research papers
Synthesis, crystal structures, antiproliferative activities and reverse
of eight novel derived from benzilaSchool of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, People's Republic of China, bKey Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, People's Republic of China, and cCollege of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: tanxuejie@163.com
Eight novel BDH) or benzil monohydrazone (BMH) and four fused-ring carbonyl compounds (3-formylindole, FI; 3-acetylindole, AI; 3-formyl-1-methylindole, MFI; 1-formylnaphthalene, FN) were synthesized and characterized by elemental analysis, ESI–QTOF–MS, 1H and 13C NMR spectroscopy, as well as single-crystal X-ray diffraction. They are (1Z,2Z)-1,2-bis{(E)-[(1H-indol-3-yl)methylidene]hydrazinylidene}-1,2-diphenylethane (BDHFI), C32H24N6, (1Z,2Z)-1,2-bis{(E)-[1-(1H-indol-3-yl)ethylidene]hydrazinylidene}-1,2-diphenylethane (BDHAI), C34H28N6, (1Z,2Z)-1,2-bis{(E)-[(1-methyl-1H-indol-3-yl)methylidene]hydrazinylidene}-1,2-diphenylethane (BMHMFI) acetonitrile hemisolvate, C34H28N6·0.5CH3CN, (1Z,2Z)-1,2-bis{(E)-[(naphthalen-1-yl)methylidene]hydrazinylidene}-1,2-diphenylethane (BDHFN), C36H26N4, (Z)-2-{(E)-[(1H-indol-3-yl)methylidene]hydrazinylidene}-1,2-diphenylethanone (BMHFI), C23H17N3O, (Z)-2-{(E)-[1-(1H-indol-3-yl)ethylidene]hydrazinylidene}-1,2-diphenylethanone (BMHAI), C24H19N3O, (Z)-2-{(E)-[(1-methyl-1H-indol-3-yl)methylidene]hydrazinylidene}-1,2-diphenylethanone (BMHMFI), C24H19N3O, and (Z)-2-{(E)-[(naphthalen-1-yl)methylidene]hydrazinylidene}-1,2-diphenylethanone (BMHFN) C25H18N2O. Moreover, the in vitro cytotoxicity of the eight title compounds was evaluated against two tumour cell lines (A549 human lung cancer and 4T1 mouse breast cancer) and two normal cell lines (MRC-5 normal lung cells and NIH 3T3 fibroblasts) by MTT assay. The results indicate that four (BDHMFI, BDHFN, BMHMFI and BMHFN) are inactive and the other four (BDHFI, BDHAI, BMHFI and BMHAI) show severe toxicities against human A549 and mouse 4T1 cells, similar to the standard cisplatin. All the compounds exhibited weaker cytotoxicity against normal cells than cancer cells. The Swiss Target Prediction web server was applied for the prediction of protein targets. After analyzing the differences in frequency hits between these active and inactive 18 probable targets were selected for reverse docking with the Surflex-dock function in SYBYL-X 2.0 software. Three target proteins, i.e. human ether-á-go-go-related (hERG) potassium channel, the inhibitor of apoptosis protein 3 and serine/threonine-protein kinase PIM1, were chosen as the targets. Finally, the ligand-based structure–activity relationships were analyzed based on the putative protein target (hERG) docking results, which will be used to design and synthesize novel hERG ion channel inhibitors.
derived from benzil dihydrazone (1. Introduction
et al., 2018; Pramanik et al., 2018), easy preparation (Erxleben, 2018; Ganguly et al., 2014), exceptional chelating ability (Malik et al., 2018; Vardhan et al., 2015) and to their broad spectrum of biological and pharmaceutical activities, such as antimicrobial (Anush et al., 2018; Unver & Bektas, 2018; Bharathi et al., 2018; Carreño et al., 2018), anti-inflammatory (Venkatesan et al., 2018; Farag et al., 2017; Bano et al., 2017; Khayyat et al., 2015) and anticancer properties (Unver & Bektas, 2018; Santhosh Kumar et al., 2018; Kalaiarasi et al., 2018; Ariyaeifar et al., 2018). Thus, the chemistry of has always been a promising field of research.
are important compounds in chemistry and biochemistry due to their flexibility (MayansAs an organic helical molecule with a long history (De et al., 2006; Fisher & Stoufer, 1966), benzil dihydrazone (BDH) is often used to construct polydentate diazine (Tan et al., 2015), helical coordination complexes (Bai et al., 2012; Drew et al., 2007; Mukherjee et al., 2013) and, more importantly, a leading scaffold for the further design and synthesis of potential anticancer agents (Ke et al., 2013). Here we aimed to use the BDH scaffold to construct some novel especially those containing indole rings. Another set of novel based on benzil monohydrazone (BMH) were also constructed for comparison.
As a privileged structure scaffold (de Sá Alves et al., 2009; Evans et al., 1988), indole derivatives play an important role in medicinal chemistry since they frequently exhibit broad and remarkable biological activities. Substituted indole rings have revealed antibacterial (El-Sawy et al., 2010; George et al., 2008), antitumour (Pedada et al., 2016; Fortes et al., 2016; El-Sawy et al., 2012, 2013; Wu et al., 2009; Pojarová et al., 2007; Kamath et al., 2016), antifungal (Bai et al., 2018; Wang et al., 2018; Mishra et al., 2018; Yu et al., 2018), antiviral (Cihan-Üstündağ et al., 2016; Brigg et al., 2016; Zhao et al., 2006; Sellitto et al., 2010; Pu et al., 2017; Atienza et al., 2018), anti-inflammatory (Mandour et al., 2010; Lamie et al., 2016), antioxidant (Estevão et al., 2010; Suzen & Buyukbingol, 2000; Mor et al., 2004), antituberculosis (Naidu et al., 2016; Zhao, 2018; Hong et al., 2017; Akula et al., 2016), analgesic (Fantinati et al., 2017; Bertamino et al., 2018; Ali Khan et al., 2018), anticonvulsant (Saini et al., 2016; Ndagijimana et al., 2013; Ma et al., 2016; Ensch et al., 2018) and many other therapeutic and pharmacological properties. Numerous pharmaceutical molecules with the indole group have been marketed. These include indomethacin, zafirlukast, sumatriptan, indole-3-acetic acid (IAA), serotonin, delavirdine, atevirdine etc. There are also large numbers of indole-containing drugs currently going through different clinical phases (Naim et al., 2016). Moreover, the indole nucleus is commonly found in several natural products and displays an indispensable role in therapeutic chemistry (Tzvetkov et al., 2014; Gurer-Orhan et al., 2016; Kumar et al., 2016; Johansson et al., 2013; Blunt et al., 2011; Gul & Hamann, 2005; Sugiyama et al., 2009; Bao et al., 2007; Shaaban et al., 2002; Shaaban & Abdel-Aziz, 2007; Ali Khan et al., 2018; Ndagijimana et al., 2013). Although indole derivatives have been the target of synthetic exploration for many years, more anticancer compounds incorporating the indole scaffold with improved anticancer properties are desired for the systematic study of structure–activity relationships (Hassam et al., 2012; Dai et al., 2016; Singh et al., 2018).
In order to gain a deeper insight into the antitumour activity of various functionalized indoles, we have been conducting a systematic study on indole derivatives with different scaffolds, for example, novel 1 cancer cell inhibitory activities (IC50 = 20.5 and 18.5 µM, respectively) (Bu et al., 2017; Tan et al., 2019). We report here the synthesis, and antiproliferative activities of six derived from indole and BDH/BMH, as well as two comparative compounds derived from naphthalene and BDH/BMH (see Scheme 1).
derived from indole and biphenyl show lung A549 and breast 4T2. Experimental
2.1. Materials and measurements
The starting material benzil and related chemicals were purchased from Aladdin Reagent Chemicals and were used without further purification. Elemental (C, H and N) analyses were carried out with a PerkinElmer 2400 microanalyzer. Accurate mass measurements were acquired on an Agilent-6520 quadrupole time-of-flight 1H and 13C NMR spectra were recorded on a Bruker Avance 400 MHz instrument. The chemical shifts are reported in parts per million (ppm) relative to tetramethylsilane (SiMe4, δ = 0 ppm), referenced to the chemical shifts of the residual solvent peak [deuterated dimethyl sulfoxide (DMSO-d6)].
Melting points were determined on a WRS-2A electrothermal digital melting point apparatus (Shanghai Precision & Scientific Instrument Co. Ltd, China).2.2. Synthesis and crystallization
As indicated in Scheme 2, a two-step process was used to synthesize all eight title compounds. In the first step, a mixture of benzil (0.42 g or 2 mmol) and hydrazine hydrate (80%, 0.20 ml or 4 mmol) was added to dry ethanol (20 ml) and the resulting solution refluxed for 3 h. Most of the ethanol was removed by distillation and the resulting solution was cooled to room temperature. Crude benzil dihydrazone (abbreviated as BDH) was filtered off, recrystallized from ethanol and dried in a vacuum. Pure BDH was obtained as colourless needle-shaped crystals {yield 85%, 0.41 g; m.p. 151.4–152.0 °C [literature m.p. 151–152 (Bach et al., 1982), 150–151.5 (Kim & Yoon, 2004), 149 (Salavati-Niasari & Hassani-Kabutarkhani, 2005), 152 (Chandra et al., 2007), 172 (Singh et al., 2008) and 172 °C (Chauhan et al., 2008)]}. Elemental analysis found (calculated) for C14H14N4 (%): C 70.64 (70.57), H 5.97 (5.92), N 23.63 (23.51). On the other hand, if the molar ratio of benzil and hydrazine hydrate was set at 1:1, benzil monohydrazone (BMH) will be obtained in a similar yield. Pure BMH was obtained as a colourless crystal (m.p. 138.4–139.2 °C).
In the second step, all eight BDH/BMH and the required carbonyl compounds (FI, AI, MFI and FN) were stirred under reflux for 5 h in dry ethanol in a 1:2 (BDH versus carbonyl compounds) or 1:1 (BMH versus carbonyl compounds) molar ratio. After the reaction, the solvent was reduced in volume by slow evaporation and crystalline products were usually obtained. Recrystallization can purify the products. Their physical and spectroscopic properties are listed in the following sections. All NMR spectra are available in Figs. S1–S16 of the supporting information.
were readily prepared by a similar method (see Scheme 2).2.2.1. BDHFI
M.p. 274.0–275.0 °C. Elemental analysis found (calculated) for C32H24N6 (%): C 78.15 (78.03), H 4.98 (4.91), N 17.12 (17.06). HRMS (ESI): m/z calculated for C32H24N6 + H+: 493.2141 [M + H+]; found: 493.2142. 1H NMR (DMSO-d6): 11.637 (s, 2H, –NH), 8.757 (s, 2H, –N=CH), 7.878–7.825 (m, 6H, J = 7.2 Hz, Ar-H), 7.587 (d, 2H, J = 8.0 Hz, Ar-H), 7.450 (d, 6H, J = 8.0 Hz, Ar-H), 7.330 (d, 2H, J = 8.0 Hz, Ar-H), 7.076 (t, 2H, J = 8.0 Hz, Ar-H), 6.851 (t, 2H, J = 7.2 Hz, Ar-H). 13C NMR (DMSO-d6): 163.575 (CH=N), 156.485 (CH=N), 136.992 (Ar-C), 135.007 (Ar-C), 132.951 (Ar-C), 130.035 (Ar-C), 128.589 (Ar-C), 126.989 (Ar-C), 124.433 (Ar-C), 122.596 (Ar-C), 122.267 (Ar-C), 120.478 (Ar-C), 112.165 (Ar-C), 111.629 (Ar-C).
2.2.2. BDHAI
M.p. 270.2–271.7 °C. Elemental analysis found (calculated) for C34H28N6 (%): C 78.49 (78.44), H 5.47 (5.42), N 16.21 (16.14). HRMS (ESI): m/z calculated for C34H28N6 + H+: 521.2454 [M + H+]; found: 521.2456. 1H NMR (DMSO-d6): 11.473 (s, 2H, –NH), 7.877–7.754 (m, 8H, J = 6.8 Hz, Ar-H), 7.452–7.271 (m, 8H, J = 6.8 Hz, Ar-H), 7.020 (s, 2H, Ar-H), 6.713 (s, 2H, Ar-H), 2.418 (s, 6H –CH3). 13C NMR (DMSO-d6): 161.007 (CH=N), 136.915 (CH=N), 135.117 (Ar-C), 129.884 (Ar-C), 129.587 (Ar-C), 128.598 (Ar-C), 128.292 (Ar-C), 127.405 (Ar-C), 126.942 (Ar-C), 124.815 (Ar-C), 124.730 (Ar-C), 123.487 (Ar-C), 122.003 (Ar-C), 119.916 (Ar-C), 115.206 (Ar-C), 111.184 (Ar-C), 14.792 (–CH3).
2.2.3. BDHMFI
M.p. 214.6–215.3 °C. Elemental analysis found (calculated) for C34H28N6 (%): C 78.51 (78.44), H 5.46 (5.42), N 16.19 (16.14). HRMS (ESI): m/z calculated for C34H28N6 + H+: 521.2454 [M + H+]; found: 521.2454. 1H NMR (DMSO-d6): 8.731 (s, 2H, –N=CH), 7.874 (d, 4H, J = 7.2 Hz, Ar-H), 7.789 (s, 2H, Ar-H), 7.602 (d, 2H, J = 7.2 Hz, Ar-H), 7.474–7.373 (m, 8H, Ar-H), 7.151 (t, 2H, J = 7.2 Hz, Ar-H), 6.908 (t, 2H, J = 7.2 Hz, Ar-H), 3.733 (s, 6H –N—CH3). 13C NMR (DMSO-d6): 163.813 (CH=N), 155.643 (CH=N), 137.807 (Ar-C), 137.575 (Ar-C), 136.220 (Ar-C), 136.059 (Ar-C), 129.753 (Ar-C), 128.178 (Ar-C), 127.936 (Ar-C), 127.608 (Ar-C), 124.885 (Ar-C), 122.636 (Ar-C), 122.121 (Ar-C), 120.644 (Ar-C), 111.325 (Ar-C), 110.007 (Ar-C), 32.770 (–N—CH3).
2.2.4. BDHFN
M.p. 203.0–205.0 °C. Elemental analysis found (calculated) for C36H26N4 (%): C 84.08 (84.02), H 5.13 (5.09), N 10.94 (10.89). HRMS (ESI): m/z calculated for C36H26N4 + H+: 515.2236 [M + H+]; found: 515.2236. 1H NMR (DMSO-d6): 8.770 (s, 2H, –N=CH), 8.277 (t, 4H, J = 7.6 Hz, Ar-H), 7.883–7.766 (m, 6H, Ar-H), 7.585 (d, 2H, J = 8.0 Hz, Ar-H), 7.482–7.326 (m, 8H, Ar-H), 7.082 (t, 2H, J = 7.6 Hz, Ar-H), 6.857 (t, 2H, J = 7.6 Hz, Ar-H). 13C NMR (DMSO-d6): 163.655 (CH=N), 156.624 (CH=N), 139.670 (Ar-C), 137.877 (Ar-C), 136.970 (Ar-C), 134.977 (Ar-C), 133.068 (Ar-C), 130.076 (Ar-C), 128.623 (Ar-C), 126.980 (Ar-C), 124.391 (Ar-C), 122.620 (Ar-C), 122.270 (Ar-C), 120.504 (Ar-C), 112.123 (Ar-C), 111.655 (Ar-C).
2.2.5. BMHFI
M.p. 197–197.5 °C. Elemental analysis found (calculated) for C23H17N3O (%): C 77.59 (78.61), H 5.13 (4.88), N 12.22 (11.96). HRMS (ESI): m/z calculated for C23H17N3O + H+: 352.1450 [M + H+]; found: 352.1450. 1H NMR (DMSO-d6): 11.800 (s, 1H, –NH), 8.800 (s, 1H, –N=CH), 7.961–7.928 (m, 3H, J = 7.2 Hz, Ar-H), 7.767–7.218 (m, 10H, Ar-H), 7.087 (t, 1H, J = 7.6 Hz, Ar-H), 6.789 (t, 1H, J = 7.6 Hz, Ar-H). 13C NMR (DMSO-d6): 197.921(C=O), 163.669 (CH=N), 158.076 (CH=N), 137.065 (Ar-C), 135.223 (Ar-C), 134.228 (Ar-C), 134.056 (Ar-C), 132.698 (Ar-C), 131.033 (Ar-C), 130.507 (Ar-C), 129.266 (Ar-C), 129.180 (Ar-C), 128.936 (Ar-C), 128.554 (Ar-C), 128.369 (Ar-C), 127.445 (Ar-C), 126.900 (Ar-C), 124.230 (Ar-C), 122.793 (Ar-C), 121.724 (Ar-C), 120.659 (Ar-C), 111.860 (Ar-C), 111.605 (Ar-C).
2.2.6. BMHAI
M.p. 223.1–224.4 °C. Elemental analysis found (calculated) for C24H19N3O (%): C 79.24 (78.88), H 6.11 (5.24), N 12.03 (11.50). HRMS (ESI): m/z calculated for C24H19N3O + H+: 366.1606 [M + H+]; found: 366.1606. 1H NMR (DMSO-d6): 11.644 (s, 1H, –NH), 8.028–7.503 (m, 11H, J = 6.8 Hz, Ar-H), 7.318–7.266 (q, 2H, J = 8.4 Hz, Ar-H), 7.034–6.998 (t, 1H, J = 7.2 Hz, Ar-H), 6.649–6.612 (t, 1H, J = 7.2 Hz, Ar-H), 2.584 (s, 3H –CH3). 13C NMR (DMSO-d6): 198.911 (C=O), 163.948 (CH=N), 161.192 (CH=N), 136.957 (Ar-C), 134.953 (Ar-C), 134.166 (Ar-C), 133.209 (Ar-C), 131.003 (Ar-C), 130.813 (Ar-C), 129.467 (Ar-C), 129.226 (Ar-C), 129.056 (Ar-C), 128.868 (Ar-C), 126.831 (Ar-C), 124.468 (Ar-C), 122.699 (Ar-C), 122.632 (Ar-C), 122.147 (Ar-C), 121.559 (Ar-C), 121.275 (Ar-C), 120.132 (Ar-C), 114.671 (Ar-C), 111.414 (Ar-C), 14.688 (–CH3).
2.2.7. BMHMFI
M.p. 220.1–221.3 °C. Elemental analysis found (calculated) for C24H19N3O (%): C 79.25 (78.88), H 5.65 (5.24), N 11.89 (11.50). HRMS (ESI): m/z calculated for C24H19N3O + H+: 366.1606 [M + H+]; found: 366.1606. 1H NMR (DMSO-d6): 8.764 (s, 1H, –N=CH), 7.927 (d, 3H, J = 8.4 Hz, Ar-H), 7.749 (d, 2H, J = 7.6 Hz, Ar-H), 7.665–7.421 (m, 8H, Ar-H), 7.239–7.138 (m, 1H, Ar-H), 6.834 (t, 1H, J = 7.2 Hz, Ar-H), 3.799 (s, 3H –N—CH3). 13C NMR (DMSO-d6): 197.918 (C=O), 163.667 (CH=N), 157.569 (CH=N), 137.675 (Ar-C), 137.549 (Ar-C), 135.209 (Ar-C), 134.066 (Ar-C), 132.680 (Ar-C), 131.044 (Ar-C), 130.126 (Ar-C), 129.975 (Ar-C), 129.298 (Ar-C), 129.261 (Ar-C), 129.179 (Ar-C), 129.055 (Ar-C), 128.564 (Ar-C), 126.840 (Ar-C), 124.658 (Ar-C), 122.873 (Ar-C), 121.838 (Ar-C), 120.960 (Ar-C), 110.576 (Ar-C), 110.261 (Ar-C), 32.950 (–N—CH3).
2.2.8. BMHFN
M.p. 135.2–136.7 °C. Elemental analysis found (calculated) for C25H18N2O (%): C 82.18 (82.85), H 5.11 (5.01), N 7.84 (7.73). HRMS (ESI): m/z calculated for C25H18N2O + H+: 363.1497 [M + H+]; found: 363.1497. 1H NMR (DMSO-d6): 8.770 (s, 1H, –N=CH), 8.275 (t, 1H, J = 7.6 Hz, Ar-H), 8.167 (t, 3H, J = 7.6 Hz, Ar-H), 7.852 (q, 4H, J = 7.6 Hz, Ar-H), 7.589–7.320 (m, 6H, Ar-H), 7.080 (t, 2H, J = 7.2 Hz, Ar-H), 6.850 (t, 1H, J =7.6 Hz, Ar-H). 13C NMR (DMSO-d6): 196.873 (C=O), 162.531 (CH=N), 156.980 (CH=N), 139.701 (Ar-C), 137.101 (Ar-C), 136.981 (Ar-C), 135.238 (Ar-C), 134.231 (Ar-C), 134.107 (Ar-C), 132.702 (Ar-C), 131.051 (Ar-C), 130.515 (Ar-C), 129.277 (Ar-C), 129.176 (Ar-C), 128.907 (Ar-C), 128.499 (Ar-C), 128.402 (Ar-C), 127.391 (Ar-C), 126.879 (Ar-C), 124.121 (Ar-C), 122.741 (Ar-C), 121.698 (Ar-C), 120.571 (Ar-C), 111.761 (Ar-C), 109.432 (Ar-C).
2.3. Refinement
Crystal data, data collection and structure . All H atoms in the eight compounds (except for the H atoms on C35 in BDHMFI) were found in difference Fourier maps and then allowed to ride on their parent atoms. The location and isotropic displacement parameters of the H atoms on C35 in BDHMFI were refined freely.
details are summarized in Table 12.4. Cytotoxicity assays
Human lung carcinoma A549 cells, mouse breast cancer 4T1 cells, human MRC-5 lung normal cells and normal mouse NIH 3T3 fibroblasts were purchased from the Shanghai Cell Bank, Type Culture Collection Committee, Chinese Academy of Sciences. The cells were cultured in F12K medium supplemented with 10% heat-inactivated fetal bovine serum (FBS), 2 mM glutamine, 100 U ml−1 penicillin and 100 µg ml−1 streptomycin, and maintained at 310 K in a humidified atmosphere of 5% CO2.
The cells (8000 cells) were seeded on 96-well microtiter plates in F12K medium with 10% FBS and incubated overnight. The cell culture medium was replaced by different doses of the compound solution, i.e. 1, 5, 10, 30, 50, 100 and 150 µM, and then the cells were cultured for another 72 h. The MTT reagent was added to the cell supernatant for a final concentration of 0.5 mg ml−1 of MTT. After 3 h, the cell culture medium was removed. Formazan crystals in adherent cells were dissolved in dimethyl sulfoxide (DMSO, 200 µl) and the absorbance of the formazan solution was measured. Each compound was tested in triplicate and the experiments were repeated three times.
Generally, the operations from cell culture to MTT assay for cell proliferation are the same as we reported before (Cheng et al., 2016; Bu et al., 2017; Tan et al., 2019).
2.5. Molecular docking and quantum chemistry calculations
Molecular SYBYL/Surflex-dock (Tripos, 2012) in order to screen the potential targets and illustrate the binding modes between proteins and ligands. All solvent molecules except those within 5 Å around the natural ligand were removed from the protein structure. The molecular structures of the ligands were first extracted from the single-crystal X-ray structure and then optimized by employing density functional theory (DFT) at the B3LYP/6-311+G(d,p) level (Becke, 1993; Lee et al., 1988; McLean & Chandler, 1980; Krishnan et al., 1980). The default parameters were used regarding charges, bonds order and geometrical flexibility with no other constraints.
of all eight with 18 potential target proteins were performed using theExcept for the aforementioned structural optimizations, quantum chemistry calculations were also used to explore intermolecular interactions in the BMHFI crystal (see §3.1.5). Two methods, i.e. MP2/6-31G(d,p) and DFT/B3LYP/6-311G+(d,p), were used (Møller & Plesset, 1934; Rassolov et al., 2001; Frisch et al., 1984). The standard counterpoise method was applied to correct interaction energies for the basis set superposition error (BSSE) (Boys & Bernardi, 1970). All geometries are extracted from the interacting pairs in the crystal of BMHFI without any structural relaxation.
All calculations were carried out using the GAUSSIAN03 program package (Frisch et al., 2004) on a Sunway BlueLight MPP supercomputer housed at the National Supercomputer Center in Jinan, China.
3. Results and discussion
3.1. X-ray structures of the eight title compounds
The identities of the conformations of the eight title compounds have been established through X-ray structure determinations, which clearly show the similarities and differences.
3.1.1. BDHFI
The monomeric structure of BDHFI is shown in Fig. 1(a), which indicates that the molecule contains a pair of linkage arms (the connection point is the C1—C8 bond axis). The pair of linkage arms crosses each other in an X-shape; each arm has a similar conformation, i.e. the two C=N double bonds adopt the same Z,E conformations in both arms. In fact, the other three di-Schiff bases (BDHAI, BDHMFI and BDHFN) reported in this article are X-shaped molecules and the two X-shaped arms in BDHFN are exactly the same (see §3.1.4).
Both arms in BDHFI are rather flat. One arm consists of atoms C1–C7/N1/N2/C24–C31/N6/C32 and all 19 non-H atoms are essentially coplanar, with an average r.m.s. deviation of only 0.0811 Å and the largest r.m.s. deviation of −0.1435 Å occurring for atom N6. In another arm, all 19 non-H atoms are slightly less coplanar, with an average r.m.s. deviation of 0.1742 Å (the largest r.m.s. deviation of 0.3027 Å occurs for atom N5). The dihedral angle between the planes of these two arms is about 89.3°.
In the packing structure of BDHFI, three kinds of dominant noncovalent interactions (NCIs), including hydrogen bond a (Fig. 1b), C—H⋯π interaction b (Fig. 1b) and π–π packing c (Fig. 1c), can be found with the help of PLATON (Tables S1–S3 in the supporting information). The CrystalExplorer17 program (Hirshfeld, 1977; Turner et al., 2017) was used to verify the strength of these NCIs. It is worth noting that the geometries of all NCIs, including these very weak ones, calculated by PLATON are listed in the supporting information for all eight compounds reported in this article (Tables S1–S21 in the supporting information). But only those strong NCIs that can be verified by CrystalExplorer17 will be analysed. For the convenience of description, different kinds of strong NCIs are simplified into various notations (the first column in Tables S1–S21 in the supporting information). These weak intermolecular NCIs and all intramolecular NCIs are not coded because they make less contribution to the packing structure. For example, the C3—H3⋯N3(x, y − 1, z) hydrogen bond (Table S1 in the supporting information) is not coded because its role is not apparent in the Hirshfeld surface analysis (Fig. 1b). In rare cases, some `strong' interactions verified by CrystalExplorer17 have not been suggested by PLATON, for example, N3—H25⋯N2(x + , −y + , −z + ) and C24—H24A⋯O1(x + 1, y, z) in Fig. 6(b) (see §3.1.6), and C11—H11⋯N1(x, −y − , z − ) in Fig. 7(b) (see §3.1.7). Their roles will not be analysed.
Hydrogen bonds a and b link BDHFI molecules into one-dimensional (1D) chains parallel to the b and a axes, respectively (Fig. 1d), while π–π interaction c links two molecules into a dimer. These chains and dimers serve as the main building blocks for the three-dimensional (3D) structures with the aid of other kinds of NCIs, such as van der Waals.
It should be mentioned that all the molecules in BDHFI adopt two relative orientations, which are highlighted with red and green colours, respectively (Fig. 1d). If these two relatively small arene rings in one molecule are omitted, the X-shaped molecule can be regarded as a V-shaped one. These V-shaped molecules open towards entirely opposite directions: the red ones are directed toward the positive half of the c axis, while the green ones are directed toward the negative half (both roughly). Interestingly, the molecules in the other three di-Schiff bases have two similar orientations, so there also exist red and green highlighted molecules in Figs. 2, 3 and 4. While molecules in the four mono-Schiff bases (BMHFI, BMHAI, BMHMFI and BMHFN) have four or eight orientations, mostly because of the two apparently asymmetrical arms (see §3.1.5 to §3.1.8).
3.1.2. BDHAI
Similar to BDHFI, BDHAI is an X-shaped molecule with both arms being somewhat flat. But the coplanarity is worse than in BDHFI. In one arm, consisting of atoms C1–C7/N1/N2/C24–C31/N6/C32/C34, the average r.m.s. deviation is 0.3698 Å and the largest r.m.s. deviation of 0.8308 Å occurs for atom C7. In another arm, all 20 non-H atoms have an average r.m.s. deviation of 0.2542 Å and the largest r.m.s. deviation of 0.4662 Å occurs for atom N5. The dihedral angle between the planes of the two arms is about 98.0° (Fig. 2a).
In the packing structure of BDHAI, the most important four NCIs link molecules into dimers independently (Tables S4–S6 in the supporting information). Hydrogen bonds a link two molecules into a dimer (Figs. 2b and 2d), while b, c and d link two molecules into another dimer (Figs. 2b, 2c and 2d), whether they are used separately or collectively. But a, b, c and d will crosslink molecules into infinite 1D chains if working together (Fig. 2d).
3.1.3. BDHMFI
The monomeric structure of BDHMFI is depicted in Fig. 3(a), which contains one complete BDHMFI molecule and a half acetonitrile molecule in the The half acetonitrile molecule lies on an inversion centre (atom C35, which resides on a centre of inversion at the origin) and was refined disordered into two parts with the site-occupancy factors being fixed at 0.5. The inversion operator will create two BDHMFI molecules and one complete acetonitrile molecule, which are linked together by hydrogen bonds a (Fig. 3b). By the way, a only occurs between BDHMFI and acetonitrile (Figs. 3b and 3d).
These two arms of X-shaped BDHMFI have a similar coplanarity to that in BDHFI. In one arm, consisting of atoms C1–C7/N1/N2/C24–C31/N6/C32/C34, the average r.m.s. deviation is 0.1063 Å and the largest r.m.s. deviation of 0.1870 Å occurs for atom C6. In another arm, all 20 non-H atoms have an average r.m.s. deviation of 0.1964 Å and the largest r.m.s. deviation of 0.4540 Å occurs for atom C33. The dihedral angle between the planes of these two arms is about 90.6°.
Either hydrogen bond a or π–π interaction b links two adjacent BDHMFI molecules into dimers, but they are not the same dimer (Figs. 3b and 3c). If a and b collaborate together, 1D chains extending along the crystallographic [24, 1, ] direction will be formed (Fig. 3d).
3.1.4. BDHFN
The molecular structure of BDHFN is shown in Fig. 4(a), which is the result of a glide reflection along the crystallographic c axis. That is to say, the contains only one half BDHMFI molecule, which happened to be one arm of the X-shaped structure. The dihedral angle between the planes of the naphthalene and arene rings is 22.6 (3)° and the dihedral angle between the two symmetry-related arms is 85.1 (4)°.
The only kind of hydrogen bond is intramolecular interactions in the packing structure of BDHFN (Table S10 in the supporting information). Besides van der Waals, only one kind of intermolecular π–π interaction a plays an important role (Table S11 in the supporting information), which accounts for merely 6.1% of the Hirshfeld surface (Fig. 4b). That is to say, it is van der Waals interactions that play a critical role in the crystal molecular assembly. As for π–π interactions a (Fig. 4c), they help to link BDHFN molecules into 1D lines parallel to the crystallographic c axis (Fig. 4d).
3.1.5. BMHFI
The molecular structure of BMHFI is shown in Fig. 5(a), which indicates that the molecule still contains a pair of linkage arms, but one arm is shorter than the other because one C=O group has not been converted into a Schiff base. The longer arm has a similar conformation to that in its corresponding di-Schiff base BDHFI, i.e. these two C=N double bonds adopt the same Z,E conformations. In fact, all eight reported in this paper adopt similar Z,E conformations.
As a whole, both arms in BMHFI are flat. The long arm has an average r.m.s. deviation of 0.2242 Å and the largest r.m.s. deviation of −0.3858 Å occurs for N3. The short arm has much better coplanarity, with an average r.m.s. deviation of only 0.0160 Å (the largest r.m.s. deviation of −0.0647 Å occurs for O1). The dihedral angle between the two arms is about 93.8°.
In the packing structure of BMHFI, two kinds of intermolecular hydrogen bonds (a and b) (Table S12 in the supporting information) link molecules into 1D chains parallel to the crystallographic a axis, whether they are used separately or collectively. Unlike its corresponding di-Schiff base BDHFI, BMHFI adopts four relative orientations, which are highlighted in red, green, purple and blue (Figs. 5c and 5d). It should be noted that the colour intensity of the vivid spot representing hydrogen bond a is very high, indicating a strong hydrogen bond. Thus, the intermolecular interaction energy with the BSSE correction has been calculated using the MP2/6-31G(d,p) and B3LYP/6-311G+(d,p) methods on the basis of dimer geometries extracted from the The calculated interaction energies for a and b are −50.97 and −19.92 kJ mol−1 (MP2), and −19.71 and −4.25 kJ mol−1 (DFT), respectively, indicating a much stronger favourable binding energy for a than that for b, which agrees with the colour intensity in the dnorm map (Fig. 5b).
3.1.6. BMHAI
The `long arm' in BMHAI assumes less coplanarity than that in BMHFI, and even less than that in BDHAI, which can be deduced from the dihedral angles between the indole and arene rings (Fig. 6a). In BMHFI, the value is 20.4 (4)°, while in BDHAI, the dihedral angles are 23.6 (4) and 39.9 (5)°, but in BMHAI, this value is increased to 54.5 (3)°.
There are eight kinds of molecular orientations and one kind of intermolecular hydrogen bond, i.e. a, in the of BMHAI (Figs. 6b and 6c) (Tables S15–S17 in the supporting information). Hydrogen bonds a link molecules into two kinds of 1D chains, one is parallel to the crystallographic a axis (these molecules are simplified into green, blue, yellow and indigo skeletons in Fig. 6c) and the other is parallel to the b axis (these molecules are simplified into orange, red, purple and violet skeletons in Fig. 6c).
3.1.7. BMHMFI
Both the `long arm' and the `short arm' in BMHMFI have good coplanarity. The dihedral angle between the planes of the indole and arene rings in the `long arm' is only 14.0 (2)°. The long arm has an average r.m.s. deviation of 0.1492 Å and the largest r.m.s. deviation is 0.3816 Å for atom C24; the short arm has an average r.m.s. deviation of only 0.0324 Å and the largest r.m.s. deviation is 0.1135 Å for atom O1. These two arms are roughly perpendicular to each other, with a dihedral angle of 91.1 (3)° (Fig. 7a).
The most intense red spots represent a C23—H23⋯ring(C17–C22)(−x + 1, y + , −z + ) interaction, coded as a (Fig. 7b) (Table S18 in the supporting information), which links molecules into a 1D chain parallel to the b axis (Fig. 7d). The second intense spot represents a C11—H11⋯N1(x, −y − , z − ) hydrogen bond (Fig. 7b), which was not suggested by PLATON. Thus, its role in the packing structure will not be analysed in this article. Two kinds of intermolecular π–π interactions (b and c) always co-exist (Fig. 7c) (Table S19 in the supporting information), and they link two adjacent molecules into a dimer (Fig. 7d). The collaboration of a, b and c links molecules into a 2D layer structure (Fig. 7d).
3.1.8. BMHFN
The dihedral angle between the planes of the naphthalene and benzene rings in the `long arm' is 24.2 (5)°. The dihedral angle between the long and short arms is about 81.4 (5)° (Fig. 8a).
There are four kinds of molecular orientations and four kinds of intermolecular NCIs (a, b, c and d) in the of BMHFN (Figs. 8b, 8c and 8d) (Tables S20 and S21 in the supporting information). Hydrogen bond a links molecules into 1D chains parallel to the crystallographic b axis (Figs. 8b and 8d). Among these three types of π–π stacking interactions, b and d always co-exist and link molecules into 1D chains parallel to the crystallographic c axis (Figs. 8c and 8d), c joins two molecules (red and green, and blue and yellow; Fig. 8d) into dimers. The co-operation of all three types of π–π stacking interactions (b, c and d) links molecules into a 2D layer structure extending along the crystallographic (100) plane (Fig. 8d). In fact, all four kinds of intermolecular NCIs crosslink molecules into the same infinite 2D layer structure.
3.2. Cytotoxicity assays – inhibition of lung and breast cancer cell growth
To study the growth inhibitory effects of these eight 1 cells with the compounds and examined the growth of cells with an MTT assay. Meanwhile, MRC-5 normal lung cells and NIH 3T3 fibroblasts were also tested using the same method in order to evaluate the selective cytotoxicity of these new compounds. All experiments were carried out with cisplatin (a compound used as a chemotherapy drug to treat many types of cancers) for comparison. The cytotoxic activities as 50% (IC50) values are shown in Table 2.
on lung/breast cancer cells, we treated human A549 and mouse 4T
|
As we can see, both BDHFI and BDHAI have similar cytotoxic activities to the standard cisplatin for both cancer cell lines. All mono-Schiff bases show slightly weaker inhibitory activity of A549 and 4T1 compared with their corresponding di-Schiff bases. Incorporating a CH3 group at the N—H position in the indole ring proved detrimental for anticancer activity (BDHMFI and BMHMFI), while substitution on the imine C atom has little effect (BDHAI and BMHAI). This might be due to the availability of enough space to accommodate a methyl group at this particular site of the inhibitor binding pocket, or the N—H group favours combination with the hydrogen-bonding pocket. In one word, for BDHFI, BDHAI, BMHFI and BMHAI, the normal indole rings should contribute greatly to their cytotoxicities. When indole rings are changed into 1-methylindole or naphthalene, the cytotoxicity is greatly decreased.
As for the selective cytotoxicity between normal and malignant cells, MTT assays reveal a similar pattern to what were seen in our previous work (Tan et al., 2019). That is to say, all possess selective cytotoxicity on cancer cells over normal cells. But they have relevant inhibitory concentrations. The higher the IC50 value for selected malignant cells, the higher the value for responding normal cells. Among them, BDHFI, BDHAI, BMHFI and BMHAI displayed high potency and selectivity in all cell lines.
These experimental studies clearly predict cytotoxic activities of indole-containing
Such encouraging preliminary results confirm the feasibility and reliability of this excellent framework in the discovery of potent antitumour agents.3.3. Reverse for target fishing
In order to find a few most possible molecular targets for these http://www.swisstargetprediction.ch/) (Daina et al., 2019; Gfeller et al., 2013) was used for the initial selection of potential targets. For each of these eight 100 most potential targets were selected for further evaluation. Then cross screenings were carried out among these eight sets of potential targets based on the following method. Firstly, eight sets of targets were divided into two groups according to the antiproliferative activities of the Four sets of potential targets related to BDHFI, BDHAI, BMHFI and BMHAI belong to group 1, and another four sets of potential targets related to BDHMFI, BDHFN, BMHMFI and BMHFN are group 2. Considering that all the in group 1 have a similar skeleton and have much higher activities than those in group 2, the targets in group 1 are probably the same, while the ligands in group 2 should not hit these targets. Technically, the most probable targets should be hit four times in group 1 and should not be hit in group 2. In our work, the targets that were hit four or three times in group 1 were selected (total of 32 targets) on account of random error in the prediction model. But if one target was also hit more than twice (including twice) in group 2, it should be removed (14 targets were removed). In the end, 18 targets remained for further screening through the reverse docking method.
Swiss Target Prediction web server (As mentioned above, the initially assessed Rounds comprised a total of 18 targets. Only two of these targets do not have detailed 3D structural information, i.e. Neurokinin 2 receptor and Serotonin 6 (5-HT6) receptor. Thus, homology models built using the SWISS-MODEL server (https://swissmodel.expasy.org/) (Waterhouse et al., 2018; Bienert et al., 2017) and optimized by SYBYL-X (Tripos, 2012) were used. The structure of Neurokinin 2 receptor was modelled on the bovine rhodopsin (PDB ID: 1f88) as a template (Chandrashekaran et al., 2009), while the structure of the 5-HT6 receptor was modelled using the β2 adrenergic receptor template (PDB ID: 4lde) (Łażewska et al., 2017) (Figs. S17 and S18 in the supporting information). Though the obtained models exhibit only limited accuracy, it has been demonstrated that the modelled receptor pocket conformations can be validated or improved via docking of known ligands. For the Neurokinin 2 receptor, ligand 6-methylbenzo[b]thiophene-2-carboxylic acid (1-{(S)-1-benzyl-4-[4-(tetrahydropyran-4-ylmethyl)piperazin-1-yl]butylcarbamoyl}cyclopentyl)amide (abbreviated as 10i in the original article) was used as the well-known antagonist with high affinity (Fattori et al., 2010). As for the 5-HT6 receptor, AVN-492, a new promising ligand (now tested in phase I trials) was selected (Ivachtchenko et al., 2017; Łażewska et al., 2019).
Eventually, all eight SYBYL-X (Tripos, 2012) by calculating the Total Score of Surflex-dock (Table 3) (Rarey et al., 1996). The docking results were then compared with MTT results to gain insight into the most possible molecular targets. Spearman's rank ρ (Fieller et al., 1957) was introduced to assess the strength of each target's monotonic relationship (Table 3). The closer ρ is to 1, the stronger the monotonic relationship. As we can see, ρ values of three targets [i.e. human ether-á-go-go-related (hERG) potassium channel, inhibitor of apoptosis protein 3 and serine/threonine-protein kinase PIM1] are above 0.80, their correlations can be described as `very strong' (bold in Table 3). Thus, they can be regarded as the most possible targets.
were docked into these 18 possible targets with the program
|
3.4. Comparison of binding modes between active and less active ligands
Among the three most possible targets, hERG (PDB ID 3o0u) has the highest Spearman's rank values and is ranked as the best, so the comparison of binding modes is performed based on the docking results of eight with hERG, in order to gain insight into the nature of the structure–activity relationships.
According to our docking simulation, shown in Fig. 9, the active and less active ligands have different binding modes. In both BDHFI and BDHAI, two hydrogen bonds were formed, one is between the indole N—H group and GLN19/GLU59, and the other is between an imine N atom and HOH267/GLY66. But in both BDHMFI and BDHFN, no hydrogen bond was formed and aromatic hydrophobic interactions dominate the affinity between the protein and the ligand. This phenomenon can be confirmed by the Polar values, which are 2.60 and 2.18 for BDHFI and BDHAI, respectively, but zero for BDHMFI and BDHFN.
As for the BMH series of four mono-Schiff bases, all of them exhibit one to five hydrogen bonds within the active site (Fig. 10). Indole N—H groups and imine N atoms form one or two hydrogen bonds in both BMHFI and BMHAI. A carboxyl O atom forms an extra hydrogen bond in BMHAI, which is the reason why it has a higher Total Score (also Polar value) than BMHFI. BMHMFI and BMHFN can form only one hydrogen bond with protein through a carboxyl O or imine N atom, so their docking Total Scores (also Polar values) are lower than those of BMHFI and BMHAI. Put simply, the more hydrogen bonds formed, the higher the Total Score values in the docking simulations, and the better the antiproliferative activities of the ligands.
There is one phenomenon that seems confusing, i.e. BDHFN has a higher Total Score than BMHFI (6.25 versus 5.97), but the former has a lower cytotoxic activity than the latter. Apparently, the deviation between docking predictions and experimental activities may partly explain this result. Here, we consider another class of scoring function based on a potential of mean force, so-called PMF-based scores, which is a knowledge-based scoring approach based on the work of Muegge and Martin (Muegge & Martin, 1999; Muegge, 2006). The PMF-based scoring functions are statistical, because it is calculated as the sum of the overall atom-pair interaction Helmholtz free energies between the protein and ligand, neglecting other characteristics of the environment and mutual orientation of the atom (Lizunov et al., 2015). As we know, the higher the PMF value, the poorer the protein–ligand binding affinity (Sharma & Ghoshal, 2006). From the seventh columns in Figs. 9 and 10, we can see that BDHFN has the highest PMF score (68.14) and is ranked as the worst with respect to the means of the distance-dependent Helmholtz free energies. That is to say, a long distance between the protein and ligand has a detrimental contribution to the affinity, which has not been reflected apparently in the Total Score. On the other hand, this phenomenon confirms the conclusion that PMF has essential differences with all of the other scoring functions. Its unique knowledge-based algorithm parameterized using crystal complexes is distinctive (Liu et al., 2012).
The above explanation is also suitable to BMHAI versus BDHFI/BDHAI. The former exhibit five hydrogen bonds within the active site, but it has a lower Total Score and weaker cytotoxic activity than the latter two. The PMF score of BMHAI is 6.08, revealing poorer binding affinities compared with the meager binding scores of BDHFI and BDHAI (−5.70 and −6.26, respectively).
In brief, all of the docking results were in good agreement with the experimental results, indicating the most probable target and reasonable structure–activity relationships.
4. Conclusion
BDH/BMH. These synthesized Schiff base compounds have similar molecular structures despite having different terminal fused two-ring aromatics and different substituents. MTT assays proved that the BDH series of compounds show higher inhibitory activity compared with the BMH series. The biological screening results favour the activities of indole-containing instead of naphthalene-containing ones. The cytotoxic activity is also affected by the nature of the substituents at the indole N atom; the replacement of hydrogen by methyl will decrease the cytotoxic activities greatly, while the same replacement on the imine C—H group has little effect. Generally, our in vitro findings show that four of these compounds have high antiproliferative activity against human lung cancer cell line A549 and mouse breast cancer cell line 4T1; two show obvious and comparable activities with cisplatin. All compounds exhibited weaker cytotoxicity against normal cells than cancer cells.
have been used widely in the pharmaceutical industry because of their antimicrobial, anti-inflammatory and anticancer properties. We have described the synthesis and structural characterization of eight novel derived fromSwiss Target Prediction online servers were used to screen compounds against large numbers of molecular targets. After careful examination, 18 possible targets were generated for further screening through the reverse docking approach. Afterwards, the three most possible targets were chosen on account of their correlation with experimental data. Bearing the highest consistency, the docking results of hERG (PDB ID: 3o0u) with eight can easily explain the structure–activity relationships obtained experimentally.
In conclusion, the present work indicates that introduction of an indole ring on the terminal of this kind of X-shaped Schiff base leads to the generation of potent anticancer agents.
Supporting information
https://doi.org/10.1107/S2053229619015687/fp3080sup1.cif
contains datablocks 1-BDHFI, 2-BDHAI, 3-BDHMFI, 4-BDHFN, 5-BMHFI, 6-BMHAI, 7-BMHMFI, 8-BDHFN, global. DOI:Structure factors: contains datablock 1-BDHFI. DOI: https://doi.org/10.1107/S2053229619015687/fp30801-BDHFIsup2.hkl
Structure factors: contains datablock 2-BDHAI. DOI: https://doi.org/10.1107/S2053229619015687/fp30802-BDHAIsup3.hkl
Structure factors: contains datablock 3-BDHMFI. DOI: https://doi.org/10.1107/S2053229619015687/fp30803-BDHMFIsup4.hkl
Structure factors: contains datablock 4-BDHFN. DOI: https://doi.org/10.1107/S2053229619015687/fp30804-BDHFNsup5.hkl
Structure factors: contains datablock 5-BMHFI. DOI: https://doi.org/10.1107/S2053229619015687/fp30805-BMHFIsup6.hkl
Structure factors: contains datablock 6-BMHAI. DOI: https://doi.org/10.1107/S2053229619015687/fp30806-BMHAIsup7.hkl
Structure factors: contains datablock 7-BMHMFI. DOI: https://doi.org/10.1107/S2053229619015687/fp30807-BMHMFIsup8.hkl
Structure factors: contains datablock 8-BDHFN. DOI: https://doi.org/10.1107/S2053229619015687/fp30808-BDHFNsup9.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2053229619015687/fp30801-BDHFIsup10.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229619015687/fp30802-BDHAIsup11.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229619015687/fp30803-BDHMFIsup12.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229619015687/fp30804-BDHFNsup13.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229619015687/fp30806-BMHAIsup14.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229619015687/fp30807-BMHMFIsup15.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229619015687/fp30808-BDHFNsup16.cml
Additional figures, spectra and tables. DOI: https://doi.org/10.1107/S2053229619015687/fp3080sup17.pdf
For all structures, data collection: SMART (Bruker, 2000); cell
SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS2016 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Bruker, 2000), PLATON (Spek, 2009) and DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b) and WinGX (Farrugia, 2012).C32H24N6 | F(000) = 1032 |
Mr = 492.57 | Dx = 1.244 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.023 (4) Å | Cell parameters from 380 reflections |
b = 7.340 (2) Å | θ = 2.5–26.0° |
c = 27.762 (9) Å | µ = 0.08 mm−1 |
β = 97.693 (5)° | T = 293 K |
V = 2630.0 (14) Å3 | Block, yellow |
Z = 4 | 0.30 × 0.18 × 0.15 mm |
Bruker SMART CCD area detector diffractometer | 5145 independent reflections |
Radiation source: fine-focus sealed tube | 2852 reflections with I > 2σ(I) |
Detector resolution: 10.13 pixels mm-1 | Rint = 0.046 |
phi and ω scans | θmax = 26.0°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −16→13 |
Tmin = 0.903, Tmax = 0.939 | k = −8→9 |
13632 measured reflections | l = −33→34 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | Only H-atom displacement parameters refined |
wR(F2) = 0.103 | w = 1/[σ2(Fo2) + (0.0408P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.88 | (Δ/σ)max < 0.001 |
5145 reflections | Δρmax = 0.15 e Å−3 |
367 parameters | Δρmin = −0.22 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.83514 (13) | 0.3197 (2) | 0.09431 (6) | 0.0363 (4) | |
C2 | 0.92588 (13) | 0.2300 (2) | 0.07841 (6) | 0.0378 (5) | |
C3 | 0.94898 (15) | 0.0495 (3) | 0.08906 (7) | 0.0474 (5) | |
H3 | 0.904843 | −0.018427 | 0.105749 | 0.060 (6)* | |
C4 | 1.03531 (16) | −0.0314 (3) | 0.07558 (8) | 0.0600 (6) | |
H4 | 1.049033 | −0.153332 | 0.082980 | 0.069 (7)* | |
C5 | 1.10143 (19) | 0.0661 (3) | 0.05130 (8) | 0.0713 (7) | |
H5 | 1.160256 | 0.011204 | 0.042183 | 0.084 (8)* | |
C6 | 1.08036 (19) | 0.2454 (4) | 0.04047 (9) | 0.0768 (7) | |
H6 | 1.125208 | 0.312545 | 0.023980 | 0.089 (8)* | |
C7 | 0.99353 (16) | 0.3268 (3) | 0.05380 (7) | 0.0592 (6) | |
H7 | 0.980068 | 0.448615 | 0.046176 | 0.051 (6)* | |
C8 | 0.82392 (13) | 0.5230 (2) | 0.08899 (6) | 0.0377 (4) | |
C9 | 0.74742 (14) | 0.5987 (3) | 0.05028 (7) | 0.0437 (5) | |
C10 | 0.70293 (18) | 0.4886 (4) | 0.01317 (8) | 0.0734 (7) | |
H10 | 0.720298 | 0.365746 | 0.013003 | 0.079 (8)* | |
C11 | 0.6329 (2) | 0.5586 (5) | −0.02378 (10) | 0.1124 (11) | |
H11 | 0.603863 | 0.483089 | −0.048881 | 0.153 (13)* | |
C12 | 0.6059 (2) | 0.7378 (5) | −0.02370 (11) | 0.1102 (11) | |
H12 | 0.558179 | 0.784282 | −0.048581 | 0.119 (10)* | |
C13 | 0.64870 (18) | 0.8485 (4) | 0.01274 (10) | 0.0823 (8) | |
H13 | 0.630452 | 0.970999 | 0.012709 | 0.077 (8)* | |
C14 | 0.71892 (15) | 0.7801 (3) | 0.04968 (8) | 0.0580 (6) | |
H14 | 0.747607 | 0.856790 | 0.074567 | 0.066 (7)* | |
C15 | 0.99888 (13) | 0.6384 (3) | 0.18379 (7) | 0.0411 (5) | |
H15 | 0.984927 | 0.762714 | 0.183158 | 0.046 (5)* | |
C16 | 1.07404 (13) | 0.5654 (2) | 0.22132 (6) | 0.0385 (5) | |
C17 | 1.12335 (12) | 0.3906 (3) | 0.22344 (6) | 0.0369 (4) | |
C18 | 1.12274 (14) | 0.2432 (3) | 0.19159 (7) | 0.0439 (5) | |
H18 | 1.084885 | 0.248467 | 0.160739 | 0.042 (5)* | |
C19 | 1.17878 (15) | 0.0908 (3) | 0.20652 (8) | 0.0539 (6) | |
H19 | 1.177756 | −0.008483 | 0.185639 | 0.058 (6)* | |
C20 | 1.23696 (15) | 0.0810 (3) | 0.25202 (8) | 0.0580 (6) | |
H20 | 1.274298 | −0.024387 | 0.261014 | 0.061 (6)* | |
C21 | 1.24053 (15) | 0.2222 (3) | 0.28373 (8) | 0.0544 (6) | |
H21 | 1.280095 | 0.215710 | 0.314160 | 0.055 (6)* | |
C22 | 1.18325 (13) | 0.3765 (3) | 0.26927 (7) | 0.0416 (5) | |
C23 | 1.10613 (14) | 0.6476 (3) | 0.26490 (7) | 0.0486 (5) | |
H23 | 1.086467 | 0.763553 | 0.273594 | 0.043 (5)* | |
C24 | 0.62285 (14) | 0.2475 (3) | 0.14849 (7) | 0.0484 (5) | |
H24 | 0.634232 | 0.123968 | 0.154452 | 0.048 (6)* | |
C25 | 0.53425 (14) | 0.3321 (3) | 0.16411 (7) | 0.0505 (5) | |
C26 | 0.49308 (14) | 0.5105 (3) | 0.15329 (7) | 0.0505 (5) | |
C27 | 0.52005 (16) | 0.6557 (3) | 0.12573 (8) | 0.0562 (6) | |
H27 | 0.579267 | 0.650487 | 0.110411 | 0.052 (6)* | |
C28 | 0.45807 (19) | 0.8070 (3) | 0.12143 (10) | 0.0786 (7) | |
H28 | 0.476153 | 0.905300 | 0.103174 | 0.076 (8)* | |
C29 | 0.3689 (2) | 0.8173 (4) | 0.14363 (12) | 0.1049 (10) | |
H29 | 0.328037 | 0.921466 | 0.139702 | 0.122 (10)* | |
C30 | 0.3405 (2) | 0.6771 (4) | 0.17108 (12) | 0.1036 (10) | |
H30 | 0.281159 | 0.683543 | 0.186279 | 0.101 (9)* | |
C31 | 0.40318 (18) | 0.5254 (4) | 0.17543 (10) | 0.0733 (7) | |
C32 | 0.46970 (18) | 0.2500 (4) | 0.19247 (9) | 0.0773 (7) | |
H32 | 0.477661 | 0.132346 | 0.204873 | 0.071 (7)* | |
N1 | 0.76775 (11) | 0.2260 (2) | 0.11353 (5) | 0.0405 (4) | |
N2 | 0.68695 (11) | 0.3368 (2) | 0.12654 (5) | 0.0433 (4) | |
N3 | 0.88012 (11) | 0.6319 (2) | 0.11766 (5) | 0.0419 (4) | |
N4 | 0.95074 (11) | 0.5349 (2) | 0.15116 (5) | 0.0432 (4) | |
N5 | 1.17037 (12) | 0.5365 (2) | 0.29348 (6) | 0.0519 (5) | |
H35 | 1.198934 | 0.561788 | 0.322448 | 0.065 (7)* | |
N6 | 0.39279 (16) | 0.3652 (3) | 0.19973 (9) | 0.0954 (8) | |
H36 | 0.344338 | 0.341855 | 0.217039 | 0.103 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0382 (11) | 0.0372 (11) | 0.0317 (10) | −0.0033 (9) | −0.0014 (9) | 0.0022 (9) |
C2 | 0.0403 (11) | 0.0408 (12) | 0.0317 (10) | −0.0045 (9) | 0.0029 (9) | 0.0017 (9) |
C3 | 0.0471 (12) | 0.0435 (13) | 0.0517 (12) | −0.0016 (10) | 0.0076 (10) | −0.0016 (11) |
C4 | 0.0624 (15) | 0.0486 (15) | 0.0702 (16) | 0.0082 (12) | 0.0130 (12) | −0.0046 (12) |
C5 | 0.0667 (17) | 0.0754 (18) | 0.0768 (17) | 0.0164 (15) | 0.0276 (14) | −0.0022 (15) |
C6 | 0.0735 (17) | 0.0847 (19) | 0.0810 (18) | 0.0034 (15) | 0.0430 (15) | 0.0145 (16) |
C7 | 0.0676 (15) | 0.0539 (15) | 0.0602 (14) | 0.0078 (12) | 0.0244 (12) | 0.0141 (12) |
C8 | 0.0348 (10) | 0.0393 (12) | 0.0395 (11) | −0.0019 (9) | 0.0063 (9) | 0.0061 (9) |
C9 | 0.0402 (11) | 0.0441 (12) | 0.0460 (12) | −0.0054 (10) | 0.0029 (9) | 0.0133 (10) |
C10 | 0.0896 (19) | 0.0590 (17) | 0.0626 (15) | −0.0068 (14) | −0.0226 (14) | 0.0078 (13) |
C11 | 0.139 (3) | 0.095 (2) | 0.084 (2) | −0.016 (2) | −0.059 (2) | 0.0148 (19) |
C12 | 0.100 (2) | 0.109 (3) | 0.104 (2) | −0.008 (2) | −0.0505 (19) | 0.045 (2) |
C13 | 0.0655 (16) | 0.0687 (19) | 0.107 (2) | 0.0087 (15) | −0.0107 (15) | 0.0384 (17) |
C14 | 0.0476 (13) | 0.0526 (14) | 0.0711 (15) | −0.0012 (11) | −0.0019 (12) | 0.0162 (13) |
C15 | 0.0357 (11) | 0.0341 (12) | 0.0541 (13) | 0.0003 (9) | 0.0086 (10) | −0.0037 (10) |
C16 | 0.0303 (10) | 0.0425 (12) | 0.0421 (11) | −0.0002 (9) | 0.0028 (9) | −0.0082 (10) |
C17 | 0.0279 (10) | 0.0447 (12) | 0.0384 (11) | −0.0037 (9) | 0.0052 (8) | −0.0024 (9) |
C18 | 0.0381 (11) | 0.0480 (13) | 0.0445 (12) | 0.0010 (10) | 0.0016 (9) | −0.0051 (10) |
C19 | 0.0461 (13) | 0.0457 (13) | 0.0700 (15) | 0.0040 (11) | 0.0084 (11) | −0.0045 (13) |
C20 | 0.0451 (13) | 0.0558 (15) | 0.0730 (16) | 0.0089 (12) | 0.0069 (12) | 0.0171 (13) |
C21 | 0.0378 (12) | 0.0779 (17) | 0.0457 (13) | 0.0011 (12) | −0.0010 (10) | 0.0176 (13) |
C22 | 0.0323 (10) | 0.0540 (13) | 0.0388 (11) | −0.0034 (10) | 0.0059 (9) | 0.0001 (10) |
C23 | 0.0365 (11) | 0.0500 (14) | 0.0592 (13) | −0.0020 (10) | 0.0054 (10) | −0.0159 (11) |
C24 | 0.0394 (12) | 0.0478 (14) | 0.0568 (13) | −0.0046 (10) | 0.0017 (10) | 0.0080 (11) |
C25 | 0.0363 (12) | 0.0561 (14) | 0.0599 (14) | −0.0085 (11) | 0.0097 (10) | 0.0034 (11) |
C26 | 0.0360 (12) | 0.0565 (14) | 0.0593 (14) | −0.0070 (10) | 0.0076 (10) | −0.0086 (12) |
C27 | 0.0464 (13) | 0.0570 (15) | 0.0650 (15) | −0.0012 (12) | 0.0071 (11) | −0.0049 (12) |
C28 | 0.0728 (18) | 0.0533 (16) | 0.112 (2) | 0.0033 (14) | 0.0201 (16) | −0.0005 (16) |
C29 | 0.078 (2) | 0.070 (2) | 0.173 (3) | 0.0164 (18) | 0.040 (2) | −0.009 (2) |
C30 | 0.0711 (19) | 0.083 (2) | 0.169 (3) | 0.0079 (17) | 0.061 (2) | −0.018 (2) |
C31 | 0.0542 (15) | 0.0665 (17) | 0.105 (2) | −0.0063 (14) | 0.0320 (14) | −0.0091 (16) |
C32 | 0.0602 (16) | 0.0682 (18) | 0.109 (2) | −0.0021 (14) | 0.0310 (15) | 0.0156 (16) |
N1 | 0.0377 (9) | 0.0403 (9) | 0.0432 (9) | 0.0002 (8) | 0.0047 (8) | 0.0053 (8) |
N2 | 0.0371 (9) | 0.0443 (10) | 0.0486 (10) | −0.0012 (8) | 0.0064 (8) | 0.0054 (8) |
N3 | 0.0391 (9) | 0.0377 (10) | 0.0472 (9) | 0.0001 (8) | −0.0012 (8) | 0.0063 (8) |
N4 | 0.0424 (9) | 0.0375 (9) | 0.0471 (10) | 0.0013 (8) | −0.0034 (8) | 0.0011 (8) |
N5 | 0.0405 (10) | 0.0736 (13) | 0.0397 (10) | −0.0041 (9) | −0.0013 (8) | −0.0112 (10) |
N6 | 0.0672 (14) | 0.0917 (18) | 0.141 (2) | −0.0066 (13) | 0.0629 (15) | 0.0055 (16) |
C1—N1 | 1.286 (2) | C18—C19 | 1.370 (2) |
C1—C2 | 1.471 (2) | C18—H18 | 0.9300 |
C1—C8 | 1.505 (2) | C19—C20 | 1.385 (3) |
C2—C7 | 1.382 (2) | C19—H19 | 0.9300 |
C2—C3 | 1.382 (2) | C20—C21 | 1.357 (3) |
C3—C4 | 1.367 (3) | C20—H20 | 0.9300 |
C3—H3 | 0.9300 | C21—C22 | 1.386 (3) |
C4—C5 | 1.365 (3) | C21—H21 | 0.9300 |
C4—H4 | 0.9300 | C22—N5 | 1.374 (2) |
C5—C6 | 1.370 (3) | C23—N5 | 1.348 (2) |
C5—H5 | 0.9300 | C23—H23 | 0.9300 |
C6—C7 | 1.373 (3) | C24—N2 | 1.278 (2) |
C6—H6 | 0.9300 | C24—C25 | 1.428 (3) |
C7—H7 | 0.9300 | C24—H24 | 0.9300 |
C8—N3 | 1.286 (2) | C25—C32 | 1.367 (3) |
C8—C9 | 1.473 (2) | C25—C26 | 1.431 (3) |
C9—C10 | 1.375 (3) | C26—C27 | 1.384 (3) |
C9—C14 | 1.382 (3) | C26—C31 | 1.398 (3) |
C10—C11 | 1.378 (3) | C27—C28 | 1.369 (3) |
C10—H10 | 0.9300 | C27—H27 | 0.9300 |
C11—C12 | 1.361 (4) | C28—C29 | 1.387 (3) |
C11—H11 | 0.9300 | C28—H28 | 0.9300 |
C12—C13 | 1.358 (3) | C29—C30 | 1.361 (4) |
C12—H12 | 0.9300 | C29—H29 | 0.9300 |
C13—C14 | 1.374 (3) | C30—C31 | 1.376 (3) |
C13—H13 | 0.9300 | C30—H30 | 0.9300 |
C14—H14 | 0.9300 | C31—N6 | 1.371 (3) |
C15—N4 | 1.280 (2) | C32—N6 | 1.347 (3) |
C15—C16 | 1.435 (2) | C32—H32 | 0.9300 |
C15—H15 | 0.9300 | N1—N2 | 1.4146 (19) |
C16—C23 | 1.367 (2) | N3—N4 | 1.4104 (18) |
C16—C17 | 1.432 (2) | N5—H35 | 0.8600 |
C17—C18 | 1.397 (2) | N6—H36 | 0.8600 |
C17—C22 | 1.404 (2) | ||
N1—C1—C2 | 120.37 (17) | C17—C18—H18 | 120.5 |
N1—C1—C8 | 120.56 (16) | C18—C19—C20 | 121.5 (2) |
C2—C1—C8 | 119.05 (16) | C18—C19—H19 | 119.2 |
C7—C2—C3 | 117.65 (19) | C20—C19—H19 | 119.2 |
C7—C2—C1 | 120.61 (18) | C21—C20—C19 | 121.3 (2) |
C3—C2—C1 | 121.69 (17) | C21—C20—H20 | 119.4 |
C4—C3—C2 | 121.4 (2) | C19—C20—H20 | 119.4 |
C4—C3—H3 | 119.3 | C20—C21—C22 | 117.78 (19) |
C2—C3—H3 | 119.3 | C20—C21—H21 | 121.1 |
C5—C4—C3 | 120.2 (2) | C22—C21—H21 | 121.1 |
C5—C4—H4 | 119.9 | N5—C22—C21 | 130.74 (18) |
C3—C4—H4 | 119.9 | N5—C22—C17 | 106.91 (17) |
C4—C5—C6 | 119.4 (2) | C21—C22—C17 | 122.34 (19) |
C4—C5—H5 | 120.3 | N5—C23—C16 | 110.24 (18) |
C6—C5—H5 | 120.3 | N5—C23—H23 | 124.9 |
C5—C6—C7 | 120.5 (2) | C16—C23—H23 | 124.9 |
C5—C6—H6 | 119.8 | N2—C24—C25 | 121.8 (2) |
C7—C6—H6 | 119.8 | N2—C24—H24 | 119.1 |
C6—C7—C2 | 120.8 (2) | C25—C24—H24 | 119.1 |
C6—C7—H7 | 119.6 | C32—C25—C24 | 124.6 (2) |
C2—C7—H7 | 119.6 | C32—C25—C26 | 106.42 (19) |
N3—C8—C9 | 119.37 (17) | C24—C25—C26 | 129.00 (19) |
N3—C8—C1 | 121.09 (16) | C27—C26—C31 | 118.2 (2) |
C9—C8—C1 | 119.54 (16) | C27—C26—C25 | 134.79 (19) |
C10—C9—C14 | 118.1 (2) | C31—C26—C25 | 107.0 (2) |
C10—C9—C8 | 120.07 (19) | C28—C27—C26 | 118.9 (2) |
C14—C9—C8 | 121.78 (19) | C28—C27—H27 | 120.6 |
C9—C10—C11 | 120.6 (3) | C26—C27—H27 | 120.6 |
C9—C10—H10 | 119.7 | C27—C28—C29 | 121.6 (3) |
C11—C10—H10 | 119.7 | C27—C28—H28 | 119.2 |
C12—C11—C10 | 120.3 (3) | C29—C28—H28 | 119.2 |
C12—C11—H11 | 119.9 | C30—C29—C28 | 120.9 (3) |
C10—C11—H11 | 119.9 | C30—C29—H29 | 119.5 |
C13—C12—C11 | 119.9 (3) | C28—C29—H29 | 119.5 |
C13—C12—H12 | 120.0 | C29—C30—C31 | 117.3 (3) |
C11—C12—H12 | 120.0 | C29—C30—H30 | 121.4 |
C12—C13—C14 | 120.2 (3) | C31—C30—H30 | 121.4 |
C12—C13—H13 | 119.9 | N6—C31—C30 | 129.8 (2) |
C14—C13—H13 | 119.9 | N6—C31—C26 | 107.0 (2) |
C13—C14—C9 | 120.8 (2) | C30—C31—C26 | 123.2 (3) |
C13—C14—H14 | 119.6 | N6—C32—C25 | 109.6 (2) |
C9—C14—H14 | 119.6 | N6—C32—H32 | 125.2 |
N4—C15—C16 | 120.91 (17) | C25—C32—H32 | 125.2 |
N4—C15—H15 | 119.5 | C1—N1—N2 | 111.77 (15) |
C16—C15—H15 | 119.5 | C24—N2—N1 | 112.49 (16) |
C23—C16—C17 | 106.07 (16) | C8—N3—N4 | 111.16 (15) |
C23—C16—C15 | 125.16 (17) | C15—N4—N3 | 112.39 (15) |
C17—C16—C15 | 128.56 (16) | C23—N5—C22 | 109.62 (16) |
C18—C17—C22 | 118.16 (17) | C23—N5—H35 | 125.2 |
C18—C17—C16 | 134.69 (17) | C22—N5—H35 | 125.2 |
C22—C17—C16 | 107.15 (16) | C32—N6—C31 | 109.9 (2) |
C19—C18—C17 | 118.92 (18) | C32—N6—H36 | 125.0 |
C19—C18—H18 | 120.5 | C31—N6—H36 | 125.0 |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H35···N1i | 0.86 | 2.14 | 2.948 (2) | 156 |
C3—H3···N3ii | 0.93 | 2.61 | 3.320 (3) | 133 |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x, y−1, z. |
C34H28N6 | Z = 2 |
Mr = 520.62 | F(000) = 548 |
Triclinic, P1 | Dx = 1.252 Mg m−3 |
a = 10.2585 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.9610 (5) Å | Cell parameters from 380 reflections |
c = 12.8232 (6) Å | θ = 2.5–26.0° |
α = 64.941 (4)° | µ = 0.08 mm−1 |
β = 79.573 (3)° | T = 293 K |
γ = 76.829 (4)° | Bar, yellow |
V = 1381.45 (11) Å3 | 0.35 × 0.15 × 0.12 mm |
Bruker SMART CCD area detector diffractometer | 5328 independent reflections |
Radiation source: fine-focus sealed tube | 4490 reflections with I > 2σ(I) |
Detector resolution: 10.13 pixels mm-1 | Rint = 0.026 |
phi and ω scans | θmax = 26.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −12→12 |
Tmin = 0.903, Tmax = 0.939 | k = −14→14 |
15195 measured reflections | l = −13→15 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | Only H-atom displacement parameters refined |
R[F2 > 2σ(F2)] = 0.044 | w = 1/[σ2(Fo2) + (0.0694P)2 + 0.1725P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.129 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.19 e Å−3 |
5328 reflections | Δρmin = −0.18 e Å−3 |
392 parameters | Extinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.083 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.21600 (13) | 0.84926 (13) | 0.45306 (11) | 0.0462 (3) | |
C2 | 0.24638 (13) | 0.97764 (13) | 0.38744 (12) | 0.0491 (3) | |
C3 | 0.15001 (16) | 1.07464 (15) | 0.32585 (16) | 0.0648 (4) | |
H2 | 0.067148 | 1.057647 | 0.322519 | 0.081 (6)* | |
C4 | 0.17520 (19) | 1.19565 (16) | 0.26959 (17) | 0.0746 (5) | |
H3 | 0.109933 | 1.259075 | 0.227799 | 0.097 (7)* | |
C5 | 0.2954 (2) | 1.22291 (17) | 0.27488 (16) | 0.0739 (5) | |
H4 | 0.311226 | 1.304989 | 0.238380 | 0.085 (6)* | |
C6 | 0.3928 (2) | 1.12876 (18) | 0.33426 (16) | 0.0747 (5) | |
H5 | 0.474994 | 1.147161 | 0.337453 | 0.092 (6)* | |
C7 | 0.36938 (16) | 1.00565 (16) | 0.38983 (14) | 0.0618 (4) | |
H6 | 0.436524 | 0.942110 | 0.428646 | 0.072 (5)* | |
C8 | 0.32668 (13) | 0.74348 (13) | 0.50875 (12) | 0.0483 (3) | |
C9 | 0.34159 (15) | 0.70585 (14) | 0.63212 (12) | 0.0551 (4) | |
C10 | 0.26077 (17) | 0.77226 (18) | 0.69346 (14) | 0.0658 (4) | |
H7 | 0.196310 | 0.840386 | 0.656770 | 0.065 (5)* | |
C11 | 0.2755 (2) | 0.7377 (2) | 0.80900 (17) | 0.0877 (6) | |
H10 | 0.221187 | 0.782867 | 0.849312 | 0.088 (6)* | |
C12 | 0.3700 (3) | 0.6372 (3) | 0.86403 (18) | 0.1028 (8) | |
H12 | 0.379338 | 0.613722 | 0.941672 | 0.113 (8)* | |
C13 | 0.4506 (3) | 0.5713 (2) | 0.80406 (19) | 0.0961 (7) | |
H13 | 0.514323 | 0.502950 | 0.841665 | 0.118 (8)* | |
C14 | 0.4385 (2) | 0.60529 (17) | 0.68842 (16) | 0.0721 (5) | |
H11 | 0.495074 | 0.560945 | 0.648337 | 0.099 (7)* | |
C15 | 0.49611 (13) | 0.72877 (13) | 0.26579 (13) | 0.0491 (3) | |
C16 | 0.48156 (13) | 0.78461 (14) | 0.14310 (13) | 0.0501 (3) | |
C17 | 0.36770 (13) | 0.86989 (13) | 0.08418 (12) | 0.0484 (3) | |
C18 | 0.24161 (14) | 0.92420 (14) | 0.11937 (14) | 0.0546 (4) | |
H18 | 0.214228 | 0.904063 | 0.197491 | 0.058 (4)* | |
C19 | 0.15878 (17) | 1.00782 (16) | 0.03671 (16) | 0.0668 (4) | |
H19 | 0.074912 | 1.044421 | 0.059733 | 0.071 (5)* | |
C20 | 0.19753 (19) | 1.03927 (18) | −0.08130 (17) | 0.0753 (5) | |
H20 | 0.138681 | 1.095426 | −0.135092 | 0.091 (6)* | |
C21 | 0.32077 (19) | 0.98860 (17) | −0.11877 (16) | 0.0722 (5) | |
H21 | 0.347018 | 1.009515 | −0.197140 | 0.085 (6)* | |
C22 | 0.40519 (15) | 0.90475 (15) | −0.03532 (14) | 0.0580 (4) | |
C23 | 0.57959 (16) | 0.77510 (17) | 0.05713 (15) | 0.0646 (4) | |
H23 | 0.665006 | 0.727371 | 0.069683 | 0.077 (5)* | |
C24 | −0.03270 (14) | 0.68082 (14) | 0.52381 (12) | 0.0518 (3) | |
C25 | −0.07215 (13) | 0.56489 (14) | 0.61098 (13) | 0.0506 (3) | |
C26 | −0.03001 (13) | 0.49580 (13) | 0.72570 (12) | 0.0466 (3) | |
C27 | 0.05813 (13) | 0.51142 (13) | 0.78861 (13) | 0.0493 (3) | |
H27 | 0.108227 | 0.575950 | 0.754067 | 0.056 (4)* | |
C28 | 0.06910 (15) | 0.42989 (14) | 0.90189 (14) | 0.0572 (4) | |
H28 | 0.126490 | 0.440283 | 0.944331 | 0.063 (4)* | |
C29 | −0.00429 (17) | 0.33154 (16) | 0.95472 (15) | 0.0654 (4) | |
H29 | 0.005442 | 0.277666 | 1.031582 | 0.076 (5)* | |
C30 | −0.09047 (17) | 0.31280 (15) | 0.89550 (14) | 0.0638 (4) | |
H30 | −0.139175 | 0.247275 | 0.930808 | 0.067 (5)* | |
C31 | −0.10219 (14) | 0.39519 (14) | 0.78113 (13) | 0.0523 (3) | |
C32 | −0.16427 (15) | 0.50232 (15) | 0.60219 (14) | 0.0587 (4) | |
H32 | −0.208006 | 0.525861 | 0.536678 | 0.069 (5)* | |
C33 | 0.63359 (15) | 0.6710 (2) | 0.30611 (17) | 0.0733 (5) | |
H33A | 0.627256 | 0.598418 | 0.377122 | 0.100 (7)* | |
H33B | 0.670603 | 0.730677 | 0.318564 | 0.135 (10)* | |
H33C | 0.690878 | 0.646881 | 0.248427 | 0.141 (10)* | |
C34 | −0.1161 (2) | 0.7575 (2) | 0.42427 (18) | 0.0840 (6) | |
H34A | −0.209716 | 0.760959 | 0.451964 | 0.145 (10)* | |
H34B | −0.096409 | 0.719957 | 0.369015 | 0.187 (15)* | |
H34C | −0.095464 | 0.840849 | 0.388088 | 0.162 (12)* | |
N1 | 0.09402 (11) | 0.83288 (11) | 0.46297 (10) | 0.0520 (3) | |
N2 | 0.07283 (11) | 0.71200 (11) | 0.53875 (10) | 0.0511 (3) | |
N3 | 0.41191 (12) | 0.68906 (12) | 0.45120 (11) | 0.0548 (3) | |
N4 | 0.38813 (11) | 0.73680 (11) | 0.33433 (10) | 0.0519 (3) | |
N5 | 0.53458 (14) | 0.84467 (15) | −0.04798 (13) | 0.0703 (4) | |
H35 | 0.579886 | 0.850515 | −0.112912 | 0.078 (6)* | |
N6 | −0.18231 (13) | 0.40170 (13) | 0.70225 (12) | 0.0616 (3) | |
H36 | −0.235238 | 0.350076 | 0.714696 | 0.067 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0423 (7) | 0.0552 (8) | 0.0428 (7) | −0.0102 (6) | −0.0023 (5) | −0.0209 (6) |
C2 | 0.0477 (7) | 0.0542 (8) | 0.0474 (7) | −0.0112 (6) | 0.0035 (6) | −0.0240 (6) |
C3 | 0.0527 (9) | 0.0554 (9) | 0.0832 (12) | −0.0035 (7) | −0.0033 (8) | −0.0290 (8) |
C4 | 0.0773 (12) | 0.0530 (9) | 0.0828 (12) | 0.0011 (8) | −0.0006 (9) | −0.0258 (9) |
C5 | 0.0939 (13) | 0.0564 (10) | 0.0705 (11) | −0.0265 (9) | 0.0144 (10) | −0.0263 (9) |
C6 | 0.0774 (12) | 0.0841 (12) | 0.0683 (11) | −0.0422 (10) | 0.0061 (9) | −0.0267 (10) |
C7 | 0.0584 (9) | 0.0682 (10) | 0.0558 (9) | −0.0233 (8) | −0.0028 (7) | −0.0168 (8) |
C8 | 0.0423 (7) | 0.0525 (7) | 0.0497 (7) | −0.0145 (6) | −0.0069 (5) | −0.0159 (6) |
C9 | 0.0551 (8) | 0.0637 (9) | 0.0482 (8) | −0.0273 (7) | −0.0065 (6) | −0.0146 (7) |
C10 | 0.0615 (9) | 0.0890 (12) | 0.0559 (9) | −0.0315 (9) | 0.0007 (7) | −0.0307 (9) |
C11 | 0.0973 (15) | 0.1285 (18) | 0.0574 (11) | −0.0604 (14) | 0.0098 (10) | −0.0423 (12) |
C12 | 0.135 (2) | 0.129 (2) | 0.0500 (11) | −0.0707 (17) | −0.0199 (12) | −0.0125 (12) |
C13 | 0.1239 (19) | 0.0874 (14) | 0.0670 (13) | −0.0360 (13) | −0.0424 (13) | 0.0009 (11) |
C14 | 0.0827 (12) | 0.0656 (10) | 0.0621 (10) | −0.0199 (9) | −0.0247 (9) | −0.0091 (8) |
C15 | 0.0371 (7) | 0.0541 (8) | 0.0646 (9) | −0.0047 (5) | −0.0092 (6) | −0.0316 (7) |
C16 | 0.0397 (7) | 0.0592 (8) | 0.0596 (8) | −0.0084 (6) | −0.0049 (6) | −0.0314 (7) |
C17 | 0.0443 (7) | 0.0536 (8) | 0.0555 (8) | −0.0133 (6) | −0.0074 (6) | −0.0260 (6) |
C18 | 0.0440 (7) | 0.0601 (9) | 0.0617 (9) | −0.0089 (6) | −0.0080 (6) | −0.0249 (7) |
C19 | 0.0504 (8) | 0.0666 (10) | 0.0792 (11) | −0.0039 (7) | −0.0157 (8) | −0.0245 (9) |
C20 | 0.0709 (11) | 0.0730 (11) | 0.0739 (12) | −0.0109 (9) | −0.0270 (9) | −0.0144 (9) |
C21 | 0.0812 (12) | 0.0785 (12) | 0.0560 (10) | −0.0214 (9) | −0.0127 (8) | −0.0197 (9) |
C22 | 0.0572 (9) | 0.0658 (9) | 0.0582 (9) | −0.0174 (7) | −0.0040 (7) | −0.0287 (8) |
C23 | 0.0454 (8) | 0.0799 (11) | 0.0728 (11) | −0.0033 (7) | −0.0008 (7) | −0.0403 (9) |
C24 | 0.0452 (7) | 0.0626 (8) | 0.0514 (8) | −0.0116 (6) | −0.0077 (6) | −0.0238 (7) |
C25 | 0.0412 (7) | 0.0605 (8) | 0.0553 (8) | −0.0120 (6) | −0.0053 (6) | −0.0261 (7) |
C26 | 0.0370 (6) | 0.0511 (7) | 0.0550 (8) | −0.0065 (5) | −0.0015 (5) | −0.0259 (6) |
C27 | 0.0393 (7) | 0.0533 (8) | 0.0597 (8) | −0.0076 (6) | −0.0050 (6) | −0.0268 (7) |
C28 | 0.0507 (8) | 0.0632 (9) | 0.0612 (9) | −0.0041 (7) | −0.0113 (7) | −0.0285 (8) |
C29 | 0.0717 (10) | 0.0629 (9) | 0.0559 (9) | −0.0118 (8) | −0.0085 (7) | −0.0173 (8) |
C30 | 0.0667 (10) | 0.0600 (9) | 0.0637 (10) | −0.0212 (8) | −0.0015 (7) | −0.0205 (8) |
C31 | 0.0451 (7) | 0.0556 (8) | 0.0615 (9) | −0.0124 (6) | −0.0015 (6) | −0.0279 (7) |
C32 | 0.0517 (8) | 0.0719 (10) | 0.0592 (9) | −0.0199 (7) | −0.0093 (7) | −0.0264 (8) |
C33 | 0.0415 (8) | 0.1008 (14) | 0.0788 (12) | 0.0007 (8) | −0.0161 (8) | −0.0393 (12) |
C34 | 0.0788 (13) | 0.0926 (14) | 0.0750 (12) | −0.0343 (10) | −0.0343 (10) | −0.0076 (11) |
N1 | 0.0446 (6) | 0.0569 (7) | 0.0529 (7) | −0.0122 (5) | −0.0037 (5) | −0.0189 (6) |
N2 | 0.0433 (6) | 0.0556 (7) | 0.0527 (7) | −0.0142 (5) | −0.0052 (5) | −0.0170 (5) |
N3 | 0.0479 (6) | 0.0619 (7) | 0.0532 (7) | −0.0043 (5) | −0.0122 (5) | −0.0211 (6) |
N4 | 0.0417 (6) | 0.0623 (7) | 0.0527 (7) | −0.0022 (5) | −0.0094 (5) | −0.0253 (6) |
N5 | 0.0636 (8) | 0.0916 (10) | 0.0592 (8) | −0.0122 (7) | 0.0065 (7) | −0.0386 (8) |
N6 | 0.0556 (7) | 0.0690 (8) | 0.0689 (8) | −0.0282 (6) | −0.0055 (6) | −0.0271 (7) |
C1—N1 | 1.2858 (17) | C19—H19 | 0.9300 |
C1—C2 | 1.4805 (19) | C20—C21 | 1.369 (3) |
C1—C8 | 1.5078 (19) | C20—H20 | 0.9300 |
C2—C7 | 1.386 (2) | C21—C22 | 1.390 (2) |
C2—C3 | 1.390 (2) | C21—H21 | 0.9300 |
C3—C4 | 1.379 (2) | C22—N5 | 1.375 (2) |
C3—H2 | 0.9300 | C23—N5 | 1.350 (2) |
C4—C5 | 1.365 (3) | C23—H23 | 0.9300 |
C4—H3 | 0.9300 | C24—N2 | 1.2913 (17) |
C5—C6 | 1.372 (3) | C24—C25 | 1.454 (2) |
C5—H4 | 0.9300 | C24—C34 | 1.499 (2) |
C6—C7 | 1.394 (2) | C25—C32 | 1.3777 (19) |
C6—H5 | 0.9300 | C25—C26 | 1.439 (2) |
C7—H6 | 0.9300 | C26—C27 | 1.4042 (19) |
C8—N3 | 1.2832 (18) | C26—C31 | 1.4116 (19) |
C8—C9 | 1.4771 (19) | C27—C28 | 1.372 (2) |
C9—C10 | 1.389 (2) | C27—H27 | 0.9300 |
C9—C14 | 1.391 (2) | C28—C29 | 1.398 (2) |
C10—C11 | 1.387 (2) | C28—H28 | 0.9300 |
C10—H7 | 0.9300 | C29—C30 | 1.373 (2) |
C11—C12 | 1.371 (3) | C29—H29 | 0.9300 |
C11—H10 | 0.9300 | C30—C31 | 1.386 (2) |
C12—C13 | 1.372 (4) | C30—H30 | 0.9300 |
C12—H12 | 0.9300 | C31—N6 | 1.3819 (19) |
C13—C14 | 1.383 (3) | C32—N6 | 1.355 (2) |
C13—H13 | 0.9300 | C32—H32 | 0.9300 |
C14—H11 | 0.9300 | C33—H33A | 0.9600 |
C15—N4 | 1.2959 (17) | C33—H33B | 0.9600 |
C15—C16 | 1.447 (2) | C33—H33C | 0.9600 |
C15—C33 | 1.5004 (19) | C34—H34A | 0.9600 |
C16—C23 | 1.376 (2) | C34—H34B | 0.9600 |
C16—C17 | 1.4489 (19) | C34—H34C | 0.9600 |
C17—C18 | 1.397 (2) | N1—N2 | 1.3995 (16) |
C17—C22 | 1.410 (2) | N3—N4 | 1.4055 (16) |
C18—C19 | 1.374 (2) | N5—H35 | 0.8600 |
C18—H18 | 0.9300 | N6—H36 | 0.8600 |
C19—C20 | 1.399 (3) | ||
N1—C1—C2 | 118.19 (12) | C19—C20—H20 | 119.5 |
N1—C1—C8 | 122.27 (12) | C20—C21—C22 | 117.52 (17) |
C2—C1—C8 | 119.51 (11) | C20—C21—H21 | 121.2 |
C7—C2—C3 | 118.12 (14) | C22—C21—H21 | 121.2 |
C7—C2—C1 | 121.02 (13) | N5—C22—C21 | 129.92 (16) |
C3—C2—C1 | 120.80 (13) | N5—C22—C17 | 107.44 (14) |
C4—C3—C2 | 121.09 (16) | C21—C22—C17 | 122.61 (15) |
C4—C3—H2 | 119.5 | N5—C23—C16 | 110.58 (14) |
C2—C3—H2 | 119.5 | N5—C23—H23 | 124.7 |
C5—C4—C3 | 120.37 (17) | C16—C23—H23 | 124.7 |
C5—C4—H3 | 119.8 | N2—C24—C25 | 116.86 (13) |
C3—C4—H3 | 119.8 | N2—C24—C34 | 123.95 (14) |
C4—C5—C6 | 119.76 (16) | C25—C24—C34 | 119.18 (13) |
C4—C5—H4 | 120.1 | C32—C25—C26 | 105.77 (13) |
C6—C5—H4 | 120.1 | C32—C25—C24 | 126.47 (14) |
C5—C6—C7 | 120.38 (16) | C26—C25—C24 | 127.68 (12) |
C5—C6—H5 | 119.8 | C27—C26—C31 | 118.54 (13) |
C7—C6—H5 | 119.8 | C27—C26—C25 | 134.21 (13) |
C2—C7—C6 | 120.25 (16) | C31—C26—C25 | 107.20 (12) |
C2—C7—H6 | 119.9 | C28—C27—C26 | 118.90 (13) |
C6—C7—H6 | 119.9 | C28—C27—H27 | 120.5 |
N3—C8—C9 | 118.99 (13) | C26—C27—H27 | 120.5 |
N3—C8—C1 | 122.12 (12) | C27—C28—C29 | 121.28 (15) |
C9—C8—C1 | 118.80 (12) | C27—C28—H28 | 119.4 |
C10—C9—C14 | 118.74 (16) | C29—C28—H28 | 119.4 |
C10—C9—C8 | 120.44 (14) | C30—C29—C28 | 121.37 (15) |
C14—C9—C8 | 120.81 (15) | C30—C29—H29 | 119.3 |
C11—C10—C9 | 120.5 (2) | C28—C29—H29 | 119.3 |
C11—C10—H7 | 119.8 | C29—C30—C31 | 117.54 (15) |
C9—C10—H7 | 119.8 | C29—C30—H30 | 121.2 |
C12—C11—C10 | 120.2 (2) | C31—C30—H30 | 121.2 |
C12—C11—H10 | 119.9 | N6—C31—C30 | 130.41 (14) |
C10—C11—H10 | 119.9 | N6—C31—C26 | 107.20 (13) |
C11—C12—C13 | 119.71 (19) | C30—C31—C26 | 122.35 (14) |
C11—C12—H12 | 120.1 | N6—C32—C25 | 110.60 (13) |
C13—C12—H12 | 120.1 | N6—C32—H32 | 124.7 |
C12—C13—C14 | 120.9 (2) | C25—C32—H32 | 124.7 |
C12—C13—H13 | 119.6 | C15—C33—H33A | 109.5 |
C14—C13—H13 | 119.6 | C15—C33—H33B | 109.5 |
C13—C14—C9 | 119.9 (2) | H33A—C33—H33B | 109.5 |
C13—C14—H11 | 120.0 | C15—C33—H33C | 109.5 |
C9—C14—H11 | 120.0 | H33A—C33—H33C | 109.5 |
N4—C15—C16 | 116.92 (12) | H33B—C33—H33C | 109.5 |
N4—C15—C33 | 123.90 (14) | C24—C34—H34A | 109.5 |
C16—C15—C33 | 119.11 (13) | C24—C34—H34B | 109.5 |
C23—C16—C15 | 126.10 (13) | H34A—C34—H34B | 109.5 |
C23—C16—C17 | 105.66 (13) | C24—C34—H34C | 109.5 |
C15—C16—C17 | 128.03 (12) | H34A—C34—H34C | 109.5 |
C18—C17—C22 | 118.36 (14) | H34B—C34—H34C | 109.5 |
C18—C17—C16 | 134.83 (13) | C1—N1—N2 | 113.49 (11) |
C22—C17—C16 | 106.73 (12) | C24—N2—N1 | 114.33 (12) |
C19—C18—C17 | 118.92 (15) | C8—N3—N4 | 112.87 (11) |
C19—C18—H18 | 120.5 | C15—N4—N3 | 113.57 (11) |
C17—C18—H18 | 120.5 | C23—N5—C22 | 109.58 (13) |
C18—C19—C20 | 121.59 (16) | C23—N5—H35 | 125.2 |
C18—C19—H19 | 119.2 | C22—N5—H35 | 125.2 |
C20—C19—H19 | 119.2 | C32—N6—C31 | 109.22 (12) |
C21—C20—C19 | 120.99 (16) | C32—N6—H36 | 125.4 |
C21—C20—H20 | 119.5 | C31—N6—H36 | 125.4 |
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H36···N4i | 0.86 | 2.36 | 3.1675 (17) | 156 |
C14—H11···N3 | 0.93 | 2.52 | 2.815 (2) | 99 |
C18—H18···N4 | 0.93 | 2.61 | 3.1003 (19) | 114 |
C27—H27···N2 | 0.93 | 2.59 | 3.0859 (19) | 114 |
C34—H34C···N1 | 0.96 | 2.29 | 2.712 (2) | 106 |
Symmetry code: (i) −x, −y+1, −z+1. |
2C34H28N6·C2H3N | Z = 1 |
Mr = 1082.30 | F(000) = 570 |
Triclinic, P1 | Dx = 1.222 Mg m−3 |
a = 11.2710 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.6944 (7) Å | Cell parameters from 380 reflections |
c = 12.5164 (6) Å | θ = 2.5–26.0° |
α = 79.875 (4)° | µ = 0.08 mm−1 |
β = 87.701 (4)° | T = 293 K |
γ = 64.941 (6)° | Block, yellow |
V = 1470.10 (15) Å3 | 0.35 × 0.20 × 0.15 mm |
Bruker SMART CCD area detector diffractometer | 5640 independent reflections |
Radiation source: fine-focus sealed tube | 4445 reflections with I > 2σ(I) |
Detector resolution: 10.13 pixels mm-1 | Rint = 0.029 |
phi and ω scans | θmax = 26.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −13→13 |
Tmin = 0.905, Tmax = 0.943 | k = −14→14 |
13418 measured reflections | l = −15→10 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | Only H-atom displacement parameters refined |
R[F2 > 2σ(F2)] = 0.049 | w = 1/[σ2(Fo2) + (0.0801P)2 + 0.1656P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.151 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.22 e Å−3 |
5640 reflections | Δρmin = −0.17 e Å−3 |
424 parameters | Extinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
2 restraints | Extinction coefficient: 0.017 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 1.02888 (14) | 0.32026 (15) | 0.22614 (13) | 0.0468 (4) | |
C2 | 0.90615 (15) | 0.33587 (15) | 0.17364 (13) | 0.0501 (4) | |
C3 | 0.84410 (18) | 0.4332 (2) | 0.08691 (16) | 0.0645 (5) | |
H3 | 0.880544 | 0.489721 | 0.058970 | 0.072 (6)* | |
C4 | 0.7277 (2) | 0.4466 (2) | 0.04165 (18) | 0.0781 (6) | |
H4 | 0.687632 | 0.511274 | −0.017495 | 0.099 (8)* | |
C5 | 0.6708 (2) | 0.3663 (3) | 0.0825 (2) | 0.0849 (7) | |
H5 | 0.592178 | 0.376884 | 0.051894 | 0.107 (9)* | |
C6 | 0.7306 (2) | 0.2703 (3) | 0.1687 (2) | 0.0930 (8) | |
H6 | 0.692732 | 0.215144 | 0.196816 | 0.116 (10)* | |
C7 | 0.8474 (2) | 0.2552 (2) | 0.21409 (19) | 0.0738 (6) | |
H7 | 0.887172 | 0.189680 | 0.272778 | 0.076 (6)* | |
C8 | 1.09142 (14) | 0.20654 (15) | 0.31530 (13) | 0.0461 (3) | |
C9 | 1.04864 (15) | 0.22239 (16) | 0.42683 (13) | 0.0511 (4) | |
C10 | 0.98055 (18) | 0.34437 (19) | 0.45203 (16) | 0.0630 (5) | |
H10 | 0.966044 | 0.416152 | 0.399284 | 0.081 (7)* | |
C11 | 0.9343 (2) | 0.3596 (2) | 0.55484 (18) | 0.0753 (6) | |
H11 | 0.889723 | 0.441633 | 0.570951 | 0.110 (9)* | |
C12 | 0.9535 (2) | 0.2554 (3) | 0.63306 (18) | 0.0829 (7) | |
H12 | 0.921076 | 0.266331 | 0.701841 | 0.095 (8)* | |
C13 | 1.0203 (3) | 0.1356 (3) | 0.60969 (18) | 0.0939 (8) | |
H13 | 1.034229 | 0.064590 | 0.663129 | 0.118 (10)* | |
C14 | 1.0679 (2) | 0.1181 (2) | 0.50706 (17) | 0.0777 (6) | |
H14 | 1.113059 | 0.035600 | 0.492203 | 0.091 (7)* | |
C15 | 1.28895 (16) | −0.00541 (16) | 0.16524 (14) | 0.0531 (4) | |
H15 | 1.328560 | −0.073073 | 0.222419 | 0.064 (5)* | |
C16 | 1.33243 (15) | −0.02026 (16) | 0.05718 (14) | 0.0518 (4) | |
C17 | 1.28980 (15) | 0.07087 (16) | −0.04259 (14) | 0.0515 (4) | |
C18 | 1.19676 (17) | 0.19828 (18) | −0.07107 (16) | 0.0614 (5) | |
H18 | 1.143422 | 0.241346 | −0.019130 | 0.052 (5)* | |
C19 | 1.1861 (2) | 0.2582 (2) | −0.17750 (19) | 0.0774 (6) | |
H19 | 1.125306 | 0.343031 | −0.196933 | 0.097 (8)* | |
C20 | 1.2642 (2) | 0.1949 (2) | −0.25722 (19) | 0.0811 (6) | |
H20 | 1.254078 | 0.238143 | −0.328465 | 0.086 (7)* | |
C21 | 1.3557 (2) | 0.0698 (2) | −0.23207 (17) | 0.0701 (5) | |
H21 | 1.407365 | 0.027264 | −0.284991 | 0.078 (6)* | |
C22 | 1.36791 (16) | 0.00935 (17) | −0.12438 (14) | 0.0542 (4) | |
C23 | 1.43327 (17) | −0.12886 (17) | 0.03118 (15) | 0.0577 (4) | |
H23 | 1.480119 | −0.202937 | 0.080814 | 0.062 (5)* | |
C24 | 1.22609 (15) | 0.46706 (16) | 0.23777 (13) | 0.0498 (4) | |
H24 | 1.177296 | 0.540514 | 0.188221 | 0.052 (5)* | |
C25 | 1.34296 (15) | 0.45677 (15) | 0.28885 (13) | 0.0493 (4) | |
C26 | 1.43056 (16) | 0.35601 (16) | 0.37025 (13) | 0.0516 (4) | |
C27 | 1.4353 (2) | 0.23960 (18) | 0.42710 (16) | 0.0646 (5) | |
H27 | 1.369824 | 0.213841 | 0.416084 | 0.060 (5)* | |
C28 | 1.5388 (2) | 0.1642 (2) | 0.49961 (18) | 0.0786 (6) | |
H28 | 1.543129 | 0.086425 | 0.537232 | 0.087 (7)* | |
C29 | 1.6376 (2) | 0.2015 (2) | 0.51809 (18) | 0.0779 (6) | |
H29 | 1.706043 | 0.148178 | 0.567771 | 0.094 (7)* | |
C30 | 1.63570 (19) | 0.3150 (2) | 0.46446 (16) | 0.0698 (5) | |
H30 | 1.701242 | 0.340156 | 0.476842 | 0.068 (6)* | |
C31 | 1.53133 (16) | 0.39131 (17) | 0.39055 (14) | 0.0555 (4) | |
C32 | 1.39468 (16) | 0.54558 (17) | 0.26514 (15) | 0.0552 (4) | |
H32 | 1.357655 | 0.621279 | 0.214953 | 0.068 (6)* | |
C33 | 1.55867 (19) | −0.2047 (2) | −0.13077 (19) | 0.0711 (6) | |
H33A | 1.632691 | −0.254020 | −0.081217 | 0.161 (14)* | |
H33B | 1.584307 | −0.159587 | −0.192192 | 0.148 (12)* | |
H33C | 1.527555 | −0.261002 | −0.154903 | 0.097 (8)* | |
C34 | 1.5904 (2) | 0.5748 (2) | 0.3191 (2) | 0.0755 (6) | |
H34A | 1.608336 | 0.583200 | 0.390918 | 0.137 (12)* | |
H34B | 1.547020 | 0.658432 | 0.275475 | 0.135 (12)* | |
H34C | 1.671310 | 0.527112 | 0.286992 | 0.125 (10)* | |
C35 | 1.000000 | 0.000000 | 0.000000 | 0.173 (3) | |
C36 | 1.0793 (6) | −0.1065 (6) | 0.0557 (5) | 0.0879 (13) | 0.5 |
N1 | 1.07253 (12) | 0.40608 (13) | 0.19845 (11) | 0.0508 (3) | |
N2 | 1.18768 (12) | 0.37708 (13) | 0.25908 (11) | 0.0518 (3) | |
N3 | 1.17284 (13) | 0.09578 (13) | 0.29627 (11) | 0.0507 (3) | |
N4 | 1.19636 (13) | 0.09946 (13) | 0.18477 (11) | 0.0526 (3) | |
N5 | 1.45459 (13) | −0.11286 (14) | −0.07613 (12) | 0.0575 (4) | |
N6 | 1.50671 (14) | 0.50781 (15) | 0.32476 (12) | 0.0584 (4) | |
N7 | 1.1399 (6) | −0.1952 (6) | 0.1118 (5) | 0.1225 (18) | 0.5 |
H35A | 0.948 (6) | 0.003 (8) | 0.059 (4) | 0.25 (3)* | |
H35B | 1.025 (14) | 0.055 (10) | 0.029 (13) | 0.26 (6)* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0396 (7) | 0.0456 (8) | 0.0531 (8) | −0.0121 (6) | 0.0104 (6) | −0.0208 (7) |
C2 | 0.0426 (8) | 0.0491 (8) | 0.0564 (9) | −0.0143 (7) | 0.0062 (6) | −0.0179 (7) |
C3 | 0.0576 (10) | 0.0676 (11) | 0.0639 (11) | −0.0239 (9) | 0.0023 (8) | −0.0074 (9) |
C4 | 0.0607 (11) | 0.0894 (15) | 0.0692 (13) | −0.0193 (11) | −0.0102 (10) | −0.0063 (11) |
C5 | 0.0580 (11) | 0.1048 (18) | 0.0918 (16) | −0.0351 (12) | −0.0151 (11) | −0.0115 (13) |
C6 | 0.0724 (13) | 0.1002 (18) | 0.116 (2) | −0.0521 (14) | −0.0175 (13) | 0.0022 (15) |
C7 | 0.0634 (11) | 0.0706 (12) | 0.0878 (14) | −0.0331 (10) | −0.0137 (10) | 0.0010 (11) |
C8 | 0.0385 (7) | 0.0481 (8) | 0.0530 (9) | −0.0163 (6) | 0.0068 (6) | −0.0180 (7) |
C9 | 0.0420 (7) | 0.0575 (9) | 0.0539 (9) | −0.0176 (7) | 0.0071 (6) | −0.0205 (7) |
C10 | 0.0605 (10) | 0.0645 (11) | 0.0661 (11) | −0.0225 (9) | 0.0168 (8) | −0.0298 (9) |
C11 | 0.0735 (12) | 0.0859 (15) | 0.0723 (13) | −0.0295 (11) | 0.0224 (10) | −0.0440 (12) |
C12 | 0.0815 (14) | 0.1096 (18) | 0.0604 (12) | −0.0359 (13) | 0.0220 (10) | −0.0384 (13) |
C13 | 0.118 (2) | 0.0915 (17) | 0.0575 (12) | −0.0331 (15) | 0.0197 (12) | −0.0110 (12) |
C14 | 0.0913 (15) | 0.0663 (12) | 0.0632 (12) | −0.0206 (11) | 0.0185 (10) | −0.0182 (10) |
C15 | 0.0486 (8) | 0.0464 (8) | 0.0613 (10) | −0.0142 (7) | 0.0069 (7) | −0.0183 (7) |
C16 | 0.0443 (8) | 0.0489 (8) | 0.0631 (10) | −0.0157 (7) | 0.0107 (7) | −0.0247 (7) |
C17 | 0.0429 (7) | 0.0534 (9) | 0.0631 (10) | −0.0205 (7) | 0.0080 (7) | −0.0240 (8) |
C18 | 0.0509 (9) | 0.0574 (10) | 0.0722 (12) | −0.0157 (8) | 0.0050 (8) | −0.0218 (9) |
C19 | 0.0696 (12) | 0.0657 (12) | 0.0843 (14) | −0.0173 (10) | −0.0061 (10) | −0.0092 (10) |
C20 | 0.0868 (15) | 0.0903 (16) | 0.0654 (13) | −0.0385 (13) | −0.0005 (11) | −0.0080 (11) |
C21 | 0.0690 (12) | 0.0851 (14) | 0.0655 (12) | −0.0374 (11) | 0.0152 (9) | −0.0272 (10) |
C22 | 0.0470 (8) | 0.0598 (10) | 0.0638 (10) | −0.0251 (8) | 0.0112 (7) | −0.0263 (8) |
C23 | 0.0520 (9) | 0.0495 (9) | 0.0693 (11) | −0.0154 (7) | 0.0108 (8) | −0.0226 (8) |
C24 | 0.0450 (8) | 0.0483 (8) | 0.0551 (9) | −0.0155 (7) | 0.0138 (7) | −0.0199 (7) |
C25 | 0.0476 (8) | 0.0492 (8) | 0.0536 (9) | −0.0198 (7) | 0.0135 (7) | −0.0201 (7) |
C26 | 0.0507 (8) | 0.0545 (9) | 0.0518 (9) | −0.0207 (7) | 0.0151 (7) | −0.0220 (7) |
C27 | 0.0730 (12) | 0.0600 (11) | 0.0632 (11) | −0.0294 (9) | 0.0133 (9) | −0.0160 (9) |
C28 | 0.0930 (16) | 0.0637 (12) | 0.0678 (12) | −0.0256 (11) | 0.0102 (11) | −0.0049 (10) |
C29 | 0.0685 (12) | 0.0789 (14) | 0.0649 (12) | −0.0123 (11) | 0.0008 (10) | −0.0080 (10) |
C30 | 0.0538 (10) | 0.0875 (14) | 0.0651 (11) | −0.0245 (10) | 0.0061 (8) | −0.0206 (10) |
C31 | 0.0505 (9) | 0.0621 (10) | 0.0537 (9) | −0.0208 (8) | 0.0134 (7) | −0.0206 (8) |
C32 | 0.0526 (9) | 0.0530 (9) | 0.0608 (10) | −0.0214 (7) | 0.0107 (7) | −0.0166 (8) |
C33 | 0.0602 (11) | 0.0689 (12) | 0.0935 (14) | −0.0259 (10) | 0.0314 (10) | −0.0473 (11) |
C34 | 0.0682 (12) | 0.0879 (15) | 0.0898 (15) | −0.0486 (12) | 0.0146 (11) | −0.0260 (12) |
C35 | 0.101 (4) | 0.159 (7) | 0.271 (12) | −0.075 (5) | −0.041 (6) | −0.008 (7) |
C36 | 0.073 (3) | 0.098 (4) | 0.101 (4) | −0.045 (3) | 0.006 (3) | −0.015 (3) |
N1 | 0.0423 (6) | 0.0490 (7) | 0.0604 (8) | −0.0161 (6) | 0.0079 (6) | −0.0178 (6) |
N2 | 0.0425 (7) | 0.0513 (8) | 0.0625 (8) | −0.0180 (6) | 0.0083 (6) | −0.0185 (6) |
N3 | 0.0487 (7) | 0.0484 (7) | 0.0506 (7) | −0.0139 (6) | 0.0088 (6) | −0.0168 (6) |
N4 | 0.0497 (7) | 0.0493 (7) | 0.0533 (8) | −0.0124 (6) | 0.0103 (6) | −0.0195 (6) |
N5 | 0.0499 (7) | 0.0563 (8) | 0.0704 (9) | −0.0196 (7) | 0.0190 (6) | −0.0329 (7) |
N6 | 0.0529 (8) | 0.0640 (9) | 0.0666 (9) | −0.0302 (7) | 0.0104 (6) | −0.0195 (7) |
N7 | 0.123 (4) | 0.127 (4) | 0.113 (4) | −0.058 (4) | 0.005 (3) | 0.003 (3) |
C1—N1 | 1.285 (2) | C21—C22 | 1.390 (3) |
C1—C2 | 1.482 (2) | C21—H21 | 0.9300 |
C1—C8 | 1.503 (2) | C22—N5 | 1.387 (2) |
C2—C3 | 1.384 (3) | C23—N5 | 1.349 (2) |
C2—C7 | 1.385 (3) | C23—H23 | 0.9300 |
C3—C4 | 1.386 (3) | C24—N2 | 1.282 (2) |
C3—H3 | 0.9300 | C24—C25 | 1.437 (2) |
C4—C5 | 1.367 (3) | C24—H24 | 0.9300 |
C4—H4 | 0.9300 | C25—C32 | 1.377 (2) |
C5—C6 | 1.368 (3) | C25—C26 | 1.440 (2) |
C5—H5 | 0.9300 | C26—C27 | 1.401 (3) |
C6—C7 | 1.383 (3) | C26—C31 | 1.408 (2) |
C6—H6 | 0.9300 | C27—C28 | 1.377 (3) |
C7—H7 | 0.9300 | C27—H27 | 0.9300 |
C8—N3 | 1.289 (2) | C28—C29 | 1.397 (3) |
C8—C9 | 1.475 (2) | C28—H28 | 0.9300 |
C9—C14 | 1.380 (3) | C29—C30 | 1.371 (3) |
C9—C10 | 1.391 (2) | C29—H29 | 0.9300 |
C10—C11 | 1.381 (3) | C30—C31 | 1.394 (3) |
C10—H10 | 0.9300 | C30—H30 | 0.9300 |
C11—C12 | 1.365 (3) | C31—N6 | 1.384 (2) |
C11—H11 | 0.9300 | C32—N6 | 1.354 (2) |
C12—C13 | 1.359 (3) | C32—H32 | 0.9300 |
C12—H12 | 0.9300 | C33—N5 | 1.457 (2) |
C13—C14 | 1.387 (3) | C33—H33A | 0.9600 |
C13—H13 | 0.9300 | C33—H33B | 0.9600 |
C14—H14 | 0.9300 | C33—H33C | 0.9600 |
C15—N4 | 1.286 (2) | C34—N6 | 1.453 (2) |
C15—C16 | 1.434 (2) | C34—H34A | 0.9600 |
C15—H15 | 0.9300 | C34—H34B | 0.9600 |
C16—C23 | 1.380 (2) | C34—H34C | 0.9600 |
C16—C17 | 1.440 (3) | C35—C36i | 1.280 (7) |
C17—C18 | 1.402 (2) | C35—C36 | 1.280 (7) |
C17—C22 | 1.411 (2) | C35—H35A | 0.92 (2) |
C18—C19 | 1.376 (3) | C35—H35B | 0.93 (2) |
C18—H18 | 0.9300 | C35—H35Ai | 0.92 (2) |
C19—C20 | 1.399 (3) | C35—H35Bi | 0.93 (2) |
C19—H19 | 0.9300 | C36—N7 | 1.104 (7) |
C20—C21 | 1.374 (3) | N1—N2 | 1.4110 (19) |
C20—H20 | 0.9300 | N3—N4 | 1.4067 (19) |
N1—C1—C2 | 119.59 (15) | N5—C23—H23 | 124.6 |
N1—C1—C8 | 123.36 (14) | C16—C23—H23 | 124.6 |
C2—C1—C8 | 116.93 (14) | N2—C24—C25 | 121.38 (16) |
C3—C2—C7 | 118.14 (16) | N2—C24—H24 | 119.3 |
C3—C2—C1 | 121.77 (16) | C25—C24—H24 | 119.3 |
C7—C2—C1 | 120.03 (16) | C32—C25—C24 | 124.65 (16) |
C2—C3—C4 | 120.1 (2) | C32—C25—C26 | 106.03 (15) |
C2—C3—H3 | 120.0 | C24—C25—C26 | 129.31 (15) |
C4—C3—H3 | 120.0 | C27—C26—C31 | 118.55 (17) |
C5—C4—C3 | 121.1 (2) | C27—C26—C25 | 134.91 (17) |
C5—C4—H4 | 119.4 | C31—C26—C25 | 106.54 (15) |
C3—C4—H4 | 119.4 | C28—C27—C26 | 118.6 (2) |
C4—C5—C6 | 119.4 (2) | C28—C27—H27 | 120.7 |
C4—C5—H5 | 120.3 | C26—C27—H27 | 120.7 |
C6—C5—H5 | 120.3 | C27—C28—C29 | 121.7 (2) |
C5—C6—C7 | 120.1 (2) | C27—C28—H28 | 119.2 |
C5—C6—H6 | 119.9 | C29—C28—H28 | 119.2 |
C7—C6—H6 | 119.9 | C30—C29—C28 | 121.3 (2) |
C6—C7—C2 | 121.1 (2) | C30—C29—H29 | 119.3 |
C6—C7—H7 | 119.4 | C28—C29—H29 | 119.3 |
C2—C7—H7 | 119.4 | C29—C30—C31 | 117.2 (2) |
N3—C8—C9 | 119.91 (15) | C29—C30—H30 | 121.4 |
N3—C8—C1 | 122.34 (14) | C31—C30—H30 | 121.4 |
C9—C8—C1 | 117.58 (13) | N6—C31—C30 | 129.16 (18) |
C14—C9—C10 | 118.14 (17) | N6—C31—C26 | 108.11 (15) |
C14—C9—C8 | 121.49 (16) | C30—C31—C26 | 122.72 (18) |
C10—C9—C8 | 120.27 (17) | N6—C32—C25 | 110.85 (16) |
C11—C10—C9 | 120.5 (2) | N6—C32—H32 | 124.6 |
C11—C10—H10 | 119.8 | C25—C32—H32 | 124.6 |
C9—C10—H10 | 119.8 | N5—C33—H33A | 109.5 |
C12—C11—C10 | 120.6 (2) | N5—C33—H33B | 109.5 |
C12—C11—H11 | 119.7 | H33A—C33—H33B | 109.5 |
C10—C11—H11 | 119.7 | N5—C33—H33C | 109.5 |
C13—C12—C11 | 119.5 (2) | H33A—C33—H33C | 109.5 |
C13—C12—H12 | 120.2 | H33B—C33—H33C | 109.5 |
C11—C12—H12 | 120.2 | N6—C34—H34A | 109.5 |
C12—C13—C14 | 120.8 (2) | N6—C34—H34B | 109.5 |
C12—C13—H13 | 119.6 | H34A—C34—H34B | 109.5 |
C14—C13—H13 | 119.6 | N6—C34—H34C | 109.5 |
C9—C14—C13 | 120.5 (2) | H34A—C34—H34C | 109.5 |
C9—C14—H14 | 119.8 | H34B—C34—H34C | 109.5 |
C13—C14—H14 | 119.8 | C36i—C35—C36 | 180.0 |
N4—C15—C16 | 121.41 (16) | C36i—C35—H35A | 96 (4) |
N4—C15—H15 | 119.3 | C36—C35—H35A | 84 (4) |
C16—C15—H15 | 119.3 | C36i—C35—H35B | 81 (8) |
C23—C16—C15 | 124.28 (17) | C36—C35—H35B | 99 (8) |
C23—C16—C17 | 106.21 (15) | H35A—C35—H35B | 86 (8) |
C15—C16—C17 | 129.43 (14) | C36i—C35—H35Ai | 84 (4) |
C18—C17—C22 | 118.62 (17) | C36—C35—H35Ai | 96 (4) |
C18—C17—C16 | 134.93 (16) | H35A—C35—H35Ai | 180.0 |
C22—C17—C16 | 106.42 (14) | H35B—C35—H35Ai | 94 (8) |
C19—C18—C17 | 118.58 (18) | C36i—C35—H35Bi | 99 (8) |
C19—C18—H18 | 120.7 | C36—C35—H35Bi | 81 (8) |
C17—C18—H18 | 120.7 | H35A—C35—H35Bi | 94 (8) |
C18—C19—C20 | 121.7 (2) | H35B—C35—H35Bi | 180 (6) |
C18—C19—H19 | 119.2 | H35Ai—C35—H35Bi | 86 (8) |
C20—C19—H19 | 119.2 | N7—C36—C35 | 173.2 (7) |
C21—C20—C19 | 121.1 (2) | C1—N1—N2 | 111.60 (14) |
C21—C20—H20 | 119.4 | C24—N2—N1 | 111.89 (14) |
C19—C20—H20 | 119.4 | C8—N3—N4 | 111.13 (13) |
C20—C21—C22 | 117.36 (19) | C15—N4—N3 | 112.23 (14) |
C20—C21—H21 | 121.3 | C23—N5—C22 | 108.75 (13) |
C22—C21—H21 | 121.3 | C23—N5—C33 | 125.59 (17) |
N5—C22—C21 | 129.47 (16) | C22—N5—C33 | 125.48 (17) |
N5—C22—C17 | 107.90 (16) | C32—N6—C31 | 108.47 (15) |
C21—C22—C17 | 122.60 (17) | C32—N6—C34 | 126.40 (17) |
N5—C23—C16 | 110.71 (17) | C31—N6—C34 | 125.10 (17) |
Symmetry code: (i) −x+2, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···N7ii | 0.93 | 2.51 | 3.372 (6) | 155 |
Symmetry code: (ii) −x+2, −y, −z+1. |
C36H26N4 | F(000) = 1080 |
Mr = 514.61 | Dx = 1.246 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 26.195 (8) Å | Cell parameters from 380 reflections |
b = 9.809 (3) Å | θ = 2.5–26.0° |
c = 11.806 (4) Å | µ = 0.07 mm−1 |
β = 115.230 (5)° | T = 298 K |
V = 2744.2 (15) Å3 | Block, yellow |
Z = 4 | 0.30 × 0.16 × 0.10 mm |
Bruker SMART CCD area detector diffractometer | 2413 independent reflections |
Radiation source: fine-focus sealed tube | 1197 reflections with I > 2σ(I) |
Detector resolution: 10.22 pixels mm-1 | Rint = 0.058 |
phi and ω scans | θmax = 25.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −31→29 |
Tmin = 0.986, Tmax = 0.993 | k = −11→11 |
6631 measured reflections | l = −14→12 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.062 | Only H-atom displacement parameters refined |
wR(F2) = 0.130 | w = 1/[σ2(Fo2) + (0.0447P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.95 | (Δ/σ)max < 0.001 |
2413 reflections | Δρmax = 0.11 e Å−3 |
194 parameters | Δρmin = −0.10 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.47469 (10) | 0.0592 (3) | 0.1862 (2) | 0.0498 (7) | |
C2 | 0.42618 (10) | −0.0283 (3) | 0.1669 (2) | 0.0492 (7) | |
C3 | 0.38212 (11) | −0.0443 (3) | 0.0497 (3) | 0.0657 (8) | |
H3 | 0.382634 | 0.002388 | −0.018428 | 0.065 (8)* | |
C4 | 0.33781 (13) | −0.1281 (3) | 0.0331 (3) | 0.0816 (10) | |
H4 | 0.308409 | −0.137174 | −0.046358 | 0.075 (9)* | |
C5 | 0.33585 (14) | −0.1977 (3) | 0.1294 (3) | 0.0845 (10) | |
H5 | 0.305668 | −0.255394 | 0.116304 | 0.074 (9)* | |
C6 | 0.37835 (14) | −0.1830 (3) | 0.2459 (4) | 0.0864 (10) | |
H6 | 0.377201 | −0.229986 | 0.313221 | 0.097 (11)* | |
C7 | 0.42297 (12) | −0.0986 (3) | 0.2640 (3) | 0.0715 (9) | |
H7 | 0.451750 | −0.088900 | 0.344135 | 0.052 (7)* | |
C8 | 0.52380 (14) | 0.2815 (3) | 0.0423 (3) | 0.0670 (8) | |
H8 | 0.489868 | 0.285791 | −0.029219 | 0.085 (11)* | |
C9 | 0.56973 (13) | 0.3652 (3) | 0.0431 (3) | 0.0660 (8) | |
C10 | 0.55680 (17) | 0.4528 (3) | −0.0558 (3) | 0.0855 (10) | |
H10 | 0.520013 | 0.454005 | −0.118007 | 0.117 (14)* | |
C11 | 0.59585 (18) | 0.5391 (4) | −0.0671 (4) | 0.1027 (12) | |
H11 | 0.585478 | 0.598432 | −0.134758 | 0.100 (11)* | |
C12 | 0.65000 (19) | 0.5357 (4) | 0.0229 (4) | 0.1035 (12) | |
H12 | 0.676527 | 0.593874 | 0.015764 | 0.123 (13)* | |
C13 | 0.66715 (15) | 0.4466 (3) | 0.1267 (3) | 0.0799 (9) | |
C14 | 0.62661 (13) | 0.3581 (3) | 0.1381 (3) | 0.0635 (8) | |
C15 | 0.64564 (14) | 0.2666 (3) | 0.2393 (3) | 0.0694 (8) | |
H15 | 0.619942 | 0.207560 | 0.248826 | 0.077 (9)* | |
C16 | 0.70059 (14) | 0.2621 (4) | 0.3236 (3) | 0.0824 (10) | |
H16 | 0.712101 | 0.200221 | 0.389491 | 0.097 (12)* | |
C17 | 0.73971 (18) | 0.3498 (4) | 0.3116 (4) | 0.1014 (12) | |
H17 | 0.777285 | 0.346277 | 0.369719 | 0.112 (13)* | |
C18 | 0.72364 (17) | 0.4395 (4) | 0.2167 (4) | 0.1034 (12) | |
H18 | 0.750268 | 0.497894 | 0.210383 | 0.086 (10)* | |
N1 | 0.47400 (9) | 0.1318 (2) | 0.0954 (2) | 0.0609 (6) | |
N2 | 0.52522 (9) | 0.2036 (2) | 0.1286 (2) | 0.0634 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0526 (17) | 0.0542 (16) | 0.0440 (15) | 0.0071 (13) | 0.0219 (13) | −0.0013 (13) |
C2 | 0.0451 (16) | 0.0574 (17) | 0.0440 (16) | 0.0016 (13) | 0.0179 (15) | −0.0031 (14) |
C3 | 0.0600 (19) | 0.084 (2) | 0.0522 (19) | −0.0039 (17) | 0.0225 (18) | −0.0002 (17) |
C4 | 0.054 (2) | 0.111 (3) | 0.070 (2) | −0.0156 (19) | 0.017 (2) | −0.017 (2) |
C5 | 0.065 (2) | 0.100 (3) | 0.095 (3) | −0.030 (2) | 0.040 (2) | −0.019 (2) |
C6 | 0.085 (3) | 0.096 (3) | 0.082 (3) | −0.025 (2) | 0.039 (2) | 0.006 (2) |
C7 | 0.062 (2) | 0.087 (2) | 0.056 (2) | −0.0173 (17) | 0.0163 (19) | 0.0009 (17) |
C8 | 0.072 (2) | 0.064 (2) | 0.065 (2) | 0.0010 (16) | 0.029 (2) | 0.0022 (16) |
C9 | 0.074 (2) | 0.0621 (19) | 0.068 (2) | −0.0001 (17) | 0.036 (2) | 0.0008 (17) |
C10 | 0.100 (3) | 0.081 (3) | 0.087 (3) | 0.000 (2) | 0.051 (3) | 0.022 (2) |
C11 | 0.123 (3) | 0.091 (3) | 0.108 (3) | 0.014 (3) | 0.063 (3) | 0.036 (3) |
C12 | 0.128 (3) | 0.084 (3) | 0.131 (4) | −0.009 (3) | 0.086 (3) | 0.019 (3) |
C13 | 0.087 (3) | 0.074 (2) | 0.094 (3) | −0.012 (2) | 0.053 (2) | −0.005 (2) |
C14 | 0.078 (2) | 0.0603 (19) | 0.064 (2) | −0.0020 (17) | 0.0415 (19) | −0.0036 (16) |
C15 | 0.065 (2) | 0.080 (2) | 0.067 (2) | −0.0083 (19) | 0.031 (2) | −0.0062 (17) |
C16 | 0.071 (2) | 0.096 (3) | 0.078 (2) | −0.005 (2) | 0.029 (2) | −0.004 (2) |
C17 | 0.076 (3) | 0.120 (4) | 0.110 (3) | −0.017 (2) | 0.040 (3) | −0.002 (3) |
C18 | 0.091 (3) | 0.103 (3) | 0.128 (4) | −0.028 (3) | 0.057 (3) | −0.004 (3) |
N1 | 0.0583 (15) | 0.0688 (16) | 0.0549 (15) | −0.0016 (13) | 0.0235 (13) | 0.0049 (12) |
N2 | 0.0633 (16) | 0.0688 (16) | 0.0597 (16) | −0.0061 (13) | 0.0278 (14) | 0.0139 (13) |
C1—N1 | 1.280 (3) | C9—C14 | 1.434 (3) |
C1—C2 | 1.469 (3) | C10—C11 | 1.378 (4) |
C1—C1i | 1.525 (4) | C10—H10 | 0.9300 |
C2—C7 | 1.371 (3) | C11—C12 | 1.363 (4) |
C2—C3 | 1.382 (3) | C11—H11 | 0.9300 |
C3—C4 | 1.367 (4) | C12—C13 | 1.414 (4) |
C3—H3 | 0.9300 | C12—H12 | 0.9300 |
C4—C5 | 1.346 (4) | C13—C18 | 1.409 (4) |
C4—H4 | 0.9300 | C13—C14 | 1.422 (4) |
C5—C6 | 1.359 (4) | C14—C15 | 1.406 (4) |
C5—H5 | 0.9300 | C15—C16 | 1.357 (4) |
C6—C7 | 1.373 (4) | C15—H15 | 0.9300 |
C6—H6 | 0.9300 | C16—C17 | 1.390 (4) |
C7—H7 | 0.9300 | C16—H16 | 0.9300 |
C8—N2 | 1.261 (3) | C17—C18 | 1.343 (4) |
C8—C9 | 1.453 (4) | C17—H17 | 0.9300 |
C8—H8 | 0.9300 | C18—H18 | 0.9300 |
C9—C10 | 1.371 (4) | N1—N2 | 1.415 (3) |
N1—C1—C2 | 119.5 (2) | C9—C10—H10 | 118.5 |
N1—C1—C1i | 121.5 (2) | C11—C10—H10 | 118.5 |
C2—C1—C1i | 118.9 (2) | C12—C11—C10 | 118.6 (4) |
C7—C2—C3 | 117.3 (3) | C12—C11—H11 | 120.7 |
C7—C2—C1 | 121.5 (2) | C10—C11—H11 | 120.7 |
C3—C2—C1 | 121.3 (3) | C11—C12—C13 | 122.1 (4) |
C4—C3—C2 | 120.5 (3) | C11—C12—H12 | 118.9 |
C4—C3—H3 | 119.8 | C13—C12—H12 | 118.9 |
C2—C3—H3 | 119.8 | C18—C13—C12 | 121.9 (4) |
C5—C4—C3 | 121.3 (3) | C18—C13—C14 | 119.0 (3) |
C5—C4—H4 | 119.3 | C12—C13—C14 | 119.0 (3) |
C3—C4—H4 | 119.3 | C15—C14—C13 | 117.5 (3) |
C4—C5—C6 | 119.4 (3) | C15—C14—C9 | 124.7 (3) |
C4—C5—H5 | 120.3 | C13—C14—C9 | 117.7 (3) |
C6—C5—H5 | 120.3 | C16—C15—C14 | 121.6 (3) |
C5—C6—C7 | 119.8 (3) | C16—C15—H15 | 119.2 |
C5—C6—H6 | 120.1 | C14—C15—H15 | 119.2 |
C7—C6—H6 | 120.1 | C15—C16—C17 | 120.2 (4) |
C2—C7—C6 | 121.7 (3) | C15—C16—H16 | 119.9 |
C2—C7—H7 | 119.2 | C17—C16—H16 | 119.9 |
C6—C7—H7 | 119.2 | C18—C17—C16 | 120.5 (4) |
N2—C8—C9 | 126.7 (3) | C18—C17—H17 | 119.8 |
N2—C8—H8 | 116.7 | C16—C17—H17 | 119.8 |
C9—C8—H8 | 116.7 | C17—C18—C13 | 121.1 (4) |
C10—C9—C14 | 119.5 (3) | C17—C18—H18 | 119.4 |
C10—C9—C8 | 116.4 (3) | C13—C18—H18 | 119.4 |
C14—C9—C8 | 124.0 (3) | C1—N1—N2 | 111.8 (2) |
C9—C10—C11 | 123.0 (4) | C8—N2—N1 | 112.3 (2) |
Symmetry code: (i) −x+1, y, −z+1/2. |
C23H17N3O | Dx = 1.243 Mg m−3 |
Mr = 351.39 | Melting point: 470.4 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.8767 (1) Å | Cell parameters from 380 reflections |
b = 8.3698 (2) Å | θ = 2.5–26.0° |
c = 32.6317 (6) Å | µ = 0.08 mm−1 |
V = 1878.17 (6) Å3 | T = 293 K |
Z = 4 | Needle, yellow |
F(000) = 736 | 0.35 × 0.1 × 0.09 mm |
Bruker SMART CCD area detector diffractometer | 3641 independent reflections |
Radiation source: fine-focus sealed tube | 3444 reflections with I > 2σ(I) |
Detector resolution: 10.11 pixels mm-1 | Rint = 0.023 |
phi and ω scans | θmax = 26.1°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −7→8 |
Tmin = 0.903, Tmax = 0.939 | k = −10→10 |
10418 measured reflections | l = −39→40 |
Refinement on F2 | Only H-atom displacement parameters refined |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0555P)2 + 0.1425P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.035 | (Δ/σ)max = 0.001 |
wR(F2) = 0.096 | Δρmax = 0.15 e Å−3 |
S = 1.02 | Δρmin = −0.13 e Å−3 |
3641 reflections | Extinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
262 parameters | Extinction coefficient: 0.014 (2) |
0 restraints | Absolute structure: Flack x determined using 1312 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) The diffraction data did not permit a clear determination of the absolute structure. |
Hydrogen site location: inferred from neighbouring sites | Absolute structure parameter: −1.4 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7517 (3) | 0.2656 (2) | 0.85621 (6) | 0.0427 (4) | |
C2 | 0.8141 (3) | 0.1859 (2) | 0.81814 (6) | 0.0470 (4) | |
C3 | 1.0008 (4) | 0.1258 (3) | 0.81425 (7) | 0.0669 (6) | |
H3 | 1.089269 | 0.138070 | 0.835570 | 0.076 (8)* | |
C4 | 1.0561 (5) | 0.0477 (4) | 0.77895 (9) | 0.0874 (9) | |
H4 | 1.181704 | 0.007482 | 0.776671 | 0.106 (11)* | |
C5 | 0.9281 (5) | 0.0289 (4) | 0.74721 (9) | 0.0923 (10) | |
H5 | 0.966311 | −0.024678 | 0.723578 | 0.102 (10)* | |
C6 | 0.7443 (5) | 0.0890 (4) | 0.75035 (8) | 0.0843 (9) | |
H6 | 0.657486 | 0.076835 | 0.728722 | 0.100 (10)* | |
C7 | 0.6864 (4) | 0.1677 (3) | 0.78550 (7) | 0.0636 (6) | |
H7 | 0.561082 | 0.208836 | 0.787316 | 0.062 (7)* | |
C8 | 0.5398 (3) | 0.3144 (2) | 0.86038 (5) | 0.0423 (4) | |
C9 | 0.4897 (3) | 0.4854 (3) | 0.85595 (6) | 0.0494 (5) | |
C10 | 0.2996 (4) | 0.5330 (4) | 0.86342 (7) | 0.0711 (7) | |
H10 | 0.205386 | 0.458336 | 0.870592 | 0.079 (9)* | |
C11 | 0.2525 (7) | 0.6924 (5) | 0.86005 (11) | 0.1074 (13) | |
H11 | 0.125781 | 0.725582 | 0.865180 | 0.136 (15)* | |
C12 | 0.3901 (8) | 0.8024 (4) | 0.84926 (12) | 0.1188 (16) | |
H12 | 0.356149 | 0.909601 | 0.847176 | 0.119 (12)* | |
C13 | 0.5766 (7) | 0.7565 (4) | 0.84152 (11) | 0.1043 (12) | |
H13 | 0.669543 | 0.831779 | 0.834033 | 0.160 (18)* | |
C14 | 0.6268 (4) | 0.5965 (3) | 0.84490 (8) | 0.0704 (7) | |
H14 | 0.753805 | 0.564317 | 0.839654 | 0.079 (9)* | |
C15 | 0.8754 (3) | 0.3567 (2) | 0.95253 (6) | 0.0472 (4) | |
H15 | 1.003366 | 0.321156 | 0.951208 | 0.050 (6)* | |
C16 | 0.7994 (3) | 0.4113 (2) | 0.99091 (6) | 0.0457 (4) | |
C17 | 0.6165 (3) | 0.4884 (2) | 1.00009 (6) | 0.0438 (4) | |
C18 | 0.4611 (3) | 0.5458 (2) | 0.97686 (7) | 0.0521 (5) | |
H18 | 0.462304 | 0.536961 | 0.948449 | 0.058 (6)* | |
C19 | 0.3066 (4) | 0.6156 (3) | 0.99655 (8) | 0.0646 (6) | |
H19 | 0.203049 | 0.654739 | 0.981207 | 0.073 (7)* | |
C20 | 0.3018 (4) | 0.6290 (3) | 1.03919 (8) | 0.0685 (6) | |
H20 | 0.195263 | 0.676936 | 1.051704 | 0.074 (8)* | |
C21 | 0.4506 (4) | 0.5730 (3) | 1.06286 (7) | 0.0614 (6) | |
H21 | 0.446523 | 0.580472 | 1.091284 | 0.068 (7)* | |
C22 | 0.6087 (3) | 0.5045 (2) | 1.04290 (6) | 0.0490 (5) | |
C23 | 0.8892 (3) | 0.3850 (3) | 1.02803 (6) | 0.0558 (5) | |
H23 | 1.009720 | 0.336291 | 1.031394 | 0.063 (7)* | |
N1 | 0.8691 (2) | 0.2859 (2) | 0.88638 (5) | 0.0493 (4) | |
N2 | 0.7709 (2) | 0.3555 (2) | 0.91982 (5) | 0.0481 (4) | |
N3 | 0.7772 (3) | 0.4399 (2) | 1.05867 (5) | 0.0580 (5) | |
H24 | 0.806292 | 0.435508 | 1.084278 | 0.087 (9)* | |
O1 | 0.4184 (2) | 0.21208 (19) | 0.86624 (5) | 0.0593 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0455 (9) | 0.0417 (9) | 0.0410 (9) | 0.0001 (8) | 0.0002 (8) | 0.0052 (7) |
C2 | 0.0552 (11) | 0.0454 (10) | 0.0403 (9) | 0.0018 (9) | 0.0022 (8) | 0.0040 (8) |
C3 | 0.0636 (13) | 0.0814 (16) | 0.0558 (12) | 0.0192 (13) | 0.0002 (11) | −0.0060 (12) |
C4 | 0.0847 (19) | 0.106 (2) | 0.0712 (16) | 0.0347 (18) | 0.0091 (14) | −0.0160 (15) |
C5 | 0.115 (2) | 0.105 (2) | 0.0569 (14) | 0.026 (2) | 0.0091 (16) | −0.0225 (14) |
C6 | 0.095 (2) | 0.111 (2) | 0.0468 (12) | 0.0072 (19) | −0.0077 (13) | −0.0148 (13) |
C7 | 0.0627 (14) | 0.0796 (16) | 0.0486 (11) | 0.0074 (12) | −0.0031 (10) | −0.0037 (11) |
C8 | 0.0438 (9) | 0.0491 (10) | 0.0342 (8) | −0.0034 (8) | 0.0009 (7) | 0.0032 (7) |
C9 | 0.0552 (10) | 0.0531 (11) | 0.0400 (9) | 0.0087 (9) | −0.0072 (8) | −0.0021 (8) |
C10 | 0.0679 (14) | 0.0868 (18) | 0.0585 (13) | 0.0256 (15) | −0.0039 (11) | −0.0098 (12) |
C11 | 0.117 (3) | 0.108 (3) | 0.097 (2) | 0.069 (2) | −0.023 (2) | −0.030 (2) |
C12 | 0.181 (4) | 0.0616 (18) | 0.114 (3) | 0.048 (3) | −0.063 (3) | −0.0235 (19) |
C13 | 0.150 (3) | 0.0520 (15) | 0.111 (3) | −0.002 (2) | −0.043 (3) | 0.0109 (15) |
C14 | 0.0793 (17) | 0.0521 (12) | 0.0798 (16) | −0.0026 (12) | −0.0157 (14) | 0.0109 (11) |
C15 | 0.0434 (9) | 0.0473 (10) | 0.0509 (10) | 0.0047 (9) | −0.0062 (8) | −0.0019 (8) |
C16 | 0.0475 (10) | 0.0425 (9) | 0.0469 (9) | 0.0014 (8) | −0.0118 (8) | −0.0030 (8) |
C17 | 0.0496 (10) | 0.0350 (8) | 0.0467 (9) | −0.0023 (8) | −0.0065 (8) | −0.0021 (7) |
C18 | 0.0551 (11) | 0.0477 (10) | 0.0535 (11) | 0.0026 (9) | −0.0131 (9) | 0.0002 (9) |
C19 | 0.0568 (13) | 0.0599 (13) | 0.0770 (15) | 0.0121 (11) | −0.0091 (12) | −0.0001 (11) |
C20 | 0.0628 (14) | 0.0628 (14) | 0.0798 (16) | 0.0096 (12) | 0.0087 (13) | −0.0073 (12) |
C21 | 0.0763 (15) | 0.0548 (12) | 0.0531 (12) | 0.0016 (12) | 0.0053 (11) | −0.0072 (10) |
C22 | 0.0602 (12) | 0.0402 (10) | 0.0466 (10) | 0.0005 (9) | −0.0058 (9) | −0.0012 (8) |
C23 | 0.0575 (12) | 0.0551 (11) | 0.0548 (11) | 0.0090 (10) | −0.0158 (10) | −0.0058 (9) |
N1 | 0.0456 (9) | 0.0585 (10) | 0.0437 (8) | 0.0059 (8) | −0.0012 (7) | −0.0030 (7) |
N2 | 0.0450 (8) | 0.0569 (9) | 0.0424 (8) | 0.0056 (8) | −0.0019 (7) | −0.0038 (7) |
N3 | 0.0738 (12) | 0.0595 (10) | 0.0407 (9) | 0.0084 (10) | −0.0158 (8) | −0.0051 (7) |
O1 | 0.0542 (8) | 0.0652 (9) | 0.0586 (9) | −0.0152 (8) | 0.0019 (7) | 0.0079 (7) |
C1—N1 | 1.284 (3) | C13—C14 | 1.387 (4) |
C1—C2 | 1.474 (3) | C13—H13 | 0.9300 |
C1—C8 | 1.520 (3) | C14—H14 | 0.9300 |
C2—C3 | 1.385 (3) | C15—N2 | 1.287 (2) |
C2—C7 | 1.389 (3) | C15—C16 | 1.432 (3) |
C3—C4 | 1.378 (4) | C15—H15 | 0.9300 |
C3—H3 | 0.9300 | C16—C23 | 1.377 (3) |
C4—C5 | 1.368 (4) | C16—C17 | 1.445 (3) |
C4—H4 | 0.9300 | C17—C18 | 1.395 (3) |
C5—C6 | 1.364 (4) | C17—C22 | 1.404 (3) |
C5—H5 | 0.9300 | C18—C19 | 1.372 (3) |
C6—C7 | 1.381 (3) | C18—H18 | 0.9300 |
C6—H6 | 0.9300 | C19—C20 | 1.396 (4) |
C7—H7 | 0.9300 | C19—H19 | 0.9300 |
C8—O1 | 1.211 (2) | C20—C21 | 1.365 (3) |
C8—C9 | 1.479 (3) | C20—H20 | 0.9300 |
C9—C14 | 1.372 (3) | C21—C22 | 1.391 (3) |
C9—C10 | 1.388 (3) | C21—H21 | 0.9300 |
C10—C11 | 1.378 (5) | C22—N3 | 1.378 (3) |
C10—H10 | 0.9300 | C23—N3 | 1.343 (3) |
C11—C12 | 1.366 (6) | C23—H23 | 0.9300 |
C11—H11 | 0.9300 | N1—N2 | 1.410 (2) |
C12—C13 | 1.362 (6) | N3—H24 | 0.8600 |
C12—H12 | 0.9300 | ||
N1—C1—C2 | 121.53 (18) | C12—C13—H13 | 120.3 |
N1—C1—C8 | 119.90 (17) | C14—C13—H13 | 120.3 |
C2—C1—C8 | 118.45 (16) | C9—C14—C13 | 120.3 (3) |
C3—C2—C7 | 118.4 (2) | C9—C14—H14 | 119.9 |
C3—C2—C1 | 120.79 (19) | C13—C14—H14 | 119.9 |
C7—C2—C1 | 120.79 (19) | N2—C15—C16 | 121.61 (18) |
C4—C3—C2 | 120.3 (2) | N2—C15—H15 | 119.2 |
C4—C3—H3 | 119.8 | C16—C15—H15 | 119.2 |
C2—C3—H3 | 119.8 | C23—C16—C15 | 123.68 (18) |
C5—C4—C3 | 120.7 (3) | C23—C16—C17 | 106.22 (17) |
C5—C4—H4 | 119.7 | C15—C16—C17 | 129.90 (17) |
C3—C4—H4 | 119.7 | C18—C17—C22 | 118.56 (18) |
C6—C5—C4 | 119.8 (3) | C18—C17—C16 | 135.04 (18) |
C6—C5—H5 | 120.1 | C22—C17—C16 | 106.40 (17) |
C4—C5—H5 | 120.1 | C19—C18—C17 | 119.0 (2) |
C5—C6—C7 | 120.3 (3) | C19—C18—H18 | 120.5 |
C5—C6—H6 | 119.8 | C17—C18—H18 | 120.5 |
C7—C6—H6 | 119.8 | C18—C19—C20 | 121.3 (2) |
C6—C7—C2 | 120.5 (2) | C18—C19—H19 | 119.4 |
C6—C7—H7 | 119.8 | C20—C19—H19 | 119.4 |
C2—C7—H7 | 119.8 | C21—C20—C19 | 121.3 (2) |
O1—C8—C9 | 122.64 (19) | C21—C20—H20 | 119.4 |
O1—C8—C1 | 119.01 (18) | C19—C20—H20 | 119.4 |
C9—C8—C1 | 118.33 (17) | C20—C21—C22 | 117.5 (2) |
C14—C9—C10 | 119.9 (2) | C20—C21—H21 | 121.2 |
C14—C9—C8 | 121.4 (2) | C22—C21—H21 | 121.2 |
C10—C9—C8 | 118.7 (2) | N3—C22—C21 | 130.1 (2) |
C11—C10—C9 | 119.0 (3) | N3—C22—C17 | 107.56 (18) |
C11—C10—H10 | 120.5 | C21—C22—C17 | 122.37 (19) |
C9—C10—H10 | 120.5 | N3—C23—C16 | 110.04 (18) |
C12—C11—C10 | 120.7 (4) | N3—C23—H23 | 125.0 |
C12—C11—H11 | 119.7 | C16—C23—H23 | 125.0 |
C10—C11—H11 | 119.7 | C1—N1—N2 | 110.30 (16) |
C13—C12—C11 | 120.7 (3) | C15—N2—N1 | 112.19 (16) |
C13—C12—H12 | 119.7 | C23—N3—C22 | 109.78 (17) |
C11—C12—H12 | 119.7 | C23—N3—H24 | 125.1 |
C12—C13—C14 | 119.4 (4) | C22—N3—H24 | 125.1 |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1i | 0.93 | 2.55 | 3.413 (3) | 154 |
N3—H24···O1ii | 0.86 | 2.17 | 2.927 (2) | 146 |
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, −y+1/2, −z+2. |
C24H19N3O | Dx = 1.271 Mg m−3 |
Mr = 365.42 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P43212 | Cell parameters from 380 reflections |
a = 8.3580 (1) Å | θ = 2.5–26.0° |
c = 54.6705 (7) Å | µ = 0.08 mm−1 |
V = 3819.07 (10) Å3 | T = 293 K |
Z = 8 | Needle, yellow |
F(000) = 1536 | 0.3 × 0.1 × 0.1 mm |
Bruker SMART CCD area detector diffractometer | 3759 independent reflections |
Radiation source: fine-focus sealed tube | 3565 reflections with I > 2σ(I) |
Detector resolution: 10.32 pixels mm-1 | Rint = 0.030 |
phi and ω scans | θmax = 26.0°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −6→10 |
Tmin = 0.983, Tmax = 0.998 | k = −9→9 |
21746 measured reflections | l = −66→66 |
Refinement on F2 | Only H-atom displacement parameters refined |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0638P)2 + 0.5669P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.041 | (Δ/σ)max < 0.001 |
wR(F2) = 0.113 | Δρmax = 0.16 e Å−3 |
S = 1.06 | Δρmin = −0.12 e Å−3 |
3759 reflections | Extinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
274 parameters | Extinction coefficient: 0.0060 (10) |
0 restraints | Absolute structure: Flack x determined using 1258 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) The diffraction data did not permit a clear determination of the absolute structure. |
Hydrogen site location: inferred from neighbouring sites | Absolute structure parameter: −1.5 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.1474 (3) | 0.3991 (2) | 0.03774 (4) | 0.0375 (4) | |
C2 | 1.0797 (3) | 0.4604 (2) | 0.01468 (4) | 0.0399 (5) | |
C3 | 1.1757 (3) | 0.5262 (3) | −0.00339 (4) | 0.0536 (6) | |
H3 | 1.285832 | 0.530978 | −0.001107 | 0.093 (11)* | |
C4 | 1.1095 (4) | 0.5845 (4) | −0.02472 (4) | 0.0638 (7) | |
H4 | 1.175243 | 0.629370 | −0.036611 | 0.085 (10)* | |
C5 | 0.9483 (4) | 0.5770 (4) | −0.02850 (5) | 0.0702 (8) | |
H5 | 0.904020 | 0.618015 | −0.042792 | 0.112 (13)* | |
C6 | 0.8528 (4) | 0.5092 (5) | −0.01127 (6) | 0.0887 (12) | |
H6 | 0.743289 | 0.501715 | −0.014035 | 0.134 (16)* | |
C7 | 0.9165 (3) | 0.4509 (4) | 0.01037 (5) | 0.0688 (8) | |
H7 | 0.849569 | 0.405348 | 0.022041 | 0.080 (10)* | |
C8 | 1.0347 (3) | 0.3189 (2) | 0.05573 (3) | 0.0357 (4) | |
C9 | 1.0165 (3) | 0.1422 (3) | 0.05565 (4) | 0.0385 (5) | |
C10 | 0.9186 (3) | 0.0725 (3) | 0.07313 (4) | 0.0485 (6) | |
H10 | 0.865994 | 0.135854 | 0.084567 | 0.064 (9)* | |
C11 | 0.8998 (4) | −0.0923 (3) | 0.07344 (5) | 0.0639 (7) | |
H11 | 0.834722 | −0.139926 | 0.085166 | 0.107 (13)* | |
C12 | 0.9768 (4) | −0.1849 (3) | 0.05651 (6) | 0.0740 (9) | |
H12 | 0.963375 | −0.295330 | 0.056759 | 0.110 (13)* | |
C13 | 1.0735 (4) | −0.1166 (3) | 0.03917 (7) | 0.0765 (9) | |
H13 | 1.125833 | −0.180829 | 0.027809 | 0.097 (12)* | |
C14 | 1.0937 (3) | 0.0485 (3) | 0.03852 (5) | 0.0565 (6) | |
H14 | 1.158469 | 0.095295 | 0.026686 | 0.061 (8)* | |
C15 | 1.4732 (2) | 0.3899 (3) | 0.07414 (4) | 0.0394 (5) | |
C16 | 1.5313 (2) | 0.2955 (3) | 0.09468 (4) | 0.0396 (5) | |
C17 | 1.4917 (2) | 0.1302 (3) | 0.09979 (4) | 0.0383 (5) | |
C18 | 1.3983 (3) | 0.0148 (3) | 0.08826 (4) | 0.0462 (5) | |
H18 | 1.342170 | 0.039309 | 0.074057 | 0.064 (8)* | |
C19 | 1.3903 (4) | −0.1359 (3) | 0.09820 (5) | 0.0614 (7) | |
H19 | 1.327760 | −0.213486 | 0.090633 | 0.071 (9)* | |
C20 | 1.4748 (5) | −0.1750 (4) | 0.11958 (5) | 0.0710 (9) | |
H20 | 1.467785 | −0.278356 | 0.125807 | 0.094 (11)* | |
C21 | 1.5667 (4) | −0.0651 (4) | 0.13138 (5) | 0.0661 (8) | |
H21 | 1.622214 | −0.091123 | 0.145572 | 0.097 (12)* | |
C22 | 1.5744 (3) | 0.0886 (3) | 0.12134 (4) | 0.0487 (6) | |
C23 | 1.6341 (3) | 0.3418 (3) | 0.11298 (5) | 0.0534 (6) | |
H23 | 1.679950 | 0.442841 | 0.114289 | 0.073 (9)* | |
C24 | 1.5707 (3) | 0.5277 (3) | 0.06510 (5) | 0.0569 (7) | |
H24A | 1.667158 | 0.535719 | 0.074549 | 0.156 (19)* | |
H24B | 1.510208 | 0.624774 | 0.066728 | 0.18 (2)* | |
H24C | 1.597308 | 0.511150 | 0.048203 | 0.121 (15)* | |
N1 | 1.2956 (2) | 0.4223 (2) | 0.04307 (3) | 0.0462 (5) | |
N2 | 1.3383 (2) | 0.3443 (2) | 0.06501 (3) | 0.0455 (5) | |
N3 | 1.6592 (3) | 0.2208 (3) | 0.12874 (4) | 0.0609 (6) | |
H25 | 1.719109 | 0.225541 | 0.141506 | 0.074 (10)* | |
O1 | 0.9581 (2) | 0.4039 (2) | 0.06942 (3) | 0.0527 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0424 (11) | 0.0314 (10) | 0.0386 (10) | 0.0004 (8) | −0.0045 (9) | 0.0036 (8) |
C2 | 0.0495 (12) | 0.0335 (10) | 0.0367 (10) | 0.0004 (9) | −0.0053 (9) | 0.0043 (8) |
C3 | 0.0571 (15) | 0.0570 (15) | 0.0468 (12) | −0.0025 (11) | 0.0007 (11) | 0.0080 (11) |
C4 | 0.085 (2) | 0.0643 (17) | 0.0427 (12) | −0.0019 (15) | 0.0041 (13) | 0.0151 (12) |
C5 | 0.085 (2) | 0.079 (2) | 0.0462 (13) | 0.0060 (17) | −0.0175 (14) | 0.0186 (13) |
C6 | 0.0621 (19) | 0.136 (4) | 0.0682 (18) | 0.003 (2) | −0.0228 (16) | 0.035 (2) |
C7 | 0.0510 (15) | 0.101 (2) | 0.0540 (14) | −0.0045 (15) | −0.0100 (12) | 0.0274 (15) |
C8 | 0.0386 (10) | 0.0359 (10) | 0.0326 (8) | 0.0017 (8) | −0.0067 (8) | 0.0027 (8) |
C9 | 0.0420 (11) | 0.0354 (10) | 0.0380 (9) | −0.0012 (8) | −0.0074 (9) | 0.0031 (8) |
C10 | 0.0533 (13) | 0.0490 (13) | 0.0433 (11) | −0.0057 (10) | −0.0038 (10) | 0.0080 (10) |
C11 | 0.0720 (18) | 0.0547 (15) | 0.0649 (15) | −0.0184 (14) | −0.0094 (14) | 0.0209 (13) |
C12 | 0.087 (2) | 0.0362 (14) | 0.098 (2) | −0.0104 (14) | −0.0130 (19) | 0.0024 (15) |
C13 | 0.090 (2) | 0.0446 (15) | 0.095 (2) | −0.0013 (15) | 0.0128 (19) | −0.0203 (15) |
C14 | 0.0642 (16) | 0.0440 (13) | 0.0614 (14) | −0.0059 (12) | 0.0087 (13) | −0.0086 (11) |
C15 | 0.0322 (10) | 0.0393 (11) | 0.0467 (10) | 0.0002 (8) | −0.0004 (9) | 0.0020 (9) |
C16 | 0.0311 (10) | 0.0456 (12) | 0.0420 (10) | 0.0012 (9) | −0.0029 (9) | 0.0015 (9) |
C17 | 0.0336 (10) | 0.0460 (12) | 0.0354 (9) | 0.0072 (8) | 0.0017 (8) | 0.0040 (8) |
C18 | 0.0480 (12) | 0.0470 (12) | 0.0437 (11) | −0.0002 (10) | 0.0013 (9) | 0.0032 (9) |
C19 | 0.0777 (19) | 0.0472 (14) | 0.0593 (14) | −0.0006 (13) | 0.0133 (14) | 0.0079 (12) |
C20 | 0.104 (3) | 0.0494 (15) | 0.0602 (15) | 0.0214 (16) | 0.0204 (17) | 0.0186 (13) |
C21 | 0.083 (2) | 0.0711 (19) | 0.0446 (13) | 0.0318 (16) | 0.0022 (13) | 0.0160 (13) |
C22 | 0.0447 (13) | 0.0619 (15) | 0.0395 (11) | 0.0159 (11) | −0.0005 (9) | 0.0034 (10) |
C23 | 0.0412 (13) | 0.0594 (15) | 0.0597 (13) | −0.0011 (11) | −0.0118 (11) | −0.0079 (12) |
C24 | 0.0482 (14) | 0.0501 (14) | 0.0723 (17) | −0.0120 (12) | 0.0006 (13) | 0.0104 (13) |
N1 | 0.0433 (10) | 0.0463 (11) | 0.0489 (10) | −0.0053 (8) | −0.0090 (8) | 0.0139 (9) |
N2 | 0.0409 (10) | 0.0468 (11) | 0.0489 (10) | −0.0065 (8) | −0.0108 (8) | 0.0144 (8) |
N3 | 0.0518 (12) | 0.0784 (16) | 0.0525 (11) | 0.0118 (11) | −0.0218 (10) | −0.0041 (11) |
O1 | 0.0628 (11) | 0.0440 (9) | 0.0512 (9) | 0.0070 (8) | 0.0083 (8) | −0.0033 (7) |
C1—N1 | 1.287 (3) | C13—H13 | 0.9300 |
C1—C2 | 1.474 (3) | C14—H14 | 0.9300 |
C1—C8 | 1.518 (3) | C15—N2 | 1.290 (3) |
C2—C3 | 1.386 (3) | C15—C16 | 1.456 (3) |
C2—C7 | 1.386 (4) | C15—C24 | 1.495 (3) |
C3—C4 | 1.380 (3) | C16—C23 | 1.375 (3) |
C3—H3 | 0.9300 | C16—C17 | 1.448 (3) |
C4—C5 | 1.365 (4) | C17—C18 | 1.392 (3) |
C4—H4 | 0.9300 | C17—C22 | 1.409 (3) |
C5—C6 | 1.358 (4) | C18—C19 | 1.373 (3) |
C5—H5 | 0.9300 | C18—H18 | 0.9300 |
C6—C7 | 1.386 (4) | C19—C20 | 1.404 (4) |
C6—H6 | 0.9300 | C19—H19 | 0.9300 |
C7—H7 | 0.9300 | C20—C21 | 1.360 (5) |
C8—O1 | 1.214 (3) | C20—H20 | 0.9300 |
C8—C9 | 1.485 (3) | C21—C22 | 1.399 (4) |
C9—C14 | 1.381 (3) | C21—H21 | 0.9300 |
C9—C10 | 1.386 (3) | C22—N3 | 1.373 (4) |
C10—C11 | 1.387 (4) | C23—N3 | 1.345 (4) |
C10—H10 | 0.9300 | C23—H23 | 0.9300 |
C11—C12 | 1.367 (5) | C24—H24A | 0.9600 |
C11—H11 | 0.9300 | C24—H24B | 0.9600 |
C12—C13 | 1.370 (5) | C24—H24C | 0.9600 |
C12—H12 | 0.9300 | N1—N2 | 1.411 (2) |
C13—C14 | 1.391 (4) | N3—H25 | 0.8600 |
N1—C1—C2 | 120.7 (2) | C9—C14—H14 | 120.4 |
N1—C1—C8 | 121.11 (18) | C13—C14—H14 | 120.4 |
C2—C1—C8 | 118.00 (18) | N2—C15—C16 | 115.46 (19) |
C3—C2—C7 | 118.1 (2) | N2—C15—C24 | 125.1 (2) |
C3—C2—C1 | 121.7 (2) | C16—C15—C24 | 119.4 (2) |
C7—C2—C1 | 120.2 (2) | C23—C16—C17 | 105.7 (2) |
C4—C3—C2 | 120.7 (3) | C23—C16—C15 | 128.1 (2) |
C4—C3—H3 | 119.7 | C17—C16—C15 | 126.14 (19) |
C2—C3—H3 | 119.7 | C18—C17—C22 | 118.9 (2) |
C5—C4—C3 | 120.5 (3) | C18—C17—C16 | 134.59 (19) |
C5—C4—H4 | 119.8 | C22—C17—C16 | 106.5 (2) |
C3—C4—H4 | 119.8 | C19—C18—C17 | 118.9 (2) |
C6—C5—C4 | 119.6 (2) | C19—C18—H18 | 120.5 |
C6—C5—H5 | 120.2 | C17—C18—H18 | 120.5 |
C4—C5—H5 | 120.2 | C18—C19—C20 | 121.2 (3) |
C5—C6—C7 | 120.9 (3) | C18—C19—H19 | 119.4 |
C5—C6—H6 | 119.6 | C20—C19—H19 | 119.4 |
C7—C6—H6 | 119.6 | C21—C20—C19 | 121.4 (3) |
C6—C7—C2 | 120.2 (3) | C21—C20—H20 | 119.3 |
C6—C7—H7 | 119.9 | C19—C20—H20 | 119.3 |
C2—C7—H7 | 119.9 | C20—C21—C22 | 117.4 (2) |
O1—C8—C9 | 122.0 (2) | C20—C21—H21 | 121.3 |
O1—C8—C1 | 117.96 (19) | C22—C21—H21 | 121.3 |
C9—C8—C1 | 120.03 (18) | N3—C22—C21 | 130.3 (2) |
C14—C9—C10 | 120.3 (2) | N3—C22—C17 | 107.5 (2) |
C14—C9—C8 | 121.2 (2) | C21—C22—C17 | 122.1 (3) |
C10—C9—C8 | 118.4 (2) | N3—C23—C16 | 110.6 (2) |
C9—C10—C11 | 119.5 (3) | N3—C23—H23 | 124.7 |
C9—C10—H10 | 120.2 | C16—C23—H23 | 124.7 |
C11—C10—H10 | 120.2 | C15—C24—H24A | 109.5 |
C12—C11—C10 | 120.0 (3) | C15—C24—H24B | 109.5 |
C12—C11—H11 | 120.0 | H24A—C24—H24B | 109.5 |
C10—C11—H11 | 120.0 | C15—C24—H24C | 109.5 |
C11—C12—C13 | 120.7 (2) | H24A—C24—H24C | 109.5 |
C11—C12—H12 | 119.7 | H24B—C24—H24C | 109.5 |
C13—C12—H12 | 119.7 | C1—N1—N2 | 111.51 (18) |
C12—C13—C14 | 120.1 (3) | C15—N2—N1 | 114.44 (18) |
C12—C13—H13 | 119.9 | C23—N3—C22 | 109.6 (2) |
C14—C13—H13 | 119.9 | C23—N3—H25 | 125.2 |
C9—C14—C13 | 119.3 (3) | C22—N3—H25 | 125.2 |
C24H19N3O | F(000) = 768 |
Mr = 365.42 | Dx = 1.224 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 18.6779 (6) Å | Cell parameters from 380 reflections |
b = 8.6694 (3) Å | θ = 2.5–26.0° |
c = 12.7956 (4) Å | µ = 0.08 mm−1 |
β = 106.910 (4)° | T = 293 K |
V = 1982.36 (12) Å3 | Block, yellow |
Z = 4 | 0.33 × 0.28 × 0.25 mm |
Bruker SMART CCD area detector diffractometer | 3837 independent reflections |
Radiation source: fine-focus sealed tube | 2964 reflections with I > 2σ(I) |
Detector resolution: 10.11 pixels mm-1 | Rint = 0.021 |
phi and ω scans | θmax = 26.1°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −14→22 |
Tmin = 0.971, Tmax = 0.987 | k = −10→10 |
9410 measured reflections | l = −15→15 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | Only H-atom displacement parameters refined |
R[F2 > 2σ(F2)] = 0.045 | w = 1/[σ2(Fo2) + (0.0721P)2 + 0.203P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.140 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.16 e Å−3 |
3837 reflections | Δρmin = −0.15 e Å−3 |
274 parameters | Extinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0045 (13) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.80896 (9) | 0.5549 (2) | 0.27473 (14) | 0.0584 (4) | |
C2 | 0.88286 (10) | 0.6191 (2) | 0.33323 (15) | 0.0659 (4) | |
C3 | 0.89301 (12) | 0.7045 (3) | 0.42794 (18) | 0.0837 (6) | |
H3 | 0.852945 | 0.720693 | 0.455994 | 0.075 (6)* | |
C4 | 0.96264 (15) | 0.7658 (4) | 0.4811 (2) | 0.1081 (9) | |
H4 | 0.969070 | 0.823302 | 0.544526 | 0.120 (10)* | |
C5 | 1.02223 (14) | 0.7419 (4) | 0.4403 (3) | 0.1200 (11) | |
H5 | 1.068774 | 0.784014 | 0.475643 | 0.125 (10)* | |
C6 | 1.01287 (14) | 0.6567 (5) | 0.3485 (3) | 0.1234 (11) | |
H6 | 1.053354 | 0.639808 | 0.321499 | 0.134 (11)* | |
C7 | 0.94374 (11) | 0.5945 (3) | 0.2945 (2) | 0.0953 (7) | |
H7 | 0.938221 | 0.535900 | 0.231818 | 0.099 (8)* | |
C8 | 0.79924 (9) | 0.4658 (2) | 0.16966 (14) | 0.0603 (4) | |
C9 | 0.79785 (8) | 0.2948 (2) | 0.17403 (13) | 0.0576 (4) | |
C10 | 0.77856 (11) | 0.2110 (3) | 0.07773 (17) | 0.0757 (5) | |
H10 | 0.766790 | 0.261502 | 0.010761 | 0.083 (6)* | |
C11 | 0.77691 (13) | 0.0510 (3) | 0.0818 (2) | 0.0955 (7) | |
H11 | 0.763005 | −0.005355 | 0.017221 | 0.120 (9)* | |
C12 | 0.79548 (14) | −0.0243 (3) | 0.1796 (3) | 0.1008 (8) | |
H12 | 0.795084 | −0.131493 | 0.181433 | 0.128 (10)* | |
C13 | 0.81477 (13) | 0.0581 (3) | 0.2755 (2) | 0.0891 (6) | |
H13 | 0.827294 | 0.006791 | 0.342203 | 0.111 (9)* | |
C14 | 0.81552 (10) | 0.2171 (2) | 0.27258 (16) | 0.0679 (5) | |
H14 | 0.828040 | 0.272649 | 0.337583 | 0.073 (6)* | |
C15 | 0.62962 (9) | 0.54270 (18) | 0.27528 (13) | 0.0556 (4) | |
H15 | 0.635990 | 0.605392 | 0.336293 | 0.060 (5)* | |
C16 | 0.55620 (8) | 0.48955 (17) | 0.21907 (12) | 0.0496 (3) | |
C17 | 0.53199 (9) | 0.38820 (16) | 0.12688 (12) | 0.0487 (3) | |
C18 | 0.56873 (10) | 0.29923 (18) | 0.06710 (14) | 0.0592 (4) | |
H18 | 0.620638 | 0.300348 | 0.083982 | 0.067 (5)* | |
C19 | 0.52650 (13) | 0.2104 (2) | −0.01693 (15) | 0.0733 (5) | |
H19 | 0.550354 | 0.149515 | −0.056525 | 0.095 (7)* | |
C20 | 0.44874 (13) | 0.2091 (2) | −0.04436 (15) | 0.0771 (6) | |
H20 | 0.421868 | 0.148219 | −0.102360 | 0.085 (6)* | |
C21 | 0.41058 (11) | 0.2957 (2) | 0.01205 (13) | 0.0644 (4) | |
H21 | 0.358599 | 0.295302 | −0.006658 | 0.068 (5)* | |
C22 | 0.45351 (9) | 0.38363 (17) | 0.09833 (12) | 0.0522 (4) | |
C23 | 0.49247 (9) | 0.53965 (19) | 0.24184 (13) | 0.0556 (4) | |
H23 | 0.491806 | 0.606454 | 0.298423 | 0.071 (5)* | |
C24 | 0.35385 (10) | 0.5102 (3) | 0.16663 (19) | 0.0815 (6) | |
H24A | 0.331755 | 0.419249 | 0.186891 | 0.139 (11)* | |
H24B | 0.326182 | 0.540419 | 0.093916 | 0.117 (9)* | |
H24C | 0.352681 | 0.592153 | 0.216577 | 0.136 (11)* | |
N1 | 0.75252 (8) | 0.57812 (18) | 0.31109 (12) | 0.0640 (4) | |
N2 | 0.68730 (7) | 0.50715 (17) | 0.24473 (12) | 0.0591 (3) | |
N3 | 0.43088 (7) | 0.47817 (16) | 0.17043 (11) | 0.0557 (3) | |
O1 | 0.79386 (9) | 0.53693 (19) | 0.08597 (11) | 0.0846 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0518 (8) | 0.0596 (9) | 0.0633 (9) | 0.0000 (7) | 0.0160 (7) | 0.0068 (7) |
C2 | 0.0539 (9) | 0.0692 (10) | 0.0702 (10) | −0.0027 (8) | 0.0113 (8) | 0.0106 (9) |
C3 | 0.0734 (12) | 0.0917 (15) | 0.0820 (13) | −0.0150 (11) | 0.0162 (10) | −0.0051 (11) |
C4 | 0.0916 (17) | 0.123 (2) | 0.0935 (17) | −0.0272 (16) | 0.0017 (13) | −0.0131 (16) |
C5 | 0.0637 (14) | 0.161 (3) | 0.119 (2) | −0.0317 (16) | 0.0000 (14) | −0.005 (2) |
C6 | 0.0605 (13) | 0.184 (3) | 0.125 (2) | −0.0248 (17) | 0.0246 (14) | −0.014 (2) |
C7 | 0.0583 (11) | 0.132 (2) | 0.0959 (16) | −0.0114 (12) | 0.0230 (11) | −0.0120 (15) |
C8 | 0.0471 (8) | 0.0759 (11) | 0.0583 (9) | 0.0023 (7) | 0.0157 (7) | 0.0095 (8) |
C9 | 0.0421 (7) | 0.0717 (10) | 0.0614 (9) | 0.0081 (7) | 0.0188 (7) | 0.0002 (8) |
C10 | 0.0638 (10) | 0.0927 (14) | 0.0693 (11) | 0.0210 (10) | 0.0173 (9) | −0.0073 (10) |
C11 | 0.0848 (15) | 0.0903 (16) | 0.1062 (18) | 0.0155 (12) | 0.0196 (13) | −0.0320 (15) |
C12 | 0.0933 (16) | 0.0695 (14) | 0.139 (2) | 0.0118 (12) | 0.0321 (16) | −0.0062 (15) |
C13 | 0.0887 (15) | 0.0769 (13) | 0.1043 (17) | 0.0142 (11) | 0.0320 (13) | 0.0206 (13) |
C14 | 0.0649 (10) | 0.0727 (11) | 0.0673 (10) | 0.0060 (8) | 0.0213 (8) | 0.0072 (9) |
C15 | 0.0585 (9) | 0.0524 (8) | 0.0588 (9) | 0.0006 (7) | 0.0219 (7) | −0.0042 (7) |
C16 | 0.0537 (8) | 0.0460 (7) | 0.0532 (8) | 0.0023 (6) | 0.0223 (6) | 0.0026 (6) |
C17 | 0.0581 (8) | 0.0425 (7) | 0.0503 (7) | 0.0016 (6) | 0.0236 (6) | 0.0085 (6) |
C18 | 0.0748 (11) | 0.0516 (8) | 0.0613 (9) | 0.0005 (7) | 0.0357 (8) | 0.0007 (7) |
C19 | 0.1042 (15) | 0.0615 (10) | 0.0650 (10) | −0.0013 (10) | 0.0414 (11) | −0.0083 (8) |
C20 | 0.1085 (16) | 0.0655 (11) | 0.0537 (9) | −0.0138 (10) | 0.0180 (10) | −0.0076 (8) |
C21 | 0.0688 (10) | 0.0644 (10) | 0.0560 (9) | −0.0103 (8) | 0.0117 (8) | 0.0086 (8) |
C22 | 0.0611 (9) | 0.0486 (8) | 0.0486 (8) | 0.0003 (6) | 0.0187 (7) | 0.0111 (6) |
C23 | 0.0600 (9) | 0.0555 (8) | 0.0557 (8) | 0.0047 (7) | 0.0236 (7) | −0.0024 (7) |
C24 | 0.0540 (10) | 0.0998 (16) | 0.0919 (14) | 0.0166 (10) | 0.0231 (10) | 0.0061 (13) |
N1 | 0.0530 (7) | 0.0666 (9) | 0.0714 (9) | −0.0037 (6) | 0.0165 (6) | −0.0065 (7) |
N2 | 0.0498 (7) | 0.0627 (8) | 0.0663 (8) | −0.0020 (6) | 0.0191 (6) | −0.0072 (7) |
N3 | 0.0515 (7) | 0.0610 (8) | 0.0575 (7) | 0.0046 (6) | 0.0206 (6) | 0.0057 (6) |
O1 | 0.0949 (10) | 0.0924 (10) | 0.0669 (8) | −0.0030 (8) | 0.0239 (7) | 0.0199 (7) |
C1—N1 | 1.286 (2) | C13—H13 | 0.9300 |
C1—C2 | 1.474 (2) | C14—H14 | 0.9300 |
C1—C8 | 1.515 (2) | C15—N2 | 1.286 (2) |
C2—C7 | 1.383 (3) | C15—C16 | 1.427 (2) |
C2—C3 | 1.385 (3) | C15—H15 | 0.9300 |
C3—C4 | 1.386 (3) | C16—C23 | 1.376 (2) |
C3—H3 | 0.9300 | C16—C17 | 1.434 (2) |
C4—C5 | 1.375 (4) | C17—C18 | 1.399 (2) |
C4—H4 | 0.9300 | C17—C22 | 1.404 (2) |
C5—C6 | 1.355 (4) | C18—C19 | 1.371 (3) |
C5—H5 | 0.9300 | C18—H18 | 0.9300 |
C6—C7 | 1.384 (3) | C19—C20 | 1.392 (3) |
C6—H6 | 0.9300 | C19—H19 | 0.9300 |
C7—H7 | 0.9300 | C20—C21 | 1.375 (3) |
C8—O1 | 1.214 (2) | C20—H20 | 0.9300 |
C8—C9 | 1.483 (3) | C21—C22 | 1.389 (2) |
C9—C14 | 1.382 (2) | C21—H21 | 0.9300 |
C9—C10 | 1.385 (3) | C22—N3 | 1.389 (2) |
C10—C11 | 1.388 (3) | C23—N3 | 1.353 (2) |
C10—H10 | 0.9300 | C23—H23 | 0.9300 |
C11—C12 | 1.364 (4) | C24—N3 | 1.452 (2) |
C11—H11 | 0.9300 | C24—H24A | 0.9600 |
C12—C13 | 1.374 (4) | C24—H24B | 0.9600 |
C12—H12 | 0.9300 | C24—H24C | 0.9600 |
C13—C14 | 1.379 (3) | N1—N2 | 1.4077 (19) |
N1—C1—C2 | 120.14 (17) | C13—C14—H14 | 119.7 |
N1—C1—C8 | 120.11 (15) | C9—C14—H14 | 119.7 |
C2—C1—C8 | 119.72 (15) | N2—C15—C16 | 122.45 (15) |
C7—C2—C3 | 118.56 (19) | N2—C15—H15 | 118.8 |
C7—C2—C1 | 120.41 (19) | C16—C15—H15 | 118.8 |
C3—C2—C1 | 121.03 (18) | C23—C16—C15 | 123.72 (15) |
C2—C3—C4 | 120.3 (2) | C23—C16—C17 | 106.40 (14) |
C2—C3—H3 | 119.9 | C15—C16—C17 | 129.73 (14) |
C4—C3—H3 | 119.9 | C18—C17—C22 | 118.90 (15) |
C5—C4—C3 | 120.2 (3) | C18—C17—C16 | 134.43 (15) |
C5—C4—H4 | 119.9 | C22—C17—C16 | 106.66 (13) |
C3—C4—H4 | 119.9 | C19—C18—C17 | 118.49 (17) |
C6—C5—C4 | 119.8 (2) | C19—C18—H18 | 120.8 |
C6—C5—H5 | 120.1 | C17—C18—H18 | 120.8 |
C4—C5—H5 | 120.1 | C18—C19—C20 | 121.50 (17) |
C5—C6—C7 | 120.7 (3) | C18—C19—H19 | 119.2 |
C5—C6—H6 | 119.6 | C20—C19—H19 | 119.2 |
C7—C6—H6 | 119.6 | C21—C20—C19 | 121.71 (18) |
C2—C7—C6 | 120.4 (3) | C21—C20—H20 | 119.1 |
C2—C7—H7 | 119.8 | C19—C20—H20 | 119.1 |
C6—C7—H7 | 119.8 | C20—C21—C22 | 116.71 (18) |
O1—C8—C9 | 122.88 (17) | C20—C21—H21 | 121.6 |
O1—C8—C1 | 118.77 (18) | C22—C21—H21 | 121.6 |
C9—C8—C1 | 118.35 (14) | C21—C22—N3 | 129.45 (16) |
C14—C9—C10 | 119.15 (19) | C21—C22—C17 | 122.67 (15) |
C14—C9—C8 | 121.27 (16) | N3—C22—C17 | 107.87 (13) |
C10—C9—C8 | 119.58 (17) | N3—C23—C16 | 110.52 (14) |
C9—C10—C11 | 119.6 (2) | N3—C23—H23 | 124.7 |
C9—C10—H10 | 120.2 | C16—C23—H23 | 124.7 |
C11—C10—H10 | 120.2 | N3—C24—H24A | 109.5 |
C12—C11—C10 | 120.7 (2) | N3—C24—H24B | 109.5 |
C12—C11—H11 | 119.7 | H24A—C24—H24B | 109.5 |
C10—C11—H11 | 119.7 | N3—C24—H24C | 109.5 |
C11—C12—C13 | 120.1 (2) | H24A—C24—H24C | 109.5 |
C11—C12—H12 | 120.0 | H24B—C24—H24C | 109.5 |
C13—C12—H12 | 120.0 | C1—N1—N2 | 111.71 (15) |
C12—C13—C14 | 119.8 (2) | C15—N2—N1 | 111.49 (14) |
C12—C13—H13 | 120.1 | C23—N3—C22 | 108.54 (13) |
C14—C13—H13 | 120.1 | C23—N3—C24 | 125.92 (16) |
C13—C14—C9 | 120.7 (2) | C22—N3—C24 | 125.50 (16) |
C25H18N2O | F(000) = 760 |
Mr = 362.41 | Dx = 1.247 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 17.2081 (13) Å | Cell parameters from 380 reflections |
b = 9.4075 (8) Å | θ = 2.5–26.0° |
c = 11.9703 (9) Å | µ = 0.08 mm−1 |
β = 94.814 (7)° | T = 293 K |
V = 1931.0 (3) Å3 | Block, yellow |
Z = 4 | 0.40 × 0.40 × 0.16 mm |
Bruker SMART CCD area detector diffractometer | 3396 independent reflections |
Radiation source: fine-focus sealed tube | 1411 reflections with I > 2σ(I) |
Detector resolution: 10.12 pixels mm-1 | Rint = 0.078 |
phi and ω scans | θmax = 25.0°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −20→20 |
Tmin = 0.970, Tmax = 0.989 | k = −11→10 |
10556 measured reflections | l = −14→14 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | Only H-atom displacement parameters refined |
R[F2 > 2σ(F2)] = 0.052 | w = 1/[σ2(Fo2) + (0.0024P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.083 | (Δ/σ)max < 0.001 |
S = 0.87 | Δρmax = 0.14 e Å−3 |
3396 reflections | Δρmin = −0.14 e Å−3 |
272 parameters | Extinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00135 (15) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.38170 (16) | 0.3245 (3) | 0.5324 (2) | 0.0479 (7) | |
C2 | 0.45003 (16) | 0.2405 (3) | 0.5767 (2) | 0.0492 (8) | |
C3 | 0.51422 (17) | 0.2274 (3) | 0.5158 (3) | 0.0695 (10) | |
H3 | 0.515242 | 0.274493 | 0.447585 | 0.063 (9)* | |
C4 | 0.57683 (19) | 0.1451 (4) | 0.5553 (3) | 0.0787 (11) | |
H4 | 0.619504 | 0.135979 | 0.513009 | 0.096 (12)* | |
C5 | 0.57676 (19) | 0.0761 (4) | 0.6569 (3) | 0.0700 (10) | |
H5 | 0.619147 | 0.020890 | 0.683658 | 0.072 (10)* | |
C6 | 0.51344 (19) | 0.0901 (3) | 0.7175 (3) | 0.0696 (10) | |
H6 | 0.512814 | 0.044390 | 0.786371 | 0.077 (10)* | |
C7 | 0.45071 (18) | 0.1709 (3) | 0.6779 (2) | 0.0628 (9) | |
H7 | 0.407940 | 0.178794 | 0.720078 | 0.051 (8)* | |
C8 | 0.30593 (16) | 0.3112 (3) | 0.5892 (2) | 0.0506 (8) | |
C9 | 0.24449 (15) | 0.2118 (3) | 0.5424 (2) | 0.0471 (7) | |
C10 | 0.25215 (19) | 0.1364 (3) | 0.4446 (2) | 0.0645 (9) | |
H10 | 0.296674 | 0.147167 | 0.406439 | 0.068 (10)* | |
C11 | 0.1942 (2) | 0.0460 (4) | 0.4042 (3) | 0.0811 (11) | |
H11 | 0.199667 | −0.004809 | 0.338738 | 0.075 (11)* | |
C12 | 0.1284 (2) | 0.0298 (4) | 0.4592 (4) | 0.0904 (12) | |
H12 | 0.089288 | −0.032034 | 0.431149 | 0.105 (14)* | |
C13 | 0.1199 (2) | 0.1044 (4) | 0.5554 (3) | 0.0878 (12) | |
H13 | 0.074829 | 0.093934 | 0.592373 | 0.111 (13)* | |
C14 | 0.17771 (18) | 0.1948 (4) | 0.5978 (3) | 0.0675 (10) | |
H14 | 0.171980 | 0.244559 | 0.663753 | 0.075 (11)* | |
C15 | 0.31775 (17) | 0.5533 (3) | 0.3302 (2) | 0.0556 (8) | |
H15 | 0.366978 | 0.567807 | 0.305639 | 0.066 (9)* | |
C16 | 0.25293 (16) | 0.6289 (3) | 0.2709 (2) | 0.0491 (8) | |
C17 | 0.27243 (19) | 0.7208 (3) | 0.1884 (2) | 0.0634 (9) | |
H17 | 0.324544 | 0.731061 | 0.174771 | 0.042 (7)* | |
C18 | 0.2158 (2) | 0.7989 (3) | 0.1247 (3) | 0.0724 (10) | |
H18 | 0.230588 | 0.860029 | 0.069249 | 0.075 (10)* | |
C19 | 0.1399 (2) | 0.7866 (4) | 0.1429 (3) | 0.0739 (10) | |
H19 | 0.102806 | 0.839726 | 0.100082 | 0.099 (12)* | |
C20 | 0.11607 (19) | 0.6942 (3) | 0.2262 (2) | 0.0578 (8) | |
C21 | 0.17273 (17) | 0.6118 (3) | 0.2911 (2) | 0.0489 (8) | |
C22 | 0.14497 (17) | 0.5146 (3) | 0.3686 (2) | 0.0534 (8) | |
H22 | 0.180386 | 0.457731 | 0.411164 | 0.053 (9)* | |
C23 | 0.06746 (18) | 0.5025 (3) | 0.3824 (2) | 0.0632 (9) | |
H23 | 0.050872 | 0.437604 | 0.433924 | 0.039 (8)* | |
C24 | 0.0127 (2) | 0.5861 (4) | 0.3203 (3) | 0.0771 (10) | |
H24 | −0.039946 | 0.578124 | 0.331423 | 0.100 (12)* | |
C25 | 0.0365 (2) | 0.6792 (4) | 0.2435 (3) | 0.0790 (11) | |
H25 | −0.000333 | 0.733990 | 0.201654 | 0.074 (10)* | |
N1 | 0.38670 (13) | 0.4055 (3) | 0.44718 (19) | 0.0589 (7) | |
N2 | 0.31309 (13) | 0.4685 (3) | 0.41351 (19) | 0.0569 (7) | |
O1 | 0.29977 (11) | 0.3808 (2) | 0.67417 (16) | 0.0753 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0473 (18) | 0.049 (2) | 0.0467 (17) | 0.0024 (16) | 0.0003 (14) | −0.0007 (15) |
C2 | 0.0482 (18) | 0.055 (2) | 0.0429 (18) | 0.0022 (16) | −0.0030 (15) | 0.0009 (15) |
C3 | 0.061 (2) | 0.090 (3) | 0.059 (2) | 0.013 (2) | 0.0103 (18) | 0.021 (2) |
C4 | 0.051 (2) | 0.104 (3) | 0.081 (3) | 0.019 (2) | 0.012 (2) | 0.013 (2) |
C5 | 0.056 (2) | 0.081 (3) | 0.071 (2) | 0.024 (2) | −0.0086 (18) | −0.002 (2) |
C6 | 0.073 (2) | 0.081 (3) | 0.053 (2) | 0.022 (2) | −0.0043 (18) | 0.010 (2) |
C7 | 0.062 (2) | 0.074 (3) | 0.0531 (19) | 0.0133 (19) | 0.0109 (18) | 0.0073 (18) |
C8 | 0.0479 (19) | 0.056 (2) | 0.0477 (17) | 0.0112 (17) | 0.0042 (15) | 0.0088 (16) |
C9 | 0.0436 (17) | 0.046 (2) | 0.0520 (18) | 0.0033 (16) | 0.0070 (14) | 0.0075 (15) |
C10 | 0.063 (2) | 0.071 (3) | 0.060 (2) | −0.009 (2) | 0.0118 (19) | −0.0078 (18) |
C11 | 0.084 (3) | 0.078 (3) | 0.079 (3) | −0.015 (2) | −0.003 (2) | −0.016 (2) |
C12 | 0.074 (3) | 0.093 (3) | 0.101 (3) | −0.028 (3) | −0.010 (3) | 0.020 (3) |
C13 | 0.060 (3) | 0.113 (4) | 0.092 (3) | −0.011 (2) | 0.013 (2) | 0.020 (3) |
C14 | 0.059 (2) | 0.086 (3) | 0.059 (2) | 0.006 (2) | 0.0130 (18) | 0.007 (2) |
C15 | 0.046 (2) | 0.061 (2) | 0.060 (2) | 0.0003 (17) | 0.0028 (16) | 0.0022 (17) |
C16 | 0.054 (2) | 0.048 (2) | 0.0447 (17) | 0.0007 (17) | 0.0011 (15) | −0.0002 (15) |
C17 | 0.060 (2) | 0.069 (3) | 0.061 (2) | −0.0101 (19) | 0.0059 (18) | 0.0118 (18) |
C18 | 0.094 (3) | 0.059 (2) | 0.062 (2) | −0.002 (2) | −0.008 (2) | 0.0230 (19) |
C19 | 0.077 (3) | 0.068 (3) | 0.074 (2) | 0.007 (2) | −0.009 (2) | 0.012 (2) |
C20 | 0.066 (2) | 0.049 (2) | 0.057 (2) | 0.0008 (19) | −0.0016 (17) | −0.0001 (17) |
C21 | 0.059 (2) | 0.045 (2) | 0.0420 (17) | 0.0005 (17) | −0.0022 (15) | 0.0001 (15) |
C22 | 0.054 (2) | 0.057 (2) | 0.0481 (18) | 0.0011 (18) | −0.0054 (16) | 0.0010 (17) |
C23 | 0.062 (2) | 0.064 (2) | 0.064 (2) | −0.001 (2) | 0.0039 (18) | 0.0066 (19) |
C24 | 0.055 (2) | 0.082 (3) | 0.094 (3) | 0.006 (2) | 0.003 (2) | 0.006 (2) |
C25 | 0.070 (3) | 0.074 (3) | 0.089 (3) | 0.019 (2) | −0.011 (2) | 0.020 (2) |
N1 | 0.0497 (16) | 0.0657 (19) | 0.0605 (16) | 0.0099 (14) | −0.0009 (13) | 0.0128 (14) |
N2 | 0.0538 (17) | 0.0599 (19) | 0.0564 (16) | 0.0068 (14) | 0.0019 (13) | 0.0143 (13) |
O1 | 0.0744 (16) | 0.0946 (19) | 0.0576 (13) | 0.0072 (13) | 0.0088 (11) | −0.0200 (13) |
C1—N1 | 1.282 (3) | C13—H13 | 0.9300 |
C1—C2 | 1.478 (3) | C14—H14 | 0.9300 |
C1—C8 | 1.525 (3) | C15—N2 | 1.284 (3) |
C2—C7 | 1.376 (3) | C15—C16 | 1.457 (3) |
C2—C3 | 1.379 (3) | C15—H15 | 0.9300 |
C3—C4 | 1.378 (4) | C16—C17 | 1.374 (3) |
C3—H3 | 0.9300 | C16—C21 | 1.430 (3) |
C4—C5 | 1.379 (4) | C17—C18 | 1.395 (4) |
C4—H4 | 0.9300 | C17—H17 | 0.9300 |
C5—C6 | 1.366 (4) | C18—C19 | 1.347 (4) |
C5—H5 | 0.9300 | C18—H18 | 0.9300 |
C6—C7 | 1.372 (3) | C19—C20 | 1.409 (4) |
C6—H6 | 0.9300 | C19—H19 | 0.9300 |
C7—H7 | 0.9300 | C20—C25 | 1.409 (4) |
C8—O1 | 1.221 (3) | C20—C21 | 1.424 (3) |
C8—C9 | 1.486 (4) | C21—C22 | 1.414 (3) |
C9—C10 | 1.384 (3) | C22—C23 | 1.362 (3) |
C9—C14 | 1.384 (3) | C22—H22 | 0.9300 |
C10—C11 | 1.367 (4) | C23—C24 | 1.393 (4) |
C10—H10 | 0.9300 | C23—H23 | 0.9300 |
C11—C12 | 1.365 (4) | C24—C25 | 1.357 (4) |
C11—H11 | 0.9300 | C24—H24 | 0.9300 |
C12—C13 | 1.368 (4) | C25—H25 | 0.9300 |
C12—H12 | 0.9300 | N1—N2 | 1.426 (3) |
C13—C14 | 1.372 (4) | ||
N1—C1—C2 | 119.9 (3) | C13—C14—C9 | 120.0 (3) |
N1—C1—C8 | 121.4 (3) | C13—C14—H14 | 120.0 |
C2—C1—C8 | 118.7 (2) | C9—C14—H14 | 120.0 |
C7—C2—C3 | 118.4 (3) | N2—C15—C16 | 125.9 (3) |
C7—C2—C1 | 121.2 (3) | N2—C15—H15 | 117.0 |
C3—C2—C1 | 120.4 (3) | C16—C15—H15 | 117.0 |
C4—C3—C2 | 120.4 (3) | C17—C16—C21 | 119.3 (3) |
C4—C3—H3 | 119.8 | C17—C16—C15 | 115.7 (3) |
C2—C3—H3 | 119.8 | C21—C16—C15 | 124.9 (3) |
C3—C4—C5 | 120.6 (3) | C16—C17—C18 | 121.5 (3) |
C3—C4—H4 | 119.7 | C16—C17—H17 | 119.3 |
C5—C4—H4 | 119.7 | C18—C17—H17 | 119.3 |
C6—C5—C4 | 118.9 (3) | C19—C18—C17 | 120.6 (3) |
C6—C5—H5 | 120.5 | C19—C18—H18 | 119.7 |
C4—C5—H5 | 120.5 | C17—C18—H18 | 119.7 |
C5—C6—C7 | 120.6 (3) | C18—C19—C20 | 120.7 (3) |
C5—C6—H6 | 119.7 | C18—C19—H19 | 119.6 |
C7—C6—H6 | 119.7 | C20—C19—H19 | 119.6 |
C6—C7—C2 | 121.1 (3) | C25—C20—C19 | 120.6 (3) |
C6—C7—H7 | 119.4 | C25—C20—C21 | 119.6 (3) |
C2—C7—H7 | 119.4 | C19—C20—C21 | 119.7 (3) |
O1—C8—C9 | 122.9 (3) | C22—C21—C20 | 117.2 (3) |
O1—C8—C1 | 117.6 (3) | C22—C21—C16 | 124.6 (3) |
C9—C8—C1 | 119.4 (3) | C20—C21—C16 | 118.2 (3) |
C10—C9—C14 | 119.2 (3) | C23—C22—C21 | 121.4 (3) |
C10—C9—C8 | 121.8 (3) | C23—C22—H22 | 119.3 |
C14—C9—C8 | 119.0 (3) | C21—C22—H22 | 119.3 |
C11—C10—C9 | 119.9 (3) | C22—C23—C24 | 120.9 (3) |
C11—C10—H10 | 120.0 | C22—C23—H23 | 119.5 |
C9—C10—H10 | 120.0 | C24—C23—H23 | 119.5 |
C12—C11—C10 | 120.6 (4) | C25—C24—C23 | 119.8 (3) |
C12—C11—H11 | 119.7 | C25—C24—H24 | 120.1 |
C10—C11—H11 | 119.7 | C23—C24—H24 | 120.1 |
C11—C12—C13 | 120.0 (4) | C24—C25—C20 | 121.1 (3) |
C11—C12—H12 | 120.0 | C24—C25—H25 | 119.5 |
C13—C12—H12 | 120.0 | C20—C25—H25 | 119.5 |
C12—C13—C14 | 120.3 (4) | C1—N1—N2 | 110.8 (2) |
C12—C13—H13 | 119.8 | C15—N2—N1 | 111.5 (2) |
C14—C13—H13 | 119.8 |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1i | 0.93 | 2.49 | 3.355 (4) | 156 |
C3—H3···N1 | 0.93 | 2.53 | 2.827 (4) | 99 |
C14—H14···O1 | 0.93 | 2.54 | 2.826 (4) | 98 |
C22—H22···N2 | 0.93 | 2.28 | 2.930 (4) | 126 |
Symmetry code: (i) −x+1, y−1/2, −z+3/2. |
Compound | A549 cells, IC50 | 4T1 cells, IC50 | MRC-5 cells, IC50 | NIH 3T3 fibroblasts, IC50 |
BDHFI | 8.0±0.5 | 7.5±0.5 | 24.5±1.5 | 29.5±1.0 |
BDHAI | 8.5±0.6 | 7.0±0.6 | 36.5±1.5 | 43.0±1.5 |
BDHMFI | 125.0±1.0 | 122.0±1.0 | > 150.0 | > 150.0 |
BDHFN | 130.0±1.0 | 125.0±1.0 | > 150.0 | > 150.0 |
BMHFI | 46.5±0.5 | 32.5±0.5 | 88.0±1.5 | 85.0±1.5 |
BMHAI | 43.0±0.5 | 30.0±0.5 | 83.0±1.5 | 76.0±1.5 |
BMHMFI | 148.0±1.2 | 141.0±1.0 | > 150.0 | > 150.0 |
BMHFN | 150.0±1.2 | 148.0±1.0 | > 150.0 | > 150.0 |
Cisplatin | 6.5 ± 0.5 | 0.5 ± 0.1 | 22.5 ± 1.5 | 21.0 ± 1.0 |
c-Jun N-terminal kinase 3(2R9S) | CaM kinase II (2VZ6) | Delta opioid receptor (4N6H) | Gonadotropin-releasing hormone receptor (6NBF) | hERG (3O0U) | Inhibitor of apoptosis protein 3 (5C3H) | Kinesin-like protein 1 (3ZCW) | Mu opioid receptor (4DKL) | Probable G-protein coupled receptor 88 (5XF1) | |
Ligandi | 12.24 | 9.27 | 9.37 | 7.76 | 9.87 | 7.33 | 19.68 | 10.53 | 6.67 |
BDHFI | 8.08 | 8.43 | 7.56 | 6.19 | 6.90 | 6.23 | 10.44 | 8.57 | 6.85 |
BDHAI | 8.16 | 8.82 | 7.44 | 6.36 | 8.02 | 6.14 | 6.99 | 9.46 | 6.15 |
BDHMFI | 5.96 | 6.92 | 6.53 | 6.77 | 4.54 | 5.07 | 8.61 | 8.23 | 5.28 |
BDHFN | 5.94 | 7.59 | 7.05 | 5.00 | 6.25 | 5.33 | 9.04 | 7.45 | 5.84 |
BMHFI | 6.64 | 7.32 | 7.44 | 5.29 | 5.97 | 5.83 | 9.44 | 7.31 | 4.39 |
BMHAI | 5.60 | 6.80 | 6.32 | 5.88 | 6.41 | 4.77 | 8.27 | 6.15 | 4.52 |
BMHMFI | 6.39 | 5.98 | 6.65 | 4.19 | 4.91 | 4.42 | 7.76 | 6.36 | 4.58 |
BMHFN | 5.59 | 6.03 | 6.45 | 4.67 | 4.20 | 4.30 | 6.16 | 6.47 | 4.37 |
ρA549ii | 0.67 | 0.74 | 0.57 | 0.71 | 0.86 | 0.83 | 0.48 | 0.52 | 0.62 |
ρ4T1iii | 0.69 | 0.76 | 0.55 | 0.74 | 0.88 | 0.81 | 0.33 | 0.55 | 0.60 |
Protein kinase C alpha (4RA4) | Serine/threonine-protein kinase AKT2 (3D0E) | Serine/threonine-protein kinase PIM1 (1YXT) | Serine/threonine-protein kinase PIM2 (4X7Q) | Serine/threonine-protein kinase PIM3 (5DWR) | Sigma opioid receptor (6DK0) | Tryptase beta-1 (4MPU) | Neurokinin 2 receptor(by homology) | 5-HT6 receptor(by homology) | |
Ligandi | 7.34 | 16.79 | 32.82 | 15.18 | 10.64 | 10.81 | 23.41 | 10.04 | 9.00 |
BDHFI | 6.35 | 8.22 | 9.73 | 6.70 | 8.00 | 8.34 | 7.39 | 9.28 | 7.95 |
BDHAI | 6.79 | 6.40 | 9.60 | 8.19 | 9.92 | 7.17 | 8.12 | 8.80 | 4.56 |
BDHMFI | 5.27 | 5.65 | 6.64 | 5.56 | 4.45 | 1.87 | 6.02 | 8.17 | 6.40 |
BDHFN | 5.47 | 5.51 | 7.59 | 5.63 | 5.51 | 5.23 | 7.99 | 8.73 | 7.07 |
BMHFI | 4.43 | 7.06 | 7.95 | 7.87 | 6.39 | 6.41 | 5.44 | 6.71 | 5.05 |
BMHAI | 4.87 | 6.67 | 7.01 | 7.68 | 7.49 | 8.27 | 5.51 | 5.68 | 5.50 |
BMHMFI | 5.06 | 6.77 | 5.52 | 5.92 | 6.42 | 7.00 | 5.05 | 6.00 | 4.43 |
BMHFN | 4.30 | 7.46 | 5.80 | 5.92 | 6.06 | 6.23 | 5.22 | 6.44 | 6.18 |
ρA549ii | 0.60 | 0.12 | 0.86 | 0.62 | 0.69 | 0.69 | 0.62 | 0.52 | 0.17 |
ρ4T1iii | 0.62 | 0.00 | 0.83 | 0.69 | 0.71 | 0.64 | 0.67 | 0.50 | 0.02 |
Notes: (i) for all proteins with crystal structure, the `ligand' means the natural ligand included in the protein structure; for the last two proteins built by homology modelling, the `ligand' means the known ligand reported before, i.e. 10i and AVN-492 (see text). (ii) equation 1; (iii) equation 2, n = 8. Ranki is the rank value of each Schiff base in the virtual screening, which is determined according to its sequence listed in descending order of total score values (see Table S22 in the supporting information). RankA549/Rank4T1 is the rank value of each Schiff base in the A549/4T1 cell growth MTT assays, which is determined according to its sequence listed in ascending order of IC50 values (see Table 2 and Table S23 in the supporting information). |
Funding information
Funding for this research was provided by: Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education/Shandong Province of China (award Nos. KF201712 and KF201821); State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences (grant No. ZZ20190115).
References
Akula, M., Yogeeswari, P., Sriram, D., Jha, M. & Bhattacharya, A. (2016). RSC Adv. 6, 46073–46080. CrossRef CAS Google Scholar
Ali Khan, M. S., Misbah Ahmed, N., Arifuddin, M., Rehman, A. & Ling, M. P. (2018). Food Chem. Toxicol. 118, 953–962. CrossRef CAS PubMed Google Scholar
Anush, S. M., Vishalakshi, B., Kalluraya, B. & Manju, N. (2018). Int. J. Biol. Macromol. 119, 446–452. CrossRef CAS PubMed Google Scholar
Ariyaeifar, M., Amiri Rudbari, H., Sahihi, M., Kazemi, Z., Kajani, A. A., Zali-Boeini, H., Kordestani, N., Bruno, G. & Gharaghani, S. (2018). J. Mol. Struct. 1161, 497–511. CrossRef CAS Google Scholar
Atienza, B. J. P., Jensen, L. D., Noton, S. L., Ansalem, A. K. V., Hobman, T., Fearns, R., Marchant, D. J. & West, F. G. (2018). J. Org. Chem. 83, 6829–6842. CSD CrossRef CAS PubMed Google Scholar
Bach, R. D., Woodard, R. A., Anderson, T. J. & Glick, M. D. (1982). J. Org. Chem. 47, 3707–3712. CSD CrossRef CAS Google Scholar
Bai, J., Zhang, P., Bao, G., Gu, J.-G., Han, L., Zhang, L.-W. & Xu, Y. (2018). Appl. Microbiol. Biotechnol. 102, 8493–8500. CrossRef CAS PubMed Google Scholar
Bai, Y., Gao, H., Qi, Z. Y. & Dang, D. B. (2012). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 53–58. CSD CrossRef CAS Google Scholar
Bano, B., Khan, K. M., Jabeen, A., Hameed, A., Faheem, A., Taha, M., Perveen, S. & Iqbal, S. (2017). ChemistrySelect, 2, 10050–10054. CrossRef CAS Google Scholar
Bao, B., Zhang, P., Lee, Y., Hong, J., Lee, C. O. & Jung, J. H. (2007). Mar. Drugs 5, 31–39. CrossRef PubMed CAS Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bertamino, A., Iraci, N., Ostacolo, C., Ambrosino, P., Musella, S., Di Sarno, V., Ciaglia, T., Pepe, G., Sala, M., Soldovieri, M. V., Mosca, I., Gonzalez-Rodriguez, S., Fernandez-Carvajal, A., Ferrer-Montiel, A., Novellino, E., Taglialatela, M., Campiglia, P. & Gomez-Monterrey, I. (2018). J. Med. Chem. 61, 6140–6152. CrossRef CAS PubMed Google Scholar
Bharathi Dileepan, A. G., Daniel Prakash, T., Ganesh Kumar, A., Shameela Rajam, P., Violet Dhayabaran, V. & Rajaram, R. (2018). J. Photochem. Photobiol. B, 183, 191–200. CrossRef CAS PubMed Google Scholar
Bienert, S., Waterhouse, A., de Beer, T. A. P., Tauriello, G., Studer, G., Bordoli, L. & Schwede, T. (2017). Nucleic Acids Res. 45, D313–D319. Web of Science CrossRef CAS PubMed Google Scholar
Blunt, J. W., Copp, B. R., Munro, M. H., Northcote, P. T. & Prinsep, M. R. (2011). Nat. Prod. Rep. 28, 196–268. CrossRef CAS PubMed Google Scholar
Boys, S. B. & Bernardi, F. (1970). Mol. Phys. 19, 553–566. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brigg, S., Pribut, N., Basson, A. E., Avgenikos, M., Venter, R., Blackie, A., van Otterlo, W. A. L. & Pelly, S. C. (2016). Bioorg. Med. Chem. Lett. 26, 1580–1584. CrossRef CAS PubMed Google Scholar
Bruker (2000). SMART, SAINT, SADABS, XPREP and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bu, F.-Z., Tan, X.-J., Xing, D.-X. & Wang, C. (2017). Acta Cryst. C73, 546–555. Web of Science CSD CrossRef IUCr Journals Google Scholar
Carreño, A., Zúñiga, C., Páez-Hernández, D., Gacitúa, M., Polanco, R., Otero, C., Arratia-Pérez, R. & Fuentes, J. A. (2018). New J. Chem. 42, 8851–8863. Google Scholar
Chandra, S., Verma, S. & Gautam, A. (2007). J. Saudi Chem. Soc. 11, 483–488. CAS Google Scholar
Chandrashekaran, I. R., Rao, G. S. & Cowsik, S. M. (2009). J. Chem. Inf. Model. 49, 1734–1740. CrossRef PubMed CAS Google Scholar
Chauhan, S., Swami, M., Malik, S. & Singh, R. V. (2008). Main Group Met. Chem. 31, 263–272. CrossRef CAS Google Scholar
Cheng, S.-S., Shi, Y., Ma, X.-N., Xing, D.-X., Liu, L.-D., Liu, Y., Zhao, Y.-X., Sui, Q.-C. & Tan, X.-J. (2016). J. Mol. Struct. 1115, 228–240. Web of Science CSD CrossRef CAS Google Scholar
Cihan-Üstündağ, G., Gürsoy, E., Naesens, L., Ulusoy-Güzeldemirci, N. & Çapan, G. (2016). Bioorg. Med. Chem. 24, 240–246. PubMed Google Scholar
Dai, W., Jiang, X. L., Tao, J. Y. & Shi, F. (2016). J. Org. Chem. 81, 185–192. CSD CrossRef CAS PubMed Google Scholar
Daina, A., Michielin, O. & Zoete, V. (2019). Nucleic Acids Res. 47, W357–W364. CrossRef PubMed Google Scholar
De, S., Chowdhury, S., Tocher, D. A. & Datta, D. (2006). CrystEngComm, 8, 670–673. Web of Science CSD CrossRef CAS Google Scholar
Drew, M. G. B., Parui, D., De, S., Chowdhury, S. & Datta, D. (2007). New J. Chem. 31, 1763–1768. Web of Science CSD CrossRef CAS Google Scholar
El-Sawy, E. R., Bassyouni, F. A., Abu-Bakr, S. H., Rady, H. M. & Abdlla, M. M. (2010). Acta Pharm. 60, 55–71. CAS PubMed Google Scholar
El-Sawy, E. R., Mandour, A. H., El-Hallouty, S. M., Shaker, K. H. & Abo-Salem, H. M. (2013). Arabian J. Chem. 6, 67–78. CAS Google Scholar
El-Sawy, E. R., Mandour, A. H., Mahmoud, K., Islam, I. E. & Abo-Salem, H. M. (2012). Acta Pharm. 62, 157–179. CAS PubMed Google Scholar
Ensch, M., Maldonado, V. Y., Swain, G. M., Rechenberg, R., Becker, M. F., Schuelke, T. & Rusinek, C. A. (2018). Anal. Chem. 90, 1951–1958. CrossRef CAS PubMed Google Scholar
Erxleben, A. (2018). Inorg. Chim. Acta, 472, 40–57. CrossRef CAS Google Scholar
Estevão, M. S., Carvalho, L. C., Ribeiro, D., Couto, D., Freitas, M., Gomes, A., Ferreira, L. M., Fernandes, E. & Marques, M. M. B. (2010). Eur. J. Med. Chem. 45, 4869–4878. PubMed Google Scholar
Evans, B. E., Rittle, K. E., Bock, M. G., DiPardo, R. M., Freidinger, R. M., Whitter, W. L., Lundell, G. F., Veber, D. F., Anderson, P. S., Chang, R. S., Lotti, V. J., Cerino, D. J., Chen, T. B., Kling, P. J., Kunkel, K. A., Springer, J. P. & Hirshfield, J. (1988). J. Med. Chem. 31, 2235–2246. CSD CrossRef CAS PubMed Google Scholar
Fantinati, A., Bianco, S., Guerrini, R., Salvadori, S., Pacifico, S., Cerlesi, M. C., Calo, G. & Trapella, C. (2017). Sci. Rep. UK, 7, 1–7. CAS Google Scholar
Farag, A. K., Elkamhawy, A., Londhe, A. M., Lee, K.-T., Pae, A. N. & Roh, E. J. (2017). Eur. J. Med. Chem. 141, 657–675. CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fattori, D., Porcelloni, M., D'Andrea, P., Catalioto, R.-M., Ettorre, A., Giuliani, S., Marastoni, E., Mauro, S., Meini, S., Rossi, C., Altamura, M. & Maggi, C. A. (2010). J. Med. Chem. 53, 4148–4165. CrossRef CAS PubMed Google Scholar
Fieller, E. C., Hartley, H. O. & Pearson, E. S. (1957). Biometrika, 44, 470–481. CrossRef Google Scholar
Fisher, H. M. & Stoufer, R. C. (1966). Inorg. Chem. 5, 1172–1177. CrossRef CAS Google Scholar
Fortes, M. P., da Silva, P. N. B., da Silva, T. G., Kaufman, T. S., Militão, G. C. G. & Silveira, C. C. (2016). Eur. J. Med. Chem. 118, 21–26. CrossRef CAS PubMed Google Scholar
Frisch, M. J., Pople, J. A. & Binkley, J. S. (1984). J. Chem. Phys. 80, 3265–3269. CrossRef CAS Web of Science Google Scholar
Frisch, M. J., et al. (2004). GAUSSIAN03. Revision C.02. Gaussian Inc., Wallingford, CT, USA. http://www.gaussian.com. Google Scholar
Ganguly, A., Chakraborty, P., Banerjee, K. & Choudhuri, S. K. (2014). Eur. J. Pharm. Sci. 51, 96–109. CrossRef CAS PubMed Google Scholar
George, S., Parameswaran, M. K., Chakraborty, A. & Ravi, T. K. (2008). Acta Pharm. 58, 119–129. Web of Science CrossRef PubMed CAS Google Scholar
Gfeller, D., Michielin, O. & Zoete, V. (2013). Bioinformatics, 29, 3073–3079. Web of Science CrossRef CAS PubMed Google Scholar
Gul, W. & Hamann, M. T. (2005). Life Sci. 78, 442–453. Web of Science CrossRef PubMed CAS Google Scholar
Gurer-Orhan, H., Karaaslan, C., Ozcan, S., Firuzi, O., Tavakkoli, M., Saso, L. & Suzen, S. (2016). Bioorg. Med. Chem. 24, 1658–1664. CAS PubMed Google Scholar
Hassam, M., Basson, A. E., Liotta, D. C., Morris, L., van Otterlo, W. A. L. & Pelly, S. C. (2012). ACS Med. Chem. Lett. 3, 470–475. Web of Science CrossRef CAS PubMed Google Scholar
Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hong, W. D., Gibbons, P. D., Leung, S. C., Amewu, R., Stocks, P. A., Stachulski, A., Horta, P., Cristiano, M. L. S., Shone, A. E., Moss, D., Ardrey, A., Sharma, R., Warman, A. J., Bedingfield, P. T. P., Fisher, N. E., Aljayyoussi, G., Mead, S., Caws, M., Berry, N. G., Ward, S. A., Biagini, G. A., O'Neill, P. M. & Nixon, G. L. (2017). J. Med. Chem. 60, 3703–3726. CrossRef CAS PubMed Google Scholar
Ivachtchenko, A. V., Okun, I., Aladinskiy, V., Ivanenkov, Y., Koryakova, A., Karapetyan, R., Mitkin, O., Salimov, R. & Ivashchenko, A. (2017). J. Alzheimers Dis. 58, 1043–1063. CrossRef CAS PubMed Google Scholar
Johansson, H., Jørgensen, B. T., Gloriam, E. D., Bräuner-Osborne, H. & Pedersen, S. D. (2013). RSC Adv. 3, 945–960. CrossRef CAS Google Scholar
Kalaiarasi, G., Rex Jeya Rajkumar, S., Aswini, G., Dharani, S., Fronczek, F. R. & Prabhakaran, R. (2018). Spectrochim. Acta A Mol. Biomol. Spectrosc. 200, 246–262. CSD CrossRef CAS PubMed Google Scholar
Kamath, P. R., Sunil, D., Ajees, A. A., Pai, K. S. R. & Biswas, S. (2016). Eur. J. Med. Chem. 120, 134–147. CrossRef CAS PubMed Google Scholar
Ke, S., Wei, Y., Shi, L., Yang, Q. & Yang, Z. (2013). Anticancer Agents Med. Chem. 13, 1291–1298. CrossRef CAS PubMed Google Scholar
Khayyat, S., Amr, A. E. E., Salam, O. I. A. E., Al-Omar, M. A. & Abdalla, M. M. (2015). Int. J. Pharmacol. 11, 423–431. CrossRef CAS Google Scholar
Kim, S. & Yoon, J.-Y. (2004). Sci. Synth. 27, 671–722. CAS Google Scholar
Krishnan, R., Binkley, J. S., Seeger, R. & Pople, J. A. (1980). J. Chem. Phys. 72, 650–654. CrossRef CAS Web of Science Google Scholar
Kumar, D., Kumar, M. N., Akamatsu, K., Kusaka, E., Harada, H. & Ito, T. (2016). Bioorg. Med. Chem. Let. 20, 3916–3919. CrossRef Google Scholar
Lamie, P. F., Ali, W. A. M., Bazgier, V. & Rárová, L. (2016). Eur. J. Med. Chem. 123, 803–813. CrossRef CAS PubMed Google Scholar
Łażewska, D., Kurczab, R., Więcek, M., Kamińska, K., Satała, G., Jastrzębska-Więsek, M., Partyka, A., Bojarski, A. J., Wesołowska, A., Kieć-Kononowicz, K. & Handzlik, J. (2017). Eur. J. Med. Chem. 135, 117–124. PubMed Google Scholar
Łażewska, D., Kurczab, R., Więcek, M., Satała, G., Kieć-Kononowicz, K. & Handzlik, J. (2019). Bioorg. Chem. 84, 319–325. PubMed Google Scholar
Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. CrossRef CAS Web of Science Google Scholar
Liu, S., Fu, R., Zhou, L.-H. & Chen, S.-P. (2012). PLoS One, 7, e38086. CrossRef PubMed Google Scholar
Lizunov, A. Y., Gonchar, A. L., Zaitseva, N. I. & Zosimov, V. V. (2015). J. Chem. Inf. Model. 55, 2121–2137. CrossRef CAS PubMed Google Scholar
Ma, J.-Y., Quan, Y.-C., Jin, H.-G., Zhen, X.-H., Zhang, X.-W. & Guan, L.-P. (2016). Chem. Biol. Drug Des. 87, 342–351. CrossRef CAS PubMed Google Scholar
Malik, M. A., Dar, O. A., Gull, P., Wani, M. Y. & Hashmi, A. A. (2018). MedChemComm, 9, 409–436. CrossRef CAS PubMed Google Scholar
Mandour, A. H., El-Sawy, E. R., Shaker, K. H. & Mustafa, M. A. (2010). Acta Pharm. 60, 73–88. Web of Science CrossRef CAS PubMed Google Scholar
Mayans, J., Font-Bardia, M., Di Bari, L., Arrico, L., Zinna, F., Pescitelli, G. & Escuer, A. (2018). Chem. Eur. J. 24, 7653–7663. CSD CrossRef CAS PubMed Google Scholar
McLean, A. D. & Chandler, G. S. (1980). J. Chem. Phys. 72, 5639–5648. CrossRef CAS Web of Science Google Scholar
Mishra, S., Kaur, M., Chander, S., Murugesan, S., Nim, L., Arora, D. S. & Singh, P. (2018). Eur. J. Med. Chem. 155, 658–669. CrossRef CAS PubMed Google Scholar
Møller, C. & Plesset, M. S. (1934). Phys. Rev. 46, 618–622. CrossRef CAS Google Scholar
Mor, M., Silva, C., Vacondio, F., Plazzi, P. V., Bertoni, S., Spadoni, G., Diamantini, G., Bedini, A., Tarzia, G., Zusso, M., Franceschini, D. & Giusti, P. (2004). J. Pineal Res. 36, 95–102. CrossRef PubMed CAS Google Scholar
Muegge, I. (2006). J. Med. Chem. 49, 5895–5902. CrossRef PubMed CAS Google Scholar
Muegge, I. & Martin, Y. C. (1999). J. Med. Chem. 42, 791–804. CrossRef PubMed CAS Google Scholar
Mukherjee, A., Dutta, A., JANA, A. D. & Patra, G. K. (2013). Inorg. Chim. Acta, 404, 131–143. CSD CrossRef CAS Google Scholar
Naidu, K. M., Srinivasarao, S., Agnieszka, N., Ewa, A. K., Kumar, M. M. K. & Chandra Sekhar, K. V. G. (2016). Bioorg. Med. Chem. Lett. 26, 2245–2250. CrossRef CAS PubMed Google Scholar
Naim, M. J., Alam, O., Alam, Md. J., Bano, F., Alam, P. & Shrivastava, N. (2016). Int. J. Pharm. Sci. Res. 7, 51–62. CAS Google Scholar
Ndagijimana, A., Wang, X., Pan, G., Zhang, F., Feng, H. & Olaleye, O. (2013). Fitoterapia, 86, 35–47. CrossRef CAS PubMed Google Scholar
Pedada, R. S., Yarla, S. N., Tambade, J. P., Dhananjaya, L. B., Bishayee, A., Arunasree, M. K., Philip, H. G., Dharmapuri, G., Aliev, G., Putta, S. & Rangaiah, G. (2016). Eur. J. Med. Chem. 112, 289–297. CrossRef CAS PubMed Google Scholar
Pojarová, M., Kaufmann, D., Gastpar, R., Nishino, T., Reszka, P., Bednarski, P. J. & von Angerer, E. (2007). Bioorg. Med. Chem. 15, 7368–7379. PubMed Google Scholar
Pramanik, K., Malpaharia, P., Colacio, E., Das, B. & Chandra, S. K. (2018). New J. Chem. 42, 6332–6342. CSD CrossRef CAS Google Scholar
Pu, C., Luo, R.-H., Zhang, M., Hou, X., Yan, G., Luo, J., Zheng, Y.-T. & Li, R. (2017). Bioorg. Med. Chem. Lett. 27, 4150–4155. CrossRef CAS PubMed Google Scholar
Rarey, M., Kramer, B., Lengauer, T. & Klebe, G. (1996). J. Mol. Biol. 261, 470–489. CrossRef CAS PubMed Web of Science Google Scholar
Rassolov, V. A., Ratner, M. A., Pople, J. A., Redfern, P. C. & Curtiss, L. A. (2001). J. Comput. Chem. 22, 976–984. Web of Science CrossRef CAS Google Scholar
Sá Alves, F. R. de, Barreiro, E. J. & Fraga, C. A. (2009). Mini Rev. Med. Chem. 9, 782–793. PubMed Google Scholar
Saini, T., Kumar, S. & Narasimhan, B. (2016). Cent. Nerv. Syst. Agents Med. Chem. 16, 19–28. CrossRef CAS Google Scholar
Salavati-Niasari, M. & Hassani-Kabutarkhani, M. (2005). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 35, 469–475. CAS Google Scholar
Santhosh Kumar, G., Poornachandra, Y., Kumar Gunda, S., Ratnakar Reddy, K., Mohmed, J., Shaik, K., Ganesh Kumar, C. & Narsaiah, B. (2018). Bioorg. Med. Chem. Lett. 28, 2328–2337. CrossRef CAS PubMed Google Scholar
Sellitto, G., Faruolo, A., de Caprariis, P., Altamura, S., Paonessa, G. & Ciliberto, G. (2010). Bioorg. Med. Chem. 18, 6143–6148. CrossRef CAS PubMed Google Scholar
Shaaban, M. & Abdel-Aziz, M. S. (2007). Nat. Prod. Res. 21, 1205–1211. CrossRef PubMed CAS Google Scholar
Shaaban, M., Maskey, R. P., Wagner-Döbler, I. & Laatsch, H. (2002). J. Nat. Prod. 65, 1660–1663. CrossRef PubMed CAS Google Scholar
Sharma, P. & Ghoshal, N. (2006). J. Chem. Inf. Model. 46, 1763–1774. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, G., Kalra, P., Arora, A., Singh, A., Sharma, G., Sanchita, Maurya, I. K., Dutta, S., Munshi, P. & Verma, V. (2018). ChemistrySelect, 3, 2366–2375. CSD CrossRef CAS Google Scholar
Singh, R. V., Fahmi, N., Swami, M. & Chauhan, S. (2008). J Macromol. Sci. A, 45, 159–163. CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sugiyama, Y., Ito, Y., Suzuki, M. & Hirota, A. (2009). J. Nat. Prod. 72, 2069–2071. CrossRef PubMed CAS Google Scholar
Suzen, S. & Buyukbingol, E. (2000). Farmaco, 55, 246–248. CrossRef PubMed CAS Google Scholar
Tan, X.-J., Hao, X.-Q., Zhao, Q.-Z., Cheng, S.-S., Xie, W.-L., Xing, D.-X., Liu, Y. & Song, L.-Z. (2015). J. Mol. Struct. 1099, 373–387. Web of Science CSD CrossRef CAS Google Scholar
Tan, X.-J., Zhang, L.-Y., Sun, Y.-K. & Zhou, X.-M. (2019). Acta Cryst. C75, 97–106. CSD CrossRef IUCr Journals Google Scholar
Tripos (2012). SYBYL-X. Version 2.0. Tripos International, St Louis, MO, USA. http://www.tripos.com. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://crystalexplorer.scb.uwa.edu.au/. Google Scholar
Tzvetkov, N. T., Hinz, S., Küppers, P., Gastreich, M. & Müller, C. E. (2014). J. Med. Chem. 57, 6679–6703. CrossRef CAS PubMed Google Scholar
Unver, Y. & Bektas, E. (2018). Lett. Drug. Des. & Discov. 15, 706–712. CrossRef CAS Google Scholar
Vardhan, H., Mehta, A., Nath, I. & Verpoort, F. (2015). RSC Adv. 5, 67011–67030. CrossRef CAS Google Scholar
Venkatesan, V., Kumar, S. K. A., Bothra, S. & Sahoo, S. K. (2018). New J. Chem. 42, 6175–6182. CrossRef CAS Google Scholar
Wang, Q., Qu, Y., Xia, Q., Song, H.-J., Song, H.-B., Liu, Y. & Wang, Q. (2018). Chem. Eur. J. 24, 11283–11287. CSD CrossRef CAS PubMed Google Scholar
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R. & Schwede, T. (2018). Nucleic Acids Res. 46, W296–W303. CrossRef CAS PubMed Google Scholar
Wu, Y. S., Coumar, M. S., Chang, J. Y., Sun, H. Y., Kuo, F. M., Kuo, C. C., Chen, Y. J., Chang, C. Y., Hsiao, C. L., Liou, J. P., Chen, C. P., Yao, H. T., Chiang, Y. K., Tan, U. K., Chen, C. T., Chu, C. Y., Wu, S. Y., Yeh, T. K., Lin, C. Y. & Hsieh, H. P. (2009). J. Med. Chem. 52, 4941–4945. CrossRef PubMed CAS Google Scholar
Yu, H.-F., Qin, X.-J., Ding, C.-F., Wei, X., Yang, J., Luo, J.-R., Liu, L., Khan, A., Zhang, L.-C., Xia, C.-F. & Luo, X.-D. (2018). Org. Lett. 20, 4116–4120. CrossRef CAS PubMed Google Scholar
Zhao, C., Zhao, Y., Chai, H. & Gong, P. (2006). Bioorg. Med. Chem. 14, 2552–2558. CrossRef PubMed CAS Google Scholar
Zhao, S.-Q., Xu, Y., Guan, J., Zhao, S., Zhang, G.-D. & Xu, Z. (2018). J. Heterocycl. Chem. 55, 2172–2177. CrossRef CAS Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.