research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Synthesis of N-substituted 3-(2-aryl-2-oxoeth­yl)-3-hy­dr­oxy­indolin-2-ones and their conversion to N-substituted (E)-3-(2-aryl-2-oxo­ethyl­­idene)indolin-2-ones: synthetic sequence, spectroscopic characterization and structures of four 3-hy­dr­oxy com­pounds and five oxo­ethyl­­idene products

CROSSMARK_Color_square_no_text.svg

aEscuela de Ciencias Química, Universidad Pedagógica y Tecnológica de Colombia, 150003 Tunja, Colombia, bBioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes, 111711 Bogotá, Colombia, cHeterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, AA 25360 Cali, Colombia, dDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and eSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

Edited by A. L. Spek, Utrecht University, The Netherlands (Received 23 March 2020; accepted 25 March 2020; online 20 April 2020)

An operationally simple and time-efficient approach has been developed for the synthesis of racemic N-substituted 3-(2-aryl-2-oxoeth­yl)-3-hy­droxy­indolin-2-ones by a piperidine-catalysed aldol reaction between aryl methyl ketones and N-alkyl­isatins. These aldol products were used successfully as strategic inter­mediates for the preparation of N-substituted (E)-3-(2-hetaryl-2-oxo­ethyl­idene)indolin-2-ones by a stereoselective dehydration reaction under acidic conditions. The products have all been fully characterized by 1H and 13C NMR spectroscopy, by mass spectrometry and, for a representative selection, by crystal structure analysis. In each of (RS)-1-benzyl-3-hy­droxy-3-[2-(4-meth­oxy­phen­yl)-2-oxoeth­yl]indolin-2-one, C24H21NO4, (Ic), and (RS)-1-benzyl-3-{2-[4-(di­methyl­amino)­phen­yl]-2-oxoeth­yl}-3-hy­droxy­indolin-2-one, C25H24N2O3, (Id), inversion-related pairs of mol­ecules are linked by O—H⋯O hydrogen bonds to form R22(10) rings, which are further linked into chains of rings by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds in (Ic) and by C—H⋯π(arene) hydrogen bonds in (Id). The mol­ecules of (RS)-1-benzyl-3-hy­droxy-3-[2-oxo-2-(pyridin-4-yl)eth­yl]indolin-2-one, C22H18N2O3, (Ie), are linked into a three-dimensional framework structure by a combination of O—H⋯N, C—H⋯O and C—H⋯π(arene) hydrogen bonds. (RS)-3-[2-(Benzo[d][1,3]dioxol-5-yl)-2-oxoeth­yl]-1-benzyl-3-hy­droxy­indolin-2-one, C24H19NO5, (If), crystallizes with Z′ = 2 in the space group P[\overline{1}] and the mol­ecules are linked into com­plex sheets by a combination of O—H⋯O, C—H⋯O and C—H⋯π(arene) hydro­gen bonds. In each of (E)-1-benzyl-3-[2-(4-fluoro­phen­yl)-2-oxo­ethyl­idene]indolin-2-one, C23H16FNO2, (IIa), and (E)-1-benzyl-3-[2-oxo-2-(thiophen-2-yl)ethylidene]indolin-2-one, C21H15NO2S, (IIg), the mol­ecules are linked into simple chains by a single C—H⋯O hydrogen bond, while those of (E)-1-benzyl-3-[2-oxo-2-(pyridin-4-yl)ethyl­idene]indolin-2-one, C22H16N2O2, (IIe), are linked by three C—H⋯O hydrogen bonds to form sheets which are further linked into a three-dimensional structure by C—H⋯π(arene) hydrogen bonds. There are no hydrogen bonds in the structures of either (E)-1-benzyl-3-[2-(4-meth­oxy­phen­yl)-2-oxo­ethyl­idene]indolin-2-one, C24H19NO3, (IIc), or (E)-1-benzyl-5-chloro-3-[2-(4-chloro­phen­yl)-2-oxo­ethyl­idene]indolin-2-one, C23H15Cl2NO2, (IIh), but the mol­ecules of (IIh) are linked into chains of π-stacked dimers by a combination of C—Cl⋯π(arene) and aromatic ππ stacking inter­actions.

1. Introduction

Almost 60% of drugs based on small organic mol­ecules which are in use for medicinal purposes contain at least one N-heterocyclic ring (Vitaku et al., 2014[Vitaku, E., Smith, D. T. & Njardarson, J. T. (2014). J. Med. Chem. 57, 10257-10274.]). Amongst these, isatin (1H-indole-2,3-dione) and its derivatives have attracted

[Scheme 1]
particular inter­est because of their broad range of biological and pharmacological activities (Singh & Desta, 2012[Singh, G. S. & Desta, Z. Y. (2012). Chem. Rev. 112, 6104-6155.]; Pakravan et al., 2013[Pakravan, P., Kashanian, S., Khodaei, M. M. & Harding, F. J. (2013). Pharmacol. Rep. 65, 313-335.]). Isatin derivatives have also been found to be useful synthetic inter­mediates for the production of both dyestuffs and organic electronic materials (Stalder et al., 2014[Stalder, R., Mei, J., Graham, K. R., Estrada, L. A. & Reynolds, J. R. (2014). Chem. Mater. 26, 664-678.]; Deng & Zhang, 2014[Deng, P. & Zhang, Q. (2014). Polym. Chem. 5, 3298-3305.]). These wide-ranging applications have prompted the development of a large range of synthetic approaches to functionalized isatin derivatives (Moradi et al., 2017[Moradi, R., Ziarani, G. M. & Lashgari, N. (2017). ARKIVOC, Vol. 2017, Part (i), 148-201; doi: https://doi.org/10.24820/ark.5550190.p009.980.]; Bogdanov & Mironov, 2018[Bogdanov, A. V. & Mironov, V. (2018). Synthesis, 50, 1601-1609.]; Varun et al., 2019[Varun, Sonam & Kakkar, R. (2019). Med. Chem. Commun. 10, 351-368.]). Amongst these, the addition of nucleophilic units to the pro­chiral carbonyl group at atom C3 permits the construction of chiral 3-substituted-3-hy­droxy­indolin-2-ones containing a stereo­genic centre at the 3-position (Peddibhotla, 2009[Peddibhotla, S. (2009). Curr. Bioact. Compd. 5, 20-38.]; Mohammadi et al., 2013[Mohammadi, S., Heiran, R., Herrera, R. P. & Marqués-López, E. (2013). ChemCatChem, 5, 2131-2148.]). Such species are desirable targets, because many related structural motifs are found in natural products and pharmaceutically active com­pounds; for example, convolutamydine A is a bioactive alkaloid with significant activity against HL-60 human plomyelocytic leukemia cells (Kamano et al., 1995[Kamano, Y., Zhang, H. P., Ichihara, Y., Kizu, H., Komiyama, K. & Pettit, G. R. (1995). Tetrahedron Lett. 36, 2783-2784.]), SM-130686 is a novel orally active growth hormone secretagogue (Nagamine et al., 2001[Nagamine, J., Nagata, R., Seki, H., Nomura-Akimaru, N., Ueki, Y., Kumagai, K., Taiji, M. & Noguchi, H. (2001). J. Endocrinol. 171, 481-489.]), donaxaridine has shown effective anti­cancer properties (Kimura et al., 2016[Kimura, J., Subba Reddy, U. V., Kohari, Y., Seki, C., Mawatari, Y., Uwai, K., Okuyama, Y., Kwon, E., Tokiwa, M., Takeshita, M., Iwasa, T. & Nakano, H. (2016). Eur. J. Org. Chem. 2016, 3748-3756.]) and maremycins A and B exhibit anti­bacterial, anti­fungal and anti­tumour properties (Duan et al., 2018[Duan, Y., Liu, Y., Huang, T., Zou, Y., Huang, T., Hu, K., Deng, Z. & Lin, S. (2018). Org. Biomol. Chem. 16, 5446-5451.]).

Several years ago, we reported the synthesis and structures of a range of 3-alkyl-3-hy­droxy­indolin-2-ones by reaction of isatin itself with a variety of methyl ketones in the presence of piperidine. Although the procedures were straightforward, the yields were consistently rather disappointing, in the range 40–60% (Becerra et al., 2010[Becerra, D., Insuasty, B., Cobo, J. & Glidewell, C. (2010). Acta Cryst. C66, o79-o86.]). Within the isatin mol­ecule, both simple amide and vinyl­ogous amide fragments can be identified, so that in the conjugate base of isatin the negative charge can be delocalized into both carbonyl groups. Any consequent partial proton transfer from isatin to piperidine is thus likely to be a factor in depressing the overall yields. We therefore reasoned that incorporation of a substituent at the N atom of isatin should prevent any such ionization and thus increase the product yields significantly.

Accordingly, we have now studied the synthesis and structures of a range of 3-(2-aryl-2-oxoeth­yl)-3-hy­droxy­indolin-2-ones, (I), and their dehydration to the corresponding chalcones, (II) (see Scheme 1[link]), and we report here the synthesis and spectroscopic characterization of nine com­pounds of type (I), and eight of type (II), along with the mol­ecular and supra­molecular structures of four representative type (I) com­pounds [(Ic), (Id), (Ie) and (If)] and of five representative type (II) com­pounds [(IIa), (IIc), (IIe), (IIg) and (IIh)].

2. Experimental

2.1. Synthesis and crystallization

Isatins (A) (see Scheme 1[link]), where X = H or Cl, were converted to the corresponding N-alkyl analogues (B) by reaction with the appropriate alkyl bromide in di­methyl­formamide solution in the presence of solid caesium carbonate acting as a weak base, giving yields in excess of 90% after a reaction time of 12 h at 298 K. For the synthesis of the 3-hy­droxy­indolin-2-ones, (I) (see Scheme 1[link]), a mixture of an N-alkyl­isatin, (B) (1.0 mmol), the appropriate aryl methyl ketone (1.0 mmol) and piperidine (0.2 mmol) in ethanol (10 ml) was stirred at 298 K for 6 h [24 h in the case of com­pound (Id)], after which time the starting materials were no longer detectable using thin-layer chromatography (TLC). The resulting solid products were collected by filtration, washed with cold ethanol (2 ml) and dried in air to give the products of type (I). Analytical data for com­pound (Ia): yield 93%, m.p. 437–438 K (literature 437–441 K; Tripathi et al., 2016[Tripathi, R. K. P., Krishnamurthy, S. & Ayyannan, S. R. (2016). ChemMedChem, 11, 119-132.]); com­pound (Ib): yield 91%, m.p. 430–431 K (literature 431–433 K; Duan et al., 2013[Duan, Z., Han, J., Qian, P., Zhang, Z., Wang, Y. & Pan, Y. (2013). Org. Biomol. Chem. 11, 6456-6459.]); com­pound (Ic): yield 85%, m.p. 430 K (literature 429–431 K; Duan et al., 2013[Duan, Z., Han, J., Qian, P., Zhang, Z., Wang, Y. & Pan, Y. (2013). Org. Biomol. Chem. 11, 6456-6459.]); com­pound (Id): yield 36%, m.p. 450 K; com­pound (Ie): yield 92%, m.p. 479–481 K; com­pound (If): yield 87%, m.p. 452–453 K; com­pound (Ig): yield 82%, m.p. 421–422 K (literature 421–423 K; Satish et al., 2015[Satish, G., Polu, A., Ramar, T. & Ilangovan, A. (2015). J. Org. Chem. 80, 5167-5175.]); com­pound (Ih): yield 89%, m.p. 423 K; com­pound (Ii): yield 83%, m.p. 398 K. Colourless crystals of com­pounds (Ic), (Id), (Ie) and (If) suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in ethanol–di­methyl­formamide (6:1 v/v).

For the conversion of the 3-hy­droxy com­pounds (I) into the ethyl­idene products (II), a solution of the appropriate 3-hy­droxy com­pound (I) (0.50 mmol) in glacial acetic acid (2 ml) was stirred at ambient temperature for 10 min, during which time concentrated hydro­chloric acid (0.1 ml) was added slowly. The resulting mixtures were then stirred at 333 K for a further 2 h. For each mixture, the pH was then brought to 7.0 by the addition of a concentrated aqueous solution of ammonia, and the resulting solid products were collected by filtration, washed with cold water and dried in air to give the products of type (II). Analytical data for com­pound (IIa): yield 92%, m.p. 425–426 K; com­pound (IIb): yield 85%, m.p. 417–418 K; com­pound (IIc): yield 93%, m.p. 393 K; com­pound (IIe): yield 97%, m.p. 398 K; com­pound (IIf): yield 88%, m.p. 388 K; com­pound (IIg): yield 91%, m.p. 388–389 K; com­pound (IIh): yield 89%, m.p. 401–403 K; com­pound (IIi): yield 83%, m.p. 376–378 K. Crystals of com­pounds (IIa) (orange), and (IIb), (IIc), (IIe) and (IIg) (all red) suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in ethanol–di­methyl­formamide (initial com­position 6:1 v/v).

Spectroscopic data for com­pounds (Ia), (Ib), (Ic) and (Ig) have been reported recently in the literature (Duan et al., 2013[Duan, Z., Han, J., Qian, P., Zhang, Z., Wang, Y. & Pan, Y. (2013). Org. Biomol. Chem. 11, 6456-6459.]; Satish et al., 2015[Satish, G., Polu, A., Ramar, T. & Ilangovan, A. (2015). J. Org. Chem. 80, 5167-5175.]; Tripathi et al., 2016[Tripathi, R. K. P., Krishnamurthy, S. & Ayyannan, S. R. (2016). ChemMedChem, 11, 119-132.]). Spectroscopic characterization data (1H and 13C NMR, and mass spectra) for the other com­pounds reported here are provided in the supporting information.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Compound (IIa) was handled as a non-merohedral twin with the twin matrix ([\overline{1}]00 0[\overline{1}]0 0.350,0,1) and with refined twin fractions of 0.1953 (14) and 0.8047 (14). Compound (IIe) was also handled as a non-merohedral twin, with the twin matrix ([\overline{1}]00 0[\overline{1}]0 0.989,0,1) and refined twin fractions of 0.9654 (6) and 0.0346 (6). In com­pound (IIg), the thio­phene unit is disordered over two sets of atomic sites having unequal occupancies for the minor-disorder com­ponent, and the bonded and [1,2]-nonbonded distances were restrained to be the same as the corresponding distances in the major-disorder com­ponent, subject to s.u. values of 0.01 and 0.02 Å, respectively; in addition, the anisotropic displacement parameters of pairs of partial-occupancy atoms occupying essentially the same physical space were constrained to be equal. All H atoms, apart from those in the minor-disorder com­ponent of com­pound (IIg), were located in difference maps. H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions, with C—H = 0.95 (alkenyl, aryl and heteroar­yl), 0.98 (CH3) or 0.99 Å (CH2) and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms; the H atoms in the minor-disorder com­ponent of com­pound (IIg) were included on the same basis, giving refined disorder occupancies of 0.9387 (19) and 0.0613 (19). For the H atoms bonded to O atoms, the atomic coordinates were refined with Uiso(H) = 1.5Ueq(O), giving the O—H distances shown in Table 2[link].

Table 1
Experimental details

Experiments were carried out at 100 K with Mo Kα radiation using a Bruker D8 Venture diffractometer. Absorption was corrected for by multi-scan methods (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), except for (IIa) and (IIe), where TWINABS (Bruker, 2012) was used.

  (Ic) (Id) (Ie)
Crystal data
Chemical formula C24H21NO4 C25H24N2O3 C22H18N2O3
Mr 387.42 400.46 358.38
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
a, b, c (Å) 18.7572 (14), 13.2095 (10), 16.750 (2) 9.1028 (8), 10.6434 (9), 11.2539 (10) 7.8838 (5), 10.1766 (8), 11.8719 (9)
α, β, γ (°) 90, 105.374 (5), 90 88.988 (3), 68.422 (3), 81.352 (3) 87.554 (3), 75.996 (2), 69.428 (2)
V3) 4001.7 (6) 1001.55 (15) 864.30 (11)
Z 8 2 2
μ (mm−1) 0.09 0.09 0.09
Crystal size (mm) 0.14 × 0.13 × 0.10 0.23 × 0.19 × 0.16 0.25 × 0.16 × 0.06
 
Data collection
Tmin, Tmax 0.908, 0.991 0.946, 0.986 0.949, 0.994
No. of measured, independent and observed [I > 2σ(I)] reflections 18506, 4768, 3469 41110, 4590, 4033 55488, 4333, 3760
Rint 0.051 0.037 0.045
(sin θ/λ)max−1) 0.659 0.650 0.670
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.110, 1.02 0.038, 0.098, 1.05 0.038, 0.101, 1.07
No. of reflections 4768 4590 4333
No. of parameters 266 276 247
No. of restraints 0 0 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.26 0.30, −0.22 0.41, −0.22
  (If) (IIa) (IIc)
Crystal data
Chemical formula C24H19NO5 C23H16FNO2 C24H19NO3
Mr 401.40 357.37 369.40
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c Monoclinic, P21/n
a, b, c (Å) 11.8136 (7), 12.4987 (10), 13.5976 (11) 7.6021 (6), 20.4880 (13), 10.9319 (7) 4.9743 (2), 29.1957 (13), 12.4406 (6)
α, β, γ (°) 93.084 (3), 101.883 (2), 95.055 (2) 90, 96.986 (3), 90 90, 100.914 (2), 90
V3) 1951.7 (3) 1690.0 (2) 1774.05 (14)
Z 4 4 4
μ (mm−1) 0.10 0.10 0.09
Crystal size (mm) 0.25 × 0.16 × 0.06 0.14 × 0.14 × 0.10 0.45 × 0.06 × 0.04
 
Data collection
Tmin, Tmax 0.957, 0.994 0.917, 0.990 0.948, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 125792, 9691, 8134 3896, 3896, 2995 54500, 4142, 3643
Rint 0.049 N/A 0.048
(sin θ/λ)max−1) 0.667 0.652 0.653
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.08 0.058, 0.134, 1.05 0.037, 0.095, 1.06
No. of reflections 9691 3896 4142
No. of parameters 547 245 254
No. of restraints 0 0 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.24 0.29, −0.28 0.27, −0.23
  (IIe) (IIg) (IIh)
Crystal data
Chemical formula C22H16N2O2 C21H15NO2S C23H15Cl2NO2
Mr 340.37 345.40 408.26
Crystal system, space group Monoclinic, P21/n Orthorhombic, Pbca Triclinic, P[\overline{1}]
a, b, c (Å) 7.3457 (6), 18.0675 (16), 13.1813 (13) 17.5058 (14), 8.8163 (6), 21.2092 (16) 8.2010 (6), 9.7629 (7), 12.1740 (9)
α, β, γ (°) 90, 105.994 (3), 90 90, 90, 90 76.755 (3), 87.675 (3), 76.211 (3)
V3) 1681.7 (3) 3273.4 (4) 921.34 (12)
Z 4 8 2
μ (mm−1) 0.09 0.21 0.37
Crystal size (mm) 0.16 × 0.15 × 0.12 0.15 × 0.07 × 0.05 0.40 × 0.16 × 0.07
 
Data collection
Tmin, Tmax 0.878, 0.990 0.942, 0.989 0.924, 0.974
No. of measured, independent and observed [I > 2σ(I)] reflections 4167, 4167, 3281 32005, 4154, 3280 51788, 4558, 3867
Rint N/A 0.065 0.053
(sin θ/λ)max−1) 0.668 0.672 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.121, 1.09 0.038, 0.092, 1.04 0.032, 0.082, 1.11
No. of reflections 4167 4154 4558
No. of parameters 237 239 253
No. of restraints 0 10 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.19 0.29, −0.31 0.44, −0.34
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2017[Bruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Table 2
Hydrogen bonds and related short intra­molecular contacts (Å, °) for com­pounds (Ic)–(If), (IIa), (IIe) and (IIg)

Cg1, Cg2 and Cg3 represent the centroids of the C3A/C4–C7/C7A, C11–C16 and C13A/C14–C17/C17A rings, respectively.

  D—H⋯A   D—H H⋯A DA D—H⋯A
(Ic) O3—H3⋯O2i   0.86 (2) 2.10 (2) 2.9487 (15) 171.1 (18)
  C6—H6⋯O324ii   0.95 2.41 3.297 (2) 155
  C31—H31B⋯O2i   0.99 2.48 3.312 (2) 141
  C4—H4⋯Cg2iii   0.95 2.93 3.6101 (18) 130
  C14—H14⋯Cg1iv   0.95 2.82 3.709 (2) 156
(Id) O3—H3⋯O2v   0.868 (18) 1.918 (18) 2.7630 (12) 164.2 (18)
  C7—H7⋯O32vi   0.95 2.44 3.3343 (16) 157
  C1—H1BCg1vi   0.99 2.96 3.8375 (14) 149
(Ie) O3—H3⋯N321vii   0.897 (17) 1.897 (17) 2.7915 (14) 174.9 (15)
  C4—H4⋯O3v   0.95 2.46 3.3842 (14) 164
  C7—H7⋯O32viii   0.95 2.51 3.3719 (14) 150
  C325—H325⋯O2ix   0.95 2.32 3.2578 (15) 171
  C322—H322⋯Cg1ii   0.95 2.68 3.5294 (14) 149
(If) O13—H13⋯O22   0.874 (17) 1.912 (17) 2.7794 (12) 171.1 (17)
  O23—H23⋯O12   0.874 (17) 1.912 (17) 2.7794 (12) 171.1 (17)
  C131–H13A⋯O22vi   0.99 2.35 3.3075 (16) 161
  C147—H147⋯O141x   0.95 2.56 3.4776 (18) 163
  C231—H23A⋯O12v   0.99 2.37 3.3107 (15) 159
  C242—H24A⋯O23ii   0.99 2.53 3.4889 (19) 163
  C142—H14ACg3ii   0.99 2.53 3.3289 (15) 137
(IIa) C15—H15⋯O32xi   0.95 2.49 3.278 (3) 141
(IIe) C14—H14⋯O2xii   0.95 2.32 3.234 (3) 161
  C16—H16⋯O2xiii   0.95 2.45 3.230 (2) 140
  C326—H326⋯O2xiv   0.95 2.58 3.494 (2) 162
  C6—H6⋯Cg2xiii   0.95 2.64 3.566 (2) 165
(IIg) C5—H5⋯O2xv   0.95 2.59 3.5058 (19) 161
  C323—H323⋯Cg2xvi   0.95 2.93 3.744 (3) 145
Symmetry codes: (i) −x + [{3\over 2}], −y + [{3\over 2}], −z + 1; (ii) x, y − 1, z; (iii) x, −y + 1, z + [{1\over 2}]; (iv) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1; (v) −x + 1, −y + 1, −z + 1; (vi) −x, −y + 1, −z + 2; (vii) x, y + 1, z; (viii) −x + 1, −y + 1, −z; (ix) −x, −y + 1, −z + 1; (x) −x, −y, −z + 1; (xi) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (xii) x + [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (xiii) x − [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (xiv) x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]; (xv) x − [{1\over 2}], y, −z + [{1\over 2}]; (xvi) −x + 1, y + [{1\over 2}], −z + [{1\over 2}].

3. Results and discussion

The title com­pounds were synthesized starting from the readily available isatins (A), (see Scheme 1[link], where X = H or Cl; Figs. 1–9[link][link][link][link][link][link][link][link][link]). The N-alkyl­ation of the starting isatins was explored using both benzyl bromide and 1-hexyl bromide in the presence of caesium carbonate as a weak non-nucleophilic base, giving isolated yields of the N-alkyl inter­mediates (B) consistently in excess of 90%. Focusing primarily on the N-benzyl inter­mediate of type (B), the subsequent reactions with aryl methyl ketones in the presence of piperidine did indeed provide generally much higher yields of the products of type (I), usually well above 80%, than had previously been achieved using isatin carrying no substituent at the N atom, which is consistent with the idea of partial proton transfer from the N-unsubstituted isatin to piperidine. The yields in both steps appear to be much the same regardless of whether the substituent at the N atom is benzyl or 1-hexyl, or whether the substituent at C5 is H or Cl. The only exception was found for com­pound (Id), where the yield was quite low, 36%, even after a much longer reaction time than that required for all the other type (I) products; this may be associated with the strongly electron-donating nature of the di­methyl­amino group. Acid-catalysed dehydration of nine of products (I) gave the N-substituted (E)-3-(2-aryl-2-oxo­ethyl­idene)indolin-2-ones (II), again with yields well above 80%, although, because of the slow formation and poor yields of (Id) in the first step, the dehydration of this inter­mediate was not pursued.

[Figure 1]
Figure 1
The mol­ecular structure of the R enanti­omer of com­pound (Ic), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of the R enanti­omer of com­pound (Id), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of the R enanti­omer of com­pound (Ie), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The R enanti­omers of the two independent mol­ecules of com­pound (If), showing the atom-labelling schemes for (a) mol­ecule 1 and (b) mol­ecule 2. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5]
Figure 5
The mol­ecular structure of com­pound (IIa), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6]
Figure 6
The mol­ecular structure of com­pound (IIc), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 7]
Figure 7
The mol­ecular structure of com­pound (IIe), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 8]
Figure 8
The mol­ecular structure of com­pound (IIg), showing the atom-labelling scheme and the disorder of the thio­phene unit. The major-disorder com­ponent is drawn using full lines and the minor-disorder com­ponent has been drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 9]
Figure 9
The mol­ecular structure of com­pound (IIh), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

For all of the products of types (I) and (II) (see Scheme 1[link]), the mass spectra confirm their overall com­positions, while the NMR spectra contain all of the expected signals, thus confirming that all the reactions have proceeded as expected and confirming the identity of the products. Each of the aldol products of type (I) contains a stereogenic centre, at atom C3 in (Ic), (Id) and (Ie), and at atoms C13 and C23 in the two independent mol­ecules in (If). In every case, the reference mol­ecule was selected as one having the R configuration at this atom, but the space groups (Table 1[link]) confirm that, in each case, the com­pound has crystallized as a racemic mixture; in the absence from the synthesis of any agent capable of inducing enanti­oselectivity, it can confidently assumed that all of the other products of type (I) are also formed as racemic mixtures. For each of the type (II) products, only a single geometric isomer was isolated, with no chromatographic or spectroscopic evidence for the formation of even traces of any second isomer. As well as confirming the identity and racemic nature of the type (I) products, the crystal structure analyses have established that in each of the products of type (II) examined here the chalcone unit has the E configuration.

In each of the aldol com­pounds of type (I) (Figs. 1[link]–4[link][link][link]), the orientation of the N-benzyl unit relative to the indolinone nucleus shows some variation, as indicated by the key torsion angles (Table 3[link]), despite the fact that atoms from the benzyl unit participate in inter­molecular hydrogen bonding only in aldol (Ic) (Table 2[link]). Similar variations in the orientation of the benzyl group are found in the chalcones of type (II) (Table 4[link]), where this unit participates in inter­molecular hydrogen bonding in both (IIa) and (IIe), but not in any of (IIc), (IIg) and (IIh). On the other hand, the conformations of the rest of the mol­ecule relative to the indolinone unit is broadly similar in both type (I) and type (II) com­pounds, aside from the pyridyl derivative (Ie). In each of 4-meth­oxy derivatives (Ic) and (IIc), the two exocyclic C—C—O angles at atom C324 (Figs. 1[link] and 6[link]) differ by ca 10°, as typically found (Seip & Seip, 1973[Seip, H. M., Seip, R., Christensen, S. B., Brehm, L. & Nimmich, W. (1973). Acta Chem. Scand. 27, 4024-4027.]; Ferguson et al., 1996[Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420-423.]) for near-planar alk­oxy­arene units; the deviations of methyl atoms C327 from the planes of the adjacent aryl rings are only 0.112 (3) and 0.183 (2) Å in (Ic) and (IIc), respectively.

Table 3
Selected torsion angles (°) for com­pounds (Ic)–(If)

Parameter (Ic) (Id) (Ie) (If), mol­ecule 1 (If), mol­ecule 2
        (x = 1) (x = 2)
Cx2—Nx1—Cx1—Cx11 103.75 (16) 102.09 (12) 95.90 (12) 119.11 (13) 108.60 (13)
Nx1—Cx1—Cx11—Cx12 −28.5 (2) −40.32 (15) −76.98 (13) −54.19 (16) −27.57 (17)
Nx1—Cx2—Cx3—Cx31 −126.14 (13) −133.07 (10) −124.96 (9) −123.72 (10) −126.04 (10)
Cx2—Cx3—Cx31—Cx32 52.57 (17) 58.79 (13) 61.83 (12) 50.92 (13) 51.93 (13)
C3—C31—C32—C321 −176.52 (13) 179.12 (10)      
C3—C31—C32—C324     −179.45 (10)    
C31—C32—C321—C322 175.64 (14) −176.22 (10)      
C31—C32—C324—C323     −149.73 (12)    
Cx3—Cx31—Cx32—Cx45       −174.30 (10) −174.80 (10)
Cx31—Cx32—Cx45—Cx44       176.61 (10) 178.65 (11)

Table 4
Selected torsion angles (°) for com­pounds (IIa), (IIc), (IIe), (IIg) and (IIh)

Parameter (IIa) (IIc) (IIe) (IIg) (IIh)
C2—N1—C1—C11 111.4 (2) 102.92 (13) 90.35 (19) 94.94 (16) 98.83 (15)
N1—C1—C11—C12 −41.8 (3) −61.57 (14) −1.1 (2) −65.13 (18) −62.18 (16)
N1—C2—C3—C31 −176.39 (19) −177.72 (10) 179.61 (15) 177.30 (12) −179.37 (12)
C2—C3—C31—C32 176.1 (2) 178.62 (11) −178.71 (16) 178.91 (13) 177.52 (13)
C3—C31—C32—C321 −176.0 (2) 172.77 (11)     177.57 (14)
C3—C31—C32—C322       −175.99 (14)  
C3—C31—C32—C324     179.55 (16)    
C31—C32—C321—C322 −178.2 (2) 169.40 (10)     175.80 (12)
C31—C32—C322—S321       167.55 (10)  
C31—C32—C324—C323     173.76 (15)    

The mol­ecules of com­pound (Ic) are linked into a chain of rings by a combination of O—H⋯O, C—H⋯O and C—H⋯π(arene) hydrogen bonds (Table 2[link]). Inversion-related pairs of mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming an R22(10) ring (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) centred at ([3 \over 4], [3 \over 4], [1 \over 2]). A second centrosymmetric motif, now centred at ([3 \over 4], [1 \over 4], [1 \over 2]), is generated by the C—H⋯π(arene) hydrogen bond having atom C14 as the donor and, in combination, these two motifs generate a chain of rings running parallel to the [010] direction, in which the R22(10) rings centred at ([3 \over 4], [3 \over 4] + n, [1 \over 2]) alternate with the rings generated by C—H⋯π hydrogen bonds, centred at ([3 \over 4], [1 \over 4] + n, [1 \over 2]), where n represents an integer in each case. The chain formation is augmented by a C—H⋯O hydrogen bond having atom C6 as the donor and linking mol­ecules which are related by translation into a C(13) chain motif (Fig. 10[link]). There are two other short inter­molecular contacts in the structure, involving atoms C4 and C31, but these are unlikely to be of real structural significance (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]).

[Figure 10]
Figure 10
Part of the crystal structure of com­pound (Ic), showing the formation of a chain of rings built from O—H⋯O, C—H⋯O and C—H⋯π(arene) hydrogen bonds. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motifs shown have been omitted.

The supra­molecular assembly in com­pound (Id) is very simple, taking the form of a chain of rings running parallel to the [10[\overline{1}]] direction (Fig. 11[link]). Rings of R22(10) type, containing O—H⋯O hydrogen bonds (Table 2[link]) and centred at ([1 \over 2] + n, [1 \over 2], [1 \over 2] − n) alternate with rings of R22(16) type, containing C—H⋯O hydrogen bonds and centred at (n, [1 \over 2], [1 \over 2]n), where n represents an integer in each case. There is a long C—H⋯π(arene) contact within the chain, but there are no direction-specific inter­actions between adjacent chains.

[Figure 11]
Figure 11
Part of the crystal structure of com­pound (Id), showing the formation of a chain of rings built from O—H⋯O and C—H⋯O hydrogen bonds. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motifs shown have been omitted.

In contrast to the simplicity of the assembly in 4-(di­methyl­amino)­phenyl com­pound (Id), that in 4-pyridine derivative (Ie) takes the form of the three-dimensional framework structure built from O—H⋯N, C—H⋯π(arene) and multiple C—H⋯O hydrogen bonds (Table 2[link]), but the formation of the framework structure is readily analysed in terms of three one-dimensional substructures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). A combination of O—H⋯N and C—H⋯π(arene) hydrogen bonds links mol­ecules which are related by translation into a chain of rings running parallel to the [010] direction (Fig. 12[link]). In the second substructure, a combination of the two hydrogen bonds having atoms C4 and C7 as the donors generates a chain of centrosymmetric rings running parallel to the [001] direction, in which R22(10) rings centred at ([1 \over 2], [1 \over 2], [1 \over 2] + n) alternate with R22(16) rings centred at ([1 \over 2], [1 \over 2], n), where n represents an integer (Fig. 13[link]). In the final substructure, the combination of the two hydrogen bonds having atoms C4 and C322 as the donors generates a chain of centrosymmetric rings running parallel to the [100] direction, in which R22(10) rings centred at ([1 \over 2] + n, [1 \over 2], [1 \over 2]) alternate with R22(16) rings centred at (n, [1 \over 2], n), where n represents an integer (Fig. 14[link]). The combination of chains along [100], [010] and [001] suffices to generate the three-dimensional framework structure.

[Figure 12]
Figure 12
Part of the crystal structure of com­pound (Ie), showing the formation of a chain of rings running parallel to the [010] direction and built from O—H⋯N and C—H⋯π(arene) hydrogen bonds. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 13]
Figure 13
Part of the crystal structure of com­pound (Ie), showing the formation of a chain of rings running parallel to the [001] direction and built from two types of C—H⋯O hydrogen bonds. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 14]
Figure 14
Part of the crystal structure of com­pound (Ie), showing the formation of a chain of rings running parallel to the [100] direction and built from two types of C—H⋯O hydrogen bonds. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Compound (If) crystallizes with two mol­ecules in the asymmetric unit but, despite this and the resulting number of independent hydrogen bonds (Table 2[link]), the supra­molecular assembly in only two-dimensional and, as with (Ie), this can be analysed in terms of low-dimensional substructures. The two mol­ecules within the selected asymmetric unit (Fig. 15[link]) are linked by two O—H⋯O hydrogen bonds to form a dimeric unit having approximate, but noncrystallographic, twofold rotation symmetry (Fig. 15[link]). This finite, or zero-dimensional, substructure can conveniently be regarded as the basic building block in the supra­molecular assembly. These dimeric units are linked by the C—H⋯O hydrogen bonds having atoms C131 and C231 as the donors to form a chain of rings running parallel to the [100] direction, in which R44(12) rings centred at (n, [1 \over 2], [1 \over 2]) alternate with R42(12) rings centred at ([1 \over 2] + n, [1 \over 2], [1 \over 2]), where n represents an integer in each case (Fig. 16[link]). A second one-dimensional substructure arises from the linking of dimeric units which are related by translation by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds to form a second chain of rings, this time running parallel to the [010] direction (Fig. 17[link]). The combination of chains along [100] and [010] gives rise to com­plex sheets lying parallel to (001), but there are not direction-specific inter­actions between adjacent sheets.

[Figure 15]
Figure 15
Part of the crystal structure of com­pound (If), showing the linking of the two independent mol­ecules by two independent O—H⋯O hydrogen bonds. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 16]
Figure 16
Part of the crystal structure of com­pound (If), showing the formation of a chain of rings running parallel to the [100] direction and built from O—H⋯O and C—H⋯O hydrogen bonds. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 17]
Figure 17
Part of the crystal structure of com­pound (If), showing the formation of a chain of rings running parallel to the [010] direction and built from O—H⋯O, C—H⋯O and C—H⋯π(arene) hydrogen bonds. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motifs shown have been omitted.

The absence of hy­droxy groups in the com­pounds of type (II) means that the hydrogen bonding in these structures is simpler than that found in com­pounds of type (I). Thus, for each of com­pounds (IIc) and (IIh), there are no significant inter­molecular hydrogen bonds, while in com­pound (IIa), a single C—H⋯O hydrogen bond (Table 2[link]) links mol­ecules which are related by a 21 screw axis into a C(11) chain running parallel to the [010] direction (Fig. 18[link]). The hydrogen bonding in com­pound (IIg) is likewise very simple, with a single C—H⋯O hydrogen bond linking mol­ecules which are related by the a-glide plane at z = [1 \over 4] to form a C(7) chain running parallel to the [100] direction (Fig. 19[link]).

[Figure 18]
Figure 18
Part of the crystal structure of com­pound (IIa), showing the formation of a hydrogen-bonded chain running parallel to [010]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 19]
Figure 19
Part of the crystal structure of com­pound (IIg), showing the formation of a hydrogen-bonded chain running parallel to [100]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the minor-disorder com­ponent and H atoms not involved in the motif shown have been omitted.

A combination of three independent C—H⋯O hydrogen bonds links the mol­ecules of com­pound (IIe) into a sheet lying parallel to (010) and lying in the domain [1 \over 2] < y < 1.0 (Fig. 20[link]); a second sheet, related to the first by inversion, lies in the domain 0 < y < [1 \over 2], and adjacent sheets are linked by a C—H⋯π(arene) hydrogen bond, so generating a single three-dimensional framework structure.

[Figure 20]
Figure 20
Part of the crystal structure of com­pound (IIe), showing the formation of a sheet built from three C—H⋯O hydrogen bonds and lying parallel to (010). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Although there are no hydrogen bonds in the structure of com­pound (IIh), the mol­ecules are nonetheless linked into a chain by the combination of a C—Cl⋯π(arene) inter­action and a ππ stacking inter­action. In the first of these inter­actions, atom Cl34 in the mol­ecule at (x, y, z) forms a short contact with the C3A/C4–C7/C7A ring in the mol­ecule at (−x, −y + 1, −z + 1), with geometric parameters Cl⋯Cg = 3.6055 (8) Å and C—Cl⋯Cg = 88.71 (5)°, where Cg represents the centroid of the aryl ring. The Cl⋯Cg distance here may be com­pared with the average value of 2.6° deduced from a database analysis of such contacts (Imai et al., 2008[Imai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129-1137.]), and this inter­action generates a cyclic centrosymmetric dimer. In addition, the C3A/C4–C7/C7A ring at (x, y, z) and the C321–C326 ring at (−x + 1, −y + 1, −z + 1) make a dihedral angle of only 7.58 (7)°. The ring-centroid separation is 3.7374 (9) Å and the shortest perpendicular distance from the centroid of one ring to the plane of the other is 3.3592 (6) Å, corresponding to a ring-centroid offset of ca 1.64 Å. The combination of these two inter­actions thus generates a chain of π-stacked dimers lying parallel to the [100] direction (Fig. 21[link]).

[Figure 21]
Figure 21
Part of the crystal structure of com­pound (IIh), showing the formation of a chain of π-stacked dimers running parallel to the [100] direction. The Cl⋯(ring centroid) contacts are shown as tapered lines and, for the sake of clarity, H atoms have all been omitted.

The synthetic methodology described here is notable for its operational simplicity, broad substrate scope, good functional group com­patibility, and eco-com­patibility in terms of energy and waste. We note, in addition, that in each of the hy­droxy com­pounds (Ic), (Id) and (If), paired O—H⋯O hydrogen bonds generate R22(10) motifs, which are centrosymmetric in each of (Ic) and (Id), although the ring in (If) exhibits no crystallographic symmetry. By contrast, the structure of pyri­dyl derivative (Ie) contains no O—H⋯O hydrogen bonds (Table 2[link]). It is inter­esting in this context to note that in a series of seven 3-alkyl-3-hy­droxy­indolin-2-ones, having no substituent on the N atom of the indoline ring, every structure contains a centrosymmetric R22(10) ring embedded within a more com­plex supra­molecular assembly involving N—H⋯O hydrogen bonds and, in some cases, C—H⋯O and C—H⋯π(arene) hydrogen bonds also (Becerra et al., 2010[Becerra, D., Insuasty, B., Cobo, J. & Glidewell, C. (2010). Acta Cryst. C66, o79-o86.]). Rings of the R22(10) type also occur in a number of related examples in the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), including examples having CSD refcodes MUMMAY (Chen et al., 2009[Chen, G., Liu, B., Tang, Y. & Xu, J. (2009). Acta Cryst. E65, o1723.]), TAWFAZ (Luppi et al., 2005[Luppi, G., Cozzi, P. G., Monari, M., Kaptein, B., Broxterman, Q. B. & Tomasini, C. (2005). J. Org. Chem. 70, 7418-7421.]), TEQVUH (Luppi et al., 2006[Luppi, G., Monari, M., Corrêa, R. J., Violante, F. de A., Pinto, A. C., Kaptein, B., Broxterman, Q. B., Garden, S. J. & Tomasini, C. (2006). Tetrahedron, 62, 12017-12024.]) and YIFZIX (Xing et al., 2007[Xing, X.-N., Li, L., Zhu, X.-Y. & Chen, J.-R. (2007). Acta Cryst. E63, o2969-o2970.]). Finally, we note that the reaction of isatin with cyclo­hexa­none involves both of the α-methyl­ene units of the cyclo­hexa­none, leading to the formation of 3,3′-[(1RS,3SR)-2-oxo­cyclo­hex­ane-1,3-di­yl]bis­[(3RS,3′SR)-3-hy­droxy­indolin-2-one] which was crystallized as a dehydrate (Becerra et al., 2013[Becerra, D., Insuasty, B., Cobo, J. & Glidewell, C. (2013). Acta Cryst. C69, 1081-1084.]). The organic com­ponents, which exhibit approximate, but noncrystallographic, mirror symmetry are linked by a combination of N—H⋯O and O—H⋯O hydrogen bonds to form sheets containing rings of R22(8), R22(16) and R66(40) types; these sheets are further linked by water mol­ecules, which themselves form cyclic centrosymmetric R42(8) tetra­mers.

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

1-Benzyl-3-hydroxy-3-[2-(4-methoxyphenyl)-2-oxoethyl]indolin-2-one (Ic) top
Crystal data top
C24H21NO4F(000) = 1632
Mr = 387.42Dx = 1.286 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.7572 (14) ÅCell parameters from 4769 reflections
b = 13.2095 (10) Åθ = 1.9–27.9°
c = 16.750 (2) ŵ = 0.09 mm1
β = 105.374 (5)°T = 100 K
V = 4001.7 (6) Å3Block, colourless
Z = 80.14 × 0.13 × 0.10 mm
Data collection top
Bruker D8 Venture
diffractometer
4768 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube3469 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.051
φ and ω scansθmax = 27.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 2422
Tmin = 0.908, Tmax = 0.991k = 1717
18506 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0428P)2 + 3.9671P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4768 reflectionsΔρmax = 0.30 e Å3
266 parametersΔρmin = 0.26 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.62730 (7)0.52592 (9)0.49110 (8)0.0144 (3)
C20.66508 (8)0.61463 (11)0.49618 (10)0.0142 (3)
O20.67273 (6)0.66507 (8)0.43745 (7)0.0176 (2)
C30.70111 (8)0.63794 (11)0.58845 (9)0.0142 (3)
O30.77962 (5)0.63249 (8)0.60183 (7)0.0178 (2)
H30.7919 (10)0.6897 (15)0.5847 (12)0.027*
C3A0.67518 (8)0.55016 (11)0.63095 (9)0.0142 (3)
C40.68731 (8)0.52756 (11)0.71359 (10)0.0171 (3)
H40.71560.57160.75480.020*
C50.65713 (8)0.43830 (12)0.73571 (10)0.0195 (3)
H50.66580.42060.79250.023*
C60.61469 (9)0.37559 (12)0.67508 (10)0.0197 (3)
H60.59460.31530.69120.024*
C70.60061 (8)0.39845 (11)0.59091 (10)0.0175 (3)
H70.57090.35580.54960.021*
C7A0.63207 (8)0.48611 (11)0.57077 (9)0.0142 (3)
C10.58919 (8)0.47598 (11)0.41444 (10)0.0163 (3)
H1A0.58160.52520.36840.020*
H1B0.53990.45350.41840.020*
C110.63137 (8)0.38522 (11)0.39496 (9)0.0164 (3)
C120.70791 (9)0.37910 (12)0.42166 (10)0.0205 (3)
H120.73520.43240.45390.025*
C130.74512 (10)0.29578 (13)0.40179 (11)0.0265 (4)
H130.79750.29250.42040.032*
C140.70605 (11)0.21783 (13)0.35505 (11)0.0296 (4)
H140.73140.16080.34160.035*
C150.62979 (11)0.22311 (13)0.32796 (12)0.0312 (4)
H150.60280.16970.29560.037*
C160.59252 (9)0.30639 (13)0.34795 (11)0.0241 (4)
H160.54010.30940.32930.029*
C310.68121 (8)0.74281 (11)0.61383 (10)0.0161 (3)
H31A0.70190.75000.67440.019*
H31B0.70570.79390.58680.019*
C320.59949 (8)0.76693 (11)0.59292 (9)0.0155 (3)
O320.55330 (6)0.70404 (8)0.55953 (7)0.0227 (3)
C3210.57886 (8)0.87039 (11)0.61248 (10)0.0164 (3)
C3220.50481 (8)0.89970 (12)0.58966 (10)0.0186 (3)
H3220.46830.85280.56170.022*
C3230.48334 (8)0.99582 (12)0.60699 (10)0.0200 (3)
H3230.43271.01480.59110.024*
C3240.53700 (9)1.06393 (12)0.64785 (11)0.0216 (4)
C3250.61123 (9)1.03573 (12)0.67249 (12)0.0278 (4)
H3250.64751.08220.70170.033*
C3260.63175 (8)0.94024 (12)0.65438 (11)0.0229 (4)
H3260.68240.92150.67050.027*
O3240.52364 (6)1.16070 (9)0.66728 (9)0.0326 (3)
C3270.44939 (9)1.19684 (14)0.64073 (13)0.0315 (4)
H37A0.41801.15730.66750.047*
H37B0.43121.18980.58050.047*
H37C0.44791.26830.65600.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0156 (6)0.0144 (6)0.0135 (7)0.0009 (5)0.0043 (5)0.0017 (5)
C20.0114 (7)0.0141 (7)0.0182 (8)0.0018 (6)0.0057 (6)0.0013 (6)
O20.0194 (5)0.0169 (5)0.0178 (6)0.0010 (4)0.0075 (4)0.0018 (4)
C30.0129 (7)0.0142 (7)0.0156 (8)0.0007 (6)0.0040 (6)0.0017 (6)
O30.0125 (5)0.0172 (5)0.0237 (6)0.0013 (4)0.0050 (4)0.0003 (5)
C3A0.0132 (7)0.0138 (7)0.0164 (8)0.0017 (6)0.0051 (6)0.0005 (6)
C40.0159 (7)0.0186 (8)0.0164 (8)0.0003 (6)0.0039 (6)0.0022 (6)
C50.0220 (8)0.0226 (8)0.0159 (8)0.0032 (6)0.0083 (7)0.0030 (6)
C60.0214 (8)0.0160 (7)0.0250 (9)0.0004 (6)0.0122 (7)0.0031 (6)
C70.0179 (7)0.0156 (7)0.0201 (8)0.0014 (6)0.0069 (6)0.0026 (6)
C7A0.0137 (7)0.0158 (7)0.0138 (8)0.0024 (6)0.0049 (6)0.0009 (6)
C10.0170 (7)0.0178 (8)0.0132 (8)0.0011 (6)0.0023 (6)0.0018 (6)
C110.0225 (8)0.0165 (7)0.0121 (8)0.0010 (6)0.0081 (6)0.0006 (6)
C120.0254 (8)0.0201 (8)0.0161 (8)0.0026 (7)0.0055 (7)0.0012 (6)
C130.0300 (9)0.0292 (9)0.0221 (9)0.0107 (7)0.0099 (7)0.0059 (7)
C140.0475 (11)0.0205 (9)0.0282 (10)0.0092 (8)0.0232 (9)0.0029 (7)
C150.0492 (11)0.0213 (9)0.0296 (10)0.0081 (8)0.0219 (9)0.0100 (8)
C160.0285 (9)0.0239 (8)0.0232 (9)0.0050 (7)0.0128 (7)0.0062 (7)
C310.0166 (7)0.0139 (7)0.0177 (8)0.0020 (6)0.0041 (6)0.0029 (6)
C320.0170 (7)0.0174 (7)0.0126 (8)0.0019 (6)0.0052 (6)0.0012 (6)
O320.0172 (5)0.0207 (6)0.0294 (7)0.0034 (5)0.0051 (5)0.0085 (5)
C3210.0169 (7)0.0162 (7)0.0166 (8)0.0011 (6)0.0054 (6)0.0008 (6)
C3220.0159 (7)0.0195 (8)0.0188 (8)0.0030 (6)0.0021 (6)0.0016 (6)
C3230.0146 (7)0.0211 (8)0.0225 (9)0.0029 (6)0.0020 (6)0.0015 (7)
C3240.0202 (8)0.0152 (8)0.0291 (10)0.0020 (6)0.0061 (7)0.0010 (7)
C3250.0162 (8)0.0182 (8)0.0454 (12)0.0024 (6)0.0017 (7)0.0074 (8)
C3260.0132 (7)0.0194 (8)0.0338 (10)0.0012 (6)0.0022 (7)0.0025 (7)
O3240.0177 (6)0.0168 (6)0.0592 (9)0.0037 (5)0.0028 (6)0.0086 (6)
C3270.0224 (8)0.0253 (9)0.0432 (12)0.0111 (7)0.0024 (8)0.0025 (8)
Geometric parameters (Å, º) top
N1—C21.3603 (19)C13—H130.9500
N1—C7A1.4150 (19)C14—C151.383 (3)
N1—C11.4520 (19)C14—H140.9500
C2—O21.2277 (18)C15—C161.391 (2)
C2—C31.545 (2)C15—H150.9500
C3—O31.4315 (17)C16—H160.9500
C3—C3A1.507 (2)C31—C321.513 (2)
C3—C311.524 (2)C31—H31A0.9900
O3—H30.86 (2)C31—H31B0.9900
C3A—C41.375 (2)C32—O321.2234 (18)
C3A—C7A1.398 (2)C32—C3211.481 (2)
C4—C51.400 (2)C321—C3221.394 (2)
C4—H40.9500C321—C3261.400 (2)
C5—C61.387 (2)C322—C3231.386 (2)
C5—H50.9500C322—H3220.9500
C6—C71.397 (2)C323—C3241.388 (2)
C6—H60.9500C323—H3230.9500
C7—C7A1.381 (2)C324—O3241.3586 (19)
C7—H70.9500C324—C3251.394 (2)
C1—C111.519 (2)C325—C3261.376 (2)
C1—H1A0.9900C325—H3250.9500
C1—H1B0.9900C326—H3260.9500
C11—C121.388 (2)O324—C3271.4272 (19)
C11—C161.389 (2)C327—H37A0.9800
C12—C131.390 (2)C327—H37B0.9800
C12—H120.9500C327—H37C0.9800
C13—C141.381 (3)
C2—N1—C7A111.07 (12)C12—C13—H13119.9
C2—N1—C1124.95 (13)C13—C14—C15119.72 (16)
C7A—N1—C1123.94 (12)C13—C14—H14120.1
O2—C2—N1125.94 (14)C15—C14—H14120.1
O2—C2—C3125.48 (13)C14—C15—C16120.20 (16)
N1—C2—C3108.47 (12)C14—C15—H15119.9
O3—C3—C3A109.55 (12)C16—C15—H15119.9
O3—C3—C31108.66 (11)C11—C16—C15120.50 (16)
C3A—C3—C31115.72 (12)C11—C16—H16119.8
O3—C3—C2107.80 (11)C15—C16—H16119.8
C3A—C3—C2102.06 (11)C32—C31—C3115.77 (12)
C31—C3—C2112.69 (12)C32—C31—H31A108.3
C3—O3—H3105.0 (12)C3—C31—H31A108.3
C4—C3A—C7A120.28 (14)C32—C31—H31B108.3
C4—C3A—C3130.90 (14)C3—C31—H31B108.3
C7A—C3A—C3108.82 (13)H31A—C31—H31B107.4
C3A—C4—C5118.62 (14)O32—C32—C321122.21 (13)
C3A—C4—H4120.7O32—C32—C31120.94 (13)
C5—C4—H4120.7C321—C32—C31116.83 (12)
C6—C5—C4120.22 (15)C322—C321—C326118.46 (14)
C6—C5—H5119.9C322—C321—C32119.71 (13)
C4—C5—H5119.9C326—C321—C32121.83 (13)
C5—C6—C7121.89 (14)C323—C322—C321121.39 (14)
C5—C6—H6119.1C323—C322—H322119.3
C7—C6—H6119.1C321—C322—H322119.3
C7A—C7—C6116.68 (14)C322—C323—C324118.96 (14)
C7A—C7—H7121.7C322—C323—H323120.5
C6—C7—H7121.7C324—C323—H323120.5
C7—C7A—C3A122.30 (14)O324—C324—C323124.91 (14)
C7—C7A—N1128.13 (14)O324—C324—C325114.44 (14)
C3A—C7A—N1109.57 (13)C323—C324—C325120.65 (15)
N1—C1—C11112.73 (12)C326—C325—C324119.71 (15)
N1—C1—H1A109.0C326—C325—H325120.1
C11—C1—H1A109.0C324—C325—H325120.1
N1—C1—H1B109.0C325—C326—C321120.83 (14)
C11—C1—H1B109.0C325—C326—H326119.6
H1A—C1—H1B107.8C321—C326—H326119.6
C12—C11—C16118.75 (14)C324—O324—C327117.83 (13)
C12—C11—C1121.99 (14)O324—C327—H37A109.5
C16—C11—C1119.24 (14)O324—C327—H37B109.5
C11—C12—C13120.73 (16)H37A—C327—H37B109.5
C11—C12—H12119.6O324—C327—H37C109.5
C13—C12—H12119.6H37A—C327—H37C109.5
C14—C13—C12120.10 (16)H37B—C327—H37C109.5
C14—C13—H13119.9
C7A—N1—C2—O2177.66 (13)C7A—N1—C1—C1173.86 (17)
C1—N1—C2—O20.2 (2)N1—C1—C11—C1228.5 (2)
C7A—N1—C2—C31.26 (15)N1—C1—C11—C16152.53 (14)
C1—N1—C2—C3176.61 (12)C16—C11—C12—C130.0 (2)
O2—C2—C3—O362.46 (18)C1—C11—C12—C13178.99 (15)
N1—C2—C3—O3113.96 (12)C11—C12—C13—C140.0 (2)
O2—C2—C3—C3A177.79 (13)C12—C13—C14—C150.1 (3)
N1—C2—C3—C3A1.37 (14)C13—C14—C15—C160.3 (3)
O2—C2—C3—C3157.44 (18)C12—C11—C16—C150.1 (2)
N1—C2—C3—C31126.14 (13)C1—C11—C16—C15178.90 (15)
O3—C3—C3A—C467.16 (19)C14—C15—C16—C110.3 (3)
C31—C3—C3A—C456.1 (2)O3—C3—C31—C32171.97 (12)
C2—C3—C3A—C4178.79 (15)C3A—C3—C31—C3264.34 (18)
O3—C3—C3A—C7A113.04 (13)C2—C3—C31—C3252.57 (17)
C31—C3—C3A—C7A123.74 (14)C3—C31—C32—O321.7 (2)
C2—C3—C3A—C7A1.01 (14)C3—C31—C32—C321176.52 (13)
C7A—C3A—C4—C51.5 (2)O32—C32—C321—C3222.5 (2)
C3—C3A—C4—C5178.71 (14)C31—C32—C321—C322175.64 (14)
C3A—C4—C5—C61.3 (2)O32—C32—C321—C326176.75 (15)
C4—C5—C6—C70.1 (2)C31—C32—C321—C3265.1 (2)
C5—C6—C7—C7A1.0 (2)C326—C321—C322—C3230.6 (2)
C6—C7—C7A—C3A0.8 (2)C32—C321—C322—C323179.91 (15)
C6—C7—C7A—N1179.29 (14)C321—C322—C323—C3240.1 (2)
C4—C3A—C7A—C70.5 (2)C322—C323—C324—O324178.83 (16)
C3—C3A—C7A—C7179.72 (13)C322—C323—C324—C3251.2 (3)
C4—C3A—C7A—N1179.48 (13)O324—C324—C325—C326178.42 (17)
C3—C3A—C7A—N10.34 (16)C323—C324—C325—C3261.6 (3)
C2—N1—C7A—C7179.33 (14)C324—C325—C326—C3210.9 (3)
C1—N1—C7A—C72.8 (2)C322—C321—C326—C3250.2 (3)
C2—N1—C7A—C3A0.61 (16)C32—C321—C326—C325179.47 (16)
C1—N1—C7A—C3A177.30 (12)C323—C324—O324—C3272.8 (3)
C2—N1—C1—C11103.75 (16)C325—C324—O324—C327177.16 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.86 (2)2.10 (2)2.9487 (15)171.1 (18)
C6—H6···O324ii0.952.413.297 (2)155
C31—H31B···O2i0.992.483.312 (2)141
C4—H4···Cg2iii0.952.933.6100 (2)130
C14—H14···Cg1iv0.952.823.709 (2)156
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x, y1, z; (iii) x, y+1, z+1/2; (iv) x+3/2, y+1/2, z+1.
1-Benzyl-3-{2-[4-(dimethylamino)phenyl]-2-oxoethyl}-3-hydroxyindolin-2-one (Id) top
Crystal data top
C25H24N2O3Z = 2
Mr = 400.46F(000) = 424
Triclinic, P1Dx = 1.328 Mg m3
a = 9.1028 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6434 (9) ÅCell parameters from 4590 reflections
c = 11.2539 (10) Åθ = 2.4–27.5°
α = 88.988 (3)°µ = 0.09 mm1
β = 68.422 (3)°T = 100 K
γ = 81.352 (3)°Block, yellow
V = 1001.55 (15) Å30.23 × 0.19 × 0.16 mm
Data collection top
Bruker D8 Venture
diffractometer
4590 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube4033 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.037
φ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1111
Tmin = 0.946, Tmax = 0.986k = 1313
41110 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0365P)2 + 0.557P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4590 reflectionsΔρmax = 0.30 e Å3
276 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.21923 (12)0.42207 (9)0.80825 (9)0.0170 (2)
C20.29276 (13)0.47725 (11)0.69674 (11)0.0170 (2)
O20.29201 (10)0.44841 (8)0.59167 (8)0.02181 (19)
C30.39277 (13)0.57237 (10)0.72117 (10)0.0158 (2)
O30.55634 (10)0.51351 (8)0.66550 (8)0.01902 (18)
H30.5876 (19)0.5219 (15)0.5834 (17)0.029*
C3A0.34407 (13)0.57037 (10)0.86439 (11)0.0163 (2)
C40.38692 (14)0.63774 (11)0.94672 (11)0.0192 (2)
H40.45250.70180.91610.023*
C50.33187 (15)0.60992 (11)1.07608 (11)0.0213 (2)
H50.35920.65591.13450.026*
C60.23729 (15)0.51525 (12)1.11959 (11)0.0216 (2)
H60.20230.49681.20770.026*
C70.19207 (14)0.44631 (11)1.03756 (11)0.0189 (2)
H70.12680.38201.06770.023*
C7A0.24741 (13)0.47679 (10)0.91005 (11)0.0163 (2)
C10.14460 (14)0.30851 (11)0.81849 (11)0.0192 (2)
H1A0.12330.29560.73980.023*
H1B0.04090.32060.89160.023*
C110.24998 (14)0.19161 (11)0.83744 (11)0.0179 (2)
C120.41445 (15)0.17355 (12)0.77052 (13)0.0257 (3)
H120.46130.23500.71230.031*
C130.51067 (16)0.06643 (13)0.78816 (14)0.0298 (3)
H130.62290.05530.74240.036*
C140.44390 (16)0.02404 (12)0.87200 (14)0.0273 (3)
H140.51010.09700.88440.033*
C150.28005 (16)0.00807 (12)0.93797 (13)0.0273 (3)
H150.23350.07080.99450.033*
C160.18366 (15)0.10006 (12)0.92129 (12)0.0229 (3)
H160.07150.11130.96770.027*
C310.37035 (13)0.70199 (11)0.66464 (11)0.0174 (2)
H31A0.43850.75650.68390.021*
H31B0.40790.69040.57050.021*
C320.19918 (13)0.77032 (11)0.71393 (11)0.0176 (2)
O320.09303 (10)0.71812 (8)0.78944 (9)0.0254 (2)
C3210.16513 (13)0.89691 (11)0.66678 (11)0.0168 (2)
C3220.00952 (14)0.96476 (11)0.71684 (11)0.0189 (2)
H3220.07000.93030.78450.023*
C3230.03118 (14)1.08007 (11)0.67066 (11)0.0195 (2)
H3230.13671.12510.70900.023*
C3240.08214 (14)1.13228 (11)0.56692 (11)0.0185 (2)
C3250.24047 (14)1.06692 (12)0.52031 (12)0.0215 (2)
H3250.32101.10200.45410.026*
C3260.28000 (14)0.95258 (11)0.56964 (12)0.0203 (2)
H3260.38760.91080.53690.024*
N3240.03955 (13)1.24116 (10)0.51404 (11)0.0246 (2)
C3170.12376 (16)1.30688 (12)0.56315 (12)0.0263 (3)
H37A0.19551.25010.55560.039*
H37B0.13241.38260.51380.039*
H37C0.15391.33250.65330.039*
C3180.15137 (17)1.28623 (13)0.39880 (14)0.0313 (3)
H38A0.23691.31640.41820.047*
H38B0.09531.35620.36640.047*
H38C0.19751.21660.33380.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0200 (5)0.0151 (4)0.0163 (4)0.0040 (4)0.0067 (4)0.0023 (3)
C20.0167 (5)0.0154 (5)0.0175 (5)0.0001 (4)0.0058 (4)0.0023 (4)
O20.0257 (4)0.0241 (4)0.0167 (4)0.0051 (3)0.0086 (3)0.0017 (3)
C30.0153 (5)0.0152 (5)0.0159 (5)0.0019 (4)0.0049 (4)0.0030 (4)
O30.0156 (4)0.0216 (4)0.0171 (4)0.0006 (3)0.0044 (3)0.0035 (3)
C3A0.0163 (5)0.0146 (5)0.0167 (5)0.0007 (4)0.0052 (4)0.0027 (4)
C40.0206 (5)0.0153 (5)0.0214 (6)0.0021 (4)0.0079 (4)0.0020 (4)
C50.0254 (6)0.0195 (6)0.0196 (6)0.0007 (5)0.0100 (5)0.0016 (4)
C60.0245 (6)0.0220 (6)0.0153 (5)0.0003 (5)0.0053 (4)0.0021 (4)
C70.0193 (5)0.0168 (5)0.0181 (5)0.0022 (4)0.0043 (4)0.0035 (4)
C7A0.0165 (5)0.0143 (5)0.0167 (5)0.0003 (4)0.0054 (4)0.0003 (4)
C10.0196 (5)0.0166 (5)0.0228 (6)0.0056 (4)0.0084 (4)0.0021 (4)
C110.0199 (5)0.0158 (5)0.0184 (5)0.0037 (4)0.0069 (4)0.0011 (4)
C120.0216 (6)0.0202 (6)0.0303 (6)0.0046 (5)0.0037 (5)0.0037 (5)
C130.0196 (6)0.0226 (6)0.0418 (8)0.0010 (5)0.0058 (5)0.0002 (5)
C140.0281 (6)0.0176 (6)0.0372 (7)0.0004 (5)0.0146 (6)0.0005 (5)
C150.0306 (7)0.0201 (6)0.0294 (7)0.0050 (5)0.0089 (5)0.0064 (5)
C160.0213 (6)0.0201 (6)0.0241 (6)0.0040 (5)0.0044 (5)0.0028 (5)
C310.0169 (5)0.0158 (5)0.0184 (5)0.0026 (4)0.0054 (4)0.0054 (4)
C320.0179 (5)0.0174 (5)0.0171 (5)0.0031 (4)0.0059 (4)0.0029 (4)
O320.0188 (4)0.0231 (4)0.0301 (5)0.0040 (3)0.0042 (4)0.0113 (4)
C3210.0180 (5)0.0157 (5)0.0174 (5)0.0024 (4)0.0073 (4)0.0019 (4)
C3220.0183 (5)0.0194 (5)0.0179 (5)0.0029 (4)0.0053 (4)0.0020 (4)
C3230.0175 (5)0.0183 (5)0.0219 (6)0.0000 (4)0.0074 (4)0.0004 (4)
C3240.0218 (6)0.0144 (5)0.0229 (6)0.0038 (4)0.0123 (5)0.0020 (4)
C3250.0193 (6)0.0203 (6)0.0253 (6)0.0061 (4)0.0078 (5)0.0071 (5)
C3260.0164 (5)0.0190 (6)0.0245 (6)0.0027 (4)0.0067 (5)0.0049 (4)
N3240.0242 (5)0.0192 (5)0.0320 (6)0.0024 (4)0.0129 (5)0.0090 (4)
C3170.0317 (7)0.0204 (6)0.0256 (6)0.0068 (5)0.0133 (5)0.0012 (5)
C3180.0283 (7)0.0256 (6)0.0418 (8)0.0073 (5)0.0146 (6)0.0182 (6)
Geometric parameters (Å, º) top
N1—C21.3572 (14)C14—H140.9500
N1—C7A1.4149 (14)C15—C161.3926 (18)
N1—C11.4561 (14)C15—H150.9500
C2—O21.2296 (14)C16—H160.9500
C2—C31.5494 (16)C31—C321.5173 (15)
C3—O31.4315 (13)C31—H31A0.9900
C3—C3A1.5070 (15)C31—H31B0.9900
C3—C311.5262 (15)C32—O321.2269 (14)
O3—H30.868 (17)C32—C3211.4708 (15)
C3A—C41.3777 (16)C321—C3261.4008 (16)
C3A—C7A1.3939 (15)C321—C3221.4018 (16)
C4—C51.3968 (16)C322—C3231.3770 (16)
C4—H40.9500C322—H3220.9500
C5—C61.3892 (17)C323—C3241.4140 (16)
C5—H50.9500C323—H3230.9500
C6—C71.3980 (17)C324—N3241.3629 (15)
C6—H60.9500C324—C3251.4113 (16)
C7—C7A1.3853 (16)C325—C3261.3820 (16)
C7—H70.9500C325—H3250.9500
C1—C111.5152 (16)C326—H3260.9500
C1—H1A0.9900N324—C3171.4496 (16)
C1—H1B0.9900N324—C3181.4498 (17)
C11—C161.3892 (16)C317—H37A0.9800
C11—C121.3909 (17)C317—H37B0.9800
C12—C131.3878 (18)C317—H37C0.9800
C12—H120.9500C318—H38A0.9800
C13—C141.3817 (19)C318—H38B0.9800
C13—H130.9500C318—H38C0.9800
C14—C151.3850 (19)
C2—N1—C7A110.74 (9)C14—C15—C16119.93 (12)
C2—N1—C1124.55 (10)C14—C15—H15120.0
C7A—N1—C1123.96 (9)C16—C15—H15120.0
O2—C2—N1125.72 (11)C11—C16—C15120.61 (12)
O2—C2—C3125.43 (10)C11—C16—H16119.7
N1—C2—C3108.56 (9)C15—C16—H16119.7
O3—C3—C3A107.60 (9)C32—C31—C3114.25 (9)
O3—C3—C31110.11 (9)C32—C31—H31A108.7
C3A—C3—C31116.70 (9)C3—C31—H31A108.7
O3—C3—C2106.14 (9)C32—C31—H31B108.7
C3A—C3—C2101.64 (9)C3—C31—H31B108.7
C31—C3—C2113.83 (9)H31A—C31—H31B107.6
C3—O3—H3107.7 (11)O32—C32—C321121.87 (10)
C4—C3A—C7A120.36 (10)O32—C32—C31119.58 (10)
C4—C3A—C3130.79 (10)C321—C32—C31118.54 (10)
C7A—C3A—C3108.74 (10)C326—C321—C322117.41 (10)
C3A—C4—C5118.61 (11)C326—C321—C32123.18 (10)
C3A—C4—H4120.7C322—C321—C32119.37 (10)
C5—C4—H4120.7C323—C322—C321121.76 (11)
C6—C5—C4120.23 (11)C323—C322—H322119.1
C6—C5—H5119.9C321—C322—H322119.1
C4—C5—H5119.9C322—C323—C324120.82 (11)
C5—C6—C7121.94 (11)C322—C323—H323119.6
C5—C6—H6119.0C324—C323—H323119.6
C7—C6—H6119.0N324—C324—C325121.51 (11)
C7A—C7—C6116.47 (11)N324—C324—C323121.16 (11)
C7A—C7—H7121.8C325—C324—C323117.33 (10)
C6—C7—H7121.8C326—C325—C324120.91 (11)
C7—C7A—C3A122.39 (11)C326—C325—H325119.5
C7—C7A—N1127.76 (10)C324—C325—H325119.5
C3A—C7A—N1109.85 (10)C325—C326—C321121.55 (11)
N1—C1—C11111.53 (9)C325—C326—H326119.2
N1—C1—H1A109.3C321—C326—H326119.2
C11—C1—H1A109.3C324—N324—C317120.70 (11)
N1—C1—H1B109.3C324—N324—C318120.84 (11)
C11—C1—H1B109.3C317—N324—C318118.10 (10)
H1A—C1—H1B108.0N324—C317—H37A109.5
C16—C11—C12118.86 (11)N324—C317—H37B109.5
C16—C11—C1120.49 (10)H37A—C317—H37B109.5
C12—C11—C1120.65 (11)N324—C317—H37C109.5
C13—C12—C11120.51 (12)H37A—C317—H37C109.5
C13—C12—H12119.7H37B—C317—H37C109.5
C11—C12—H12119.7N324—C318—H38A109.5
C14—C13—C12120.30 (12)N324—C318—H38B109.5
C14—C13—H13119.8H38A—C318—H38B109.5
C12—C13—H13119.8N324—C318—H38C109.5
C13—C14—C15119.77 (12)H38A—C318—H38C109.5
C13—C14—H14120.1H38B—C318—H38C109.5
C15—C14—H14120.1
C7A—N1—C2—O2178.77 (11)N1—C1—C11—C16140.20 (11)
C1—N1—C2—O28.34 (18)N1—C1—C11—C1240.32 (15)
C7A—N1—C2—C34.82 (12)C16—C11—C12—C130.57 (19)
C1—N1—C2—C3165.60 (10)C1—C11—C12—C13179.94 (12)
O2—C2—C3—O368.32 (13)C11—C12—C13—C140.4 (2)
N1—C2—C3—O3105.65 (10)C12—C13—C14—C150.5 (2)
O2—C2—C3—C3A179.29 (11)C13—C14—C15—C161.1 (2)
N1—C2—C3—C3A6.74 (11)C12—C11—C16—C150.11 (19)
O2—C2—C3—C3152.96 (15)C1—C11—C16—C15179.38 (11)
N1—C2—C3—C31133.07 (10)C14—C15—C16—C111.0 (2)
O3—C3—C3A—C470.98 (15)O3—C3—C31—C32177.82 (9)
C31—C3—C3A—C453.30 (16)C3A—C3—C31—C3259.18 (13)
C2—C3—C3A—C4177.73 (12)C2—C3—C31—C3258.79 (13)
O3—C3—C3A—C7A104.95 (10)C3—C31—C32—O322.32 (16)
C31—C3—C3A—C7A130.76 (10)C3—C31—C32—C321179.12 (10)
C2—C3—C3A—C7A6.33 (11)O32—C32—C321—C326172.29 (12)
C7A—C3A—C4—C50.17 (17)C31—C32—C321—C3266.24 (17)
C3—C3A—C4—C5175.37 (11)O32—C32—C321—C3225.26 (17)
C3A—C4—C5—C60.64 (17)C31—C32—C321—C322176.22 (10)
C4—C5—C6—C70.94 (18)C326—C321—C322—C3231.74 (17)
C5—C6—C7—C7A0.39 (17)C32—C321—C322—C323175.94 (11)
C6—C7—C7A—C3A0.44 (17)C321—C322—C323—C3242.42 (18)
C6—C7—C7A—N1179.93 (11)C322—C323—C324—N324174.68 (11)
C4—C3A—C7A—C70.73 (17)C322—C323—C324—C3255.10 (17)
C3—C3A—C7A—C7175.70 (10)N324—C324—C325—C326176.04 (12)
C4—C3A—C7A—N1179.59 (10)C323—C324—C325—C3263.74 (17)
C3—C3A—C7A—N13.98 (12)C324—C325—C326—C3210.35 (19)
C2—N1—C7A—C7179.72 (11)C322—C321—C326—C3253.12 (18)
C1—N1—C7A—C79.79 (18)C32—C321—C326—C325174.46 (11)
C2—N1—C7A—C3A0.62 (13)C325—C324—N324—C317179.93 (11)
C1—N1—C7A—C3A169.87 (10)C323—C324—N324—C3170.16 (18)
C2—N1—C1—C11102.05 (12)C325—C324—N324—C3186.91 (18)
C7A—N1—C1—C1167.14 (14)C323—C324—N324—C318172.87 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.868 (18)1.918 (18)2.7630 (12)164.2 (18)
C7—H7···O32ii0.952.443.3343 (16)157
C1—H1B···Cg1ii0.992.963.8375 (14)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+2.
1-Benzyl-3-hydroxy-3-[2-oxo-2-(pyridin-4-yl)ethyl]indolin-2-one (Ie) top
Crystal data top
C22H18N2O3Z = 2
Mr = 358.38F(000) = 376
Triclinic, P1Dx = 1.377 Mg m3
a = 7.8838 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1766 (8) ÅCell parameters from 4333 reflections
c = 11.8719 (9) Åθ = 2.1–28.4°
α = 87.554 (3)°µ = 0.09 mm1
β = 75.996 (2)°T = 100 K
γ = 69.428 (2)°Plate, yellow
V = 864.30 (11) Å30.25 × 0.16 × 0.06 mm
Data collection top
Bruker D8 Venture
diffractometer
4333 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube3760 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.045
φ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 109
Tmin = 0.949, Tmax = 0.994k = 1313
55488 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.4879P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4333 reflectionsΔρmax = 0.41 e Å3
247 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.24495 (13)0.64127 (10)0.18673 (8)0.01464 (19)
C20.16480 (16)0.61073 (11)0.29576 (9)0.0150 (2)
O20.00152 (12)0.63587 (9)0.33661 (7)0.01994 (18)
C30.32150 (16)0.54461 (11)0.36118 (9)0.0139 (2)
O30.28239 (12)0.63180 (8)0.46198 (7)0.01649 (17)
H30.309 (2)0.7091 (18)0.4396 (14)0.025*
C3A0.49328 (15)0.54471 (11)0.27087 (9)0.0136 (2)
C40.67770 (16)0.50366 (11)0.27635 (10)0.0158 (2)
H40.71500.46410.34430.019*
C50.80840 (16)0.52184 (12)0.17922 (10)0.0173 (2)
H50.93550.49610.18170.021*
C60.75361 (16)0.57706 (12)0.07952 (10)0.0176 (2)
H60.84480.58700.01420.021*
C70.56727 (16)0.61859 (11)0.07256 (9)0.0159 (2)
H70.53030.65540.00390.019*
C7A0.43947 (15)0.60344 (11)0.17049 (9)0.0139 (2)
C10.13877 (16)0.72563 (12)0.10687 (10)0.0165 (2)
H1A0.01210.72030.12600.020*
H1B0.20130.68690.02630.020*
C110.12346 (16)0.87771 (12)0.11464 (10)0.0161 (2)
C120.00309 (18)0.96473 (13)0.20838 (11)0.0233 (3)
H120.08160.92920.26510.028*
C130.0148 (2)1.10359 (14)0.21910 (12)0.0291 (3)
H130.10171.16270.28280.035*
C140.1004 (2)1.15553 (13)0.13666 (12)0.0261 (3)
H140.09361.24990.14460.031*
C150.22536 (18)1.06996 (13)0.04287 (12)0.0241 (3)
H150.30391.10570.01370.029*
C160.23575 (17)0.93145 (12)0.03164 (11)0.0201 (2)
H160.32030.87330.03330.024*
C310.32254 (16)0.40140 (11)0.40685 (9)0.0156 (2)
H31A0.41900.36650.45190.019*
H31B0.20010.41420.46090.019*
C320.35969 (17)0.29114 (12)0.31438 (10)0.0171 (2)
O320.38952 (15)0.31315 (9)0.21135 (8)0.0268 (2)
N3210.35555 (17)0.12102 (11)0.40608 (9)0.0241 (2)
C3220.46952 (19)0.10040 (13)0.30937 (11)0.0248 (3)
H3220.55060.17950.25950.030*
C3230.47504 (19)0.03098 (13)0.27837 (11)0.0236 (3)
H3230.55550.04150.20760.028*
C3240.36135 (17)0.14756 (12)0.35208 (10)0.0168 (2)
C3250.2467 (2)0.12723 (13)0.45451 (11)0.0269 (3)
H3250.17040.20340.50850.032*
C3260.2468 (2)0.00871 (14)0.47597 (12)0.0315 (3)
H3260.16420.02200.54460.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0170 (4)0.0131 (4)0.0139 (4)0.0056 (3)0.0038 (3)0.0028 (3)
C20.0206 (5)0.0109 (5)0.0144 (5)0.0075 (4)0.0030 (4)0.0000 (4)
O20.0187 (4)0.0220 (4)0.0196 (4)0.0093 (3)0.0020 (3)0.0003 (3)
C30.0201 (5)0.0107 (5)0.0118 (5)0.0071 (4)0.0031 (4)0.0005 (4)
O30.0266 (4)0.0120 (4)0.0115 (4)0.0089 (3)0.0025 (3)0.0000 (3)
C3A0.0193 (5)0.0090 (5)0.0128 (5)0.0061 (4)0.0030 (4)0.0005 (4)
C40.0214 (5)0.0114 (5)0.0151 (5)0.0055 (4)0.0054 (4)0.0004 (4)
C50.0175 (5)0.0131 (5)0.0206 (6)0.0050 (4)0.0037 (4)0.0013 (4)
C60.0195 (5)0.0140 (5)0.0171 (5)0.0067 (4)0.0009 (4)0.0002 (4)
C70.0213 (5)0.0124 (5)0.0129 (5)0.0059 (4)0.0025 (4)0.0014 (4)
C7A0.0177 (5)0.0099 (5)0.0144 (5)0.0054 (4)0.0038 (4)0.0004 (4)
C10.0218 (5)0.0142 (5)0.0160 (5)0.0067 (4)0.0087 (4)0.0031 (4)
C110.0186 (5)0.0135 (5)0.0176 (5)0.0051 (4)0.0083 (4)0.0036 (4)
C120.0270 (6)0.0182 (6)0.0208 (6)0.0063 (5)0.0013 (5)0.0026 (4)
C130.0391 (8)0.0170 (6)0.0239 (6)0.0037 (5)0.0029 (5)0.0010 (5)
C140.0356 (7)0.0141 (5)0.0302 (7)0.0076 (5)0.0133 (6)0.0039 (5)
C150.0263 (6)0.0178 (6)0.0290 (6)0.0093 (5)0.0073 (5)0.0085 (5)
C160.0222 (6)0.0160 (5)0.0195 (5)0.0044 (4)0.0041 (4)0.0037 (4)
C310.0233 (5)0.0112 (5)0.0129 (5)0.0081 (4)0.0028 (4)0.0019 (4)
C320.0238 (5)0.0126 (5)0.0158 (5)0.0088 (4)0.0031 (4)0.0013 (4)
O320.0507 (6)0.0194 (4)0.0147 (4)0.0193 (4)0.0058 (4)0.0028 (3)
N3210.0396 (6)0.0156 (5)0.0187 (5)0.0141 (4)0.0031 (4)0.0014 (4)
C3220.0338 (7)0.0142 (5)0.0236 (6)0.0100 (5)0.0010 (5)0.0026 (4)
C3230.0321 (7)0.0168 (6)0.0194 (6)0.0117 (5)0.0030 (5)0.0011 (4)
C3240.0246 (6)0.0127 (5)0.0149 (5)0.0092 (4)0.0045 (4)0.0012 (4)
C3250.0415 (8)0.0157 (6)0.0198 (6)0.0140 (5)0.0058 (5)0.0026 (4)
C3260.0525 (9)0.0199 (6)0.0194 (6)0.0204 (6)0.0080 (6)0.0007 (5)
Geometric parameters (Å, º) top
N1—C21.3708 (14)C12—C131.3927 (18)
N1—C7A1.4091 (14)C12—H120.9500
N1—C11.4649 (14)C13—C141.388 (2)
C2—O21.2194 (14)C13—H130.9500
C2—C31.5549 (15)C14—C151.3848 (19)
C3—O31.4263 (13)C14—H140.9500
C3—C3A1.5105 (15)C15—C161.3933 (17)
C3—C311.5311 (14)C15—H150.9500
O3—H30.896 (17)C16—H160.9500
C3A—C41.3818 (16)C31—C321.5063 (15)
C3A—C7A1.4011 (15)C31—H31A0.9900
C4—C51.4022 (16)C31—H31B0.9900
C4—H40.9500C32—O321.2149 (14)
C5—C61.3869 (16)C32—C3241.5063 (15)
C5—H50.9500N321—C3261.3334 (17)
C6—C71.4010 (16)N321—C3221.3351 (16)
C6—H60.9500C322—C3231.3842 (17)
C7—C7A1.3848 (15)C322—H3220.9500
C7—H70.9500C323—C3241.3922 (16)
C1—C111.5145 (15)C323—H3230.9500
C1—H1A0.9900C324—C3251.3844 (16)
C1—H1B0.9900C325—C3261.3958 (17)
C11—C161.3877 (16)C325—H3250.9500
C11—C121.3943 (17)C326—H3260.9500
C2—N1—C7A110.92 (9)C13—C12—C11120.22 (12)
C2—N1—C1123.95 (9)C13—C12—H12119.9
C7A—N1—C1124.18 (9)C11—C12—H12119.9
O2—C2—N1126.14 (11)C14—C13—C12120.00 (12)
O2—C2—C3125.50 (10)C14—C13—H13120.0
N1—C2—C3108.29 (9)C12—C13—H13120.0
O3—C3—C3A113.12 (9)C15—C14—C13120.06 (12)
O3—C3—C31105.36 (8)C15—C14—H14120.0
C3A—C3—C31116.25 (9)C13—C14—H14120.0
O3—C3—C2108.52 (9)C14—C15—C16119.90 (12)
C3A—C3—C2101.91 (8)C14—C15—H15120.1
C31—C3—C2111.62 (9)C16—C15—H15120.1
C3—O3—H3108.5 (10)C11—C16—C15120.51 (11)
C4—C3A—C7A120.39 (10)C11—C16—H16119.7
C4—C3A—C3130.80 (10)C15—C16—H16119.7
C7A—C3A—C3108.75 (9)C32—C31—C3114.81 (9)
C3A—C4—C5118.37 (10)C32—C31—H31A108.6
C3A—C4—H4120.8C3—C31—H31A108.6
C5—C4—H4120.8C32—C31—H31B108.6
C6—C5—C4120.52 (11)C3—C31—H31B108.6
C6—C5—H5119.7H31A—C31—H31B107.5
C4—C5—H5119.7O32—C32—C31122.73 (10)
C5—C6—C7121.72 (10)O32—C32—C324119.07 (10)
C5—C6—H6119.1C31—C32—C324118.19 (9)
C7—C6—H6119.1C326—N321—C322117.27 (11)
C7A—C7—C6116.88 (10)N321—C322—C323123.01 (11)
C7A—C7—H7121.6N321—C322—H322118.5
C6—C7—H7121.6C323—C322—H322118.5
C7—C7A—C3A122.07 (10)C322—C323—C324119.28 (11)
C7—C7A—N1127.80 (10)C322—C323—H323120.4
C3A—C7A—N1110.12 (9)C324—C323—H323120.4
N1—C1—C11111.15 (9)C325—C324—C323118.37 (11)
N1—C1—H1A109.4C325—C324—C32122.62 (10)
C11—C1—H1A109.4C323—C324—C32118.92 (10)
N1—C1—H1B109.4C324—C325—C326117.94 (11)
C11—C1—H1B109.4C324—C325—H325121.0
H1A—C1—H1B108.0C326—C325—H325121.0
C16—C11—C12119.30 (11)N321—C326—C325124.05 (12)
C16—C11—C1121.32 (11)N321—C326—H326118.0
C12—C11—C1119.37 (10)C325—C326—H326118.0
C7A—N1—C2—O2177.25 (10)C1—N1—C7A—C3A169.65 (9)
C1—N1—C2—O27.98 (17)C2—N1—C1—C1195.90 (12)
C7A—N1—C2—C30.10 (12)C7A—N1—C1—C1171.96 (13)
C1—N1—C2—C3169.37 (9)N1—C1—C11—C16101.61 (12)
O2—C2—C3—O358.00 (14)N1—C1—C11—C1276.98 (13)
N1—C2—C3—O3119.37 (9)C16—C11—C12—C130.76 (19)
O2—C2—C3—C3A177.59 (10)C1—C11—C12—C13177.86 (12)
N1—C2—C3—C3A0.22 (11)C11—C12—C13—C140.3 (2)
O2—C2—C3—C3157.67 (14)C12—C13—C14—C150.9 (2)
N1—C2—C3—C31124.96 (9)C13—C14—C15—C160.3 (2)
O3—C3—C3A—C461.23 (15)C12—C11—C16—C151.37 (18)
C31—C3—C3A—C460.88 (15)C1—C11—C16—C15177.22 (11)
C2—C3—C3A—C4177.52 (11)C14—C15—C16—C110.87 (19)
O3—C3—C3A—C7A115.83 (10)O3—C3—C31—C32179.42 (9)
C31—C3—C3A—C7A122.05 (10)C3A—C3—C31—C3254.47 (13)
C2—C3—C3A—C7A0.46 (11)C2—C3—C31—C3261.83 (12)
C7A—C3A—C4—C50.24 (15)C3—C31—C32—O321.12 (17)
C3—C3A—C4—C5177.01 (10)C3—C31—C32—C324179.45 (10)
C3A—C4—C5—C61.30 (16)C326—N321—C322—C3231.7 (2)
C4—C5—C6—C71.07 (17)N321—C322—C323—C3241.9 (2)
C5—C6—C7—C7A0.70 (16)C322—C323—C324—C3250.2 (2)
C6—C7—C7A—C3A2.28 (16)C322—C323—C324—C32176.38 (12)
C6—C7—C7A—N1177.80 (10)O32—C32—C324—C325146.70 (13)
C4—C3A—C7A—C72.09 (16)C31—C32—C324—C32533.85 (17)
C3—C3A—C7A—C7179.52 (10)O32—C32—C324—C32329.72 (18)
C4—C3A—C7A—N1177.98 (9)C31—C32—C324—C323149.73 (12)
C3—C3A—C7A—N10.55 (12)C323—C324—C325—C3262.3 (2)
C2—N1—C7A—C7179.66 (10)C32—C324—C325—C326174.14 (13)
C1—N1—C7A—C710.42 (17)C322—N321—C326—C3250.6 (2)
C2—N1—C7A—C3A0.41 (12)C324—C325—C326—N3212.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N321i0.897 (17)1.897 (17)2.7915 (14)174.9 (15)
C4—H4···O3ii0.952.463.3842 (14)164
C7—H7···O32iii0.952.513.3719 (14)150
C325—H325···O2iv0.952.323.2578 (15)171
C322—H322···Cg1v0.952.683.5294 (14)149
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y+1, z+1; (v) x, y1, z.
3-[2-(Benzo[d][1,3]dioxol-5-yl)-2-oxoethyl]-1-benzyl-3-hydroxyindolin-2-one (If) top
Crystal data top
C24H19NO5Z = 4
Mr = 401.40F(000) = 840
Triclinic, P1Dx = 1.366 Mg m3
a = 11.8136 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.4987 (10) ÅCell parameters from 9692 reflections
c = 13.5976 (11) Åθ = 2.2–28.3°
α = 93.084 (3)°µ = 0.10 mm1
β = 101.883 (2)°T = 100 K
γ = 95.055 (2)°Plate, yellow
V = 1951.7 (3) Å30.25 × 0.16 × 0.06 mm
Data collection top
Bruker D8 Venture
diffractometer
9691 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube8134 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.049
φ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1315
Tmin = 0.957, Tmax = 0.994k = 1616
125792 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0386P)2 + 1.0922P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
9691 reflectionsΔρmax = 0.38 e Å3
547 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.36578 (9)0.70223 (8)0.75521 (8)0.0180 (2)
C120.33088 (10)0.64863 (9)0.66308 (9)0.0163 (2)
O120.39483 (7)0.62008 (7)0.60785 (7)0.02009 (18)
C130.19674 (10)0.63051 (9)0.63676 (9)0.0155 (2)
O130.15366 (8)0.68949 (7)0.55269 (7)0.01875 (17)
H130.1495 (15)0.6486 (14)0.4976 (13)0.028*
C13A0.16621 (10)0.68140 (9)0.72932 (9)0.0162 (2)
C140.05913 (11)0.69289 (10)0.75156 (9)0.0198 (2)
H140.01040.66590.70510.024*
C150.05531 (11)0.74530 (10)0.84426 (10)0.0223 (2)
H150.01760.75440.86100.027*
C160.15748 (12)0.78406 (10)0.91178 (10)0.0222 (2)
H160.15330.81880.97460.027*
C170.26690 (11)0.77310 (10)0.88929 (9)0.0203 (2)
H170.33680.79990.93540.024*
C17A0.26833 (10)0.72162 (9)0.79709 (9)0.0170 (2)
C110.48659 (10)0.72091 (10)0.80967 (10)0.0207 (2)
H11A0.53600.68580.76970.025*
H11B0.49430.68650.87430.025*
C1110.53080 (10)0.83877 (10)0.83120 (10)0.0197 (2)
C1120.52255 (12)0.90761 (11)0.75373 (10)0.0259 (3)
H1120.48600.88150.68680.031*
C1130.56794 (13)1.01485 (12)0.77435 (12)0.0317 (3)
H1130.56181.06200.72140.038*
C1140.62220 (13)1.05348 (12)0.87201 (12)0.0328 (3)
H1140.65361.12670.88570.039*
C1150.63031 (13)0.98508 (12)0.94904 (11)0.0306 (3)
H1150.66751.01111.01580.037*
C1160.58414 (11)0.87823 (11)0.92887 (10)0.0244 (3)
H1160.58900.83170.98220.029*
C1310.15502 (10)0.51079 (9)0.61318 (9)0.0160 (2)
H13A0.06950.50130.60560.019*
H13B0.17260.48740.54770.019*
C1320.20854 (10)0.43795 (9)0.69182 (9)0.0160 (2)
O1320.27327 (8)0.47573 (7)0.77033 (7)0.02184 (19)
O1410.12237 (10)0.00809 (8)0.62667 (9)0.0338 (2)
C1420.20004 (14)0.03580 (11)0.71514 (12)0.0309 (3)
H14A0.15670.08110.75540.037*
H14B0.26090.07700.69580.037*
O1430.25219 (10)0.06174 (8)0.77321 (8)0.0332 (2)
C14A0.20977 (11)0.14395 (10)0.71810 (10)0.0218 (2)
C1440.23604 (11)0.25218 (10)0.74070 (9)0.0195 (2)
H1440.28860.28050.80100.023*
C1450.18104 (10)0.32004 (9)0.66977 (9)0.0167 (2)
C1460.10375 (10)0.27679 (10)0.58197 (9)0.0195 (2)
H1460.06800.32420.53550.023*
C1470.07750 (11)0.16566 (10)0.56043 (10)0.0232 (3)
H1470.02480.13600.50080.028*
C18A0.13246 (11)0.10199 (10)0.63066 (10)0.0230 (3)
N210.14702 (8)0.57608 (8)0.21220 (8)0.0171 (2)
C220.18051 (10)0.56438 (9)0.31195 (9)0.0164 (2)
O220.11699 (7)0.56189 (7)0.37299 (6)0.01978 (18)
C230.31364 (10)0.55891 (9)0.33838 (9)0.0153 (2)
O230.36630 (7)0.65315 (7)0.40061 (7)0.01939 (18)
H230.3659 (15)0.6426 (14)0.4653 (14)0.029*
C23A0.34379 (10)0.56497 (9)0.23629 (9)0.0171 (2)
C240.44927 (11)0.56227 (10)0.20825 (10)0.0207 (2)
H240.51850.55740.25700.025*
C250.45181 (12)0.56686 (11)0.10592 (10)0.0238 (3)
H250.52350.56500.08490.029*
C260.35020 (12)0.57406 (11)0.03520 (10)0.0245 (3)
H260.35320.57530.03400.029*
C270.24316 (11)0.57957 (10)0.06365 (10)0.0215 (2)
H270.17400.58660.01550.026*
C27A0.24281 (10)0.57436 (9)0.16460 (9)0.0175 (2)
C210.02682 (10)0.57967 (10)0.16062 (9)0.0199 (2)
H21A0.02460.55560.20590.024*
H21B0.00970.52810.10030.024*
C2110.00175 (11)0.68995 (10)0.12808 (9)0.0207 (2)
C2120.05811 (13)0.78375 (11)0.17857 (11)0.0283 (3)
H2120.12150.77990.23360.034*
C2130.02605 (15)0.88369 (13)0.14936 (13)0.0378 (4)
H2130.06800.94780.18410.045*
C2140.06704 (15)0.88994 (13)0.06965 (13)0.0372 (4)
H2140.08930.95820.05000.045*
C2150.12708 (13)0.79678 (14)0.01898 (12)0.0337 (3)
H2150.19070.80090.03580.040*
C2160.09496 (12)0.69690 (12)0.04770 (10)0.0271 (3)
H2160.13670.63300.01240.032*
C2310.34489 (10)0.45854 (9)0.39264 (9)0.0168 (2)
H23A0.42960.45440.40090.020*
H23B0.32790.46650.46080.020*
C2320.28175 (10)0.35343 (9)0.34022 (9)0.0170 (2)
O2320.21756 (8)0.35194 (7)0.25714 (7)0.02298 (19)
O2410.34212 (10)0.03455 (9)0.51919 (9)0.0387 (3)
C2420.25730 (16)0.10257 (12)0.44568 (13)0.0373 (4)
H24A0.29360.16400.42050.045*
H24B0.19300.13140.47640.045*
O2430.21368 (12)0.03916 (9)0.36449 (9)0.0452 (3)
C24A0.25954 (13)0.06508 (11)0.39521 (11)0.0274 (3)
C2440.23952 (12)0.15577 (10)0.34531 (10)0.0246 (3)
H2440.18740.15320.28170.030*
C2450.29995 (10)0.25330 (10)0.39278 (9)0.0189 (2)
C2460.37567 (11)0.25505 (11)0.48632 (10)0.0235 (3)
H2460.41470.32190.51730.028*
C2470.39570 (12)0.16122 (12)0.53564 (11)0.0288 (3)
H2470.44770.16240.59910.035*
C28A0.33634 (12)0.06743 (11)0.48759 (11)0.0276 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0149 (5)0.0179 (5)0.0202 (5)0.0007 (4)0.0027 (4)0.0021 (4)
C120.0160 (5)0.0135 (5)0.0192 (5)0.0009 (4)0.0035 (4)0.0016 (4)
O120.0175 (4)0.0222 (4)0.0212 (4)0.0025 (3)0.0059 (3)0.0015 (3)
C130.0149 (5)0.0142 (5)0.0172 (5)0.0021 (4)0.0026 (4)0.0016 (4)
O130.0225 (4)0.0166 (4)0.0171 (4)0.0033 (3)0.0028 (3)0.0037 (3)
C13A0.0177 (5)0.0129 (5)0.0183 (5)0.0017 (4)0.0043 (4)0.0019 (4)
C140.0191 (6)0.0185 (6)0.0224 (6)0.0023 (4)0.0053 (5)0.0025 (5)
C150.0222 (6)0.0225 (6)0.0250 (6)0.0047 (5)0.0100 (5)0.0024 (5)
C160.0287 (6)0.0199 (6)0.0199 (6)0.0050 (5)0.0085 (5)0.0003 (5)
C170.0233 (6)0.0175 (6)0.0196 (6)0.0031 (4)0.0034 (5)0.0001 (4)
C17A0.0181 (5)0.0138 (5)0.0198 (6)0.0027 (4)0.0047 (4)0.0020 (4)
C110.0155 (5)0.0194 (6)0.0250 (6)0.0017 (4)0.0001 (4)0.0023 (5)
C1110.0145 (5)0.0202 (6)0.0233 (6)0.0013 (4)0.0024 (4)0.0025 (5)
C1120.0248 (6)0.0262 (7)0.0243 (6)0.0008 (5)0.0013 (5)0.0002 (5)
C1130.0323 (7)0.0253 (7)0.0360 (8)0.0004 (6)0.0042 (6)0.0077 (6)
C1140.0305 (7)0.0208 (6)0.0430 (8)0.0030 (5)0.0020 (6)0.0030 (6)
C1150.0298 (7)0.0268 (7)0.0298 (7)0.0009 (5)0.0020 (6)0.0082 (6)
C1160.0224 (6)0.0240 (6)0.0243 (6)0.0017 (5)0.0004 (5)0.0010 (5)
C1310.0160 (5)0.0139 (5)0.0174 (5)0.0002 (4)0.0026 (4)0.0014 (4)
C1320.0147 (5)0.0156 (5)0.0182 (5)0.0015 (4)0.0043 (4)0.0008 (4)
O1320.0234 (4)0.0188 (4)0.0205 (4)0.0021 (3)0.0014 (3)0.0002 (3)
O1410.0399 (6)0.0142 (4)0.0427 (6)0.0034 (4)0.0021 (5)0.0012 (4)
C1420.0380 (8)0.0169 (6)0.0371 (8)0.0049 (5)0.0050 (6)0.0046 (5)
O1430.0433 (6)0.0166 (5)0.0360 (6)0.0068 (4)0.0028 (5)0.0058 (4)
C14A0.0238 (6)0.0178 (6)0.0246 (6)0.0057 (5)0.0048 (5)0.0055 (5)
C1440.0207 (6)0.0174 (6)0.0201 (6)0.0031 (4)0.0033 (4)0.0018 (4)
C1450.0161 (5)0.0145 (5)0.0203 (6)0.0021 (4)0.0054 (4)0.0014 (4)
C1460.0187 (5)0.0172 (6)0.0217 (6)0.0021 (4)0.0021 (4)0.0012 (4)
C1470.0228 (6)0.0179 (6)0.0261 (6)0.0009 (5)0.0000 (5)0.0017 (5)
C18A0.0241 (6)0.0136 (5)0.0311 (7)0.0011 (4)0.0062 (5)0.0005 (5)
N210.0142 (4)0.0196 (5)0.0177 (5)0.0031 (4)0.0030 (4)0.0021 (4)
C220.0159 (5)0.0134 (5)0.0197 (5)0.0016 (4)0.0032 (4)0.0001 (4)
O220.0171 (4)0.0234 (4)0.0193 (4)0.0019 (3)0.0056 (3)0.0003 (3)
C230.0138 (5)0.0147 (5)0.0168 (5)0.0008 (4)0.0027 (4)0.0006 (4)
O230.0199 (4)0.0165 (4)0.0200 (4)0.0012 (3)0.0027 (3)0.0028 (3)
C23A0.0178 (5)0.0147 (5)0.0189 (5)0.0021 (4)0.0044 (4)0.0009 (4)
C240.0186 (6)0.0215 (6)0.0231 (6)0.0038 (4)0.0061 (5)0.0013 (5)
C250.0234 (6)0.0253 (6)0.0263 (6)0.0058 (5)0.0116 (5)0.0042 (5)
C260.0295 (7)0.0260 (6)0.0214 (6)0.0073 (5)0.0104 (5)0.0055 (5)
C270.0230 (6)0.0220 (6)0.0203 (6)0.0048 (5)0.0047 (5)0.0038 (5)
C27A0.0176 (5)0.0157 (5)0.0200 (6)0.0027 (4)0.0051 (4)0.0020 (4)
C210.0145 (5)0.0228 (6)0.0215 (6)0.0028 (4)0.0011 (4)0.0031 (5)
C2110.0194 (6)0.0244 (6)0.0209 (6)0.0069 (5)0.0077 (5)0.0044 (5)
C2120.0291 (7)0.0243 (7)0.0311 (7)0.0063 (5)0.0033 (5)0.0029 (5)
C2130.0435 (9)0.0242 (7)0.0474 (9)0.0090 (6)0.0111 (7)0.0038 (6)
C2140.0438 (9)0.0340 (8)0.0428 (9)0.0223 (7)0.0187 (7)0.0170 (7)
C2150.0315 (7)0.0456 (9)0.0301 (7)0.0211 (7)0.0104 (6)0.0137 (6)
C2160.0227 (6)0.0358 (8)0.0243 (6)0.0108 (5)0.0045 (5)0.0050 (5)
C2310.0158 (5)0.0163 (5)0.0180 (5)0.0029 (4)0.0022 (4)0.0007 (4)
C2320.0158 (5)0.0174 (5)0.0181 (5)0.0019 (4)0.0044 (4)0.0009 (4)
O2320.0244 (4)0.0205 (4)0.0211 (4)0.0006 (3)0.0010 (3)0.0021 (3)
O2410.0433 (6)0.0249 (5)0.0484 (7)0.0041 (5)0.0066 (5)0.0181 (5)
C2420.0525 (10)0.0191 (7)0.0439 (9)0.0049 (6)0.0160 (7)0.0100 (6)
O2430.0675 (8)0.0177 (5)0.0440 (7)0.0068 (5)0.0000 (6)0.0076 (5)
C24A0.0341 (7)0.0172 (6)0.0315 (7)0.0007 (5)0.0095 (6)0.0029 (5)
C2440.0295 (7)0.0194 (6)0.0235 (6)0.0002 (5)0.0033 (5)0.0019 (5)
C2450.0181 (5)0.0172 (6)0.0223 (6)0.0024 (4)0.0057 (4)0.0033 (4)
C2460.0189 (6)0.0231 (6)0.0269 (6)0.0012 (5)0.0011 (5)0.0048 (5)
C2470.0238 (6)0.0294 (7)0.0315 (7)0.0031 (5)0.0003 (5)0.0118 (6)
C28A0.0279 (7)0.0228 (6)0.0356 (7)0.0062 (5)0.0106 (6)0.0125 (5)
Geometric parameters (Å, º) top
N11—C121.3551 (15)N21—C221.3522 (15)
N11—C17A1.4186 (15)N21—C27A1.4158 (15)
N11—C111.4585 (15)N21—C211.4542 (15)
C12—O121.2306 (14)C22—O221.2280 (14)
C12—C131.5444 (16)C22—C231.5480 (16)
C13—O131.4235 (14)C23—O231.4273 (14)
C13—C13A1.5033 (16)C23—C23A1.5066 (16)
C13—C1311.5291 (16)C23—C2311.5243 (16)
O13—H130.874 (18)O23—H230.898 (18)
C13A—C141.3774 (16)C23A—C241.3788 (16)
C13A—C17A1.3939 (16)C23A—C27A1.3947 (16)
C14—C151.3999 (18)C24—C251.4020 (18)
C14—H140.9500C24—H240.9500
C15—C161.3883 (19)C25—C261.3881 (19)
C15—H150.9500C25—H250.9500
C16—C171.4045 (17)C26—C271.4027 (18)
C16—H160.9500C26—H260.9500
C17—C17A1.3820 (17)C27—C27A1.3785 (17)
C17—H170.9500C27—H270.9500
C11—C1111.5111 (17)C21—C2111.5152 (17)
C11—H11A0.9900C21—H21A0.9900
C11—H11B0.9900C21—H21B0.9900
C111—C1121.3892 (19)C211—C2121.3831 (19)
C111—C1161.3907 (18)C211—C2161.3951 (18)
C112—C1131.391 (2)C212—C2131.392 (2)
C112—H1120.9500C212—H2120.9500
C113—C1141.391 (2)C213—C2141.387 (2)
C113—H1130.9500C213—H2130.9500
C114—C1151.381 (2)C214—C2151.379 (2)
C114—H1140.9500C214—H2140.9500
C115—C1161.3882 (19)C215—C2161.389 (2)
C115—H1150.9500C215—H2150.9500
C116—H1160.9500C216—H2160.9500
C131—C1321.5166 (16)C231—C2321.5158 (16)
C131—H13A0.9900C231—H23A0.9900
C131—H13B0.9900C231—H23B0.9900
C132—O1321.2221 (15)C232—O2321.2223 (15)
C132—C1451.4816 (16)C232—C2451.4846 (16)
O141—C18A1.3676 (15)O241—C28A1.3697 (16)
O141—C1421.4336 (18)O241—C2421.440 (2)
C142—O1431.4328 (17)C242—O2431.4297 (19)
C142—H14A0.9900C242—H24A0.9900
C142—H14B0.9900C242—H24B0.9900
O143—C14A1.3738 (15)O243—C24A1.3745 (17)
C14A—C1441.3649 (17)C24A—C2441.3657 (19)
C14A—C18A1.3872 (19)C24A—C28A1.387 (2)
C144—C1451.4138 (16)C244—C2451.4087 (18)
C144—H1440.9500C244—H2440.9500
C145—C1461.3950 (17)C245—C2461.3940 (18)
C146—C1471.3979 (17)C246—C2471.3961 (18)
C146—H1460.9500C246—H2460.9500
C147—C18A1.3727 (18)C247—C28A1.370 (2)
C147—H1470.9500C247—H2470.9500
C12—N11—C17A110.46 (10)C22—N21—C27A110.76 (10)
C12—N11—C11124.04 (10)C22—N21—C21123.82 (10)
C17A—N11—C11124.77 (10)C27A—N21—C21125.18 (10)
O12—C12—N11126.00 (11)O22—C22—N21125.99 (11)
O12—C12—C13124.91 (11)O22—C22—C23124.97 (11)
N11—C12—C13109.08 (10)N21—C22—C23109.00 (10)
O13—C13—C13A109.04 (9)O23—C23—C23A109.13 (9)
O13—C13—C131110.14 (9)O23—C23—C231109.93 (9)
C13A—C13—C131115.27 (10)C23A—C23—C231115.70 (9)
O13—C13—C12109.43 (9)O23—C23—C22108.55 (9)
C13A—C13—C12101.69 (9)C23A—C23—C22101.49 (9)
C131—C13—C12110.90 (9)C231—C23—C22111.59 (9)
C13—O13—H13108.4 (11)C23—O23—H23109.7 (11)
C14—C13A—C17A120.87 (11)C24—C23A—C27A120.57 (11)
C14—C13A—C13130.11 (11)C24—C23A—C23130.41 (11)
C17A—C13A—C13109.02 (10)C27A—C23A—C23109.02 (10)
C13A—C14—C15118.39 (12)C23A—C24—C25118.35 (12)
C13A—C14—H14120.8C23A—C24—H24120.8
C15—C14—H14120.8C25—C24—H24120.8
C16—C15—C14120.37 (12)C26—C25—C24120.40 (12)
C16—C15—H15119.8C26—C25—H25119.8
C14—C15—H15119.8C24—C25—H25119.8
C15—C16—C17121.50 (12)C25—C26—C27121.46 (12)
C15—C16—H16119.2C25—C26—H26119.3
C17—C16—H16119.2C27—C26—H26119.3
C17A—C17—C16117.02 (12)C27A—C27—C26117.03 (12)
C17A—C17—H17121.5C27A—C27—H27121.5
C16—C17—H17121.5C26—C27—H27121.5
C17—C17A—C13A121.86 (11)C27—C27A—C23A122.16 (11)
C17—C17A—N11128.41 (11)C27—C27A—N21128.18 (11)
C13A—C17A—N11109.73 (10)C23A—C27A—N21109.66 (10)
N11—C11—C111113.60 (10)N21—C21—C211114.11 (10)
N11—C11—H11A108.8N21—C21—H21A108.7
C111—C11—H11A108.8C211—C21—H21A108.7
N11—C11—H11B108.8N21—C21—H21B108.7
C111—C11—H11B108.8C211—C21—H21B108.7
H11A—C11—H11B107.7H21A—C21—H21B107.6
C112—C111—C116119.45 (12)C212—C211—C216119.10 (12)
C112—C111—C11120.65 (11)C212—C211—C21122.04 (12)
C116—C111—C11119.86 (12)C216—C211—C21118.79 (12)
C111—C112—C113119.85 (13)C211—C212—C213120.46 (14)
C111—C112—H112120.1C211—C212—H212119.8
C113—C112—H112120.1C213—C212—H212119.8
C114—C113—C112120.38 (14)C214—C213—C212120.11 (15)
C114—C113—H113119.8C214—C213—H213119.9
C112—C113—H113119.8C212—C213—H213119.9
C115—C114—C113119.77 (13)C215—C214—C213119.74 (14)
C115—C114—H114120.1C215—C214—H214120.1
C113—C114—H114120.1C213—C214—H214120.1
C114—C115—C116120.00 (13)C214—C215—C216120.27 (14)
C114—C115—H115120.0C214—C215—H215119.9
C116—C115—H115120.0C216—C215—H215119.9
C115—C116—C111120.55 (13)C215—C216—C211120.32 (14)
C115—C116—H116119.7C215—C216—H216119.8
C111—C116—H116119.7C211—C216—H216119.8
C132—C131—C13114.79 (9)C232—C231—C23115.06 (10)
C132—C131—H13A108.6C232—C231—H23A108.5
C13—C131—H13A108.6C23—C231—H23A108.5
C132—C131—H13B108.6C232—C231—H23B108.5
C13—C131—H13B108.6C23—C231—H23B108.5
H13A—C131—H13B107.5H23A—C231—H23B107.5
O132—C132—C145121.30 (11)O232—C232—C245121.35 (11)
O132—C132—C131120.76 (10)O232—C232—C231120.52 (11)
C145—C132—C131117.93 (10)C245—C232—C231118.12 (10)
C18A—O141—C142105.91 (11)C28A—O241—C242105.66 (12)
O143—C142—O141108.36 (10)O243—C242—O241107.99 (11)
O143—C142—H14A110.0O243—C242—H24A110.1
O141—C142—H14A110.0O241—C242—H24A110.1
O143—C142—H14B110.0O243—C242—H24B110.1
O141—C142—H14B110.0O241—C242—H24B110.1
H14A—C142—H14B108.4H24A—C242—H24B108.4
C14A—O143—C142105.69 (11)C24A—O243—C242105.97 (12)
C144—C14A—O143127.95 (12)C244—C24A—O243128.03 (14)
C144—C14A—C18A122.10 (12)C244—C24A—C28A122.26 (13)
O143—C14A—C18A109.95 (11)O243—C24A—C28A109.68 (12)
C14A—C144—C145116.55 (11)C24A—C244—C245116.73 (12)
C14A—C144—H144121.7C24A—C244—H244121.6
C145—C144—H144121.7C245—C244—H244121.6
C146—C145—C144120.77 (11)C246—C245—C244120.57 (12)
C146—C145—C132121.42 (11)C246—C245—C232121.11 (11)
C144—C145—C132117.81 (11)C244—C245—C232118.32 (11)
C145—C146—C147121.82 (11)C245—C246—C247121.78 (13)
C145—C146—H146119.1C245—C246—H246119.1
C147—C146—H146119.1C247—C246—H246119.1
C18A—C147—C146116.00 (12)C28A—C247—C246116.47 (13)
C18A—C147—H147122.0C28A—C247—H247121.8
C146—C147—H147122.0C246—C247—H247121.8
O141—C18A—C147127.20 (12)O241—C28A—C247127.70 (14)
O141—C18A—C14A110.03 (11)O241—C28A—C24A110.12 (13)
C147—C18A—C14A122.77 (12)C247—C28A—C24A122.18 (12)
C17A—N11—C12—O12179.90 (11)C27A—N21—C22—O22179.43 (11)
C11—N11—C12—O129.28 (19)C21—N21—C22—O224.74 (19)
C17A—N11—C12—C131.18 (13)C27A—N21—C22—C232.74 (13)
C11—N11—C12—C13171.80 (10)C21—N21—C22—C23177.43 (10)
O12—C12—C13—O1364.35 (15)O22—C22—C23—O2365.20 (14)
N11—C12—C13—O13114.58 (11)N21—C22—C23—O23112.66 (11)
O12—C12—C13—C13A179.59 (11)O22—C22—C23—C23A179.92 (11)
N11—C12—C13—C13A0.65 (12)N21—C22—C23—C23A2.23 (12)
O12—C12—C13—C13157.35 (15)O22—C22—C23—C23156.11 (15)
N11—C12—C13—C131123.72 (10)N21—C22—C23—C231126.04 (10)
O13—C13—C13A—C1463.36 (16)O23—C23—C23A—C2466.66 (16)
C131—C13—C13A—C1461.09 (16)C231—C23—C23A—C2457.91 (17)
C12—C13—C13A—C14178.88 (12)C22—C23—C23A—C24178.88 (12)
O13—C13—C13A—C17A115.62 (10)O23—C23—C23A—C27A113.52 (11)
C131—C13—C13A—C17A119.92 (11)C231—C23—C23A—C27A121.91 (11)
C12—C13—C13A—C17A0.11 (12)C22—C23—C23A—C27A0.94 (12)
C17A—C13A—C14—C150.45 (18)C27A—C23A—C24—C251.35 (18)
C13—C13A—C14—C15179.34 (12)C23—C23A—C24—C25178.45 (12)
C13A—C14—C15—C160.27 (19)C23A—C24—C25—C260.07 (19)
C14—C15—C16—C170.6 (2)C24—C25—C26—C271.6 (2)
C15—C16—C17—C17A0.26 (19)C25—C26—C27—C27A1.8 (2)
C16—C17—C17A—C13A0.47 (18)C26—C27—C27A—C23A0.54 (19)
C16—C17—C17A—N11178.49 (11)C26—C27—C27A—N21178.70 (12)
C14—C13A—C17A—C170.84 (18)C24—C23A—C27A—C271.06 (19)
C13—C13A—C17A—C17179.94 (11)C23—C23A—C27A—C27178.78 (11)
C14—C13A—C17A—N11178.29 (11)C24—C23A—C27A—N21179.58 (11)
C13—C13A—C17A—N110.80 (13)C23—C23A—C27A—N210.58 (13)
C12—N11—C17A—C17179.67 (12)C22—N21—C27A—C27177.17 (12)
C11—N11—C17A—C179.12 (19)C21—N21—C27A—C272.6 (2)
C12—N11—C17A—C13A1.27 (14)C22—N21—C27A—C23A2.14 (14)
C11—N11—C17A—C13A171.81 (11)C21—N21—C27A—C23A176.75 (11)
C12—N11—C11—C111119.11 (13)C22—N21—C21—C211108.60 (13)
C17A—N11—C11—C11171.60 (15)C27A—N21—C21—C21177.47 (15)
N11—C11—C111—C11254.19 (16)N21—C21—C211—C21227.57 (17)
N11—C11—C111—C116128.16 (12)N21—C21—C211—C216155.57 (11)
C116—C111—C112—C1130.3 (2)C216—C211—C212—C2130.2 (2)
C11—C111—C112—C113177.40 (12)C21—C211—C212—C213177.07 (13)
C111—C112—C113—C1140.4 (2)C211—C212—C213—C2140.5 (2)
C112—C113—C114—C1150.5 (2)C212—C213—C214—C2150.5 (2)
C113—C114—C115—C1160.2 (2)C213—C214—C215—C2160.2 (2)
C114—C115—C116—C1110.8 (2)C214—C215—C216—C2110.1 (2)
C112—C111—C116—C1150.9 (2)C212—C211—C216—C2150.1 (2)
C11—C111—C116—C115176.81 (12)C21—C211—C216—C215176.90 (12)
O13—C13—C131—C132172.21 (9)O23—C23—C231—C232172.42 (9)
C13A—C13—C131—C13263.91 (13)C23A—C23—C231—C23263.42 (13)
C12—C13—C131—C13250.92 (13)C22—C23—C231—C23251.93 (13)
C13—C131—C132—O1324.93 (16)C23—C231—C232—O2324.98 (16)
C13—C131—C132—C145174.30 (10)C23—C231—C232—C245174.80 (10)
C18A—O141—C142—O1432.44 (16)C28A—O241—C242—O2437.40 (17)
O141—C142—O143—C14A2.36 (15)O241—C242—O243—C24A7.49 (17)
C142—O143—C14A—C144178.25 (14)C242—O243—C24A—C244177.11 (15)
C142—O143—C14A—C18A1.39 (15)C242—O243—C24A—C28A4.78 (17)
O143—C14A—C144—C145179.07 (12)O243—C24A—C244—C245178.62 (14)
C18A—C14A—C144—C1450.52 (19)C28A—C24A—C244—C2450.7 (2)
C14A—C144—C145—C1460.32 (17)C24A—C244—C245—C2460.24 (19)
C14A—C144—C145—C132179.53 (11)C24A—C244—C245—C232179.15 (12)
O132—C132—C145—C146177.53 (11)O232—C232—C245—C246178.27 (12)
C131—C132—C145—C1463.24 (16)C231—C232—C245—C2461.95 (17)
O132—C132—C145—C1442.62 (17)O232—C232—C245—C2441.13 (18)
C131—C132—C145—C144176.61 (10)C231—C232—C245—C244178.65 (11)
C144—C145—C146—C1470.00 (19)C244—C245—C246—C2470.9 (2)
C132—C145—C146—C147179.85 (11)C232—C245—C246—C247178.52 (12)
C145—C146—C147—C18A0.13 (19)C245—C246—C247—C28A0.5 (2)
C142—O141—C18A—C147177.74 (14)C242—O241—C28A—C247176.00 (15)
C142—O141—C18A—C14A1.60 (15)C242—O241—C28A—C24A4.52 (16)
C146—C147—C18A—O141179.34 (13)C246—C247—C28A—O241178.93 (14)
C146—C147—C18A—C14A0.1 (2)C246—C247—C28A—C24A0.5 (2)
C144—C14A—C18A—O141179.80 (12)C244—C24A—C28A—O241178.39 (13)
O143—C14A—C18A—O1410.14 (16)O243—C24A—C28A—O2410.14 (17)
C144—C14A—C18A—C1470.4 (2)C244—C24A—C28A—C2471.1 (2)
O143—C14A—C18A—C147179.24 (12)O243—C24A—C28A—C247179.37 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···O220.874 (17)1.912 (17)2.7794 (12)171.1 (17)
O23—H23···O120.897 (18)1.938 (19)2.8256 (13)169.8 (17)
C131—H13A···O22i0.992.353.3075 (16)161
C147—H147···O141ii0.952.563.4776 (18)163
C231—H23A···O12iii0.992.373.3107 (15)159
C242—H24A···O23iv0.992.533.4889 (19)163
C142—H14A···Cg3iv0.992.533.3289 (15)137
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y1, z.
(E)-1-Benzyl-3-[2-(4-fluorophenyl)-2-oxoethylidene]indolin-2-one (IIa) top
Crystal data top
C23H16FNO2F(000) = 744
Mr = 357.37Dx = 1.405 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.6021 (6) ÅCell parameters from 3896 reflections
b = 20.4880 (13) Åθ = 2.1–27.6°
c = 10.9319 (7) ŵ = 0.10 mm1
β = 96.986 (3)°T = 100 K
V = 1690.0 (2) Å3Block, red
Z = 40.14 × 0.14 × 0.10 mm
Data collection top
Bruker D8 Venture
diffractometer
3896 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube2995 reflections with I > 2σ(I)
Multilayer mirror monochromatorθmax = 27.6°, θmin = 2.1°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 026
Tmin = 0.917, Tmax = 0.990l = 014
3896 measured reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.910P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3896 reflectionsΔρmax = 0.29 e Å3
245 parametersΔρmin = 0.28 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6199 (2)0.31996 (8)0.37330 (16)0.0156 (4)
C20.7010 (3)0.34442 (10)0.4817 (2)0.0164 (4)
O20.7641 (2)0.31249 (7)0.57079 (14)0.0230 (4)
C30.6989 (3)0.41837 (10)0.46925 (19)0.0148 (4)
C3A0.6043 (3)0.43166 (9)0.34734 (19)0.0141 (4)
C40.5544 (3)0.48812 (10)0.2810 (2)0.0166 (5)
H40.58310.52990.31540.020*
C50.4619 (3)0.48238 (10)0.1635 (2)0.0192 (5)
H50.42710.52070.11780.023*
C60.4195 (3)0.42170 (11)0.1120 (2)0.0203 (5)
H60.35720.41910.03140.024*
C70.4668 (3)0.36458 (11)0.1764 (2)0.0194 (5)
H70.43730.32290.14160.023*
C7A0.5584 (3)0.37070 (10)0.2930 (2)0.0158 (4)
C10.6064 (3)0.25053 (10)0.3443 (2)0.0180 (5)
H1A0.68250.22590.40830.022*
H1B0.65190.24280.26450.022*
C110.4190 (3)0.22472 (9)0.33689 (19)0.0156 (5)
C120.3066 (3)0.24356 (10)0.4221 (2)0.0186 (5)
H120.34800.27300.48630.022*
C130.1344 (3)0.21970 (10)0.4140 (2)0.0201 (5)
H130.05910.23260.47290.024*
C140.0728 (3)0.17722 (10)0.3201 (2)0.0221 (5)
H140.04530.16130.31380.027*
C150.1841 (3)0.15792 (10)0.2352 (2)0.0223 (5)
H150.14190.12870.17080.027*
C160.3566 (3)0.18102 (10)0.2440 (2)0.0194 (5)
H160.43260.16700.18640.023*
C310.7821 (3)0.45231 (9)0.5646 (2)0.0156 (4)
H310.82890.42730.63430.019*
C320.8098 (3)0.52374 (10)0.57446 (19)0.0163 (5)
O320.7480 (2)0.56084 (7)0.49270 (14)0.0240 (4)
C3210.9176 (3)0.54977 (10)0.68739 (19)0.0155 (5)
C3220.9382 (3)0.61761 (10)0.6968 (2)0.0195 (5)
H3220.88540.64470.63190.023*
C3231.0337 (3)0.64590 (10)0.7986 (2)0.0215 (5)
H3231.04650.69190.80510.026*
C3241.1100 (3)0.60517 (11)0.8905 (2)0.0194 (5)
F3241.20475 (18)0.63155 (6)0.99166 (12)0.0271 (3)
C3251.0949 (3)0.53824 (10)0.8854 (2)0.0193 (5)
H3251.14980.51160.95030.023*
C3260.9974 (3)0.51083 (10)0.7831 (2)0.0178 (5)
H3260.98460.46470.77800.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0179 (10)0.0131 (8)0.0150 (9)0.0015 (7)0.0011 (8)0.0004 (7)
C20.0139 (11)0.0179 (10)0.0175 (11)0.0014 (9)0.0025 (9)0.0011 (9)
O20.0285 (9)0.0181 (7)0.0200 (8)0.0015 (7)0.0061 (7)0.0042 (7)
C30.0123 (10)0.0163 (9)0.0166 (11)0.0006 (8)0.0044 (8)0.0029 (8)
C3A0.0121 (11)0.0176 (10)0.0133 (10)0.0005 (8)0.0041 (9)0.0008 (8)
C40.0138 (11)0.0179 (10)0.0186 (11)0.0009 (9)0.0036 (9)0.0012 (9)
C50.0169 (11)0.0220 (10)0.0190 (11)0.0019 (9)0.0029 (9)0.0055 (9)
C60.0150 (11)0.0296 (11)0.0158 (11)0.0023 (9)0.0001 (9)0.0023 (9)
C70.0172 (11)0.0226 (10)0.0178 (11)0.0013 (9)0.0004 (9)0.0012 (9)
C7A0.0130 (11)0.0181 (10)0.0169 (11)0.0014 (9)0.0049 (9)0.0038 (8)
C10.0191 (12)0.0140 (9)0.0201 (11)0.0027 (9)0.0001 (10)0.0007 (9)
C110.0177 (12)0.0122 (9)0.0161 (11)0.0030 (8)0.0010 (9)0.0047 (8)
C120.0263 (13)0.0147 (9)0.0142 (11)0.0005 (9)0.0003 (9)0.0013 (8)
C130.0241 (13)0.0185 (10)0.0190 (11)0.0033 (9)0.0079 (10)0.0022 (9)
C140.0197 (12)0.0201 (10)0.0269 (13)0.0046 (9)0.0039 (10)0.0016 (9)
C150.0265 (13)0.0191 (10)0.0212 (12)0.0058 (10)0.0027 (10)0.0051 (9)
C160.0245 (13)0.0154 (10)0.0192 (11)0.0005 (9)0.0064 (10)0.0004 (9)
C310.0153 (11)0.0167 (10)0.0146 (10)0.0002 (9)0.0012 (9)0.0019 (8)
C320.0152 (11)0.0176 (10)0.0171 (11)0.0011 (8)0.0057 (9)0.0013 (9)
O320.0315 (10)0.0187 (7)0.0203 (8)0.0026 (7)0.0029 (7)0.0038 (7)
C3210.0141 (11)0.0175 (10)0.0160 (11)0.0009 (8)0.0064 (9)0.0001 (8)
C3220.0214 (12)0.0160 (10)0.0220 (12)0.0000 (9)0.0060 (10)0.0007 (9)
C3230.0238 (13)0.0153 (10)0.0271 (13)0.0025 (9)0.0098 (10)0.0039 (9)
C3240.0172 (11)0.0251 (11)0.0168 (11)0.0056 (9)0.0053 (9)0.0088 (9)
F3240.0286 (8)0.0300 (7)0.0225 (7)0.0063 (6)0.0020 (6)0.0116 (6)
C3250.0196 (12)0.0213 (10)0.0166 (11)0.0004 (9)0.0012 (9)0.0002 (9)
C3260.0170 (11)0.0162 (9)0.0204 (11)0.0002 (9)0.0027 (9)0.0020 (9)
Geometric parameters (Å, º) top
N1—C21.363 (3)C12—H120.9500
N1—C7A1.404 (3)C13—C141.383 (3)
N1—C11.458 (3)C13—H130.9500
C2—O21.222 (3)C14—C151.387 (3)
C2—C31.521 (3)C14—H140.9500
C3—C311.346 (3)C15—C161.386 (3)
C3—C3A1.461 (3)C15—H150.9500
C3A—C41.394 (3)C16—H160.9500
C3A—C7A1.409 (3)C31—C321.481 (3)
C4—C51.392 (3)C31—H310.9500
C4—H40.9500C32—O321.223 (3)
C5—C61.386 (3)C32—C3211.495 (3)
C5—H50.9500C321—C3261.395 (3)
C6—C71.391 (3)C321—C3221.401 (3)
C6—H60.9500C322—C3231.380 (3)
C7—C7A1.381 (3)C322—H3220.9500
C7—H70.9500C323—C3241.379 (3)
C1—C111.513 (3)C323—H3230.9500
C1—H1A0.9900C324—F3241.356 (2)
C1—H1B0.9900C324—C3251.377 (3)
C11—C121.393 (3)C325—C3261.383 (3)
C11—C161.393 (3)C325—H3250.9500
C12—C131.390 (3)C326—H3260.9500
C2—N1—C7A110.63 (17)C11—C12—H12119.7
C2—N1—C1124.06 (17)C14—C13—C12120.0 (2)
C7A—N1—C1125.26 (17)C14—C13—H13120.0
O2—C2—N1126.03 (19)C12—C13—H13120.0
O2—C2—C3127.10 (19)C13—C14—C15119.8 (2)
N1—C2—C3106.86 (17)C13—C14—H14120.1
C31—C3—C3A138.04 (19)C15—C14—H14120.1
C31—C3—C2116.53 (18)C16—C15—C14120.3 (2)
C3A—C3—C2105.40 (17)C16—C15—H15119.8
C4—C3A—C7A118.59 (19)C14—C15—H15119.8
C4—C3A—C3134.61 (19)C15—C16—C11120.4 (2)
C7A—C3A—C3106.79 (17)C15—C16—H16119.8
C5—C4—C3A119.03 (19)C11—C16—H16119.8
C5—C4—H4120.5C3—C31—C32128.0 (2)
C3A—C4—H4120.5C3—C31—H31116.0
C6—C5—C4121.1 (2)C32—C31—H31116.0
C6—C5—H5119.5O32—C32—C31121.5 (2)
C4—C5—H5119.5O32—C32—C321120.36 (18)
C5—C6—C7121.1 (2)C31—C32—C321118.11 (18)
C5—C6—H6119.5C326—C321—C322118.5 (2)
C7—C6—H6119.5C326—C321—C32124.09 (18)
C7A—C7—C6117.5 (2)C322—C321—C32117.38 (19)
C7A—C7—H7121.3C323—C322—C321121.3 (2)
C6—C7—H7121.3C323—C322—H322119.4
C7—C7A—N1127.00 (19)C321—C322—H322119.4
C7—C7A—C3A122.74 (19)C324—C323—C322117.8 (2)
N1—C7A—C3A110.26 (18)C324—C323—H323121.1
N1—C1—C11113.18 (17)C322—C323—H323121.1
N1—C1—H1A108.9F324—C324—C325117.6 (2)
C11—C1—H1A108.9F324—C324—C323119.19 (19)
N1—C1—H1B108.9C325—C324—C323123.2 (2)
C11—C1—H1B108.9C324—C325—C326118.1 (2)
H1A—C1—H1B107.8C324—C325—H325120.9
C12—C11—C16118.9 (2)C326—C325—H325120.9
C12—C11—C1121.19 (19)C325—C326—C321121.0 (2)
C16—C11—C1119.9 (2)C325—C326—H326119.5
C13—C12—C11120.6 (2)C321—C326—H326119.5
C13—C12—H12119.7
C7A—N1—C2—O2178.1 (2)N1—C1—C11—C1241.8 (3)
C1—N1—C2—O24.2 (3)N1—C1—C11—C16138.60 (19)
C7A—N1—C2—C32.5 (2)C16—C11—C12—C130.6 (3)
C1—N1—C2—C3175.26 (18)C1—C11—C12—C13179.74 (19)
O2—C2—C3—C313.1 (3)C11—C12—C13—C140.5 (3)
N1—C2—C3—C31176.39 (19)C12—C13—C14—C150.8 (3)
O2—C2—C3—C3A178.4 (2)C13—C14—C15—C160.0 (3)
N1—C2—C3—C3A2.1 (2)C14—C15—C16—C111.1 (3)
C31—C3—C3A—C43.4 (5)C12—C11—C16—C151.4 (3)
C2—C3—C3A—C4178.6 (2)C1—C11—C16—C15178.94 (19)
C31—C3—C3A—C7A177.0 (3)C3A—C3—C31—C321.7 (4)
C2—C3—C3A—C7A0.9 (2)C2—C3—C31—C32176.1 (2)
C7A—C3A—C4—C50.2 (3)C3—C31—C32—O323.5 (4)
C3—C3A—C4—C5179.8 (2)C3—C31—C32—C321176.0 (2)
C3A—C4—C5—C60.2 (3)O32—C32—C321—C326178.0 (2)
C4—C5—C6—C70.5 (3)C31—C32—C321—C3261.5 (3)
C5—C6—C7—C7A0.4 (3)O32—C32—C321—C3222.4 (3)
C6—C7—C7A—N1179.5 (2)C31—C32—C321—C322178.2 (2)
C6—C7—C7A—C3A0.0 (3)C326—C321—C322—C3230.5 (3)
C2—N1—C7A—C7178.6 (2)C32—C321—C322—C323179.2 (2)
C1—N1—C7A—C73.7 (3)C321—C322—C323—C3240.6 (3)
C2—N1—C7A—C3A1.9 (2)C322—C323—C324—F324179.96 (19)
C1—N1—C7A—C3A175.75 (19)C322—C323—C324—C3250.1 (4)
C4—C3A—C7A—C70.4 (3)F324—C324—C325—C326179.52 (19)
C3—C3A—C7A—C7180.0 (2)C323—C324—C325—C3260.4 (4)
C4—C3A—C7A—N1179.88 (19)C324—C325—C326—C3210.5 (3)
C3—C3A—C7A—N10.5 (2)C322—C321—C326—C3250.0 (3)
C2—N1—C1—C11111.4 (2)C32—C321—C326—C325179.7 (2)
C7A—N1—C1—C1171.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O32i0.952.493.278 (3)141
Symmetry code: (i) x+1, y1/2, z+1/2.
(E)-1-Benzyl-3-[2-(4-methoxyphenyl)-2-oxoethylidene]indolin-2-one (IIc) top
Crystal data top
C24H19NO3F(000) = 776
Mr = 369.40Dx = 1.383 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.9743 (2) ÅCell parameters from 4142 reflections
b = 29.1957 (13) Åθ = 2.2–27.6°
c = 12.4406 (6) ŵ = 0.09 mm1
β = 100.914 (2)°T = 100 K
V = 1774.05 (14) Å3Needle, orange
Z = 40.45 × 0.06 × 0.04 mm
Data collection top
Bruker D8 Venture
diffractometer
4142 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube3643 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.048
φ and ω scansθmax = 27.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 66
Tmin = 0.948, Tmax = 0.996k = 3838
54500 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0377P)2 + 0.9412P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4142 reflectionsΔρmax = 0.27 e Å3
254 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4211 (2)0.41865 (3)0.34758 (8)0.0170 (2)
C20.2448 (2)0.41242 (4)0.44575 (10)0.0171 (2)
O20.25042 (19)0.43355 (3)0.52982 (7)0.0232 (2)
C30.0448 (2)0.37514 (4)0.42781 (9)0.0158 (2)
C3A0.1171 (2)0.36335 (4)0.31117 (9)0.0159 (2)
C40.0083 (2)0.33398 (4)0.24221 (10)0.0187 (2)
H40.14660.31550.27020.022*
C50.1295 (3)0.33197 (4)0.13163 (10)0.0222 (3)
H50.05460.31230.08410.027*
C60.3579 (3)0.35832 (4)0.09007 (10)0.0224 (3)
H60.43960.35590.01480.027*
C70.4691 (3)0.38834 (4)0.15729 (10)0.0203 (2)
H70.62440.40660.12900.024*
C7A0.3456 (2)0.39055 (4)0.26640 (10)0.0165 (2)
C10.6225 (2)0.45543 (4)0.32653 (10)0.0187 (2)
H1A0.65310.46810.39710.022*
H1B0.79870.44290.28690.022*
C110.5288 (2)0.49338 (4)0.25932 (10)0.0168 (2)
C120.2897 (2)0.51747 (4)0.30076 (10)0.0181 (2)
H120.19020.51060.37190.022*
C130.1958 (3)0.55135 (4)0.23909 (10)0.0195 (2)
H130.03150.56740.26760.023*
C140.3429 (3)0.56185 (4)0.13518 (10)0.0208 (3)
H140.27870.58500.09280.025*
C150.5824 (3)0.53855 (4)0.09371 (10)0.0216 (3)
H150.68380.54600.02320.026*
C160.6744 (2)0.50419 (4)0.15556 (10)0.0195 (2)
H160.83790.48800.12670.023*
C310.1436 (2)0.36197 (4)0.51499 (10)0.0174 (2)
H310.14100.37750.58190.021*
C320.3545 (2)0.32586 (4)0.51787 (10)0.0169 (2)
O320.35542 (19)0.30061 (3)0.43906 (7)0.0241 (2)
C3210.5657 (2)0.32005 (4)0.61873 (9)0.0152 (2)
C3220.7320 (2)0.28116 (4)0.62600 (9)0.0159 (2)
H3220.69770.25890.56920.019*
C3230.9451 (2)0.27408 (4)0.71355 (9)0.0162 (2)
H3231.05620.24750.71670.019*
C3240.9944 (2)0.30663 (4)0.79719 (9)0.0156 (2)
C3250.8272 (2)0.34535 (4)0.79242 (10)0.0174 (2)
H3250.85890.36720.85010.021*
C3260.6158 (2)0.35207 (4)0.70410 (10)0.0167 (2)
H3260.50390.37860.70130.020*
O3241.19899 (17)0.30348 (3)0.88633 (7)0.01893 (19)
C3271.3906 (2)0.26658 (4)0.88692 (10)0.0185 (2)
H37A1.29600.23730.88930.028*
H37B1.53720.26930.95140.028*
H37C1.46920.26800.82050.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0166 (5)0.0173 (5)0.0168 (5)0.0025 (4)0.0022 (4)0.0022 (4)
C20.0164 (5)0.0176 (5)0.0177 (6)0.0005 (4)0.0040 (4)0.0037 (4)
O20.0254 (5)0.0267 (5)0.0178 (4)0.0073 (4)0.0045 (4)0.0006 (4)
C30.0154 (5)0.0151 (5)0.0176 (6)0.0008 (4)0.0052 (4)0.0019 (4)
C3A0.0151 (5)0.0145 (5)0.0179 (6)0.0025 (4)0.0027 (4)0.0022 (4)
C40.0197 (6)0.0167 (5)0.0196 (6)0.0005 (4)0.0029 (5)0.0015 (4)
C50.0282 (7)0.0181 (6)0.0199 (6)0.0014 (5)0.0039 (5)0.0020 (5)
C60.0276 (7)0.0200 (6)0.0176 (6)0.0006 (5)0.0008 (5)0.0000 (5)
C70.0207 (6)0.0181 (6)0.0201 (6)0.0004 (5)0.0009 (5)0.0018 (5)
C7A0.0164 (5)0.0138 (5)0.0194 (6)0.0021 (4)0.0038 (4)0.0015 (4)
C10.0157 (5)0.0192 (6)0.0215 (6)0.0037 (4)0.0044 (5)0.0038 (5)
C110.0174 (5)0.0152 (5)0.0186 (6)0.0049 (4)0.0052 (4)0.0003 (4)
C120.0194 (6)0.0171 (5)0.0173 (6)0.0043 (4)0.0025 (4)0.0002 (4)
C130.0193 (6)0.0165 (5)0.0227 (6)0.0015 (5)0.0039 (5)0.0020 (5)
C140.0251 (6)0.0177 (6)0.0210 (6)0.0022 (5)0.0076 (5)0.0018 (5)
C150.0251 (6)0.0216 (6)0.0171 (6)0.0049 (5)0.0017 (5)0.0014 (5)
C160.0178 (6)0.0191 (6)0.0206 (6)0.0021 (5)0.0010 (5)0.0008 (5)
C310.0171 (5)0.0180 (5)0.0176 (6)0.0001 (4)0.0042 (4)0.0013 (4)
C320.0152 (5)0.0179 (5)0.0177 (6)0.0012 (4)0.0030 (4)0.0019 (4)
O320.0242 (5)0.0252 (5)0.0206 (4)0.0051 (4)0.0018 (4)0.0047 (4)
C3210.0136 (5)0.0169 (5)0.0156 (5)0.0011 (4)0.0041 (4)0.0019 (4)
C3220.0166 (5)0.0164 (5)0.0154 (5)0.0012 (4)0.0049 (4)0.0002 (4)
C3230.0160 (5)0.0157 (5)0.0176 (5)0.0020 (4)0.0051 (4)0.0010 (4)
C3240.0133 (5)0.0185 (5)0.0152 (5)0.0013 (4)0.0032 (4)0.0013 (4)
C3250.0185 (6)0.0164 (5)0.0177 (6)0.0013 (4)0.0042 (4)0.0029 (4)
C3260.0158 (5)0.0153 (5)0.0196 (6)0.0013 (4)0.0048 (4)0.0004 (4)
O3240.0166 (4)0.0210 (4)0.0175 (4)0.0024 (3)0.0011 (3)0.0023 (3)
C3270.0157 (5)0.0200 (6)0.0194 (6)0.0022 (4)0.0026 (4)0.0018 (4)
Geometric parameters (Å, º) top
N1—C21.3741 (15)C13—H130.9500
N1—C7A1.4063 (15)C14—C151.3842 (18)
N1—C11.4583 (15)C14—H140.9500
C2—O21.2191 (15)C15—C161.3932 (17)
C2—C31.5193 (16)C15—H150.9500
C3—C311.3482 (17)C16—H160.9500
C3—C3A1.4682 (16)C31—C321.4827 (16)
C3A—C41.3930 (16)C31—H310.9500
C3A—C7A1.4115 (16)C32—O321.2275 (15)
C4—C51.3947 (17)C32—C3211.4859 (16)
C4—H40.9500C321—C3221.3975 (16)
C5—C61.3883 (18)C321—C3261.4015 (16)
C5—H50.9500C322—C3231.3841 (16)
C6—C71.3959 (18)C322—H3220.9500
C6—H60.9500C323—C3241.3962 (16)
C7—C7A1.3815 (17)C323—H3230.9500
C7—H70.9500C324—O3241.3588 (14)
C1—C111.5137 (16)C324—C3251.3982 (16)
C1—H1A0.9900C325—C3261.3834 (17)
C1—H1B0.9900C325—H3250.9500
C11—C161.3917 (17)C326—H3260.9500
C11—C121.3939 (17)O324—C3271.4377 (14)
C12—C131.3859 (17)C327—H37A0.9800
C12—H120.9500C327—H37B0.9800
C13—C141.3937 (18)C327—H37C0.9800
C2—N1—C7A110.41 (10)C14—C13—H13120.1
C2—N1—C1123.94 (10)C15—C14—C13120.09 (12)
C7A—N1—C1124.65 (10)C15—C14—H14120.0
O2—C2—N1125.52 (11)C13—C14—H14120.0
O2—C2—C3127.64 (11)C14—C15—C16119.84 (12)
N1—C2—C3106.84 (10)C14—C15—H15120.1
C31—C3—C3A136.99 (11)C16—C15—H15120.1
C31—C3—C2117.44 (11)C11—C16—C15120.52 (12)
C3A—C3—C2105.56 (10)C11—C16—H16119.7
C4—C3A—C7A118.76 (11)C15—C16—H16119.7
C4—C3A—C3134.57 (11)C3—C31—C32127.09 (11)
C7A—C3A—C3106.65 (10)C3—C31—H31116.5
C3A—C4—C5119.17 (11)C32—C31—H31116.5
C3A—C4—H4120.4O32—C32—C31121.15 (11)
C5—C4—H4120.4O32—C32—C321119.79 (11)
C6—C5—C4120.96 (12)C31—C32—C321119.05 (10)
C6—C5—H5119.5C322—C321—C326118.35 (11)
C4—C5—H5119.5C322—C321—C32117.56 (10)
C5—C6—C7120.93 (12)C326—C321—C32124.02 (10)
C5—C6—H6119.5C323—C322—C321121.87 (11)
C7—C6—H6119.5C323—C322—H322119.1
C7A—C7—C6117.71 (11)C321—C322—H322119.1
C7A—C7—H7121.1C322—C323—C324119.02 (11)
C6—C7—H7121.1C322—C323—H323120.5
C7—C7A—N1127.11 (11)C324—C323—H323120.5
C7—C7A—C3A122.44 (11)O324—C324—C323124.13 (10)
N1—C7A—C3A110.45 (10)O324—C324—C325115.90 (10)
N1—C1—C11111.41 (9)C323—C324—C325119.97 (11)
N1—C1—H1A109.3C326—C325—C324120.33 (11)
C11—C1—H1A109.3C326—C325—H325119.8
N1—C1—H1B109.3C324—C325—H325119.8
C11—C1—H1B109.3C325—C326—C321120.44 (11)
H1A—C1—H1B108.0C325—C326—H326119.8
C16—C11—C12119.11 (11)C321—C326—H326119.8
C16—C11—C1121.17 (11)C324—O324—C327116.62 (9)
C12—C11—C1119.71 (11)O324—C327—H37A109.5
C13—C12—C11120.59 (11)O324—C327—H37B109.5
C13—C12—H12119.7H37A—C327—H37B109.5
C11—C12—H12119.7O324—C327—H37C109.5
C12—C13—C14119.85 (12)H37A—C327—H37C109.5
C12—C13—H13120.1H37B—C327—H37C109.5
C7A—N1—C2—O2176.39 (11)N1—C1—C11—C1261.57 (14)
C1—N1—C2—O27.38 (19)C16—C11—C12—C130.83 (17)
C7A—N1—C2—C32.95 (12)C1—C11—C12—C13177.95 (11)
C1—N1—C2—C3171.96 (10)C11—C12—C13—C140.71 (18)
O2—C2—C3—C312.97 (18)C12—C13—C14—C150.09 (18)
N1—C2—C3—C31177.72 (10)C13—C14—C15—C160.77 (18)
O2—C2—C3—C3A176.46 (12)C12—C11—C16—C150.15 (17)
N1—C2—C3—C3A2.86 (12)C1—C11—C16—C15178.62 (11)
C31—C3—C3A—C42.9 (2)C14—C15—C16—C110.64 (18)
C2—C3—C3A—C4176.40 (13)C3A—C3—C31—C322.2 (2)
C31—C3—C3A—C7A179.04 (14)C2—C3—C31—C32178.62 (11)
C2—C3—C3A—C7A1.71 (12)C3—C31—C32—O327.94 (19)
C7A—C3A—C4—C50.66 (17)C3—C31—C32—C321172.77 (11)
C3—C3A—C4—C5178.59 (12)O32—C32—C321—C3229.91 (16)
C3A—C4—C5—C60.80 (19)C31—C32—C321—C322169.40 (10)
C4—C5—C6—C71.4 (2)O32—C32—C321—C326167.07 (11)
C5—C6—C7—C7A0.56 (19)C31—C32—C321—C32613.62 (17)
C6—C7—C7A—N1179.08 (11)C326—C321—C322—C3231.14 (17)
C6—C7—C7A—C3A0.95 (18)C32—C321—C322—C323176.02 (10)
C2—N1—C7A—C7178.08 (11)C321—C322—C323—C3240.31 (17)
C1—N1—C7A—C79.17 (19)C322—C323—C324—O324179.36 (10)
C2—N1—C7A—C3A1.94 (13)C322—C323—C324—C3250.89 (17)
C1—N1—C7A—C3A170.86 (10)O324—C324—C325—C326178.99 (10)
C4—C3A—C7A—C71.56 (17)C323—C324—C325—C3261.24 (17)
C3—C3A—C7A—C7179.98 (11)C324—C325—C326—C3210.39 (18)
C4—C3A—C7A—N1178.46 (10)C322—C321—C326—C3250.78 (17)
C3—C3A—C7A—N10.00 (13)C32—C321—C326—C325176.18 (11)
C2—N1—C1—C11102.92 (13)C323—C324—O324—C3276.74 (16)
C7A—N1—C1—C1164.54 (15)C325—C324—O324—C327173.51 (10)
N1—C1—C11—C16117.19 (12)
(E)-1-Benzyl-3-[2-oxo-2-(pyridin-4-yl)ethylidene]indolin-2-one (IIe) top
Crystal data top
C22H16N2O2F(000) = 712
Mr = 340.37Dx = 1.344 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.3457 (6) ÅCell parameters from 4167 reflections
b = 18.0675 (16) Åθ = 2.8–28.3°
c = 13.1813 (13) ŵ = 0.09 mm1
β = 105.994 (3)°T = 100 K
V = 1681.7 (3) Å3Block, red
Z = 40.16 × 0.15 × 0.12 mm
Data collection top
Bruker D8 Venture
diffractometer
4167 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube3281 reflections with I > 2σ(I)
Multilayer mirror monochromatorθmax = 28.4°, θmin = 2.8°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2424
Tmin = 0.878, Tmax = 0.990l = 717
4167 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0398P)2 + 1.0992P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.29 e Å3
4167 reflectionsΔρmin = 0.19 e Å3
237 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0093 (13)
Primary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.43527 (19)0.59990 (8)0.24839 (10)0.0195 (3)
C20.5093 (2)0.62189 (9)0.35066 (13)0.0192 (3)
O20.49338 (17)0.68369 (7)0.38499 (9)0.0233 (3)
C30.6154 (2)0.55610 (9)0.41041 (13)0.0182 (3)
C3A0.5946 (2)0.49693 (9)0.33226 (12)0.0190 (3)
C40.6559 (2)0.42378 (9)0.33563 (14)0.0221 (3)
H40.72720.40230.40020.027*
C50.6107 (3)0.38262 (10)0.24260 (14)0.0249 (4)
H50.65040.33250.24430.030*
C60.5089 (3)0.41357 (10)0.14767 (14)0.0250 (4)
H60.48130.38440.08530.030*
C70.4460 (2)0.48691 (10)0.14209 (13)0.0228 (3)
H70.37740.50850.07700.027*
C7A0.4877 (2)0.52654 (9)0.23489 (13)0.0194 (3)
C10.3330 (2)0.64906 (9)0.16509 (13)0.0207 (3)
H1A0.26650.68680.19600.025*
H1B0.23590.62010.11340.025*
C110.4581 (2)0.68798 (9)0.10759 (13)0.0197 (3)
C120.6527 (2)0.67827 (10)0.13385 (14)0.0259 (4)
H120.71290.64620.19030.031*
C130.7603 (3)0.71524 (11)0.07792 (16)0.0320 (4)
H130.89340.70790.09600.038*
C140.6747 (3)0.76263 (11)0.00386 (16)0.0328 (4)
H140.74850.78790.04180.039*
C150.4800 (3)0.77283 (10)0.02986 (15)0.0312 (4)
H150.42060.80560.08540.037*
C160.3717 (3)0.73544 (10)0.02474 (14)0.0246 (4)
H160.23830.74210.00570.029*
C310.7009 (2)0.56643 (9)0.51380 (13)0.0203 (3)
H310.68540.61390.54110.024*
C320.8155 (2)0.51324 (9)0.58972 (13)0.0215 (3)
O320.8429 (2)0.44965 (7)0.56511 (10)0.0337 (3)
N3211.0570 (2)0.57448 (9)0.91573 (12)0.0274 (3)
C3221.0660 (2)0.50551 (10)0.87931 (13)0.0253 (4)
H3221.12790.46870.92810.030*
C3230.9904 (2)0.48488 (10)0.77511 (13)0.0217 (3)
H3231.00100.43530.75360.026*
C3240.8983 (2)0.53816 (9)0.70199 (13)0.0195 (3)
C3250.8883 (2)0.60966 (10)0.73844 (13)0.0235 (4)
H3250.82680.64760.69150.028*
C3260.9697 (3)0.62504 (10)0.84461 (14)0.0269 (4)
H3260.96300.67440.86810.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0216 (7)0.0181 (7)0.0174 (7)0.0010 (5)0.0031 (5)0.0009 (5)
C20.0192 (7)0.0193 (8)0.0195 (8)0.0001 (6)0.0060 (6)0.0007 (6)
O20.0261 (6)0.0179 (6)0.0250 (6)0.0019 (5)0.0055 (5)0.0014 (5)
C30.0183 (7)0.0173 (7)0.0192 (8)0.0007 (6)0.0056 (6)0.0006 (6)
C3A0.0199 (7)0.0197 (8)0.0177 (7)0.0013 (6)0.0056 (6)0.0003 (6)
C40.0236 (8)0.0186 (8)0.0242 (8)0.0004 (6)0.0066 (6)0.0008 (6)
C50.0291 (9)0.0197 (8)0.0262 (9)0.0005 (7)0.0083 (7)0.0031 (7)
C60.0284 (9)0.0247 (9)0.0225 (8)0.0031 (7)0.0077 (7)0.0056 (7)
C70.0231 (8)0.0261 (9)0.0185 (8)0.0023 (7)0.0045 (6)0.0001 (7)
C7A0.0197 (7)0.0182 (8)0.0206 (8)0.0009 (6)0.0064 (6)0.0008 (6)
C10.0203 (7)0.0213 (8)0.0194 (8)0.0012 (6)0.0035 (6)0.0031 (6)
C110.0237 (8)0.0164 (7)0.0189 (8)0.0004 (6)0.0054 (6)0.0021 (6)
C120.0229 (8)0.0277 (9)0.0260 (9)0.0005 (7)0.0047 (7)0.0018 (7)
C130.0258 (9)0.0332 (10)0.0390 (11)0.0049 (8)0.0124 (8)0.0039 (8)
C140.0452 (11)0.0231 (9)0.0380 (11)0.0080 (8)0.0245 (9)0.0038 (8)
C150.0467 (11)0.0208 (9)0.0293 (10)0.0028 (8)0.0157 (8)0.0034 (7)
C160.0298 (9)0.0203 (8)0.0239 (8)0.0035 (7)0.0079 (7)0.0011 (7)
C310.0229 (8)0.0179 (8)0.0194 (8)0.0012 (6)0.0047 (6)0.0003 (6)
C320.0240 (8)0.0204 (8)0.0194 (8)0.0007 (7)0.0047 (6)0.0001 (6)
O320.0487 (8)0.0221 (7)0.0240 (7)0.0089 (6)0.0007 (6)0.0027 (5)
N3210.0285 (8)0.0308 (8)0.0212 (7)0.0043 (6)0.0040 (6)0.0009 (6)
C3220.0230 (8)0.0288 (9)0.0215 (8)0.0025 (7)0.0018 (6)0.0035 (7)
C3230.0196 (7)0.0218 (8)0.0224 (8)0.0009 (6)0.0039 (6)0.0013 (6)
C3240.0177 (7)0.0217 (8)0.0187 (8)0.0029 (6)0.0041 (6)0.0008 (6)
C3250.0256 (8)0.0210 (8)0.0224 (8)0.0005 (7)0.0040 (7)0.0015 (6)
C3260.0309 (9)0.0253 (9)0.0231 (8)0.0033 (7)0.0051 (7)0.0035 (7)
Geometric parameters (Å, º) top
N1—C21.366 (2)C12—H120.9500
N1—C7A1.405 (2)C13—C141.385 (3)
N1—C11.451 (2)C13—H130.9500
C2—O21.222 (2)C14—C151.388 (3)
C2—C31.517 (2)C14—H140.9500
C3—C311.347 (2)C15—C161.387 (3)
C3—C3A1.463 (2)C15—H150.9500
C3A—C41.393 (2)C16—H160.9500
C3A—C7A1.412 (2)C31—C321.473 (2)
C4—C51.394 (2)C31—H310.9500
C4—H40.9500C32—O321.225 (2)
C5—C61.386 (3)C32—C3241.506 (2)
C5—H50.9500N321—C3261.339 (2)
C6—C71.399 (3)N321—C3221.344 (2)
C6—H60.9500C322—C3231.383 (2)
C7—C7A1.377 (2)C322—H3220.9500
C7—H70.9500C323—C3241.398 (2)
C1—C111.515 (2)C323—H3230.9500
C1—H1A0.9900C324—C3251.387 (2)
C1—H1B0.9900C325—C3261.390 (2)
C11—C121.386 (2)C325—H3250.9500
C11—C161.396 (2)C326—H3260.9500
C12—C131.391 (3)
C2—N1—C7A110.54 (13)C11—C12—H12119.9
C2—N1—C1123.43 (14)C13—C12—H12119.9
C7A—N1—C1125.77 (14)C14—C13—C12120.48 (18)
O2—C2—N1125.32 (15)C14—C13—H13119.8
O2—C2—C3127.69 (15)C12—C13—H13119.8
N1—C2—C3106.98 (13)C13—C14—C15119.36 (18)
C31—C3—C3A137.95 (15)C13—C14—H14120.3
C31—C3—C2116.49 (14)C15—C14—H14120.3
C3A—C3—C2105.55 (13)C16—C15—C14120.45 (18)
C4—C3A—C7A118.83 (15)C16—C15—H15119.8
C4—C3A—C3134.48 (15)C14—C15—H15119.8
C7A—C3A—C3106.68 (14)C15—C16—C11120.18 (17)
C3A—C4—C5118.79 (16)C15—C16—H16119.9
C3A—C4—H4120.6C11—C16—H16119.9
C5—C4—H4120.6C3—C31—C32128.08 (16)
C6—C5—C4121.15 (17)C3—C31—H31116.0
C6—C5—H5119.4C32—C31—H31116.0
C4—C5—H5119.4O32—C32—C31122.46 (15)
C5—C6—C7121.19 (16)O32—C32—C324119.30 (15)
C5—C6—H6119.4C31—C32—C324118.23 (14)
C7—C6—H6119.4C326—N321—C322116.34 (15)
C7A—C7—C6117.15 (16)N321—C322—C323123.99 (16)
C7A—C7—H7121.4N321—C322—H322118.0
C6—C7—H7121.4C323—C322—H322118.0
C7—C7A—N1126.96 (15)C322—C323—C324118.99 (16)
C7—C7A—C3A122.84 (16)C322—C323—H323120.5
N1—C7A—C3A110.20 (14)C324—C323—H323120.5
N1—C1—C11113.83 (14)C325—C324—C323117.66 (15)
N1—C1—H1A108.8C325—C324—C32124.99 (15)
C11—C1—H1A108.8C323—C324—C32117.35 (15)
N1—C1—H1B108.8C324—C325—C326119.06 (16)
C11—C1—H1B108.8C324—C325—H325120.5
H1A—C1—H1B107.7C326—C325—H325120.5
C12—C11—C16119.24 (16)N321—C326—C325123.96 (17)
C12—C11—C1122.82 (15)N321—C326—H326118.0
C16—C11—C1117.94 (15)C325—C326—H326118.0
C11—C12—C13120.28 (17)
C7A—N1—C2—O2177.18 (16)C7A—N1—C1—C1183.28 (19)
C1—N1—C2—O22.7 (3)N1—C1—C11—C121.1 (2)
C7A—N1—C2—C31.75 (17)N1—C1—C11—C16178.84 (15)
C1—N1—C2—C3176.23 (14)C16—C11—C12—C130.2 (3)
O2—C2—C3—C310.7 (3)C1—C11—C12—C13179.72 (17)
N1—C2—C3—C31179.61 (15)C11—C12—C13—C140.6 (3)
O2—C2—C3—C3A178.37 (16)C12—C13—C14—C150.2 (3)
N1—C2—C3—C3A0.53 (17)C13—C14—C15—C160.6 (3)
C31—C3—C3A—C41.7 (3)C14—C15—C16—C111.0 (3)
C2—C3—C3A—C4179.57 (18)C12—C11—C16—C150.6 (3)
C31—C3—C3A—C7A177.92 (19)C1—C11—C16—C15179.49 (16)
C2—C3—C3A—C7A0.85 (17)C3A—C3—C31—C320.0 (3)
C7A—C3A—C4—C50.5 (2)C2—C3—C31—C32178.71 (16)
C3—C3A—C4—C5179.06 (18)C3—C31—C32—O321.6 (3)
C3A—C4—C5—C60.9 (3)C3—C31—C32—C324179.55 (16)
C4—C5—C6—C70.7 (3)C326—N321—C322—C3230.4 (3)
C5—C6—C7—C7A0.7 (3)N321—C322—C323—C3240.1 (3)
C6—C7—C7A—N1178.39 (16)C322—C323—C324—C3250.3 (2)
C6—C7—C7A—C3A2.1 (2)C322—C323—C324—C32179.12 (15)
C2—N1—C7A—C7177.17 (16)O32—C32—C324—C325175.58 (17)
C1—N1—C7A—C72.8 (3)C31—C32—C324—C3255.6 (2)
C2—N1—C7A—C3A2.39 (19)O32—C32—C324—C3235.1 (2)
C1—N1—C7A—C3A176.71 (15)C31—C32—C324—C323173.76 (15)
C4—C3A—C7A—C72.0 (2)C323—C324—C325—C3260.1 (2)
C3—C3A—C7A—C7177.63 (15)C32—C324—C325—C326179.46 (16)
C4—C3A—C7A—N1178.40 (14)C322—N321—C326—C3250.9 (3)
C3—C3A—C7A—N11.94 (18)C324—C325—C326—N3210.7 (3)
C2—N1—C1—C1190.35 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.952.323.234 (3)161
C16—H16···O2ii0.952.453.230 (2)140
C326—H326···O2iii0.952.583.494 (2)162
C6—H6···Cg2iv0.952.643.566 (2)165
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x1/2, y+3/2, z1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1, y+1, z.
(E)-1-Benzyl-3-[2-oxo-2-(thiophen-2-yl)ethylidene]indolin-2-one (IIg) top
Crystal data top
C21H15NO2SDx = 1.402 Mg m3
Mr = 345.40Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 5334 reflections
a = 17.5058 (14) Åθ = 2.3–31.8°
b = 8.8163 (6) ŵ = 0.21 mm1
c = 21.2092 (16) ÅT = 100 K
V = 3273.4 (4) Å3Block, red
Z = 80.15 × 0.07 × 0.05 mm
F(000) = 1440
Data collection top
Bruker D8 Venture
diffractometer
4154 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube3280 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.065
φ and ω scansθmax = 28.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 2323
Tmin = 0.942, Tmax = 0.989k = 1110
32005 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0319P)2 + 1.8245P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4154 reflectionsΔρmax = 0.29 e Å3
239 parametersΔρmin = 0.30 e Å3
10 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.37636 (7)0.12043 (14)0.26577 (6)0.0185 (3)
C20.38846 (8)0.21509 (16)0.21539 (7)0.0188 (3)
O20.45021 (6)0.24289 (13)0.19116 (5)0.0250 (2)
C30.31120 (8)0.27834 (16)0.19688 (7)0.0172 (3)
C3A0.25610 (8)0.20780 (15)0.23972 (6)0.0172 (3)
C40.17701 (8)0.21528 (16)0.24639 (7)0.0189 (3)
H40.14730.27580.21860.023*
C50.14182 (9)0.13236 (17)0.29472 (7)0.0214 (3)
H50.08790.13680.29970.026*
C60.18516 (9)0.04372 (17)0.33542 (7)0.0222 (3)
H60.16030.01140.36800.027*
C70.26444 (9)0.03387 (16)0.32955 (7)0.0205 (3)
H70.29390.02670.35750.025*
C7A0.29843 (8)0.11577 (16)0.28144 (7)0.0173 (3)
C10.43804 (8)0.04754 (16)0.30084 (7)0.0197 (3)
H1A0.48320.03640.27310.024*
H1B0.42160.05510.31400.024*
C110.45984 (8)0.13876 (16)0.35853 (7)0.0185 (3)
C120.49197 (9)0.28327 (17)0.35161 (7)0.0218 (3)
H120.50100.32260.31060.026*
C130.51075 (9)0.36954 (17)0.40400 (8)0.0244 (3)
H130.53250.46750.39880.029*
C140.49771 (9)0.31234 (18)0.46414 (8)0.0246 (3)
H140.51080.37090.50020.030*
C150.46549 (9)0.16959 (18)0.47144 (7)0.0248 (3)
H150.45610.13080.51250.030*
C160.44701 (9)0.08330 (17)0.41872 (7)0.0227 (3)
H160.42540.01470.42400.027*
C310.31019 (8)0.37996 (16)0.14954 (7)0.0186 (3)
H310.35840.40540.13190.022*
C320.24329 (8)0.45662 (16)0.12170 (6)0.0178 (3)
O320.17788 (6)0.43849 (12)0.14132 (5)0.0231 (2)
S3210.17866 (3)0.61557 (6)0.02510 (2)0.0216 (2)0.9387 (19)
C3220.25716 (9)0.55556 (16)0.06735 (7)0.0191 (3)0.9387 (19)
C3230.32268 (15)0.6140 (3)0.04229 (13)0.0228 (4)0.9387 (19)
H3230.37190.59400.05910.027*0.9387 (19)
C3240.31042 (13)0.7066 (6)0.0109 (3)0.0252 (6)0.9387 (19)
H3240.35000.75630.03360.030*0.9387 (19)
C3250.23486 (12)0.7161 (3)0.02602 (8)0.0234 (5)0.9387 (19)
H3250.21560.77210.06090.028*0.9387 (19)
S4210.3446 (5)0.6175 (16)0.0470 (6)0.0228 (4)0.0613 (19)
C4220.25716 (9)0.55556 (16)0.06735 (7)0.0191 (3)0.0613 (19)
C4230.2005 (8)0.620 (4)0.0322 (14)0.02162 (13)0.0613 (19)
H4230.14770.59830.03750.026*0.0613 (19)
C4240.2297 (14)0.722 (5)0.0131 (18)0.0234 (5)0.0613 (19)
H4240.19880.78150.04040.028*0.0613 (19)
C4250.3078 (15)0.726 (12)0.013 (4)0.0252 (6)0.0613 (19)
H4250.33780.78090.04240.030*0.0613 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0142 (6)0.0194 (6)0.0219 (6)0.0011 (5)0.0019 (5)0.0006 (5)
C20.0161 (7)0.0173 (7)0.0230 (7)0.0005 (5)0.0023 (5)0.0018 (6)
O20.0147 (5)0.0288 (6)0.0315 (6)0.0003 (4)0.0004 (4)0.0041 (5)
C30.0140 (7)0.0169 (6)0.0207 (7)0.0008 (5)0.0022 (5)0.0045 (5)
C3A0.0175 (7)0.0150 (6)0.0192 (6)0.0008 (5)0.0017 (5)0.0040 (5)
C40.0159 (7)0.0175 (6)0.0234 (7)0.0019 (5)0.0019 (6)0.0035 (5)
C50.0150 (7)0.0224 (7)0.0269 (7)0.0006 (6)0.0023 (6)0.0044 (6)
C60.0228 (8)0.0217 (7)0.0219 (7)0.0024 (6)0.0032 (6)0.0019 (6)
C70.0227 (8)0.0185 (7)0.0203 (7)0.0005 (6)0.0016 (6)0.0014 (6)
C7A0.0149 (7)0.0160 (6)0.0211 (7)0.0008 (5)0.0013 (5)0.0054 (5)
C10.0162 (7)0.0181 (7)0.0248 (7)0.0030 (5)0.0039 (6)0.0001 (6)
C110.0109 (6)0.0185 (7)0.0261 (7)0.0033 (5)0.0023 (5)0.0005 (6)
C120.0164 (7)0.0231 (7)0.0259 (8)0.0017 (6)0.0029 (6)0.0019 (6)
C130.0172 (7)0.0214 (7)0.0345 (8)0.0028 (6)0.0010 (6)0.0035 (6)
C140.0191 (8)0.0261 (8)0.0288 (8)0.0052 (6)0.0035 (6)0.0059 (6)
C150.0245 (8)0.0270 (8)0.0230 (7)0.0058 (6)0.0022 (6)0.0025 (6)
C160.0197 (8)0.0194 (7)0.0289 (8)0.0015 (6)0.0023 (6)0.0039 (6)
C310.0156 (7)0.0180 (7)0.0223 (7)0.0003 (5)0.0015 (5)0.0027 (6)
C320.0173 (7)0.0164 (7)0.0198 (7)0.0003 (5)0.0030 (5)0.0046 (5)
O320.0169 (5)0.0267 (6)0.0257 (5)0.0012 (4)0.0006 (4)0.0033 (4)
S3210.0202 (2)0.0234 (2)0.0213 (2)0.00105 (19)0.00487 (17)0.00193 (16)
C3220.0196 (7)0.0171 (6)0.0206 (7)0.0024 (5)0.0031 (6)0.0037 (5)
C3230.0154 (12)0.0235 (7)0.0294 (9)0.0012 (11)0.0011 (11)0.0019 (6)
C3240.0289 (9)0.020 (2)0.0271 (9)0.0026 (7)0.0055 (7)0.0018 (9)
C3250.0326 (9)0.0207 (8)0.0168 (11)0.0030 (7)0.0005 (7)0.0003 (9)
S4210.0154 (12)0.0235 (7)0.0294 (9)0.0012 (11)0.0011 (11)0.0019 (6)
C4220.0196 (7)0.0171 (6)0.0206 (7)0.0024 (5)0.0031 (6)0.0037 (5)
C4230.0202 (2)0.0234 (2)0.0213 (2)0.00105 (19)0.00487 (17)0.00193 (16)
C4240.0326 (9)0.0207 (8)0.0168 (11)0.0030 (7)0.0005 (7)0.0003 (9)
C4250.0289 (9)0.020 (2)0.0271 (9)0.0026 (7)0.0055 (7)0.0018 (9)
Geometric parameters (Å, º) top
N1—C21.3723 (18)C13—H130.9500
N1—C7A1.4048 (19)C14—C151.388 (2)
N1—C11.4600 (18)C14—H140.9500
C2—O21.2218 (18)C15—C161.390 (2)
C2—C31.515 (2)C15—H150.9500
C3—C311.346 (2)C16—H160.9500
C3—C3A1.464 (2)C31—C321.475 (2)
C3A—C41.393 (2)C31—H310.9500
C3A—C7A1.411 (2)C32—O321.2287 (18)
C4—C51.402 (2)C32—C3221.466 (2)
C4—H40.9500S321—C3251.711 (2)
C5—C61.390 (2)S321—C3221.7239 (15)
C5—H50.9500C322—C3231.365 (3)
C6—C71.396 (2)C323—C3241.410 (3)
C6—H60.9500C323—H3230.9500
C7—C7A1.384 (2)C324—C3251.363 (3)
C7—H70.9500C324—H3240.9500
C1—C111.513 (2)C325—H3250.9500
C1—H1A0.9900S421—C4251.716 (10)
C1—H1B0.9900C423—C4241.414 (10)
C11—C161.385 (2)C423—H4230.9500
C11—C121.400 (2)C424—C4251.366 (10)
C12—C131.386 (2)C424—H4240.9500
C12—H120.9500C425—H4250.9500
C13—C141.390 (2)
C2—N1—C7A110.60 (12)C12—C13—C14119.83 (14)
C2—N1—C1123.38 (12)C12—C13—H13120.1
C7A—N1—C1125.79 (12)C14—C13—H13120.1
O2—C2—N1125.88 (14)C15—C14—C13119.86 (14)
O2—C2—C3127.38 (13)C15—C14—H14120.1
N1—C2—C3106.74 (12)C13—C14—H14120.1
C31—C3—C3A137.50 (14)C14—C15—C16120.07 (15)
C31—C3—C2116.76 (13)C14—C15—H15120.0
C3A—C3—C2105.73 (12)C16—C15—H15120.0
C4—C3A—C7A119.04 (13)C11—C16—C15120.67 (14)
C4—C3A—C3134.25 (13)C11—C16—H16119.7
C7A—C3A—C3106.71 (12)C15—C16—H16119.7
C3A—C4—C5119.10 (14)C3—C31—C32127.87 (14)
C3A—C4—H4120.5C3—C31—H31116.1
C5—C4—H4120.5C32—C31—H31116.1
C6—C5—C4120.50 (14)O32—C32—C322119.87 (13)
C6—C5—H5119.7O32—C32—C31123.00 (13)
C4—C5—H5119.7C322—C32—C31117.11 (13)
C5—C6—C7121.49 (14)C325—S321—C32291.72 (8)
C5—C6—H6119.3C323—C322—C32132.06 (16)
C7—C6—H6119.3C323—C322—S321110.59 (14)
C7A—C7—C6117.41 (14)C32—C322—S321117.35 (11)
C7A—C7—H7121.3C322—C323—C324113.7 (2)
C6—C7—H7121.3C322—C323—H323123.1
C7—C7A—N1127.37 (13)C324—C323—H323123.1
C7—C7A—C3A122.45 (14)C325—C324—C323111.78 (19)
N1—C7A—C3A110.18 (12)C325—C324—H324124.1
N1—C1—C11111.38 (12)C323—C324—H324124.1
N1—C1—H1A109.4C324—C325—S321112.17 (15)
C11—C1—H1A109.4C324—C325—H325123.9
N1—C1—H1B109.4S321—C325—H325123.9
C11—C1—H1B109.4C424—C423—H423124.0
H1A—C1—H1B108.0C425—C424—C423112.0 (11)
C16—C11—C12118.86 (14)C425—C424—H424124.0
C16—C11—C1121.11 (13)C423—C424—H424124.0
C12—C11—C1120.01 (13)C424—C425—S421111.4 (10)
C13—C12—C11120.70 (14)C424—C425—H425124.3
C13—C12—H12119.7S421—C425—H425124.3
C11—C12—H12119.7
C7A—N1—C2—O2179.62 (14)C7A—N1—C1—C1179.03 (17)
C1—N1—C2—O24.8 (2)N1—C1—C11—C16113.39 (15)
C7A—N1—C2—C30.32 (15)N1—C1—C11—C1265.13 (18)
C1—N1—C2—C3174.45 (12)C16—C11—C12—C130.1 (2)
O2—C2—C3—C312.0 (2)C1—C11—C12—C13178.62 (14)
N1—C2—C3—C31177.30 (12)C11—C12—C13—C140.1 (2)
O2—C2—C3—C3A179.15 (14)C12—C13—C14—C150.4 (2)
N1—C2—C3—C3A1.56 (15)C13—C14—C15—C160.7 (2)
C31—C3—C3A—C43.2 (3)C12—C11—C16—C150.2 (2)
C2—C3—C3A—C4178.33 (15)C1—C11—C16—C15178.37 (14)
C31—C3—C3A—C7A176.30 (17)C14—C15—C16—C110.5 (2)
C2—C3—C3A—C7A2.19 (14)C3A—C3—C31—C322.7 (3)
C7A—C3A—C4—C50.6 (2)C2—C3—C31—C32178.91 (13)
C3—C3A—C4—C5178.82 (14)C3—C31—C32—O322.6 (2)
C3A—C4—C5—C60.1 (2)C3—C31—C32—C322175.99 (14)
C4—C5—C6—C70.2 (2)O32—C32—C322—C323168.3 (2)
C5—C6—C7—C7A0.1 (2)C31—C32—C322—C32313.1 (3)
C6—C7—C7A—N1178.46 (14)O32—C32—C322—S32111.11 (18)
C6—C7—C7A—C3A0.7 (2)C31—C32—C322—S321167.55 (10)
C2—N1—C7A—C7179.64 (14)C325—S321—C322—C3230.66 (18)
C1—N1—C7A—C75.0 (2)C325—S321—C322—C32179.84 (13)
C2—N1—C7A—C3A1.12 (16)C32—C322—C323—C324179.6 (4)
C1—N1—C7A—C3A175.74 (12)S321—C322—C323—C3240.2 (4)
C4—C3A—C7A—C71.0 (2)C322—C323—C324—C3250.6 (6)
C3—C3A—C7A—C7178.62 (13)C323—C324—C325—S3211.1 (6)
C4—C3A—C7A—N1178.33 (12)C322—S321—C325—C3241.0 (4)
C3—C3A—C7A—N12.09 (15)C423—C424—C425—S4216 (10)
C2—N1—C1—C1194.94 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.593.5058 (19)161
C323—H323···Cg2ii0.952.933.744 (3)145
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1, y+1/2, z+1/2.
(E)-1-Benzyl-5-chloro-3-[2-(4-chlorophenyl)-2-oxoethylidene]indolin-2-one (IIh) top
Crystal data top
C23H15Cl2NO2Z = 2
Mr = 408.26F(000) = 420
Triclinic, P1Dx = 1.472 Mg m3
a = 8.2010 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7629 (7) ÅCell parameters from 4558 reflections
c = 12.1740 (9) Åθ = 2.2–28.3°
α = 76.755 (3)°µ = 0.37 mm1
β = 87.675 (3)°T = 100 K
γ = 76.211 (3)°Needle, red
V = 921.34 (12) Å30.40 × 0.16 × 0.07 mm
Data collection top
Bruker D8 Venture
diffractometer
4558 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube3867 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.053
φ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1010
Tmin = 0.924, Tmax = 0.974k = 1313
51788 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0266P)2 + 0.6446P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
4558 reflectionsΔρmax = 0.44 e Å3
253 parametersΔρmin = 0.33 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.40211 (15)0.82267 (12)0.62793 (10)0.0140 (2)
C20.31723 (17)0.80095 (15)0.54075 (11)0.0146 (3)
O20.24859 (13)0.89462 (11)0.46090 (9)0.0193 (2)
C30.32530 (17)0.63951 (15)0.56422 (11)0.0141 (3)
C3A0.41760 (16)0.57654 (15)0.67151 (11)0.0132 (3)
C40.46454 (17)0.43662 (15)0.73834 (11)0.0147 (3)
H40.43790.35700.71650.018*
C50.55211 (17)0.41803 (15)0.83839 (12)0.0152 (3)
Cl50.61070 (5)0.24487 (4)0.92585 (3)0.01917 (9)
C60.59452 (17)0.53146 (15)0.87280 (12)0.0159 (3)
H60.65570.51350.94130.019*
C70.54707 (17)0.67156 (15)0.80651 (11)0.0150 (3)
H70.57370.75080.82890.018*
C7A0.45999 (17)0.69159 (15)0.70695 (11)0.0134 (3)
C10.41607 (18)0.96427 (15)0.64222 (12)0.0153 (3)
H1A0.39701.03440.56830.018*
H1B0.53120.95660.66860.018*
C110.29126 (18)1.01998 (14)0.72581 (12)0.0156 (3)
C120.11934 (18)1.04709 (15)0.70389 (12)0.0174 (3)
H120.08141.03360.63530.021*
C130.0037 (2)1.09355 (16)0.78175 (13)0.0209 (3)
H130.11301.10980.76720.025*
C140.0588 (2)1.11640 (16)0.88145 (13)0.0230 (3)
H140.02031.14730.93520.028*
C150.2293 (2)1.09391 (17)0.90210 (13)0.0242 (3)
H150.26691.11180.96910.029*
C160.3451 (2)1.04509 (16)0.82469 (12)0.0199 (3)
H160.46181.02880.83950.024*
C310.25083 (17)0.59265 (15)0.48826 (12)0.0148 (3)
H310.19450.66510.42680.018*
C320.24591 (17)0.44181 (15)0.48870 (11)0.0137 (3)
O320.32236 (13)0.33852 (11)0.55942 (8)0.0186 (2)
C3210.14826 (17)0.41665 (15)0.39646 (11)0.0134 (3)
C3220.15414 (17)0.27330 (15)0.39372 (12)0.0152 (3)
H3220.21170.19700.45230.018*
C3230.07720 (18)0.24067 (15)0.30674 (12)0.0166 (3)
H3230.08280.14290.30480.020*
C3240.00812 (17)0.35356 (16)0.22254 (12)0.0164 (3)
Cl340.10252 (5)0.31443 (4)0.11194 (3)0.02314 (9)
C3250.02016 (18)0.49679 (16)0.22460 (12)0.0183 (3)
H3250.08140.57280.16730.022*
C3260.05875 (18)0.52767 (15)0.31180 (12)0.0166 (3)
H3260.05160.62560.31380.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0166 (6)0.0120 (5)0.0140 (5)0.0036 (4)0.0012 (4)0.0035 (4)
C20.0148 (6)0.0149 (6)0.0149 (6)0.0036 (5)0.0005 (5)0.0046 (5)
O20.0242 (5)0.0155 (5)0.0177 (5)0.0048 (4)0.0059 (4)0.0013 (4)
C30.0144 (6)0.0136 (6)0.0136 (6)0.0028 (5)0.0013 (5)0.0025 (5)
C3A0.0121 (6)0.0163 (6)0.0124 (6)0.0035 (5)0.0007 (5)0.0051 (5)
C40.0147 (6)0.0145 (6)0.0152 (6)0.0030 (5)0.0002 (5)0.0041 (5)
C50.0150 (6)0.0137 (6)0.0148 (6)0.0012 (5)0.0005 (5)0.0015 (5)
Cl50.02428 (18)0.01469 (16)0.01655 (16)0.00253 (13)0.00516 (13)0.00074 (12)
C60.0155 (6)0.0192 (7)0.0130 (6)0.0033 (5)0.0003 (5)0.0046 (5)
C70.0151 (6)0.0165 (7)0.0146 (6)0.0042 (5)0.0005 (5)0.0056 (5)
C7A0.0126 (6)0.0135 (6)0.0137 (6)0.0022 (5)0.0021 (5)0.0034 (5)
C10.0179 (7)0.0126 (6)0.0167 (6)0.0055 (5)0.0002 (5)0.0037 (5)
C110.0219 (7)0.0101 (6)0.0149 (6)0.0049 (5)0.0009 (5)0.0022 (5)
C120.0209 (7)0.0136 (6)0.0180 (7)0.0050 (5)0.0001 (5)0.0033 (5)
C130.0230 (7)0.0138 (7)0.0253 (8)0.0045 (6)0.0032 (6)0.0037 (6)
C140.0333 (8)0.0141 (7)0.0195 (7)0.0027 (6)0.0079 (6)0.0039 (6)
C150.0366 (9)0.0190 (7)0.0162 (7)0.0025 (6)0.0021 (6)0.0063 (6)
C160.0248 (7)0.0161 (7)0.0191 (7)0.0039 (6)0.0031 (6)0.0049 (5)
C310.0140 (6)0.0153 (6)0.0147 (6)0.0023 (5)0.0005 (5)0.0038 (5)
C320.0131 (6)0.0154 (6)0.0133 (6)0.0038 (5)0.0011 (5)0.0042 (5)
O320.0224 (5)0.0164 (5)0.0163 (5)0.0038 (4)0.0044 (4)0.0024 (4)
C3210.0126 (6)0.0143 (6)0.0138 (6)0.0035 (5)0.0009 (5)0.0040 (5)
C3220.0139 (6)0.0141 (6)0.0168 (6)0.0027 (5)0.0007 (5)0.0025 (5)
C3230.0171 (7)0.0142 (6)0.0200 (7)0.0049 (5)0.0001 (5)0.0056 (5)
C3240.0153 (6)0.0210 (7)0.0150 (6)0.0058 (5)0.0006 (5)0.0067 (5)
Cl340.02808 (19)0.02353 (19)0.02023 (17)0.00608 (15)0.00785 (14)0.00842 (14)
C3250.0194 (7)0.0162 (7)0.0182 (7)0.0031 (5)0.0050 (5)0.0020 (5)
C3260.0188 (7)0.0135 (6)0.0177 (7)0.0034 (5)0.0019 (5)0.0040 (5)
Geometric parameters (Å, º) top
N1—C21.3745 (17)C12—H120.9500
N1—C7A1.4043 (17)C13—C141.394 (2)
N1—C11.4634 (17)C13—H130.9500
C2—O21.2206 (17)C14—C151.386 (2)
C2—C31.5217 (19)C14—H140.9500
C3—C311.3456 (19)C15—C161.391 (2)
C3—C3A1.4654 (18)C15—H150.9500
C3A—C41.3933 (19)C16—H160.9500
C3A—C7A1.4103 (19)C31—C321.4815 (19)
C4—C51.3927 (19)C31—H310.9500
C4—H40.9500C32—O321.2230 (17)
C5—C61.3896 (19)C32—C3211.5020 (18)
C5—Cl51.7470 (14)C321—C3261.3951 (19)
C6—C71.393 (2)C321—C3221.3968 (19)
C6—H60.9500C322—C3231.3876 (19)
C7—C7A1.3829 (18)C322—H3220.9500
C7—H70.9500C323—C3241.389 (2)
C1—C111.5109 (19)C323—H3230.9500
C1—H1A0.9900C324—C3251.384 (2)
C1—H1B0.9900C324—Cl341.7377 (14)
C11—C161.3907 (19)C325—C3261.3899 (19)
C11—C121.396 (2)C325—H3250.9500
C12—C131.386 (2)C326—H3260.9500
C2—N1—C7A110.46 (11)C11—C12—H12119.8
C2—N1—C1124.77 (11)C12—C13—C14120.03 (15)
C7A—N1—C1124.51 (11)C12—C13—H13120.0
O2—C2—N1125.86 (13)C14—C13—H13120.0
O2—C2—C3127.42 (12)C15—C14—C13119.90 (14)
N1—C2—C3106.72 (11)C15—C14—H14120.1
C31—C3—C3A137.31 (13)C13—C14—H14120.1
C31—C3—C2117.11 (12)C14—C15—C16119.96 (14)
C3A—C3—C2105.57 (11)C14—C15—H15120.0
C4—C3A—C7A119.48 (12)C16—C15—H15120.0
C4—C3A—C3133.79 (12)C11—C16—C15120.49 (14)
C7A—C3A—C3106.73 (12)C11—C16—H16119.8
C5—C4—C3A117.39 (13)C15—C16—H16119.8
C5—C4—H4121.3C3—C31—C32127.92 (13)
C3A—C4—H4121.3C3—C31—H31116.0
C6—C5—C4123.02 (13)C32—C31—H31116.0
C6—C5—Cl5118.04 (10)O32—C32—C31122.03 (12)
C4—C5—Cl5118.94 (11)O32—C32—C321119.73 (12)
C5—C6—C7119.76 (12)C31—C32—C321118.20 (12)
C5—C6—H6120.1C326—C321—C322118.83 (12)
C7—C6—H6120.1C326—C321—C32123.65 (12)
C7A—C7—C6117.83 (13)C322—C321—C32117.47 (12)
C7A—C7—H7121.1C323—C322—C321121.00 (13)
C6—C7—H7121.1C323—C322—H322119.5
C7—C7A—N1126.98 (12)C321—C322—H322119.5
C7—C7A—C3A122.53 (13)C322—C323—C324118.76 (13)
N1—C7A—C3A110.50 (11)C322—C323—H323120.6
N1—C1—C11112.07 (11)C324—C323—H323120.6
N1—C1—H1A109.2C325—C324—C323121.59 (13)
C11—C1—H1A109.2C325—C324—Cl34119.10 (11)
N1—C1—H1B109.2C323—C324—Cl34119.31 (11)
C11—C1—H1B109.2C324—C325—C326118.95 (13)
H1A—C1—H1B107.9C324—C325—H325120.5
C16—C11—C12119.26 (14)C326—C325—H325120.5
C16—C11—C1120.91 (13)C325—C326—C321120.84 (13)
C12—C11—C1119.84 (12)C325—C326—H326119.6
C13—C12—C11120.32 (14)C321—C326—H326119.6
C13—C12—H12119.8
C7A—N1—C2—O2177.96 (14)C7A—N1—C1—C1174.84 (16)
C1—N1—C2—O23.5 (2)N1—C1—C11—C16117.93 (14)
C7A—N1—C2—C31.68 (15)N1—C1—C11—C1262.18 (16)
C1—N1—C2—C3176.11 (12)C16—C11—C12—C132.3 (2)
O2—C2—C3—C311.0 (2)C1—C11—C12—C13177.82 (13)
N1—C2—C3—C31179.37 (12)C11—C12—C13—C141.4 (2)
O2—C2—C3—C3A178.48 (14)C12—C13—C14—C150.6 (2)
N1—C2—C3—C3A1.16 (14)C13—C14—C15—C161.6 (2)
C31—C3—C3A—C40.2 (3)C12—C11—C16—C151.3 (2)
C2—C3—C3A—C4179.12 (15)C1—C11—C16—C15178.84 (13)
C31—C3—C3A—C7A179.53 (16)C14—C15—C16—C110.7 (2)
C2—C3—C3A—C7A0.22 (14)C3A—C3—C31—C323.2 (3)
C7A—C3A—C4—C50.1 (2)C2—C3—C31—C32177.52 (13)
C3—C3A—C4—C5179.15 (14)C3—C31—C32—O324.6 (2)
C3A—C4—C5—C60.5 (2)C3—C31—C32—C321177.57 (14)
C3A—C4—C5—Cl5179.04 (10)O32—C32—C321—C326179.40 (13)
C4—C5—C6—C70.8 (2)C31—C32—C321—C3261.5 (2)
Cl5—C5—C6—C7178.71 (11)O32—C32—C321—C3222.09 (19)
C5—C6—C7—C7A0.7 (2)C31—C32—C321—C322175.80 (12)
C6—C7—C7A—N1179.42 (13)C326—C321—C322—C3232.0 (2)
C6—C7—C7A—C3A0.4 (2)C32—C321—C322—C323175.42 (13)
C2—N1—C7A—C7178.55 (13)C321—C322—C323—C3240.8 (2)
C1—N1—C7A—C74.1 (2)C322—C323—C324—C3251.1 (2)
C2—N1—C7A—C3A1.61 (16)C322—C323—C324—Cl34179.06 (11)
C1—N1—C7A—C3A176.06 (12)C323—C324—C325—C3261.6 (2)
C4—C3A—C7A—C70.1 (2)Cl34—C324—C325—C326178.54 (11)
C3—C3A—C7A—C7179.36 (12)C324—C325—C326—C3210.3 (2)
C4—C3A—C7A—N1179.76 (12)C322—C321—C326—C3251.5 (2)
C3—C3A—C7A—N10.79 (15)C32—C321—C326—C325175.79 (13)
C2—N1—C1—C1198.83 (15)
Selected torsion angles (°) for compounds (Ic)–(If) top
Parameter(Ic)(Id)(Ie)(If), molecule 1(If), molecule 2
x =nilnilnil12
Cx2—Nx1—Cx1—Cx11103.75 (16)102.09 (12)95.90 (12)119.11 (13)108.60 (13)
Nx1—Cx1—Cx11—Cx12-28.5 (2)-40.32 (15)-76.98 (13)-54.19 (16)-27.57 (17)
Nx1—Cx2—Cx3—Cx31-126.14 (13)-133.07 (10)-124.96 (9)-123.72 (10)-126.04 (10)
Cx2—Cx3—Cx31—Cx3252.57 (17)58.79 (13)61.83 (12)50.92 (13)51.93 (13)
C3—C31—C32—C321-176.52 (13)179.12 (10)
C3—C31—C32—C324-179.45 (10)
C31—C32—C321—C322175.64 (14)-176.22 (10)
C31—C32—C324—C323-149.73 (12)
Cx3—Cx31—Cx32—Cx45-174.30 (10)-174.80 (10)
Cx31—Cx32—Cx45—Cx44176.61 (10)178.65 (11)
Selected torsion angles (°) for compounds (IIa), (IIc), (IIe), (IIg) and (IIh) top
Parameter(IIa)(IIc)(IIe)(IIg)(IIh)
C2—N1—C1—C11111.4 (2)102.92 (13)90.35 (19)94.94 (16)98.83 (15)
N1—C1—C11—C12-41.8 (3)-61.57 (14)-1.1 (2)-65.13 (18)-62.18 (16)
N1—C2—C3—C31-176.39 (19)-177.72 (10)179.61 (15)177.30 (12)-179.37 (12)
C2—C3—C31—C32176.1 (2)178.62 (11)-178.71 (16)178.91 (13)177.52 (13)
C3—C31—C32—C321-176.0 (2)172.77 (11)177.57 (14)
C3—C31-C32—C322-175.99 (14)
C3—C31—C32—C324179.55 (16)
C31—C32—C321—C322-178.2 (2)169.40 (10)175.80 (12)
C31—C32—C322—S321167.55 (10)
C31—C32—C324—C323173.76 (15)
Hydrogen bonds and related short intramolecular contacts (Å, °) for compounds (Ic)–(If), (IIa), (IIe) and (IIg) top
CompoundD—H···AD—HH···AD···AD—H···A
(Ic)O3—H3···O2i0.86 (2)2.10 (2)2.9487 (15)171.1 (18)
C6—H6···O324ii0.952.413.297 (2)155
C31—H31B···O2i0.992.483.312 (2)141
C4—H4···Cg2iii0.952.933.6101 (18)130
C14—H14···Cg1iv0.952.823.709 (2)156
(Id)O3—H3···O2v0.868 (18)1.918 (18)2.7630 (12)164.2 (18)
C7—H7···O32vi0.952.443.3343 (16)157
C1—H1B···Cg1vi0.992.963.8375 (14)149
(Ie)O3—H3···N321vii0.897 (17)1.897 (17)2.7915 (14)174.9 (15)
C4—H4···O3v0.952.463.3842 (14)164
C7—H7···O32viii0.952.513.3719 (14)150
C325—H325···O2ix0.952.323.2578 (15)171
C322—H322···Cg1ii0.952.683.5294 (14)149
(If)O13—H13···O220.874 (17)1.912 (17)2.7794 (12)171.1 (17)
O23—H23···O120.874 (17)1.912 (17)2.7794 (12)171.1 (17)
C131–H13A···O22vi0.992.353.3075 (16)161
C147—H147···O141x0.952.563.4776 (18)163
C231—H23A···O12v0.992.373.3107 (15)159
C242—H24A···O23ii0.992.533.4889 (19)163
C142—H14A···Cg3ii0.992.533.3289 (15)137
(IIa)C15—H15···O32xi0.952.493.278 (3)141
(IIe)C14—H14···O2xii0.952.323.234 (3)161
C16—H16···O2xiii0.952.453.230 (2)140
C326—H326···O2xiv0.952.583.494 (2)162
C6—H6···Cg2xiii0.952.643.566 (2)165
(IIg)C5—H5···O2xv0.952.593.5058 (19)161
C323—H323···Cg2xvi0.952.933.744 (3)145
Cg1, Cg2, Cg3 represent the centroids of the rings C3A/C4–C7/C7A, C11–C16 and C13A/C14–C17/C17A, respectively.

Symmetry codes: (i) -x+3/2, -y+3/2, -z+1; (ii) x, y-1, z; (iii) x, -y+1, z+1/2; (iv) -x+3/2, -y+1/2, -z+1; (v) -x+1, -y+1, -z+1; (vi) -x, -y+1, -z+2; (vii) x, y+1, z; (viii) -x+1, -y+1, -z; (ix) -x, -y+1, -z+1; (x) -x, -y, -z+1; (xi) -x+1, y-1/2, -z+1/2; (xii) x+1/2, -y+3/2, z-1/2; (xiii) x-1/2, -y+3/2, z-1/2; (xiv) x+1/2, -y+3/2, z+1/2; (xv) x-1/2, y, -z+1/2; (xvi) -x+1, y+1/2, -z+1/2.
 

Acknowledgements

The authors thank `Centro de Instrumentación Científico-Técnica' of Universidad de Jaén and its staff for data collection. They also thank Universidad del Valle, Universidad Pedagógica y Tecnológica de Colombia (project SGI-2829), Universidad de Jaén and the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain), for financial support. DB also thanks the Asociación Universitaria Iberoamericana de Postgrado for financial support.

References

First citationBecerra, D., Insuasty, B., Cobo, J. & Glidewell, C. (2010). Acta Cryst. C66, o79–o86.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBecerra, D., Insuasty, B., Cobo, J. & Glidewell, C. (2013). Acta Cryst. C69, 1081–1084.  CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBogdanov, A. V. & Mironov, V. (2018). Synthesis, 50, 1601–1609.  CrossRef CAS Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, G., Liu, B., Tang, Y. & Xu, J. (2009). Acta Cryst. E65, o1723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDeng, P. & Zhang, Q. (2014). Polym. Chem. 5, 3298–3305.  CrossRef CAS Google Scholar
First citationDuan, Y., Liu, Y., Huang, T., Zou, Y., Huang, T., Hu, K., Deng, Z. & Lin, S. (2018). Org. Biomol. Chem. 16, 5446–5451.  CrossRef CAS PubMed Google Scholar
First citationDuan, Z., Han, J., Qian, P., Zhang, Z., Wang, Y. & Pan, Y. (2013). Org. Biomol. Chem. 11, 6456–6459.  CSD CrossRef CAS PubMed Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationImai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129–1137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKamano, Y., Zhang, H. P., Ichihara, Y., Kizu, H., Komiyama, K. & Pettit, G. R. (1995). Tetrahedron Lett. 36, 2783–2784.  CrossRef CAS Google Scholar
First citationKimura, J., Subba Reddy, U. V., Kohari, Y., Seki, C., Mawatari, Y., Uwai, K., Okuyama, Y., Kwon, E., Tokiwa, M., Takeshita, M., Iwasa, T. & Nakano, H. (2016). Eur. J. Org. Chem. 2016, 3748–3756.  CSD CrossRef CAS Google Scholar
First citationLuppi, G., Cozzi, P. G., Monari, M., Kaptein, B., Broxterman, Q. B. & Tomasini, C. (2005). J. Org. Chem. 70, 7418–7421.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLuppi, G., Monari, M., Corrêa, R. J., Violante, F. de A., Pinto, A. C., Kaptein, B., Broxterman, Q. B., Garden, S. J. & Tomasini, C. (2006). Tetrahedron, 62, 12017–12024.  Web of Science CSD CrossRef CAS Google Scholar
First citationMohammadi, S., Heiran, R., Herrera, R. P. & Marqués-López, E. (2013). ChemCatChem, 5, 2131–2148.  CrossRef CAS Google Scholar
First citationMoradi, R., Ziarani, G. M. & Lashgari, N. (2017). ARKIVOC, Vol. 2017, Part (i), 148–201; doi: https://doi.org/10.24820/ark.5550190.p009.980.  Google Scholar
First citationNagamine, J., Nagata, R., Seki, H., Nomura-Akimaru, N., Ueki, Y., Kumagai, K., Taiji, M. & Noguchi, H. (2001). J. Endocrinol. 171, 481–489.  CrossRef PubMed CAS Google Scholar
First citationPakravan, P., Kashanian, S., Khodaei, M. M. & Harding, F. J. (2013). Pharmacol. Rep. 65, 313–335.  CrossRef CAS PubMed Google Scholar
First citationPeddibhotla, S. (2009). Curr. Bioact. Compd. 5, 20–38.  CrossRef CAS Google Scholar
First citationSatish, G., Polu, A., Ramar, T. & Ilangovan, A. (2015). J. Org. Chem. 80, 5167–5175.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSeip, H. M., Seip, R., Christensen, S. B., Brehm, L. & Nimmich, W. (1973). Acta Chem. Scand. 27, 4024–4027.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, G. S. & Desta, Z. Y. (2012). Chem. Rev. 112, 6104–6155.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStalder, R., Mei, J., Graham, K. R., Estrada, L. A. & Reynolds, J. R. (2014). Chem. Mater. 26, 664–678.  Web of Science CrossRef CAS Google Scholar
First citationTripathi, R. K. P., Krishnamurthy, S. & Ayyannan, S. R. (2016). ChemMedChem, 11, 119–132.  CrossRef CAS PubMed Google Scholar
First citationVarun, Sonam & Kakkar, R. (2019). Med. Chem. Commun. 10, 351–368.  Google Scholar
First citationVitaku, E., Smith, D. T. & Njardarson, J. T. (2014). J. Med. Chem. 57, 10257–10274.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar
First citationXing, X.-N., Li, L., Zhu, X.-Y. & Chen, J.-R. (2007). Acta Cryst. E63, o2969–o2970.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds