research papers
Synthesis and characterization of the Anderson–Evans tungstoantimonate [Na5(H2O)18{(HOCH2)2CHNH3}2][SbW6O24]
aUniversität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria, and bUniversität Wien, Fakultät für Geowissenschaften, Geographie und Astronomie, Institut für Mineralogie und Kristallographie, Althanstraße 14, 1090 Wien, Austria
*Correspondence e-mail: annette.rompel@univie.ac.at
A novel tungstoantimonate, [Na5(H2O)18{(HOCH2)2CHNH3}2][SbVWVI6O24] (SbW6), was synthesized from an aqueous solution and structurally characterized by single-crystal X-ray diffraction, which revealed C2/c symmetry. The structure contains two serinol [(HOCH2)2CHNH3]+ and five Na+ cations, which are octahedrally surrounded by 18 water molecules, and one [SbVWVI6O24]7− anion. The serinol molecules also play a critical role in the synthesis by acting as a mild buffering agent. Each of the WVI and SbV ions is six-coordinated and displays a distorted octahedral motif. A three-dimensional supramolecular framework is formed via hydrogen-bonding interactions between the tungstoantimonates and cations. Powder X-ray diffraction, elemental analysis, thermogravimetric analysis and IR spectroscopy were performed on SbW6 to prove the purity, to identify the water content and to characterize the vibrational modes of the crystallized phase.
Keywords: polyoxometalate; POM; polyoxotungstate; POT; serinol; crystal structure; organic-inorganic hybrid.
CCDC reference: 2079597
1. Introduction
Polyoxometalates (POMs) are known as early transition metal–oxygen clusters (Pope, 1983; Gumerova & Rompel, 2020). They are assembled from {MOx} polyhedra, with x = 4–7 and M being commonly MoV/VI, WV/VI, VIV/V, NbV or TaV as addenda ions, through sharing of corners and edges (Pope, 1983). POMs can be considered as either isopolyanions [MmOy]q−, which feature only one metallic M ion (MoV/VI, WV/VI, VIV/V, NbV or TaV), or heteropolyanions [XrMmOy]q−, which additionally contain a heteroelement X (Pope, 1983). POMs display a wide range of crucial applications, ranging from catalysis (Wang & Yang, 2015), materials science (Cherevan et al., 2020) and molecular magnetism (Clemente-Juan et al., 2012), to bio- and nanotechnology (Rhule et al., 1998; Bijelic et al., 2018, 2019), as well as macromolecular crystallography (Bijelic & Rompel, 2015, 2017, 2018).
The Anderson–Evans polyoxoanion has the general formula [Hy(XO6)M6O18]n−, where y = 0–6, n = 2–8, M = addenda ion (MoVI or WVI) and X = central heteroion in oxidation states from +2 to +7 (Blazevic & Rompel, 2016). Its structure consists of six corner- and edge-shared {MoO6} or {WO6} octahedra, which surround the {XO}6 octahedron (Evans, 1948). In the structure, there exist three differently coordinated oxygen ions (Fig. 1): six triple-bridged oxygen ions (μ3-O) that connect the heteroion and two addenda ions, six double-bridged oxygen ions (μ2-O) that connect two addenda ions and lastly two terminal oxygen ions (Ot) per addenda ion (Evans, 1948; Pope, 1983). The of a heteroion plays a significant role in the protonation mode of the triple-bridged oxygen ions (μ3-O) in the Anderson–Evans archetype, according to which they can be divided into three groups. The first, i.e. [Xn+M6O24](12–n)− (n = 5–7), referred to as `type A', is a deprotonated structure that exists when it contains heteroions with a high (e.g. TeVI or IVII). The second, i.e. [Xn+(OH)6M6O18](6–n)− (n = 2–4), referred to as `type B', is protonated on the six μ3-O ions, with each side having three protons. The B-type POMs are usually present when the heteroion has a low (e.g. NiII or CoII) (Blazevic & Rompel, 2016). The third group, called `mixed type', is a combination of the two types mentioned above, as it has protonated μ3-O ions only on one side (Gumerova et al., 2019). Therefore, it is referred to as one-side protonated with one known polyoxotungstate example, [CrIII(OH)3WVI6O21]6–, so far (Gumerova et al., 2019). Interestingly, there are some platinum-based compounds, with the general formula [HnPtIVMVI6O24](8–n)− (M = W or Mo, where 1 < n < 6; Lee et al., 2004), which exhibit protonation degrees of their μ3-O ions ranging from 1 to 6 and n is not necessarily an integer.
The majority of Anderson–Evans-type clusters have a planar hexagonal configuration with m (D3d) which is known as the α-isomer (Anderson, 1937). Another configuration of the Anderson–Evans-type cluster shows a bent structure of 2mm (C2v) and is called the β-isomer (Lindqvist, 1959). An example of the β-isomer was presented by the Ogawa group (Ogawa et al., 1988), i.e. [SbV(OH)2MoVI6O22]5− and is one of the few reported structures to date (Lee & Sasaki, 1994; Zhang et al., 2017; Li & Wei, 2021). The Anderson–Evans compounds can be modified in several ways: (i) by variation of the heteroion in the central position; (ii) by combination with various inorganic and organic cations, and (iii) by covalent attachment of one or two alkoxo ligands.
In recent decades, some unsubstituted tungstoantimonates, which have only one heteroion, SbIII/V, have been synthesized and structurally characterized (Table 1), but the majority of Sb-containing polyoxotungstates (POTs) contain additional heteroions, such as 3d or 4f metals (Tanuhadi et al., 2018, 2020). Only three Sb-POTs of the Anderson–Evans archetype, namely, K5Na2[SbVWVI6O24]·12H2O (Lee & Sasaki, 1987), K5.5H1.5[SbVWVI6O24]·6H2O (Naruke & Yamase, 1992) and Na7[SbVWVI6O24]·24H2O (Mukhacheva et al., 2017), have been reported so far. Interestingly, the relative luminescence yield from the O→W LCMT transition of K5.5H1.5[SbVWVI6O24]·6H2O was higher than that of Ln-containing Na9[GdIII(WVI5O18)2]·18H2O under the same conditions (Naruke & Yamase, 1992). The high luminescence yield of [SbVWVI6O24]7− is attractive for potential photochemical applications in the future.
Serinol (C3H9NO2, 2-aminopropane-1,3-diol) is a very stable, highly water soluble, nontoxic, odourless, biodegradable compound which is widely used as a versatile starting material in organic synthesis and as an additive for materials applications, such as composite materials (Barbera et al., 2020; Andreessen & Steinbüchel, 2011). In POM synthesis, serinol can be seen as an alkoxylation ligand or a counter-cation or buffering agent due to the presence of an amino group. Considering that the Sb-centred Anderson–Evans POT has not yet been reported with organic counter-cations, we expand the compound class by applying serinol, which can coordinate in different ways to metals through the –NH2 and –HOCH2 groups and thus significantly affects both the structure and properties, in the synthesis in Sb5+–WO42− (with an Sb:W ratio of 1:6) systems. Here we report a novel Anderson–Evans Sb-centred POT, [Na5(H2O)18{(HOCH2)2CHNH3}2][SbVWVI6O24] (SbW6), being the first example of [SbVWVI6O24]7− crystallized with an organic counter-cation, which was synthesized from aqueous solution and has been fully characterized.
2. Experimental
2.1. Synthesis and crystallization
The reagents were used as purchased from Merck (Austria) and VWR (Austria) without further purification.
2.1.1. Synthesis of [Na5(H2O)18{(HOCH2)2CHNH3}2][SbW6O24] (SbW6)
Na2WO4·2H2O (0.99 g, 3 mmol) and KSbV(OH)6 (0.13 g, 0.5 mmol) were mixed in a 6:1 ratio in H2O (12 ml), yielding a turbid solution. The solution was then acidified with aqueous HCl (1 M, 4.4 ml) and the pH was set at 4.0. Serinol [(HOCH2)2CHNH2; 0.18 g, 2 mmol] was then added and the pH was altered to 7.1. Under stirring and heating for 1 h, at 75 °C, the precipitate was dissolved, and the final solution was colourless. The pH after the reaction was 7.0. The solution was left for evaporation at room temperature, leading to colourless crystals suitable for single-crystal X-ray diffraction within 1 d (yield: 0.4 g, 60%, based on W). The pH of the Sb5+–WO42− solution was varied from 3.7 to 5.0; however, after the addition of serinol (0.18 g, 2 mmol), the final pH was in the range from 7.0 to 7.7 and, in all cases, crystals with the same were obtained. Other synthetic routes, such as reflux reaction and hydrothermal synthesis at 120 °C, for the same reaction mixture led to the same product. Elemental analysis found (calculated) for [Na5(H2O)18{(HOCH2)2CHNH3}2][SbVWVI6O24] (%): C 3.18 (3.23), H 2.56 (2.53), N 1.29 (1.25), O 32.89 (32.97). FT–IR (cm−1): 3357 (s), 2952 (sh), 1610 (s), 1498 (s), 1464 (sh), 1373 (w), 1256 (w), 1099 (w), 1037 (s), 1018 (sh), 927 (s), 850 (s), 703 (sh), 632 (w), 640 (w), 563 (w), 420 (s), 349 (s), 310 (s).
2.2. IR spectroscopy
SbW6 was characterized by IR spectroscopy on a Bruker Vertex70 IR Spectrometer equipped with a single-reflection diamond-ATR unit in the range 4000–300 cm−1.
2.3. TGA measurements
Thermogravimetric analysis (TGA) was performed on a Mettler SDTA851e Thermogravimetric Analyzer under a nitrogen flow with a heating rate of 5 K min−1 in the region from 303 to 873 K.
2.4. Elemental analysis
The determination of C/H/N/O was carried out using an `EA 1108 CHNS-O' elemental analyzer by Carlo Erba Instruments at the Mikroanalytisches Laboratorium, Faculty of Chemistry, University of Vienna.
2.5. Powder X-ray diffraction (PXRD)
PXRD was performed on a Bruker D8 Advance diffractometer, with Cu Kα radiation (λ = 1.54056 Å), a Lynxeye silicon strip detector and a SolX (variable slit aperture with 12 mm, 10° ≤ 2θ ≤ 50°).
2.6. Refinement
In Table 2, the crystallographic characteristics of SbW6 and the experimental conditions of data collection and are reported. The positions of the H atoms of the water molecules were obtained by difference Fourier techniques and were refined with free isotropic displacement parameters and O—H distances restrained to 0.95 (2) Å. The disordered water molecule in the coordination sphere of atom Na1 was refined with two positions (O23 and O24), with free occupancy factors to a total of 100%. The H atoms of this disordered group had Uiso(H) values set to 1.5Ueq(O) of the parent atom. H atoms bound to N or C atoms were placed in idealized positions (N—H = 0.91 Å and C—H = 0.99 or 1.00 Å for CH2 and CH groups, respectively) and refined in riding modes, with Uiso(H) values set to 1.5Ueq(N) or to 1.2Ueq(C).
|
3. Results and discussion
The preparation of SbW6 was carried out at a WVI to SbV ratio of 6:1 and at a pH of 7.1. In the absence of serinol, at pH 7.5, protonated K5.5H1.5[SbVWVI6O24]·6H2O (Naruke & Yamase, 1992), and at pH 4.5, unprotonated K5Na2[SbVWVI6O24]·12H2O (Lee & Sasaki, 1987), were obtained.
The main structural elements of SbW6 are the Anderson–Evans [SbVWVI6O24]7− anion and the complex [Na5(H2O)18{(HOCH2)2CHNH3}2]7+ cation, which are connected via hydrogen bonds between terminal (Ot) and bridging O atoms (μ2-O) of the polyanion and protons from the cationic complex (Fig. 1). Crystallographically centrosymmetric [SbVWVI6O24]7− shows the characteristic Anderson–Evans A-type structure with a central {SbO6} octahedron surrounded by six edge-shared {WO6} octahedra that form a planar array of distorted octahedra (Fig. 1). The average W—Sb bond length is 3.26 Å. As is typical for all Anderson–Evans A-type structures, three different coordination modes of the O atoms are present in the structure: six triple-bridged oxygen ions (μ3-O) connect the heteroion and two W ions, six double-bridged oxygen ions (μ2-O) connect two W ions and two terminal oxygen (Ot) ions are connected to each of the six W ions (Fig. 1). The average distance for Sb—μ3-O is 1.98 Å, for W—μ3-O is 2.27 Å, for W—μ2-O is 1.94 Å and for W—Ot is 1.74 Å. The values are comparable with those of K5.5H1.5[SbVWVI6O24] (Naruke & Yamase, 1992). For instance, the Sb—μ3-O bond length (1.98 Å) differs by only 0.03 Å from the others reported by Naruke & Yamase (1992) (2.01 Å). Applying bond valence sum (BVS) calculations (Brown & Altermatt, 1985), all the W ions in [SbVWVI6O24]7− exhibit the +VI (average calculated value of 6.01) and Sb shows the +V (5.37). Based on BVS analysis and the number of counter-cations, it was concluded that the Anderson–Evans anion is not protonated and belongs to type A.
The counter-cation is composed of five octahedrally coordinated Na+ ions, which assemble in an elevated T-shape form, and two protonated serinol molecules that are coordinated to two Na+ ions via –HOCH2 groups. This group has crystallographically imposed twofold symmetry. One serinol ligand interacts through the –NH3 group with the terminal O atom of the POT anion, and the second interacts with the adjacent O atom in {NaO6} (Fig. 1).
The three-dimensional (3D) structure of SbW6 consists of two-dimensional (2D) sheets formed of [SbVWVI6O24]7− anions and complex [Na5(H2O)18{(HOCH2)2CHNH3}2]7+, cations connected via hydrogen bonds (Figs. 1 and 2). The distances between 2D layers are approximately 2.79 Å, which allows the formation of hydrogen bonds between the layers and creates cavities along the b axis (Fig. 2a). This packing is different to that observed in K5.5H1.5[SbVWVI6O24]·6H2O and K5Na2[SbVWVI6O24]·12H2O, where the layers of anions alternate with layers or single polyhedra of counter-cations.
The IR spectrum of SbW6 (Fig. 3) is characteristic for Anderson–Evans POMs (Liu et al., 2015; Qu et al., 2012). The broad bands in the region between 2300 to 3750 cm−1 represent the vibrations of the –OH groups of H2O and the N—H bonds of the amine groups of serinol. In the area between 1610 and 1018 cm−1, the bands are attributed to the vibrations of C—H, C—O and again N—H in serinol. The bands at about 930 and 880 cm−1 are attributed to antisymmetric stretching vibrations of the terminal W=O bonds and Sb—O—W bridges (Ob), respectively. The bands at 640 and 563 cm−1 are associated with the asymmetric stretching of W—O—W bridges (Ob) and the bending vibrations of W—O—W, respectively. Lastly, the bands between 750 and 300 cm−1 are contributed by Sb—O—W vibrations (Liu et al., 2015).
The powder XRD pattern of SbW6 (Fig. 4) was investigated at room temperature. The simulated powder diffraction pattern was based on the single-crystal structural data. The observed peak positions are in good alignment with the simulated patterns, which confirms that the POT structure had been solved accurately and that SbW6 consists of a single phase.
The exact number of water molecules was determined using TGA. The curve (Fig. 5) shows three weight-loss steps during the heating process from 30 to 600 °C. The first weight loss of 14.7% in the temperature range 30–200 °C corresponds to all water molecules from the Na+ coordinating spheres. The second and third step correspond in total to 8.4% and the loss of two serinol molecules.
The composition of the counter-cation has remarkable effects on the crystal packing and thus on the physical properties of Anderson–Evans POMs (Blazevic & Rompel, 2016). The success in synthesizing SbW6 shows that the Sb-centred Anderson–Evans POT is a versatile building block, which can be modified by organic counter-cations into high-dimensional architectures. SbW6 is the first reported K+-free salt with an organic counter-cation, and it has much higher water solubility and can expand the areas of its application in aqueous solution.
Supporting information
CCDC reference: 2079597
https://doi.org/10.1107/S2053229621006239/ky3204sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2053229621006239/ky3204Isup2.hkl
Chemical scheme for the title compound. DOI: https://doi.org/10.1107/S2053229621006239/ky3204sup3.pdf
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a) and shelXle (Hübschle et al., 2011); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2020).[Na5(H2O)18(C3H10NO2)2][SbW6O24] | F(000) = 4096 |
Mr = 2232.32 | Dx = 3.208 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 21.9761 (14) Å | Cell parameters from 9051 reflections |
b = 13.9179 (9) Å | θ = 2.4–33.2° |
c = 16.209 (1) Å | µ = 15.61 mm−1 |
β = 111.189 (2)° | T = 200 K |
V = 4622.5 (5) Å3 | Block, clear colourless |
Z = 4 | 0.1 × 0.08 × 0.05 mm |
Bruker APEXII CCD diffractometer | 8213 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.030 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 33.2°, θmin = 2.0° |
Tmin = 0.542, Tmax = 0.747 | h = −33→33 |
100214 measured reflections | k = −21→21 |
8841 independent reflections | l = −24→24 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.013 | w = 1/[σ2(Fo2) + (0.0049P)2 + 8.8181P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.025 | (Δ/σ)max = 0.004 |
S = 1.15 | Δρmax = 0.60 e Å−3 |
8841 reflections | Δρmin = −0.69 e Å−3 |
390 parameters | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
23 restraints | Extinction coefficient: 0.000087 (2) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Olex2_refinement_description 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All N(H,H,H) groups, All O(H,H) groups 2. Restrained distances O24—H24B = O24—H24A = O23—H23A = O23—H23B = O22—H22A = O22—H22B = O21—H21A = O21—H21B = O20—H20A = O20—H20B = O19—H19A = O19—H19B = O18—H18B = O18—H18A = O16—H16B = O16—H16A = O17—H17B = O17—H17A = O15—H15B = O15—H15A = O14—H14 = O13—H13 0.95 with σ of 0.03 Na1—H24A ~ Na1—H24B with σ of 0.02 3. Others Sof(O24)=Sof(H24A)=Sof(H24B)=FVAR(1) Sof(O23)=Sof(H23A)=Sof(H23B)=FVAR(2) 4.a Free rotating group: O24(H24A,H24B) 4.b Rotating group: O23(H23A,H23B) 4.c Ternary CH refined with riding coordinates: C2(H2) 4.d Secondary CH2 refined with riding coordinates: C1(H1D,H1E), C3(H3A,H3B) 4.e Idealized Me refined as rotating group: N1(H1A,H1B,H1C) |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
W1 | 0.23646 (2) | 0.98310 (2) | 0.50967 (2) | 0.00915 (2) | |
W2 | 0.33638 (2) | 0.89214 (2) | 0.42377 (2) | 0.00926 (2) | |
W3 | 0.34950 (2) | 0.65895 (2) | 0.41500 (2) | 0.00910 (2) | |
Sb1 | 0.250000 | 0.750000 | 0.500000 | 0.00687 (3) | |
O1 | 0.19305 (6) | 0.63497 (9) | 0.46152 (8) | 0.0092 (2) | |
O2 | 0.32045 (6) | 0.65301 (9) | 0.53084 (8) | 0.0093 (2) | |
O3 | 0.26877 (6) | 0.76387 (9) | 0.38977 (8) | 0.0088 (2) | |
O4 | 0.29370 (7) | 1.06930 (10) | 0.56698 (9) | 0.0160 (3) | |
O5 | 0.16585 (7) | 1.05002 (10) | 0.45722 (9) | 0.0164 (3) | |
O6 | 0.21773 (6) | 0.93907 (9) | 0.61149 (8) | 0.0116 (2) | |
O7 | 0.39611 (7) | 0.97551 (10) | 0.48078 (9) | 0.0174 (3) | |
O8 | 0.25818 (6) | 0.96747 (9) | 0.40414 (8) | 0.0115 (2) | |
O9 | 0.33570 (7) | 0.89690 (10) | 0.31671 (9) | 0.0160 (3) | |
O10 | 0.39142 (6) | 0.77917 (9) | 0.46445 (8) | 0.0122 (2) | |
O11 | 0.34480 (7) | 0.67242 (10) | 0.30582 (9) | 0.0143 (3) | |
O12 | 0.41832 (7) | 0.58827 (10) | 0.46496 (9) | 0.0168 (3) | |
Na1 | 0.500000 | 0.99629 (9) | 0.250000 | 0.0197 (2) | |
Na2 | 0.500000 | 0.74736 (9) | 0.250000 | 0.0239 (3) | |
Na3 | 0.500000 | 0.49315 (9) | 0.250000 | 0.0192 (2) | |
Na4 | 0.41110 (4) | 0.34118 (6) | 0.32760 (5) | 0.01762 (16) | |
O13 | 0.33515 (7) | 0.21655 (10) | 0.26482 (9) | 0.0161 (3) | |
H13 | 0.3018 (12) | 0.232 (2) | 0.2144 (16) | 0.039 (8)* | |
O14 | 0.37746 (8) | 0.31336 (12) | 0.45147 (10) | 0.0228 (3) | |
H14 | 0.370 (2) | 0.366 (2) | 0.479 (3) | 0.086 (14)* | |
O15 | 0.31493 (7) | 0.43482 (11) | 0.27597 (10) | 0.0175 (3) | |
H15A | 0.2958 (12) | 0.4493 (19) | 0.2199 (14) | 0.026 (7)* | |
H15B | 0.3004 (14) | 0.4779 (19) | 0.3006 (19) | 0.041 (9)* | |
O16 | 0.49851 (9) | 0.23264 (14) | 0.37966 (13) | 0.0348 (4) | |
H16A | 0.504 (3) | 0.179 (3) | 0.352 (3) | 0.13 (2)* | |
H16B | 0.5299 (14) | 0.230 (2) | 0.4319 (17) | 0.051 (10)* | |
O17 | 0.42545 (8) | 0.35821 (12) | 0.19100 (10) | 0.0222 (3) | |
H17A | 0.3901 (13) | 0.364 (2) | 0.1394 (17) | 0.044 (9)* | |
H17B | 0.4492 (15) | 0.316 (2) | 0.175 (2) | 0.053 (10)* | |
O18 | 0.48239 (7) | 0.47272 (12) | 0.38301 (10) | 0.0198 (3) | |
H18A | 0.5179 (12) | 0.455 (2) | 0.4319 (15) | 0.031 (7)* | |
H18B | 0.4610 (15) | 0.513 (2) | 0.407 (2) | 0.053 (10)* | |
O19 | 0.57928 (7) | 0.61738 (12) | 0.29274 (10) | 0.0206 (3) | |
H19A | 0.6093 (13) | 0.603 (2) | 0.3462 (16) | 0.043 (9)* | |
H19B | 0.6047 (14) | 0.629 (2) | 0.262 (2) | 0.046 (9)* | |
O20 | 0.50365 (10) | 0.76172 (17) | 0.39592 (13) | 0.0405 (5) | |
H20A | 0.471 (2) | 0.777 (4) | 0.416 (4) | 0.15 (2)* | |
H20B | 0.5370 (18) | 0.742 (3) | 0.445 (2) | 0.103 (17)* | |
O21 | 0.58506 (8) | 0.87360 (12) | 0.28898 (11) | 0.0218 (3) | |
H21A | 0.6135 (13) | 0.893 (2) | 0.3411 (16) | 0.042 (9)* | |
H21B | 0.601 (2) | 0.878 (3) | 0.246 (2) | 0.094 (15)* | |
O22 | 0.58231 (8) | 1.11103 (13) | 0.30761 (11) | 0.0274 (4) | |
H22A | 0.6160 (12) | 1.114 (2) | 0.3604 (16) | 0.036 (8)* | |
H22B | 0.6034 (15) | 1.141 (2) | 0.277 (2) | 0.053 (10)* | |
O23 | 0.4836 (2) | 1.0261 (7) | 0.3845 (3) | 0.0214 (16) | 0.49 (3) |
H23A | 0.520517 | 1.019846 | 0.429088 | 0.032* | 0.49 (3) |
H23B | 0.458680 | 0.981153 | 0.392879 | 0.032* | 0.49 (3) |
N1 | 0.24448 (8) | 0.28660 (12) | 0.33045 (11) | 0.0151 (3) | |
H1A | 0.209963 | 0.263685 | 0.284205 | 0.023* | |
H1B | 0.268602 | 0.326406 | 0.309808 | 0.023* | |
H1C | 0.229658 | 0.319666 | 0.367847 | 0.023* | |
C1 | 0.31201 (10) | 0.15213 (14) | 0.31546 (13) | 0.0170 (4) | |
H1D | 0.348055 | 0.108998 | 0.349921 | 0.020* | |
H1E | 0.276807 | 0.111847 | 0.274682 | 0.020* | |
C2 | 0.28596 (10) | 0.20445 (14) | 0.37896 (13) | 0.0151 (3) | |
H2 | 0.256858 | 0.158600 | 0.394736 | 0.018* | |
C3 | 0.33729 (10) | 0.23864 (15) | 0.46485 (13) | 0.0192 (4) | |
H3A | 0.315385 | 0.262462 | 0.504576 | 0.023* | |
H3B | 0.365219 | 0.183629 | 0.494426 | 0.023* | |
O24 | 0.4901 (3) | 0.9763 (14) | 0.3884 (4) | 0.041 (3) | 0.51 (3) |
H24A | 0.525636 | 0.986172 | 0.433912 | 0.061* | 0.51 (3) |
H24B | 0.460889 | 1.011938 | 0.398180 | 0.061* | 0.51 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
W1 | 0.01187 (3) | 0.00678 (3) | 0.00937 (3) | 0.00066 (2) | 0.00455 (2) | −0.00038 (2) |
W2 | 0.00935 (3) | 0.00934 (3) | 0.00992 (3) | −0.00122 (2) | 0.00449 (2) | 0.00009 (2) |
W3 | 0.00888 (3) | 0.01020 (3) | 0.00925 (3) | 0.00212 (2) | 0.00452 (2) | 0.00001 (2) |
Sb1 | 0.00750 (6) | 0.00630 (6) | 0.00766 (6) | 0.00040 (5) | 0.00376 (5) | −0.00023 (5) |
O1 | 0.0100 (5) | 0.0090 (6) | 0.0085 (5) | −0.0005 (4) | 0.0033 (4) | −0.0006 (4) |
O2 | 0.0098 (5) | 0.0092 (6) | 0.0092 (5) | 0.0025 (4) | 0.0038 (4) | 0.0000 (4) |
O3 | 0.0092 (5) | 0.0098 (6) | 0.0083 (5) | 0.0002 (4) | 0.0041 (4) | 0.0001 (4) |
O4 | 0.0205 (7) | 0.0128 (6) | 0.0155 (6) | −0.0032 (5) | 0.0075 (5) | −0.0029 (5) |
O5 | 0.0191 (7) | 0.0136 (6) | 0.0168 (6) | 0.0060 (5) | 0.0066 (5) | 0.0035 (5) |
O6 | 0.0136 (6) | 0.0114 (6) | 0.0101 (6) | −0.0010 (5) | 0.0047 (5) | −0.0021 (5) |
O7 | 0.0144 (6) | 0.0168 (7) | 0.0200 (7) | −0.0046 (5) | 0.0050 (5) | −0.0026 (5) |
O8 | 0.0140 (6) | 0.0103 (6) | 0.0104 (6) | 0.0010 (5) | 0.0046 (5) | 0.0010 (5) |
O9 | 0.0189 (7) | 0.0175 (7) | 0.0141 (6) | −0.0001 (5) | 0.0090 (5) | 0.0018 (5) |
O10 | 0.0096 (5) | 0.0134 (6) | 0.0129 (6) | −0.0002 (5) | 0.0031 (5) | −0.0002 (5) |
O11 | 0.0165 (6) | 0.0163 (7) | 0.0125 (6) | 0.0016 (5) | 0.0080 (5) | 0.0002 (5) |
O12 | 0.0140 (6) | 0.0187 (7) | 0.0173 (7) | 0.0064 (5) | 0.0052 (5) | 0.0008 (5) |
Na1 | 0.0167 (5) | 0.0227 (6) | 0.0192 (6) | 0.000 | 0.0059 (5) | 0.000 |
Na2 | 0.0221 (6) | 0.0230 (6) | 0.0256 (6) | 0.000 | 0.0073 (5) | 0.000 |
Na3 | 0.0205 (6) | 0.0199 (6) | 0.0193 (6) | 0.000 | 0.0095 (5) | 0.000 |
Na4 | 0.0149 (4) | 0.0206 (4) | 0.0174 (4) | −0.0004 (3) | 0.0060 (3) | 0.0009 (3) |
O13 | 0.0179 (7) | 0.0170 (7) | 0.0126 (6) | 0.0008 (5) | 0.0045 (5) | −0.0001 (5) |
O14 | 0.0220 (7) | 0.0267 (8) | 0.0204 (7) | −0.0071 (6) | 0.0086 (6) | −0.0050 (6) |
O15 | 0.0201 (7) | 0.0148 (7) | 0.0157 (7) | 0.0036 (5) | 0.0043 (6) | −0.0012 (5) |
O16 | 0.0290 (9) | 0.0278 (10) | 0.0314 (10) | 0.0090 (7) | −0.0085 (7) | −0.0045 (8) |
O17 | 0.0177 (7) | 0.0324 (9) | 0.0142 (7) | −0.0026 (6) | 0.0031 (6) | −0.0011 (6) |
O18 | 0.0187 (7) | 0.0248 (8) | 0.0148 (7) | 0.0074 (6) | 0.0047 (6) | −0.0018 (6) |
O19 | 0.0177 (7) | 0.0266 (8) | 0.0182 (7) | 0.0008 (6) | 0.0075 (6) | 0.0056 (6) |
O20 | 0.0266 (9) | 0.0643 (14) | 0.0300 (10) | 0.0032 (9) | 0.0094 (8) | 0.0026 (10) |
O21 | 0.0191 (7) | 0.0265 (8) | 0.0214 (8) | −0.0021 (6) | 0.0091 (6) | 0.0001 (6) |
O22 | 0.0201 (8) | 0.0370 (10) | 0.0200 (8) | −0.0105 (7) | 0.0010 (6) | 0.0034 (7) |
O23 | 0.0177 (17) | 0.027 (4) | 0.0190 (17) | −0.0030 (17) | 0.0059 (13) | 0.0033 (17) |
N1 | 0.0150 (7) | 0.0143 (7) | 0.0156 (7) | 0.0007 (6) | 0.0052 (6) | −0.0007 (6) |
C1 | 0.0209 (9) | 0.0105 (8) | 0.0184 (9) | 0.0016 (7) | 0.0055 (7) | 0.0002 (7) |
C2 | 0.0184 (9) | 0.0110 (8) | 0.0150 (8) | −0.0004 (7) | 0.0049 (7) | 0.0025 (6) |
C3 | 0.0209 (9) | 0.0211 (10) | 0.0135 (8) | −0.0014 (8) | 0.0038 (7) | 0.0009 (7) |
O24 | 0.023 (2) | 0.080 (9) | 0.022 (2) | −0.016 (3) | 0.0111 (17) | −0.017 (3) |
W1—Sb1 | 3.2668 (2) | Na3—O17 | 2.4480 (19) |
W1—O1i | 2.1899 (12) | Na3—O18 | 2.3414 (15) |
W1—O2i | 2.2339 (13) | Na3—O18ii | 2.3414 (15) |
W1—O4 | 1.7435 (14) | Na3—O19 | 2.3733 (18) |
W1—O5 | 1.7449 (13) | Na3—O19ii | 2.3733 (18) |
W1—O6 | 1.9391 (13) | Na4—O13 | 2.3669 (17) |
W1—O8 | 1.9471 (13) | Na4—O14 | 2.4085 (17) |
W2—Sb1 | 3.2772 (1) | Na4—O15 | 2.3636 (17) |
W2—O1i | 2.2106 (12) | Na4—O16 | 2.3479 (19) |
W2—O3 | 2.2599 (12) | Na4—O17 | 2.3585 (17) |
W2—O7 | 1.7455 (14) | Na4—O18 | 2.3655 (18) |
W2—O8 | 1.9387 (13) | O13—H13 | 0.90 (2) |
W2—O9 | 1.7312 (13) | O13—C1 | 1.428 (2) |
W2—O10 | 1.9477 (13) | O14—H14 | 0.91 (2) |
W3—Sb1 | 3.2348 (1) | O14—C3 | 1.431 (3) |
W3—O2 | 2.1925 (12) | O15—H15A | 0.88 (2) |
W3—O3 | 2.2189 (12) | O15—H15B | 0.84 (2) |
W3—O6i | 1.9416 (13) | O16—H16A | 0.90 (3) |
W3—O10 | 1.9383 (13) | O16—H16B | 0.88 (2) |
W3—O11 | 1.7452 (13) | O17—H17A | 0.92 (2) |
W3—O12 | 1.7394 (13) | O17—H17B | 0.88 (2) |
Sb1—O1 | 1.9885 (12) | O18—H18A | 0.92 (2) |
Sb1—O1i | 1.9885 (12) | O18—H18B | 0.91 (2) |
Sb1—O2i | 1.9773 (12) | O19—H19A | 0.90 (2) |
Sb1—O2 | 1.9773 (12) | O19—H19B | 0.88 (2) |
Sb1—O3 | 1.9830 (12) | O20—H20A | 0.92 (3) |
Sb1—O3i | 1.9830 (12) | O20—H20B | 0.91 (3) |
Na1—Na2 | 3.4647 (18) | O21—H21A | 0.89 (2) |
Na1—O21 | 2.4404 (18) | O21—H21B | 0.89 (3) |
Na1—O21ii | 2.4405 (18) | O22—H22A | 0.91 (2) |
Na1—O22ii | 2.3394 (18) | O22—H22B | 0.89 (2) |
Na1—O22 | 2.3394 (18) | O23—H23A | 0.8740 |
Na1—O23ii | 2.371 (6) | O23—H23B | 0.8741 |
Na1—O23 | 2.371 (6) | N1—H1A | 0.9100 |
Na1—O24 | 2.346 (6) | N1—H1B | 0.9100 |
Na1—O24ii | 2.346 (6) | N1—H1C | 0.9100 |
Na2—Na3 | 3.5381 (18) | N1—C2 | 1.496 (2) |
Na2—O19 | 2.4322 (19) | C1—H1D | 0.9900 |
Na2—O19ii | 2.4322 (19) | C1—H1E | 0.9900 |
Na2—O20 | 2.346 (2) | C1—C2 | 1.531 (3) |
Na2—O20ii | 2.346 (2) | C2—H2 | 1.0000 |
Na2—O21ii | 2.4752 (19) | C2—C3 | 1.517 (3) |
Na2—O21 | 2.4752 (19) | C3—H3A | 0.9900 |
Na3—Na4 | 3.4130 (11) | C3—H3B | 0.9900 |
Na3—Na4ii | 3.4130 (11) | O24—H24A | 0.8699 |
Na3—O17ii | 2.4480 (19) | O24—H24B | 0.8705 |
O1i—W1—Sb1 | 36.42 (3) | O24—Na1—Na2 | 83.2 (5) |
O1i—W1—O2i | 72.79 (4) | O24ii—Na1—O21 | 80.7 (3) |
O2i—W1—Sb1 | 36.37 (3) | O24ii—Na1—O21ii | 89.8 (4) |
O4—W1—Sb1 | 130.41 (5) | O24—Na1—O21ii | 80.7 (3) |
O4—W1—O1i | 94.83 (6) | O24—Na1—O21 | 89.8 (4) |
O4—W1—O2i | 163.66 (6) | O24ii—Na1—O23ii | 17.2 (3) |
O4—W1—O5 | 103.63 (7) | O24—Na1—O23ii | 175.4 (5) |
O4—W1—O6 | 95.64 (6) | O24—Na1—O24ii | 166.4 (9) |
O4—W1—O8 | 100.73 (6) | Na1—Na2—Na3 | 180.0 |
O5—W1—Sb1 | 125.95 (5) | O19—Na2—Na1 | 138.05 (4) |
O5—W1—O1i | 160.13 (6) | O19ii—Na2—Na1 | 138.06 (4) |
O5—W1—O2i | 90.26 (6) | O19—Na2—Na3 | 41.95 (4) |
O5—W1—O6 | 99.11 (6) | O19ii—Na2—Na3 | 41.94 (4) |
O5—W1—O8 | 95.10 (6) | O19ii—Na2—O19 | 83.89 (9) |
O6—W1—Sb1 | 77.17 (4) | O19ii—Na2—O21 | 176.21 (6) |
O6—W1—O1i | 86.15 (5) | O19—Na2—O21 | 93.33 (5) |
O6—W1—O2i | 73.36 (5) | O19—Na2—O21ii | 176.21 (6) |
O6—W1—O8 | 155.13 (5) | O19ii—Na2—O21ii | 93.33 (5) |
O8—W1—Sb1 | 77.96 (4) | O20ii—Na2—Na1 | 85.11 (7) |
O8—W1—O1i | 74.00 (5) | O20—Na2—Na1 | 85.11 (7) |
O8—W1—O2i | 86.33 (5) | O20ii—Na2—Na3 | 94.89 (7) |
O1i—W2—Sb1 | 36.33 (3) | O20—Na2—Na3 | 94.89 (7) |
O1i—W2—O3 | 72.77 (4) | O20—Na2—O19 | 90.93 (7) |
O3—W2—Sb1 | 36.45 (3) | O20—Na2—O19ii | 96.34 (7) |
O7—W2—Sb1 | 128.97 (5) | O20ii—Na2—O19ii | 90.93 (7) |
O7—W2—O1i | 93.49 (6) | O20ii—Na2—O19 | 96.34 (7) |
O7—W2—O3 | 163.07 (6) | O20—Na2—O20ii | 170.23 (13) |
O7—W2—O8 | 100.36 (6) | O20—Na2—O21 | 86.25 (7) |
O7—W2—O10 | 95.81 (6) | O20ii—Na2—O21ii | 86.26 (7) |
O8—W2—Sb1 | 77.78 (4) | O20ii—Na2—O21 | 86.81 (7) |
O8—W2—O1i | 73.67 (5) | O20—Na2—O21ii | 86.81 (7) |
O8—W2—O3 | 85.49 (5) | O21ii—Na2—Na1 | 44.78 (4) |
O8—W2—O10 | 153.80 (5) | O21—Na2—Na1 | 44.78 (4) |
O9—W2—Sb1 | 127.21 (5) | O21ii—Na2—Na3 | 135.22 (4) |
O9—W2—O1i | 161.88 (6) | O21—Na2—Na3 | 135.22 (4) |
O9—W2—O3 | 91.10 (6) | O21ii—Na2—O21 | 89.56 (9) |
O9—W2—O7 | 103.75 (7) | Na4ii—Na3—Na2 | 128.30 (2) |
O9—W2—O8 | 97.40 (6) | Na4—Na3—Na2 | 128.29 (2) |
O9—W2—O10 | 98.60 (6) | Na4ii—Na3—Na4 | 103.41 (4) |
O10—W2—Sb1 | 76.02 (4) | O17—Na3—Na2 | 140.10 (4) |
O10—W2—O1i | 84.96 (5) | O17ii—Na3—Na2 | 140.10 (4) |
O10—W2—O3 | 73.62 (5) | O17ii—Na3—Na4ii | 43.71 (4) |
O2—W3—Sb1 | 36.78 (3) | O17—Na3—Na4 | 43.71 (4) |
O2—W3—O3 | 73.84 (4) | O17ii—Na3—Na4 | 76.82 (5) |
O3—W3—Sb1 | 37.06 (3) | O17—Na3—Na4ii | 76.82 (5) |
O6i—W3—Sb1 | 77.99 (4) | O17ii—Na3—O17 | 79.80 (9) |
O6i—W3—O2 | 74.28 (5) | O18ii—Na3—Na2 | 96.98 (5) |
O6i—W3—O3 | 85.85 (5) | O18—Na3—Na2 | 96.98 (5) |
O10—W3—Sb1 | 77.24 (4) | O18ii—Na3—Na4ii | 43.80 (4) |
O10—W3—O2 | 85.43 (5) | O18ii—Na3—Na4 | 124.83 (5) |
O10—W3—O3 | 74.75 (5) | O18—Na3—Na4ii | 124.84 (5) |
O10—W3—O6i | 155.22 (5) | O18—Na3—Na4 | 43.80 (4) |
O11—W3—Sb1 | 126.05 (4) | O18—Na3—O17 | 87.51 (6) |
O11—W3—O2 | 160.69 (5) | O18ii—Na3—O17ii | 87.51 (6) |
O11—W3—O3 | 89.55 (5) | O18ii—Na3—O17 | 81.79 (6) |
O11—W3—O6i | 95.15 (6) | O18—Na3—O17ii | 81.79 (6) |
O11—W3—O10 | 99.89 (6) | O18—Na3—O18ii | 166.05 (10) |
O12—W3—Sb1 | 129.14 (5) | O18ii—Na3—O19 | 90.52 (6) |
O12—W3—O2 | 93.06 (6) | O18ii—Na3—O19ii | 99.67 (6) |
O12—W3—O3 | 163.91 (6) | O18—Na3—O19 | 99.67 (6) |
O12—W3—O6i | 99.77 (6) | O18—Na3—O19ii | 90.52 (6) |
O12—W3—O10 | 95.30 (6) | O19—Na3—Na2 | 43.24 (4) |
O12—W3—O11 | 104.81 (6) | O19ii—Na3—Na2 | 43.24 (4) |
W1—Sb1—W1i | 180.0 | O19—Na3—Na4 | 143.27 (4) |
W1i—Sb1—W2i | 59.590 (4) | O19—Na3—Na4ii | 95.82 (4) |
W1—Sb1—W2 | 59.590 (4) | O19ii—Na3—Na4ii | 143.27 (4) |
W1i—Sb1—W2 | 120.410 (3) | O19ii—Na3—Na4 | 95.82 (4) |
W1—Sb1—W2i | 120.411 (3) | O19ii—Na3—O17 | 97.35 (6) |
W2—Sb1—W2i | 180.0 | O19ii—Na3—O17ii | 171.87 (6) |
W3i—Sb1—W1i | 119.789 (2) | O19—Na3—O17 | 171.87 (6) |
W3—Sb1—W1i | 60.211 (2) | O19—Na3—O17ii | 97.35 (6) |
W3i—Sb1—W1 | 60.211 (2) | O19ii—Na3—O19 | 86.47 (9) |
W3—Sb1—W1 | 119.789 (2) | O13—Na4—Na3 | 134.78 (5) |
W3—Sb1—W2 | 60.200 (4) | O13—Na4—O14 | 81.91 (6) |
W3—Sb1—W2i | 119.800 (5) | O14—Na4—Na3 | 142.74 (5) |
W3i—Sb1—W2i | 60.200 (4) | O15—Na4—Na3 | 94.91 (5) |
W3i—Sb1—W2 | 119.801 (5) | O15—Na4—O13 | 81.40 (6) |
W3—Sb1—W3i | 180.0 | O15—Na4—O14 | 83.06 (6) |
O1—Sb1—W1 | 139.17 (4) | O15—Na4—O18 | 95.30 (6) |
O1—Sb1—W1i | 40.83 (4) | O16—Na4—Na3 | 91.62 (6) |
O1i—Sb1—W1 | 40.83 (4) | O16—Na4—O13 | 92.36 (7) |
O1i—Sb1—W1i | 139.17 (4) | O16—Na4—O14 | 93.13 (7) |
O1—Sb1—W2 | 138.80 (4) | O16—Na4—O15 | 173.08 (7) |
O1i—Sb1—W2i | 138.80 (3) | O16—Na4—O17 | 91.86 (7) |
O1—Sb1—W2i | 41.20 (4) | O16—Na4—O18 | 91.03 (7) |
O1i—Sb1—W2 | 41.19 (3) | O17—Na4—Na3 | 45.83 (4) |
O1—Sb1—W3i | 90.19 (4) | O17—Na4—O13 | 89.02 (6) |
O1i—Sb1—W3i | 89.82 (4) | O17—Na4—O14 | 169.82 (6) |
O1i—Sb1—W3 | 90.18 (4) | O17—Na4—O15 | 91.04 (6) |
O1—Sb1—W3 | 89.81 (4) | O17—Na4—O18 | 89.07 (6) |
O1—Sb1—O1i | 180.0 | O18—Na4—Na3 | 43.24 (4) |
O2i—Sb1—W1 | 42.06 (4) | O18—Na4—O13 | 176.16 (6) |
O2i—Sb1—W1i | 137.94 (4) | O18—Na4—O14 | 99.71 (6) |
O2—Sb1—W1 | 137.94 (4) | Na4—O13—H13 | 115.7 (19) |
O2—Sb1—W1i | 42.06 (4) | C1—O13—Na4 | 123.74 (12) |
O2—Sb1—W2 | 90.01 (4) | C1—O13—H13 | 109.0 (19) |
O2i—Sb1—W2 | 89.99 (4) | Na4—O14—H14 | 117 (3) |
O2—Sb1—W2i | 89.99 (4) | C3—O14—Na4 | 129.46 (12) |
O2i—Sb1—W2i | 90.01 (4) | C3—O14—H14 | 106 (3) |
O2i—Sb1—W3i | 41.59 (4) | Na4—O15—H15A | 121.8 (17) |
O2—Sb1—W3i | 138.40 (4) | Na4—O15—H15B | 132 (2) |
O2i—Sb1—W3 | 138.41 (4) | H15A—O15—H15B | 102 (3) |
O2—Sb1—W3 | 41.60 (4) | Na4—O16—H16A | 126 (4) |
O2i—Sb1—O1 | 97.11 (5) | Na4—O16—H16B | 129 (2) |
O2i—Sb1—O1i | 82.89 (5) | H16A—O16—H16B | 104 (4) |
O2—Sb1—O1 | 82.89 (5) | Na3—O17—H17A | 121 (2) |
O2—Sb1—O1i | 97.11 (5) | Na3—O17—H17B | 104 (2) |
O2—Sb1—O2i | 180.0 | Na4—O17—Na3 | 90.46 (6) |
O2i—Sb1—O3i | 84.00 (5) | Na4—O17—H17A | 121 (2) |
O2i—Sb1—O3 | 96.00 (5) | Na4—O17—H17B | 120 (2) |
O2—Sb1—O3 | 84.00 (5) | H17A—O17—H17B | 101 (3) |
O2—Sb1—O3i | 96.00 (5) | Na3—O18—Na4 | 92.96 (6) |
O3—Sb1—W1i | 90.07 (4) | Na3—O18—H18A | 117.0 (17) |
O3—Sb1—W1 | 89.93 (4) | Na3—O18—H18B | 127 (2) |
O3i—Sb1—W1i | 89.93 (4) | Na4—O18—H18A | 111.3 (17) |
O3i—Sb1—W1 | 90.07 (4) | Na4—O18—H18B | 106 (2) |
O3i—Sb1—W2 | 137.39 (4) | H18A—O18—H18B | 101 (3) |
O3—Sb1—W2 | 42.61 (4) | Na2—O19—H19A | 130 (2) |
O3—Sb1—W2i | 137.39 (4) | Na2—O19—H19B | 104 (2) |
O3i—Sb1—W2i | 42.61 (4) | Na3—O19—Na2 | 94.82 (6) |
O3—Sb1—W3 | 42.41 (3) | Na3—O19—H19A | 109 (2) |
O3—Sb1—W3i | 137.59 (3) | Na3—O19—H19B | 121 (2) |
O3i—Sb1—W3i | 42.41 (3) | H19A—O19—H19B | 101 (3) |
O3i—Sb1—W3 | 137.59 (4) | Na2—O20—H20A | 130 (4) |
O3i—Sb1—O1 | 83.80 (5) | Na2—O20—H20B | 126 (3) |
O3i—Sb1—O1i | 96.21 (5) | H20A—O20—H20B | 104 (4) |
O3—Sb1—O1i | 83.79 (5) | Na1—O21—Na2 | 89.63 (6) |
O3—Sb1—O1 | 96.20 (5) | Na1—O21—H21A | 104 (2) |
O3—Sb1—O3i | 180.00 (6) | Na1—O21—H21B | 103 (3) |
W1i—O1—W2i | 95.28 (5) | Na2—O21—H21A | 132 (2) |
Sb1—O1—W1i | 102.75 (5) | Na2—O21—H21B | 109 (3) |
Sb1—O1—W2i | 102.47 (5) | H21A—O21—H21B | 113 (3) |
W3—O2—W1i | 94.91 (5) | Na1—O22—H22A | 131.2 (19) |
Sb1—O2—W1i | 101.57 (5) | Na1—O22—H22B | 125 (2) |
Sb1—O2—W3 | 101.63 (5) | H22A—O22—H22B | 95 (3) |
W3—O3—W2 | 93.64 (5) | Na1—O23—H23A | 109.8 |
Sb1—O3—W2 | 100.94 (5) | Na1—O23—H23B | 109.3 |
Sb1—O3—W3 | 100.53 (5) | H23A—O23—H23B | 104.3 |
W1—O6—W3i | 114.36 (6) | H1A—N1—H1B | 109.5 |
W2—O8—W1 | 113.61 (6) | H1A—N1—H1C | 109.5 |
W3—O10—W2 | 114.38 (6) | H1B—N1—H1C | 109.5 |
O21—Na1—Na2 | 45.59 (4) | C2—N1—H1A | 109.5 |
O21ii—Na1—Na2 | 45.59 (4) | C2—N1—H1B | 109.5 |
O21—Na1—O21ii | 91.19 (9) | C2—N1—H1C | 109.5 |
O22—Na1—Na2 | 133.05 (5) | O13—C1—H1D | 109.1 |
O22ii—Na1—Na2 | 133.05 (5) | O13—C1—H1E | 109.1 |
O22—Na1—O21 | 87.99 (6) | O13—C1—C2 | 112.67 (15) |
O22ii—Na1—O21ii | 87.99 (6) | H1D—C1—H1E | 107.8 |
O22—Na1—O21ii | 172.04 (6) | C2—C1—H1D | 109.1 |
O22ii—Na1—O21 | 172.04 (6) | C2—C1—H1E | 109.1 |
O22ii—Na1—O22 | 93.90 (10) | N1—C2—C1 | 108.36 (15) |
O22ii—Na1—O23 | 84.0 (2) | N1—C2—H2 | 107.3 |
O22—Na1—O23 | 82.30 (18) | N1—C2—C3 | 110.62 (16) |
O22—Na1—O23ii | 84.0 (2) | C1—C2—H2 | 107.3 |
O22ii—Na1—O23ii | 82.30 (18) | C3—C2—C1 | 115.57 (17) |
O22—Na1—O24ii | 97.9 (4) | C3—C2—H2 | 107.3 |
O22ii—Na1—O24ii | 91.4 (3) | O14—C3—C2 | 112.56 (16) |
O22—Na1—O24 | 91.4 (3) | O14—C3—H3A | 109.1 |
O22ii—Na1—O24 | 97.9 (4) | O14—C3—H3B | 109.1 |
O23ii—Na1—Na2 | 100.1 (2) | C2—C3—H3A | 109.1 |
O23—Na1—Na2 | 100.1 (2) | C2—C3—H3B | 109.1 |
O23—Na1—O21 | 103.9 (2) | H3A—C3—H3B | 107.8 |
O23ii—Na1—O21 | 90.22 (18) | Na1—O24—H24A | 115.3 |
O23ii—Na1—O23 | 159.8 (5) | Na1—O24—H24B | 115.9 |
O24ii—Na1—Na2 | 83.2 (5) | H24A—O24—H24B | 104.5 |
Na4—O13—C1—C2 | 51.8 (2) | O13—C1—C2—C3 | −80.5 (2) |
Na4—O14—C3—C2 | −31.5 (2) | N1—C2—C3—O14 | −56.4 (2) |
O13—C1—C2—N1 | 44.2 (2) | C1—C2—C3—O14 | 67.2 (2) |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x+1, y, −z+1/2. |
POT | Type | References |
K5Na2[SbVWVI6O24] | Anderson | Lee & Sasaki (1987) |
K5.5H1.5[SbVWVI6O24] | Anderson | Naruke & Yamase (1992) |
Na7[SbVWVI6O24] | Anderson | Mukhacheva et al. (2017) |
K6[H12SbV6WVI4O36] | / | Park et al. (1994) |
(NH4)9[SbVWVI18O60(OH)2] | Dawson | Zhang et al. (2010) |
Na9[SbIIIWVI9O33] | Keggin | Bösing et al. (1997) |
K12[SbIII2WVI22O74(OH)2] | Krebs | Bösing et al. (1997) |
[N(CH3)4]10Na12[Na2SbIII8WVI36O132(H2O)4] | / | Bösing et al. (1997) |
\ (H2en)8H6{[SbIII2(WVIO2)2(B-β-SbIIIWVI9O33)\ 2][(WVIO2)2(WVIO3)2(B-β-SbIIIWVI9O33)2]} (en = ethylenediamine) | Krebs | Xin et al. (2019) |
K11Na16[H2(SbW9O33)(W5O12)(Sb2W29O103)] | / | Tanuhadi et al. (2021) |
Acknowledgements
The authors are grateful to Ass.-Prof. Dr. P. Unfried for support with the TGA and to Ao.Univ.-Prof. Mag. Dr. K. Richter for PXRD measurements at the Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna. We thank Elias Tanuhadi, MSc, for valuable discussions concerning this work.
Funding information
Funding for this research was provided by: Austrian Science Fund (grant No. P33927 to NIG; grant No. P33089 to AR); the Erasmus+ program (scholarship No. 1016/2020 to KS) and the University of Vienna.
References
Anderson, J. S. (1937). Nature, 140, 850. CrossRef Google Scholar
Andreessen, B. & Steinbüchel, A. (2011). AMB Express, 1, article No. 12. Google Scholar
Barbera, V., Leonardi, G., Valerio, A. M., Rubino, L., Sun, S., Famulari, A., Galimberti, M., Citterio, A. & Sebastiano, R. (2020). ACS Sustainable Chem. Eng. 8, 9356–9366. CrossRef CAS Google Scholar
Bijelic, A., Aureliano, M. & Rompel, A. (2018). Chem. Commun. 54, 1153–1169. Web of Science CrossRef CAS Google Scholar
Bijelic, A., Aureliano, M. & Rompel, A. (2019). Angew. Chem. Int. Ed. 58, 2980–2999. Web of Science CrossRef CAS Google Scholar
Bijelic, A. & Rompel, A. (2015). Coord. Chem. Rev. 299, 22–38. Web of Science CrossRef CAS PubMed Google Scholar
Bijelic, A. & Rompel, A. (2017). Acc. Chem. Res. 50, 1441–1448. Web of Science CrossRef CAS PubMed Google Scholar
Bijelic, A. & Rompel, A. (2018). ChemTexts, 4, article No. 10. CrossRef Google Scholar
Blazevic, A. & Rompel, A. (2016). Coord. Chem. Rev. 307, 42–64. Web of Science CrossRef CAS Google Scholar
Bösing, M., Loose, I., Pohlmann, H. & Krebs, B. (1997). Chem. Eur. J. 3, 1232–1237. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cherevan, A. S., Nandan, S. P., Roger, I., Liu, R., Streb, C. & Eder, D. (2020). Adv. Sci. 7, article No. 1903511. CrossRef Google Scholar
Clemente-Juan, J. M., Coronado, E. & Gaita-Ariño, A. (2012). Chem. Soc. Rev. 41, 7464–7478. Web of Science CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Evans, H. T. Jr (1948). J. Am. Chem. Soc. 70, 1291–1292. CrossRef ICSD CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gumerova, N. I., Caldera Fraile, T., Roller, A., Giester, G., Pascual-Borràs, M., Ohlin, C. A. & Rompel, A. (2019). Inorg. Chem. 58, 106–113. CrossRef CAS PubMed Google Scholar
Gumerova, N. I. & Rompel, A. (2020). Chem. Soc. Rev. 49, 7568–7601. CrossRef CAS PubMed Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Lee, U., Joo, H.-C. & Park, K.-M. (2004). Acta Cryst. E60, i55–i57. CrossRef IUCr Journals Google Scholar
Lee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc. 15, 37–45. Web of Science CrossRef CAS Google Scholar
Lee, U. K. & Sasaki, Y. (1987). Bull. Korean Chem. Soc. 8, 1–3. CAS Google Scholar
Li, Q. & Wei, Y. (2021). Chem. Commun. 57, 3865–3868. CrossRef CAS Google Scholar
Lindqvist, I. (1959). Ark. Kemi. 2, 323. Google Scholar
Liu, W., Lin, Z., Bassil, B. S., Al-Oweini, R. & Kortz, U. (2015). CHIMIA Int. J. Chem. 69, 537–540. CrossRef CAS Google Scholar
Mukhacheva, A. A., Abramov, P. A. & Sokolov, M. N. (2017). Curr. Inorg. Chem. 7, 4–7. CrossRef CAS Google Scholar
Naruke, H. & Yamase, T. (1992). Acta Cryst. C48, 597–599. CrossRef CAS IUCr Journals Google Scholar
Ogawa, A., Yamato, H., Lee, U., Ichida, H., Kobayashi, A. & Sasaki, Y. (1988). Acta Cryst. C44, 1879–1881. CrossRef CAS IUCr Journals Google Scholar
Park, K. M., Ozawa, Y. & Lee, U. (1994). J. Korean Chem. Soc. 3, 359–365. Google Scholar
Pope, M. (1983). In Heteropoly and Isopoly Oxometalates. Berlin: Springer. Google Scholar
Qu, X., Yang, Y., Zhang, F. & Yu, X. (2012). Struct. Chem. 23, 1867–1872. Web of Science CrossRef ICSD CAS Google Scholar
Rhule, J. T., Hill, C. L., Judd, D. A. & Schinazi, R. F. (1998). Chem. Rev. 98, 327–358. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tanuhadi, E., Al-Sayed, E., Novitchi, G., Roller, A., Giester, G. & Rompel, A. (2020). Inorg. Chem. 59, 8461–8467. CrossRef CAS PubMed Google Scholar
Tanuhadi, E., Gumerova, N. I., Prado-Roller, A., Mautner, A. & Rompel, A. (2021). Inorg. Chem. 60, 8917–8923. CrossRef CAS PubMed Google Scholar
Tanuhadi, E., Roller, A., Giester, G., Kampatsikas, I. & Rompel, A. (2018). Dalton Trans. 47, 15651–15655. CrossRef CAS PubMed Google Scholar
Wang, S.-S. & Yang, G.-Y. (2015). Chem. Rev. 115, 4893–4962. Web of Science CrossRef CAS PubMed Google Scholar
Xin, X., Ma, Y., Hou, L., Wang, Y., Xue, X., Lin, J. & Han, Z. (2019). Inorg. Chem. 58, 9567–9571. CrossRef CAS PubMed Google Scholar
Zhang, J., Huang, Y., Hao, J. & Wei, Y. (2017). Inorg. Chem. Front. 4, 1215–1218. CrossRef CAS Google Scholar
Zhang, Y.-Y., Liu, S., Yu, C., Tang, Q., Liang, D., Zhang, C., Ma, F., Li, S., Zhang, W. & Tan, R. (2010). Inorg. Chem. Commun. 13, 1418–1420. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.