[c,f]thiazolo[3,2-a]azepin-3(2H)-one top
Crystal data top
C20H21NOSF(000) = 1376
Mr = 323.44Dx = 1.297 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.1021 (12) ÅCell parameters from 3402 reflections
b = 12.4436 (8) Åθ = 2.0–26.4°
c = 14.8429 (9) ŵ = 0.20 mm1
β = 97.645 (3)°T = 298 K
V = 3313.7 (4) Å3Block, colourless
Z = 80.23 × 0.22 × 0.20 mm
Data collection top
Bruker Kappa APEXII
diffractometer
2307 reflections with I > 2σ(I)
Radiation source: high brilliance microfocus sealed tubeRint = 0.048
φ and ω scansθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 2222
Tmin = 0.818, Tmax = 0.961k = 1513
30952 measured reflectionsl = 1418
3402 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.168 w = 1/[σ2(Fo2) + (0.070P)2 + 4.8478P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3402 reflectionsΔρmax = 0.57 e Å3
211 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40943 (5)0.29645 (9)0.65893 (6)0.0801 (4)
C20.32187 (17)0.2270 (3)0.6390 (2)0.0610 (8)
H2A0.31860.17440.68660.073*
H2B0.28110.27760.63910.073*
C30.31728 (16)0.1719 (2)0.5480 (2)0.0524 (7)
O30.26206 (12)0.12615 (19)0.51154 (16)0.0669 (6)
N40.38267 (12)0.18081 (18)0.51161 (15)0.0466 (6)
C4A0.38797 (15)0.1538 (2)0.41955 (18)0.0453 (6)
C50.37768 (18)0.0494 (2)0.3880 (2)0.0589 (8)
H50.36730.00520.42720.071*
C60.38296 (18)0.0273 (2)0.2984 (2)0.0612 (8)
H60.37540.04290.27750.073*
C70.39919 (15)0.1061 (2)0.23845 (19)0.0488 (7)
C80.40901 (14)0.2104 (2)0.27151 (17)0.0421 (6)
H80.41940.26480.23200.051*
C8A0.40380 (13)0.23624 (19)0.36146 (17)0.0392 (6)
C90.41873 (14)0.34878 (19)0.40082 (17)0.0403 (6)
H90.38210.36190.44270.048*
C9A0.49525 (14)0.34356 (19)0.45798 (17)0.0405 (6)
C100.55658 (16)0.4003 (2)0.43479 (19)0.0486 (7)
H1700.54970.44800.38620.058*
C110.62705 (16)0.3875 (3)0.4820 (2)0.0571 (8)
H110.66640.42680.46450.069*
C120.64037 (16)0.3175 (3)0.5547 (2)0.0548 (8)
C130.57916 (15)0.2630 (2)0.57933 (19)0.0494 (7)
H130.58630.21620.62860.059*
C140.50769 (14)0.2758 (2)0.53333 (17)0.0425 (6)
C150.44750 (15)0.2154 (2)0.57304 (18)0.0484 (7)
H150.47030.15120.60340.058*
C710.40746 (18)0.0815 (3)0.1414 (2)0.0613 (8)
H71A0.37210.02720.11870.092*
H71B0.45710.05600.13790.092*
H71C0.39850.14550.10550.092*
C910.40972 (15)0.4383 (2)0.33031 (18)0.0475 (7)
H91A0.42490.50580.35980.057*
H91B0.44260.42430.28510.057*
C920.33049 (18)0.4491 (3)0.2831 (2)0.0630 (8)
H92A0.32760.50850.24150.095*
H92B0.29750.46140.32760.095*
H92C0.31620.38420.25030.095*
C1210.71688 (18)0.3000 (3)0.6059 (3)0.0804 (11)
H12A0.73080.22600.60090.121*
H12B0.71660.31790.66870.121*
H12C0.75210.34490.58070.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0711 (6)0.1163 (8)0.0586 (5)0.0213 (5)0.0302 (4)0.0193 (5)
C20.0511 (17)0.081 (2)0.0540 (17)0.0063 (16)0.0195 (14)0.0199 (16)
C30.0453 (16)0.0565 (17)0.0574 (17)0.0010 (14)0.0140 (13)0.0231 (14)
O30.0440 (12)0.0749 (15)0.0830 (15)0.0105 (11)0.0124 (11)0.0168 (12)
N40.0427 (13)0.0499 (13)0.0489 (13)0.0057 (10)0.0120 (10)0.0065 (10)
C4A0.0408 (14)0.0438 (14)0.0523 (15)0.0048 (11)0.0094 (12)0.0030 (12)
C50.067 (2)0.0446 (16)0.0644 (19)0.0152 (14)0.0072 (15)0.0090 (14)
C60.073 (2)0.0397 (15)0.068 (2)0.0096 (14)0.0006 (16)0.0059 (14)
C70.0444 (15)0.0468 (15)0.0538 (16)0.0003 (12)0.0012 (12)0.0047 (13)
C80.0377 (14)0.0407 (14)0.0488 (15)0.0003 (11)0.0090 (11)0.0026 (12)
C8A0.0317 (12)0.0362 (13)0.0509 (15)0.0005 (10)0.0099 (11)0.0021 (11)
C90.0430 (14)0.0376 (13)0.0441 (14)0.0001 (11)0.0192 (11)0.0010 (11)
C9A0.0410 (14)0.0358 (13)0.0474 (15)0.0020 (11)0.0159 (11)0.0077 (11)
C100.0544 (17)0.0455 (15)0.0497 (15)0.0087 (13)0.0211 (13)0.0082 (12)
C110.0441 (17)0.0680 (19)0.0632 (19)0.0156 (14)0.0218 (14)0.0191 (16)
C120.0428 (16)0.0672 (19)0.0559 (17)0.0022 (13)0.0125 (13)0.0187 (15)
C130.0475 (16)0.0523 (16)0.0488 (15)0.0031 (13)0.0084 (13)0.0083 (13)
C140.0425 (15)0.0416 (14)0.0456 (14)0.0004 (11)0.0145 (12)0.0058 (11)
C150.0471 (16)0.0520 (16)0.0470 (15)0.0037 (13)0.0097 (12)0.0064 (13)
C710.064 (2)0.0570 (18)0.0623 (19)0.0020 (15)0.0050 (15)0.0142 (15)
C910.0530 (16)0.0403 (14)0.0530 (16)0.0013 (12)0.0208 (13)0.0024 (12)
C920.063 (2)0.0562 (18)0.071 (2)0.0113 (15)0.0147 (16)0.0179 (15)
C1210.0466 (19)0.111 (3)0.082 (2)0.0024 (19)0.0051 (17)0.022 (2)
Geometric parameters (Å, º) top
S1—C21.795 (3)C9A—C101.397 (4)
S1—C151.831 (3)C10—C111.381 (4)
C2—C31.508 (4)C10—H1700.9300
C2—H2A0.9700C11—C121.382 (4)
C2—H2B0.9700C11—H110.9300
C3—O31.214 (4)C12—C131.389 (4)
C3—N41.369 (3)C12—C1211.504 (4)
N4—C4A1.423 (3)C13—C141.389 (4)
N4—C151.452 (3)C13—H130.9300
C4A—C51.385 (4)C14—C151.507 (4)
C4A—C8A1.394 (3)C15—H150.9800
C5—C61.374 (4)C71—H71A0.9600
C5—H50.9300C71—H71B0.9600
C6—C71.382 (4)C71—H71C0.9600
C6—H60.9300C91—C921.516 (4)
C7—C81.391 (4)C91—H91A0.9700
C7—C711.499 (4)C91—H91B0.9700
C8—C8A1.389 (3)C92—H92A0.9600
C8—H80.9300C92—H92B0.9600
C8A—C91.528 (3)C92—H92C0.9600
C9—C911.522 (3)C121—H12A0.9600
C9—C9A1.527 (4)C121—H12B0.9600
C9—H90.9800C121—H12C0.9600
C9A—C141.395 (4)
C2—S1—C1591.50 (14)C10—C11—C12121.5 (3)
C3—C2—S1107.97 (19)C10—C11—H11119.3
C3—C2—H2A110.1C12—C11—H11119.3
S1—C2—H2A110.1C11—C12—C13116.8 (3)
C3—C2—H2B110.1C11—C12—C121122.6 (3)
S1—C2—H2B110.1C13—C12—C121120.6 (3)
H2A—C2—H2B108.4C12—C13—C14122.6 (3)
O3—C3—N4124.5 (3)C12—C13—H13118.7
O3—C3—C2123.8 (3)C14—C13—H13118.7
N4—C3—C2111.7 (3)C13—C14—C9A120.2 (2)
C3—N4—C4A122.1 (2)C13—C14—C15115.2 (2)
C3—N4—C15116.4 (2)C9A—C14—C15124.6 (2)
C4A—N4—C15121.4 (2)N4—C15—C14117.9 (2)
C5—C4A—C8A120.7 (3)N4—C15—S1104.64 (18)
C5—C4A—N4121.5 (2)C14—C15—S1110.88 (19)
C8A—C4A—N4117.8 (2)N4—C15—H15107.7
C6—C5—C4A119.5 (3)C14—C15—H15107.7
C6—C5—H5120.3S1—C15—H15107.7
C4A—C5—H5120.3C7—C71—H71A109.5
C5—C6—C7121.9 (3)C7—C71—H71B109.5
C5—C6—H6119.0H71A—C71—H71B109.5
C7—C6—H6119.0C7—C71—H71C109.5
C6—C7—C8117.6 (3)H71A—C71—H71C109.5
C6—C7—C71122.0 (3)H71B—C71—H71C109.5
C8—C7—C71120.3 (3)C92—C91—C9113.0 (2)
C8A—C8—C7122.2 (2)C92—C91—H91A109.0
C8A—C8—H8118.9C9—C91—H91A109.0
C7—C8—H8118.9C92—C91—H91B109.0
C8—C8A—C4A118.1 (2)C9—C91—H91B109.0
C8—C8A—C9123.3 (2)H91A—C91—H91B107.8
C4A—C8A—C9118.6 (2)C91—C92—H92A109.5
C91—C9—C9A114.8 (2)C91—C92—H92B109.5
C91—C9—C8A114.2 (2)H92A—C92—H92B109.5
C9A—C9—C8A106.0 (2)C91—C92—H92C109.5
C91—C9—H9107.1H92A—C92—H92C109.5
C9A—C9—H9107.1H92B—C92—H92C109.5
C8A—C9—H9107.1C12—C121—H12A109.5
C14—C9A—C10117.0 (2)C12—C121—H12B109.5
C14—C9A—C9120.6 (2)H12A—C121—H12B109.5
C10—C9A—C9122.3 (2)C12—C121—H12C109.5
C11—C10—C9A121.9 (3)H12A—C121—H12C109.5
C11—C10—H170119.1H12B—C121—H12C109.5
C9A—C10—H170119.1
C15—S1—C2—C318.5 (2)C8A—C9—C9A—C1462.2 (3)
S1—C2—C3—O3173.3 (2)C91—C9—C9A—C1013.3 (3)
S1—C2—C3—N46.3 (3)C8A—C9—C9A—C10113.8 (2)
O3—C3—N4—C4A11.8 (4)C14—C9A—C10—C112.2 (4)
C2—C3—N4—C4A167.8 (2)C9—C9A—C10—C11173.9 (2)
O3—C3—N4—C15165.9 (3)C9A—C10—C11—C120.1 (4)
C2—C3—N4—C1514.6 (3)C10—C11—C12—C131.7 (4)
C3—N4—C4A—C565.0 (4)C10—C11—C12—C121178.5 (3)
C15—N4—C4A—C5112.5 (3)C11—C12—C13—C140.9 (4)
C3—N4—C4A—C8A114.9 (3)C121—C12—C13—C14179.2 (3)
C15—N4—C4A—C8A67.6 (3)C12—C13—C14—C9A1.4 (4)
C8A—C4A—C5—C60.2 (4)C12—C13—C14—C15176.5 (2)
N4—C4A—C5—C6179.7 (3)C10—C9A—C14—C132.9 (3)
C4A—C5—C6—C70.8 (5)C9—C9A—C14—C13173.3 (2)
C5—C6—C7—C81.0 (4)C10—C9A—C14—C15174.8 (2)
C5—C6—C7—C71178.0 (3)C9—C9A—C14—C159.0 (4)
C6—C7—C8—C8A0.7 (4)C3—N4—C15—C14151.3 (2)
C71—C7—C8—C8A178.3 (3)C4A—N4—C15—C1431.0 (4)
C7—C8—C8A—C4A0.2 (4)C3—N4—C15—S127.6 (3)
C7—C8—C8A—C9176.4 (2)C4A—N4—C15—S1154.7 (2)
C5—C4A—C8A—C80.1 (4)C13—C14—C15—N4150.7 (2)
N4—C4A—C8A—C8180.0 (2)C9A—C14—C15—N431.5 (4)
C5—C4A—C8A—C9176.8 (2)C13—C14—C15—S188.7 (3)
N4—C4A—C8A—C93.3 (4)C9A—C14—C15—S189.0 (3)
C8—C8A—C9—C9122.9 (3)C2—S1—C15—N425.27 (19)
C4A—C8A—C9—C91160.6 (2)C2—S1—C15—C14153.4 (2)
C8—C8A—C9—C9A104.5 (3)C9A—C9—C91—C92173.0 (2)
C4A—C8A—C9—C9A72.0 (3)C8A—C9—C91—C9264.3 (3)
C91—C9—C9A—C14170.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O3i0.972.573.120 (4)116
C91—H91A···Cg3ii0.972.823.736 (3)157
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y+1, z+1.
(III) Ethyl 2-chloro-13-ethyl-4-oxo-8,13-dihydro-4H-benzo[5,6]azepino[3,2,1-ij]quinoline-5-carboxylate top
Crystal data top
C22H20ClNO3Z = 2
Mr = 381.84F(000) = 400
Triclinic, P1Dx = 1.394 Mg m3
a = 6.8533 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.612 (5) ÅCell parameters from 4176 reflections
c = 13.561 (3) Åθ = 2.9–27.5°
α = 72.45 (4)°µ = 0.23 mm1
β = 75.840 (19)°T = 120 K
γ = 82.46 (2)°Needle, colourless
V = 910.0 (6) Å30.26 × 0.15 × 0.13 mm
Data collection top
Nonius KappaCCD
diffractometer
3776 independent reflections
Radiation source: fine focus sealed tube2195 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.154
φ and ω scansθmax = 26.6°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.845, Tmax = 0.970k = 1313
20183 measured reflectionsl = 1617
Refinement top
Refinement on F274 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0192P)2 + 1.1423P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3776 reflectionsΔρmax = 0.29 e Å3
322 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C110.8032 (8)0.3061 (4)0.6534 (3)0.0131 (8)0.900 (6)
H110.82190.23380.71260.016*0.900 (6)
C120.8306 (11)0.2830 (4)0.5549 (3)0.0131 (8)0.900 (6)
Cl120.9006 (7)0.1222 (2)0.5455 (3)0.0224 (4)0.900 (6)
C130.8071 (8)0.3838 (4)0.4674 (3)0.0134 (10)0.900 (6)
H130.83130.36770.40010.016*0.900 (6)
C13A0.7467 (12)0.5117 (5)0.4780 (3)0.0138 (10)0.900 (6)
C140.7273 (10)0.6182 (5)0.3794 (3)0.0128 (11)0.900 (6)
O140.750 (2)0.5900 (6)0.2952 (3)0.0201 (10)0.900 (6)
C150.675 (2)0.7488 (5)0.3946 (4)0.0154 (9)0.900 (6)
C160.623 (2)0.7619 (4)0.4956 (4)0.0146 (12)0.900 (6)
H160.57860.84760.50360.018*0.900 (6)
N170.6312 (15)0.6629 (4)0.5838 (3)0.0129 (7)0.900 (6)
C180.5458 (9)0.6900 (5)0.6874 (4)0.0151 (8)0.900 (6)
H18A0.45000.62220.73180.018*0.900 (6)
H18B0.47080.77770.67610.018*0.900 (6)
C18A0.7098 (10)0.6883 (4)0.7436 (5)0.0147 (9)0.900 (6)
C190.7676 (9)0.8073 (4)0.7489 (6)0.0198 (14)0.900 (6)
H190.69970.88880.71910.024*0.900 (6)
C1100.9232 (11)0.8066 (5)0.7972 (7)0.0250 (13)0.900 (6)
H1100.96680.88770.79790.030*0.900 (6)
C1111.0156 (8)0.6872 (5)0.8449 (5)0.0244 (12)0.900 (6)
H1111.11710.68620.88190.029*0.900 (6)
C1120.9603 (7)0.5682 (5)0.8387 (4)0.0201 (11)0.900 (6)
H1121.02740.48710.86970.024*0.900 (6)
C12A0.8079 (6)0.5675 (4)0.7876 (3)0.0155 (10)0.900 (6)
C1130.7482 (7)0.4385 (4)0.7797 (3)0.0164 (9)0.900 (6)
H1130.85790.37200.80230.020*0.900 (6)
C13C0.7491 (7)0.4319 (4)0.6683 (3)0.0132 (10)0.900 (6)
C1310.5547 (6)0.3870 (4)0.8619 (3)0.0206 (10)0.900 (6)
H13A0.44680.45900.85710.025*0.900 (6)
H13B0.50950.31340.84390.025*0.900 (6)
C1320.5838 (8)0.3386 (6)0.9751 (3)0.0223 (14)0.900 (6)
H13C0.62970.41060.99350.033*0.900 (6)
H13D0.68490.26380.98160.033*0.900 (6)
H13E0.45560.31011.02340.033*0.900 (6)
C13B0.7097 (12)0.5356 (5)0.5784 (3)0.0137 (11)0.900 (6)
C1510.662 (2)0.8739 (5)0.3103 (4)0.0181 (9)0.900 (6)
O1510.6227 (17)0.9825 (6)0.3249 (5)0.0256 (15)0.900 (6)
O1520.707 (4)0.8574 (8)0.2120 (4)0.0237 (10)0.900 (6)
C1520.6960 (10)0.9782 (7)0.1264 (4)0.0234 (16)0.900 (6)
H15A0.78871.04240.12620.028*0.900 (6)
H15B0.55711.01970.13420.028*0.900 (6)
C1530.757 (3)0.9364 (13)0.0249 (5)0.029 (2)0.900 (6)
H15C0.75251.01430.03590.043*0.900 (6)
H15D0.89480.89530.01860.043*0.900 (6)
H15E0.66450.87270.02650.043*0.900 (6)
C210.822 (8)0.330 (3)0.645 (2)0.0131 (8)0.100 (6)
H210.88660.27060.69700.016*0.100 (6)
C220.844 (11)0.307 (2)0.546 (2)0.0131 (8)0.100 (6)
Cl220.889 (7)0.146 (2)0.536 (3)0.0224 (4)0.100 (6)
C230.830 (9)0.410 (3)0.459 (2)0.0134 (10)0.100 (6)
H230.89250.40390.38960.016*0.100 (6)
C23A0.720 (12)0.527 (3)0.474 (2)0.0138 (10)0.100 (6)
C240.694 (12)0.634 (4)0.377 (2)0.0128 (11)0.100 (6)
O240.73 (2)0.607 (5)0.291 (3)0.0201 (10)0.100 (6)
C250.68 (2)0.766 (3)0.390 (3)0.0154 (9)0.100 (6)
C260.64 (2)0.780 (3)0.490 (3)0.0146 (12)0.100 (6)
H260.61030.86750.49740.018*0.100 (6)
N270.630 (14)0.680 (3)0.579 (2)0.0129 (7)0.100 (6)
C280.536 (7)0.710 (4)0.681 (3)0.0151 (8)0.100 (6)
H28A0.42420.65170.71990.018*0.100 (6)
H28B0.47890.80310.66670.018*0.100 (6)
C28A0.689 (9)0.691 (2)0.748 (5)0.0147 (9)0.100 (6)
C290.800 (10)0.797 (3)0.739 (6)0.0198 (14)0.100 (6)
H290.77620.88160.69220.024*0.100 (6)
C2100.945 (11)0.778 (4)0.798 (7)0.0250 (13)0.100 (6)
H2100.99760.85130.80640.030*0.100 (6)
C2111.013 (8)0.650 (5)0.844 (6)0.0244 (12)0.100 (6)
H2111.13230.63450.87100.029*0.100 (6)
C2120.908 (7)0.543 (4)0.850 (4)0.0201 (11)0.100 (6)
H2120.94270.45630.89100.024*0.100 (6)
C22A0.752 (6)0.561 (2)0.798 (3)0.0155 (10)0.100 (6)
C2130.664 (5)0.446 (2)0.7812 (17)0.0164 (9)0.100 (6)
H2230.51600.46940.79700.020*0.100 (6)
C23C0.704 (8)0.441 (3)0.6666 (17)0.0132 (10)0.100 (6)
C2310.684 (5)0.314 (2)0.8666 (19)0.0206 (10)0.100 (6)
H23A0.59200.25180.86330.025*0.100 (6)
H23B0.82380.27480.85120.025*0.100 (6)
C2320.636 (11)0.330 (5)0.9781 (19)0.0223 (14)0.100 (6)
H23C0.63400.24251.02980.033*0.100 (6)
H23D0.50430.37750.99100.033*0.100 (6)
H23E0.73980.38030.98510.033*0.100 (6)
C23B0.679 (13)0.549 (3)0.576 (2)0.0137 (11)0.100 (6)
C2510.66 (2)0.891 (4)0.305 (3)0.0181 (9)0.100 (6)
O2510.592 (18)0.996 (5)0.320 (5)0.0256 (15)0.100 (6)
O2520.70 (4)0.871 (7)0.208 (4)0.0237 (10)0.100 (6)
C2520.649 (14)0.985 (7)0.124 (4)0.0234 (16)0.100 (6)
H25A0.71561.06370.12250.028*0.100 (6)
H25B0.50161.00680.13540.028*0.100 (6)
C2530.73 (3)0.947 (12)0.022 (4)0.029 (2)0.100 (6)
H25C0.70021.02040.03780.043*0.100 (6)
H25D0.87370.92560.01250.043*0.100 (6)
H25E0.66090.86890.02540.043*0.100 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0130 (16)0.0069 (15)0.0188 (14)0.0051 (16)0.0023 (12)0.0017 (11)
C120.0130 (16)0.0069 (15)0.0188 (14)0.0051 (16)0.0023 (12)0.0017 (11)
Cl120.0303 (8)0.0107 (10)0.0255 (9)0.0016 (10)0.0043 (6)0.0069 (9)
C130.008 (2)0.017 (2)0.0168 (19)0.0060 (19)0.0014 (15)0.0073 (16)
C13A0.010 (3)0.016 (2)0.0157 (18)0.0007 (16)0.0053 (14)0.0035 (15)
C140.008 (4)0.018 (2)0.0136 (17)0.0013 (16)0.0052 (14)0.0046 (15)
O140.024 (3)0.021 (2)0.0164 (13)0.003 (3)0.0057 (12)0.0078 (13)
C150.0154 (19)0.017 (2)0.0115 (17)0.000 (3)0.0043 (16)0.0001 (15)
C160.015 (3)0.012 (2)0.0172 (18)0.001 (3)0.0053 (17)0.0032 (16)
N170.0182 (16)0.0090 (18)0.0106 (14)0.0009 (19)0.0040 (13)0.0014 (12)
C180.0159 (19)0.017 (2)0.0121 (18)0.0032 (17)0.0020 (14)0.0060 (17)
C18A0.014 (2)0.0192 (18)0.0096 (17)0.0003 (14)0.0009 (17)0.0049 (14)
C190.026 (3)0.0171 (19)0.015 (3)0.0041 (18)0.001 (2)0.0049 (17)
C1100.028 (3)0.026 (3)0.024 (2)0.010 (3)0.006 (2)0.009 (3)
C1110.020 (2)0.036 (3)0.025 (2)0.007 (2)0.0062 (17)0.018 (3)
C1120.013 (3)0.027 (3)0.018 (2)0.0031 (19)0.002 (2)0.0055 (19)
C12A0.015 (3)0.0191 (18)0.0097 (18)0.0027 (16)0.0046 (19)0.0055 (15)
C1130.020 (2)0.0177 (19)0.0114 (18)0.0014 (17)0.0055 (17)0.0029 (14)
C13C0.012 (3)0.0152 (18)0.0138 (17)0.0004 (15)0.0044 (15)0.0042 (14)
C1310.026 (2)0.018 (2)0.017 (2)0.0053 (17)0.0030 (17)0.0037 (17)
C1320.027 (4)0.022 (2)0.0172 (19)0.000 (2)0.0055 (18)0.0029 (16)
C13B0.008 (4)0.0157 (19)0.0180 (17)0.0012 (15)0.0036 (15)0.0046 (15)
C1510.0148 (18)0.021 (2)0.0184 (19)0.004 (3)0.0043 (17)0.0037 (17)
O1510.040 (5)0.0151 (18)0.0198 (15)0.0079 (17)0.0102 (16)0.0028 (14)
O1520.039 (4)0.018 (2)0.0124 (13)0.001 (3)0.0069 (15)0.0001 (13)
C1520.030 (5)0.021 (2)0.0154 (18)0.000 (3)0.008 (2)0.0024 (16)
C1530.039 (7)0.030 (3)0.0157 (19)0.016 (3)0.0037 (18)0.0014 (18)
C210.0130 (16)0.0069 (15)0.0188 (14)0.0051 (16)0.0023 (12)0.0017 (11)
C220.0130 (16)0.0069 (15)0.0188 (14)0.0051 (16)0.0023 (12)0.0017 (11)
Cl220.0303 (8)0.0107 (10)0.0255 (9)0.0016 (10)0.0043 (6)0.0069 (9)
C230.008 (2)0.017 (2)0.0168 (19)0.0060 (19)0.0014 (15)0.0073 (16)
C23A0.010 (3)0.016 (2)0.0157 (18)0.0007 (16)0.0053 (14)0.0035 (15)
C240.008 (4)0.018 (2)0.0136 (17)0.0013 (16)0.0052 (14)0.0046 (15)
O240.024 (3)0.021 (2)0.0164 (13)0.003 (3)0.0057 (12)0.0078 (13)
C250.0154 (19)0.017 (2)0.0115 (17)0.000 (3)0.0043 (16)0.0001 (15)
C260.015 (3)0.012 (2)0.0172 (18)0.001 (3)0.0053 (17)0.0032 (16)
N270.0182 (16)0.0090 (18)0.0106 (14)0.0009 (19)0.0040 (13)0.0014 (12)
C280.0159 (19)0.017 (2)0.0121 (18)0.0032 (17)0.0020 (14)0.0060 (17)
C28A0.014 (2)0.0192 (18)0.0096 (17)0.0003 (14)0.0009 (17)0.0049 (14)
C290.026 (3)0.0171 (19)0.015 (3)0.0041 (18)0.001 (2)0.0049 (17)
C2100.028 (3)0.026 (3)0.024 (2)0.010 (3)0.006 (2)0.009 (3)
C2110.020 (2)0.036 (3)0.025 (2)0.007 (2)0.0062 (17)0.018 (3)
C2120.013 (3)0.027 (3)0.018 (2)0.0031 (19)0.002 (2)0.0055 (19)
C22A0.015 (3)0.0191 (18)0.0097 (18)0.0027 (16)0.0046 (19)0.0055 (15)
C2130.020 (2)0.0177 (19)0.0114 (18)0.0014 (17)0.0055 (17)0.0029 (14)
C23C0.012 (3)0.0152 (18)0.0138 (17)0.0004 (15)0.0044 (15)0.0042 (14)
C2310.026 (2)0.018 (2)0.017 (2)0.0053 (17)0.0030 (17)0.0037 (17)
C2320.027 (4)0.022 (2)0.0172 (19)0.000 (2)0.0055 (18)0.0029 (16)
C23B0.008 (4)0.0157 (19)0.0180 (17)0.0012 (15)0.0036 (15)0.0046 (15)
C2510.0148 (18)0.021 (2)0.0184 (19)0.004 (3)0.0043 (17)0.0037 (17)
O2510.040 (5)0.0151 (18)0.0198 (15)0.0079 (17)0.0102 (16)0.0028 (14)
O2520.039 (4)0.018 (2)0.0124 (13)0.001 (3)0.0069 (15)0.0001 (13)
C2520.030 (5)0.021 (2)0.0154 (18)0.000 (3)0.008 (2)0.0024 (16)
C2530.039 (7)0.030 (3)0.0157 (19)0.016 (3)0.0037 (18)0.0014 (18)
Geometric parameters (Å, º) top
C11—C121.393 (5)C21—C23C1.401 (11)
C11—C13C1.399 (5)C21—C221.402 (10)
C11—H110.9500C21—H210.9500
C12—C131.364 (5)C22—C231.364 (10)
C12—Cl121.746 (4)C22—Cl221.740 (10)
C13—C13A1.405 (5)C23—C23A1.406 (11)
C13—H130.9500C23—H230.9500
C13A—C13B1.416 (5)C23A—C23B1.417 (9)
C13A—C141.489 (5)C23A—C241.490 (10)
C14—O141.236 (4)C24—O241.239 (10)
C14—C151.448 (5)C24—C251.450 (11)
C15—C161.374 (5)C25—C261.374 (10)
C15—C1511.477 (5)C25—C2511.478 (10)
C16—N171.340 (5)C26—N271.341 (9)
C16—H160.9500C26—H260.9500
N17—C13B1.403 (4)N27—C23B1.403 (10)
N17—C181.482 (4)N27—C281.484 (10)
C18—C18A1.500 (5)C28—C28A1.502 (10)
C18—H18A0.9900C28—H28A0.9900
C18—H18B0.9900C28—H28B0.9900
C18A—C191.399 (5)C28A—C291.400 (11)
C18A—C12A1.400 (5)C28A—C22A1.405 (9)
C19—C1101.380 (5)C29—C2101.381 (10)
C19—H190.9500C29—H290.9500
C110—C1111.386 (6)C210—C2111.387 (11)
C110—H1100.9500C210—H2100.9500
C111—C1121.396 (6)C211—C2121.396 (11)
C111—H1110.9500C211—H2110.9500
C112—C12A1.389 (5)C212—C22A1.387 (10)
C112—H1120.9500C212—H2120.9500
C12A—C1131.519 (5)C22A—C2131.521 (10)
C113—C13C1.531 (5)C213—C23C1.527 (9)
C113—C1311.550 (5)C213—C2311.540 (10)
C113—H1131.0000C213—H2231.0000
C13C—C13B1.430 (5)C23C—C23B1.438 (9)
C131—C1321.519 (5)C231—C2321.523 (11)
C131—H13A0.9900C231—H23A0.9900
C131—H13B0.9900C231—H23B0.9900
C132—H13C0.9800C232—H23C0.9800
C132—H13D0.9800C232—H23D0.9800
C132—H13E0.9800C232—H23E0.9800
C151—O1511.213 (5)C251—O2511.214 (11)
C151—O1521.352 (4)C251—O2521.354 (11)
O152—C1521.455 (6)O252—C2521.455 (12)
C152—C1531.517 (5)C252—C2531.518 (11)
C152—H15A0.9900C252—H25A0.9900
C152—H15B0.9900C252—H25B0.9900
C153—H15C0.9800C253—H25C0.9800
C153—H15D0.9800C253—H25D0.9800
C153—H15E0.9800C253—H25E0.9800
C12—C11—C13C122.4 (3)H15D—C153—H15E109.5
C12—C11—H11118.8C23C—C21—C22119.8 (13)
C13C—C11—H11118.8C23C—C21—H21120.1
C13—C12—C11121.0 (3)C22—C21—H21120.1
C13—C12—Cl12120.6 (3)C23—C22—C21120.2 (12)
C11—C12—Cl12118.4 (3)C23—C22—Cl22120.5 (12)
C12—C13—C13A119.3 (3)C21—C22—Cl22119.3 (12)
C12—C13—H13120.4C22—C23—C23A118.0 (14)
C13A—C13—H13120.4C22—C23—H23121.0
C13—C13A—C13B120.4 (3)C23A—C23—H23121.0
C13—C13A—C14116.9 (3)C23—C23A—C23B119.3 (16)
C13B—C13A—C14122.7 (3)C23—C23A—C24116.5 (14)
O14—C14—C15126.0 (3)C23B—C23A—C24122.7 (10)
O14—C14—C13A119.8 (3)O24—C24—C25125 (2)
C15—C14—C13A114.2 (3)O24—C24—C23A118.9 (17)
C16—C15—C14119.3 (3)C25—C24—C23A113.5 (13)
C16—C15—C151114.5 (3)C26—C25—C24118.8 (16)
C14—C15—C151126.0 (3)C26—C25—C251114.7 (14)
N17—C16—C15124.8 (4)C24—C25—C251125.3 (18)
N17—C16—H16117.6N27—C26—C25124.9 (13)
C15—C16—H16117.6N27—C26—H26117.5
C16—N17—C13B121.1 (3)C25—C26—H26117.5
C16—N17—C18118.0 (3)C26—N27—C23B121.3 (11)
C13B—N17—C18120.8 (3)C26—N27—C28117.1 (14)
N17—C18—C18A110.7 (3)C23B—N27—C28120.8 (16)
N17—C18—H18A109.5N27—C28—C28A110.5 (15)
C18A—C18—H18A109.5N27—C28—H28A109.5
N17—C18—H18B109.5C28A—C28—H28A109.5
C18A—C18—H18B109.5N27—C28—H28B109.5
H18A—C18—H18B108.1C28A—C28—H28B109.5
C19—C18A—C12A120.6 (3)H28A—C28—H28B108.1
C19—C18A—C18119.9 (3)C29—C28A—C22A120.2 (14)
C12A—C18A—C18119.5 (3)C29—C28A—C28119.8 (15)
C110—C19—C18A120.1 (4)C22A—C28A—C28118.2 (12)
C110—C19—H19120.0C210—C29—C28A119.7 (15)
C18A—C19—H19120.0C210—C29—H29120.2
C19—C110—C111119.8 (4)C28A—C29—H29120.2
C19—C110—H110120.1C29—C210—C211119.0 (15)
C111—C110—H110120.1C29—C210—H210120.5
C110—C111—C112120.3 (4)C211—C210—H210120.5
C110—C111—H111119.8C210—C211—C212120.0 (14)
C112—C111—H111119.8C210—C211—H211120.0
C12A—C112—C111120.6 (4)C212—C211—H211120.0
C12A—C112—H112119.7C22A—C212—C211120.6 (13)
C111—C112—H112119.7C22A—C212—H212119.7
C112—C12A—C18A118.6 (3)C211—C212—H212119.7
C112—C12A—C113120.8 (3)C212—C22A—C28A118.3 (11)
C18A—C12A—C113120.6 (3)C212—C22A—C213122.4 (13)
C12A—C113—C13C116.4 (3)C28A—C22A—C213118.9 (11)
C12A—C113—C131113.0 (3)C22A—C213—C23C115.5 (14)
C13C—C113—C131112.9 (3)C22A—C213—C231113.8 (13)
C12A—C113—H113104.3C23C—C213—C231117.1 (12)
C13C—C113—H113104.3C22A—C213—H223102.5
C131—C113—H113104.3C23C—C213—H223102.5
C11—C13C—C13B116.6 (3)C231—C213—H223102.5
C11—C13C—C113114.0 (3)C21—C23C—C23B115.6 (14)
C13B—C13C—C113129.4 (3)C21—C23C—C213115.6 (12)
C132—C131—C113113.4 (3)C23B—C23C—C213126.8 (11)
C132—C131—H13A108.9C232—C231—C213112.8 (15)
C113—C131—H13A108.9C232—C231—H23A109.0
C132—C131—H13B108.9C213—C231—H23A109.0
C113—C131—H13B108.9C232—C231—H23B109.0
H13A—C131—H13B107.7C213—C231—H23B109.0
C131—C132—H13C109.5H23A—C231—H23B107.8
C131—C132—H13D109.5C231—C232—H23C109.5
H13C—C132—H13D109.5C231—C232—H23D109.5
C131—C132—H13E109.5H23C—C232—H23D109.5
H13C—C132—H13E109.5C231—C232—H23E109.5
H13D—C132—H13E109.5H23C—C232—H23E109.5
N17—C13B—C13A116.7 (3)H23D—C232—H23E109.5
N17—C13B—C13C123.2 (3)N27—C23B—C23A116.5 (11)
C13A—C13B—C13C120.1 (3)N27—C23B—C23C123.4 (13)
O151—C151—O152121.9 (4)C23A—C23B—C23C119.9 (10)
O151—C151—C15124.7 (4)O251—C251—O252121 (2)
O152—C151—C15113.3 (3)O251—C251—C25125 (2)
C151—O152—C152115.2 (4)O252—C251—C25112.5 (15)
O152—C152—C153105.8 (4)C251—O252—C252115.3 (17)
O152—C152—H15A110.6O252—C252—C253105.7 (14)
C153—C152—H15A110.6O252—C252—H25A110.6
O152—C152—H15B110.6C253—C252—H25A110.6
C153—C152—H15B110.6H25A—C252—H25B108.7
H15A—C152—H15B108.7C252—C253—H25C109.5
C152—C153—H15C109.5C252—C253—H25D109.5
C152—C153—H15D109.5H25C—C253—H25D109.5
H15C—C153—H15D109.5C252—C253—H25E109.5
C152—C153—H15E109.5H25D—C253—H25E109.5
H15C—C153—H15E109.5
C13C—C11—C12—C130.6 (7)C15—C151—O152—C152179.9 (16)
C13C—C11—C12—Cl12179.3 (5)C151—O152—C152—C153178.5 (16)
C11—C12—C13—C13A2.5 (8)C23C—C21—C22—C2328 (6)
Cl12—C12—C13—C13A178.7 (6)C23C—C21—C22—Cl22152 (6)
C12—C13—C13A—C13B0.3 (9)C21—C22—C23—C23A24 (7)
C12—C13—C13A—C14178.9 (6)Cl22—C22—C23—C23A155 (6)
C13—C13A—C14—O145.3 (11)C22—C23—C23A—C23B18 (8)
C13B—C13A—C14—O14175.6 (10)C22—C23—C23A—C24175 (6)
C13—C13A—C14—C15176.8 (9)C23—C23A—C24—O2414 (11)
C13B—C13A—C14—C152.3 (9)C23B—C23A—C24—O24180 (9)
O14—C14—C15—C16169.4 (12)C23—C23A—C24—C25150 (8)
C13A—C14—C15—C168.4 (13)C23B—C23A—C24—C2516 (8)
O14—C14—C15—C1517.4 (16)O24—C24—C25—C26179 (12)
C13A—C14—C15—C151174.8 (10)C23A—C24—C25—C2617 (12)
C14—C15—C16—N175.4 (18)O24—C24—C25—C25114 (15)
C151—C15—C16—N17177.5 (11)C23A—C24—C25—C251176 (9)
C15—C16—N17—C13B4.8 (16)C251—C25—C26—N27176 (11)
C15—C16—N17—C18172.5 (11)C25—C26—N27—C23B4 (16)
C16—N17—C18—C18A110.9 (9)C25—C26—N27—C28166 (10)
C13B—N17—C18—C18A71.9 (8)C26—N27—C28—C28A116 (8)
N17—C18—C18A—C19105.6 (7)C23B—N27—C28—C28A74 (6)
N17—C18—C18A—C12A72.5 (6)N27—C28—C28A—C2990 (7)
C12A—C18A—C19—C1100.4 (10)N27—C28—C28A—C22A74 (4)
C18—C18A—C19—C110177.7 (7)C22A—C28A—C29—C21014 (10)
C18A—C19—C110—C1113.0 (11)C28—C28A—C29—C210178 (7)
C19—C110—C111—C1123.8 (11)C28A—C29—C210—C21116 (12)
C110—C111—C112—C12A2.0 (9)C29—C210—C211—C21214 (12)
C111—C112—C12A—C18A0.7 (7)C210—C211—C212—C22A9 (10)
C111—C112—C12A—C113179.4 (5)C211—C212—C22A—C28A7 (8)
C19—C18A—C12A—C1121.5 (8)C211—C212—C22A—C213166 (5)
C18—C18A—C12A—C112179.6 (5)C29—C28A—C22A—C2129 (8)
C19—C18A—C12A—C113178.6 (5)C28—C28A—C22A—C212174 (5)
C18—C18A—C12A—C1130.5 (8)C29—C28A—C22A—C213164 (5)
C112—C12A—C113—C13C126.3 (4)C28—C28A—C22A—C2131 (7)
C18A—C12A—C113—C13C53.8 (6)C212—C22A—C213—C23C112 (5)
C112—C12A—C113—C131100.6 (4)C28A—C22A—C213—C23C60 (4)
C18A—C12A—C113—C13179.3 (6)C212—C22A—C213—C23127 (5)
C12—C11—C13C—C13B4.0 (7)C28A—C22A—C213—C231160 (4)
C12—C11—C13C—C113173.9 (4)C22—C21—C23C—C23B23 (6)
C12A—C113—C13C—C11146.8 (4)C22—C21—C23C—C213171 (3)
C131—C113—C13C—C1180.1 (5)C22A—C213—C23C—C21116 (4)
C12A—C113—C13C—C13B30.8 (7)C231—C213—C23C—C2122 (5)
C131—C113—C13C—C13B102.3 (6)C22A—C213—C23C—C23B47 (6)
C12A—C113—C131—C13269.4 (5)C231—C213—C23C—C23B175 (5)
C13C—C113—C131—C132155.8 (4)C22A—C213—C231—C23242 (5)
C16—N17—C13B—C13A10.6 (12)C23C—C213—C231—C232179 (4)
C18—N17—C13B—C13A166.5 (7)C26—N27—C23B—C23A5 (11)
C16—N17—C13B—C13C170.4 (10)C28—N27—C23B—C23A165 (6)
C18—N17—C13B—C13C12.4 (11)C26—N27—C23B—C23C170 (10)
C13—C13A—C13B—N17174.0 (8)C28—N27—C23B—C23C20 (11)
C14—C13A—C13B—N176.9 (10)C23—C23A—C23B—N27160 (7)
C13—C13A—C13B—C13C5.0 (10)C24—C23A—C23B—N276 (10)
C14—C13A—C13B—C13C174.1 (7)C23—C23A—C23B—C23C15 (9)
C11—C13C—C13B—N17172.2 (7)C24—C23A—C23B—C23C179 (7)
C113—C13C—C13B—N1710.2 (10)C21—C23C—C23B—N27157 (7)
C11—C13C—C13B—C13A6.7 (9)C213—C23C—C23B—N276 (10)
C113—C13C—C13B—C13A170.9 (6)C21—C23C—C23B—C23A18 (8)
C16—C15—C151—O1514.8 (16)C213—C23C—C23B—C23A179 (5)
C14—C15—C151—O151178.3 (15)C24—C25—C251—O251157 (14)
C16—C15—C151—O152177.8 (16)C26—C25—C251—O252177 (15)
C14—C15—C151—O1520.9 (16)C25—C251—O252—C252170 (16)
O151—C151—O152—C1523 (2)C251—O252—C252—C253171 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···O151i0.992.543.483 (9)159
C19—H19···O151i0.952.543.396 (12)149
C28—H28B···O251i0.992.103.13 (7)159
C29—H29···O251i0.952.753.38 (13)124
Symmetry code: (i) x+1, y+2, z+1.
Selected geometric parameters (Å, °) top
Ring-puckering parameters(Å, °)
(a)Five-membered ring
(I), molecule 1(I), molecule 2(II)(III), major(III), minor
Q20.4627 (12)0.3979 (12)0.300)3)
φ2359.12 (17)178.1 (2)339.0 (5)
(b)Six-membered ring
Q0.107 (8)0.16 (7)
θ87 (4)112 (26)
φ39 (4)2(30)
(c)Seven-membered rings
Q0.9540 (13)0.942 (2)0.981 (3)0.843 (6)0.85 (5)
φ238.32 (8)217.47 (8)40.16 (16)271.8 (4)267 (4)
φ3286.0 (3)107.8 (3)281.6 (7)9.6 (10)17 (7)
Dihedral angles
(I), molecule 1(I), molecule 2(II)(III), major(III), minor
70.84 (4)65.44 (4)76.67 (9)52.8 (2)66 (3)
Torsion angles
(I), molecule 1(I), molecule 2(II)(III), major(III), minor
Cx9—Cx9—Cx91—Cx92-169.01 (11)170.60 (10)-173.0 (2)
Cy2A—Cy13—Cy31—Cy32-69.4 (5)42 (5)
Notes: (i) x = 1 or 2 for molecules 1 and 2, respectively, in (I) and x = nul for (II); y = 1 or 2 for the major- and minor-disorder forms, respectively, in (III);

(ii) the ring-puckering angles are calculated for the following atom sequences: five-membered rings Sx1–Cx2–Cx3–Nx4–Cx1, six-membered rings Ny7–Cy3B–Cy3A–Cy4–Cy5–Cy6, and seven-membered rings Nx4–Cx4A–Cx8A–Cx9–Cx9A–Cx14–Cx15 in (I) and (II), and Ny7–Cy3B–Cy3C–Cy13–Cy2A–Cy8A–Cy8 in (III);

(iii) the dihedral angles are those between the mean planes of the two aryl rings in each of (I)–(III).
Parameters (Å, °) for hydrogen bonds and short intermolecular contacts top
CompoundD—H···AD—HH···AD···AD—H···A
(I)C115—H115···O13i1.002.473.3084 (18)141
C215—H215···O23ii1.002.373.1681 (18)136
C112—H112···Cg1iii0.952.813.6738 (13)152
C113—H113···Cg2iii0.952.853.7676 (14)163
(II)C2—H2B···O3iv0.972.573.120 (4)116
C91—H91A···Cg3v0.972.823.736 (3)157
(III)C18—H18B···O151vi0.992.543.483 (9)159
C19—H19···O151vi0.952.543.396 (12)149
C28—H28B···O251vi0.992.183.13 (7)159
C29—H29···O251vi0.952.703.34 (12)125
Cg1–Cg3 represent the centroids of the C29A/C210–C214, C24A/C25–C28/C28A and C9A/C10–C14 rings, respectively.

Symmetry codes: (i) -x, y+1/2, -z+1; (ii) -x, y-1/2, -z; (iii) x, y+1, z; (iv) -x+1/2, -y+1/2, -z+1; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y+2, -z+1.
 

Acknowledgements

The authors thank `Centro de Instrumentación Científico-Técnica of Universidad de Jaén' and Professor Pascal Roussel (University of Lille, France) for data collection. They also thank Vicerrectoría de Investigación y Extensión of Universidad Industrial de Santander (grant No. 9310), the Consejerιa de Innovación, Ciencía y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support.

References

First citationAcosta, L. M., Jurado, J., Palma, A., Cobo, J. & Glidewell, C. (2015). Acta Cryst. C71, 1062–1068.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAcosta Quintero, L. M., Burgos, I., Palma, A., Cobo, J. & Glidewell, C. (2016). Acta Cryst. C72, 52–56.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAcosta Quintero, L. M., Jurado, J., Nogueras, M., Palma, A. & Cobo, J. (2015). Eur. J. Org. Chem. pp. 5360–5369.  Google Scholar
First citationAcosta Quintero, L. M., Palma, A., Cobo, J. & Glidewell, C. (2016). Acta Cryst. C72, 346–357.  CSD CrossRef IUCr Journals Google Scholar
First citationAl-Qawasmeh, R. A., Lee, Y., Cao, M.-Y., Gu, X., Viau, S., Lightfoot, J., Wright, J. A. & Young, A. H. (2009). Bioorg. Med. Chem. Lett. 19, 104–107.  CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAndrés, J. I., Alonso, J. M., Fernández, J., Iturrino, L., Martínez, P., Meert, T. F. & Sipido, V. K. (2002). Bioorg. Med. Chem. Lett. 12, 3573–3577.  Google Scholar
First citationBernal, I. & Watkins, S. (2015). Acta Cryst. C71, 216–221.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDinesh, N., Kaur, P. K., Swamy, K. K. & Singh, S. (2014). Exp. Parasitol. 144, 84–90.  CrossRef CAS Google Scholar
First citationDuisenberg, A. J. M., Hooft, R., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFábián, L. & Brock, C. P. (2010). Acta Cryst. B66, 94–103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2010). J. Appl. Cryst. 43, 665–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLiu, K. K.-C., Li, J. & Sakya, S. (2004). Mini Rev. Med. Chem. 4, 1105–1125.  CAS Google Scholar
First citationMorales, G. A. & Fronczek, F. R. (1996). Acta Cryst. C52, 1266–1268.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMugnaini, C., Pasquini, S. & Corelli, F. (2009). Curr. Med. Chem. 16, 1746–1767.  CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationPalma, A., Barajas, J. J., Kouznetsov, V. V., Stashenko, E., Bahsas, A. & Amaro-Luis, J. (2004). Synlett, pp. 2721–2724.  Google Scholar
First citationPalma, A., Galeano, N. & Bahsas, A. (2010). Synthesis, pp. 1291–1302.  Web of Science CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CSD CrossRef CAS Web of Science Google Scholar
First citationSanabría, C. M., Palma, A., Cobo, J. & Glidewell, C. (2014). Acta Cryst. C70, 332–337.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStappers, F., Broeckx, R., Leurs, S., Van Den Bergh, L., Agten, J., Lambrechts, A., Van den Heuvel, D. & De Smaele, D. (2002). Org. Process Res. Dev. 6, 911–914.  CrossRef CAS Google Scholar
First citationWikström, H. V., Mensonides-Harsema, M. M., Cremers, T. I. F. H., Moltzen, E. K. & Arnt, J. (2002). J. Med. Chem. 45, 3280–3285.  Web of Science PubMed Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds