research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Three new acid M+ arsenates and phosphates with multiply protonated As/PO4 groups

CROSSMARK_Color_square_no_text.svg

aInstitute for Chemical Technology and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9, Wien 1060, Austria, bMineralogisch-Petrographische Abteilung, Naturhistorisches Museum, Burgring 7, Wien 1010, Austria, and cInstitut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, Wien 1090, Austria
*Correspondence e-mail: karolina.schwendtner@tuwien.ac.at

Edited by I. D. Williams, Hong Kong University of Science and Technology, Hong Kong (Received 18 December 2018; accepted 14 June 2019; online 25 July 2019)

The crystal structures of caesium di­hydrogen arsenate(V) bis­[tri­hydrogen arsen­ate(V)], Cs(H2AsO4)(H3AsO4)2, ammonium di­hydrogen arsenate(V) tri­hydrogen arsenate(V), NH4(H2AsO4)(H3AsO4), and dilithium bis­(di­hydrogen phosphate), Li2(H2PO4)2, were solved from single-crystal X-ray diffraction data. NH4(H2AsO4)(H3AsO4), which was hydro­thermally synthesized (T = 493 K), is homeotypic with Rb(H2AsO4)(H3AsO4), while Cs(H2AsO4)(H3AsO4)2 crystallizes in a novel structure type and Li2(H2PO4)2 represents a new polymorph of this composition. The Cs and Li compounds grew at room temperature from highly acidic aqueous solutions. Li2(H2PO4)2 forms a three-dimensional (3D) framework of PO4 tetra­hedra sharing corners with Li2O6 dimers built of edge-sharing LiO4 groups, which is reinforced by hydrogen bonds. The two arsenate compounds are characterized by a 3D network of AsO4 groups that are connected solely via multiple strong hydrogen bonds. A statistical evaluation of the As—O bond lengths in singly, doubly and triply protonated AsO4 groups gave average values of 1.70 (2) Å for 199 As—OH bonds, 1.728 (19) Å for As—OH bonds in HAsO4 groups, 1.714 (12) Å for As—OH bonds in H2AsO4 groups and 1.694 (16) Å for As—OH bonds in H3AsO4 groups, and a grand mean value of 1.667 (18) Å for As—O bonds to nonprotonated O atoms.

1. Introduction

M+ phosphates and arsenates, and their crystal structures and physicochemical properties, have been extensively studied. Several compounds exhibit inter­esting properties, such as protonic conductivity (Chouchene et al., 2017a[Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017a). J. Alloys Compd. 705, 602-609.],b[Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017b). Solid State Ionics, 301, 78-85.]; Volkov et al., 1995[Volkov, V. L., Denisova, T. A. & Shtin, A. P. (1995). Inorg. Mater. (Transl. of Neorg. Mater.), 31, 359-362.], 1997[Volkov, V. L., Shtin, A. P., Denisova, T. A. & Inozemtsev, M. V. (1997). Inorg. Mater. (Transl. of Neorg. Mater.), 33, 496-499.]; Voronov et al., 2013[Voronov, A. P., Babenko, G. N., Puzikov, V. M. & Iurchenko, A. N. (2013). J. Cryst. Growth, 374, 49-52.]; Dekhili et al., 2018[Dekhili, R., Kauffmann, T. H., Aroui, H. & Fontana, M. D. (2018). Solid State Commun. 279, 22-26.]) or nonlinear optical properties (Dhouib et al., 2014a[Dhouib, I., Feki, H., Guionneau, P., Mhiri, T. & Elaoud, Z. (2014a). Spectrochim. Acta A Mol. Biomol. Spectrosc. 131, 274-281.], 2017[Dhouib, I., Guionneau, P. & Elaoud, Z. (2017). J. Coord. Chem. 70, 3585-3597.]; Kumaresan et al., 2008[Kumaresan, P., Moorthy Babu, S. & Anbarasan, P. M. (2008). J. Cryst. Growth, 310, 1999-2004.]).

To further increase the knowledge about the possible compounds and structure types of M+M3+ arsenates, a comprehensive study of the system M+M3+–O–(H–)As/P5+ (M+ = Li, Na, K, Rb, Cs, Ag, Tl and NH4; M3+ = Al, Ga, In, Sc, Fe, Cr and Tl) was undertaken, which led to a large number of new structure types that have been published (Schwendtner, 2006[Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.]; Schwendtner & Kolitsch, 2004a[Schwendtner, K. & Kolitsch, U. (2004a). Acta Cryst. C60, i79-i83.],b[Schwendtner, K. & Kolitsch, U. (2004b). Acta Cryst. C60, i84-i88.], 2005[Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90-i93.], 2007a[Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205-215.],b[Schwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17-i20.],c[Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399-409.], 2017a[Schwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600-608.],b[Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1580-1586.], 2018[Schwendtner, K. & Kolitsch, U. (2018). Acta Cryst. C74, 721-727.]). The three compounds structurally characterized in the present article are by-products of this comprehensive study. The following paragraphs provide brief backgrounds to the families of materials to which the three compounds belong.

Lithium phosphates are rather common and the system Li–H–P–O has been widely studied because of the proton conductivity of compounds like LiH2PO4 (Catti & Ivaldi, 1978[Catti, M. & Ivaldi, G. (1978). Z. Kristallogr. 146, 215-226.]). The title compound Li2(H2PO4)2 is a new polymorph of this well-known compound. Other known compounds in the Li–H–P–O system, the majority containing polymerized phos­phate groups, include Li4H(PO3)5, LiH2PO2, Li6(P6O18)(H2O)3, Li4P2O8(H2O)4, Li3(P3O9)(H2O)3, Li6(P6O18)(H2O)5, Li4(P4O12)(H2O)5, Li6(P6O18)(H2O)8.24, Li6(P6O18)(H2O)9.86, Li3PO4 and Li4P2O7.

Known caesium arsenates include CsAs3O8 (Schwendtner & Kolitsch, 2007a[Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205-215.]), Cs3AsO4 (Emmerling et al., 2002[Emmerling, F., Idilbi, M. & Röhr, C. (2002). Z. Naturforsch. Teil B, 57, 599-604.]), Cs2(HAsO4)(H2O)2 (Stöger & Weil, 2014[Stöger, B. & Weil, M. (2014). Acta Cryst. C70, 7-11.]), KDP-type Cs(H2AsO4) (Ferrari et al., 1956[Ferrari, A., Nardelli, M. & Cingi, M. (1956). Gazz. Chim. Ital. 86, 1174-1180.]) and CsH5(AsO4)2 (Naili et al., 2001[Naili, H., Mhiri, T. & Jaud, J. (2001). J. Solid State Chem. 161, 9-16.]). Ammonium arsenate compounds comprise (NH4)(H2AsO4), for which a tetra­gonal KDP-type polymorph (Khan & Baur, 1972[Khan, A. A. & Baur, W. H. (1972). Acta Cryst. B28, 683-693.]) and an ortho­rhom­bic low-temperature polymorph (Fukami, 1989[Fukami, T. (1989). J. Phys. Soc. Jpn, 58, 3429-3430.]) were reported, (NH4)2(HAsO4) (Weil, 2012[Weil, M. (2012). Acta Cryst. E68, i82.]) and (NH4)3(AsO4)(H2O)3 (Hseu & Lu, 1977[Hseu, T. H. & Lu, T. H. (1977). Acta Cryst. B33, 3947-3949.]).

Compounds containing H3AsO4 groups are relatively rare and mainly known from compounds containing organic groups (e.g. Dekola et al., 2011[Dekola, T., Ribeiro, J. L. & Kloepperpieper, A. (2011). Physica B, 406, 3267-3273.]; Dhouib et al., 2014a[Dhouib, I., Feki, H., Guionneau, P., Mhiri, T. & Elaoud, Z. (2014a). Spectrochim. Acta A Mol. Biomol. Spectrosc. 131, 274-281.],b[Dhouib, I., Guionneau, P., Mhiri, T. & Elaoud, Z. (2014b). Eur. J. Chem. 5, 388-393.], 2017[Dhouib, I., Guionneau, P. & Elaoud, Z. (2017). J. Coord. Chem. 70, 3585-3597.]; Ratajczak et al., 2000[Ratajczak, H., Barycki, J., Pietraszko, A., Baran, J., Debrus, S., May, M. & Venturini, J. (2000). J. Mol. Struct. 526, 269-278.]). Inorganic compounds containing arsenic acid (with clearly located H atoms of the H3AsO4 group) and with known crystal structures are restricted to only seven representatives: CuH10(AsO4)4 (Tran Qui & Chiadmi, 1986[Tran Qui, D. & Chiadmi, M. (1986). Acta Cryst. C42, 391-393.]) and isotypic ZnH10(AsO4)4 (Sure & Guse, 1989[Sure, S. & Guse, W. (1989). Neues Jb Miner. Mh, 1989, 401-409.]) (the O—H bonds were not clearly identified in the latter structure determination), RbH5(AsO4)2 (Naili & Mhiri, 2001[Naili, H. & Mhiri, T. (2001). J. Alloys Compd. 315, 143-149.]), CsH5(AsO4)2 (Naili et al., 2001[Naili, H., Mhiri, T. & Jaud, J. (2001). J. Solid State Chem. 161, 9-16.]), K4(SO4)(HSO4)2(H3AsO4) (Amri et al., 2007[Amri, M., Zouari, N., Mhiri, T., Pechev, S., Gravereau, P. & Von Der Muhll, R. (2007). J. Phys. Chem. Solids, 68, 1281-1292.]), Cs4(SeO4)(HSeO4)2(H3AsO4) (Amri et al., 2009[Amri, M., Zouari, N., Mhiri, T. & Gravereau, P. (2009). J. Alloys Compd. 477, 68-75.]) and isotypic Rb4(SO4)(HSO4)2(H3AsO4) (Belhaj Salah et al., 2018[Belhaj Salah, M., Nouiri, N., Jaouadi, K., Mhiri, T. & Zouari, N. (2018). J. Mol. Struct. 1151, 286-300.]). (NH4)2(H3AsO4)(SO4) (Boubia et al., 1985[Boubia, M., Averbuch-Pouchot, M. T. & Durif, A. (1985). Acta Cryst. C41, 1562-1564.]) also con­tains H3AsO4 groups, but the H atoms were not located, and for CdH10(AsO4)4 (Tran Qui & Chiadmi, 1986[Tran Qui, D. & Chiadmi, M. (1986). Acta Cryst. C42, 391-393.]), hydro­gen-bond details were published, but no atomic coordinates.

2. Experimental

2.1. Synthesis and crystallization

Analytical grade chemicals were used for all syntheses. NH4(H2AsO4)(H3AsO4) was grown by hydro­thermal methods (T = 493 K, 7 d, Teflon-lined stainless steel autoclave) from a mixture of In2O3 and H3AsO4·0.5H2O in an approximate volume ratio of 1:10 and 10 drops of NH4(OH) (32%). No additional H2O was added. The reaction product was a solid mass of colourless inter­grown crystals with less than 10 vol% of a yellow unidentified material. The NH4(H2AsO4)(H3AsO4) crystals are stable in air.

Cs(H2AsO4)(H3AsO4)2 formed as the secondary product from further reaction of hydrothermally grown CsAs3O8 (Schwendtner & Kolitsch, 2007a[Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205-215.]). CsAs3O8 contains AsO6 groups, is highly hygroscopic and, at room temperature, decomposes to a highly acidic liquid in which rounded prismatic glassy colourless crystals of Cs(H2AsO4)(H3AsO4)2 grew within a few weeks.

Li2(H2PO4)2 was also a secondary product of a hydro­thermal run (T = 493 K, 7 d, Teflon-lined stainless steel auto­clave) from a mixture of Li2CO3, Ga2O3, phospho­ric acid and distilled water. The initial and final pH values were both about 1. The hydro­thermal synthesis yielded globular crystal aggregates of rounded hexa­gonal prisms of GaPO4. From the remaining acidic liquid of the synthesis, Li2(H2PO4)2 grew as colourless crude block-shaped crystals by slow evaporation at room temperature.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. NH4(H2AsO4)(H3AsO4) disintegrated (`melted') during the measurement, so only the first two sets or 65% of the Ewald sphere could be measured. Specifically, we note that out of the nine sets collected, the first two were fully usable (no decay visible); the decay only started with set 3, so we ignored sets 3–9. We did not observe any anomalous behaviour of the data set during scaling. The remaining sets showed a pseudocubic I-centred tetra­gonal unit cell, with approximate a and c values of 7.68 and 7.69 Å, respectively; possibly NH4(H2AsO4)(H3AsO4) recrystallized to pseudocubic I[\overline{4}]2d-type (NH4)H2AsO4 (Fukami, 1989[Fukami, T. (1989). J. Phys. Soc. Jpn, 58, 3429-3430.]). Nine reflections with negative intensities (blocked by the beam stop) were omitted from the refinement. All N—H and O—H bonds were restricted to 0.9 ± 0.2 Å, as was the O6—H6 bond in Cs(H2AsO4)(H3AsO4)2. The O—H bonds in Li2(H2PO4)2 were not restrained as they refined to reasonable values for refinements based on the X-ray diffraction data sets.

Table 1
Experimental details

Experiments were carried out at 293 K with Mo Kα radiation using a Nonius KappaCCD single-crystal four-circle diffractometer. Absorption was corrected for by multi-scan methods (SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]).

  Cs(H2AsO4)(H3AsO4)2 (NH4)(H2AsO4)(H3AsO4) Li2(H2PO4)2
Crystal data
Chemical formula Cs(H2AsO4)(H3AsO4)2 (NH4)(H2AsO4)(H3AsO4) Li2(H2PO4)2
Mr 557.73 300.92 207.85
Crystal system, space group Monoclinic, P21/c Orthorhombic, Pbca Monoclinic, P21/n
a, b, c (Å) 9.712 (2), 12.738 (3), 9.307 (2) 7.943 (2), 9.855 (2), 19.623 (4) 5.400 (1), 15.927 (3), 7.562 (2)
α, β, γ (°) 90, 90.91 (3), 90 90, 90, 90 90, 90.47 (3), 90
V3) 1151.2 (4) 1536.1 (6) 650.4 (2)
Z 4 8 4
μ (mm−1) 11.83 8.71 0.67
Crystal size (mm) 0.14 × 0.13 × 0.08 0.15 × 0.10 × 0.07 0.15 × 0.12 × 0.10
 
Data collection
Tmin, Tmax 0.288, 0.451 0.355, 0.581 0.906, 0.936
No. of measured, independent and observed [I > 2σ(I)] reflections 8200, 4186, 3411 1799, 1295, 905 5625, 2857, 2490
Completeness to 0.84 Å resolution 1.00 0.65 1.00
Rint 0.016 0.038 0.014
(sin θ/λ)max−1) 0.758 0.676 0.806
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.054, 1.05 0.046, 0.109, 1.02 0.025, 0.072, 1.04
No. of reflections 4186 1295 2857
No. of parameters 178 136 126
No. of restraints 1 9 0
H-atom treatment All H-atom parameters refined Only H-atom coordinates refined All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.91, −1.60 0.74, −0.61 0.44, −0.38
Computer programs: COLLECT (Nonius, 2003[Nonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Version 3.2k. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

3. Results and discussion

The asymmetric unit of Cs(H2AsO4)(H3AsO4)2 contains one Cs, three As, 12 O and eight H atoms (Fig. 1[link]). The Cs atom is 12-coordinated, with the Cs—O bond lengths varying between 3.1202 (17) and 3.934 (3) Å (Table 2[link]). The average Cs—O bond length (3.458 Å) is considerably longer than the statistical average of 3.377 Å for 12-coordinated Cs atoms (Gagné & Hawthorne, 2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]), explaining the low bond-valence sum (BVS; Gagné & Hawthorne, 2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]) of 0.85 v.u. The As—O bond lengths are very similar for the doubly (As3) and triply protonated (As1 and As2) As atoms (1.683–1.681 Å) and slightly shorter than the statistical average of 1.687 Å (Gagné & Hawthorne, 2018a[Gagné, O. C. & Hawthorne, F. C. (2018a). Acta Cryst. B74, 63-78.]). Since two/three O atoms of the coordination polyhedra are protonated, the As—O bond lengths are only slightly elongated compared to unprotonated O atoms. The BVSs of the three As atoms are between 5.06 and 5.09 v.u. and thus close to the expected value, whereas all O atoms are considerably underbonded, with BVSs ranging from 1.22 to 1.53 v.u., and are all either donors or acceptors of hydrogen bonds. The latter are strong (compared to the other H3AsO4-containing compounds cited above), with O—H⋯O distances in the range 2.524 (2)–2.664 (2) Å (Table 3[link]) and connect the individual protonated AsO4 tetra­hedra into a three-dimensional (3D) network (Figs. 2[link]ac). In the [101] direction, the structure forms tunnels walled by AsO4 tetra­hedra in which the Cs atom is located (Fig. 2[link]d).

Table 2
Selected bond lengths (Å) for Cs(H2AsO4)(H3AsO4)2

Cs1—O6i 3.1202 (17) As1—O1 1.6437 (15)
Cs1—O2ii 3.2184 (19) As1—O2 1.6903 (17)
Cs1—O3iii 3.2326 (19) As1—O3 1.6970 (17)
Cs1—O4 3.2469 (17) As1—O4 1.7025 (16)
Cs1—O5iv 3.2536 (18) As2—O5 1.6390 (16)
Cs1—O1v 3.3579 (17) As2—O6 1.6874 (16)
Cs1—O11vi 3.359 (2) As2—O7 1.6977 (19)
Cs1—O12 3.478 (2) As2—O8 1.7004 (19)
Cs1—O9vii 3.7056 (19) As3—O9 1.6515 (16)
Cs1—O11viii 3.755 (3) As3—O10 1.6579 (17)
Cs1—O8 3.844 (2) As3—O12 1.707 (2)
Cs1—O7vii 3.924 (3) As3—O11 1.7104 (19)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) -x, -y+1, -z+1; (vi) -x+1, -y+1, -z+1; (vii) -x+1, -y+1, -z; (viii) x-1, y, z.

Table 3
Hydrogen-bond geometry (Å, °) for Cs(H2AsO4)(H3AsO4)2

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O10viii 0.83 (4) 1.70 (4) 2.524 (2) 171 (4)
O3—H3⋯O9ix 0.79 (4) 1.76 (4) 2.553 (3) 172 (4)
O4—H4⋯O1iii 0.92 (3) 1.70 (3) 2.609 (2) 170 (3)
O6—H6⋯O10 0.91 (2) 1.64 (2) 2.539 (2) 170 (4)
O7—H7⋯O9vii 0.81 (4) 1.79 (4) 2.599 (3) 177 (4)
O11—H11⋯O1vi 0.79 (4) 1.85 (4) 2.630 (3) 168 (4)
O8—H8⋯O5iv 0.82 (4) 1.85 (4) 2.664 (2) 170 (4)
O12—H12⋯O5iv 0.81 (4) 1.84 (4) 2.643 (3) 171 (4)
Symmetry codes: (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) -x+1, -y+1, -z+1; (vii) -x+1, -y+1, -z; (viii) x-1, y, z; (ix) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The principal building unit of Cs(H2AsO4)(H3AsO4)2, shown as dis­placement ellipsoids at the 70% probability level. The symmetry codes are as defined in Table 2[link].
[Figure 2]
Figure 2
Structural drawings of novel Cs(H2AsO4)(H3AsO4)2, viewed along (a) a, (b) c, (c) b and (d) [101]. The unit cell is outlined. AsO4 tetra­hedra (yellow) are connected via multiple hydrogen bonds (blue) into a 3D network. The Cs+ cations lie between the AsO4 tetra­hedra.

The structure of (NH4)(H2AsO4)(H3AsO4) is homeotypic with that of Rb(H2AsO4)(H3AsO4) (Naili & Mhiri, 2001[Naili, H. & Mhiri, T. (2001). J. Alloys Compd. 315, 143-149.]); the Rb+ cation is replaced by an NH4+ group providing additional hydrogen bonds to the atomic arrangement. This structure type is also closely related to that of CsH5(AsO4)2 (Naili et al., 2001[Naili, H., Mhiri, T. & Jaud, J. (2001). J. Solid State Chem. 161, 9-16.]), which can be seen as a distorted version of the Rb(H2AsO4)(H3AsO4) structure type. The structure of (NH4)(H2AsO4)(H3AsO4) is built of individual, doubly or triply protonated AsO4 tetra­hedra that are connected via strong hydrogen bonds into a 3D network (Figs. 3[link], 4[link]a and 4b). The NH4+ groups lie in voids and further reinforce the network via medium-to-weak strength hydrogen bonds. AsO4 tetra­hedra and NH4+ cations are arranged in layers perpendicular to c (Fig. 4[link]). The NH4+ cation is ten-coordinated, with an average N—O bond distance of 3.112 Å (Table 4[link]), leading to a BVS of 0.97 v.u. (García-Rodríguez et al., 2000[García-Rodríguez, L., Rute-Pérez, Á., Piñero, J. R. & González-Silgo, C. (2000). Acta Cryst. B56, 565-569.]). Both AsO4 groups are overbonded (5.08 and 5.13 v.u. for As1 and As2, respectively), although the average As—O bond lengths (1.682 and 1.678 Å) are fairly close to the statistical average of 1.687 Å (Gagné & Hawthorne, 2018a[Gagné, O. C. & Hawthorne, F. C. (2018a). Acta Cryst. B74, 63-78.]). All O atoms are con­siderably underbonded and participate in a complex hydro­gen-bonding network (Table 5[link]). In Rb(H2AsO4)(H3AsO4) (Naili & Mhiri, 2001[Naili, H. & Mhiri, T. (2001). J. Alloys Compd. 315, 143-149.]), there are some very strong hydrogen bonds present (2.432 Å) that connect the structure along the c axis. Hydrogen bonds with O—H⋯O distances < 2.5 Å are also present in many isostoichiometric M+H5(PO4)2 com­pounds [see compilation in Naili & Mhiri (2001[Naili, H. & Mhiri, T. (2001). J. Alloys Compd. 315, 143-149.])]. In (NH4)(H2AsO4)(H3AsO4), these O—H⋯O hydrogen bonds are still strong but considerably longer, ranging from 2.568 (8) to 2.653 (9) Å. This is probably due to a small shift of the atom positions in the two compounds, seen also from an inspection of the unit cells of the two homeotypic compounds. While unit-cell parameters a and b are quite similar and 0.003 and 0.033 Å longer, respectively, in the ammonium compound, unit-cell parameter c is considerably shorter [19.623 (4) Å; Table 1[link]] in comparison with that of the rubidium compound [20.4226 (6) Å; Naili & Mhiri, 2001[Naili, H. & Mhiri, T. (2001). J. Alloys Compd. 315, 143-149.]], leading also to a distinctly smaller unit-cell volume of (NH4)(H2AsO4)(H3AsO4). This change is explained, unlike what is expected from the slightly different effective ionic radii of NH4+ and Rb+ (the latter is slightly smaller), firstly, by the ability of the NH4+ cation to form hydrogen bonds, and, secondly, by a slight shift of the As1 atoms in the b direction and a slight expansion in that direction. Hydrogen bonds connecting adjacent As2O4 tetra­hedra in the b direction in Rb(H2AsO4)(H3AsO4) are lost and replaced by hydrogen bonds connecting As1O4 and As2O4 along c in (NH4)(H2AsO4)(H3AsO4) (Fig. 5[link]), resulting in a compression of the whole structure along c.

Table 4
Selected bond lengths (Å) for (NH4)(H2AsO4)(H3AsO4)

N—O5 2.869 (10) N—O3i 3.283 (10)
N—O1i 2.947 (9) As1—O1 1.648 (5)
N—O5i 3.032 (11) As1—O2 1.662 (6)
N—O2ii 3.075 (9) As1—O3 1.705 (6)
N—O4iii 3.082 (9) As1—O4 1.714 (5)
N—O6 3.148 (10) As2—O5 1.632 (6)
N—O7iv 3.194 (10) As2—O8 1.692 (5)
N—O3 3.216 (10) As2—O7 1.693 (5)
N—O8v 3.272 (9) As2—O6 1.696 (6)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z; (iv) [x+{\script{1\over 2}}, y, -z-{\script{1\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Table 5
Hydrogen-bond geometry (Å, °) for (NH4)(H2AsO4)(H3AsO4)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H1⋯O4iii 0.89 (2) 2.36 (8) 3.082 (9) 138 (10)
N—H1⋯O7iv 0.89 (2) 2.54 (9) 3.194 (10) 130 (9)
N—H4⋯O5i 0.90 (2) 2.20 (7) 3.032 (11) 154 (14)
N—H3⋯O1i 0.89 (2) 2.10 (4) 2.947 (9) 159 (9)
N—H2⋯O5 0.91 (2) 1.96 (2) 2.869 (10) 174 (7)
O3—H5⋯O1vi 0.89 (2) 2.13 (15) 2.616 (7) 113 (12)
O3—H5⋯O3ii 0.89 (2) 2.61 (11) 3.311 (12) 136 (13)
O6—H7⋯O2vii 0.90 (2) 1.82 (10) 2.653 (9) 152 (19)
O4—H6⋯O1i 0.89 (2) 1.77 (3) 2.650 (8) 170 (7)
O7—H8⋯O2viii 0.89 (2) 1.72 (4) 2.568 (8) 157 (8)
O8—H9⋯O5iv 0.89 (2) 1.78 (6) 2.590 (7) 150 (11)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z; (iv) [x+{\script{1\over 2}}, y, -z-{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (vii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (viii) [x, -y+{\script{1\over 2}}], [z-{\script{1\over 2}}].
[Figure 3]
Figure 3
The principal building unit of (NH4)(H2AsO4)(H3AsO4), shown as dis­placement ellipsoids at the 70% probability level. Hydrogen bonds are shown as blue dashed lines.
[Figure 4]
Figure 4
Structural drawings of (NH4)(H2AsO4)(H3AsO4), viewed along (a) [110] and (b) b. The unit cell is outlined. AsO4 tetra­hedra (yellow) are connected via multiple hydrogen bonds (blue dashed lines) into a 3D network. AsO4 tetra­hedra and NH4+ cations are arranged in layers perpendicular to c. Additional hydrogen bonds of medium strength are provided by the NH4+ cations.
[Figure 5]
Figure 5
Comparison of (a) homeotypic (NH4)(H2AsO4)(H3AsO4) with (b) Rb(H2AsO4)(H3AsO4) (Naili & Mhiri, 2001[Naili, H. & Mhiri, T. (2001). J. Alloys Compd. 315, 143-149.]). A shift (arrows in figure) of As1 in the b direction leads to a compression of the whole structure along c, and results in a change of the hydrogen-bonding network. Hydrogen bonds connecting As2O4 tetra­hedra along b are lost in (NH4)(H2AsO4)(H3AsO4), but new hydrogen bonds now connect As1O4 and As2O4 along c.

The asymmetric unit of monoclinic (P21/n) Li2(H2PO4)2 contains two Li, two P, eight O and four H atoms, all in general positions (Fig. 6[link]). Li2(H2PO4)2 is built of LiO4 tetra­hedra that share edges with adjacent LiO4 tetra­hedra, thereby forming Li2O6 dimers (Fig. 7[link]b). Each corner of the LiO4 tetra­hedra shares a corner with a PO4 tetra­hedron, thus connecting the Li2O6 dimers into a 3D network (Figs. 7[link]a and 7b). This network is reinforced by hydrogen bonds of medium-to-high strength (Table 6[link]). In the ortho­rhom­bic (Pna21) dimorph of Li(H2PO4) (Catti & Ivaldi, 1978[Catti, M. & Ivaldi, G. (1978). Z. Kristallogr. 146, 215-226.]), which is characterized by a high electrical (proton) conductivity (Hwan Oh et al., 2010[Hwan Oh, I., Lee, K.-S., Meven, M., Heger, G. & Eui Lee, C. (2010). J. Phys. Soc. Jpn, 79, 074606.]), the LiO4 tetra­hedra share corners, thus forming chains that are connected by the PO4 groups. In monoclinic Li2(H2PO4)2, the average (Table 7[link]) Li—O (1.951 and 1.953 Å) and P—O (1.539 and 1.537 Å) bond lengths are very close to the statistical average of 1.972 Å (Gagné & Hawthorne, 2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]) for Li—O and 1.537 Å (Gagné & Hawthorne, 2018b[Gagné, O. C. & Hawthorne, F. C. (2018b). Acta Cryst. B74, 79-96.]) for P—O bond lengths. This is also reflected by the nearly ideal BVSs (Gagné & Hawthorne, 2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]) of 1.01 and 1.00 v.u. for Li1 and Li2, respectively, and 4.98 and 5.00 v.u. for P1 and P2, respectively. The most underbonded O atoms (O3, O4, O7 and O8, with BVSs of 1.16–1.37 v.u.) form strong-to-medium hydrogen bonds (Table 6[link]). A comparison of the X-ray densities of monoclinic Li2(H2PO4)2 (2.123 kg m−3) and its ortho­rhom­bic dimorph LiH2PO4 (Catti & Ivaldi, 1978[Catti, M. & Ivaldi, G. (1978). Z. Kristallogr. 146, 215-226.]) (2.09 kg m−3) suggests that monoclinic Li2(H2PO4)2 is slightly denser and therefore thermodynamically slightly more stable, at least under ambient conditions. Ortho­rhom­bic LiH2PO4 shows no phase transition between room temperature and 100 (Hwan Oh et al., 2010[Hwan Oh, I., Lee, K.-S., Meven, M., Heger, G. & Eui Lee, C. (2010). J. Phys. Soc. Jpn, 79, 074606.]) or 17 K (Lee et al., 2008[Lee, K.-S., Ko, J.-H., Moon, J., Lee, S. & Jeon, M. (2008). Solid State Commun. 145, 487-492.]). We note that monoclinic Li2(H2PO4)2 most probably has an isotypic arsenate analogue, since Remy & Bachet (1967[Remy, F. & Bachet, B. (1967). Bull. Soc. Chim. Fr. 38, 1699-1701.]) were able to synthesize monoclinic Li2(H2AsO4)2, with a = 5.55, b = 16.36, c = 7.80 Å, β = 90.53° and space group P21/n, although they did not determine its crystal structure. Ortho­rhom­bic Li(H2PO4) also has an isotypic arsenate analogue, the crystal structure of which was reported by Fanchon et al. (1987[Fanchon, E., Vicat, J., Tran Qui, D. & Boudjada, A. (1987). Acta Cryst. C43, 1022-1025.]), who pointed out a slight rearrangement in one of the two independent hydrogen bonds.

Table 6
Hydrogen-bond geometry (Å, °) for Li2(H2PO4)2

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O7vi 0.77 (2) 1.91 (2) 2.6769 (12) 171 (2)
O4—H2⋯O2iv 0.84 (2) 1.99 (2) 2.8292 (14) 176 (2)
O7—H3⋯O6vii 0.73 (2) 1.79 (2) 2.5210 (13) 172 (3)
O8—H4⋯O1viii 0.79 (2) 1.79 (2) 2.5667 (12) 167 (2)
Symmetry codes: (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) -x+2, -y+1, -z+1; (viii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 7
Selected bond lengths (Å) for Li2(H2PO4)2

Li1—O5 1.888 (2) Li2—P2iv 3.077 (2)
Li1—O6i 1.902 (2) P1—O1 1.4996 (9)
Li1—O8ii 1.967 (2) P1—O2 1.5043 (8)
Li1—O2 2.045 (2) P1—O3 1.5588 (9)
Li1—Li2iii 2.611 (3) P1—O4 1.5917 (8)
Li1—P2i 3.068 (2) P2—O5 1.4944 (8)
Li2—O5iv 1.919 (2) P2—O6 1.5113 (8)
Li2—O1 1.944 (2) P2—O7 1.5640 (9)
Li2—O4v 1.973 (2) P2—O8 1.5774 (8)
Li2—O2iv 1.974 (2)    
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+2; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 6]
Figure 6
The principal building unit of Li2(H2PO4)2, shown with displacement ellipsoids at the 70% probability level. The symmetry codes are as defined in Table 7[link].
[Figure 7]
Figure 7
Structural drawings of Li2(H2PO4)2, viewed along (a) a and (b) c. The unit cell is outlined. Phosphate tetra­hedra are shown in pink and edge-sharing LiO4 tetra­hedra in green. The hydrogen bonds reinforcing the network are shown in blue.

4. Statistical evaluation of As—O bonds in protonated AsO4 groups

Several statistical analyses of bond lengths in As5+O4 polyhedra have been published recently. Gagné & Hawthorne (2018a[Gagné, O. C. & Hawthorne, F. C. (2018a). Acta Cryst. B74, 63-78.]) reported average As—O bond lengths of 1.687 (27) Å in AsO4 and 1.830 (28) Å in AsO6 groups, derived from 508 and 13 polyhedra, respectively. Schwendtner (2008[Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria.]) found similar values of 1.686 (29) and 1.827 (29) Å for a larger sample size of 704 AsO4 and 40 AsO6 polyhedra, respectively. An analysis of As—O bond lengths in minerals by Majzlan et al. (2014[Majzlan, J., Drahota, P. & Filippi, M. (2014). Rev. Mineral. Geochem. 79, 17-184.]) gave a very similar value of 1.685 Å (no s.u. given) for the average As—O bond length and a value of 1.727 Å (no s.u. given) for As—OH bonds. Data for As—O bond lengths in multiply protonated As5+Ox (x = 4 and 6) polyhedra are scarce (especially those for H3AsO4 groups) due to the rare occurrence of compounds containing such polyhedra. An earlier attempt by Ichikawa (1988[Ichikawa, M. (1988). J. Mol. Struct. 177, 441-448.]) to carry out a statistical analysis of the hydrogen-bond-length dependence of the distortion in HnAsO4 (n = 1–3) tetra­hedra was severely hampered for the doubly and triply protonated representatives, since data for only six H2AsO4 and two H3AsO4 groups were available, and no pertinent conclusions were possible. As the number of synthetic compounds and minerals containing HnAsO4 (n = 1–3) groups has considerably increased in the last three decades, we were able to perform a detailed analysis of As—O/OH bonds in HnAsO4 (n = 1–3) groups using data from the ICSD database (FIZ, 2018[FIZ (2018). Inorganic Crystal Structure Database. Version 4.1.0 (build 20181019-1414), Data Release 2018.2. Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Ger­many. https://www2.fiz-karlsruhe.de/icsd_home.html.]) (conventional R value < 5, full occupancy of As and O sites), expanded by the published data for known H3AsO4-containing inorganic compounds men­tioned in the Introduction (§1[link]), and the two novel title arsenate compounds (Table 8[link] and Fig. 8[link]).

Table 8
Statistical analysis of the As—O bond lengths (Å) in HnAsO4 (n = 1–3) groups

Bond lengths Analysed number Average Minimum Maximum
As—O/OH in HnAsO4 (average) 97 1.687 (6) 1.660 1.709
As—O/OH in HnAsO4 (individual) 388 1.687 (27) 1.614 1.801
As—OH in HnAsO4 (including split H-atom positions) 199 1.701 (23) 1.625 1.801
As—OH in HnAsO4 (no split H atoms) 117 1.714 (21) 1.625 1.801
As—OH in HAsO4 43 1.728 (19) 1.689 1.801
As—OH in H2AsO4 41 1.714 (12) 1.688 1.749
As—OH in H3AsO4 33 1.694 (16) 1.625 1.712
As—OH/2 (split H atoms) in H1–2AsO4 82 1.683 (13) 1.656 1.714
As—O (no H atoms) in HnAsO4 189 1.671 (23) 1.614 1.755
As—O (no H/As*) in HnAsO4 174 1.667 (18) 1.614 1.735
Note: (*) no As—O—As bonds (see text).
[Figure 8]
Figure 8
Comparison of As—O distances in HnAsO4 (n = 1–3) groups, sorted by As—OH bonds into clouds for H3AsO4 (turquoise), H2AsO4 (yellow) and HAsO4 (red) groups. As—OH bonds to split H-atom positions are shown in green, while all bonds to the remaining nonprotonated O atoms are shown in blue.

The average As—O/OH bond length for the 97 analysed HnAsO4 (n = 1–3) groups of 1.686 (27) Å is nearly identical to the value reported by Gagné & Hawthorne (2018a[Gagné, O. C. & Hawthorne, F. C. (2018a). Acta Cryst. B74, 63-78.]), but the individual bond lengths vary greatly with the number of As—OH bonds in the respective polyhedra. While the As—OH bonds are extremely elongated to 1.728 (19) Å in HAsO4 groups and to 1.714 (12) Å in H2AsO4 groups, the average As—OH bond length is considerably shorter, with a value of 1.694 (16) Å in the rare H3AsO4 groups. This result is in agreement with the observation of Ferraris & Ivaldi (1984[Ferraris, G. & Ivaldi, G. (1984). Acta Cryst. B40, 1-6.]) that the average length of X—OH (X = As and P) bonds tends to decrease from mono- to triprotonated anions with the same X atom. We also find that the As bonds to nonprotonated O atoms in H3AsO4 groups are shortened to 1.671 (23) Å. If As—O bonds involving bridging O ligands (as present in the As2O7 groups in pyroarsenates), i.e. As—O—As bonds, are removed from the data set because they are known to be anomalously elongated due to As—As repulsion, the value is even shorter, i.e. 1.667 (18) Å. A special case are As—O bonds to half-occupied H-atom positions; these are actually shortened to 1.683 (13) Å. Excluding split H-atom positions, the grand mean average As—OH bond length in HnAsO4 (n = 1–3) groups is 1.714 (21) Å and thus considerably shorter than the value of 1.727 Å derived by Majzlan et al. (2014[Majzlan, J., Drahota, P. & Filippi, M. (2014). Rev. Mineral. Geochem. 79, 17-184.]), whose evaluation was based mainly on H1-2AsO4 groups. A visual analysis of the individual As—O bond lengths compared to the averages of the HnAsO4 (n = 1–3) groups (Fig. 8[link]) shows that they form clearly distributed clouds, depending on the number of H atoms. The average As—O/OH bond lengths of the polyhedra, as well as the individual As—OH bond lengths, are largest in HAsO4 groups and show a narrower distribution in H2AsO4. The population of H3AsO4 groups is characterized by shorter individual As—OH bond lengths but also a shorter average As—OH bond length of the polyhedra. It can also be recognized that the whole data set shows a strong concentration of bonds at around ca 1.687 Å and that all the shortest bonds are to the nonprotonated O atoms of each HnAsO4 (n = 1–3) group (blue cloud in Fig. 8[link], cf. Table 8[link]). This is expected because the As atom in each HnAsO4 tries to achieve a BVS of 5, and due to the elongation of all the bonds to protonated O atoms, the remaining As—O bonds have to shorten accordingly. This also explains why both the individual As—OH bond lengths and average As—O(H) bond lengths decrease with increasing protonation. In the case of singly protonated AsO4 groups, the three As—O bonds need to become slightly shortened in order to still achieve a BVS of 5, at the expense of a high bond-length distortion in this tetra­hedron. In agreement with the distortion theorem (Brown & Shannon, 1973[Brown, I. D. & Shannon, R. D. (1973). Acta Cryst. A29, 266-282.]), this results in a slightly higher value of the average As—O(H) bond length of 1.689 (6) Å in HAsO4 groups (vertical range of red cloud in Fig. 8[link]) versus a corresponding value of 1.688 (3) Å in H2AsO4 groups (vertical range of yellow cloud) and the notably lower value of 1.680 (7) Å in H3AsO4 groups (vertical range of turquoise cloud). This low value in the latter is a consequence of three competing As—OH bonds which can only be counteracted by one As—O bond. This leads to three similarly short As—OH bonds and one even shorter As—O bond, i.e. a small bond-length distortion.

The overall spread of values is a consequence of the variable strengths of the hydrogen bonds in the individual compounds. A conspicuous outlier in Fig. 8[link] (e.g. in the top-right corner) may be explained by the influence of a very strong hydrogen bond in Mg(HAsO4)(H2O)7, with an O⋯O donor–acceptor distance of 2.491 Å (no s.u. given; Ferraris & Franchini-Angela, 1973[Ferraris, G. & Franchini-Angela, M. (1973). Acta Cryst. B29, 286-292.]).

Supporting information


Computing details top

For all structures, data collection: COLLECT (Nonius, 2003); cell refinement: SCALEPACK (Otwinowski et al., 2003); data reduction: DENZO and SCALEPACK (Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Caesium dihydrogen arsenate(V) bis[trihydrogen arsenate(V)] (CsH2AsO4H3AsO42) top
Crystal data top
Cs(H2AsO4)(H3AsO4)2F(000) = 1032
Mr = 557.73Dx = 3.218 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.712 (2) ÅCell parameters from 4360 reflections
b = 12.738 (3) Åθ = 2.7–32.6°
c = 9.307 (2) ŵ = 11.83 mm1
β = 90.91 (3)°T = 293 K
V = 1151.2 (4) Å3Rounded prisms, colourless
Z = 40.14 × 0.13 × 0.08 mm
Data collection top
Nonius KappaCCD single-crystal four-circle
diffractometer
3411 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
φ and ω scansθmax = 32.6°, θmin = 2.7°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski et al., 2003)
h = 1414
Tmin = 0.288, Tmax = 0.451k = 1919
8200 measured reflectionsl = 1414
4186 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023All H-atom parameters refined
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0217P)2 + 1.0466P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
4186 reflectionsΔρmax = 0.91 e Å3
178 parametersΔρmin = 1.60 e Å3
1 restraintExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00340 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.22962 (2)0.51389 (2)0.27149 (2)0.03776 (6)
As10.00263 (2)0.23648 (2)0.48710 (2)0.01694 (5)
As20.46332 (2)0.24756 (2)0.02338 (2)0.01917 (6)
As30.73534 (2)0.47250 (2)0.25789 (2)0.02105 (6)
O10.01202 (17)0.31350 (12)0.62862 (15)0.0225 (3)
O20.15805 (17)0.21801 (14)0.41934 (18)0.0273 (3)
O30.0553 (2)0.11305 (13)0.5291 (2)0.0298 (4)
O40.10335 (17)0.28641 (13)0.35555 (17)0.0255 (3)
O50.42912 (18)0.17618 (13)0.11930 (16)0.0262 (3)
O60.60947 (17)0.20728 (13)0.10689 (19)0.0277 (4)
O70.4908 (2)0.37667 (14)0.0112 (2)0.0411 (5)
O80.32988 (19)0.23889 (17)0.1389 (2)0.0351 (4)
O90.73949 (17)0.54949 (13)0.11525 (18)0.0284 (4)
O100.75902 (17)0.34537 (13)0.22914 (17)0.0269 (4)
O110.8597 (2)0.50491 (15)0.3823 (2)0.0405 (5)
O120.5816 (2)0.49272 (15)0.3400 (2)0.0417 (5)
H20.179 (4)0.265 (3)0.360 (4)0.061 (12)*
H30.115 (4)0.095 (3)0.477 (4)0.067 (12)*
H40.081 (4)0.250 (3)0.273 (4)0.054 (10)*
H60.659 (4)0.262 (2)0.144 (4)0.080 (14)*
H70.420 (4)0.402 (3)0.044 (4)0.059 (11)*
H80.353 (4)0.262 (3)0.218 (4)0.060 (11)*
H110.888 (4)0.563 (3)0.378 (4)0.076 (14)*
H120.543 (4)0.437 (3)0.350 (4)0.062 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.04230 (11)0.02498 (8)0.04561 (11)0.00032 (6)0.01130 (8)0.00318 (7)
As10.01957 (10)0.01814 (10)0.01307 (9)0.00029 (8)0.00091 (7)0.00053 (7)
As20.01818 (11)0.01998 (10)0.01925 (11)0.00205 (8)0.00274 (8)0.00085 (8)
As30.02387 (11)0.01600 (11)0.02320 (11)0.00176 (8)0.00263 (8)0.00363 (8)
O10.0306 (8)0.0218 (7)0.0152 (7)0.0005 (6)0.0010 (6)0.0031 (6)
O20.0224 (8)0.0343 (9)0.0251 (8)0.0062 (7)0.0048 (6)0.0062 (7)
O30.0371 (10)0.0213 (8)0.0311 (9)0.0077 (7)0.0072 (8)0.0037 (7)
O40.0271 (8)0.0314 (8)0.0179 (7)0.0088 (7)0.0032 (6)0.0016 (6)
O50.0298 (9)0.0305 (8)0.0182 (7)0.0036 (7)0.0013 (6)0.0046 (6)
O60.0231 (8)0.0205 (8)0.0392 (9)0.0011 (6)0.0103 (7)0.0019 (7)
O70.0416 (12)0.0211 (8)0.0601 (13)0.0007 (8)0.0166 (10)0.0085 (8)
O80.0244 (9)0.0577 (13)0.0233 (9)0.0012 (8)0.0031 (7)0.0088 (8)
O90.0260 (8)0.0283 (8)0.0308 (8)0.0016 (7)0.0001 (7)0.0126 (7)
O100.0316 (9)0.0179 (7)0.0307 (8)0.0019 (6)0.0105 (7)0.0006 (6)
O110.0527 (13)0.0260 (9)0.0419 (11)0.0106 (9)0.0227 (9)0.0034 (8)
O120.0441 (12)0.0246 (9)0.0570 (13)0.0001 (8)0.0238 (10)0.0039 (9)
Geometric parameters (Å, º) top
Cs1—O6i3.1202 (17)Cs1—H3iii3.25 (4)
Cs1—O2ii3.2184 (19)Cs1—H6i3.43 (4)
Cs1—O3iii3.2326 (19)As1—O11.6437 (15)
Cs1—O43.2469 (17)As1—O21.6903 (17)
Cs1—O5iv3.2536 (18)As1—O31.6970 (17)
Cs1—O1v3.3579 (17)As1—O41.7025 (16)
Cs1—O11vi3.359 (2)As2—O51.6390 (16)
Cs1—O123.478 (2)As2—O61.6874 (16)
Cs1—O9vii3.7056 (19)As2—O71.6977 (19)
Cs1—O11viii3.755 (3)As2—O81.7004 (19)
Cs1—O83.844 (2)As3—O91.6515 (16)
Cs1—O7vii3.924 (3)As3—O101.6579 (17)
Cs1—O12vi4.028 (3)As3—O121.707 (2)
Cs1—O74.077 (3)As3—O111.7104 (19)
Cs1—O3ii4.103 (2)O2—H20.83 (4)
Cs1—O10i4.2239 (19)O3—H30.79 (4)
Cs1—As1ii4.3298 (9)O4—H40.92 (3)
Cs1—As3vi4.3913 (10)O6—H60.910 (18)
Cs1—As1v4.5175 (9)O7—H70.81 (4)
Cs1—O2v4.527 (2)O8—H80.82 (4)
Cs1—H83.46 (4)O11—H110.79 (4)
Cs1—H123.27 (4)O12—H120.81 (4)
Cs1—H2ii3.45 (4)
O6i—Cs1—O2ii70.42 (5)As1ii—Cs1—H12142.7 (7)
O6i—Cs1—O3iii154.40 (5)As3vi—Cs1—H1274.4 (6)
O2ii—Cs1—O3iii85.00 (5)As1v—Cs1—H12124.7 (6)
O6i—Cs1—O4143.71 (4)O2v—Cs1—H12103.5 (6)
O2ii—Cs1—O4140.79 (5)H8—Cs1—H1255.5 (9)
O3iii—Cs1—O461.72 (4)O6i—Cs1—H2ii57.7 (6)
O6i—Cs1—O5iv100.47 (5)O2ii—Cs1—H2ii13.8 (6)
O2ii—Cs1—O5iv153.62 (4)O3iii—Cs1—H2ii98.4 (6)
O3iii—Cs1—O5iv98.54 (5)O4—Cs1—H2ii149.2 (7)
O4—Cs1—O5iv59.07 (4)O5iv—Cs1—H2ii151.5 (7)
O6i—Cs1—O1v74.39 (4)O1v—Cs1—H2ii53.0 (7)
O2ii—Cs1—O1v58.54 (4)O11vi—Cs1—H2ii111.7 (6)
O3iii—Cs1—O1v99.22 (5)O12—Cs1—H2ii105.6 (7)
O4—Cs1—O1v104.44 (4)O9vii—Cs1—H2ii82.5 (6)
O5iv—Cs1—O1v144.69 (4)O11viii—Cs1—H2ii89.7 (7)
O6i—Cs1—O11vi81.01 (5)O8—Cs1—H2ii139.8 (6)
O2ii—Cs1—O11vi122.02 (5)O7vii—Cs1—H2ii63.1 (7)
O3iii—Cs1—O11vi119.57 (5)O12vi—Cs1—H2ii113.4 (6)
O4—Cs1—O11vi66.48 (4)O7—Cs1—H2ii104.7 (6)
O5iv—Cs1—O11vi78.98 (5)O3ii—Cs1—H2ii51.9 (6)
O1v—Cs1—O11vi65.72 (5)O10i—Cs1—H2ii22.8 (6)
O6i—Cs1—O1260.63 (5)As1ii—Cs1—H2ii29.3 (6)
O2ii—Cs1—O12111.52 (5)As3vi—Cs1—H2ii109.0 (6)
O3iii—Cs1—O12126.27 (5)As1v—Cs1—H2ii57.1 (6)
O4—Cs1—O12105.10 (5)O2v—Cs1—H2ii60.4 (6)
O5iv—Cs1—O1246.08 (4)H8—Cs1—H2ii148.5 (9)
O1v—Cs1—O12133.57 (4)H12—Cs1—H2ii118.8 (9)
O11vi—Cs1—O1294.97 (6)O6i—Cs1—H3iii143.7 (7)
O6i—Cs1—O9vii118.46 (5)O2ii—Cs1—H3iii79.2 (7)
O2ii—Cs1—O9vii70.13 (4)O3iii—Cs1—H3iii14.1 (7)
O3iii—Cs1—O9vii42.49 (4)O4—Cs1—H3iii72.3 (7)
O4—Cs1—O9vii94.38 (4)O5iv—Cs1—H3iii97.9 (7)
O5iv—Cs1—O9vii94.84 (4)O1v—Cs1—H3iii106.4 (7)
O1v—Cs1—O9vii118.64 (4)O11vi—Cs1—H3iii133.4 (7)
O11vi—Cs1—O9vii160.46 (4)O12—Cs1—H3iii116.3 (7)
O12—Cs1—O9vii93.83 (5)O9vii—Cs1—H3iii28.4 (7)
O6i—Cs1—O11viii113.59 (5)O11viii—Cs1—H3iii84.4 (7)
O2ii—Cs1—O11viii88.68 (5)O8—Cs1—H3iii54.9 (7)
O3iii—Cs1—O11viii71.56 (5)O7vii—Cs1—H3iii82.1 (7)
O4—Cs1—O11viii62.61 (4)O12vi—Cs1—H3iii153.0 (7)
O5iv—Cs1—O11viii117.33 (4)O7—Cs1—H3iii58.7 (7)
O1v—Cs1—O11viii42.94 (4)O3ii—Cs1—H3iii48.7 (7)
O11vi—Cs1—O11viii58.10 (6)O10i—Cs1—H3iii115.8 (7)
O12—Cs1—O11viii152.77 (5)As1ii—Cs1—H3iii69.2 (7)
O9vii—Cs1—O11viii110.65 (5)As3vi—Cs1—H3iii151.3 (7)
O6i—Cs1—O8135.06 (4)As1v—Cs1—H3iii123.6 (7)
O2ii—Cs1—O8127.77 (4)O2v—Cs1—H3iii143.6 (7)
O3iii—Cs1—O856.82 (4)H8—Cs1—H3iii66.2 (9)
O4—Cs1—O850.42 (4)H12—Cs1—H3iii111.5 (9)
O5iv—Cs1—O843.09 (4)H2ii—Cs1—H3iii93.0 (9)
O1v—Cs1—O8150.13 (4)O6i—Cs1—H6i15.1 (4)
O11vi—Cs1—O8108.28 (5)O2ii—Cs1—H6i56.4 (5)
O12—Cs1—O874.64 (4)O3iii—Cs1—H6i141.4 (5)
O9vii—Cs1—O857.64 (4)O4—Cs1—H6i152.5 (7)
O11viii—Cs1—O8107.98 (4)O5iv—Cs1—H6i115.4 (4)
O6i—Cs1—O7vii66.17 (5)O1v—Cs1—H6i63.5 (6)
O2ii—Cs1—O7vii61.16 (4)O11vi—Cs1—H6i86.1 (7)
O3iii—Cs1—O7vii96.12 (5)O12—Cs1—H6i73.9 (5)
O4—Cs1—O7vii137.19 (4)O9vii—Cs1—H6i113.1 (7)
O5iv—Cs1—O7vii92.45 (4)O11viii—Cs1—H6i105.4 (6)
O1v—Cs1—O7vii115.59 (4)O8—Cs1—H6i146.3 (6)
O11vi—Cs1—O7vii144.05 (5)O7vii—Cs1—H6i66.0 (7)
O12—Cs1—O7vii56.84 (5)O12vi—Cs1—H6i71.1 (5)
O9vii—Cs1—O7vii53.85 (4)O7—Cs1—H6i110.1 (7)
O11viii—Cs1—O7vii148.74 (4)O3ii—Cs1—H6i94.6 (4)
O8—Cs1—O7vii86.80 (4)O10i—Cs1—H6i21.7 (4)
O6i—Cs1—O12vi58.18 (4)As1ii—Cs1—H6i71.6 (4)
O2ii—Cs1—O12vi127.11 (4)As3vi—Cs1—H6i73.5 (6)
O3iii—Cs1—O12vi147.33 (4)As1v—Cs1—H6i52.9 (7)
O4—Cs1—O12vi86.18 (4)O2v—Cs1—H6i37.9 (7)
O5iv—Cs1—O12vi56.21 (4)H8—Cs1—H6i141.1 (8)
O1v—Cs1—O12vi94.31 (4)H12—Cs1—H6i86.2 (8)
O11vi—Cs1—O12vi42.12 (5)H2ii—Cs1—H6i43.2 (8)
O12—Cs1—O12vi53.27 (6)H3iii—Cs1—H6i133.6 (9)
O9vii—Cs1—O12vi145.54 (4)O1—As1—O2114.91 (9)
O11viii—Cs1—O12vi100.17 (5)O1—As1—O3110.85 (8)
O8—Cs1—O12vi98.93 (4)O2—As1—O3103.30 (9)
O7vii—Cs1—O12vi104.61 (5)O1—As1—O4109.15 (8)
O6i—Cs1—O7105.03 (5)O2—As1—O4108.74 (8)
O2ii—Cs1—O796.97 (4)O3—As1—O4109.70 (9)
O3iii—Cs1—O770.09 (5)O1—As1—Cs1ix149.10 (6)
O4—Cs1—O790.81 (4)O2—As1—Cs1ix39.80 (6)
O5iv—Cs1—O760.59 (4)O3—As1—Cs1ix70.95 (7)
O1v—Cs1—O7154.70 (4)O4—As1—Cs1ix98.34 (6)
O11vi—Cs1—O7139.58 (5)O1—As1—Cs1v37.17 (6)
O12—Cs1—O757.68 (5)O2—As1—Cs1v79.53 (6)
O9vii—Cs1—O738.65 (4)O3—As1—Cs1v133.54 (6)
O11viii—Cs1—O7140.53 (4)O4—As1—Cs1v113.07 (6)
O8—Cs1—O740.44 (4)Cs1ix—As1—Cs1v118.527 (15)
O7vii—Cs1—O746.38 (5)O1—As1—Cs182.60 (6)
O12vi—Cs1—O7106.93 (4)O2—As1—Cs1112.76 (6)
O6i—Cs1—O3ii109.44 (4)O3—As1—Cs1131.43 (7)
O2ii—Cs1—O3ii40.33 (4)O4—As1—Cs128.57 (6)
O3iii—Cs1—O3ii48.55 (5)Cs1ix—As1—Cs1120.358 (14)
O4—Cs1—O3ii100.71 (4)Cs1v—As1—Cs185.61 (2)
O5iv—Cs1—O3ii146.51 (4)O1—As1—Cs1iv86.21 (6)
O1v—Cs1—O3ii61.34 (4)O2—As1—Cs1iv122.72 (6)
O11vi—Cs1—O3ii119.62 (5)O3—As1—Cs1iv25.83 (6)
O12—Cs1—O3ii143.06 (5)O4—As1—Cs1iv113.01 (6)
O9vii—Cs1—O3ii57.92 (4)Cs1ix—As1—Cs1iv96.02 (2)
O11viii—Cs1—O3ii63.81 (4)Cs1v—As1—Cs1iv115.679 (15)
O8—Cs1—O3ii103.48 (4)Cs1—As1—Cs1iv122.793 (14)
O7vii—Cs1—O3ii86.30 (4)O5—As2—O6111.26 (9)
O12vi—Cs1—O3ii155.60 (4)O5—As2—O7114.48 (10)
O7—Cs1—O3ii96.43 (4)O6—As2—O7104.36 (9)
O6i—Cs1—O10i36.71 (4)O5—As2—O8109.24 (9)
O2ii—Cs1—O10i36.59 (4)O6—As2—O8109.46 (9)
O3iii—Cs1—O10i120.83 (4)O7—As2—O8107.84 (11)
O4—Cs1—O10i154.48 (4)O5—As2—Cs1x95.67 (6)
O5iv—Cs1—O10i136.79 (4)O6—As2—Cs1x22.81 (6)
O1v—Cs1—O10i50.52 (4)O7—As2—Cs1x126.99 (7)
O11vi—Cs1—O10i94.57 (4)O8—As2—Cs1x101.01 (7)
O12—Cs1—O10i92.99 (4)O5—As2—Cs1iii26.12 (6)
O9vii—Cs1—O10i102.35 (3)O6—As2—Cs1iii114.54 (6)
O11viii—Cs1—O10i93.21 (4)O7—As2—Cs1iii132.54 (7)
O8—Cs1—O10i154.64 (4)O8—As2—Cs1iii84.33 (7)
O7vii—Cs1—O10i68.01 (4)Cs1x—As2—Cs1iii93.09 (2)
O12vi—Cs1—O10i90.61 (3)O5—As2—Cs1134.76 (6)
O7—Cs1—O10i114.28 (4)O6—As2—Cs1113.69 (6)
O3ii—Cs1—O10i73.06 (3)O7—As2—Cs158.21 (8)
O6i—Cs1—As1ii86.45 (4)O8—As2—Cs150.09 (7)
O2ii—Cs1—As1ii19.64 (3)Cs1x—As2—Cs1125.199 (14)
O3iii—Cs1—As1ii71.16 (4)Cs1iii—As2—Cs1121.926 (14)
O4—Cs1—As1ii121.53 (3)O5—As2—Cs1vii90.42 (6)
O5iv—Cs1—As1ii164.43 (3)O6—As2—Cs1vii86.22 (6)
O1v—Cs1—As1ii50.57 (3)O7—As2—Cs1vii39.15 (8)
O11vi—Cs1—As1ii116.08 (4)O8—As2—Cs1vii146.97 (7)
O12—Cs1—As1ii130.88 (4)Cs1x—As2—Cs1vii103.191 (16)
O9vii—Cs1—As1ii69.65 (3)Cs1iii—As2—Cs1vii116.209 (15)
O11viii—Cs1—As1ii71.36 (3)Cs1—As2—Cs1vii97.20 (2)
O8—Cs1—As1ii123.41 (3)O9—As3—O10116.43 (9)
O7vii—Cs1—As1ii77.50 (3)O9—As3—O12107.64 (10)
O12vi—Cs1—As1ii137.57 (3)O10—As3—O12110.13 (9)
O7—Cs1—As1ii104.25 (3)O9—As3—O11112.01 (9)
O3ii—Cs1—As1ii23.02 (2)O10—As3—O11104.28 (9)
O10i—Cs1—As1ii50.06 (2)O12—As3—O11105.88 (12)
O6i—Cs1—As3vi64.95 (4)O9—As3—Cs1vi140.88 (6)
O2ii—Cs1—As3vi122.08 (3)O10—As3—Cs1vi101.00 (6)
O3iii—Cs1—As3vi138.36 (4)O12—As3—Cs1vi66.54 (9)
O4—Cs1—As3vi79.54 (3)O11—As3—Cs1vi43.34 (8)
O5iv—Cs1—As3vi71.42 (3)O9—As3—Cs1xi85.37 (6)
O1v—Cs1—As3vi75.01 (3)O10—As3—Cs1xi88.31 (6)
O11vi—Cs1—As3vi20.45 (4)O12—As3—Cs1xi147.95 (8)
O12—Cs1—As3vi76.10 (5)O11—As3—Cs1xi42.67 (9)
O9vii—Cs1—As3vi166.23 (3)Cs1vi—As3—Cs1xi84.74 (3)
O11viii—Cs1—As3vi77.68 (4)O9—As3—Cs189.67 (6)
O8—Cs1—As3vi109.89 (3)O10—As3—Cs1104.40 (6)
O7vii—Cs1—As3vi123.95 (4)O12—As3—Cs125.37 (8)
O12vi—Cs1—As3vi22.88 (3)O11—As3—Cs1130.41 (9)
O7—Cs1—As3vi128.41 (3)Cs1vi—As3—Cs191.81 (3)
O3ii—Cs1—As3vi135.12 (3)Cs1xi—As3—Cs1167.258 (8)
O10i—Cs1—As3vi87.72 (2)O9—As3—Cs1vii34.48 (6)
As1ii—Cs1—As3vi124.056 (16)O10—As3—Cs1vii82.04 (6)
O6i—Cs1—As1v60.99 (4)O12—As3—Cs1vii121.00 (9)
O2ii—Cs1—As1v66.46 (3)O11—As3—Cs1vii127.34 (8)
O3iii—Cs1—As1v116.05 (4)Cs1vi—As3—Cs1vii170.584 (8)
O4—Cs1—As1v108.35 (4)Cs1xi—As3—Cs1vii86.46 (3)
O5iv—Cs1—As1v131.91 (3)Cs1—As3—Cs1vii96.08 (3)
O1v—Cs1—As1v17.20 (3)As1—O1—Cs1v125.63 (8)
O11vi—Cs1—As1v55.56 (4)As1—O1—Cs177.18 (6)
O12—Cs1—As1v117.41 (4)Cs1v—O1—Cs199.42 (4)
O9vii—Cs1—As1v133.25 (3)As1—O1—Cs1iv74.03 (6)
O11viii—Cs1—As1v52.95 (3)Cs1v—O1—Cs1iv142.21 (4)
O8—Cs1—As1v158.75 (3)Cs1—O1—Cs1iv117.40 (4)
O7vii—Cs1—As1v114.39 (3)As1—O2—Cs1ix120.56 (9)
O12vi—Cs1—As1v77.99 (3)As1—O2—Cs1v78.93 (6)
O7—Cs1—As1v160.62 (3)Cs1ix—O2—Cs1v157.86 (5)
O3ii—Cs1—As1v77.62 (3)As1—O2—H2111 (3)
O10i—Cs1—As1v46.39 (3)Cs1ix—O2—H299 (3)
As1ii—Cs1—As1v63.620 (14)Cs1v—O2—H281 (3)
As3vi—Cs1—As1v60.497 (15)As1—O3—Cs1iv140.95 (9)
O6i—Cs1—O2v41.82 (4)As1—O3—Cs1ix86.03 (7)
O2ii—Cs1—O2v72.98 (2)Cs1iv—O3—Cs1ix131.45 (5)
O3iii—Cs1—O2v137.48 (4)As1—O3—H3110 (3)
O4—Cs1—O2v117.24 (4)Cs1iv—O3—H384 (3)
O5iv—Cs1—O2v117.36 (4)Cs1ix—O3—H390 (3)
O1v—Cs1—O2v38.27 (4)As1—O4—Cs1136.90 (8)
O11vi—Cs1—O2v53.08 (4)As1—O4—Cs1ix61.45 (5)
O12—Cs1—O2v95.87 (4)Cs1—O4—Cs1ix145.93 (5)
O9vii—Cs1—O2v142.89 (3)As1—O4—H4107 (2)
O11viii—Cs1—O2v72.01 (4)Cs1—O4—H4109 (2)
O8—Cs1—O2v159.03 (4)Cs1ix—O4—H445 (2)
O7vii—Cs1—O2v103.84 (4)As2—O5—Cs1iii141.07 (8)
O12vi—Cs1—O2v61.15 (4)As2—O5—Cs1x65.44 (6)
O7—Cs1—O2v146.83 (4)Cs1iii—O5—Cs1x106.13 (4)
O3ii—Cs1—O2v95.30 (4)As2—O6—Cs1x145.08 (8)
O10i—Cs1—O2v41.49 (3)As2—O6—H6112 (3)
As1ii—Cs1—O2v77.02 (3)Cs1x—O6—H6102 (3)
As3vi—Cs1—O2v49.19 (2)As2—O7—Cs1vii125.00 (10)
As1v—Cs1—O2v21.54 (2)As2—O7—Cs1101.06 (9)
O6i—Cs1—H8127.7 (6)Cs1vii—O7—Cs1133.62 (5)
O2ii—Cs1—H8137.8 (6)As2—O7—H7108 (3)
O3iii—Cs1—H867.3 (6)Cs1vii—O7—H7103 (3)
O4—Cs1—H848.7 (6)Cs1—O7—H763 (3)
O5iv—Cs1—H831.8 (6)As2—O8—Cs1110.08 (9)
O1v—Cs1—H8153.0 (6)As2—O8—Cs1iii74.96 (6)
O11vi—Cs1—H899.6 (6)Cs1—O8—Cs1iii142.44 (5)
O12—Cs1—H867.3 (6)As2—O8—H8110 (3)
O9vii—Cs1—H867.9 (6)Cs1—O8—H857 (3)
O11viii—Cs1—H8110.2 (6)Cs1iii—O8—H8159 (3)
O8—Cs1—H811.4 (6)As3—O9—Cs1vii130.90 (8)
O7vii—Cs1—H889.8 (6)As3—O9—Cs1xi75.31 (6)
O12vi—Cs1—H887.5 (6)Cs1vii—O9—Cs1xi99.91 (4)
O7—Cs1—H844.8 (6)As3—O10—Cs1x168.61 (9)
O3ii—Cs1—H8114.7 (6)As3—O10—Cs1vi59.93 (5)
O10i—Cs1—H8156.5 (6)Cs1x—O10—Cs1vi111.15 (3)
As1ii—Cs1—H8134.8 (6)As3—O10—Cs1vii78.77 (6)
As3vi—Cs1—H899.2 (6)Cs1x—O10—Cs1vii110.89 (3)
As1v—Cs1—H8154.2 (6)Cs1vi—O10—Cs1vii137.79 (4)
O2v—Cs1—H8148.0 (6)As3—O10—Cs1xi72.57 (6)
O6i—Cs1—H1272.2 (7)Cs1x—O10—Cs1xi113.62 (3)
O2ii—Cs1—H12123.9 (7)Cs1vi—O10—Cs1xi76.59 (3)
O3iii—Cs1—H12118.9 (6)Cs1vii—O10—Cs1xi83.52 (4)
O4—Cs1—H1291.9 (7)As3—O11—Cs1vi116.21 (11)
O5iv—Cs1—H1232.8 (7)As3—O11—Cs1xi119.34 (11)
O1v—Cs1—H12141.8 (6)Cs1vi—O11—Cs1xi121.90 (6)
O11vi—Cs1—H1291.0 (6)As3—O11—H11115 (3)
O12—Cs1—H1213.3 (7)Cs1vi—O11—H11102 (3)
O9vii—Cs1—H1293.7 (6)Cs1xi—O11—H1168 (3)
O11viii—Cs1—H12145.1 (6)As3—O12—Cs1142.50 (11)
O8—Cs1—H1263.9 (6)As3—O12—Cs1vi90.58 (9)
O7vii—Cs1—H1266.1 (6)Cs1—O12—Cs1vi126.73 (6)
O12vi—Cs1—H1251.9 (6)As3—O12—H12110 (3)
O7—Cs1—H1255.3 (6)Cs1—O12—H1268 (3)
O3ii—Cs1—H12149.4 (6)Cs1vi—O12—H1295 (3)
O10i—Cs1—H12105.9 (7)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2; (v) x, y+1, z+1; (vi) x+1, y+1, z+1; (vii) x+1, y+1, z; (viii) x1, y, z; (ix) x, y1/2, z+1/2; (x) x+1, y1/2, z+1/2; (xi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10viii0.83 (4)1.70 (4)2.524 (2)171 (4)
O3—H3···O9x0.79 (4)1.76 (4)2.553 (3)172 (4)
O4—H4···O1iii0.92 (3)1.70 (3)2.609 (2)170 (3)
O6—H6···O100.91 (2)1.64 (2)2.539 (2)170 (4)
O7—H7···O9vii0.81 (4)1.79 (4)2.599 (3)177 (4)
O11—H11···O1vi0.79 (4)1.85 (4)2.630 (3)168 (4)
O8—H8···O5iv0.82 (4)1.85 (4)2.664 (2)170 (4)
O12—H12···O5iv0.81 (4)1.84 (4)2.643 (3)171 (4)
Symmetry codes: (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2; (vi) x+1, y+1, z+1; (vii) x+1, y+1, z; (viii) x1, y, z; (x) x+1, y1/2, z+1/2.
Dilithium bis(dihydrogen phosphate) (Li2H2PO42) top
Crystal data top
Li2(H2PO4)2F(000) = 416
Mr = 207.85Dx = 2.123 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.400 (1) ÅCell parameters from 2948 reflections
b = 15.927 (3) Åθ = 2.6–34.9°
c = 7.562 (2) ŵ = 0.67 mm1
β = 90.47 (3)°T = 293 K
V = 650.4 (2) Å3Crude blocky, colourless
Z = 40.15 × 0.12 × 0.10 mm
Data collection top
Nonius KappaCCD single-crystal four-circle
diffractometer
2490 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
φ and ω scansθmax = 34.9°, θmin = 2.6°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski et al., 2003)
h = 88
Tmin = 0.906, Tmax = 0.936k = 2525
5625 measured reflectionsl = 1212
2857 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025All H-atom parameters refined
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0358P)2 + 0.2847P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2857 reflectionsΔρmax = 0.44 e Å3
126 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.032 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.3095 (4)0.41644 (13)0.8697 (3)0.0180 (3)
Li20.2049 (4)0.17789 (12)0.3787 (3)0.0188 (4)
P10.20738 (5)0.22094 (2)0.78828 (3)0.01221 (6)
P20.82490 (4)0.50113 (2)0.75280 (3)0.01103 (6)
O10.31754 (15)0.18533 (5)0.62305 (11)0.02001 (15)
O20.35275 (14)0.28897 (5)0.88008 (11)0.01756 (14)
O30.16657 (18)0.15302 (6)0.93356 (12)0.02388 (18)
O40.06014 (14)0.25573 (6)0.73730 (11)0.01953 (15)
O50.64679 (14)0.43820 (5)0.82463 (11)0.01765 (14)
O61.07946 (14)0.46742 (5)0.71115 (10)0.01685 (14)
O70.71704 (16)0.54689 (6)0.58619 (11)0.02046 (16)
O80.84346 (15)0.57281 (5)0.89622 (10)0.01729 (14)
H10.057 (4)0.1225 (14)0.916 (3)0.055 (7)*
H20.089 (4)0.2448 (15)0.630 (3)0.056 (6)*
H30.782 (5)0.5391 (16)0.503 (3)0.064 (8)*
H40.950 (4)0.6050 (14)0.874 (3)0.052 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.0137 (8)0.0215 (9)0.0189 (8)0.0019 (7)0.0014 (6)0.0024 (7)
Li20.0161 (8)0.0181 (8)0.0222 (9)0.0015 (6)0.0007 (7)0.0005 (7)
P10.01114 (11)0.01204 (11)0.01341 (11)0.00015 (7)0.00151 (8)0.00139 (8)
P20.01011 (11)0.01230 (11)0.01071 (11)0.00059 (7)0.00120 (7)0.00032 (7)
O10.0202 (4)0.0236 (4)0.0162 (3)0.0080 (3)0.0008 (3)0.0041 (3)
O20.0152 (3)0.0149 (3)0.0225 (4)0.0028 (2)0.0017 (3)0.0042 (3)
O30.0271 (4)0.0227 (4)0.0217 (4)0.0094 (3)0.0068 (3)0.0077 (3)
O40.0137 (3)0.0284 (4)0.0164 (3)0.0063 (3)0.0032 (2)0.0035 (3)
O50.0141 (3)0.0152 (3)0.0237 (4)0.0032 (2)0.0036 (3)0.0019 (3)
O60.0124 (3)0.0245 (4)0.0137 (3)0.0057 (3)0.0018 (2)0.0025 (3)
O70.0208 (4)0.0280 (4)0.0126 (3)0.0118 (3)0.0016 (3)0.0033 (3)
O80.0207 (4)0.0166 (3)0.0147 (3)0.0055 (3)0.0046 (3)0.0041 (2)
Geometric parameters (Å, º) top
Li1—O51.888 (2)P1—O21.5043 (8)
Li1—O6i1.902 (2)P1—O31.5588 (9)
Li1—O8ii1.967 (2)P1—O41.5917 (8)
Li1—O22.045 (2)P2—O51.4944 (8)
Li1—Li2iii2.611 (3)P2—O61.5113 (8)
Li1—P2i3.068 (2)P2—O71.5640 (9)
Li2—O5iv1.919 (2)P2—O81.5774 (8)
Li2—O11.944 (2)O3—H10.77 (2)
Li2—O4v1.973 (2)O4—H20.84 (2)
Li2—O2iv1.974 (2)O7—H30.73 (2)
Li2—P2iv3.077 (2)O8—H40.79 (2)
P1—O11.4996 (9)
O5—Li1—O6i115.73 (11)O2—P1—O4109.28 (5)
O5—Li1—O8ii124.03 (11)O3—P1—O4106.20 (5)
O6i—Li1—O8ii104.66 (10)O5—P2—O6115.26 (5)
O5—Li1—O294.55 (9)O5—P2—O7111.65 (5)
O6i—Li1—O2121.45 (11)O6—P2—O7109.33 (5)
O8ii—Li1—O295.77 (9)O5—P2—O8105.84 (5)
O5—Li1—Li2iii47.19 (7)O6—P2—O8110.34 (5)
O6i—Li1—Li2iii142.36 (11)O7—P2—O8103.75 (5)
O8ii—Li1—Li2iii112.09 (10)O5—P2—Li1vi98.65 (5)
O2—Li1—Li2iii48.30 (6)O6—P2—Li1vi29.39 (5)
O5—Li1—P2i133.57 (9)O7—P2—Li1vi138.44 (5)
O6i—Li1—P2i22.95 (4)O8—P2—Li1vi94.06 (5)
O8ii—Li1—P2i81.81 (7)O5—P2—Li2iii29.33 (5)
O2—Li1—P2i122.98 (9)O6—P2—Li2iii85.96 (5)
Li2iii—Li1—P2i162.91 (9)O7—P2—Li2iii127.10 (6)
O5iv—Li2—O1108.09 (10)O8—P2—Li2iii118.06 (5)
O5iv—Li2—O4v120.38 (11)Li1vi—P2—Li2iii71.62 (5)
O1—Li2—O4v106.56 (10)P1—O1—Li2133.78 (8)
O5iv—Li2—O2iv95.90 (9)P1—O2—Li2iii133.57 (8)
O1—Li2—O2iv105.81 (10)P1—O2—Li1129.67 (8)
O4v—Li2—O2iv118.91 (11)Li2iii—O2—Li181.02 (8)
O5iv—Li2—Li1iv46.19 (7)P1—O3—H1115.4 (17)
O1—Li2—Li1iv108.00 (10)P1—O4—Li2vii129.92 (8)
O4v—Li2—Li1iv145.44 (11)P1—O4—H2108.9 (16)
O2iv—Li2—Li1iv50.68 (7)Li2vii—O4—H2121.0 (16)
O5iv—Li2—P2iv22.43 (4)P2—O5—Li1144.45 (8)
O1—Li2—P2iv106.59 (8)P2—O5—Li2iii128.24 (8)
O4v—Li2—P2iv101.01 (8)Li1—O5—Li2iii86.62 (9)
O2iv—Li2—P2iv117.05 (8)P2—O6—Li1vi127.66 (8)
Li1iv—Li2—P2iv68.47 (6)P2—O7—H3116 (2)
O1—P1—O2116.61 (5)P2—O8—Li1ii131.07 (8)
O1—P1—O3112.58 (5)P2—O8—H4111.6 (17)
O2—P1—O3104.53 (5)Li1ii—O8—H4116.4 (17)
O1—P1—O4107.18 (5)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z1/2; (v) x+1/2, y+1/2, z1/2; (vi) x+1, y, z; (vii) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O7viii0.77 (2)1.91 (2)2.6769 (12)171 (2)
O4—H2···O2iv0.84 (2)1.99 (2)2.8292 (14)176 (2)
O7—H3···O6ix0.73 (2)1.79 (2)2.5210 (13)172 (3)
O8—H4···O1x0.79 (2)1.79 (2)2.5667 (12)167 (2)
Symmetry codes: (iv) x1/2, y+1/2, z1/2; (viii) x+1/2, y1/2, z+3/2; (ix) x+2, y+1, z+1; (x) x+3/2, y+1/2, z+3/2.
Ammonium dihydrogen arsenate(V) trihydrogen arsenate(V) (NH4H2AsO4H3AsO4) top
Crystal data top
(NH4)(H2AsO4)(H3AsO4)Dx = 2.602 Mg m3
Mr = 300.92Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 793 reflections
a = 7.943 (2) Åθ = 3.3–28.7°
b = 9.855 (2) ŵ = 8.71 mm1
c = 19.623 (4) ÅT = 293 K
V = 1536.1 (6) Å3Rounded prisms, colourless
Z = 80.15 × 0.10 × 0.07 mm
F(000) = 1168
Data collection top
Nonius KappaCCD single-crystal four-circle
diffractometer
905 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
φ and ω scansθmax = 28.7°, θmin = 3.3°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski et al., 2003)
h = 1010
Tmin = 0.355, Tmax = 0.581k = 1312
1799 measured reflectionsl = 2526
1295 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Only H-atom coordinates refined
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0508P)2 + 1.4516P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1295 reflectionsΔρmax = 0.74 e Å3
136 parametersΔρmin = 0.61 e Å3
9 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0011 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.2990 (9)0.5958 (9)0.1213 (4)0.0333 (17)
As10.19665 (8)0.31360 (8)0.03568 (4)0.0228 (2)
As20.26446 (8)0.39549 (9)0.27893 (4)0.0254 (3)
O10.2714 (6)0.1598 (5)0.0226 (3)0.0266 (13)
O20.0736 (6)0.3271 (5)0.1038 (3)0.0296 (13)
O30.0971 (6)0.3697 (6)0.0359 (3)0.0302 (13)
O40.3684 (6)0.4183 (6)0.0407 (3)0.0305 (14)
O50.2149 (6)0.3602 (6)0.2002 (3)0.0287 (13)
O60.3472 (7)0.5542 (6)0.2792 (3)0.0351 (14)
O70.0911 (6)0.3961 (6)0.3291 (3)0.0344 (14)
O80.4036 (6)0.2901 (6)0.3172 (3)0.0364 (16)
H10.410 (3)0.585 (11)0.121 (6)0.08 (4)*
H20.264 (10)0.522 (6)0.145 (4)0.040*
H30.251 (11)0.619 (11)0.082 (3)0.06 (3)*
H40.260 (19)0.667 (11)0.146 (7)0.18 (9)*
H50.013 (13)0.430 (12)0.039 (8)0.16 (7)*
H70.37 (2)0.57 (2)0.324 (2)0.22 (9)*
H60.332 (8)0.502 (4)0.032 (4)0.03 (2)*
H80.057 (10)0.324 (6)0.352 (4)0.05 (3)*
H90.494 (9)0.333 (12)0.300 (6)0.10 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.035 (4)0.039 (5)0.026 (4)0.001 (3)0.002 (3)0.009 (4)
As10.0201 (4)0.0169 (4)0.0313 (5)0.0005 (3)0.0001 (3)0.0001 (4)
As20.0228 (4)0.0240 (5)0.0292 (5)0.0018 (3)0.0014 (3)0.0014 (4)
O10.025 (3)0.017 (3)0.038 (4)0.0009 (19)0.006 (2)0.006 (3)
O20.027 (2)0.025 (3)0.036 (4)0.005 (2)0.003 (2)0.004 (3)
O30.025 (3)0.032 (3)0.033 (3)0.003 (2)0.003 (2)0.006 (3)
O40.022 (2)0.018 (3)0.051 (4)0.001 (2)0.003 (2)0.002 (3)
O50.026 (3)0.030 (3)0.030 (3)0.003 (2)0.004 (2)0.002 (3)
O60.041 (3)0.025 (3)0.039 (4)0.000 (2)0.003 (2)0.002 (3)
O70.024 (3)0.039 (4)0.040 (4)0.000 (2)0.010 (2)0.003 (3)
O80.022 (3)0.031 (3)0.056 (5)0.001 (2)0.007 (2)0.012 (3)
Geometric parameters (Å, º) top
N—O52.869 (10)N—H30.89 (2)
N—O1i2.947 (9)N—H40.90 (2)
N—O5i3.032 (11)As1—O11.648 (5)
N—O2ii3.075 (9)As1—O21.662 (6)
N—O4iii3.082 (9)As1—O31.705 (6)
N—O63.148 (10)As1—O41.714 (5)
N—O7iv3.194 (10)As2—O51.632 (6)
N—O33.216 (10)As2—O81.692 (5)
N—O8v3.272 (9)As2—O71.693 (5)
N—O3i3.283 (10)As2—O61.696 (6)
N—O43.671 (11)As2—H91.97 (10)
N—As23.679 (8)O3—H50.89 (2)
N—As1i3.755 (8)O4—H60.89 (2)
N—O6vi4.106 (10)O6—H70.90 (2)
N—As14.229 (9)O7—H80.89 (2)
N—H10.89 (2)O8—H90.89 (2)
N—H20.91 (2)
O5—N—O1i130.2 (3)O2—As1—O3111.4 (3)
O5—N—O5i114.3 (3)O1—As1—O4106.0 (2)
O1i—N—O5i107.3 (3)O2—As1—O4111.9 (3)
O5—N—O2ii92.1 (2)O3—As1—O4102.8 (3)
O1i—N—O2ii70.0 (2)O1—As1—Nvii48.9 (2)
O5i—N—O2ii79.0 (2)O2—As1—Nvii135.4 (2)
O5—N—O4iii116.1 (3)O3—As1—Nvii60.9 (2)
O1i—N—O4iii71.4 (2)O4—As1—Nvii112.6 (2)
O5i—N—O4iii109.4 (3)O1—As1—N114.9 (2)
O2ii—N—O4iii141.2 (3)O2—As1—N130.3 (2)
O5—N—O652.6 (2)O3—As1—N43.6 (2)
O1i—N—O6173.6 (4)O4—As1—N59.5 (2)
O5i—N—O667.3 (2)Nvii—As1—N77.08 (15)
O2ii—N—O6105.0 (3)O1—As1—Nii124.9 (2)
O4iii—N—O6113.3 (3)O2—As1—Nii31.2 (2)
O5—N—O7iv60.4 (2)O3—As1—Nii80.4 (2)
O1i—N—O7iv124.2 (3)O4—As1—Nii124.9 (2)
O5i—N—O7iv113.6 (3)Nvii—As1—Nii116.13 (17)
O2ii—N—O7iv152.3 (3)N—As1—Nii108.59 (12)
O4iii—N—O7iv60.4 (2)O1—As1—Niii85.3 (2)
O6—N—O7iv62.1 (2)O2—As1—Niii102.1 (2)
O5—N—O366.7 (2)O3—As1—Niii131.8 (2)
O1i—N—O363.5 (2)O4—As1—Niii30.4 (2)
O5i—N—O3147.5 (3)Nvii—As1—Niii114.68 (18)
O2ii—N—O368.5 (2)N—As1—Niii88.28 (16)
O4iii—N—O397.4 (3)Nii—As1—Niii128.79 (19)
O6—N—O3118.9 (3)O1—As1—Nviii64.6 (2)
O7iv—N—O395.4 (3)O2—As1—Nviii57.6 (2)
O5—N—O8v116.3 (3)O3—As1—Nviii103.2 (2)
O1i—N—O8v111.4 (3)O4—As1—Nviii154.0 (2)
O5i—N—O8v48.33 (18)Nvii—As1—Nviii80.41 (16)
O2ii—N—O8v126.3 (3)N—As1—Nviii146.26 (12)
O4iii—N—O8v66.2 (2)Nii—As1—Nviii60.37 (8)
O6—N—O8v68.0 (2)Niii—As1—Nviii124.17 (18)
O7iv—N—O8v74.0 (2)O5—As2—O8116.5 (3)
O3—N—O8v163.3 (3)O5—As2—O7110.8 (3)
O5—N—O3i177.9 (3)O8—As2—O7106.0 (3)
O1i—N—O3i51.9 (2)O5—As2—O6107.0 (3)
O5i—N—O3i64.1 (2)O8—As2—O6108.2 (3)
O2ii—N—O3i89.0 (2)O7—As2—O6108.1 (3)
O4iii—N—O3i63.9 (2)O5—As2—N48.4 (2)
O6—N—O3i125.4 (3)O8—As2—N130.8 (2)
O7iv—N—O3i118.7 (3)O7—As2—N123.2 (2)
O3—N—O3i115.4 (3)O6—As2—N58.6 (3)
O8v—N—O3i61.7 (2)O5—As2—Nvii31.3 (2)
O5—N—O496.7 (3)O8—As2—Nvii88.5 (2)
O1i—N—O445.61 (18)O7—As2—Nvii108.9 (2)
O5i—N—O4149.0 (3)O6—As2—Nvii132.8 (3)
O2ii—N—O499.5 (2)N—As2—Nvii76.88 (15)
O4iii—N—O453.5 (2)O5—As2—Nvi107.4 (2)
O6—N—O4140.5 (3)O8—As2—Nvi126.6 (2)
O7iv—N—O482.0 (2)O7—As2—Nvi26.1 (2)
O3—N—O445.05 (17)O6—As2—Nvi85.1 (2)
O8v—N—O4119.3 (2)N—As2—Nvi100.7 (2)
O3i—N—O484.9 (2)Nvii—As2—Nvi120.20 (9)
O5—N—As225.19 (13)O5—As2—Nix114.5 (2)
O1i—N—As2155.0 (3)O8—As2—Nix4.0 (2)
O5i—N—As291.7 (2)O7—As2—Nix110.0 (2)
O2ii—N—As298.9 (2)O6—As2—Nix106.1 (2)
O4iii—N—As2118.1 (3)N—As2—Nix126.83 (8)
O6—N—As227.38 (13)Nvii—As2—Nix87.52 (18)
O7iv—N—As257.81 (17)Nvi—As2—Nix130.26 (19)
O3—N—As291.7 (2)O5—As2—Niv130.53 (19)
O8v—N—As293.3 (2)O8—As2—Niv61.4 (2)
O3i—N—As2152.7 (3)O7—As2—Niv117.1 (2)
O4—N—As2118.9 (3)O6—As2—Niv46.9 (2)
O5—N—As1i155.1 (3)N—As2—Niv93.05 (19)
O1i—N—As1i24.94 (13)Nvii—As2—Niv129.92 (9)
O5i—N—As1i85.9 (2)Nvi—As2—Niv109.85 (16)
O2ii—N—As1i77.1 (2)Nix—As2—Niv59.62 (5)
O4iii—N—As1i66.22 (19)O5—As2—Nx91.4 (2)
O6—N—As1i151.7 (3)O8—As2—Nx92.4 (2)
O7iv—N—As1i126.5 (3)O7—As2—Nx33.3 (2)
O3—N—As1i88.5 (2)O6—As2—Nx141.2 (2)
O8v—N—As1i87.8 (2)N—As2—Nx128.63 (8)
O3i—N—As1i26.98 (12)Nvii—As2—Nx78.44 (17)
O4—N—As1i63.92 (16)Nvi—As2—Nx56.57 (5)
As2—N—As1i175.6 (2)Nix—As2—Nx96.01 (15)
O5—N—O6vi57.27 (18)Niv—As2—Nx136.46 (17)
O1i—N—O6vi108.1 (2)O5—As2—H9111 (4)
O5i—N—O6vi79.1 (2)O8—As2—H926.9 (19)
O2ii—N—O6vi40.23 (16)O7—As2—H9129 (3)
O4iii—N—O6vi171.4 (3)O6—As2—H986 (3)
O6—N—O6vi68.00 (18)N—As2—H9106 (2)
O7iv—N—O6vi115.4 (3)Nvii—As2—H993 (4)
O3—N—O6vi75.10 (19)Nvi—As2—H9142 (4)
O8v—N—O6vi120.9 (3)Nix—As2—H923.3 (19)
O3i—N—O6vi123.0 (3)Niv—As2—H943 (4)
O4—N—O6vi119.7 (2)Nx—As2—H9119.3 (19)
As2—N—O6vi58.77 (14)As1—O1—Nvii106.1 (3)
As1i—N—O6vi117.1 (2)As1—O1—Niii73.8 (2)
O5—N—As179.4 (2)Nvii—O1—Niii131.0 (2)
O1i—N—As153.58 (17)As1—O1—Nviii97.7 (2)
O5i—N—As1158.4 (3)Nvii—O1—Nviii97.1 (2)
O2ii—N—As184.0 (2)Niii—O1—Nviii131.9 (2)
O4iii—N—As176.2 (2)As1—O1—N48.2 (2)
O6—N—As1130.9 (3)Nvii—O1—N70.2 (2)
O7iv—N—As187.5 (2)Niii—O1—N76.27 (17)
O3—N—As121.42 (11)Nviii—O1—N132.56 (18)
O8v—N—As1142.4 (3)As1—O2—Nii132.5 (3)
O3i—N—As1102.5 (2)As1—O2—Nviii105.1 (2)
O4—N—As123.73 (9)Nii—O2—Nviii76.41 (15)
As2—N—As1104.2 (2)As1—O2—Niii59.12 (17)
As1i—N—As177.29 (15)Nii—O2—Niii154.8 (3)
O6vi—N—As196.48 (18)Nviii—O2—Niii125.74 (19)
O5—N—H198 (7)As1—O2—Nvii31.33 (17)
O1i—N—H1102 (7)Nii—O2—Nvii113.6 (2)
O5i—N—H198 (7)Nviii—O2—Nvii76.03 (17)
O2ii—N—H1170 (7)Niii—O2—Nvii85.99 (16)
O4iii—N—H131 (7)As1—O3—N115.0 (3)
O6—N—H182 (7)As1—O3—Nvii92.1 (3)
O7iv—N—H137 (7)N—O3—Nvii100.3 (2)
O3—N—H1114 (8)As1—O3—Nii77.3 (2)
O8v—N—H150 (7)N—O3—Nii131.7 (2)
O3i—N—H181 (7)Nvii—O3—Nii126.8 (2)
O4—N—H178 (8)As1—O3—H5128 (10)
As2—N—H191 (7)N—O3—H583 (10)
As1i—N—H193 (7)Nvii—O3—H5135 (10)
O6vi—N—H1149 (7)Nii—O3—H557 (10)
As1—N—H196 (8)As1—O4—Niii133.2 (3)
O5—N—H24 (5)As1—O4—N96.7 (3)
O1i—N—H2128 (6)Niii—O4—N126.5 (2)
O5i—N—H2114 (6)As1—O4—Nvii47.7 (2)
O2ii—N—H288 (5)Niii—O4—Nvii124.1 (2)
O4iii—N—H2119 (6)N—O4—Nvii72.12 (17)
O6—N—H255 (6)As1—O4—H6107 (5)
O7iv—N—H265 (5)Niii—O4—H6115 (5)
O3—N—H264 (6)N—O4—H649 (6)
O8v—N—H2120 (5)Nvii—O4—H6114 (6)
O3i—N—H2177 (5)As2—O5—N106.4 (3)
O4—N—H297 (6)As2—O5—Nvii132.5 (3)
As2—N—H227 (6)N—O5—Nvii115.4 (3)
As1i—N—H2152 (5)As2—O6—N94.0 (3)
O6vi—N—H254 (5)As2—O6—Niv115.6 (3)
As1—N—H278 (6)N—O6—Niv124.1 (3)
H1—N—H2102 (8)As2—O6—Nvi74.2 (2)
O5—N—H3125 (7)N—O6—Nvi106.2 (3)
O1i—N—H315 (6)Niv—O6—Nvi126.3 (2)
O5i—N—H3102 (8)As2—O6—H7102 (10)
O2ii—N—H355 (6)N—O6—H7164 (10)
O4iii—N—H386 (6)Niv—O6—H750 (10)
O6—N—H3160 (7)Nvi—O6—H776 (10)
O7iv—N—H3137 (7)As2—O7—Nvi140.4 (3)
O3—N—H361 (7)As2—O7—Nx134.4 (3)
O8v—N—H3119 (7)Nvi—O7—Nx80.52 (12)
O3i—N—H357 (7)As2—O7—N39.73 (19)
O4—N—H356 (7)Nvi—O7—N104.8 (3)
As2—N—H3146 (7)Nx—O7—N134.77 (17)
As1i—N—H331 (7)As2—O7—Nvii52.8 (2)
O6vi—N—H394 (6)Nvi—O7—Nvii136.37 (19)
As1—N—H357 (8)Nx—O7—Nvii84.68 (19)
H1—N—H3117 (9)N—O7—Nvii60.22 (12)
H2—N—H3122 (9)As2—O7—H8123 (6)
O5—N—H4105 (10)Nvi—O7—H897 (6)
O1i—N—H4106 (10)Nx—O7—H829 (5)
O5i—N—H418 (10)N—O7—H8150 (6)
O2ii—N—H462 (10)Nvii—O7—H890 (6)
O4iii—N—H4127 (10)As2—O8—Nix173.9 (3)
O6—N—H468 (10)As2—O8—Niv99.4 (2)
O7iv—N—H4124 (10)Nix—O8—Niv77.87 (12)
O3—N—H4130 (10)As2—O8—Nvii69.8 (2)
O8v—N—H466 (10)Nix—O8—Nvii108.5 (3)
O3i—N—H474 (10)Niv—O8—Nvii138.29 (17)
O4—N—H4152 (10)As2—O8—N34.20 (18)
As2—N—H487 (10)Nix—O8—N139.75 (18)
As1i—N—H490 (10)Niv—O8—N85.3 (2)
O6vi—N—H462 (10)Nvii—O8—N62.91 (12)
As1—N—H4146 (10)As2—O8—H994 (8)
H1—N—H4116 (10)Nix—O8—H980 (8)
H2—N—H4104 (10)Niv—O8—H939 (9)
H3—N—H496 (10)Nvii—O8—H9100 (9)
O1—As1—O2114.3 (3)N—O8—H964 (8)
O1—As1—O3109.7 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x+1/2, y, z1/2; (v) x+1, y+1/2, z1/2; (vi) x1/2, y, z1/2; (vii) x+1/2, y1/2, z; (viii) x1/2, y+1/2, z; (ix) x+1, y1/2, z1/2; (x) x, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1···O4iii0.89 (2)2.36 (8)3.082 (9)138 (10)
N—H1···O7iv0.89 (2)2.54 (9)3.194 (10)130 (9)
N—H4···O5i0.90 (2)2.20 (7)3.032 (11)154 (14)
N—H3···O1i0.89 (2)2.10 (4)2.947 (9)159 (9)
N—H2···O50.91 (2)1.96 (2)2.869 (10)174 (7)
O3—H5···O1viii0.89 (2)2.13 (15)2.616 (7)113 (12)
O3—H5···O3ii0.89 (2)2.61 (11)3.311 (12)136 (13)
O6—H7···O2xi0.90 (2)1.82 (10)2.653 (9)152 (19)
O4—H6···O1i0.89 (2)1.77 (3)2.650 (8)170 (7)
O7—H8···O2xii0.89 (2)1.72 (4)2.568 (8)157 (8)
O8—H9···O5iv0.89 (2)1.78 (6)2.590 (7)150 (11)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x+1/2, y, z1/2; (viii) x1/2, y+1/2, z; (xi) x+1/2, y+1, z1/2; (xii) x, y+1/2, z1/2.
Statistical analysis of As—O bond lengths (Å) in HnAsO4 (n = 1–3) groups top
Bond lengthsAnalysed numberAverageMin.Max.
As—O/OH in HnAsO4 (average)971.687 (6)1.6601.709
As—O/OH in HnAsO4 (individual)3881.687 (27)1.6141.801
As—OH in HnAsO4 (incl. split H positions)1991.701 (23)1.6251.801
As—OH in HnAsO4 (no split H)1171.714 (21)1.6251.801
As—OH in HAsO4431.728 (19)1.6891.801
As—OH in H2AsO4411.714 (12)1.6881.749
As—OH in H3AsO4331.694 (16)1.6251.712
As—OH/2 (split H) in H1-2AsO4821.683 (13)1.6561.714
As—O (no H) in HnAsO41891.671 (23)1.6141.755
As—O (no H/As*) in HnAsO41741.667 (18)1.6141.735
Note: (*) no As—O—As bonds (see text).
 

Acknowledgements

Funding for this research was provided by: Austrian Academy of Sciences (award No. Doc fForte Fellowship to KS).

References

First citationAmri, M., Zouari, N., Mhiri, T. & Gravereau, P. (2009). J. Alloys Compd. 477, 68–75.  CrossRef ICSD CAS Google Scholar
First citationAmri, M., Zouari, N., Mhiri, T., Pechev, S., Gravereau, P. & Von Der Muhll, R. (2007). J. Phys. Chem. Solids, 68, 1281–1292.  CrossRef ICSD CAS Google Scholar
First citationBelhaj Salah, M., Nouiri, N., Jaouadi, K., Mhiri, T. & Zouari, N. (2018). J. Mol. Struct. 1151, 286–300.  CrossRef CAS Google Scholar
First citationBoubia, M., Averbuch-Pouchot, M. T. & Durif, A. (1985). Acta Cryst. C41, 1562–1564.  CrossRef ICSD CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Version 3.2k. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Shannon, R. D. (1973). Acta Cryst. A29, 266–282.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCatti, M. & Ivaldi, G. (1978). Z. Kristallogr. 146, 215–226.  CAS Google Scholar
First citationChouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017a). J. Alloys Compd. 705, 602–609.  CrossRef ICSD CAS Google Scholar
First citationChouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017b). Solid State Ionics, 301, 78–85.  CrossRef ICSD CAS Google Scholar
First citationDekhili, R., Kauffmann, T. H., Aroui, H. & Fontana, M. D. (2018). Solid State Commun. 279, 22–26.  CrossRef CAS Google Scholar
First citationDekola, T., Ribeiro, J. L. & Kloepperpieper, A. (2011). Physica B, 406, 3267–3273.  CrossRef CAS Google Scholar
First citationDhouib, I., Feki, H., Guionneau, P., Mhiri, T. & Elaoud, Z. (2014a). Spectrochim. Acta A Mol. Biomol. Spectrosc. 131, 274–281.  CrossRef CAS PubMed Google Scholar
First citationDhouib, I., Guionneau, P. & Elaoud, Z. (2017). J. Coord. Chem. 70, 3585–3597.  CSD CrossRef CAS Google Scholar
First citationDhouib, I., Guionneau, P., Mhiri, T. & Elaoud, Z. (2014b). Eur. J. Chem. 5, 388–393.  CrossRef Google Scholar
First citationEmmerling, F., Idilbi, M. & Röhr, C. (2002). Z. Naturforsch. Teil B, 57, 599–604.  CrossRef CAS Google Scholar
First citationFanchon, E., Vicat, J., Tran Qui, D. & Boudjada, A. (1987). Acta Cryst. C43, 1022–1025.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFerrari, A., Nardelli, M. & Cingi, M. (1956). Gazz. Chim. Ital. 86, 1174–1180.  CAS Google Scholar
First citationFerraris, G. & Franchini-Angela, M. (1973). Acta Cryst. B29, 286–292.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationFerraris, G. & Ivaldi, G. (1984). Acta Cryst. B40, 1–6.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFIZ (2018). Inorganic Crystal Structure Database. Version 4.1.0 (build 20181019-1414), Data Release 2018.2. Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Ger­many. https://www2.fiz-karlsruhe.de/icsd_home.htmlGoogle Scholar
First citationFukami, T. (1989). J. Phys. Soc. Jpn, 58, 3429–3430.  CrossRef ICSD CAS Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2018a). Acta Cryst. B74, 63–78.  CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2018b). Acta Cryst. B74, 79–96.  CrossRef IUCr Journals Google Scholar
First citationGarcía-Rodríguez, L., Rute-Pérez, Á., Piñero, J. R. & González-Silgo, C. (2000). Acta Cryst. B56, 565–569.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHseu, T. H. & Lu, T. H. (1977). Acta Cryst. B33, 3947–3949.  CrossRef ICSD CAS IUCr Journals Google Scholar
First citationHwan Oh, I., Lee, K.-S., Meven, M., Heger, G. & Eui Lee, C. (2010). J. Phys. Soc. Jpn, 79, 074606.  CrossRef ICSD Google Scholar
First citationIchikawa, M. (1988). J. Mol. Struct. 177, 441–448.  CrossRef Google Scholar
First citationKhan, A. A. & Baur, W. H. (1972). Acta Cryst. B28, 683–693.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationKumaresan, P., Moorthy Babu, S. & Anbarasan, P. M. (2008). J. Cryst. Growth, 310, 1999–2004.  CrossRef CAS Google Scholar
First citationLee, K.-S., Ko, J.-H., Moon, J., Lee, S. & Jeon, M. (2008). Solid State Commun. 145, 487–492.  CrossRef CAS Google Scholar
First citationMajzlan, J., Drahota, P. & Filippi, M. (2014). Rev. Mineral. Geochem. 79, 17–184.  Web of Science CrossRef Google Scholar
First citationNaili, H. & Mhiri, T. (2001). J. Alloys Compd. 315, 143–149.  CAS Google Scholar
First citationNaili, H., Mhiri, T. & Jaud, J. (2001). J. Solid State Chem. 161, 9–16.  CAS Google Scholar
First citationNonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRatajczak, H., Barycki, J., Pietraszko, A., Baran, J., Debrus, S., May, M. & Venturini, J. (2000). J. Mol. Struct. 526, 269–278.  Web of Science CSD CrossRef CAS Google Scholar
First citationRemy, F. & Bachet, B. (1967). Bull. Soc. Chim. Fr. 38, 1699–1701.  Google Scholar
First citationSchwendtner, K. (2006). J. Alloys Compd. 421, 57–63.  Web of Science CrossRef ICSD CAS Google Scholar
First citationSchwendtner, K. (2008). PhD thesis, Universität Wien, Austria.  Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2004a). Acta Cryst. C60, i79–i83.  Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2004b). Acta Cryst. C60, i84–i88.  Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90–i93.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205–215.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17–i20.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399–409.  Web of Science CrossRef ICSD CAS Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600–608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1580–1586.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2018). Acta Cryst. C74, 721–727.  CrossRef ICSD IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStöger, B. & Weil, M. (2014). Acta Cryst. C70, 7–11.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationSure, S. & Guse, W. (1989). Neues Jb Miner. Mh, 1989, 401–409.  Google Scholar
First citationTran Qui, D. & Chiadmi, M. (1986). Acta Cryst. C42, 391–393.  CrossRef ICSD IUCr Journals Google Scholar
First citationVolkov, V. L., Denisova, T. A. & Shtin, A. P. (1995). Inorg. Mater. (Transl. of Neorg. Mater.), 31, 359–362.  CAS Google Scholar
First citationVolkov, V. L., Shtin, A. P., Denisova, T. A. & Inozemtsev, M. V. (1997). Inorg. Mater. (Transl. of Neorg. Mater.), 33, 496–499.  CAS Google Scholar
First citationVoronov, A. P., Babenko, G. N., Puzikov, V. M. & Iurchenko, A. N. (2013). J. Cryst. Growth, 374, 49–52.  CrossRef CAS Google Scholar
First citationWeil, M. (2012). Acta Cryst. E68, i82.  CrossRef ICSD IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds