research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Conformational flexibility in amido­phospho­esters: a CSD analysis com­pleted with two new crystal structures of (C6H5O)2P(O)X [X = NHC7H13 and N(CH2C6H5)2]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran, bDepartment of Atomic and Molecular Physics, Centre for Applied Nanosciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India, cDepartment of Chemistry, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic, dInstitut Européen des Membranes, Université de Montpellier, 34095 Montpellier, France, and eDepartment of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
*Correspondence e-mail: pourayoubi@um.ac.ir, abdul.ajees@manipal.edu

Edited by Y. Ohgo, Teikyo University, Japan (Received 7 August 2019; accepted 10 December 2019)

The crystal structures of diphenyl (cyclo­heptyl­amido)­phosphate, C19H24NO3P or (C6H5O)2P(O)(NHC7H13), (I), and diphenyl (di­benzyl­amido)­phosphate, C26H24NO3P or (C6H5O)2P(O)[N(CH2C6H5)2], (II), are reported. The NHC7H13 group in (I) provides two significant hydrogen-donor sites in N—H⋯O and C—H⋯O hydrogen bonds, needed for a one-dimensional hydrogen-bond pattern along [100] in the crystal, while (II), with a (C6H5CH2)2N moiety, lacks these hydrogen bonds, but its three-dimensional supra­molecular structure is mediated by C—H⋯π inter­actions. The conformational behaviour of the phenyl rings in (I), (II) and analogous structures from the Cambridge Structural Database (CSD) were studied in terms of flexibility, volume of the other group attached to phospho­rus and packing forces. From this study, synclinal (±sc), anti­clinal (±ac) and anti­periplanar (±ap) conformations were found to occur. In the structure of (II), there is an intra­molecular Cortho—H⋯O inter­action that imposes a +sc conformation for the phenyl ring involved. For the structures from the CSD, the +sc and ±ap conformations appear to be mainly imposed by similar Cortho—H⋯O intra­molecular inter­actions. The large contribution of the C⋯H/H⋯C contacts (32.3%) in the two-dimensional fingerprint plots of (II) is a result of the C—H⋯π inter­actions. The differential scanning calorimetry (DSC) analyses exhibit peak temperatures (Tm) at 109 and 81 °C for (I) and (II), respectively, which agree with the strengths of the inter­molecular contacts and the melting points.

1. Introduction

Conformational studies are of great inter­est not only due to their importance in biological systems and drug design but also for purely scientific considerations, such as the study of nonrigid segments in the solid state and in solution (Mattern et al., 2000[Mattern, R. H., Moore, S. B., Tran, T. A., Rueter, J. K. & Goodman, M. (2000). Tetrahedron, 56, 9819-9831.]; Hopfinger & Battershell, 1976[Hopfinger, A. J. & Battershell, R. D. (1976). J. Med. Chem. 19, 569-573.]; Fang et al., 2014[Fang, Z., Cao, C., Chen, J. & Deng, X. (2014). J. Mol. Struct. 1063, 307-312.]; Gholivand & Pourayoubi, 2004[Gholivand, K. & Pourayoubi, M. (2004). Z. Anorg. Allg. Chem. 630, 1330-1335.]). The relationship between conformational behaviour and mol­ecular packing has been extensively studied, and there are many examples of conformations imposed by intra- and inter­molecular inter­actions and conformational preferences, typically in organotin systems (Buntine et al., 1998[Buntine, M. A., Hall, V. J., Kosovel, F. J. & Tiekink, E. R. T. (1998). J. Phys. Chem. A, 102, 2472-2482.]), amides and acids (Dauber & Hagler, 1980[Dauber, P. & Hagler, A. T. (1980). Acc. Chem. Res. 13, 105-112.]) and polypeptide chains (Gregoret & Cohen, 1991[Gregoret, L. M. & Cohen, F. E. (1991). J. Mol. Biol. 219, 109-122.]). The effect of conformational flexibility on the existence of two (or more) symmetry-independent mol­ecules in the crystal, disordered structures and the formation of polymorphs were also studied (Toghraee et al., 2011[Toghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680-1690.]; Keikha et al., 2017[Keikha, M., Pourayoubi, M., van der Lee, A. & Tarahhomi, A. (2017). Z. Kristallogr. 232, 3-13.]; Vahdani Alviri et al., 2018[Vahdani Alviri, B., Pourayoubi, M., Saneei, A., Keikha, M., van der Lee, A., Crochet, A., Ajees, A. A., Nečas, M., Fromm, K. M., Damodaran, K. & Jenny, T. A. (2018). Tetrahedron, 74, 28-41.]; Bernstein & Hagler, 1978[Bernstein, J. & Hagler, A. T. (1978). J. Am. Chem. Soc. 100, 673-681.]).

[Scheme 1]

The Cambridge Structural Database (CSD; Version 5.40, updated to November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) provides the opportunity to study conformational behaviour in analogous structures; in some recently published articles, we investigated conformational changes, typically in P(O)NHC(O)-based structures (Toghraee et al., 2011[Toghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680-1690.]; Vahdani Alviri et al., 2018[Vahdani Alviri, B., Pourayoubi, M., Saneei, A., Keikha, M., van der Lee, A., Crochet, A., Ajees, A. A., Nečas, M., Fromm, K. M., Damodaran, K. & Jenny, T. A. (2018). Tetrahedron, 74, 28-41.]) and phosphate salts (Moghaddam et al., 2019[Moghaddam, S. N., Shabari, A. R., Sabbaghi, F., Pourayoubi, M. & Salam, A. A. A. (2019). Molbank, 2019, M1051.]), where, for example, the orientation of P(O) versus C(O) groups, the ring conformations of four-, five-, six- and seven-membered aliphatic rings, and the conformational flexibility of aliphatic and aromatic rings with respect to the other segments in the mol­ecule/salt were considered.

With this background in mind, we present here the synthesis, crystal structure and spectroscopic characterization of two amido­phospho­esters with the same (C6H5O)2P(O) fragment and different in the type of amine fragment attached to phospho­rus, in order to study conformational changes driven by the substituent effect and packing forces made by classical and/or nonclassical hydrogen bonds. The com­pounds are (C6H5O)2P(O)(NHC7H13), (I), and (C6H5O)2P(O)[N(CH2C6H5)2], (II) (see Scheme). The conformational flexibilities of the rings in (I) and (II), and analogous structures deposited in the CSD were investigated. The Hirshfeld surfaces, electrostatic energy frameworks and DSC analyses also detailed in this article.

2. Experimental

Previous articles have described the synthesis of com­pounds (I) and (II) from the reaction between di­phenyl­phosphoryl chloride and cyclo­heptyl­amine in the presence of neutral alumina (Al2O3) for (I) and from the reaction of [DBNP(O)(OPh)2]PF6 (DBN = N-acyl-1,5-di­aza­bicyclo­[4.3.0]non-5-ene) and di­ben­zyl­amine in CH3CN medium for (II). Melting points, selected IR bands and mass peaks for both (I) and (II), and 31P and 1H NMR data for (I) in CDCl3, and 31P, 1H and 13C NMR data for (II) in acetone-d6 were reported (Gupta et al., 2005[Gupta, A. K., Palit, M., Dubey, D. K. & Raza, S. K. (2005). Eur. J. Mass. Spectrom. (Chichester), 11, 119-125.], 2007[Gupta, A. K., Dubey, D. K., Sharma, M. & Kaushik, M. P. (2007). Org. Prep. Proced. Int. 39, 297-305.]; Jones et al., 2016[Jones, C. S., Bull, S. D. & Williams, J. M. J. (2016). Org. Biomol. Chem. 14, 8452-8456.]). Here we report the single-crystal X-ray diffraction analysis and some com­plementary spectroscopic features for (I) and (II). The NMR experiments were studied again in a different solvent (i.e. DMSO-d6).

2.1. Synthesis

2.1.1. Synthesis of (C6H5O)2P(O)(NHC7H13), (I)

Com­pound (I) was prepared from the reaction of di­phenyl­phosphoryl chloride and cyclo­heptyl­amine (1:2 molar ratio, reaction time 4 h, ice-bath temperature) in dry CHCl3. The solvent was removed in a vacuum and the solid which formed was washed with distilled water. Colourless single crystals suitable for X-ray analysis were obtained at room temperature from a mixture of CH3OH and CHCl3 (4:1 v/v).

Analytical data: colourless prism-shaped crystal; m.p. 109 °C. IR (KBr, cm−1): 3240, 3052, 2918, 2860, 1591, 1488, 1317, 1242, 1196, 1162, 1075, 1013, 929, 894, 826, 779, 744, 686, 651. 31P{1H} NMR (243 MHz, DMSO-d6): δ −0.41. 1H NMR (601 MHz, DMSO-d6): δ 1.25–1.33 (m, 2H), 1.35–1.45 (m, 4H), 1.45–1.56 (m, 4H), 1.67–1.75 (m, 2H), 3.19–3.29 (m, 1H), 5.80 (dd, J = 13.7, 9.7 Hz, 1H, NH), 7.19 (t, J = 7.4 Hz, 2H), 7.21–7.25 (m, 4H), 7.36–7.42 (m, 4H). 13C{1H} NMR (151 MHz, DMSO-d6): δ 23.20, 27.61, 36.71 (d, J = 5.3 Hz), 52.84, 120.12 (d, J = 4.9 Hz), 124.62, 129.71, 150.79 (d, J = 6.4 Hz). MS (70 eV, EI): m/z (%) = 345 (2) [M]+, 344 (18) [M − 1]+, 286 (100) [M − C4H10 − H]+, 248 (56) [M − C7H13]+.

2.1.2. Synthesis of (C6H5O)2P(O)[N(CH2C6H5)2], (II)

Com­pound (II) was prepared from the reaction of diphenyl­phos­phoryl chloride and di­benzyl­amine (1:2 molar ratio, reaction time 4 h, ice-bath temperature) in dry CHCl3. The solvent was removed in a vacuum and the solid which formed was washed with distilled water. Colourless single crystals suitable for X-ray analysis were obtained at room temperature from a mixture of CHCl3 and CH3CN (4:1 v/v).

Analytical data: colourless block-shaped crystal; m.p. 81 °C. IR (KBr, cm−1): 3434, 2999, 2790, 2630, 2483, 1745, 1629, 1592, 1490, 1454, 1369, 1244, 1210, 1099, 1017, 915, 751, 692. 31P{1H} NMR (122 MHz, DMSO-d6): δ −11.63. 1H NMR (301 MHz, DMSO-d6): δ 4.10 (m, 4H, CH2), 6.98–7.03 (m, 2H), 7.15–7.18 (m, 4H), 7.22–7.29 (m, 4H), 7.39–7.40 (m, 2H), 7.40–7.43 (m, 4H), 7.50–7.54 (m, 4H). 13C{1H} NMR (76 MHz, DMSO-d6): δ 50.35, 120.38 (d, J = 5.3 Hz), 122.66, 129.07, 129.34, 129.43, 130.52, 132.36, 154.05 (d, J = 6.8 Hz). MS (70 eV, EI): m/z (%) = 430 (54) [M + 1]+, 429 (52) [M]+, 428 (23) [M − 1]+, 336 (100) [M − OPh]+, 243 (36) [M − 2 OPh]+, 91 (95) [C7H7]+.

2.2. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 1[link]. The ab initio iterative charge-flipping method was used to solve the crystal structure of (I); the parameters are described elsewhere (van der Lee, 2013[Lee, A. van der (2013). J. Appl. Cryst. 46, 1306-1315.]). For both (I) and (II), all carbon-bound H atoms were placed at calculated positions and refined as riding, with Uiso(H) values set at 1.2Ueq of the respective carrier atoms. However, the position of atom H171 was refined with a soft distance and two angle restraints with respect to the parent N17 atom. All soft restraints used in these refinements have been described by Waser (1963[Waser, J. (1963). Acta Cryst. 16, 1091-1094.]) and Rollet (1965[Rollet, J. S. (1965). Editor. Computing Methods in Crystallography, 1st ed., p. 170. Oxford: Pergamon Press.]). The standard uncertainty (s.u.) used for the N—H distance restraint was 0.02 Å and for the two angle restraints was 2°. The structure of (I) was refined in the space group Pn21a as an inversion twin; the structure solution in the centrosymmetric space group Pnma was investigated but was found to be much more disordered with respect to the cyclo­heptane ring than the model in Pn21a. The latter model is, however, not com­pletely free from disorder, as is shown in the displacement ellipsoid plot (Fig. 1[link]). A model with the cyclo­heptane ring disordered over two distinct positions was not significantly better than the model shown in Fig. 1[link], so the undisordered model was preferred, using some soft distance restraints (with an s.u. of 0.01 Å), as well as restraints on the atomic displacement parameters for the atoms in the cyclo­heptane ring. The s.u. values for the vibration restraints were taken between 0.001 and 0.005 Å2, and for the thermal similarity restraints between 0.01 and 0.02 Å2. The Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter refined to 0.6 (3) and an a posteriori Hooft analysis based on maximum likelihood estimation and Bayesian statistics gave a probability of the chance of having a racemic twin of 99.86%, with a Hooft parameter of 0.6 (1) (Hooft et al., 2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]).

Table 1
Experimental details

  (I) (II)
Crystal data
Chemical formula C19H24NO3P C26H24NO3P
Mr 345.36 429.43
Crystal system, space group Orthorhombic, Pna21 Triclinic, P[\overline{1}]
Temperature (K) 175 120
a, b, c (Å) 9.3538 (2), 9.7899 (3), 19.3432 (5) 8.3404 (3), 9.5349 (5), 14.9677 (7)
α, β, γ (°) 90, 90, 90 76.280 (4), 75.778 (4), 72.055 (4)
V3) 1771.31 (5) 1080.73 (9)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.17 0.16
Crystal size (mm) 0.35 × 0.25 × 0.15 0.25 × 0.20 × 0.20
 
Data collection
Diffractometer Rigaku Xcalibur Sapphire3 Gemini AFC11 (Right): Eulerian 3 circle CCD
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.979, 1.000 0.722, 1.000
No. of measured, independent and observed reflections [I > 2σ(I)] 9026, 3411, 2964 9523, 3901, 3578
Rint 0.035 0.018
(sin θ/λ)max−1) 0.660 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.103, 0.95 0.033, 0.086, 1.05
No. of reflections 3338 3901
No. of parameters 221 280
No. of restraints 79 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.54 0.27, −0.34
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1505 Friedel pairs
Absolute structure parameter 0.6 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Americas Corporation, The Woodlands, Texas, USA.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]) and pyMOL (Schrödinger, 2015[Schrödinger (2015). The pyMOL Molecular Graphics System. Open-Source Version 1.5.5. Schrödinger Inc., Portland, OR, USA.]).
[Figure 1]
Figure 1
Displacement ellipsoid plot (50% probability level) for (I), showing the atom-numbering scheme.

3. Results and discussion

3.1. Structural description

The asymmetric units of amido­phospho­esters (C6H5O)2P(O)(NHC7H13), (I), and (C6H5O)2P(O)[N(CH2C6H5)2], (II), consist of one com­plete mol­ecule (Figs. 1[link] and 2[link]). Selected geometric parameters and hydrogen-bond geometries of (I) and (II) are presented in Tables 2[link]–5[link][link][link]. In both structures, the P atoms are within a distorted tetra­hedral (O)2(N)P(O) environment, with the angles at the P atoms ranging from 93.42 (10) to 115.5 (3)° for (I) and from 97.78 (5) to 116.27 (5)° for (II). The extreme values correspond to the O2—P1—O10 and O9—P1—O10 angles for (I), and the O2—P1—O3 and O1—P1—O3 angles for (II). The sum of the surrounding angles at the N atom, i.e. C—N—P + P—N—H + H—N—C for (I), shows a difference of about 2.5° with respect to the bond-angle sum for ideal sp2 hybridization (360°), while the bond-angle sum of 2 × P—N—C + C—N—C for (II) shows a practically planar environment at the N atom.

Table 2
Selected geometric parameters (Å, °) for (I)[link]

P1—O2 1.601 (3) O2—C3 1.405 (6)
P1—O9 1.4645 (18) O10—C11 1.399 (6)
P1—O10 1.581 (4) N17—C18 1.479 (3)
P1—N17 1.607 (2)    
       
O2—P1—O9 114.8 (3) O10—P1—N17 109.2 (2)
O2—P1—O10 93.42 (10) P1—O2—C3 120.7 (3)
O9—P1—O10 115.5 (3) P1—O10—C11 119.7 (3)
O2—P1—N17 108.8 (2) P1—N17—C18 124.57 (17)
O9—P1—N17 113.34 (11)    

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H232⋯O9i 0.97 2.57 3.516 (8) 166 (1)
N17—H171⋯O9i 0.86 2.08 2.901 (8) 159 (4)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Table 4
Selected geometric parameters (Å, °) for (II)[link]

P1—O1 1.4578 (10) O2—C1 1.4092 (15)
P1—O2 1.5916 (9) O3—C7 1.4096 (15)
P1—O3 1.5948 (10) N1—C13 1.4693 (17)
P1—N1 1.6232 (11) N1—C20 1.4707 (17)
       
O1—P1—O2 115.77 (5) C1—O2—P1 122.79 (8)
O1—P1—O3 116.27 (5) C7—O3—P1 119.73 (8)
O2—P1—O3 97.78 (5) C13—N1—C20 115.99 (10)
O1—P1—N1 113.54 (6) C13—N1—P1 121.10 (9)
O2—P1—N1 104.31 (5) C20—N1—P1 122.88 (9)
O3—P1—N1 107.44 (5)    

Table 5
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C14–C19 and C7–C12 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2ACg1i 0.95 3.50 3.9798 (13) 114
C13—H13BCg1ii 0.99 3.49 4.2048 (13) 131
C18—H18ACg3ii 0.95 3.22 3.8839 (15) 128
C8—H8ACg2iii 0.95 3.41 3.7716 (14) 106
C6—H6A⋯O1 0.95 2.51 3.1488 (17) 125
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y-1, z; (iii) -x+1, -y, -z.
[Figure 2]
Figure 2
Displacement ellipsoid plot (50% probability level) for (II), showing the atom-numbering scheme.

The P=O bond lengths [1.4645 (18) Å for (I) and 1.4578 (10) Å for (II)] are com­parable to those in analogous com­pounds (Sabbaghi et al., 2019[Sabbaghi, F., Pourayoubi, M., Nečas, M. & Damodaran, K. (2019). Acta Cryst. C75, 77-84.]) and are slightly longer than the normal P=O double-bond length (1.45 Å; Corbridge, 1995[Corbridge, D. E. C. (1995). In Phosphorus: An Outline of Its Chemistry, Biochemistry and Technology, 5th ed. Amsterdam: Elsevier.]). The P—N bond lengths [1.607 (2) Å for (I) and 1.6232 (11) Å for (II)] are standard for structures with an (O)2P(O)(N) skeleton (Sabbaghi et al., 2019[Sabbaghi, F., Pourayoubi, M., Nečas, M. & Damodaran, K. (2019). Acta Cryst. C75, 77-84.]) and are smaller than a typical P—N single-bond length (Corbridge, 1995[Corbridge, D. E. C. (1995). In Phosphorus: An Outline of Its Chemistry, Biochemistry and Technology, 5th ed. Amsterdam: Elsevier.]).

The P—O—C bond angles are 120.7 (3) (P1—O2—C3) and 119.7 (3)° (P1—O10—C11) in (I), and 122.79 (8) (C1—O2—P1) and 119.73 (8)° (C7—O3—P1) in (II) indicate an sp2-hybridization state for the O atoms, similar to the P—O—C angles in analogous structures with similar P(Y)(O–C)2(N) (Y = O and S) skeletons (Sabbaghi et al., 2016[Sabbaghi, F., Pourayoubi, M., Dušek, M., Eigner, V., Bayat, S., Damodaran, K., Nečas, M. & Kučeráková, M. (2016). Struct. Chem. 27, 1831-1844.]).

The similar torsion angles describing the environment around the P—N unit are close to each other for the two com­pounds. Thus, the O9—P1—N17—C18 torsion angle [0.96 (7)°] in (I) is close to the O1—P1—N1—C13 torsion angle [−4.83 (12)°] in (II) and, similarly, O2—P1—N17—C18 [129.9 (5)°] and O10—P1—N17—C18 [−129.4 (5)°] of (I) are close to the O2—P1—N1—C13 [122.07 (10)°] and O3—P1—N1—C13 [−134.84 (10)°] torsion angles of (II), respectively. In addition to these, the O9—P1—N17—H171 (162.39°), O2—P1—N17—H171 (−68.65°) and O10—P1—N17—H171 (32.05°) torsion angles of (I) have values close to the O1—P1—N1—C20 [173.29 (10)°], O2—P1—N1—C20 [−59.82 (11)°] and O3—P1—N1—C20 [43.28 (11)°] torsion angles of (II), respectively. On the other hand, the C20 atom of (II) occupies the equivalent position to the H171 atom of (I).

In the next section, the conformations of the phenyl rings in (I) and (II) and the varieties of conformations observed in analogous structures available in the CSD are investigated in order to depict a com­parative study and understand the effects of substitution and packing forces on the conformations of the phenyl rings.

3.2. CSD analysis

3.2.1. Comparative studies with analogous com­pounds available in the CSD

The bond lengths of the 162 mol­ecules obtained from the CSD were extracted (see Table S1 in the supporting information) and the averages of the bond lengths were com­pared with similar bond lengths in title com­pounds (I)[link] and (II)[link] (Fig. 3[link]a). The bond lengths of (I)[link] and (II)[link] match with each other, as well as with the calculated averages (Fig. 3[link]a). Slight but not significant variations are observed for (I)[link] with respect to the C3—C4, C3—C8, C11—C12 and C11—C16 bonds, and all other bond lengths match with the standard deviations of the average values. In terms of bond angles, six were measured at the P atom and the data are listed in Table S2 in the supporting information. The averages of the bond angles calculated from the CSD structures are highly correlated with the title com­pounds, except for O2—P1—O10 of (I)[link], which is smaller than all the other bond angles (Fig. 3[link]b), due to the effect of the neighbouring bulky cyclo­heptyl ring. A com­parative analysis of torsion angles/conformations was also provided which will be discussed in the next section (Fig. 3[link]c and Table S3 in the supporting information).

[Figure 3]
Figure 3
Comparative study of the title com­pounds with similar structures available in the CSD. (a) The averages of the bond lengths calculated from the 162 mol­ecules containing the P(O)(OPh)2N skeleton are shown with the bond lengths of the title com­pounds. The atom numbering for (I)[link] is shown for reference. The bond lengths of the CSD structures and com­pounds (I)[link] and (II)[link] are shown in bold, italic and normal fonts, respectively. (b) The average bond angles at the P atom calculated for the 162 mol­ecules are shown with the bond angles of the title com­pounds. The bold fonts represent the average bond angles calculated from structures extracted from the CSD. The italic and normal fonts represent the data for (I)[link] and (II)[link], respectively. (c) The conformational summary of the two phenyl rings attached to the ester O atoms. The phenyl rings of (I)[link] adopt −ap and −ap conformations, and those of (II)[link] adopt +sc and +ap conformations, and their respective positions are marked and shown with an arrow.

Compounds (I)[link] and (II)[link] were superimposed with eight atoms constituting the (CCO)(O)P(O)(NC) skeleton [i.e. O2, P1, O9, O10, N17, C11, C16, and C18 of (I)[link], and O2, P1, O1, O3, N1, C7, C12 and C13 of (II)], with an r.m.s. deviation of 0.08 Å. Phenyl rings C11–C16 of (I)[link] and C7–C12 of (II)[link] adopt a similar anti­periplanar (ap) conformation with a slight dif­ference in the orientation [−ap for (I)[link] and +ap for (II)]. The conformation is considered based on the C—O—P—O torsion angle and the angles ranging from ±150 to 180° denote an ±ap conformation. The seven-membered ring (atoms C18–C24) of (I)[link] is closely aligned with the C14–C19 phenyl ring of (II)[link] (Fig. 4[link]). From the viewpoint of conformational changes, the significant difference between the two com­pounds arises due to the bulky C21–C26 phenyl-ring substituent at the N atom in (II). To accommodate this phenyl ring, another phenyl ring (C1–C6) rotates away and adopts a synclinal position (+sc), com­pared with an −ap orientation for the corresponding phenyl ring in (I)[link]. The distances between the rings are gathered in Table S4 of the supporting information. In (I), the seven-membered ring is located between the phenyl rings at almost equal distances from both, viz. 5.94 Å from phenyl ring C3–C8 and 5.71 Å from phenyl ring C11–C16 (see Fig. 4[link] and Table S4 in the supporting information).

[Figure 4]
Figure 4
Superposition of com­pounds (I)[link] and (II)[link], both shown in a ball-and-stick model and with C atoms coloured cyan for (I)[link] and green for (II)[link]. The O, N and P atoms are coloured red, blue and orange, respectively. The distance between the two phenyl rings from the seven-membered ring of (I)[link] is marked. The conformational change of phenyl ring 1 of (II)[link] in com­parison with a similar ring in (I)[link] is shown with a green arrow.
3.2.2. The phenyl-ring conformations

In the previous section, the −ap conformation for phenyl rings 1 (atoms C3–C8) and 2 (C11–C16) of (I)[link], and the +sc and +ap conformations, respectively, for phenyl rings 1 (C1–C6) and 2 (C7–C12) of (II)[link] were introduced. Based on the torsion angles, the 162 mol­ecules extracted from the CSD are divided into 22 groups. The −ap and +ap conformations are consistent with a trans orientation, so they can be combined together for a com­parative study (Fig. 3[link]c). From Fig. 3[link](c) and Table S3 in the supporting information, it is evident that 32 structures adopt +sc and ±ap conformations, and 46 structures adopt ±ap and ±ap conformations. Fig. 5[link](a) shows the superposition of the CSD structures corresponding to (I)[link] and (II)[link] with the structures of the title structures.

[Figure 5]
Figure 5
The conformational flexibility of the title com­pounds and the CSD structures. (a) The CSD structures corresponding to com­pounds (I)[link] and (II)[link] are shown along with (I)[link] and (II)[link], which are coloured as in Fig. 4[link]. (b) Superposition of the CSD structures, which belong to the −ap and −ap conformations, along with com­pound (I)[link], with slightly deviating structures marked. (c) Representative structures that adopt ±ap conformations in com­parison with com­pound (I)[link]. (d) Superposition of the CSD structures which belong to the +sc and ±ap conformations, along with com­pound (II)[link]. For clarity, the P(O)(OPh)2N skeletons of the CSD structures have been retained and other substitutions have been removed for most of the structures.

In (I)[link], the angle between the planes of the phenyl rings is 26.1 (3)° and the torsion angles of −178.2 (4)° for C3—O2—P1—O10 and −179.7 (4)° for C11—O10—P1—O2 define the −ap conformation for phenyl rings 1 and 2, as noted. The 14 mol­ecules ZIFYIW-Mol1 (Aparna et al., 1995[Aparna, K., Krishnamurthy, S. S. & Nethaji, M. (1995). Z. Anorg. Allg. Chem. 621, 1913-1921.]), LEQRIK01-Mol2 (Gholivand et al., 2013[Gholivand, K., Valmoozi, A. A. E. & Mahzouni, H. R. (2013). Acta Cryst. B69, 55-61.]), YEVSAT (Herrmann et al., 1994[Herrmann, E., Nouaman, M., Zak, Z., Grömann, G. & Ohms, G. (1994). Z. Anorg. Allg. Chem. 620, 1879-1888.]), FIBROY-Mol1 (Gholivand et al., 2005[Gholivand, K., Shariatinia, Z. & Pourayoubi, M. (2005). Z. Naturforsch. B Chem. Sci. 60, 67-74.]), OFESEZ-Mol2 (Safin et al., 2013[Safin, D. A., Babashkina, M. G., Robeyns, K., Mitoraj, M. P., Kubisiak, P., Brela, M. & Garcia, Y. (2013). CrystEngComm, 15, 7845-7851.]), BIFYUN (Das et al., 2018[Das, D., Brahmmananda Rao, C. V. S., Sivaraman, N., Sivaramakrishna, A. & Vijayakrishna, K. (2018). Inorg. Chim. Acta, 482, 597-604.]), BIFXIA-Mol1 (Das et al., 2018[Das, D., Brahmmananda Rao, C. V. S., Sivaraman, N., Sivaramakrishna, A. & Vijayakrishna, K. (2018). Inorg. Chim. Acta, 482, 597-604.]), BOGPOC (Drewelies & Pritzkow, 1982[Drewelies, K. & Pritzkow, H. (1982). Z. Naturforsch. B Chem. Sci. 37, 1402-1405.]), UREDUR-Mol1 (Sabbaghi et al., 2011b[Sabbaghi, F., Pourayoubi, M., Zargaran, P., Bruno, G. & Amiri Rudbari, H. (2011b). Acta Cryst. E67, o1378.]), KAVVAE-Mol1 (Zák et al., 1989[Zák, Z., Fofana, M., Kamenícek, J. & Glowiak, T. (1989). Acta Cryst. C45, 1686-1689.]), SOYCUE-Mol1 (Richter et al., 1991[Richter, R., Sieler, J., Borrmann, H., Simon, A., Chau, N. T. T. & Herrmann, E. (1991). Phosphorus Sulfur Silicon, 60, 107-117.]), SOYCUE-Mol2 (Richter et al., 1991[Richter, R., Sieler, J., Borrmann, H., Simon, A., Chau, N. T. T. & Herrmann, E. (1991). Phosphorus Sulfur Silicon, 60, 107-117.]), OFESAV-Mol1 (Safin et al., 2013[Safin, D. A., Babashkina, M. G., Robeyns, K., Mitoraj, M. P., Kubisiak, P., Brela, M. & Garcia, Y. (2013). CrystEngComm, 15, 7845-7851.]) and WIBKUN-Mol1 (Rebrova et al., 1993[Rebrova, O. N., Biyushkin, V. I., Ovrutskii, V. M., Nezhel'skaya, L. A., Dneprova, T. N. & Malinovskii, T. I. (1993). Kristallografiya, 38, 276.]) adopt a similar conformation (−ap and −ap) and their phenyl rings are similar to those in (I)[link] (Fig. 5[link]b and Table S3 in the supporting information). There are slight variations in some structures due to torsion-angle variations and bulk substitution in the phenyl rings or at the N atom, which are com­mon and have been observed in previously reported structures (Simon et al., 2017[Simon, L., Abdul Salam, A. A., Madan Kumar, S., Shilpa, T., Srinivasan, K. K. & Byrappa, K. (2017). Bioorg. Med. Chem. Lett. 27, 5284-5290.]). For example, YEVSAT and FIBROY-Mol1 have methyl substitution at the 4-position in the phenyl rings. Due to this effect, the phenyl rings are slightly disoriented with respect to the other structures. Similarly, UREDUR-Mol1 and FIBROY-Mol1 have a bulky phenyl group attached at an N-atom position and, due to this substitution, the phenyl rings are slightly twisted in com­parison with the other structures.

As was discussed earlier, the ±ap conformations adopt a similar trans orientation. For example, OFESAV-Mol1 adopts −ap and −ap conformations, and OFESAV-Mol2 adopts +ap and +ap conformations, and both mol­ecules are perfectly aligned with each other, as well as with com­pound (I)[link]. Similarly, KAVVAE-Mol1 (−ap/−ap), KAVVAE-Mol2 (+ap/+ap), LEQRIK01-Mol1 (+ap/+ap), LEQRIK01-Mol2 (−ap/−ap), SOYCUE-Mol1 (−ap/−ap), SOYCUE-Mol2 (−ap/−ap), WIBKUN-Mol1 (−ap/−ap) and WIBKUN-Mol2 (+ap/+ap), which adopt ±ap conformations, also fit well with (I)[link] (Fig. 5[link]c).

In (II)[link], the planes of the phenyl rings make a dihedral angle of 59.40 (5)°, which is ∼33° greater than the corresponding angle in (I)[link]. There are 11 mol­ecules in the CSD with conformations like those observed in (II)[link] (i.e. +sc and +ap). These are WEWVUP (Allcock et al., 1994[Allcock, H. R., Ngo, D. C., Parvez, M. & Visscher, K. B. (1994). Inorg. Chem. 33, 2090-2102.]), WIHPIM (Balakrishna et al., 1994[Balakrishna, M. S., Santarsiero, B. D. & Cavell, R. G. (1994). Inorg. Chem. 33, 3079-3084.]), UCOHID (Necas et al., 2001[Necas, M., Foreman, M. R. St J., Marek, J., Derek Woollins, J. & Novosad, J. (2001). New J. Chem. 25, 1256-1263.]), UCOFOH-Mol1 (Necas et al., 2001[Necas, M., Foreman, M. R. St J., Marek, J., Derek Woollins, J. & Novosad, J. (2001). New J. Chem. 25, 1256-1263.]), NOKHOL (Endeshaw et al., 2008[Endeshaw, M. M., Hansen, L. K. & Gautun, O. R. (2008). J. Heterocycl. Chem. 45, 149-154.]), XABSEZ (Rybarczyk-Pirek et al., 2002a[Rybarczyk-Pirek, A. J., Grabowski, S. J., Małecka, M. & Nawrot-Modranka, J. (2002a). J. Phys. Chem. A, 106, 11956-11962.]), OVUXAF-Mol2 (Chandrasekaran et al., 2011[Chandrasekaran, P., Mague, J. T. & Balakrishna, M. S. (2011). Eur. J. Inorg. Chem. 2011, 2264-2272.]), MOPMIN (Rybarczyk-Pirek et al., 2002b[Rybarczyk-Pirek, A. J., Malecka, M., Grabowski, S. J. & Nawrot-Modranka, J. (2002b). Acta Cryst. C58, o405-o406.]), UCOHAV-Mol3 (Necas et al., 2001[Necas, M., Foreman, M. R. St J., Marek, J., Derek Woollins, J. & Novosad, J. (2001). New J. Chem. 25, 1256-1263.]), NACJOR (Cadierno et al., 2004a[Cadierno, V., Díez, J., García-Álvarez, J. & Gimeno, J. (2004a). Organometallics, 23, 3425-3436.]) and BACVEH-Mol1 (Du et al., 2001[Du, D.-M., Hua, W.-T. & Jin, X.-L. (2001). J. Mol. Struct. 561, 145-152.]), and there is no remarkable difference between these 11 mol­ecules and (II)[link].

Due to the similar orientation of the ±ap conformation, the +sc and −ap conformations are also aligned well with com­pound (II)[link]. There are 21 structures which adopt +sc and −ap conformations (Table S3 in the supporting information). For example, AFASIK (Krishna et al., 2007[Krishna, H., Krishnamurthy, S. S., Nethaji, M., Murugavel, R. & Prabusankar, G. (2007). Dalton Trans. pp. 2908-2914.]), VIDYUC (Ammon et al., 1991[Ammon, H. L., El-Sayed, K. & Fouli, F. A. (1991). Acta Cryst. C47, 194-196.]) and KABZIW (Attanasi et al., 1988[Attanasi, O. A., Filippone, P., Guerra, P., Serra-Zanetti, F., Foresti, E. & Tugnoli, V. (1988). Gazz. Chim. Ital. 118, 533.]) can also be superimposed with com­pound (II)[link], and all are perfectly aligned with (II)[link] (Fig. 5[link]d). From the CSD com­parison results, a transap) conformation is one of the preferred conformations for the two phenyl rings in mol­ecules with the P(O)(OPh)2N skeleton. Out of 162 mol­ecules, 46 mol­ecules adopt ±apap conformations, which are similar to com­pound (I)[link] (Fig. 3[link]c). Similarly, 32 mol­ecules adopt sc and ±ap conformations, which are similar to com­pound (II)[link]. The next most frequent conformations (25 mol­ecules) are ±ap and −sc, which are the preferred alternative conformations similar to com­pound (II)[link]. Thus, for 124 out of 162 mol­ecules either both phenyl rings or one of the phenyl rings adopts a trans conformation (Fig. 3[link]c and Table S3 in the supporting information).

3.2.3. Intra- and inter­molecular inter­actions

In the crystal of (I), adjacent mol­ecules are linked through moderate N—H⋯O and weak C—H⋯O inter­molecular hydrogen bonds, forming a linear arrangement along the a axis (Fig. 6[link]a). The NHC7H13 group provides the two donor sites needed for these two hydrogen bonds. Compound (II) lacks an N—H group and a seven-membered ring, which prevents the formation of similar hydrogen bonds, except for the C6—H6A⋯O1 intra­molecular hydrogen bond with an angle of 125°. This structure possesses more phenyl rings than that of (I), and its three-dimensional (3D) supra­molecular assembly is built from C—H⋯π inter­actions (Table 5[link]). Fig. 6[link](b) shows a view of the crystal packing in the structure of (II).

[Figure 6]
Figure 6
The packing diagrams of (a) (I) and (b) (II), viewed along the b axis. For clarity, H atoms not involved in mol­ecular inter­actions have been omitted in part (a) and all H atoms have been omitted in part (b). The additional phenyl ring available in (II), which is in the equivalent position of the H atom of N—H in (I), is shown in green. (c) Superposition of (I) with the CSD structures (refcodes BIFXIA_Mol1 and BIFYUN). Both BIFXIA_Mol1 and BIFYUN adopt similar conformations to com­pound (I). The two structures contain a six-membered ring instead of the seven-membered ring present in (I). (d) The mol­ecular packing diagram of BIFYUN, viewed along the a axis. The N—H⋯O hydrogen-bond pattern of (I) shown in part (a) is similar to that in BIFYUN.

It is quite inter­esting that the recently published structure of di­phenyl­cyclo­hexyl amino­phospho­nate (CSD refcodes BIFXIA and BIFYUN) is the closest structure to (I). The reference structure (Das et al., 2018[Das, D., Brahmmananda Rao, C. V. S., Sivaraman, N., Sivaramakrishna, A. & Vijayakrishna, K. (2018). Inorg. Chim. Acta, 482, 597-604.]) has a six-membered ring attached to the N atom, while com­pound (I) has a seven-membered ring. Both structures can be superimposed well, and the H atom attached to the N atom is oriented on the same side (Fig. 6[link]c). The N—H⋯O hydrogen-bond pattern and the mol­ecular packing of BIFYUN resemble those in com­pound (I) (Fig. 6[link]d).

Another feature of the intra­molecular inter­actions is related to the phenyl-ring conformation (with the assistance of the bulk effect, which was discussed previously). In the structure of (II), the phenyl ring with the +sc conformation is the one involved in intra­molecular C—H⋯O hydrogen bonding. A CSD survey reveals that it is quite common that the O atom of the P=O group is involved in intra­molecular C—H⋯O inter­actions with one of the phenyl rings when it adopts an +sc or ±ap conformation. For example, the typical structures with the CSD refcodes XABSEZ, UCOHAV-Mol3, QABZIF (Warren et al., 2016[Warren, T. K., et al. (2016). Nature, 531, 381-385.]), IYAMEA-Mol1 (Cadierno et al., 2004b[Cadierno, V., Díez, J., García-Álvarez, J., Gimeno, J., Calhorda, M. J. & Veiros, L. F. (2004b). Organometallics, 23, 2421-2433.]) and EROJAX (Sabbaghi et al., 2011a[Sabbaghi, F., Pourayoubi, M. & Zargaran, P. (2011a). Acta Cryst. E67, o1170.]) form intra­molecular C—H⋯O=P hydrogen bonds with an angle of ∼125°.

The hydrogen-bond network of (I) includes R21(7) and C(4) graph-set motifs, as shown in Fig. 7[link] (for graph-set notation, see Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Figure 7]
Figure 7
The graph-set motifs in (I).

3.3. Hirshfeld surface analysis

3.3.1. Hirshfeld surface maps and fingerprint plots

The inter­molecular inter­actions of (I) and (II) were further studied by Hirshfeld surface (HS) analysis, including 3D HS maps, two-dimensional (2D) fingerprint (FP) plots and electrostatic energy frameworks. The HSs mapped with dnorm and the corresponding shape-index-associated 2D FP plots of (I) and (II) were generated using the CrystalExplorer software (Version 3.1; Wolff et al., 2013[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2013). CrystalExplorer. The University of Western Australia. https://crystalexplorer.scb.uwa.edu.au/.]), and the corresponding CIFs were used as the input files (Figs. 8[link] and 9[link]). In the HS of (I), the N—H⋯O=P and C—H⋯O=P hydrogen bonds appear as large (label 1) and small (label 2) red areas (Fig. 8[link]a), and in the HS of (II), the small and pale-red areas are related to C—H⋯π inter­actions (Fig. 9[link]a). It should be noted that in the HS maps, the contacts shown in red highlight inter­molecular inter­actions with distances shorter than the sum of the van der Waals radii (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]).

[Figure 8]
Figure 8
(a) Hirshfeld surface (HS) for structure (I) (mapped with dnorm). Labels on the HS are as follows: N17—H171⋯O9=P1 (1) and C23—H232⋯O9=P1 (2). 2D fingerprint plots of (I) for (b) full, (c) H⋯All, (d) C⋯All, (e) O⋯All, (f) H⋯H, (g) O⋯H/H⋯O, (h) C⋯H/H⋯C and (i) C⋯C. The contributions of P and N (0%) are not shown.
[Figure 9]
Figure 9
(a) The dnorm-mapped Hirshfeld surface for visualizing the C—H⋯π inter­actions in the structure of (II). 2D fingerprint plots of (II) for (b) full, (c) H⋯All, (d) C⋯All, (e) O-All, (f) H⋯H, (g) C⋯H/H⋯C, (h) O⋯H/H⋯O and (i) O⋯C/C⋯O. The C⋯C (0.2%), N-all (0.1%), N⋯H/H⋯N (0.1%) and P-All (0%) are not shown.

Figs. 8[link](b)–(i) and 9(b)–(i) illustrate the FPs for (I)[link] and (II)[link], respectively. For both structures, the H⋯H contacts represent the largest relative contribution [66.3% for (I)[link] (Fig. 8[link]f) and 58.4% for (II)[link] (Fig. 9[link]f)], with one sharp spike for structure (I)[link] (the shortest de = di ≃ 1.1 Å). The other inter­actions are O⋯H/H⋯O, C⋯H/H⋯C and C⋯C for both structures, and O⋯C/C⋯O and N⋯H/H⋯N for (II)[link], with the percentages of contributions as given in the figures. It should be noted that the relatively large contribution of the C⋯H/H⋯C contacts (32.3%) (Fig. 9[link]g) in (II)[link] is a result of the presence of C—H⋯π inter­actions.

3.3.2. Energy frameworks

In order to better understand the crystal packing and visualize the inter­action topologies of (I) and (II), an energy framework analysis was carried out using CrystalExplorer software (Thomas et al., 2018[Thomas, S. P., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2018). J. Chem. Theory Comput. 14, 1614-1623.]). The electrostatic, polarization, dispersion and exchange–repulsion energies of the inter­actions between the mol­ecules are calculated for (I) (Fig. 10[link] and Table S5 in the supporting information) and (II)[link] (Fig. 11[link] and Table S6 in the supporting information) using B3LYP/6-31G(d,p) electron-density functions. The energies between mol­ecular pairs are represented as cylinders (scale size of 150) by joining the centroids of pairs of mol­ecules. The energy frameworks for Eele (Figs. 10[link]df), Edisp (Figs. 10[link]gi) and Etot (Figs. 10[link]jl) are shown in red, green and blue, respectively, for (I)[link]. Similarly, the energy frameworks for Eele (Figs. 11[link]df), Edisp (Figs. 11[link]gi) and Etot (Figs. 11[link]jl) are shown for (II)[link]. The largest pairwise energies calculated are −89.9 (Table S5 in the supporting information) and −47.3 kJ mol−1 (Table S6 in the supporting information) for (I)[link] and (II)[link], respectively. In both structures, the energy distribution patterns are different. The energy frameworks for (I)[link] form zigzag mol­ecular sheets and for (II)[link] form parallel sheets. However, the dispersion energies outweigh the electrostatic energies in all cases. In general, (I)[link] has higher electrostatic energies than (II)[link], which is visually evident from Figs. 10[link] and 11[link], and the 3D network topologies confirmed the significant contribution of the N—H⋯O and C—H⋯O inter­actions in (I)[link], and the C—H⋯π inter­actions in (II)[link]. It should be noted that the energies can be affected by conformational changes, similar to what was observed for the relationship of the C6H5O segments in (I)[link] and (II)[link], which show the absence of C—H⋯π inter­actions in (I)[link] but their presence in (II)[link].

[Figure 10]
Figure 10
Energy frameworks for (I). The mol­ecular arrangement of (I) viewed along (a) the a, (b) the b and (c) the c directions, and shown as ball-and-stick models. (d)–(f) Representions of the electrostatic term (red colour), (g)–(i) the dispersion term (green colour) and (j)–(l) the total inter­action energy (blue colour). H atoms have been omitted for clarity.
[Figure 11]
Figure 11
Energy frameworks for (II). The mol­ecular arrangement of (II) viewed along (a) the a, (b) the b and (c) the c directions, and shown as ball-and-stick models. (d)–(f) Representions of the electrostatic term (red colour), (g)–(i) the dispersion term (green colour) and (j)–(l) the total inter­action energy (blue colour). H atoms have been omitted for clarity.

3.4. CSD data set

176 structures containing the P(O)(OPh)2N skeleton were extracted from the CSD. Of these structures, 58 were rejected due to the non-availability of 3D coordinates, disordered phenyl rings or both phenyl rings being fused via a single bond or the P=O group fused to other moieties. In the remaining 118 structures, some contain more than one mol­ecule in the asymmetric unit. In total, 162 mol­ecules from the 118 CSD structures were used for a com­parative study with the title com­pounds (I)[link] and (II)[link]. The figures were rendered using PyMOL (Schrödinger, 2015[Schrödinger (2015). The pyMOL Molecular Graphics System. Open-Source Version 1.5.5. Schrödinger Inc., Portland, OR, USA.]).

3.5. DSC study

The thermal properties of the two title structures were studied by differential scanning calorimetry (DSC) analysis. The peaks in the DSC plots in Figs. 12[link](a) and 12(b) are at 109 and 81 °C for (I) and (II), respectively, and correspond to the melting of the com­pounds. The higher melting point of (I) can be directly correlated to the greater strength of the inter­molecular contacts with respect to (II), as was discussed in the X-ray crystallography (§3.1[link]) and energy framework (§3.3.2[link]) sections. Furthermore, the thermal nature of the crystal is expected to be related to the flexibility of the mol­ecule. The Hirshfeld rigid-bond test was also conducted for (I) and (II) (Hirshfeld, 1976[Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.]) in order to understand the flexible natures of the structures. According to the rigid-bond test, the mean-squared displacement amplitudes do not show any significant bond deviation within 5.0 σ for both structures, except for three bonds of (I), namely P1—O2 (5.2 σ), C3—C4 (5.2 σ) and C11—C16 (6.0 σ), which show slight differences. In fact, this result is consistent with the CSD data, and these bond lengths vary slightly from the average obtained from the CSD data and the structure of (II) (Fig. 3[link]a and Section §3.2.1[link]). In any case, it is likely that there is conformational flexibility for these two structures and this is consistent with the CSD, Hirshfeld rigid-bond and energy framework studies.

[Figure 12]
Figure 12
DSC curves of com­pounds (a) (I) and (b) (II). Both curves were obtained at a heating rate of 10 °C min−1 under an N2 atmosphere.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015) for (I); Rigaku CrystalClear-SM Expert (Rigaku, 2011) for (II). For both structures, cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015). Program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007) for (I); SHELXT2014 (Sheldrick, 2015a) for (II). Program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003) for (I); SHELXL2018 (Sheldrick, 2015b) for (II). For both structures, molecular graphics: CAMERON (Watkin et al., 1996) and pyMOL (Schrödinger, 2015). Software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003) for (I); SHELXL2018 (Sheldrick, 2015b) for (II).

Diphenyl (cycloheptylamido)phosphate (I) top
Crystal data top
C19H24NO3PF(000) = 736
Mr = 345.36Dx = 1.295 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3874 reflections
a = 9.3538 (2) Åθ = 2.1–27.1°
b = 9.7899 (3) ŵ = 0.17 mm1
c = 19.3432 (5) ÅT = 175 K
V = 1771.31 (5) Å3Prism, colourless
Z = 40.35 × 0.25 × 0.15 mm
Data collection top
Rigaku Xcalibur Sapphire3 Gemini
diffractometer
3411 independent reflections
Graphite monochromator2964 reflections with I > 2.0σ(I)
Detector resolution: 16.0143 pixels mm-1Rint = 0.035
ω scansθmax = 28.0°, θmin = 2.1°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 712
Tmin = 0.979, Tmax = 1.000k = 911
9026 measured reflectionsl = 2323
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.052 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 19.6 25.7 7.98
wR(F2) = 0.103(Δ/σ)max = 0.001
S = 0.95Δρmax = 0.32 e Å3
3338 reflectionsΔρmin = 0.54 e Å3
221 parametersAbsolute structure: Flack (1983), 1505 Friedel-pairs
79 restraintsAbsolute structure parameter: 0.6 (3)
Primary atom site location: iterative
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Refinement. Data collection and crystal screening for (I) was performed on a Rigaku Oxford-Diffraction Gemini-S diffractometer with sealed-tube Mo-Kα radiation using the CrysAlisPro program (Rigaku Oxford-Diffraction, 2012). This program was also used for the integration of the data using default parameters, for the empirical absorption correction using spherical harmonics employing symmetry-equivalent and redundant data, and the correction for Lorentz and polarization effects. The ab-initio iterative charge flipping method was used to solve the crystal structure of (I) with parameters described elsewhere (van der Lee, 2013) employing the Superflip program (Palatinus&Chapuis, 2007) and it was refined using full-matrix least-squares procedures on squared structure factor amplitudes F2 as implemented in CRYSTALS (Betteridge et al., 2003) using all independent reflections with I>0.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.35676 (6)0.84662 (6)0.00163 (13)0.0183
O20.4415 (4)0.9225 (3)0.06247 (18)0.0205
C30.4113 (6)0.8932 (5)0.1321 (3)0.0257
C40.4887 (6)0.7907 (5)0.1653 (2)0.0305
C50.4633 (8)0.7722 (6)0.2345 (3)0.0433
C60.3634 (7)0.8486 (7)0.2706 (3)0.0431
C70.2905 (8)0.9495 (7)0.2365 (3)0.0406
C80.3173 (7)0.9711 (6)0.1665 (3)0.0333
H810.26891.04050.14350.0500*
H710.22371.00150.26050.0500*
H610.34720.83160.31720.0500*
H510.51510.70580.25800.0500*
H410.55500.73740.14170.0500*
O90.20228 (18)0.87095 (18)0.0010 (3)0.0275
O100.4444 (4)0.9209 (4)0.0573 (2)0.0288
C110.4140 (5)0.8929 (5)0.1266 (3)0.0223
C120.3098 (6)0.9729 (6)0.1603 (3)0.0323
C130.2900 (8)0.9499 (8)0.2298 (3)0.0459
C140.3672 (7)0.8504 (7)0.2635 (4)0.0488
C150.4657 (7)0.7703 (7)0.2302 (3)0.0420
C160.4909 (7)0.7958 (6)0.1596 (2)0.0358
H1610.55920.74550.13570.0500*
H1510.51410.70170.25380.0500*
H1410.35190.83760.31060.0500*
H1310.22391.00230.25400.0500*
N170.3982 (2)0.6874 (2)0.0026 (3)0.0213
C180.2936 (3)0.5742 (2)0.0018 (3)0.0232
C190.3086 (7)0.4933 (6)0.0682 (3)0.0425
C200.4369 (7)0.3947 (6)0.0702 (3)0.0671
C210.4344 (6)0.2720 (4)0.0185 (3)0.0809
C220.4727 (8)0.2979 (6)0.0558 (3)0.0828
C230.4388 (6)0.4358 (5)0.0842 (3)0.0460
C240.2980 (6)0.4913 (5)0.0638 (3)0.0330
H2410.27050.55130.10150.0500*
H2420.22680.41960.06090.0500*
H2310.44560.43170.13420.0500*
H2320.51350.49710.06840.0500*
H1910.22250.43940.07420.0500*
H1920.31460.55580.10700.0500*
H1810.19880.61650.00400.0500*
H2010.51910.44780.05980.0830*
H2020.44520.35840.11550.0830*
H2110.49910.20580.03600.1300*
H2120.33990.23640.01980.1300*
H2210.57210.28130.06140.1047*
H2220.41990.23310.08200.1047*
H1210.25921.04290.13670.0436*
H1710.484 (2)0.6673 (19)0.009 (2)0.0300*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0138 (3)0.0183 (3)0.0227 (3)0.0001 (2)0.0006 (7)0.0007 (6)
O20.0227 (17)0.0164 (13)0.0223 (15)0.0076 (15)0.0063 (14)0.0020 (13)
C30.029 (3)0.028 (2)0.020 (2)0.011 (2)0.002 (2)0.007 (2)
C40.029 (3)0.024 (2)0.039 (3)0.008 (2)0.011 (2)0.003 (2)
C50.055 (5)0.042 (3)0.033 (3)0.005 (3)0.014 (3)0.002 (3)
C60.058 (5)0.055 (4)0.016 (3)0.018 (3)0.004 (3)0.003 (2)
C70.045 (4)0.044 (3)0.033 (3)0.005 (3)0.018 (3)0.015 (3)
C80.037 (3)0.034 (3)0.029 (3)0.006 (2)0.010 (2)0.007 (2)
O90.0155 (8)0.0237 (9)0.0434 (11)0.0019 (7)0.004 (2)0.006 (2)
O100.027 (2)0.0371 (17)0.0223 (15)0.0064 (19)0.0090 (16)0.0040 (15)
C110.016 (3)0.026 (2)0.025 (2)0.003 (2)0.002 (2)0.003 (2)
C120.023 (3)0.034 (3)0.040 (3)0.003 (2)0.003 (2)0.005 (3)
C130.038 (4)0.058 (4)0.042 (3)0.011 (4)0.011 (3)0.012 (3)
C140.043 (5)0.069 (5)0.034 (4)0.011 (3)0.009 (3)0.015 (3)
C150.039 (4)0.055 (4)0.032 (3)0.008 (3)0.005 (3)0.010 (3)
C160.036 (3)0.052 (3)0.020 (3)0.004 (3)0.008 (2)0.004 (2)
N170.0128 (9)0.0206 (10)0.0305 (12)0.0018 (8)0.003 (3)0.006 (2)
C180.0189 (12)0.0192 (12)0.0316 (13)0.0034 (10)0.008 (2)0.001 (2)
C190.057 (3)0.040 (2)0.030 (2)0.018 (2)0.011 (3)0.007 (2)
C200.056 (3)0.071 (3)0.074 (3)0.007 (3)0.019 (3)0.047 (2)
C210.058 (3)0.0235 (17)0.161 (4)0.0095 (18)0.021 (4)0.037 (2)
C220.065 (4)0.052 (2)0.131 (4)0.018 (3)0.001 (3)0.013 (2)
C230.039 (2)0.053 (2)0.046 (2)0.002 (2)0.002 (2)0.0226 (17)
C240.029 (2)0.036 (2)0.034 (2)0.006 (2)0.001 (2)0.0073 (19)
Geometric parameters (Å, º) top
P1—O21.601 (3)C15—C161.409 (6)
P1—O91.4645 (18)C15—H1510.930
P1—O101.581 (4)C16—H1610.930
P1—N171.607 (2)N17—C181.479 (3)
O2—C31.405 (6)N17—H1710.860 (18)
C3—C41.394 (6)C18—C191.514 (6)
C3—C81.341 (7)C18—C241.507 (6)
C4—C51.371 (6)C18—H1810.980
C4—H410.930C19—C201.540 (7)
C5—C61.385 (7)C19—H1910.970
C5—H510.930C19—H1920.970
C6—C71.369 (7)C20—C211.563 (6)
C6—H610.930C20—H2010.950
C7—C81.394 (6)C20—H2020.950
C7—H710.930C21—C221.502 (7)
C8—H810.930C21—H2110.950
O10—C111.399 (6)C21—H2120.950
C11—C121.409 (6)C22—C231.491 (6)
C11—C161.351 (7)C22—H2210.950
C12—C131.377 (6)C22—H2220.950
C12—H1210.950C23—C241.478 (6)
C13—C141.377 (7)C23—H2310.970
C13—H1310.930C23—H2320.970
C14—C151.370 (7)C24—H2410.970
C14—H1410.930C24—H2420.970
O2—P1—O9114.8 (3)P1—N17—H171116.4 (13)
O2—P1—O1093.42 (10)C18—N17—H171116.5 (13)
O9—P1—O10115.5 (3)N17—C18—C19108.8 (4)
O2—P1—N17108.8 (2)N17—C18—C24113.2 (4)
O9—P1—N17113.34 (11)C19—C18—C24115.5 (2)
O10—P1—N17109.2 (2)N17—C18—H181106.4
P1—O2—C3120.7 (3)C19—C18—H181105.6
O2—C3—C4118.9 (5)C24—C18—H181106.8
O2—C3—C8119.4 (5)C18—C19—C20114.9 (5)
C4—C3—C8121.4 (5)C18—C19—H191108.0
C3—C4—C5117.0 (5)C20—C19—H191107.6
C3—C4—H41121.7C18—C19—H192109.3
C5—C4—H41121.3C20—C19—H192109.3
C4—C5—C6122.5 (6)H191—C19—H192107.4
C4—C5—H51118.6C19—C20—C21117.0 (5)
C6—C5—H51118.8C19—C20—H201106.3
C5—C6—C7118.9 (6)C21—C20—H201107.4
C5—C6—H61120.2C19—C20—H202108.8
C7—C6—H61120.9C21—C20—H202107.8
C6—C7—C8119.2 (6)H201—C20—H202109.5
C6—C7—H71119.4C20—C21—C22118.6 (4)
C8—C7—H71121.4C20—C21—H211106.6
C7—C8—C3120.9 (6)C22—C21—H211107.8
C7—C8—H81119.3C20—C21—H212106.2
C3—C8—H81119.8C22—C21—H212108.0
P1—O10—C11119.7 (3)H211—C21—H212109.5
O10—C11—C12118.3 (5)C21—C22—C23117.0 (5)
O10—C11—C16118.8 (5)C21—C22—H221108.2
C12—C11—C16122.8 (5)C23—C22—H221108.7
C11—C12—C13116.9 (6)C21—C22—H222105.8
C11—C12—H121121.6C23—C22—H222107.4
C13—C12—H121121.4H221—C22—H222109.5
C12—C13—C14120.5 (7)C22—C23—C24115.1 (5)
C12—C13—H131119.4C22—C23—H231108.4
C14—C13—H131120.1C24—C23—H231109.8
C13—C14—C15122.4 (7)C22—C23—H232106.9
C13—C14—H141118.5C24—C23—H232109.3
C15—C14—H141119.1H231—C23—H232107.1
C14—C15—C16117.8 (6)C18—C24—C23116.5 (4)
C14—C15—H151120.6C18—C24—H241107.4
C16—C15—H151121.6C23—C24—H241105.0
C15—C16—C11119.6 (6)C18—C24—H242108.8
C15—C16—H161120.2C23—C24—H242111.2
C11—C16—H161120.2H241—C24—H242107.4
P1—N17—C18124.57 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H232···O9i0.972.573.516 (8)166 (1)
N17—H171···O9i0.862.082.901 (8)159 (4)
Symmetry code: (i) x+1/2, y+3/2, z.
Diphenyl (dibenzylamido)phosphate (II) top
Crystal data top
C26H24NO3PZ = 2
Mr = 429.43F(000) = 452
Triclinic, P1Dx = 1.320 Mg m3
a = 8.3404 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5349 (5) ÅCell parameters from 7627 reflections
c = 14.9677 (7) Åθ = 3.7–29.8°
α = 76.280 (4)°µ = 0.16 mm1
β = 75.778 (4)°T = 120 K
γ = 72.055 (4)°Block, colourless
V = 1080.73 (9) Å30.25 × 0.20 × 0.20 mm
Data collection top
AFC11 (Right): Eulerian 3 circle CCD
diffractometer
3578 reflections with I > 2σ(I)
Radiation source: Rotating Anode MicroMax-007HF DW 1.2 kWRint = 0.018
Profile data from ω–scansθmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan
CrysAlis PRO (Rigaku OD, 2015)
h = 1010
Tmin = 0.722, Tmax = 1.000k = 1111
9523 measured reflectionsl = 1818
3901 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.4112P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.021
3901 reflectionsΔρmax = 0.27 e Å3
280 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data collection and crystal screening for (I) was performed on a Rigaku Oxford-Diffraction Gemini-S diffractometer with sealed-tube Mo-Kα radiation using the CrysAlisPro program (Rigaku Oxford-Diffraction, 2012). This program was also used for the integration of the data using default parameters, for the empirical absorption correction using spherical harmonics employing symmetry-equivalent and redundant data, and the correction for Lorentz and polarization effects. The ab-initio iterative charge flipping method was used to solve the crystal structure of (I) with parameters described elsewhere (van der Lee, 2013) employing the Superflip program (Palatinus&Chapuis, 2007) and it was refined using full-matrix least-squares procedures on squared structure factor amplitudes F2 as implemented in CRYSTALS (Betteridge et al., 2003) using all independent reflections with I>0.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.28992 (4)0.22585 (4)0.24553 (2)0.02034 (11)
O10.19646 (12)0.25264 (11)0.16998 (7)0.0268 (2)
O20.18570 (12)0.30054 (10)0.33444 (6)0.0242 (2)
O30.44766 (12)0.29786 (10)0.22264 (6)0.0229 (2)
N10.35880 (14)0.04977 (12)0.28829 (7)0.0210 (2)
C10.11701 (16)0.45642 (14)0.32925 (9)0.0216 (3)
C20.13891 (17)0.51758 (16)0.39864 (9)0.0251 (3)
H2A0.2044740.4573200.4444180.030*
C30.06359 (18)0.66858 (16)0.40047 (10)0.0283 (3)
H3A0.0777870.7124230.4477890.034*
C40.03204 (17)0.75573 (15)0.33386 (10)0.0279 (3)
H4A0.0838100.8590510.3356670.033*
C50.05239 (18)0.69265 (16)0.26462 (10)0.0287 (3)
H5A0.1178770.7529520.2188130.034*
C60.02249 (17)0.54132 (15)0.26162 (10)0.0264 (3)
H6A0.0089910.4973270.2141820.032*
C70.58266 (16)0.26177 (14)0.14702 (9)0.0212 (3)
C80.55543 (18)0.31321 (15)0.05655 (9)0.0244 (3)
H8A0.4449620.3693320.0441810.029*
C90.69321 (19)0.28115 (17)0.01621 (10)0.0311 (3)
H9A0.6771200.3146540.0792220.037*
C100.8537 (2)0.2007 (2)0.00263 (11)0.0385 (4)
H10A0.9475750.1792860.0474580.046*
C110.8781 (2)0.1512 (2)0.09426 (11)0.0395 (4)
H11A0.9888140.0966370.1068840.047*
C120.74155 (18)0.18102 (16)0.16751 (10)0.0287 (3)
H12A0.7569380.1465790.2306030.034*
C130.31490 (17)0.06607 (15)0.25673 (9)0.0241 (3)
H13A0.2242300.0170850.2187890.029*
H13B0.2673260.1313580.3122380.029*
C140.46539 (17)0.16227 (15)0.19938 (9)0.0227 (3)
C150.55410 (18)0.09884 (15)0.11602 (10)0.0256 (3)
H15A0.5240780.0067210.0964480.031*
C160.68566 (19)0.18823 (18)0.06139 (11)0.0334 (3)
H16A0.7449280.1440310.0042790.040*
C170.7312 (2)0.34247 (19)0.08992 (12)0.0399 (4)
H17A0.8218810.4039020.0525500.048*
C180.6445 (2)0.40617 (17)0.17262 (13)0.0389 (4)
H18A0.6756860.5116820.1923240.047*
C190.5118 (2)0.31677 (15)0.22719 (11)0.0302 (3)
H19A0.4522660.3614850.2840010.036*
C200.47160 (16)0.00427 (14)0.35785 (9)0.0215 (3)
H20A0.4917040.0826040.3744810.026*
H20B0.5838070.0657660.3299360.026*
C210.39591 (16)0.09676 (14)0.44588 (9)0.0209 (3)
C220.48106 (18)0.24494 (16)0.47433 (10)0.0274 (3)
H22A0.5893200.2882100.4391660.033*
C230.4090 (2)0.33073 (16)0.55406 (11)0.0327 (3)
H23A0.4689360.4316730.5734410.039*
C240.2508 (2)0.26933 (17)0.60496 (10)0.0303 (3)
H24A0.2007190.3282440.6587230.036*
C250.16556 (18)0.12152 (17)0.57722 (10)0.0281 (3)
H25A0.0568240.0788550.6122090.034*
C260.23788 (17)0.03546 (15)0.49876 (9)0.0242 (3)
H26A0.1791220.0663600.4808400.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01953 (18)0.02070 (19)0.01905 (18)0.00377 (13)0.00332 (13)0.00256 (13)
O10.0258 (5)0.0293 (5)0.0242 (5)0.0051 (4)0.0080 (4)0.0022 (4)
O20.0241 (5)0.0209 (5)0.0218 (5)0.0006 (4)0.0015 (4)0.0026 (4)
O30.0243 (5)0.0224 (5)0.0217 (5)0.0070 (4)0.0007 (4)0.0062 (4)
N10.0220 (5)0.0211 (6)0.0214 (5)0.0054 (4)0.0068 (4)0.0039 (4)
C10.0166 (6)0.0214 (6)0.0229 (6)0.0039 (5)0.0013 (5)0.0032 (5)
C20.0198 (6)0.0310 (7)0.0223 (7)0.0059 (5)0.0021 (5)0.0035 (6)
C30.0255 (7)0.0319 (7)0.0292 (7)0.0098 (6)0.0009 (6)0.0103 (6)
C40.0235 (7)0.0232 (7)0.0357 (8)0.0059 (5)0.0017 (6)0.0072 (6)
C50.0257 (7)0.0253 (7)0.0316 (8)0.0027 (6)0.0077 (6)0.0014 (6)
C60.0260 (7)0.0261 (7)0.0265 (7)0.0038 (6)0.0065 (6)0.0059 (6)
C70.0236 (7)0.0189 (6)0.0220 (6)0.0085 (5)0.0007 (5)0.0056 (5)
C80.0256 (7)0.0230 (7)0.0251 (7)0.0087 (5)0.0058 (5)0.0012 (5)
C90.0336 (8)0.0394 (8)0.0220 (7)0.0149 (6)0.0033 (6)0.0039 (6)
C100.0283 (8)0.0575 (10)0.0280 (8)0.0113 (7)0.0033 (6)0.0130 (7)
C110.0228 (7)0.0564 (10)0.0349 (8)0.0029 (7)0.0048 (6)0.0100 (7)
C120.0274 (7)0.0349 (8)0.0237 (7)0.0071 (6)0.0068 (6)0.0045 (6)
C130.0262 (7)0.0250 (7)0.0248 (7)0.0112 (5)0.0067 (5)0.0035 (5)
C140.0272 (7)0.0221 (6)0.0236 (7)0.0088 (5)0.0105 (5)0.0043 (5)
C150.0297 (7)0.0246 (7)0.0247 (7)0.0080 (6)0.0082 (6)0.0042 (5)
C160.0297 (8)0.0454 (9)0.0289 (8)0.0093 (7)0.0061 (6)0.0139 (7)
C170.0337 (8)0.0429 (9)0.0492 (10)0.0049 (7)0.0182 (7)0.0290 (8)
C180.0472 (9)0.0217 (7)0.0557 (10)0.0003 (7)0.0299 (8)0.0121 (7)
C190.0406 (8)0.0224 (7)0.0341 (8)0.0122 (6)0.0180 (7)0.0009 (6)
C200.0202 (6)0.0219 (6)0.0225 (6)0.0043 (5)0.0064 (5)0.0034 (5)
C210.0224 (6)0.0222 (6)0.0207 (6)0.0065 (5)0.0073 (5)0.0042 (5)
C220.0256 (7)0.0264 (7)0.0276 (7)0.0031 (6)0.0061 (6)0.0036 (6)
C230.0378 (8)0.0240 (7)0.0338 (8)0.0063 (6)0.0127 (7)0.0031 (6)
C240.0366 (8)0.0352 (8)0.0230 (7)0.0183 (6)0.0067 (6)0.0003 (6)
C250.0266 (7)0.0367 (8)0.0237 (7)0.0104 (6)0.0033 (6)0.0090 (6)
C260.0252 (7)0.0236 (7)0.0242 (7)0.0047 (5)0.0063 (5)0.0054 (5)
Geometric parameters (Å, º) top
P1—O11.4578 (10)C12—H12A0.9500
P1—O21.5916 (9)C13—C141.5127 (18)
P1—O31.5948 (10)C13—H13A0.9900
P1—N11.6232 (11)C13—H13B0.9900
O2—C11.4092 (15)C14—C191.3893 (19)
O3—C71.4096 (15)C14—C151.3907 (19)
N1—C131.4693 (17)C15—C161.383 (2)
N1—C201.4707 (17)C15—H15A0.9500
C1—C21.378 (2)C16—C171.388 (2)
C1—C61.3826 (19)C16—H16A0.9500
C2—C31.386 (2)C17—C181.378 (3)
C2—H2A0.9500C17—H17A0.9500
C3—C41.382 (2)C18—C191.387 (2)
C3—H3A0.9500C18—H18A0.9500
C4—C51.382 (2)C19—H19A0.9500
C4—H4A0.9500C20—C211.5151 (18)
C5—C61.3913 (19)C20—H20A0.9900
C5—H5A0.9500C20—H20B0.9900
C6—H6A0.9500C21—C221.3881 (19)
C7—C81.3760 (19)C21—C261.3919 (18)
C7—C121.3791 (19)C22—C231.393 (2)
C8—C91.3880 (19)C22—H22A0.9500
C8—H8A0.9500C23—C241.381 (2)
C9—C101.382 (2)C23—H23A0.9500
C9—H9A0.9500C24—C251.384 (2)
C10—C111.384 (2)C24—H24A0.9500
C10—H10A0.9500C25—C261.384 (2)
C11—C121.384 (2)C25—H25A0.9500
C11—H11A0.9500C26—H26A0.9500
O1—P1—O2115.77 (5)N1—C13—H13A108.8
O1—P1—O3116.27 (5)C14—C13—H13A108.8
O2—P1—O397.78 (5)N1—C13—H13B108.8
O1—P1—N1113.54 (6)C14—C13—H13B108.8
O2—P1—N1104.31 (5)H13A—C13—H13B107.7
O3—P1—N1107.44 (5)C19—C14—C15118.94 (13)
C1—O2—P1122.79 (8)C19—C14—C13120.19 (12)
C7—O3—P1119.73 (8)C15—C14—C13120.80 (12)
C13—N1—C20115.99 (10)C16—C15—C14120.52 (13)
C13—N1—P1121.10 (9)C16—C15—H15A119.7
C20—N1—P1122.88 (9)C14—C15—H15A119.7
C2—C1—C6121.90 (12)C15—C16—C17120.07 (15)
C2—C1—O2116.55 (12)C15—C16—H16A120.0
C6—C1—O2121.40 (12)C17—C16—H16A120.0
C1—C2—C3118.83 (13)C18—C17—C16119.78 (14)
C1—C2—H2A120.6C18—C17—H17A120.1
C3—C2—H2A120.6C16—C17—H17A120.1
C4—C3—C2120.38 (14)C17—C18—C19120.22 (14)
C4—C3—H3A119.8C17—C18—H18A119.9
C2—C3—H3A119.8C19—C18—H18A119.9
C5—C4—C3120.03 (13)C18—C19—C14120.47 (14)
C5—C4—H4A120.0C18—C19—H19A119.8
C3—C4—H4A120.0C14—C19—H19A119.8
C4—C5—C6120.37 (13)N1—C20—C21112.18 (10)
C4—C5—H5A119.8N1—C20—H20A109.2
C6—C5—H5A119.8C21—C20—H20A109.2
C1—C6—C5118.49 (13)N1—C20—H20B109.2
C1—C6—H6A120.8C21—C20—H20B109.2
C5—C6—H6A120.8H20A—C20—H20B107.9
C8—C7—C12122.33 (12)C22—C21—C26118.74 (12)
C8—C7—O3120.00 (12)C22—C21—C20120.71 (12)
C12—C7—O3117.59 (12)C26—C21—C20120.54 (11)
C7—C8—C9118.41 (13)C21—C22—C23120.54 (13)
C7—C8—H8A120.8C21—C22—H22A119.7
C9—C8—H8A120.8C23—C22—H22A119.7
C10—C9—C8120.28 (14)C24—C23—C22120.13 (13)
C10—C9—H9A119.9C24—C23—H23A119.9
C8—C9—H9A119.9C22—C23—H23A119.9
C9—C10—C11120.20 (14)C23—C24—C25119.63 (13)
C9—C10—H10A119.9C23—C24—H24A120.2
C11—C10—H10A119.9C25—C24—H24A120.2
C12—C11—C10120.16 (14)C24—C25—C26120.35 (13)
C12—C11—H11A119.9C24—C25—H25A119.8
C10—C11—H11A119.9C26—C25—H25A119.8
C7—C12—C11118.61 (13)C25—C26—C21120.60 (13)
C7—C12—H12A120.7C25—C26—H26A119.7
C11—C12—H12A120.7C21—C26—H26A119.7
N1—C13—C14113.73 (11)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg1 are the centroids of the C1–C6, C14–C19 and C7–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2A···CG1i0.953.503.9798 (13)114
C13—H13B···CG1ii0.993.494.2048 (13)131
C18—H18A···CG3ii0.953.223.8839 (15)128
C8—H8A···CG2iii0.953.413.7716 (14)106
C6—H6A···O10.952.513.1488 (17)125
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z; (iii) x+1, y, z.
 

Acknowledgements

Support of this investigation by the Ferdowsi University of Mashhad is gratefully acknowledged. The authors appreciatively acknowledge the Cambridge Crystallographic Data Centre for access to the CSD Enterprise suite. A CIISB research infrastructure project funded by MEYS CR is gratefully acknowledged for the financial support of the measurements at the CF X-ray diffraction and Bio-SAXS. Abdul Ajees Abdul Salam acknowledges the research grant provided by the Manipal Academy of Higher Education (MAHE), Manipal, India, under intra­mural funding.

Funding information

Funding for this research was provided by: Ferdowsi University of Mashhad (project No. 39847/3); MEYS CR (project No. LM2015043); Manipal Academy of Higher Education (grant No. MAHE/DREG/PhD/IMF/2019).

References

First citationAllcock, H. R., Ngo, D. C., Parvez, M. & Visscher, K. B. (1994). Inorg. Chem. 33, 2090–2102.  CrossRef CAS Google Scholar
First citationAmmon, H. L., El-Sayed, K. & Fouli, F. A. (1991). Acta Cryst. C47, 194–196.  CrossRef CAS IUCr Journals Google Scholar
First citationAparna, K., Krishnamurthy, S. S. & Nethaji, M. (1995). Z. Anorg. Allg. Chem. 621, 1913–1921.  CSD CrossRef CAS Web of Science Google Scholar
First citationAttanasi, O. A., Filippone, P., Guerra, P., Serra-Zanetti, F., Foresti, E. & Tugnoli, V. (1988). Gazz. Chim. Ital. 118, 533.  Google Scholar
First citationBalakrishna, M. S., Santarsiero, B. D. & Cavell, R. G. (1994). Inorg. Chem. 33, 3079–3084.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J. & Hagler, A. T. (1978). J. Am. Chem. Soc. 100, 673–681.  CrossRef CAS Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBuntine, M. A., Hall, V. J., Kosovel, F. J. & Tiekink, E. R. T. (1998). J. Phys. Chem. A, 102, 2472–2482.  Web of Science CSD CrossRef CAS Google Scholar
First citationCadierno, V., Díez, J., García-Álvarez, J. & Gimeno, J. (2004a). Organometallics, 23, 3425–3436.  CrossRef CAS Google Scholar
First citationCadierno, V., Díez, J., García-Álvarez, J., Gimeno, J., Calhorda, M. J. & Veiros, L. F. (2004b). Organometallics, 23, 2421–2433.  CrossRef CAS Google Scholar
First citationChandrasekaran, P., Mague, J. T. & Balakrishna, M. S. (2011). Eur. J. Inorg. Chem. 2011, 2264–2272.  CrossRef Google Scholar
First citationCorbridge, D. E. C. (1995). In Phosphorus: An Outline of Its Chemistry, Biochemistry and Technology, 5th ed. Amsterdam: Elsevier.  Google Scholar
First citationDas, D., Brahmmananda Rao, C. V. S., Sivaraman, N., Sivaramakrishna, A. & Vijayakrishna, K. (2018). Inorg. Chim. Acta, 482, 597–604.  CrossRef CAS Google Scholar
First citationDauber, P. & Hagler, A. T. (1980). Acc. Chem. Res. 13, 105–112.  CrossRef CAS Google Scholar
First citationDrewelies, K. & Pritzkow, H. (1982). Z. Naturforsch. B Chem. Sci. 37, 1402–1405.  CrossRef Google Scholar
First citationDu, D.-M., Hua, W.-T. & Jin, X.-L. (2001). J. Mol. Struct. 561, 145–152.  CrossRef CAS Google Scholar
First citationEndeshaw, M. M., Hansen, L. K. & Gautun, O. R. (2008). J. Heterocycl. Chem. 45, 149–154.  CrossRef CAS Google Scholar
First citationFang, Z., Cao, C., Chen, J. & Deng, X. (2014). J. Mol. Struct. 1063, 307–312.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGholivand, K. & Pourayoubi, M. (2004). Z. Anorg. Allg. Chem. 630, 1330–1335.  Web of Science CSD CrossRef CAS Google Scholar
First citationGholivand, K., Shariatinia, Z. & Pourayoubi, M. (2005). Z. Naturforsch. B Chem. Sci. 60, 67–74.  CrossRef CAS Google Scholar
First citationGholivand, K., Valmoozi, A. A. E. & Mahzouni, H. R. (2013). Acta Cryst. B69, 55–61.  CrossRef CAS IUCr Journals Google Scholar
First citationGregoret, L. M. & Cohen, F. E. (1991). J. Mol. Biol. 219, 109–122.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, A. K., Dubey, D. K., Sharma, M. & Kaushik, M. P. (2007). Org. Prep. Proced. Int. 39, 297–305.  CrossRef CAS Google Scholar
First citationGupta, A. K., Palit, M., Dubey, D. K. & Raza, S. K. (2005). Eur. J. Mass. Spectrom. (Chichester), 11, 119–125.  CrossRef PubMed CAS Google Scholar
First citationHerrmann, E., Nouaman, M., Zak, Z., Grömann, G. & Ohms, G. (1994). Z. Anorg. Allg. Chem. 620, 1879–1888.  CrossRef CAS Google Scholar
First citationHirshfeld, F. L. (1976). Acta Cryst. A32, 239–244.  CrossRef IUCr Journals Web of Science Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHopfinger, A. J. & Battershell, R. D. (1976). J. Med. Chem. 19, 569–573.  CrossRef PubMed CAS Google Scholar
First citationJones, C. S., Bull, S. D. & Williams, J. M. J. (2016). Org. Biomol. Chem. 14, 8452–8456.  CrossRef CAS PubMed Google Scholar
First citationKeikha, M., Pourayoubi, M., van der Lee, A. & Tarahhomi, A. (2017). Z. Kristallogr. 232, 3–13.  Google Scholar
First citationKrishna, H., Krishnamurthy, S. S., Nethaji, M., Murugavel, R. & Prabusankar, G. (2007). Dalton Trans. pp. 2908–2914.  CrossRef Google Scholar
First citationLee, A. van der (2013). J. Appl. Cryst. 46, 1306–1315.  CrossRef IUCr Journals Google Scholar
First citationMattern, R. H., Moore, S. B., Tran, T. A., Rueter, J. K. & Goodman, M. (2000). Tetrahedron, 56, 9819–9831.  CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMoghaddam, S. N., Shabari, A. R., Sabbaghi, F., Pourayoubi, M. & Salam, A. A. A. (2019). Molbank, 2019, M1051.  CrossRef Google Scholar
First citationNecas, M., Foreman, M. R. St J., Marek, J., Derek Woollins, J. & Novosad, J. (2001). New J. Chem. 25, 1256–1263.  CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRebrova, O. N., Biyushkin, V. I., Ovrutskii, V. M., Nezhel'skaya, L. A., Dneprova, T. N. & Malinovskii, T. I. (1993). Kristallografiya, 38, 276.  Google Scholar
First citationRichter, R., Sieler, J., Borrmann, H., Simon, A., Chau, N. T. T. & Herrmann, E. (1991). Phosphorus Sulfur Silicon, 60, 107–117.  CrossRef CAS Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRollet, J. S. (1965). Editor. Computing Methods in Crystallography, 1st ed., p. 170. Oxford: Pergamon Press.  Google Scholar
First citationRybarczyk-Pirek, A. J., Grabowski, S. J., Małecka, M. & Nawrot-Modranka, J. (2002a). J. Phys. Chem. A, 106, 11956–11962.  CAS Google Scholar
First citationRybarczyk-Pirek, A. J., Malecka, M., Grabowski, S. J. & Nawrot-Modranka, J. (2002b). Acta Cryst. C58, o405–o406.  CrossRef CAS IUCr Journals Google Scholar
First citationSabbaghi, F., Pourayoubi, M., Dušek, M., Eigner, V., Bayat, S., Damodaran, K., Nečas, M. & Kučeráková, M. (2016). Struct. Chem. 27, 1831–1844.  Web of Science CSD CrossRef CAS Google Scholar
First citationSabbaghi, F., Pourayoubi, M., Nečas, M. & Damodaran, K. (2019). Acta Cryst. C75, 77–84.  CrossRef IUCr Journals Google Scholar
First citationSabbaghi, F., Pourayoubi, M. & Zargaran, P. (2011a). Acta Cryst. E67, o1170.  CrossRef IUCr Journals Google Scholar
First citationSabbaghi, F., Pourayoubi, M., Zargaran, P., Bruno, G. & Amiri Rudbari, H. (2011b). Acta Cryst. E67, o1378.  CrossRef IUCr Journals Google Scholar
First citationSafin, D. A., Babashkina, M. G., Robeyns, K., Mitoraj, M. P., Kubisiak, P., Brela, M. & Garcia, Y. (2013). CrystEngComm, 15, 7845–7851.  CrossRef CAS Google Scholar
First citationSchrödinger (2015). The pyMOL Molecular Graphics System. Open-Source Version 1.5.5. Schrödinger Inc., Portland, OR, USA.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimon, L., Abdul Salam, A. A., Madan Kumar, S., Shilpa, T., Srinivasan, K. K. & Byrappa, K. (2017). Bioorg. Med. Chem. Lett. 27, 5284–5290.  CrossRef CAS PubMed Google Scholar
First citationThomas, S. P., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2018). J. Chem. Theory Comput. 14, 1614–1623.  Web of Science CrossRef CAS PubMed Google Scholar
First citationToghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680–1690.  Web of Science CSD CrossRef CAS Google Scholar
First citationVahdani Alviri, B., Pourayoubi, M., Saneei, A., Keikha, M., van der Lee, A., Crochet, A., Ajees, A. A., Nečas, M., Fromm, K. M., Damodaran, K. & Jenny, T. A. (2018). Tetrahedron, 74, 28–41.  Web of Science CSD CrossRef CAS Google Scholar
First citationWarren, T. K., et al. (2016). Nature, 531, 381–385.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWaser, J. (1963). Acta Cryst. 16, 1091–1094.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2013). CrystalExplorer. The University of Western Australia. https://crystalexplorer.scb.uwa.edu.au/.  Google Scholar
First citationZák, Z., Fofana, M., Kamenícek, J. & Glowiak, T. (1989). Acta Cryst. C45, 1686–1689.  CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds