research papers
Three new acid M+ arsenates and phosphates with multiply protonated As/PO4 groups
aInstitute for Chemical Technology and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9, Wien 1060, Austria, bMineralogisch-Petrographische Abteilung, Naturhistorisches Museum, Burgring 7, Wien 1010, Austria, and cInstitut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, Wien 1090, Austria
*Correspondence e-mail: karolina.schwendtner@tuwien.ac.at
The crystal structures of caesium dihydrogen arsenate(V) bis[trihydrogen arsenate(V)], Cs(H2AsO4)(H3AsO4)2, ammonium dihydrogen arsenate(V) trihydrogen arsenate(V), NH4(H2AsO4)(H3AsO4), and dilithium bis(dihydrogen phosphate), Li2(H2PO4)2, were solved from single-crystal X-ray diffraction data. NH4(H2AsO4)(H3AsO4), which was hydrothermally synthesized (T = 493 K), is homeotypic with Rb(H2AsO4)(H3AsO4), while Cs(H2AsO4)(H3AsO4)2 crystallizes in a novel structure type and Li2(H2PO4)2 represents a new polymorph of this composition. The Cs and Li compounds grew at room temperature from highly acidic aqueous solutions. Li2(H2PO4)2 forms a three-dimensional (3D) framework of PO4 tetrahedra sharing corners with Li2O6 dimers built of edge-sharing LiO4 groups, which is reinforced by hydrogen bonds. The two arsenate compounds are characterized by a 3D network of AsO4 groups that are connected solely via multiple strong hydrogen bonds. A statistical evaluation of the As—O bond lengths in singly, doubly and triply protonated AsO4 groups gave average values of 1.70 (2) Å for 199 As—OH bonds, 1.728 (19) Å for As—OH bonds in HAsO4 groups, 1.714 (12) Å for As—OH bonds in H2AsO4 groups and 1.694 (16) Å for As—OH bonds in H3AsO4 groups, and a grand mean value of 1.667 (18) Å for As—O bonds to nonprotonated O atoms.
Keywords: arsenate; phosphate; caesium; lithium; ammonium; statistical evaluation; crystal structure; H2PO4; H2AsO4; H3AsO4; As—O bond lengths.
1. Introduction
M+ phosphates and arsenates, and their crystal structures and physicochemical properties, have been extensively studied. Several compounds exhibit interesting properties, such as protonic conductivity (Chouchene et al., 2017a,b; Volkov et al., 1995, 1997; Voronov et al., 2013; Dekhili et al., 2018) or nonlinear optical properties (Dhouib et al., 2014a, 2017; Kumaresan et al., 2008).
To further increase the knowledge about the possible compounds and structure types of M+–M3+ arsenates, a comprehensive study of the system M+–M3+–O–(H–)As/P5+ (M+ = Li, Na, K, Rb, Cs, Ag, Tl and NH4; M3+ = Al, Ga, In, Sc, Fe, Cr and Tl) was undertaken, which led to a large number of new structure types that have been published (Schwendtner, 2006; Schwendtner & Kolitsch, 2004a,b, 2005, 2007a,b,c, 2017a,b, 2018). The three compounds structurally characterized in the present article are by-products of this comprehensive study. The following paragraphs provide brief backgrounds to the families of materials to which the three compounds belong.
Lithium phosphates are rather common and the system Li–H–P–O has been widely studied because of the proton conductivity of compounds like LiH2PO4 (Catti & Ivaldi, 1978). The title compound Li2(H2PO4)2 is a new polymorph of this well-known compound. Other known compounds in the Li–H–P–O system, the majority containing polymerized phosphate groups, include Li4H(PO3)5, LiH2PO2, Li6(P6O18)(H2O)3, Li4P2O8(H2O)4, Li3(P3O9)(H2O)3, Li6(P6O18)(H2O)5, Li4(P4O12)(H2O)5, Li6(P6O18)(H2O)8.24, Li6(P6O18)(H2O)9.86, Li3PO4 and Li4P2O7.
Known caesium arsenates include CsAs3O8 (Schwendtner & Kolitsch, 2007a), Cs3AsO4 (Emmerling et al., 2002), Cs2(HAsO4)(H2O)2 (Stöger & Weil, 2014), KDP-type Cs(H2AsO4) (Ferrari et al., 1956) and CsH5(AsO4)2 (Naili et al., 2001). Ammonium arsenate compounds comprise (NH4)(H2AsO4), for which a tetragonal KDP-type polymorph (Khan & Baur, 1972) and an orthorhombic low-temperature polymorph (Fukami, 1989) were reported, (NH4)2(HAsO4) (Weil, 2012) and (NH4)3(AsO4)(H2O)3 (Hseu & Lu, 1977).
Compounds containing H3AsO4 groups are relatively rare and mainly known from compounds containing organic groups (e.g. Dekola et al., 2011; Dhouib et al., 2014a,b, 2017; Ratajczak et al., 2000). Inorganic compounds containing arsenic acid (with clearly located H atoms of the H3AsO4 group) and with known crystal structures are restricted to only seven representatives: CuH10(AsO4)4 (Tran Qui & Chiadmi, 1986) and isotypic ZnH10(AsO4)4 (Sure & Guse, 1989) (the O—H bonds were not clearly identified in the latter structure determination), RbH5(AsO4)2 (Naili & Mhiri, 2001), CsH5(AsO4)2 (Naili et al., 2001), K4(SO4)(HSO4)2(H3AsO4) (Amri et al., 2007), Cs4(SeO4)(HSeO4)2(H3AsO4) (Amri et al., 2009) and isotypic Rb4(SO4)(HSO4)2(H3AsO4) (Belhaj Salah et al., 2018). (NH4)2(H3AsO4)(SO4) (Boubia et al., 1985) also contains H3AsO4 groups, but the H atoms were not located, and for CdH10(AsO4)4 (Tran Qui & Chiadmi, 1986), hydrogen-bond details were published, but no atomic coordinates.
2. Experimental
2.1. Synthesis and crystallization
Analytical grade chemicals were used for all syntheses. NH4(H2AsO4)(H3AsO4) was grown by hydrothermal methods (T = 493 K, 7 d, Teflon-lined stainless steel autoclave) from a mixture of In2O3 and H3AsO4·0.5H2O in an approximate volume ratio of 1:10 and 10 drops of NH4(OH) (32%). No additional H2O was added. The reaction product was a solid mass of colourless intergrown crystals with less than 10 vol% of a yellow unidentified material. The NH4(H2AsO4)(H3AsO4) crystals are stable in air.
Cs(H2AsO4)(H3AsO4)2 formed as the secondary product from further reaction of hydrothermally grown CsAs3O8 (Schwendtner & Kolitsch, 2007a). CsAs3O8 contains AsO6 groups, is highly hygroscopic and, at room temperature, decomposes to a highly acidic liquid in which rounded prismatic glassy colourless crystals of Cs(H2AsO4)(H3AsO4)2 grew within a few weeks.
Li2(H2PO4)2 was also a secondary product of a hydrothermal run (T = 493 K, 7 d, Teflon-lined stainless steel autoclave) from a mixture of Li2CO3, Ga2O3, phosphoric acid and distilled water. The initial and final pH values were both about 1. The hydrothermal synthesis yielded globular crystal aggregates of rounded hexagonal prisms of GaPO4. From the remaining acidic liquid of the synthesis, Li2(H2PO4)2 grew as colourless crude block-shaped crystals by slow evaporation at room temperature.
2.2. Refinement
Crystal data, data collection and structure . NH4(H2AsO4)(H3AsO4) disintegrated (`melted') during the measurement, so only the first two sets or 65% of the could be measured. Specifically, we note that out of the nine sets collected, the first two were fully usable (no decay visible); the decay only started with set 3, so we ignored sets 3–9. We did not observe any anomalous behaviour of the data set during scaling. The remaining sets showed a pseudocubic I-centred tetragonal with approximate a and c values of 7.68 and 7.69 Å, respectively; possibly NH4(H2AsO4)(H3AsO4) recrystallized to pseudocubic I2d-type (NH4)H2AsO4 (Fukami, 1989). Nine reflections with negative intensities (blocked by the beam stop) were omitted from the All N—H and O—H bonds were restricted to 0.9 ± 0.2 Å, as was the O6—H6 bond in Cs(H2AsO4)(H3AsO4)2. The O—H bonds in Li2(H2PO4)2 were not restrained as they refined to reasonable values for refinements based on the X-ray diffraction data sets.
details are summarized in Table 13. Results and discussion
The 2AsO4)(H3AsO4)2 contains one Cs, three As, 12 O and eight H atoms (Fig. 1). The Cs atom is 12-coordinated, with the Cs—O bond lengths varying between 3.1202 (17) and 3.934 (3) Å (Table 2). The average Cs—O bond length (3.458 Å) is considerably longer than the statistical average of 3.377 Å for 12-coordinated Cs atoms (Gagné & Hawthorne, 2016), explaining the low bond-valence sum (BVS; Gagné & Hawthorne, 2015) of 0.85 v.u. The As—O bond lengths are very similar for the doubly (As3) and triply protonated (As1 and As2) As atoms (1.683–1.681 Å) and slightly shorter than the statistical average of 1.687 Å (Gagné & Hawthorne, 2018a). Since two/three O atoms of the coordination polyhedra are protonated, the As—O bond lengths are only slightly elongated compared to unprotonated O atoms. The BVSs of the three As atoms are between 5.06 and 5.09 v.u. and thus close to the expected value, whereas all O atoms are considerably underbonded, with BVSs ranging from 1.22 to 1.53 v.u., and are all either donors or acceptors of hydrogen bonds. The latter are strong (compared to the other H3AsO4-containing compounds cited above), with O—H⋯O distances in the range 2.524 (2)–2.664 (2) Å (Table 3) and connect the individual protonated AsO4 tetrahedra into a three-dimensional (3D) network (Figs. 2a–c). In the [101] direction, the structure forms tunnels walled by AsO4 tetrahedra in which the Cs atom is located (Fig. 2d).
of Cs(H
|
|
The structure of (NH4)(H2AsO4)(H3AsO4) is homeotypic with that of Rb(H2AsO4)(H3AsO4) (Naili & Mhiri, 2001); the Rb+ cation is replaced by an NH4+ group providing additional hydrogen bonds to the atomic arrangement. This structure type is also closely related to that of CsH5(AsO4)2 (Naili et al., 2001), which can be seen as a distorted version of the Rb(H2AsO4)(H3AsO4) structure type. The structure of (NH4)(H2AsO4)(H3AsO4) is built of individual, doubly or triply protonated AsO4 tetrahedra that are connected via strong hydrogen bonds into a 3D network (Figs. 3, 4a and 4b). The NH4+ groups lie in voids and further reinforce the network via medium-to-weak strength hydrogen bonds. AsO4 tetrahedra and NH4+ cations are arranged in layers perpendicular to c (Fig. 4). The NH4+ cation is ten-coordinated, with an average N—O bond distance of 3.112 Å (Table 4), leading to a BVS of 0.97 v.u. (García-Rodríguez et al., 2000). Both AsO4 groups are overbonded (5.08 and 5.13 v.u. for As1 and As2, respectively), although the average As—O bond lengths (1.682 and 1.678 Å) are fairly close to the statistical average of 1.687 Å (Gagné & Hawthorne, 2018a). All O atoms are considerably underbonded and participate in a complex hydrogen-bonding network (Table 5). In Rb(H2AsO4)(H3AsO4) (Naili & Mhiri, 2001), there are some very strong hydrogen bonds present (2.432 Å) that connect the structure along the c axis. Hydrogen bonds with O—H⋯O distances < 2.5 Å are also present in many isostoichiometric M+H5(PO4)2 compounds [see compilation in Naili & Mhiri (2001)]. In (NH4)(H2AsO4)(H3AsO4), these O—H⋯O hydrogen bonds are still strong but considerably longer, ranging from 2.568 (8) to 2.653 (9) Å. This is probably due to a small shift of the atom positions in the two compounds, seen also from an inspection of the unit cells of the two homeotypic compounds. While unit-cell parameters a and b are quite similar and 0.003 and 0.033 Å longer, respectively, in the ammonium compound, unit-cell parameter c is considerably shorter [19.623 (4) Å; Table 1] in comparison with that of the rubidium compound [20.4226 (6) Å; Naili & Mhiri, 2001], leading also to a distinctly smaller unit-cell volume of (NH4)(H2AsO4)(H3AsO4). This change is explained, unlike what is expected from the slightly different effective ionic radii of NH4+ and Rb+ (the latter is slightly smaller), firstly, by the ability of the NH4+ cation to form hydrogen bonds, and, secondly, by a slight shift of the As1 atoms in the b direction and a slight expansion in that direction. Hydrogen bonds connecting adjacent As2O4 tetrahedra in the b direction in Rb(H2AsO4)(H3AsO4) are lost and replaced by hydrogen bonds connecting As1O4 and As2O4 along c in (NH4)(H2AsO4)(H3AsO4) (Fig. 5), resulting in a compression of the whole structure along c.
|
|
The P21/n) Li2(H2PO4)2 contains two Li, two P, eight O and four H atoms, all in general positions (Fig. 6). Li2(H2PO4)2 is built of LiO4 tetrahedra that share edges with adjacent LiO4 tetrahedra, thereby forming Li2O6 dimers (Fig. 7b). Each corner of the LiO4 tetrahedra shares a corner with a PO4 tetrahedron, thus connecting the Li2O6 dimers into a 3D network (Figs. 7a and 7b). This network is reinforced by hydrogen bonds of medium-to-high strength (Table 6). In the orthorhombic (Pna21) dimorph of Li(H2PO4) (Catti & Ivaldi, 1978), which is characterized by a high electrical (proton) conductivity (Hwan Oh et al., 2010), the LiO4 tetrahedra share corners, thus forming chains that are connected by the PO4 groups. In monoclinic Li2(H2PO4)2, the average (Table 7) Li—O (1.951 and 1.953 Å) and P—O (1.539 and 1.537 Å) bond lengths are very close to the statistical average of 1.972 Å (Gagné & Hawthorne, 2016) for Li—O and 1.537 Å (Gagné & Hawthorne, 2018b) for P—O bond lengths. This is also reflected by the nearly ideal BVSs (Gagné & Hawthorne, 2015) of 1.01 and 1.00 v.u. for Li1 and Li2, respectively, and 4.98 and 5.00 v.u. for P1 and P2, respectively. The most underbonded O atoms (O3, O4, O7 and O8, with BVSs of 1.16–1.37 v.u.) form strong-to-medium hydrogen bonds (Table 6). A comparison of the X-ray densities of monoclinic Li2(H2PO4)2 (2.123 kg m−3) and its orthorhombic dimorph LiH2PO4 (Catti & Ivaldi, 1978) (2.09 kg m−3) suggests that monoclinic Li2(H2PO4)2 is slightly denser and therefore thermodynamically slightly more stable, at least under ambient conditions. Orthorhombic LiH2PO4 shows no between room temperature and 100 (Hwan Oh et al., 2010) or 17 K (Lee et al., 2008). We note that monoclinic Li2(H2PO4)2 most probably has an isotypic arsenate analogue, since Remy & Bachet (1967) were able to synthesize monoclinic Li2(H2AsO4)2, with a = 5.55, b = 16.36, c = 7.80 Å, β = 90.53° and P21/n, although they did not determine its Orthorhombic Li(H2PO4) also has an isotypic arsenate analogue, the of which was reported by Fanchon et al. (1987), who pointed out a slight rearrangement in one of the two independent hydrogen bonds.
of monoclinic (
|
|
4. Statistical evaluation of As—O bonds in protonated AsO4 groups
Several statistical analyses of bond lengths in As5+O4 polyhedra have been published recently. Gagné & Hawthorne (2018a) reported average As—O bond lengths of 1.687 (27) Å in AsO4 and 1.830 (28) Å in AsO6 groups, derived from 508 and 13 polyhedra, respectively. Schwendtner (2008) found similar values of 1.686 (29) and 1.827 (29) Å for a larger sample size of 704 AsO4 and 40 AsO6 polyhedra, respectively. An analysis of As—O bond lengths in minerals by Majzlan et al. (2014) gave a very similar value of 1.685 Å (no s.u. given) for the average As—O bond length and a value of 1.727 Å (no s.u. given) for As—OH bonds. Data for As—O bond lengths in multiply protonated As5+Ox (x = 4 and 6) polyhedra are scarce (especially those for H3AsO4 groups) due to the rare occurrence of compounds containing such polyhedra. An earlier attempt by Ichikawa (1988) to carry out a statistical analysis of the hydrogen-bond-length dependence of the distortion in HnAsO4 (n = 1–3) tetrahedra was severely hampered for the doubly and triply protonated representatives, since data for only six H2AsO4 and two H3AsO4 groups were available, and no pertinent conclusions were possible. As the number of synthetic compounds and minerals containing HnAsO4 (n = 1–3) groups has considerably increased in the last three decades, we were able to perform a detailed analysis of As—O/OH bonds in HnAsO4 (n = 1–3) groups using data from the ICSD database (FIZ, 2018) (conventional R value < 5, full occupancy of As and O sites), expanded by the published data for known H3AsO4-containing inorganic compounds mentioned in the Introduction (§1), and the two novel title arsenate compounds (Table 8 and Fig. 8).
|
The average As—O/OH bond length for the 97 analysed HnAsO4 (n = 1–3) groups of 1.686 (27) Å is nearly identical to the value reported by Gagné & Hawthorne (2018a), but the individual bond lengths vary greatly with the number of As—OH bonds in the respective polyhedra. While the As—OH bonds are extremely elongated to 1.728 (19) Å in HAsO4 groups and to 1.714 (12) Å in H2AsO4 groups, the average As—OH bond length is considerably shorter, with a value of 1.694 (16) Å in the rare H3AsO4 groups. This result is in agreement with the observation of Ferraris & Ivaldi (1984) that the average length of X—OH (X = As and P) bonds tends to decrease from mono- to triprotonated anions with the same X atom. We also find that the As bonds to nonprotonated O atoms in H3AsO4 groups are shortened to 1.671 (23) Å. If As—O bonds involving bridging O ligands (as present in the As2O7 groups in pyroarsenates), i.e. As—O—As bonds, are removed from the data set because they are known to be anomalously elongated due to As—As repulsion, the value is even shorter, i.e. 1.667 (18) Å. A special case are As—O bonds to half-occupied H-atom positions; these are actually shortened to 1.683 (13) Å. Excluding split H-atom positions, the grand mean average As—OH bond length in HnAsO4 (n = 1–3) groups is 1.714 (21) Å and thus considerably shorter than the value of 1.727 Å derived by Majzlan et al. (2014), whose evaluation was based mainly on H1-2AsO4 groups. A visual analysis of the individual As—O bond lengths compared to the averages of the HnAsO4 (n = 1–3) groups (Fig. 8) shows that they form clearly distributed clouds, depending on the number of H atoms. The average As—O/OH bond lengths of the polyhedra, as well as the individual As—OH bond lengths, are largest in HAsO4 groups and show a narrower distribution in H2AsO4. The population of H3AsO4 groups is characterized by shorter individual As—OH bond lengths but also a shorter average As—OH bond length of the polyhedra. It can also be recognized that the whole data set shows a strong concentration of bonds at around ca 1.687 Å and that all the shortest bonds are to the nonprotonated O atoms of each HnAsO4 (n = 1–3) group (blue cloud in Fig. 8, cf. Table 8). This is expected because the As atom in each HnAsO4 tries to achieve a BVS of 5, and due to the elongation of all the bonds to protonated O atoms, the remaining As—O bonds have to shorten accordingly. This also explains why both the individual As—OH bond lengths and average As—O(H) bond lengths decrease with increasing protonation. In the case of singly protonated AsO4 groups, the three As—O bonds need to become slightly shortened in order to still achieve a BVS of 5, at the expense of a high bond-length distortion in this tetrahedron. In agreement with the distortion theorem (Brown & Shannon, 1973), this results in a slightly higher value of the average As—O(H) bond length of 1.689 (6) Å in HAsO4 groups (vertical range of red cloud in Fig. 8) versus a corresponding value of 1.688 (3) Å in H2AsO4 groups (vertical range of yellow cloud) and the notably lower value of 1.680 (7) Å in H3AsO4 groups (vertical range of turquoise cloud). This low value in the latter is a consequence of three competing As—OH bonds which can only be counteracted by one As—O bond. This leads to three similarly short As—OH bonds and one even shorter As—O bond, i.e. a small bond-length distortion.
The overall spread of values is a consequence of the variable strengths of the hydrogen bonds in the individual compounds. A conspicuous outlier in Fig. 8 (e.g. in the top-right corner) may be explained by the influence of a very strong hydrogen bond in Mg(HAsO4)(H2O)7, with an O⋯O donor–acceptor distance of 2.491 Å (no s.u. given; Ferraris & Franchini-Angela, 1973).
Supporting information
https://doi.org/10.1107/S2053229619008489/qf3024sup1.cif
contains datablocks CsH2AsO4H3AsO42, Li2H2PO42, NH4H2AsO4H3AsO4, global. DOI:Structure factors: contains datablock CsH2AsO4H3AsO42. DOI: https://doi.org/10.1107/S2053229619008489/qf3024CsH2AsO4H3AsO42sup2.hkl
Structure factors: contains datablock Li2H2PO42. DOI: https://doi.org/10.1107/S2053229619008489/qf3024Li2H2PO42sup3.hkl
Structure factors: contains datablock NH4H2AsO4H3AsO4. DOI: https://doi.org/10.1107/S2053229619008489/qf3024NH4H2AsO4H3AsO4sup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2053229619008489/qf3024Li2H2PO42sup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229619008489/qf3024NH4H2AsO4H3AsO4sup6.cml
For all structures, data collection: COLLECT (Nonius, 2003); cell
SCALEPACK (Otwinowski et al., 2003); data reduction: DENZO and SCALEPACK (Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).Cs(H2AsO4)(H3AsO4)2 | F(000) = 1032 |
Mr = 557.73 | Dx = 3.218 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.712 (2) Å | Cell parameters from 4360 reflections |
b = 12.738 (3) Å | θ = 2.7–32.6° |
c = 9.307 (2) Å | µ = 11.83 mm−1 |
β = 90.91 (3)° | T = 293 K |
V = 1151.2 (4) Å3 | Rounded prisms, colourless |
Z = 4 | 0.14 × 0.13 × 0.08 mm |
Nonius KappaCCD single-crystal four-circle diffractometer | 3411 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.016 |
φ and ω scans | θmax = 32.6°, θmin = 2.7° |
Absorption correction: multi-scan (SCALEPACK; Otwinowski et al., 2003) | h = −14→14 |
Tmin = 0.288, Tmax = 0.451 | k = −19→19 |
8200 measured reflections | l = −14→14 |
4186 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | All H-atom parameters refined |
wR(F2) = 0.054 | w = 1/[σ2(Fo2) + (0.0217P)2 + 1.0466P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.002 |
4186 reflections | Δρmax = 0.91 e Å−3 |
178 parameters | Δρmin = −1.60 e Å−3 |
1 restraint | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00340 (11) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cs1 | 0.22962 (2) | 0.51389 (2) | 0.27149 (2) | 0.03776 (6) | |
As1 | 0.00263 (2) | 0.23648 (2) | 0.48710 (2) | 0.01694 (5) | |
As2 | 0.46332 (2) | 0.24756 (2) | 0.02338 (2) | 0.01917 (6) | |
As3 | 0.73534 (2) | 0.47250 (2) | 0.25789 (2) | 0.02105 (6) | |
O1 | 0.01202 (17) | 0.31350 (12) | 0.62862 (15) | 0.0225 (3) | |
O2 | −0.15805 (17) | 0.21801 (14) | 0.41934 (18) | 0.0273 (3) | |
O3 | 0.0553 (2) | 0.11305 (13) | 0.5291 (2) | 0.0298 (4) | |
O4 | 0.10335 (17) | 0.28641 (13) | 0.35555 (17) | 0.0255 (3) | |
O5 | 0.42912 (18) | 0.17618 (13) | −0.11930 (16) | 0.0262 (3) | |
O6 | 0.60947 (17) | 0.20728 (13) | 0.10689 (19) | 0.0277 (4) | |
O7 | 0.4908 (2) | 0.37667 (14) | −0.0112 (2) | 0.0411 (5) | |
O8 | 0.32988 (19) | 0.23889 (17) | 0.1389 (2) | 0.0351 (4) | |
O9 | 0.73949 (17) | 0.54949 (13) | 0.11525 (18) | 0.0284 (4) | |
O10 | 0.75902 (17) | 0.34537 (13) | 0.22914 (17) | 0.0269 (4) | |
O11 | 0.8597 (2) | 0.50491 (15) | 0.3823 (2) | 0.0405 (5) | |
O12 | 0.5816 (2) | 0.49272 (15) | 0.3400 (2) | 0.0417 (5) | |
H2 | −0.179 (4) | 0.265 (3) | 0.360 (4) | 0.061 (12)* | |
H3 | 0.115 (4) | 0.095 (3) | 0.477 (4) | 0.067 (12)* | |
H4 | 0.081 (4) | 0.250 (3) | 0.273 (4) | 0.054 (10)* | |
H6 | 0.659 (4) | 0.262 (2) | 0.144 (4) | 0.080 (14)* | |
H7 | 0.420 (4) | 0.402 (3) | −0.044 (4) | 0.059 (11)* | |
H8 | 0.353 (4) | 0.262 (3) | 0.218 (4) | 0.060 (11)* | |
H11 | 0.888 (4) | 0.563 (3) | 0.378 (4) | 0.076 (14)* | |
H12 | 0.543 (4) | 0.437 (3) | 0.350 (4) | 0.062 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cs1 | 0.04230 (11) | 0.02498 (8) | 0.04561 (11) | 0.00032 (6) | −0.01130 (8) | −0.00318 (7) |
As1 | 0.01957 (10) | 0.01814 (10) | 0.01307 (9) | −0.00029 (8) | −0.00091 (7) | −0.00053 (7) |
As2 | 0.01818 (11) | 0.01998 (10) | 0.01925 (11) | 0.00205 (8) | −0.00274 (8) | −0.00085 (8) |
As3 | 0.02387 (11) | 0.01600 (11) | 0.02320 (11) | −0.00176 (8) | −0.00263 (8) | 0.00363 (8) |
O1 | 0.0306 (8) | 0.0218 (7) | 0.0152 (7) | −0.0005 (6) | −0.0010 (6) | −0.0031 (6) |
O2 | 0.0224 (8) | 0.0343 (9) | 0.0251 (8) | −0.0062 (7) | −0.0048 (6) | 0.0062 (7) |
O3 | 0.0371 (10) | 0.0213 (8) | 0.0311 (9) | 0.0077 (7) | 0.0072 (8) | 0.0037 (7) |
O4 | 0.0271 (8) | 0.0314 (8) | 0.0179 (7) | −0.0088 (7) | 0.0032 (6) | −0.0016 (6) |
O5 | 0.0298 (9) | 0.0305 (8) | 0.0182 (7) | 0.0036 (7) | −0.0013 (6) | −0.0046 (6) |
O6 | 0.0231 (8) | 0.0205 (8) | 0.0392 (9) | 0.0011 (6) | −0.0103 (7) | 0.0019 (7) |
O7 | 0.0416 (12) | 0.0211 (8) | 0.0601 (13) | 0.0007 (8) | −0.0166 (10) | 0.0085 (8) |
O8 | 0.0244 (9) | 0.0577 (13) | 0.0233 (9) | 0.0012 (8) | 0.0031 (7) | −0.0088 (8) |
O9 | 0.0260 (8) | 0.0283 (8) | 0.0308 (8) | −0.0016 (7) | 0.0001 (7) | 0.0126 (7) |
O10 | 0.0316 (9) | 0.0179 (7) | 0.0307 (8) | 0.0019 (6) | −0.0105 (7) | −0.0006 (6) |
O11 | 0.0527 (13) | 0.0260 (9) | 0.0419 (11) | −0.0106 (9) | −0.0227 (9) | 0.0034 (8) |
O12 | 0.0441 (12) | 0.0246 (9) | 0.0570 (13) | 0.0001 (8) | 0.0238 (10) | 0.0039 (9) |
Cs1—O6i | 3.1202 (17) | Cs1—H3iii | 3.25 (4) |
Cs1—O2ii | 3.2184 (19) | Cs1—H6i | 3.43 (4) |
Cs1—O3iii | 3.2326 (19) | As1—O1 | 1.6437 (15) |
Cs1—O4 | 3.2469 (17) | As1—O2 | 1.6903 (17) |
Cs1—O5iv | 3.2536 (18) | As1—O3 | 1.6970 (17) |
Cs1—O1v | 3.3579 (17) | As1—O4 | 1.7025 (16) |
Cs1—O11vi | 3.359 (2) | As2—O5 | 1.6390 (16) |
Cs1—O12 | 3.478 (2) | As2—O6 | 1.6874 (16) |
Cs1—O9vii | 3.7056 (19) | As2—O7 | 1.6977 (19) |
Cs1—O11viii | 3.755 (3) | As2—O8 | 1.7004 (19) |
Cs1—O8 | 3.844 (2) | As3—O9 | 1.6515 (16) |
Cs1—O7vii | 3.924 (3) | As3—O10 | 1.6579 (17) |
Cs1—O12vi | 4.028 (3) | As3—O12 | 1.707 (2) |
Cs1—O7 | 4.077 (3) | As3—O11 | 1.7104 (19) |
Cs1—O3ii | 4.103 (2) | O2—H2 | 0.83 (4) |
Cs1—O10i | 4.2239 (19) | O3—H3 | 0.79 (4) |
Cs1—As1ii | 4.3298 (9) | O4—H4 | 0.92 (3) |
Cs1—As3vi | 4.3913 (10) | O6—H6 | 0.910 (18) |
Cs1—As1v | 4.5175 (9) | O7—H7 | 0.81 (4) |
Cs1—O2v | 4.527 (2) | O8—H8 | 0.82 (4) |
Cs1—H8 | 3.46 (4) | O11—H11 | 0.79 (4) |
Cs1—H12 | 3.27 (4) | O12—H12 | 0.81 (4) |
Cs1—H2ii | 3.45 (4) | ||
O6i—Cs1—O2ii | 70.42 (5) | As1ii—Cs1—H12 | 142.7 (7) |
O6i—Cs1—O3iii | 154.40 (5) | As3vi—Cs1—H12 | 74.4 (6) |
O2ii—Cs1—O3iii | 85.00 (5) | As1v—Cs1—H12 | 124.7 (6) |
O6i—Cs1—O4 | 143.71 (4) | O2v—Cs1—H12 | 103.5 (6) |
O2ii—Cs1—O4 | 140.79 (5) | H8—Cs1—H12 | 55.5 (9) |
O3iii—Cs1—O4 | 61.72 (4) | O6i—Cs1—H2ii | 57.7 (6) |
O6i—Cs1—O5iv | 100.47 (5) | O2ii—Cs1—H2ii | 13.8 (6) |
O2ii—Cs1—O5iv | 153.62 (4) | O3iii—Cs1—H2ii | 98.4 (6) |
O3iii—Cs1—O5iv | 98.54 (5) | O4—Cs1—H2ii | 149.2 (7) |
O4—Cs1—O5iv | 59.07 (4) | O5iv—Cs1—H2ii | 151.5 (7) |
O6i—Cs1—O1v | 74.39 (4) | O1v—Cs1—H2ii | 53.0 (7) |
O2ii—Cs1—O1v | 58.54 (4) | O11vi—Cs1—H2ii | 111.7 (6) |
O3iii—Cs1—O1v | 99.22 (5) | O12—Cs1—H2ii | 105.6 (7) |
O4—Cs1—O1v | 104.44 (4) | O9vii—Cs1—H2ii | 82.5 (6) |
O5iv—Cs1—O1v | 144.69 (4) | O11viii—Cs1—H2ii | 89.7 (7) |
O6i—Cs1—O11vi | 81.01 (5) | O8—Cs1—H2ii | 139.8 (6) |
O2ii—Cs1—O11vi | 122.02 (5) | O7vii—Cs1—H2ii | 63.1 (7) |
O3iii—Cs1—O11vi | 119.57 (5) | O12vi—Cs1—H2ii | 113.4 (6) |
O4—Cs1—O11vi | 66.48 (4) | O7—Cs1—H2ii | 104.7 (6) |
O5iv—Cs1—O11vi | 78.98 (5) | O3ii—Cs1—H2ii | 51.9 (6) |
O1v—Cs1—O11vi | 65.72 (5) | O10i—Cs1—H2ii | 22.8 (6) |
O6i—Cs1—O12 | 60.63 (5) | As1ii—Cs1—H2ii | 29.3 (6) |
O2ii—Cs1—O12 | 111.52 (5) | As3vi—Cs1—H2ii | 109.0 (6) |
O3iii—Cs1—O12 | 126.27 (5) | As1v—Cs1—H2ii | 57.1 (6) |
O4—Cs1—O12 | 105.10 (5) | O2v—Cs1—H2ii | 60.4 (6) |
O5iv—Cs1—O12 | 46.08 (4) | H8—Cs1—H2ii | 148.5 (9) |
O1v—Cs1—O12 | 133.57 (4) | H12—Cs1—H2ii | 118.8 (9) |
O11vi—Cs1—O12 | 94.97 (6) | O6i—Cs1—H3iii | 143.7 (7) |
O6i—Cs1—O9vii | 118.46 (5) | O2ii—Cs1—H3iii | 79.2 (7) |
O2ii—Cs1—O9vii | 70.13 (4) | O3iii—Cs1—H3iii | 14.1 (7) |
O3iii—Cs1—O9vii | 42.49 (4) | O4—Cs1—H3iii | 72.3 (7) |
O4—Cs1—O9vii | 94.38 (4) | O5iv—Cs1—H3iii | 97.9 (7) |
O5iv—Cs1—O9vii | 94.84 (4) | O1v—Cs1—H3iii | 106.4 (7) |
O1v—Cs1—O9vii | 118.64 (4) | O11vi—Cs1—H3iii | 133.4 (7) |
O11vi—Cs1—O9vii | 160.46 (4) | O12—Cs1—H3iii | 116.3 (7) |
O12—Cs1—O9vii | 93.83 (5) | O9vii—Cs1—H3iii | 28.4 (7) |
O6i—Cs1—O11viii | 113.59 (5) | O11viii—Cs1—H3iii | 84.4 (7) |
O2ii—Cs1—O11viii | 88.68 (5) | O8—Cs1—H3iii | 54.9 (7) |
O3iii—Cs1—O11viii | 71.56 (5) | O7vii—Cs1—H3iii | 82.1 (7) |
O4—Cs1—O11viii | 62.61 (4) | O12vi—Cs1—H3iii | 153.0 (7) |
O5iv—Cs1—O11viii | 117.33 (4) | O7—Cs1—H3iii | 58.7 (7) |
O1v—Cs1—O11viii | 42.94 (4) | O3ii—Cs1—H3iii | 48.7 (7) |
O11vi—Cs1—O11viii | 58.10 (6) | O10i—Cs1—H3iii | 115.8 (7) |
O12—Cs1—O11viii | 152.77 (5) | As1ii—Cs1—H3iii | 69.2 (7) |
O9vii—Cs1—O11viii | 110.65 (5) | As3vi—Cs1—H3iii | 151.3 (7) |
O6i—Cs1—O8 | 135.06 (4) | As1v—Cs1—H3iii | 123.6 (7) |
O2ii—Cs1—O8 | 127.77 (4) | O2v—Cs1—H3iii | 143.6 (7) |
O3iii—Cs1—O8 | 56.82 (4) | H8—Cs1—H3iii | 66.2 (9) |
O4—Cs1—O8 | 50.42 (4) | H12—Cs1—H3iii | 111.5 (9) |
O5iv—Cs1—O8 | 43.09 (4) | H2ii—Cs1—H3iii | 93.0 (9) |
O1v—Cs1—O8 | 150.13 (4) | O6i—Cs1—H6i | 15.1 (4) |
O11vi—Cs1—O8 | 108.28 (5) | O2ii—Cs1—H6i | 56.4 (5) |
O12—Cs1—O8 | 74.64 (4) | O3iii—Cs1—H6i | 141.4 (5) |
O9vii—Cs1—O8 | 57.64 (4) | O4—Cs1—H6i | 152.5 (7) |
O11viii—Cs1—O8 | 107.98 (4) | O5iv—Cs1—H6i | 115.4 (4) |
O6i—Cs1—O7vii | 66.17 (5) | O1v—Cs1—H6i | 63.5 (6) |
O2ii—Cs1—O7vii | 61.16 (4) | O11vi—Cs1—H6i | 86.1 (7) |
O3iii—Cs1—O7vii | 96.12 (5) | O12—Cs1—H6i | 73.9 (5) |
O4—Cs1—O7vii | 137.19 (4) | O9vii—Cs1—H6i | 113.1 (7) |
O5iv—Cs1—O7vii | 92.45 (4) | O11viii—Cs1—H6i | 105.4 (6) |
O1v—Cs1—O7vii | 115.59 (4) | O8—Cs1—H6i | 146.3 (6) |
O11vi—Cs1—O7vii | 144.05 (5) | O7vii—Cs1—H6i | 66.0 (7) |
O12—Cs1—O7vii | 56.84 (5) | O12vi—Cs1—H6i | 71.1 (5) |
O9vii—Cs1—O7vii | 53.85 (4) | O7—Cs1—H6i | 110.1 (7) |
O11viii—Cs1—O7vii | 148.74 (4) | O3ii—Cs1—H6i | 94.6 (4) |
O8—Cs1—O7vii | 86.80 (4) | O10i—Cs1—H6i | 21.7 (4) |
O6i—Cs1—O12vi | 58.18 (4) | As1ii—Cs1—H6i | 71.6 (4) |
O2ii—Cs1—O12vi | 127.11 (4) | As3vi—Cs1—H6i | 73.5 (6) |
O3iii—Cs1—O12vi | 147.33 (4) | As1v—Cs1—H6i | 52.9 (7) |
O4—Cs1—O12vi | 86.18 (4) | O2v—Cs1—H6i | 37.9 (7) |
O5iv—Cs1—O12vi | 56.21 (4) | H8—Cs1—H6i | 141.1 (8) |
O1v—Cs1—O12vi | 94.31 (4) | H12—Cs1—H6i | 86.2 (8) |
O11vi—Cs1—O12vi | 42.12 (5) | H2ii—Cs1—H6i | 43.2 (8) |
O12—Cs1—O12vi | 53.27 (6) | H3iii—Cs1—H6i | 133.6 (9) |
O9vii—Cs1—O12vi | 145.54 (4) | O1—As1—O2 | 114.91 (9) |
O11viii—Cs1—O12vi | 100.17 (5) | O1—As1—O3 | 110.85 (8) |
O8—Cs1—O12vi | 98.93 (4) | O2—As1—O3 | 103.30 (9) |
O7vii—Cs1—O12vi | 104.61 (5) | O1—As1—O4 | 109.15 (8) |
O6i—Cs1—O7 | 105.03 (5) | O2—As1—O4 | 108.74 (8) |
O2ii—Cs1—O7 | 96.97 (4) | O3—As1—O4 | 109.70 (9) |
O3iii—Cs1—O7 | 70.09 (5) | O1—As1—Cs1ix | 149.10 (6) |
O4—Cs1—O7 | 90.81 (4) | O2—As1—Cs1ix | 39.80 (6) |
O5iv—Cs1—O7 | 60.59 (4) | O3—As1—Cs1ix | 70.95 (7) |
O1v—Cs1—O7 | 154.70 (4) | O4—As1—Cs1ix | 98.34 (6) |
O11vi—Cs1—O7 | 139.58 (5) | O1—As1—Cs1v | 37.17 (6) |
O12—Cs1—O7 | 57.68 (5) | O2—As1—Cs1v | 79.53 (6) |
O9vii—Cs1—O7 | 38.65 (4) | O3—As1—Cs1v | 133.54 (6) |
O11viii—Cs1—O7 | 140.53 (4) | O4—As1—Cs1v | 113.07 (6) |
O8—Cs1—O7 | 40.44 (4) | Cs1ix—As1—Cs1v | 118.527 (15) |
O7vii—Cs1—O7 | 46.38 (5) | O1—As1—Cs1 | 82.60 (6) |
O12vi—Cs1—O7 | 106.93 (4) | O2—As1—Cs1 | 112.76 (6) |
O6i—Cs1—O3ii | 109.44 (4) | O3—As1—Cs1 | 131.43 (7) |
O2ii—Cs1—O3ii | 40.33 (4) | O4—As1—Cs1 | 28.57 (6) |
O3iii—Cs1—O3ii | 48.55 (5) | Cs1ix—As1—Cs1 | 120.358 (14) |
O4—Cs1—O3ii | 100.71 (4) | Cs1v—As1—Cs1 | 85.61 (2) |
O5iv—Cs1—O3ii | 146.51 (4) | O1—As1—Cs1iv | 86.21 (6) |
O1v—Cs1—O3ii | 61.34 (4) | O2—As1—Cs1iv | 122.72 (6) |
O11vi—Cs1—O3ii | 119.62 (5) | O3—As1—Cs1iv | 25.83 (6) |
O12—Cs1—O3ii | 143.06 (5) | O4—As1—Cs1iv | 113.01 (6) |
O9vii—Cs1—O3ii | 57.92 (4) | Cs1ix—As1—Cs1iv | 96.02 (2) |
O11viii—Cs1—O3ii | 63.81 (4) | Cs1v—As1—Cs1iv | 115.679 (15) |
O8—Cs1—O3ii | 103.48 (4) | Cs1—As1—Cs1iv | 122.793 (14) |
O7vii—Cs1—O3ii | 86.30 (4) | O5—As2—O6 | 111.26 (9) |
O12vi—Cs1—O3ii | 155.60 (4) | O5—As2—O7 | 114.48 (10) |
O7—Cs1—O3ii | 96.43 (4) | O6—As2—O7 | 104.36 (9) |
O6i—Cs1—O10i | 36.71 (4) | O5—As2—O8 | 109.24 (9) |
O2ii—Cs1—O10i | 36.59 (4) | O6—As2—O8 | 109.46 (9) |
O3iii—Cs1—O10i | 120.83 (4) | O7—As2—O8 | 107.84 (11) |
O4—Cs1—O10i | 154.48 (4) | O5—As2—Cs1x | 95.67 (6) |
O5iv—Cs1—O10i | 136.79 (4) | O6—As2—Cs1x | 22.81 (6) |
O1v—Cs1—O10i | 50.52 (4) | O7—As2—Cs1x | 126.99 (7) |
O11vi—Cs1—O10i | 94.57 (4) | O8—As2—Cs1x | 101.01 (7) |
O12—Cs1—O10i | 92.99 (4) | O5—As2—Cs1iii | 26.12 (6) |
O9vii—Cs1—O10i | 102.35 (3) | O6—As2—Cs1iii | 114.54 (6) |
O11viii—Cs1—O10i | 93.21 (4) | O7—As2—Cs1iii | 132.54 (7) |
O8—Cs1—O10i | 154.64 (4) | O8—As2—Cs1iii | 84.33 (7) |
O7vii—Cs1—O10i | 68.01 (4) | Cs1x—As2—Cs1iii | 93.09 (2) |
O12vi—Cs1—O10i | 90.61 (3) | O5—As2—Cs1 | 134.76 (6) |
O7—Cs1—O10i | 114.28 (4) | O6—As2—Cs1 | 113.69 (6) |
O3ii—Cs1—O10i | 73.06 (3) | O7—As2—Cs1 | 58.21 (8) |
O6i—Cs1—As1ii | 86.45 (4) | O8—As2—Cs1 | 50.09 (7) |
O2ii—Cs1—As1ii | 19.64 (3) | Cs1x—As2—Cs1 | 125.199 (14) |
O3iii—Cs1—As1ii | 71.16 (4) | Cs1iii—As2—Cs1 | 121.926 (14) |
O4—Cs1—As1ii | 121.53 (3) | O5—As2—Cs1vii | 90.42 (6) |
O5iv—Cs1—As1ii | 164.43 (3) | O6—As2—Cs1vii | 86.22 (6) |
O1v—Cs1—As1ii | 50.57 (3) | O7—As2—Cs1vii | 39.15 (8) |
O11vi—Cs1—As1ii | 116.08 (4) | O8—As2—Cs1vii | 146.97 (7) |
O12—Cs1—As1ii | 130.88 (4) | Cs1x—As2—Cs1vii | 103.191 (16) |
O9vii—Cs1—As1ii | 69.65 (3) | Cs1iii—As2—Cs1vii | 116.209 (15) |
O11viii—Cs1—As1ii | 71.36 (3) | Cs1—As2—Cs1vii | 97.20 (2) |
O8—Cs1—As1ii | 123.41 (3) | O9—As3—O10 | 116.43 (9) |
O7vii—Cs1—As1ii | 77.50 (3) | O9—As3—O12 | 107.64 (10) |
O12vi—Cs1—As1ii | 137.57 (3) | O10—As3—O12 | 110.13 (9) |
O7—Cs1—As1ii | 104.25 (3) | O9—As3—O11 | 112.01 (9) |
O3ii—Cs1—As1ii | 23.02 (2) | O10—As3—O11 | 104.28 (9) |
O10i—Cs1—As1ii | 50.06 (2) | O12—As3—O11 | 105.88 (12) |
O6i—Cs1—As3vi | 64.95 (4) | O9—As3—Cs1vi | 140.88 (6) |
O2ii—Cs1—As3vi | 122.08 (3) | O10—As3—Cs1vi | 101.00 (6) |
O3iii—Cs1—As3vi | 138.36 (4) | O12—As3—Cs1vi | 66.54 (9) |
O4—Cs1—As3vi | 79.54 (3) | O11—As3—Cs1vi | 43.34 (8) |
O5iv—Cs1—As3vi | 71.42 (3) | O9—As3—Cs1xi | 85.37 (6) |
O1v—Cs1—As3vi | 75.01 (3) | O10—As3—Cs1xi | 88.31 (6) |
O11vi—Cs1—As3vi | 20.45 (4) | O12—As3—Cs1xi | 147.95 (8) |
O12—Cs1—As3vi | 76.10 (5) | O11—As3—Cs1xi | 42.67 (9) |
O9vii—Cs1—As3vi | 166.23 (3) | Cs1vi—As3—Cs1xi | 84.74 (3) |
O11viii—Cs1—As3vi | 77.68 (4) | O9—As3—Cs1 | 89.67 (6) |
O8—Cs1—As3vi | 109.89 (3) | O10—As3—Cs1 | 104.40 (6) |
O7vii—Cs1—As3vi | 123.95 (4) | O12—As3—Cs1 | 25.37 (8) |
O12vi—Cs1—As3vi | 22.88 (3) | O11—As3—Cs1 | 130.41 (9) |
O7—Cs1—As3vi | 128.41 (3) | Cs1vi—As3—Cs1 | 91.81 (3) |
O3ii—Cs1—As3vi | 135.12 (3) | Cs1xi—As3—Cs1 | 167.258 (8) |
O10i—Cs1—As3vi | 87.72 (2) | O9—As3—Cs1vii | 34.48 (6) |
As1ii—Cs1—As3vi | 124.056 (16) | O10—As3—Cs1vii | 82.04 (6) |
O6i—Cs1—As1v | 60.99 (4) | O12—As3—Cs1vii | 121.00 (9) |
O2ii—Cs1—As1v | 66.46 (3) | O11—As3—Cs1vii | 127.34 (8) |
O3iii—Cs1—As1v | 116.05 (4) | Cs1vi—As3—Cs1vii | 170.584 (8) |
O4—Cs1—As1v | 108.35 (4) | Cs1xi—As3—Cs1vii | 86.46 (3) |
O5iv—Cs1—As1v | 131.91 (3) | Cs1—As3—Cs1vii | 96.08 (3) |
O1v—Cs1—As1v | 17.20 (3) | As1—O1—Cs1v | 125.63 (8) |
O11vi—Cs1—As1v | 55.56 (4) | As1—O1—Cs1 | 77.18 (6) |
O12—Cs1—As1v | 117.41 (4) | Cs1v—O1—Cs1 | 99.42 (4) |
O9vii—Cs1—As1v | 133.25 (3) | As1—O1—Cs1iv | 74.03 (6) |
O11viii—Cs1—As1v | 52.95 (3) | Cs1v—O1—Cs1iv | 142.21 (4) |
O8—Cs1—As1v | 158.75 (3) | Cs1—O1—Cs1iv | 117.40 (4) |
O7vii—Cs1—As1v | 114.39 (3) | As1—O2—Cs1ix | 120.56 (9) |
O12vi—Cs1—As1v | 77.99 (3) | As1—O2—Cs1v | 78.93 (6) |
O7—Cs1—As1v | 160.62 (3) | Cs1ix—O2—Cs1v | 157.86 (5) |
O3ii—Cs1—As1v | 77.62 (3) | As1—O2—H2 | 111 (3) |
O10i—Cs1—As1v | 46.39 (3) | Cs1ix—O2—H2 | 99 (3) |
As1ii—Cs1—As1v | 63.620 (14) | Cs1v—O2—H2 | 81 (3) |
As3vi—Cs1—As1v | 60.497 (15) | As1—O3—Cs1iv | 140.95 (9) |
O6i—Cs1—O2v | 41.82 (4) | As1—O3—Cs1ix | 86.03 (7) |
O2ii—Cs1—O2v | 72.98 (2) | Cs1iv—O3—Cs1ix | 131.45 (5) |
O3iii—Cs1—O2v | 137.48 (4) | As1—O3—H3 | 110 (3) |
O4—Cs1—O2v | 117.24 (4) | Cs1iv—O3—H3 | 84 (3) |
O5iv—Cs1—O2v | 117.36 (4) | Cs1ix—O3—H3 | 90 (3) |
O1v—Cs1—O2v | 38.27 (4) | As1—O4—Cs1 | 136.90 (8) |
O11vi—Cs1—O2v | 53.08 (4) | As1—O4—Cs1ix | 61.45 (5) |
O12—Cs1—O2v | 95.87 (4) | Cs1—O4—Cs1ix | 145.93 (5) |
O9vii—Cs1—O2v | 142.89 (3) | As1—O4—H4 | 107 (2) |
O11viii—Cs1—O2v | 72.01 (4) | Cs1—O4—H4 | 109 (2) |
O8—Cs1—O2v | 159.03 (4) | Cs1ix—O4—H4 | 45 (2) |
O7vii—Cs1—O2v | 103.84 (4) | As2—O5—Cs1iii | 141.07 (8) |
O12vi—Cs1—O2v | 61.15 (4) | As2—O5—Cs1x | 65.44 (6) |
O7—Cs1—O2v | 146.83 (4) | Cs1iii—O5—Cs1x | 106.13 (4) |
O3ii—Cs1—O2v | 95.30 (4) | As2—O6—Cs1x | 145.08 (8) |
O10i—Cs1—O2v | 41.49 (3) | As2—O6—H6 | 112 (3) |
As1ii—Cs1—O2v | 77.02 (3) | Cs1x—O6—H6 | 102 (3) |
As3vi—Cs1—O2v | 49.19 (2) | As2—O7—Cs1vii | 125.00 (10) |
As1v—Cs1—O2v | 21.54 (2) | As2—O7—Cs1 | 101.06 (9) |
O6i—Cs1—H8 | 127.7 (6) | Cs1vii—O7—Cs1 | 133.62 (5) |
O2ii—Cs1—H8 | 137.8 (6) | As2—O7—H7 | 108 (3) |
O3iii—Cs1—H8 | 67.3 (6) | Cs1vii—O7—H7 | 103 (3) |
O4—Cs1—H8 | 48.7 (6) | Cs1—O7—H7 | 63 (3) |
O5iv—Cs1—H8 | 31.8 (6) | As2—O8—Cs1 | 110.08 (9) |
O1v—Cs1—H8 | 153.0 (6) | As2—O8—Cs1iii | 74.96 (6) |
O11vi—Cs1—H8 | 99.6 (6) | Cs1—O8—Cs1iii | 142.44 (5) |
O12—Cs1—H8 | 67.3 (6) | As2—O8—H8 | 110 (3) |
O9vii—Cs1—H8 | 67.9 (6) | Cs1—O8—H8 | 57 (3) |
O11viii—Cs1—H8 | 110.2 (6) | Cs1iii—O8—H8 | 159 (3) |
O8—Cs1—H8 | 11.4 (6) | As3—O9—Cs1vii | 130.90 (8) |
O7vii—Cs1—H8 | 89.8 (6) | As3—O9—Cs1xi | 75.31 (6) |
O12vi—Cs1—H8 | 87.5 (6) | Cs1vii—O9—Cs1xi | 99.91 (4) |
O7—Cs1—H8 | 44.8 (6) | As3—O10—Cs1x | 168.61 (9) |
O3ii—Cs1—H8 | 114.7 (6) | As3—O10—Cs1vi | 59.93 (5) |
O10i—Cs1—H8 | 156.5 (6) | Cs1x—O10—Cs1vi | 111.15 (3) |
As1ii—Cs1—H8 | 134.8 (6) | As3—O10—Cs1vii | 78.77 (6) |
As3vi—Cs1—H8 | 99.2 (6) | Cs1x—O10—Cs1vii | 110.89 (3) |
As1v—Cs1—H8 | 154.2 (6) | Cs1vi—O10—Cs1vii | 137.79 (4) |
O2v—Cs1—H8 | 148.0 (6) | As3—O10—Cs1xi | 72.57 (6) |
O6i—Cs1—H12 | 72.2 (7) | Cs1x—O10—Cs1xi | 113.62 (3) |
O2ii—Cs1—H12 | 123.9 (7) | Cs1vi—O10—Cs1xi | 76.59 (3) |
O3iii—Cs1—H12 | 118.9 (6) | Cs1vii—O10—Cs1xi | 83.52 (4) |
O4—Cs1—H12 | 91.9 (7) | As3—O11—Cs1vi | 116.21 (11) |
O5iv—Cs1—H12 | 32.8 (7) | As3—O11—Cs1xi | 119.34 (11) |
O1v—Cs1—H12 | 141.8 (6) | Cs1vi—O11—Cs1xi | 121.90 (6) |
O11vi—Cs1—H12 | 91.0 (6) | As3—O11—H11 | 115 (3) |
O12—Cs1—H12 | 13.3 (7) | Cs1vi—O11—H11 | 102 (3) |
O9vii—Cs1—H12 | 93.7 (6) | Cs1xi—O11—H11 | 68 (3) |
O11viii—Cs1—H12 | 145.1 (6) | As3—O12—Cs1 | 142.50 (11) |
O8—Cs1—H12 | 63.9 (6) | As3—O12—Cs1vi | 90.58 (9) |
O7vii—Cs1—H12 | 66.1 (6) | Cs1—O12—Cs1vi | 126.73 (6) |
O12vi—Cs1—H12 | 51.9 (6) | As3—O12—H12 | 110 (3) |
O7—Cs1—H12 | 55.3 (6) | Cs1—O12—H12 | 68 (3) |
O3ii—Cs1—H12 | 149.4 (6) | Cs1vi—O12—H12 | 95 (3) |
O10i—Cs1—H12 | 105.9 (7) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) x, −y+1/2, z−1/2; (iv) x, −y+1/2, z+1/2; (v) −x, −y+1, −z+1; (vi) −x+1, −y+1, −z+1; (vii) −x+1, −y+1, −z; (viii) x−1, y, z; (ix) −x, y−1/2, −z+1/2; (x) −x+1, y−1/2, −z+1/2; (xi) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O10viii | 0.83 (4) | 1.70 (4) | 2.524 (2) | 171 (4) |
O3—H3···O9x | 0.79 (4) | 1.76 (4) | 2.553 (3) | 172 (4) |
O4—H4···O1iii | 0.92 (3) | 1.70 (3) | 2.609 (2) | 170 (3) |
O6—H6···O10 | 0.91 (2) | 1.64 (2) | 2.539 (2) | 170 (4) |
O7—H7···O9vii | 0.81 (4) | 1.79 (4) | 2.599 (3) | 177 (4) |
O11—H11···O1vi | 0.79 (4) | 1.85 (4) | 2.630 (3) | 168 (4) |
O8—H8···O5iv | 0.82 (4) | 1.85 (4) | 2.664 (2) | 170 (4) |
O12—H12···O5iv | 0.81 (4) | 1.84 (4) | 2.643 (3) | 171 (4) |
Symmetry codes: (iii) x, −y+1/2, z−1/2; (iv) x, −y+1/2, z+1/2; (vi) −x+1, −y+1, −z+1; (vii) −x+1, −y+1, −z; (viii) x−1, y, z; (x) −x+1, y−1/2, −z+1/2. |
Li2(H2PO4)2 | F(000) = 416 |
Mr = 207.85 | Dx = 2.123 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 5.400 (1) Å | Cell parameters from 2948 reflections |
b = 15.927 (3) Å | θ = 2.6–34.9° |
c = 7.562 (2) Å | µ = 0.67 mm−1 |
β = 90.47 (3)° | T = 293 K |
V = 650.4 (2) Å3 | Crude blocky, colourless |
Z = 4 | 0.15 × 0.12 × 0.10 mm |
Nonius KappaCCD single-crystal four-circle diffractometer | 2490 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.014 |
φ and ω scans | θmax = 34.9°, θmin = 2.6° |
Absorption correction: multi-scan (SCALEPACK; Otwinowski et al., 2003) | h = −8→8 |
Tmin = 0.906, Tmax = 0.936 | k = −25→25 |
5625 measured reflections | l = −12→12 |
2857 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | All H-atom parameters refined |
wR(F2) = 0.072 | w = 1/[σ2(Fo2) + (0.0358P)2 + 0.2847P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
2857 reflections | Δρmax = 0.44 e Å−3 |
126 parameters | Δρmin = −0.38 e Å−3 |
0 restraints | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.032 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Li1 | 0.3095 (4) | 0.41644 (13) | 0.8697 (3) | 0.0180 (3) | |
Li2 | 0.2049 (4) | 0.17789 (12) | 0.3787 (3) | 0.0188 (4) | |
P1 | 0.20738 (5) | 0.22094 (2) | 0.78828 (3) | 0.01221 (6) | |
P2 | 0.82490 (4) | 0.50113 (2) | 0.75280 (3) | 0.01103 (6) | |
O1 | 0.31754 (15) | 0.18533 (5) | 0.62305 (11) | 0.02001 (15) | |
O2 | 0.35275 (14) | 0.28897 (5) | 0.88008 (11) | 0.01756 (14) | |
O3 | 0.16657 (18) | 0.15302 (6) | 0.93356 (12) | 0.02388 (18) | |
O4 | −0.06014 (14) | 0.25573 (6) | 0.73730 (11) | 0.01953 (15) | |
O5 | 0.64679 (14) | 0.43820 (5) | 0.82463 (11) | 0.01765 (14) | |
O6 | 1.07946 (14) | 0.46742 (5) | 0.71115 (10) | 0.01685 (14) | |
O7 | 0.71704 (16) | 0.54689 (6) | 0.58619 (11) | 0.02046 (16) | |
O8 | 0.84346 (15) | 0.57281 (5) | 0.89622 (10) | 0.01729 (14) | |
H1 | 0.057 (4) | 0.1225 (14) | 0.916 (3) | 0.055 (7)* | |
H2 | −0.089 (4) | 0.2448 (15) | 0.630 (3) | 0.056 (6)* | |
H3 | 0.782 (5) | 0.5391 (16) | 0.503 (3) | 0.064 (8)* | |
H4 | 0.950 (4) | 0.6050 (14) | 0.874 (3) | 0.052 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Li1 | 0.0137 (8) | 0.0215 (9) | 0.0189 (8) | 0.0019 (7) | 0.0014 (6) | 0.0024 (7) |
Li2 | 0.0161 (8) | 0.0181 (8) | 0.0222 (9) | −0.0015 (6) | 0.0007 (7) | −0.0005 (7) |
P1 | 0.01114 (11) | 0.01204 (11) | 0.01341 (11) | 0.00015 (7) | −0.00151 (8) | −0.00139 (8) |
P2 | 0.01011 (11) | 0.01230 (11) | 0.01071 (11) | 0.00059 (7) | 0.00120 (7) | 0.00032 (7) |
O1 | 0.0202 (4) | 0.0236 (4) | 0.0162 (3) | 0.0080 (3) | −0.0008 (3) | −0.0041 (3) |
O2 | 0.0152 (3) | 0.0149 (3) | 0.0225 (4) | −0.0028 (2) | −0.0017 (3) | −0.0042 (3) |
O3 | 0.0271 (4) | 0.0227 (4) | 0.0217 (4) | −0.0094 (3) | −0.0068 (3) | 0.0077 (3) |
O4 | 0.0137 (3) | 0.0284 (4) | 0.0164 (3) | 0.0063 (3) | −0.0032 (2) | −0.0035 (3) |
O5 | 0.0141 (3) | 0.0152 (3) | 0.0237 (4) | −0.0032 (2) | 0.0036 (3) | 0.0019 (3) |
O6 | 0.0124 (3) | 0.0245 (4) | 0.0137 (3) | 0.0057 (3) | 0.0018 (2) | 0.0025 (3) |
O7 | 0.0208 (4) | 0.0280 (4) | 0.0126 (3) | 0.0118 (3) | 0.0016 (3) | 0.0033 (3) |
O8 | 0.0207 (4) | 0.0166 (3) | 0.0147 (3) | −0.0055 (3) | 0.0046 (3) | −0.0041 (2) |
Li1—O5 | 1.888 (2) | P1—O2 | 1.5043 (8) |
Li1—O6i | 1.902 (2) | P1—O3 | 1.5588 (9) |
Li1—O8ii | 1.967 (2) | P1—O4 | 1.5917 (8) |
Li1—O2 | 2.045 (2) | P2—O5 | 1.4944 (8) |
Li1—Li2iii | 2.611 (3) | P2—O6 | 1.5113 (8) |
Li1—P2i | 3.068 (2) | P2—O7 | 1.5640 (9) |
Li2—O5iv | 1.919 (2) | P2—O8 | 1.5774 (8) |
Li2—O1 | 1.944 (2) | O3—H1 | 0.77 (2) |
Li2—O4v | 1.973 (2) | O4—H2 | 0.84 (2) |
Li2—O2iv | 1.974 (2) | O7—H3 | 0.73 (2) |
Li2—P2iv | 3.077 (2) | O8—H4 | 0.79 (2) |
P1—O1 | 1.4996 (9) | ||
O5—Li1—O6i | 115.73 (11) | O2—P1—O4 | 109.28 (5) |
O5—Li1—O8ii | 124.03 (11) | O3—P1—O4 | 106.20 (5) |
O6i—Li1—O8ii | 104.66 (10) | O5—P2—O6 | 115.26 (5) |
O5—Li1—O2 | 94.55 (9) | O5—P2—O7 | 111.65 (5) |
O6i—Li1—O2 | 121.45 (11) | O6—P2—O7 | 109.33 (5) |
O8ii—Li1—O2 | 95.77 (9) | O5—P2—O8 | 105.84 (5) |
O5—Li1—Li2iii | 47.19 (7) | O6—P2—O8 | 110.34 (5) |
O6i—Li1—Li2iii | 142.36 (11) | O7—P2—O8 | 103.75 (5) |
O8ii—Li1—Li2iii | 112.09 (10) | O5—P2—Li1vi | 98.65 (5) |
O2—Li1—Li2iii | 48.30 (6) | O6—P2—Li1vi | 29.39 (5) |
O5—Li1—P2i | 133.57 (9) | O7—P2—Li1vi | 138.44 (5) |
O6i—Li1—P2i | 22.95 (4) | O8—P2—Li1vi | 94.06 (5) |
O8ii—Li1—P2i | 81.81 (7) | O5—P2—Li2iii | 29.33 (5) |
O2—Li1—P2i | 122.98 (9) | O6—P2—Li2iii | 85.96 (5) |
Li2iii—Li1—P2i | 162.91 (9) | O7—P2—Li2iii | 127.10 (6) |
O5iv—Li2—O1 | 108.09 (10) | O8—P2—Li2iii | 118.06 (5) |
O5iv—Li2—O4v | 120.38 (11) | Li1vi—P2—Li2iii | 71.62 (5) |
O1—Li2—O4v | 106.56 (10) | P1—O1—Li2 | 133.78 (8) |
O5iv—Li2—O2iv | 95.90 (9) | P1—O2—Li2iii | 133.57 (8) |
O1—Li2—O2iv | 105.81 (10) | P1—O2—Li1 | 129.67 (8) |
O4v—Li2—O2iv | 118.91 (11) | Li2iii—O2—Li1 | 81.02 (8) |
O5iv—Li2—Li1iv | 46.19 (7) | P1—O3—H1 | 115.4 (17) |
O1—Li2—Li1iv | 108.00 (10) | P1—O4—Li2vii | 129.92 (8) |
O4v—Li2—Li1iv | 145.44 (11) | P1—O4—H2 | 108.9 (16) |
O2iv—Li2—Li1iv | 50.68 (7) | Li2vii—O4—H2 | 121.0 (16) |
O5iv—Li2—P2iv | 22.43 (4) | P2—O5—Li1 | 144.45 (8) |
O1—Li2—P2iv | 106.59 (8) | P2—O5—Li2iii | 128.24 (8) |
O4v—Li2—P2iv | 101.01 (8) | Li1—O5—Li2iii | 86.62 (9) |
O2iv—Li2—P2iv | 117.05 (8) | P2—O6—Li1vi | 127.66 (8) |
Li1iv—Li2—P2iv | 68.47 (6) | P2—O7—H3 | 116 (2) |
O1—P1—O2 | 116.61 (5) | P2—O8—Li1ii | 131.07 (8) |
O1—P1—O3 | 112.58 (5) | P2—O8—H4 | 111.6 (17) |
O2—P1—O3 | 104.53 (5) | Li1ii—O8—H4 | 116.4 (17) |
O1—P1—O4 | 107.18 (5) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+2; (iii) x+1/2, −y+1/2, z+1/2; (iv) x−1/2, −y+1/2, z−1/2; (v) x+1/2, −y+1/2, z−1/2; (vi) x+1, y, z; (vii) x−1/2, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1···O7viii | 0.77 (2) | 1.91 (2) | 2.6769 (12) | 171 (2) |
O4—H2···O2iv | 0.84 (2) | 1.99 (2) | 2.8292 (14) | 176 (2) |
O7—H3···O6ix | 0.73 (2) | 1.79 (2) | 2.5210 (13) | 172 (3) |
O8—H4···O1x | 0.79 (2) | 1.79 (2) | 2.5667 (12) | 167 (2) |
Symmetry codes: (iv) x−1/2, −y+1/2, z−1/2; (viii) −x+1/2, y−1/2, −z+3/2; (ix) −x+2, −y+1, −z+1; (x) −x+3/2, y+1/2, −z+3/2. |
(NH4)(H2AsO4)(H3AsO4) | Dx = 2.602 Mg m−3 |
Mr = 300.92 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 793 reflections |
a = 7.943 (2) Å | θ = 3.3–28.7° |
b = 9.855 (2) Å | µ = 8.71 mm−1 |
c = 19.623 (4) Å | T = 293 K |
V = 1536.1 (6) Å3 | Rounded prisms, colourless |
Z = 8 | 0.15 × 0.10 × 0.07 mm |
F(000) = 1168 |
Nonius KappaCCD single-crystal four-circle diffractometer | 905 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.038 |
φ and ω scans | θmax = 28.7°, θmin = 3.3° |
Absorption correction: multi-scan (SCALEPACK; Otwinowski et al., 2003) | h = −10→10 |
Tmin = 0.355, Tmax = 0.581 | k = −13→12 |
1799 measured reflections | l = −25→26 |
1295 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Only H-atom coordinates refined |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0508P)2 + 1.4516P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
1295 reflections | Δρmax = 0.74 e Å−3 |
136 parameters | Δρmin = −0.61 e Å−3 |
9 restraints | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0011 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N | 0.2990 (9) | 0.5958 (9) | −0.1213 (4) | 0.0333 (17) | |
As1 | 0.19665 (8) | 0.31360 (8) | 0.03568 (4) | 0.0228 (2) | |
As2 | 0.26446 (8) | 0.39549 (9) | −0.27893 (4) | 0.0254 (3) | |
O1 | 0.2714 (6) | 0.1598 (5) | 0.0226 (3) | 0.0266 (13) | |
O2 | 0.0736 (6) | 0.3271 (5) | 0.1038 (3) | 0.0296 (13) | |
O3 | 0.0971 (6) | 0.3697 (6) | −0.0359 (3) | 0.0302 (13) | |
O4 | 0.3684 (6) | 0.4183 (6) | 0.0407 (3) | 0.0305 (14) | |
O5 | 0.2149 (6) | 0.3602 (6) | −0.2002 (3) | 0.0287 (13) | |
O6 | 0.3472 (7) | 0.5542 (6) | −0.2792 (3) | 0.0351 (14) | |
O7 | 0.0911 (6) | 0.3961 (6) | −0.3291 (3) | 0.0344 (14) | |
O8 | 0.4036 (6) | 0.2901 (6) | −0.3172 (3) | 0.0364 (16) | |
H1 | 0.410 (3) | 0.585 (11) | −0.121 (6) | 0.08 (4)* | |
H2 | 0.264 (10) | 0.522 (6) | −0.145 (4) | 0.040* | |
H3 | 0.251 (11) | 0.619 (11) | −0.082 (3) | 0.06 (3)* | |
H4 | 0.260 (19) | 0.667 (11) | −0.146 (7) | 0.18 (9)* | |
H5 | 0.013 (13) | 0.430 (12) | −0.039 (8) | 0.16 (7)* | |
H7 | 0.37 (2) | 0.57 (2) | −0.324 (2) | 0.22 (9)* | |
H6 | 0.332 (8) | 0.502 (4) | 0.032 (4) | 0.03 (2)* | |
H8 | 0.057 (10) | 0.324 (6) | −0.352 (4) | 0.05 (3)* | |
H9 | 0.494 (9) | 0.333 (12) | −0.300 (6) | 0.10 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N | 0.035 (4) | 0.039 (5) | 0.026 (4) | −0.001 (3) | 0.002 (3) | −0.009 (4) |
As1 | 0.0201 (4) | 0.0169 (4) | 0.0313 (5) | 0.0005 (3) | 0.0001 (3) | −0.0001 (4) |
As2 | 0.0228 (4) | 0.0240 (5) | 0.0292 (5) | −0.0018 (3) | 0.0014 (3) | −0.0014 (4) |
O1 | 0.025 (3) | 0.017 (3) | 0.038 (4) | −0.0009 (19) | 0.006 (2) | −0.006 (3) |
O2 | 0.027 (2) | 0.025 (3) | 0.036 (4) | 0.005 (2) | 0.003 (2) | −0.004 (3) |
O3 | 0.025 (3) | 0.032 (3) | 0.033 (3) | 0.003 (2) | −0.003 (2) | 0.006 (3) |
O4 | 0.022 (2) | 0.018 (3) | 0.051 (4) | −0.001 (2) | −0.003 (2) | 0.002 (3) |
O5 | 0.026 (3) | 0.030 (3) | 0.030 (3) | −0.003 (2) | 0.004 (2) | 0.002 (3) |
O6 | 0.041 (3) | 0.025 (3) | 0.039 (4) | 0.000 (2) | −0.003 (2) | −0.002 (3) |
O7 | 0.024 (3) | 0.039 (4) | 0.040 (4) | 0.000 (2) | −0.010 (2) | −0.003 (3) |
O8 | 0.022 (3) | 0.031 (3) | 0.056 (5) | 0.001 (2) | 0.007 (2) | −0.012 (3) |
N—O5 | 2.869 (10) | N—H3 | 0.89 (2) |
N—O1i | 2.947 (9) | N—H4 | 0.90 (2) |
N—O5i | 3.032 (11) | As1—O1 | 1.648 (5) |
N—O2ii | 3.075 (9) | As1—O2 | 1.662 (6) |
N—O4iii | 3.082 (9) | As1—O3 | 1.705 (6) |
N—O6 | 3.148 (10) | As1—O4 | 1.714 (5) |
N—O7iv | 3.194 (10) | As2—O5 | 1.632 (6) |
N—O3 | 3.216 (10) | As2—O8 | 1.692 (5) |
N—O8v | 3.272 (9) | As2—O7 | 1.693 (5) |
N—O3i | 3.283 (10) | As2—O6 | 1.696 (6) |
N—O4 | 3.671 (11) | As2—H9 | 1.97 (10) |
N—As2 | 3.679 (8) | O3—H5 | 0.89 (2) |
N—As1i | 3.755 (8) | O4—H6 | 0.89 (2) |
N—O6vi | 4.106 (10) | O6—H7 | 0.90 (2) |
N—As1 | 4.229 (9) | O7—H8 | 0.89 (2) |
N—H1 | 0.89 (2) | O8—H9 | 0.89 (2) |
N—H2 | 0.91 (2) | ||
O5—N—O1i | 130.2 (3) | O2—As1—O3 | 111.4 (3) |
O5—N—O5i | 114.3 (3) | O1—As1—O4 | 106.0 (2) |
O1i—N—O5i | 107.3 (3) | O2—As1—O4 | 111.9 (3) |
O5—N—O2ii | 92.1 (2) | O3—As1—O4 | 102.8 (3) |
O1i—N—O2ii | 70.0 (2) | O1—As1—Nvii | 48.9 (2) |
O5i—N—O2ii | 79.0 (2) | O2—As1—Nvii | 135.4 (2) |
O5—N—O4iii | 116.1 (3) | O3—As1—Nvii | 60.9 (2) |
O1i—N—O4iii | 71.4 (2) | O4—As1—Nvii | 112.6 (2) |
O5i—N—O4iii | 109.4 (3) | O1—As1—N | 114.9 (2) |
O2ii—N—O4iii | 141.2 (3) | O2—As1—N | 130.3 (2) |
O5—N—O6 | 52.6 (2) | O3—As1—N | 43.6 (2) |
O1i—N—O6 | 173.6 (4) | O4—As1—N | 59.5 (2) |
O5i—N—O6 | 67.3 (2) | Nvii—As1—N | 77.08 (15) |
O2ii—N—O6 | 105.0 (3) | O1—As1—Nii | 124.9 (2) |
O4iii—N—O6 | 113.3 (3) | O2—As1—Nii | 31.2 (2) |
O5—N—O7iv | 60.4 (2) | O3—As1—Nii | 80.4 (2) |
O1i—N—O7iv | 124.2 (3) | O4—As1—Nii | 124.9 (2) |
O5i—N—O7iv | 113.6 (3) | Nvii—As1—Nii | 116.13 (17) |
O2ii—N—O7iv | 152.3 (3) | N—As1—Nii | 108.59 (12) |
O4iii—N—O7iv | 60.4 (2) | O1—As1—Niii | 85.3 (2) |
O6—N—O7iv | 62.1 (2) | O2—As1—Niii | 102.1 (2) |
O5—N—O3 | 66.7 (2) | O3—As1—Niii | 131.8 (2) |
O1i—N—O3 | 63.5 (2) | O4—As1—Niii | 30.4 (2) |
O5i—N—O3 | 147.5 (3) | Nvii—As1—Niii | 114.68 (18) |
O2ii—N—O3 | 68.5 (2) | N—As1—Niii | 88.28 (16) |
O4iii—N—O3 | 97.4 (3) | Nii—As1—Niii | 128.79 (19) |
O6—N—O3 | 118.9 (3) | O1—As1—Nviii | 64.6 (2) |
O7iv—N—O3 | 95.4 (3) | O2—As1—Nviii | 57.6 (2) |
O5—N—O8v | 116.3 (3) | O3—As1—Nviii | 103.2 (2) |
O1i—N—O8v | 111.4 (3) | O4—As1—Nviii | 154.0 (2) |
O5i—N—O8v | 48.33 (18) | Nvii—As1—Nviii | 80.41 (16) |
O2ii—N—O8v | 126.3 (3) | N—As1—Nviii | 146.26 (12) |
O4iii—N—O8v | 66.2 (2) | Nii—As1—Nviii | 60.37 (8) |
O6—N—O8v | 68.0 (2) | Niii—As1—Nviii | 124.17 (18) |
O7iv—N—O8v | 74.0 (2) | O5—As2—O8 | 116.5 (3) |
O3—N—O8v | 163.3 (3) | O5—As2—O7 | 110.8 (3) |
O5—N—O3i | 177.9 (3) | O8—As2—O7 | 106.0 (3) |
O1i—N—O3i | 51.9 (2) | O5—As2—O6 | 107.0 (3) |
O5i—N—O3i | 64.1 (2) | O8—As2—O6 | 108.2 (3) |
O2ii—N—O3i | 89.0 (2) | O7—As2—O6 | 108.1 (3) |
O4iii—N—O3i | 63.9 (2) | O5—As2—N | 48.4 (2) |
O6—N—O3i | 125.4 (3) | O8—As2—N | 130.8 (2) |
O7iv—N—O3i | 118.7 (3) | O7—As2—N | 123.2 (2) |
O3—N—O3i | 115.4 (3) | O6—As2—N | 58.6 (3) |
O8v—N—O3i | 61.7 (2) | O5—As2—Nvii | 31.3 (2) |
O5—N—O4 | 96.7 (3) | O8—As2—Nvii | 88.5 (2) |
O1i—N—O4 | 45.61 (18) | O7—As2—Nvii | 108.9 (2) |
O5i—N—O4 | 149.0 (3) | O6—As2—Nvii | 132.8 (3) |
O2ii—N—O4 | 99.5 (2) | N—As2—Nvii | 76.88 (15) |
O4iii—N—O4 | 53.5 (2) | O5—As2—Nvi | 107.4 (2) |
O6—N—O4 | 140.5 (3) | O8—As2—Nvi | 126.6 (2) |
O7iv—N—O4 | 82.0 (2) | O7—As2—Nvi | 26.1 (2) |
O3—N—O4 | 45.05 (17) | O6—As2—Nvi | 85.1 (2) |
O8v—N—O4 | 119.3 (2) | N—As2—Nvi | 100.7 (2) |
O3i—N—O4 | 84.9 (2) | Nvii—As2—Nvi | 120.20 (9) |
O5—N—As2 | 25.19 (13) | O5—As2—Nix | 114.5 (2) |
O1i—N—As2 | 155.0 (3) | O8—As2—Nix | 4.0 (2) |
O5i—N—As2 | 91.7 (2) | O7—As2—Nix | 110.0 (2) |
O2ii—N—As2 | 98.9 (2) | O6—As2—Nix | 106.1 (2) |
O4iii—N—As2 | 118.1 (3) | N—As2—Nix | 126.83 (8) |
O6—N—As2 | 27.38 (13) | Nvii—As2—Nix | 87.52 (18) |
O7iv—N—As2 | 57.81 (17) | Nvi—As2—Nix | 130.26 (19) |
O3—N—As2 | 91.7 (2) | O5—As2—Niv | 130.53 (19) |
O8v—N—As2 | 93.3 (2) | O8—As2—Niv | 61.4 (2) |
O3i—N—As2 | 152.7 (3) | O7—As2—Niv | 117.1 (2) |
O4—N—As2 | 118.9 (3) | O6—As2—Niv | 46.9 (2) |
O5—N—As1i | 155.1 (3) | N—As2—Niv | 93.05 (19) |
O1i—N—As1i | 24.94 (13) | Nvii—As2—Niv | 129.92 (9) |
O5i—N—As1i | 85.9 (2) | Nvi—As2—Niv | 109.85 (16) |
O2ii—N—As1i | 77.1 (2) | Nix—As2—Niv | 59.62 (5) |
O4iii—N—As1i | 66.22 (19) | O5—As2—Nx | 91.4 (2) |
O6—N—As1i | 151.7 (3) | O8—As2—Nx | 92.4 (2) |
O7iv—N—As1i | 126.5 (3) | O7—As2—Nx | 33.3 (2) |
O3—N—As1i | 88.5 (2) | O6—As2—Nx | 141.2 (2) |
O8v—N—As1i | 87.8 (2) | N—As2—Nx | 128.63 (8) |
O3i—N—As1i | 26.98 (12) | Nvii—As2—Nx | 78.44 (17) |
O4—N—As1i | 63.92 (16) | Nvi—As2—Nx | 56.57 (5) |
As2—N—As1i | 175.6 (2) | Nix—As2—Nx | 96.01 (15) |
O5—N—O6vi | 57.27 (18) | Niv—As2—Nx | 136.46 (17) |
O1i—N—O6vi | 108.1 (2) | O5—As2—H9 | 111 (4) |
O5i—N—O6vi | 79.1 (2) | O8—As2—H9 | 26.9 (19) |
O2ii—N—O6vi | 40.23 (16) | O7—As2—H9 | 129 (3) |
O4iii—N—O6vi | 171.4 (3) | O6—As2—H9 | 86 (3) |
O6—N—O6vi | 68.00 (18) | N—As2—H9 | 106 (2) |
O7iv—N—O6vi | 115.4 (3) | Nvii—As2—H9 | 93 (4) |
O3—N—O6vi | 75.10 (19) | Nvi—As2—H9 | 142 (4) |
O8v—N—O6vi | 120.9 (3) | Nix—As2—H9 | 23.3 (19) |
O3i—N—O6vi | 123.0 (3) | Niv—As2—H9 | 43 (4) |
O4—N—O6vi | 119.7 (2) | Nx—As2—H9 | 119.3 (19) |
As2—N—O6vi | 58.77 (14) | As1—O1—Nvii | 106.1 (3) |
As1i—N—O6vi | 117.1 (2) | As1—O1—Niii | 73.8 (2) |
O5—N—As1 | 79.4 (2) | Nvii—O1—Niii | 131.0 (2) |
O1i—N—As1 | 53.58 (17) | As1—O1—Nviii | 97.7 (2) |
O5i—N—As1 | 158.4 (3) | Nvii—O1—Nviii | 97.1 (2) |
O2ii—N—As1 | 84.0 (2) | Niii—O1—Nviii | 131.9 (2) |
O4iii—N—As1 | 76.2 (2) | As1—O1—N | 48.2 (2) |
O6—N—As1 | 130.9 (3) | Nvii—O1—N | 70.2 (2) |
O7iv—N—As1 | 87.5 (2) | Niii—O1—N | 76.27 (17) |
O3—N—As1 | 21.42 (11) | Nviii—O1—N | 132.56 (18) |
O8v—N—As1 | 142.4 (3) | As1—O2—Nii | 132.5 (3) |
O3i—N—As1 | 102.5 (2) | As1—O2—Nviii | 105.1 (2) |
O4—N—As1 | 23.73 (9) | Nii—O2—Nviii | 76.41 (15) |
As2—N—As1 | 104.2 (2) | As1—O2—Niii | 59.12 (17) |
As1i—N—As1 | 77.29 (15) | Nii—O2—Niii | 154.8 (3) |
O6vi—N—As1 | 96.48 (18) | Nviii—O2—Niii | 125.74 (19) |
O5—N—H1 | 98 (7) | As1—O2—Nvii | 31.33 (17) |
O1i—N—H1 | 102 (7) | Nii—O2—Nvii | 113.6 (2) |
O5i—N—H1 | 98 (7) | Nviii—O2—Nvii | 76.03 (17) |
O2ii—N—H1 | 170 (7) | Niii—O2—Nvii | 85.99 (16) |
O4iii—N—H1 | 31 (7) | As1—O3—N | 115.0 (3) |
O6—N—H1 | 82 (7) | As1—O3—Nvii | 92.1 (3) |
O7iv—N—H1 | 37 (7) | N—O3—Nvii | 100.3 (2) |
O3—N—H1 | 114 (8) | As1—O3—Nii | 77.3 (2) |
O8v—N—H1 | 50 (7) | N—O3—Nii | 131.7 (2) |
O3i—N—H1 | 81 (7) | Nvii—O3—Nii | 126.8 (2) |
O4—N—H1 | 78 (8) | As1—O3—H5 | 128 (10) |
As2—N—H1 | 91 (7) | N—O3—H5 | 83 (10) |
As1i—N—H1 | 93 (7) | Nvii—O3—H5 | 135 (10) |
O6vi—N—H1 | 149 (7) | Nii—O3—H5 | 57 (10) |
As1—N—H1 | 96 (8) | As1—O4—Niii | 133.2 (3) |
O5—N—H2 | 4 (5) | As1—O4—N | 96.7 (3) |
O1i—N—H2 | 128 (6) | Niii—O4—N | 126.5 (2) |
O5i—N—H2 | 114 (6) | As1—O4—Nvii | 47.7 (2) |
O2ii—N—H2 | 88 (5) | Niii—O4—Nvii | 124.1 (2) |
O4iii—N—H2 | 119 (6) | N—O4—Nvii | 72.12 (17) |
O6—N—H2 | 55 (6) | As1—O4—H6 | 107 (5) |
O7iv—N—H2 | 65 (5) | Niii—O4—H6 | 115 (5) |
O3—N—H2 | 64 (6) | N—O4—H6 | 49 (6) |
O8v—N—H2 | 120 (5) | Nvii—O4—H6 | 114 (6) |
O3i—N—H2 | 177 (5) | As2—O5—N | 106.4 (3) |
O4—N—H2 | 97 (6) | As2—O5—Nvii | 132.5 (3) |
As2—N—H2 | 27 (6) | N—O5—Nvii | 115.4 (3) |
As1i—N—H2 | 152 (5) | As2—O6—N | 94.0 (3) |
O6vi—N—H2 | 54 (5) | As2—O6—Niv | 115.6 (3) |
As1—N—H2 | 78 (6) | N—O6—Niv | 124.1 (3) |
H1—N—H2 | 102 (8) | As2—O6—Nvi | 74.2 (2) |
O5—N—H3 | 125 (7) | N—O6—Nvi | 106.2 (3) |
O1i—N—H3 | 15 (6) | Niv—O6—Nvi | 126.3 (2) |
O5i—N—H3 | 102 (8) | As2—O6—H7 | 102 (10) |
O2ii—N—H3 | 55 (6) | N—O6—H7 | 164 (10) |
O4iii—N—H3 | 86 (6) | Niv—O6—H7 | 50 (10) |
O6—N—H3 | 160 (7) | Nvi—O6—H7 | 76 (10) |
O7iv—N—H3 | 137 (7) | As2—O7—Nvi | 140.4 (3) |
O3—N—H3 | 61 (7) | As2—O7—Nx | 134.4 (3) |
O8v—N—H3 | 119 (7) | Nvi—O7—Nx | 80.52 (12) |
O3i—N—H3 | 57 (7) | As2—O7—N | 39.73 (19) |
O4—N—H3 | 56 (7) | Nvi—O7—N | 104.8 (3) |
As2—N—H3 | 146 (7) | Nx—O7—N | 134.77 (17) |
As1i—N—H3 | 31 (7) | As2—O7—Nvii | 52.8 (2) |
O6vi—N—H3 | 94 (6) | Nvi—O7—Nvii | 136.37 (19) |
As1—N—H3 | 57 (8) | Nx—O7—Nvii | 84.68 (19) |
H1—N—H3 | 117 (9) | N—O7—Nvii | 60.22 (12) |
H2—N—H3 | 122 (9) | As2—O7—H8 | 123 (6) |
O5—N—H4 | 105 (10) | Nvi—O7—H8 | 97 (6) |
O1i—N—H4 | 106 (10) | Nx—O7—H8 | 29 (5) |
O5i—N—H4 | 18 (10) | N—O7—H8 | 150 (6) |
O2ii—N—H4 | 62 (10) | Nvii—O7—H8 | 90 (6) |
O4iii—N—H4 | 127 (10) | As2—O8—Nix | 173.9 (3) |
O6—N—H4 | 68 (10) | As2—O8—Niv | 99.4 (2) |
O7iv—N—H4 | 124 (10) | Nix—O8—Niv | 77.87 (12) |
O3—N—H4 | 130 (10) | As2—O8—Nvii | 69.8 (2) |
O8v—N—H4 | 66 (10) | Nix—O8—Nvii | 108.5 (3) |
O3i—N—H4 | 74 (10) | Niv—O8—Nvii | 138.29 (17) |
O4—N—H4 | 152 (10) | As2—O8—N | 34.20 (18) |
As2—N—H4 | 87 (10) | Nix—O8—N | 139.75 (18) |
As1i—N—H4 | 90 (10) | Niv—O8—N | 85.3 (2) |
O6vi—N—H4 | 62 (10) | Nvii—O8—N | 62.91 (12) |
As1—N—H4 | 146 (10) | As2—O8—H9 | 94 (8) |
H1—N—H4 | 116 (10) | Nix—O8—H9 | 80 (8) |
H2—N—H4 | 104 (10) | Niv—O8—H9 | 39 (9) |
H3—N—H4 | 96 (10) | Nvii—O8—H9 | 100 (9) |
O1—As1—O2 | 114.3 (3) | N—O8—H9 | 64 (8) |
O1—As1—O3 | 109.7 (3) |
Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) −x, −y+1, −z; (iii) −x+1, −y+1, −z; (iv) x+1/2, y, −z−1/2; (v) −x+1, y+1/2, −z−1/2; (vi) x−1/2, y, −z−1/2; (vii) −x+1/2, y−1/2, z; (viii) x−1/2, −y+1/2, −z; (ix) −x+1, y−1/2, −z−1/2; (x) −x, y−1/2, −z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N—H1···O4iii | 0.89 (2) | 2.36 (8) | 3.082 (9) | 138 (10) |
N—H1···O7iv | 0.89 (2) | 2.54 (9) | 3.194 (10) | 130 (9) |
N—H4···O5i | 0.90 (2) | 2.20 (7) | 3.032 (11) | 154 (14) |
N—H3···O1i | 0.89 (2) | 2.10 (4) | 2.947 (9) | 159 (9) |
N—H2···O5 | 0.91 (2) | 1.96 (2) | 2.869 (10) | 174 (7) |
O3—H5···O1viii | 0.89 (2) | 2.13 (15) | 2.616 (7) | 113 (12) |
O3—H5···O3ii | 0.89 (2) | 2.61 (11) | 3.311 (12) | 136 (13) |
O6—H7···O2xi | 0.90 (2) | 1.82 (10) | 2.653 (9) | 152 (19) |
O4—H6···O1i | 0.89 (2) | 1.77 (3) | 2.650 (8) | 170 (7) |
O7—H8···O2xii | 0.89 (2) | 1.72 (4) | 2.568 (8) | 157 (8) |
O8—H9···O5iv | 0.89 (2) | 1.78 (6) | 2.590 (7) | 150 (11) |
Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) −x, −y+1, −z; (iii) −x+1, −y+1, −z; (iv) x+1/2, y, −z−1/2; (viii) x−1/2, −y+1/2, −z; (xi) −x+1/2, −y+1, z−1/2; (xii) x, −y+1/2, z−1/2. |
Bond lengths | Analysed number | Average | Min. | Max. |
As—O/OH in HnAsO4 (average) | 97 | 1.687 (6) | 1.660 | 1.709 |
As—O/OH in HnAsO4 (individual) | 388 | 1.687 (27) | 1.614 | 1.801 |
As—OH in HnAsO4 (incl. split H positions) | 199 | 1.701 (23) | 1.625 | 1.801 |
As—OH in HnAsO4 (no split H) | 117 | 1.714 (21) | 1.625 | 1.801 |
As—OH in HAsO4 | 43 | 1.728 (19) | 1.689 | 1.801 |
As—OH in H2AsO4 | 41 | 1.714 (12) | 1.688 | 1.749 |
As—OH in H3AsO4 | 33 | 1.694 (16) | 1.625 | 1.712 |
As—OH/2 (split H) in H1-2AsO4 | 82 | 1.683 (13) | 1.656 | 1.714 |
As—O (no H) in HnAsO4 | 189 | 1.671 (23) | 1.614 | 1.755 |
As—O (no H/As*) in HnAsO4 | 174 | 1.667 (18) | 1.614 | 1.735 |
Note: (*) no As—O—As bonds (see text). |
Acknowledgements
Funding for this research was provided by: Austrian Academy of Sciences (award No. Doc fForte Fellowship to KS).
References
Amri, M., Zouari, N., Mhiri, T. & Gravereau, P. (2009). J. Alloys Compd. 477, 68–75. CrossRef ICSD CAS Google Scholar
Amri, M., Zouari, N., Mhiri, T., Pechev, S., Gravereau, P. & Von Der Muhll, R. (2007). J. Phys. Chem. Solids, 68, 1281–1292. CrossRef ICSD CAS Google Scholar
Belhaj Salah, M., Nouiri, N., Jaouadi, K., Mhiri, T. & Zouari, N. (2018). J. Mol. Struct. 1151, 286–300. CrossRef CAS Google Scholar
Boubia, M., Averbuch-Pouchot, M. T. & Durif, A. (1985). Acta Cryst. C41, 1562–1564. CrossRef ICSD CAS IUCr Journals Google Scholar
Brandenburg, K. (2005). DIAMOND. Version 3.2k. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. & Shannon, R. D. (1973). Acta Cryst. A29, 266–282. CrossRef CAS IUCr Journals Web of Science Google Scholar
Catti, M. & Ivaldi, G. (1978). Z. Kristallogr. 146, 215–226. CAS Google Scholar
Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017a). J. Alloys Compd. 705, 602–609. CrossRef ICSD CAS Google Scholar
Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017b). Solid State Ionics, 301, 78–85. CrossRef ICSD CAS Google Scholar
Dekhili, R., Kauffmann, T. H., Aroui, H. & Fontana, M. D. (2018). Solid State Commun. 279, 22–26. CrossRef CAS Google Scholar
Dekola, T., Ribeiro, J. L. & Kloepperpieper, A. (2011). Physica B, 406, 3267–3273. CrossRef CAS Google Scholar
Dhouib, I., Feki, H., Guionneau, P., Mhiri, T. & Elaoud, Z. (2014a). Spectrochim. Acta A Mol. Biomol. Spectrosc. 131, 274–281. CrossRef CAS PubMed Google Scholar
Dhouib, I., Guionneau, P. & Elaoud, Z. (2017). J. Coord. Chem. 70, 3585–3597. CSD CrossRef CAS Google Scholar
Dhouib, I., Guionneau, P., Mhiri, T. & Elaoud, Z. (2014b). Eur. J. Chem. 5, 388–393. CrossRef Google Scholar
Emmerling, F., Idilbi, M. & Röhr, C. (2002). Z. Naturforsch. Teil B, 57, 599–604. CrossRef CAS Google Scholar
Fanchon, E., Vicat, J., Tran Qui, D. & Boudjada, A. (1987). Acta Cryst. C43, 1022–1025. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Ferrari, A., Nardelli, M. & Cingi, M. (1956). Gazz. Chim. Ital. 86, 1174–1180. CAS Google Scholar
Ferraris, G. & Franchini-Angela, M. (1973). Acta Cryst. B29, 286–292. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
Ferraris, G. & Ivaldi, G. (1984). Acta Cryst. B40, 1–6. CrossRef CAS Web of Science IUCr Journals Google Scholar
FIZ (2018). Inorganic Crystal Structure Database. Version 4.1.0 (build 20181019-1414), Data Release 2018.2. Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany. https://www2.fiz-karlsruhe.de/icsd_home.html. Google Scholar
Fukami, T. (1989). J. Phys. Soc. Jpn, 58, 3429–3430. CrossRef ICSD CAS Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578. Web of Science CrossRef IUCr Journals Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625. Web of Science CrossRef IUCr Journals Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2018a). Acta Cryst. B74, 63–78. CrossRef IUCr Journals Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2018b). Acta Cryst. B74, 79–96. CrossRef IUCr Journals Google Scholar
García-Rodríguez, L., Rute-Pérez, Á., Piñero, J. R. & González-Silgo, C. (2000). Acta Cryst. B56, 565–569. Web of Science CrossRef IUCr Journals Google Scholar
Hseu, T. H. & Lu, T. H. (1977). Acta Cryst. B33, 3947–3949. CrossRef ICSD CAS IUCr Journals Google Scholar
Hwan Oh, I., Lee, K.-S., Meven, M., Heger, G. & Eui Lee, C. (2010). J. Phys. Soc. Jpn, 79, 074606. CrossRef ICSD Google Scholar
Ichikawa, M. (1988). J. Mol. Struct. 177, 441–448. CrossRef Google Scholar
Khan, A. A. & Baur, W. H. (1972). Acta Cryst. B28, 683–693. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
Kumaresan, P., Moorthy Babu, S. & Anbarasan, P. M. (2008). J. Cryst. Growth, 310, 1999–2004. CrossRef CAS Google Scholar
Lee, K.-S., Ko, J.-H., Moon, J., Lee, S. & Jeon, M. (2008). Solid State Commun. 145, 487–492. CrossRef CAS Google Scholar
Majzlan, J., Drahota, P. & Filippi, M. (2014). Rev. Mineral. Geochem. 79, 17–184. Web of Science CrossRef Google Scholar
Naili, H. & Mhiri, T. (2001). J. Alloys Compd. 315, 143–149. CAS Google Scholar
Naili, H., Mhiri, T. & Jaud, J. (2001). J. Solid State Chem. 161, 9–16. CAS Google Scholar
Nonius (2003). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ratajczak, H., Barycki, J., Pietraszko, A., Baran, J., Debrus, S., May, M. & Venturini, J. (2000). J. Mol. Struct. 526, 269–278. Web of Science CSD CrossRef CAS Google Scholar
Remy, F. & Bachet, B. (1967). Bull. Soc. Chim. Fr. 38, 1699–1701. Google Scholar
Schwendtner, K. (2006). J. Alloys Compd. 421, 57–63. Web of Science CrossRef ICSD CAS Google Scholar
Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria. Google Scholar
Schwendtner, K. & Kolitsch, U. (2004a). Acta Cryst. C60, i79–i83. Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2004b). Acta Cryst. C60, i84–i88. Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90–i93. Web of Science CrossRef CAS IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205–215. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17–i20. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399–409. Web of Science CrossRef ICSD CAS Google Scholar
Schwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600–608. Web of Science CSD CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1580–1586. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2018). Acta Cryst. C74, 721–727. CrossRef ICSD IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stöger, B. & Weil, M. (2014). Acta Cryst. C70, 7–11. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Sure, S. & Guse, W. (1989). Neues Jb Miner. Mh, 1989, 401–409. Google Scholar
Tran Qui, D. & Chiadmi, M. (1986). Acta Cryst. C42, 391–393. CrossRef ICSD IUCr Journals Google Scholar
Volkov, V. L., Denisova, T. A. & Shtin, A. P. (1995). Inorg. Mater. (Transl. of Neorg. Mater.), 31, 359–362. CAS Google Scholar
Volkov, V. L., Shtin, A. P., Denisova, T. A. & Inozemtsev, M. V. (1997). Inorg. Mater. (Transl. of Neorg. Mater.), 33, 496–499. CAS Google Scholar
Voronov, A. P., Babenko, G. N., Puzikov, V. M. & Iurchenko, A. N. (2013). J. Cryst. Growth, 374, 49–52. CrossRef CAS Google Scholar
Weil, M. (2012). Acta Cryst. E68, i82. CrossRef ICSD IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.