research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Synthesis and characterization of the Anderson–Evans tungsto­anti­monate [Na5(H2O)18{(HOCH2)2CHNH3}2][SbW6O24]

crossmark logo

aUniversität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria, and bUniversität Wien, Fakultät für Geowissenschaften, Geographie und Astronomie, Institut für Mineralogie und Kristallographie, Althanstraße 14, 1090 Wien, Austria
*Correspondence e-mail: annette.rompel@univie.ac.at

Edited by A. R. Kennedy, University of Strathclyde, United Kingdom (Received 25 April 2021; accepted 16 June 2021; online 28 June 2021)

A novel tungsto­anti­monate, [Na5(H2O)18{(HOCH2)2CHNH3}2][SbVWVI6O24] (SbW6), was synthesized from an aqueous solution and structurally characterized by single-crystal X-ray diffraction, which revealed C2/c symmetry. The structure contains two serinol [(HOCH2)2CHNH3]+ and five Na+ cations, which are octa­hedrally surrounded by 18 water mol­ecules, and one [SbVWVI6O24]7− anion. The serinol mol­ecules also play a critical role in the synthesis by acting as a mild buffering agent. Each of the WVI and SbV ions is six-coordinated and displays a distorted octa­hedral motif. A three-dimensional supra­molecular framework is formed via hydrogen-bonding inter­actions between the tungsto­anti­monates and cations. Powder X-ray diffraction, elemental analysis, thermogravimetric analy­sis and IR spectroscopy were performed on SbW6 to prove the purity, to identify the water content and to characterize the vibrational modes of the crystallized phase.

1. Introduction

Polyoxometalates (POMs) are known as early transition metal–oxygen clusters (Pope, 1983[Pope, M. (1983). In Heteropoly and Isopoly Oxometalates. Berlin: Springer.]; Gumerova & Rompel, 2020[Gumerova, N. I. & Rompel, A. (2020). Chem. Soc. Rev. 49, 7568-7601.]). They are assembled from {MOx} polyhedra, with x = 4–7 and M being commonly MoV/VI, WV/VI, VIV/V, NbV or TaV as addenda ions, through sharing of corners and edges (Pope, 1983[Pope, M. (1983). In Heteropoly and Isopoly Oxometalates. Berlin: Springer.]). POMs can be considered as either isopolyanions [MmOy]q, which feature only one metallic M ion (MoV/VI, WV/VI, VIV/V, NbV or TaV), or heteropolyanions [XrMmOy]q, which additionally contain a heteroelement X (Pope, 1983[Pope, M. (1983). In Heteropoly and Isopoly Oxometalates. Berlin: Springer.]). POMs display a wide range of crucial applications, ranging from catalysis (Wang & Yang, 2015[Wang, S.-S. & Yang, G.-Y. (2015). Chem. Rev. 115, 4893-4962.]), materials science (Cherevan et al., 2020[Cherevan, A. S., Nandan, S. P., Roger, I., Liu, R., Streb, C. & Eder, D. (2020). Adv. Sci. 7, article No. 1903511.]) and mol­ecular magnetism (Clemente-Juan et al., 2012[Clemente-Juan, J. M., Coronado, E. & Gaita-Ariño, A. (2012). Chem. Soc. Rev. 41, 7464-7478.]), to bio- and nanotechnology (Rhule et al., 1998[Rhule, J. T., Hill, C. L., Judd, D. A. & Schinazi, R. F. (1998). Chem. Rev. 98, 327-358.]; Bijelic et al., 2018[Bijelic, A., Aureliano, M. & Rompel, A. (2018). Chem. Commun. 54, 1153-1169.], 2019[Bijelic, A., Aureliano, M. & Rompel, A. (2019). Angew. Chem. Int. Ed. 58, 2980-2999.]), as well as macromolecular crystallography (Bijelic & Rompel, 2015[Bijelic, A. & Rompel, A. (2015). Coord. Chem. Rev. 299, 22-38.], 2017[Bijelic, A. & Rompel, A. (2017). Acc. Chem. Res. 50, 1441-1448.], 2018[Bijelic, A. & Rompel, A. (2018). ChemTexts, 4, article No. 10.]).

The Anderson–Evans polyoxoanion has the general for­mula [Hy(XO6)M6O18]n−, where y = 0–6, n = 2–8, M = addenda ion (MoVI or WVI) and X = central heteroion in oxidation states from +2 to +7 (Blazevic & Rompel, 2016[Blazevic, A. & Rompel, A. (2016). Coord. Chem. Rev. 307, 42-64.]). Its structure consists of six corner- and edge-shared {MoO6} or {WO6} octa­hedra, which surround the {XO}6 octa­hedron (Evans, 1948[Evans, H. T. Jr (1948). J. Am. Chem. Soc. 70, 1291-1292.]). In the structure, there exist three differently coordinated oxygen ions (Fig. 1[link]): six triple-bridged oxygen ions (μ3-O) that connect the heteroion and two addenda ions, six double-bridged oxygen ions (μ2-O) that connect two addenda ions and lastly two terminal oxygen ions (Ot) per addenda ion (Evans, 1948[Evans, H. T. Jr (1948). J. Am. Chem. Soc. 70, 1291-1292.]; Pope, 1983[Pope, M. (1983). In Heteropoly and Isopoly Oxometalates. Berlin: Springer.]). The oxidation state of a heteroion plays a significant role in the protonation mode of the triple-bridged oxygen ions (μ3-O) in the Anderson–Evans archetype, according to which they can be divided into three groups. The first, i.e. [Xn+M6O24](12–n)− (n = 5–7), referred to as `type A', is a deprotonated structure that exists when it contains hetero­ions with a high oxidation state (e.g. TeVI or IVII). The second, i.e. [Xn+(OH)6M6O18](6–n)− (n = 2–4), referred to as `type B', is protonated on the six μ3-O ions, with each side having three protons. The B-type POMs are usually present when the heteroion has a low oxidation state (e.g. NiII or CoII) (Blazevic & Rompel, 2016[Blazevic, A. & Rompel, A. (2016). Coord. Chem. Rev. 307, 42-64.]). The third group, called `mixed type', is a combination of the two types mentioned above, as it has protonated μ3-O ions only on one side (Gumerova et al., 2019[Gumerova, N. I., Caldera Fraile, T., Roller, A., Giester, G., Pascual-Borràs, M., Ohlin, C. A. & Rompel, A. (2019). Inorg. Chem. 58, 106-113.]). Therefore, it is referred to as one-side protonated with one known polyoxotungstate example, [CrIII(OH)3WVI6O21]6–, so far (Gumerova et al., 2019[Gumerova, N. I., Caldera Fraile, T., Roller, A., Giester, G., Pascual-Borràs, M., Ohlin, C. A. & Rompel, A. (2019). Inorg. Chem. 58, 106-113.]). Inter­estingly, there are some platinum-based com­pounds, with the general formula [HnPtIVMVI6O24](8–n)− (M = W or Mo, where 1 < n < 6; Lee et al., 2004[Lee, U., Joo, H.-C. & Park, K.-M. (2004). Acta Cryst. E60, i55-i57.]), which exhibit protonation degrees of their μ3-O ions ranging from 1 to 6 and n is not necessarily an integer.

[Figure 1]
Figure 1
Displacement ellipsoid plot of SbW6 with the hydrogen-bond inter­actions between the anion and the counter-cation com­plex highlighted (orange dashed line). Displacement ellipsoids are displayed at the 50% probability level. Colour code: W blue, Sb pink, Na green, C grey, N purple, O red and H white.

The majority of Anderson–Evans-type clusters have a planar hexa­gonal configuration with [\overline{3}]m (D3d) point symmetry, which is known as the α-isomer (Anderson, 1937[Anderson, J. S. (1937). Nature, 140, 850.]). Another configuration of the Anderson–Evans-type cluster shows a bent structure of 2mm (C2v) point symmetry and is called the β-isomer (Lindqvist, 1959[Lindqvist, I. (1959). Ark. Kemi. 2, 323.]). An example of the β-isomer was presented by the Ogawa group (Ogawa et al., 1988[Ogawa, A., Yamato, H., Lee, U., Ichida, H., Kobayashi, A. & Sasaki, Y. (1988). Acta Cryst. C44, 1879-1881.]), i.e. [SbV(OH)2MoVI6O22]5− and is one of the few reported structures to date (Lee & Sasaki, 1994[Lee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc. 15, 37-45.]; Zhang et al., 2017[Zhang, J., Huang, Y., Hao, J. & Wei, Y. (2017). Inorg. Chem. Front. 4, 1215-1218.]; Li & Wei, 2021[Li, Q. & Wei, Y. (2021). Chem. Commun. 57, 3865-3868.]). The Anderson–Evans com­pounds can be modified in several ways: (i) by variation of the heteroion in the central position; (ii) by combination with various inorganic and organic cations, and (iii) by covalent attachment of one or two alkoxo ligands.

In recent decades, some unsubstituted tungsto­anti­monates, which have only one heteroion, SbIII/V, have been synthesized and structurally characterized (Table 1[link]), but the majority of Sb-containing polyoxotungstates (POTs) contain additional heteroions, such as 3d or 4f metals (Tanuhadi et al., 2018[Tanuhadi, E., Roller, A., Giester, G., Kampatsikas, I. & Rompel, A. (2018). Dalton Trans. 47, 15651-15655.], 2020[Tanuhadi, E., Al-Sayed, E., Novitchi, G., Roller, A., Giester, G. & Rompel, A. (2020). Inorg. Chem. 59, 8461-8467.]). Only three Sb-POTs of the Anderson–Evans archetype, namely, K5Na2[SbVWVI6O24]·12H2O (Lee & Sasaki, 1987[Lee, U. K. & Sasaki, Y. (1987). Bull. Korean Chem. Soc. 8, 1-3.]), K5.5H1.5[SbVWVI6O24]·6H2O (Naruke & Yamase, 1992[Naruke, H. & Yamase, T. (1992). Acta Cryst. C48, 597-599.]) and Na7[SbVWVI6O24]·24H2O (Mukhacheva et al., 2017[Mukhacheva, A. A., Abramov, P. A. & Sokolov, M. N. (2017). Curr. Inorg. Chem. 7, 4-7.]), have been reported so far. Inter­estingly, the relative luminescence yield from the O→W LCMT transition of K5.5H1.5[SbVWVI6O24]·6H2O was higher than that of Ln-containing Na9[GdIII(WVI5O18)2]·18H2O under the same conditions (Naruke & Yamase, 1992[Naruke, H. & Yamase, T. (1992). Acta Cryst. C48, 597-599.]). The high luminescence yield of [SbVWVI6O24]7− is attractive for potential photochemical applications in the future.

Table 1
POTs with SbIII/V as the only heteroion [based on the Inorganic Crystal Structure Database (FIZ, Karlsruhe; https://www.fiz-informationsdienste.de/DB/icsd/www-recherche.htm) and the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) in April 2021]

POT Type References
K5Na2[SbVWVI6O24] Anderson Lee & Sasaki (1987[Lee, U. K. & Sasaki, Y. (1987). Bull. Korean Chem. Soc. 8, 1-3.])
K5.5H1.5[SbVWVI6O24] Anderson Naruke & Yamase (1992[Naruke, H. & Yamase, T. (1992). Acta Cryst. C48, 597-599.])
Na7[SbVWVI6O24] Anderson Mukhacheva et al. (2017[Mukhacheva, A. A., Abramov, P. A. & Sokolov, M. N. (2017). Curr. Inorg. Chem. 7, 4-7.])
K6[H12SbV6WVI4O36] Pseudo-Anderson–Evans dimer Park et al. (1994[Park, K. M., Ozawa, Y. & Lee, U. (1994). J. Korean Chem. Soc. 3, 359-365.])
(NH4)9[SbVWVI18O60(OH)2] Dawson Zhang et al. (2010[Zhang, Y.-Y., Liu, S., Yu, C., Tang, Q., Liang, D., Zhang, C., Ma, F., Li, S., Zhang, W. & Tan, R. (2010). Inorg. Chem. Commun. 13, 1418-1420.])
Na9[SbIIIWVI9O33] Keggin Bösing et al. (1997[Bösing, M., Loose, I., Pohlmann, H. & Krebs, B. (1997). Chem. Eur. J. 3, 1232-1237.])
K12[SbIII2WVI22O74(OH)2] Krebs Bösing et al. (1997[Bösing, M., Loose, I., Pohlmann, H. & Krebs, B. (1997). Chem. Eur. J. 3, 1232-1237.])
[N(CH3)4]10Na12[Na2SbIII8WVI36O132(H2O)4] Trimer based on lacunary Keggin Bösing et al. (1997[Bösing, M., Loose, I., Pohlmann, H. & Krebs, B. (1997). Chem. Eur. J. 3, 1232-1237.])
(H2en)8H6{[SbIII2(WVIO2)2(B-β-SbIIIWVI9O33)2][(WVIO2)2(WVIO3)2(B-β-SbIIIWVI9O33)2]} (en = ethyl­enedi­amine) Krebs Xin et al. (2019[Xin, X., Ma, Y., Hou, L., Wang, Y., Xue, X., Lin, J. & Han, Z. (2019). Inorg. Chem. 58, 9567-9571.])
K11Na16[H2(SbIIIWVI9O33)(WVI5O12)(SbIII2WVI29O103)] Trimer based on lacunary Keggin Tanuhadi et al. (2021[Tanuhadi, E., Gumerova, N. I., Prado-Roller, A., Mautner, A. & Rompel, A. (2021). Inorg. Chem. 60, 8917-8923.])

Serinol (C3H9NO2, 2-amino­propane-1,3-diol) is a very stable, highly water soluble, nontoxic, odourless, biodegradable compound which is widely used as a versatile starting material in organic synthesis and as an additive for materials applications, such as com­posite materials (Barbera et al., 2020[Barbera, V., Leonardi, G., Valerio, A. M., Rubino, L., Sun, S., Famulari, A., Galimberti, M., Citterio, A. & Sebastiano, R. (2020). ACS Sustainable Chem. Eng. 8, 9356-9366.]; Andreessen & Steinbüchel, 2011[Andreessen, B. & Steinbüchel, A. (2011). AMB Express, 1, article No. 12.]). In POM synthesis, serinol can be seen as an alk­oxy­lation ligand or a counter-cation or buffering agent due to the presence of an amino group. Considering that the Sb-centred Anderson–Evans POT has not yet been reported with organic counter-cations, we expand the com­pound class by applying serinol, which can coordinate in different ways to metals through the –NH2 and –HOCH2 groups and thus significantly affects both the structure and properties, in the synthesis in Sb5+–WO42− (with an Sb:W ratio of 1:6) systems. Here we report a novel Anderson–Evans Sb-centred POT, [Na5(H2O)18{(HOCH2)2CHNH3}2][SbVWVI6O24] (SbW6), being the first example of [SbVWVI6O24]7− crystallized with an organic counter-cation, which was synthesized from aqueous solution and has been fully characterized.

2. Experimental

2.1. Synthesis and crystallization

The reagents were used as purchased from Merck (Austria) and VWR (Austria) without further purification.

2.1.1. Synthesis of [Na5(H2O)18{(HOCH2)2CHNH3}2][SbW6O24] (SbW6)

Na2WO4·2H2O (0.99 g, 3 mmol) and KSbV(OH)6 (0.13 g, 0.5 mmol) were mixed in a 6:1 ratio in H2O (12 ml), yielding a turbid solution. The solution was then acidified with aqueous HCl (1 M, 4.4 ml) and the pH was set at 4.0. Serinol [(HOCH2)2CHNH2; 0.18 g, 2 mmol] was then added and the pH was altered to 7.1. Under stirring and heating for 1 h, at 75 °C, the precipitate was dissolved, and the final solution was colourless. The pH after the reaction was 7.0. The solution was left for evaporation at room tem­perature, leading to colourless crystals suitable for single-crystal X-ray diffraction within 1 d (yield: 0.4 g, 60%, based on W). The pH of the Sb5+–WO42− solution was varied from 3.7 to 5.0; however, after the addition of serinol (0.18 g, 2 mmol), the final pH was in the range from 7.0 to 7.7 and, in all cases, crystals with the same unit cell were obtained. Other synthetic routes, such as reflux reaction and hydro­thermal synthesis at 120 °C, for the same reaction mixture led to the same product. Elemental analysis found (calculated) for [Na5(H2O)18{(HOCH2)2CHNH3}2][SbVWVI6O24] (%): C 3.18 (3.23), H 2.56 (2.53), N 1.29 (1.25), O 32.89 (32.97). FT–IR (cm−1): 3357 (s), 2952 (sh), 1610 (s), 1498 (s), 1464 (sh), 1373 (w), 1256 (w), 1099 (w), 1037 (s), 1018 (sh), 927 (s), 850 (s), 703 (sh), 632 (w), 640 (w), 563 (w), 420 (s), 349 (s), 310 (s).

2.2. IR spectroscopy

SbW6 was characterized by IR spectroscopy on a Bruker Vertex70 IR Spectrometer equipped with a single-reflection diamond-ATR unit in the range 4000–300 cm−1.

2.3. TGA measurements

Thermogravimetric analysis (TGA) was performed on a Mettler SDTA851e Thermogravimetric Analyzer under a nitro­gen flow with a heating rate of 5 K min−1 in the region from 303 to 873 K.

2.4. Elemental analysis

The determination of C/H/N/O was carried out using an `EA 1108 CHNS-O' elemental analyzer by Carlo Erba Instruments at the Mikroanalytisches Laboratorium, Faculty of Chemistry, University of Vienna.

2.5. Powder X-ray diffraction (PXRD)

PXRD was performed on a Bruker D8 Advance diffrac­tometer, with Cu Kα radiation (λ = 1.54056 Å), a Lynxeye silicon strip detector and a SolX energy dispersive detector (variable slit aperture with 12 mm, 10° ≤ 2θ ≤ 50°).

2.6. Refinement

In Table 2[link], the crystallographic characteristics of SbW6 and the experimental conditions of data collection and refinement are reported. The positions of the H atoms of the water mol­ecules were obtained by difference Fourier techniques and were refined with free isotropic displacement parameters and O—H distances restrained to 0.95 (2) Å. The disordered water mol­ecule in the coordination sphere of atom Na1 was refined with two positions (O23 and O24), with free occupancy factors to a total of 100%. The H atoms of this disordered group had Uiso(H) values set to 1.5Ueq(O) of the parent atom. H atoms bound to N or C atoms were placed in idealized positions (N—H = 0.91 Å and C—H = 0.99 or 1.00 Å for CH2 and CH groups, respectively) and refined in riding modes, with Uiso(H) values set to 1.5Ueq(N) or to 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Na5(H2O)18(C3H10NO2)2][SbW6O24]
Mr 2232.32
Crystal system, space group Monoclinic, C2/c
Temperature (K) 200
a, b, c (Å) 21.9761 (14), 13.9179 (9), 16.209 (1)
β (°) 111.189 (2)
V3) 4622.5 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 15.61
Crystal size (mm) 0.1 × 0.08 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.542, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 100214, 8841, 8213
Rint 0.030
(sin θ/λ)max−1) 0.770
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.025, 1.15
No. of reflections 8841
No. of parameters 390
No. of restraints 23
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.60, −0.69
Computer programs: APEX3 (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

3. Results and discussion

The preparation of SbW6 was carried out at a WVI to SbV ratio of 6:1 and at a pH of 7.1. In the absence of serinol, at pH 7.5, protonated K5.5H1.5[SbVWVI6O24]·6H2O (Naruke & Yamase, 1992[Naruke, H. & Yamase, T. (1992). Acta Cryst. C48, 597-599.]), and at pH 4.5, unprotonated K5Na2[SbVWVI6O24]·12H2O (Lee & Sasaki, 1987[Lee, U. K. & Sasaki, Y. (1987). Bull. Korean Chem. Soc. 8, 1-3.]), were obtained.

The main structural elements of SbW6 are the Anderson–Evans [SbVWVI6O24]7− anion and the com­plex [Na5(H2O)18{(HOCH2)2CHNH3}2]7+ cation, which are connected via hydrogen bonds between terminal (Ot) and bridging O atoms (μ2-O) of the polyanion and protons from the cationic com­plex (Fig. 1[link]). Crystallographically centrosymmetric [SbVWVI6O24]7− shows the characteristic Anderson–Evans A-type structure with a central {SbO6} octa­hedron surrounded by six edge-shared {WO6} octa­hedra that form a planar array of distorted octa­hedra (Fig. 1[link]). The average W—Sb bond length is 3.26 Å. As is typical for all Anderson–Evans A-type structures, three different coordination modes of the O atoms are present in the structure: six triple-bridged oxygen ions (μ3-O) connect the heteroion and two W ions, six double-bridged oxygen ions (μ2-O) connect two W ions and two terminal oxygen (Ot) ions are connected to each of the six W ions (Fig. 1[link]). The average distance for Sb—μ3-O is 1.98 Å, for W—μ3-O is 2.27 Å, for W—μ2-O is 1.94 Å and for W—Ot is 1.74 Å. The values are com­parable with those of K5.5H1.5[SbVWVI6O24] (Naruke & Yamase, 1992[Naruke, H. & Yamase, T. (1992). Acta Cryst. C48, 597-599.]). For instance, the Sb—μ3-O bond length (1.98 Å) differs by only 0.03 Å from the others reported by Naruke & Yamase (1992[Naruke, H. & Yamase, T. (1992). Acta Cryst. C48, 597-599.]) (2.01 Å). Applying bond valence sum (BVS) calculations (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]), all the W ions in [SbVWVI6O24]7− exhibit the +VI oxidation state (average calculated value of 6.01) and Sb shows the +V oxidation state (5.37). Based on BVS analysis and the number of counter-cations, it was concluded that the Anderson–Evans anion is not protonated and belongs to type A.

The counter-cation is com­posed of five octa­hedrally coordinated Na+ ions, which assemble in an elevated T-shape form, and two protonated serinol mol­ecules that are coordinated to two Na+ ions via –HOCH2 groups. This group has crystallographically imposed twofold symmetry. One serinol ligand inter­acts through the –NH3 group with the terminal O atom of the POT anion, and the second inter­acts with the adjacent O atom in {NaO6} (Fig. 1[link]).

The three-dimensional (3D) structure of SbW6 consists of two-dimensional (2D) sheets formed of [SbVWVI6O24]7− anions and com­plex [Na5(H2O)18{(HOCH2)2CHNH3}2]7+, cations connected via hydrogen bonds (Figs. 1[link] and 2[link]). The distances between 2D layers are approximately 2.79 Å, which allows the formation of hydrogen bonds between the layers and creates cavities along the b axis (Fig. 2[link]a). This packing is different to that observed in K5.5H1.5[SbVWVI6O24]·6H2O and K5Na2[SbVWVI6O24]·12H2O, where the layers of anions alternate with layers or single polyhedra of counter-cations.

[Figure 2]
Figure 2
The crystal packing of SbW6, (a) viewed along the b axis and (b) viewed along the z axis. Colour code: {WO6} turquoise, {SbO6} orange, {Na(H2O)6} grey, C grey, N blue, O red and H black.

The IR spectrum of SbW6 (Fig. 3[link]) is characteristic for Anderson–Evans POMs (Liu et al., 2015[Liu, W., Lin, Z., Bassil, B. S., Al-Oweini, R. & Kortz, U. (2015). CHIMIA Int. J. Chem. 69, 537-540.]; Qu et al., 2012[Qu, X., Yang, Y., Zhang, F. & Yu, X. (2012). Struct. Chem. 23, 1867-1872.]). The broad bands in the region between 2300 to 3750 cm−1 represent the vibrations of the –OH groups of H2O and the N—H bonds of the amine groups of serinol. In the area between 1610 and 1018 cm−1, the bands are attributed to the vibrations of C—H, C—O and again N—H in serinol. The bands at about 930 and 880 cm−1 are attributed to anti­symmetric stretching vibrations of the terminal W=O bonds and Sb—O—W bridges (Ob), respectively. The bands at 640 and 563 cm−1 are associated with the asymmetric stretching of W—O—W bridges (Ob) and the bending vibrations of W—O—W, respectively. Lastly, the bands between 750 and 300 cm−1 are contributed by Sb—O—W vibrations (Liu et al., 2015[Liu, W., Lin, Z., Bassil, B. S., Al-Oweini, R. & Kortz, U. (2015). CHIMIA Int. J. Chem. 69, 537-540.]).

[Figure 3]
Figure 3
IR spectrum of SbW6 in the region from 4000 to 300 cm−1.

The powder XRD pattern of SbW6 (Fig. 4[link]) was investigated at room tem­perature. The simulated powder diffraction pattern was based on the single-crystal structural data. The observed peak positions are in good alignment with the simulated patterns, which confirms that the POT structure had been solved accurately and that SbW6 consists of a single phase.

[Figure 4]
Figure 4
Experimental (blue colour) and simulated (black colour) powder XRD pattern of SbW6.

The exact number of water mol­ecules was determined using TGA. The curve (Fig. 5[link]) shows three weight-loss steps during the heating process from 30 to 600 °C. The first weight loss of 14.7% in the tem­perature range 30–200 °C corresponds to all water mol­ecules from the Na+ coordinating spheres. The second and third step correspond in total to 8.4% and the loss of two serinol mol­ecules.

[Figure 5]
Figure 5
Thermogravimetric curve of SbW6.

The com­position of the counter-cation has remarkable effects on the crystal packing and thus on the physical properties of Anderson–Evans POMs (Blazevic & Rompel, 2016[Blazevic, A. & Rompel, A. (2016). Coord. Chem. Rev. 307, 42-64.]). The success in synthesizing SbW6 shows that the Sb-centred Anderson–Evans POT is a versatile building block, which can be modified by organic counter-cations into high-dimensional architectures. SbW6 is the first reported K+-free salt with an organic counter-cation, and it has much higher water solubility and can expand the areas of its application in aqueous solution.

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a) and shelXle (Hübschle et al., 2011); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2020).

Sodium-serinol hexatungstoanitimonate top
Crystal data top
[Na5(H2O)18(C3H10NO2)2][SbW6O24]F(000) = 4096
Mr = 2232.32Dx = 3.208 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.9761 (14) ÅCell parameters from 9051 reflections
b = 13.9179 (9) Åθ = 2.4–33.2°
c = 16.209 (1) ŵ = 15.61 mm1
β = 111.189 (2)°T = 200 K
V = 4622.5 (5) Å3Block, clear colourless
Z = 40.1 × 0.08 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
8213 reflections with I > 2σ(I)
φ and ω scansRint = 0.030
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 33.2°, θmin = 2.0°
Tmin = 0.542, Tmax = 0.747h = 3333
100214 measured reflectionsk = 2121
8841 independent reflectionsl = 2424
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.013 w = 1/[σ2(Fo2) + (0.0049P)2 + 8.8181P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.025(Δ/σ)max = 0.004
S = 1.15Δρmax = 0.60 e Å3
8841 reflectionsΔρmin = 0.69 e Å3
390 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
23 restraintsExtinction coefficient: 0.000087 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Olex2_refinement_description 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All N(H,H,H) groups, All O(H,H) groups 2. Restrained distances O24—H24B = O24—H24A = O23—H23A = O23—H23B = O22—H22A = O22—H22B = O21—H21A = O21—H21B = O20—H20A = O20—H20B = O19—H19A = O19—H19B = O18—H18B = O18—H18A = O16—H16B = O16—H16A = O17—H17B = O17—H17A = O15—H15B = O15—H15A = O14—H14 = O13—H13 0.95 with σ of 0.03 Na1—H24A ~ Na1—H24B with σ of 0.02 3. Others Sof(O24)=Sof(H24A)=Sof(H24B)=FVAR(1) Sof(O23)=Sof(H23A)=Sof(H23B)=FVAR(2) 4.a Free rotating group: O24(H24A,H24B) 4.b Rotating group: O23(H23A,H23B) 4.c Ternary CH refined with riding coordinates: C2(H2) 4.d Secondary CH2 refined with riding coordinates: C1(H1D,H1E), C3(H3A,H3B) 4.e Idealized Me refined as rotating group: N1(H1A,H1B,H1C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
W10.23646 (2)0.98310 (2)0.50967 (2)0.00915 (2)
W20.33638 (2)0.89214 (2)0.42377 (2)0.00926 (2)
W30.34950 (2)0.65895 (2)0.41500 (2)0.00910 (2)
Sb10.2500000.7500000.5000000.00687 (3)
O10.19305 (6)0.63497 (9)0.46152 (8)0.0092 (2)
O20.32045 (6)0.65301 (9)0.53084 (8)0.0093 (2)
O30.26877 (6)0.76387 (9)0.38977 (8)0.0088 (2)
O40.29370 (7)1.06930 (10)0.56698 (9)0.0160 (3)
O50.16585 (7)1.05002 (10)0.45722 (9)0.0164 (3)
O60.21773 (6)0.93907 (9)0.61149 (8)0.0116 (2)
O70.39611 (7)0.97551 (10)0.48078 (9)0.0174 (3)
O80.25818 (6)0.96747 (9)0.40414 (8)0.0115 (2)
O90.33570 (7)0.89690 (10)0.31671 (9)0.0160 (3)
O100.39142 (6)0.77917 (9)0.46445 (8)0.0122 (2)
O110.34480 (7)0.67242 (10)0.30582 (9)0.0143 (3)
O120.41832 (7)0.58827 (10)0.46496 (9)0.0168 (3)
Na10.5000000.99629 (9)0.2500000.0197 (2)
Na20.5000000.74736 (9)0.2500000.0239 (3)
Na30.5000000.49315 (9)0.2500000.0192 (2)
Na40.41110 (4)0.34118 (6)0.32760 (5)0.01762 (16)
O130.33515 (7)0.21655 (10)0.26482 (9)0.0161 (3)
H130.3018 (12)0.232 (2)0.2144 (16)0.039 (8)*
O140.37746 (8)0.31336 (12)0.45147 (10)0.0228 (3)
H140.370 (2)0.366 (2)0.479 (3)0.086 (14)*
O150.31493 (7)0.43482 (11)0.27597 (10)0.0175 (3)
H15A0.2958 (12)0.4493 (19)0.2199 (14)0.026 (7)*
H15B0.3004 (14)0.4779 (19)0.3006 (19)0.041 (9)*
O160.49851 (9)0.23264 (14)0.37966 (13)0.0348 (4)
H16A0.504 (3)0.179 (3)0.352 (3)0.13 (2)*
H16B0.5299 (14)0.230 (2)0.4319 (17)0.051 (10)*
O170.42545 (8)0.35821 (12)0.19100 (10)0.0222 (3)
H17A0.3901 (13)0.364 (2)0.1394 (17)0.044 (9)*
H17B0.4492 (15)0.316 (2)0.175 (2)0.053 (10)*
O180.48239 (7)0.47272 (12)0.38301 (10)0.0198 (3)
H18A0.5179 (12)0.455 (2)0.4319 (15)0.031 (7)*
H18B0.4610 (15)0.513 (2)0.407 (2)0.053 (10)*
O190.57928 (7)0.61738 (12)0.29274 (10)0.0206 (3)
H19A0.6093 (13)0.603 (2)0.3462 (16)0.043 (9)*
H19B0.6047 (14)0.629 (2)0.262 (2)0.046 (9)*
O200.50365 (10)0.76172 (17)0.39592 (13)0.0405 (5)
H20A0.471 (2)0.777 (4)0.416 (4)0.15 (2)*
H20B0.5370 (18)0.742 (3)0.445 (2)0.103 (17)*
O210.58506 (8)0.87360 (12)0.28898 (11)0.0218 (3)
H21A0.6135 (13)0.893 (2)0.3411 (16)0.042 (9)*
H21B0.601 (2)0.878 (3)0.246 (2)0.094 (15)*
O220.58231 (8)1.11103 (13)0.30761 (11)0.0274 (4)
H22A0.6160 (12)1.114 (2)0.3604 (16)0.036 (8)*
H22B0.6034 (15)1.141 (2)0.277 (2)0.053 (10)*
O230.4836 (2)1.0261 (7)0.3845 (3)0.0214 (16)0.49 (3)
H23A0.5205171.0198460.4290880.032*0.49 (3)
H23B0.4586800.9811530.3928790.032*0.49 (3)
N10.24448 (8)0.28660 (12)0.33045 (11)0.0151 (3)
H1A0.2099630.2636850.2842050.023*
H1B0.2686020.3264060.3098080.023*
H1C0.2296580.3196660.3678470.023*
C10.31201 (10)0.15213 (14)0.31546 (13)0.0170 (4)
H1D0.3480550.1089980.3499210.020*
H1E0.2768070.1118470.2746820.020*
C20.28596 (10)0.20445 (14)0.37896 (13)0.0151 (3)
H20.2568580.1586000.3947360.018*
C30.33729 (10)0.23864 (15)0.46485 (13)0.0192 (4)
H3A0.3153850.2624620.5045760.023*
H3B0.3652190.1836290.4944260.023*
O240.4901 (3)0.9763 (14)0.3884 (4)0.041 (3)0.51 (3)
H24A0.5256360.9861720.4339120.061*0.51 (3)
H24B0.4608891.0119380.3981800.061*0.51 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01187 (3)0.00678 (3)0.00937 (3)0.00066 (2)0.00455 (2)0.00038 (2)
W20.00935 (3)0.00934 (3)0.00992 (3)0.00122 (2)0.00449 (2)0.00009 (2)
W30.00888 (3)0.01020 (3)0.00925 (3)0.00212 (2)0.00452 (2)0.00001 (2)
Sb10.00750 (6)0.00630 (6)0.00766 (6)0.00040 (5)0.00376 (5)0.00023 (5)
O10.0100 (5)0.0090 (6)0.0085 (5)0.0005 (4)0.0033 (4)0.0006 (4)
O20.0098 (5)0.0092 (6)0.0092 (5)0.0025 (4)0.0038 (4)0.0000 (4)
O30.0092 (5)0.0098 (6)0.0083 (5)0.0002 (4)0.0041 (4)0.0001 (4)
O40.0205 (7)0.0128 (6)0.0155 (6)0.0032 (5)0.0075 (5)0.0029 (5)
O50.0191 (7)0.0136 (6)0.0168 (6)0.0060 (5)0.0066 (5)0.0035 (5)
O60.0136 (6)0.0114 (6)0.0101 (6)0.0010 (5)0.0047 (5)0.0021 (5)
O70.0144 (6)0.0168 (7)0.0200 (7)0.0046 (5)0.0050 (5)0.0026 (5)
O80.0140 (6)0.0103 (6)0.0104 (6)0.0010 (5)0.0046 (5)0.0010 (5)
O90.0189 (7)0.0175 (7)0.0141 (6)0.0001 (5)0.0090 (5)0.0018 (5)
O100.0096 (5)0.0134 (6)0.0129 (6)0.0002 (5)0.0031 (5)0.0002 (5)
O110.0165 (6)0.0163 (7)0.0125 (6)0.0016 (5)0.0080 (5)0.0002 (5)
O120.0140 (6)0.0187 (7)0.0173 (7)0.0064 (5)0.0052 (5)0.0008 (5)
Na10.0167 (5)0.0227 (6)0.0192 (6)0.0000.0059 (5)0.000
Na20.0221 (6)0.0230 (6)0.0256 (6)0.0000.0073 (5)0.000
Na30.0205 (6)0.0199 (6)0.0193 (6)0.0000.0095 (5)0.000
Na40.0149 (4)0.0206 (4)0.0174 (4)0.0004 (3)0.0060 (3)0.0009 (3)
O130.0179 (7)0.0170 (7)0.0126 (6)0.0008 (5)0.0045 (5)0.0001 (5)
O140.0220 (7)0.0267 (8)0.0204 (7)0.0071 (6)0.0086 (6)0.0050 (6)
O150.0201 (7)0.0148 (7)0.0157 (7)0.0036 (5)0.0043 (6)0.0012 (5)
O160.0290 (9)0.0278 (10)0.0314 (10)0.0090 (7)0.0085 (7)0.0045 (8)
O170.0177 (7)0.0324 (9)0.0142 (7)0.0026 (6)0.0031 (6)0.0011 (6)
O180.0187 (7)0.0248 (8)0.0148 (7)0.0074 (6)0.0047 (6)0.0018 (6)
O190.0177 (7)0.0266 (8)0.0182 (7)0.0008 (6)0.0075 (6)0.0056 (6)
O200.0266 (9)0.0643 (14)0.0300 (10)0.0032 (9)0.0094 (8)0.0026 (10)
O210.0191 (7)0.0265 (8)0.0214 (8)0.0021 (6)0.0091 (6)0.0001 (6)
O220.0201 (8)0.0370 (10)0.0200 (8)0.0105 (7)0.0010 (6)0.0034 (7)
O230.0177 (17)0.027 (4)0.0190 (17)0.0030 (17)0.0059 (13)0.0033 (17)
N10.0150 (7)0.0143 (7)0.0156 (7)0.0007 (6)0.0052 (6)0.0007 (6)
C10.0209 (9)0.0105 (8)0.0184 (9)0.0016 (7)0.0055 (7)0.0002 (7)
C20.0184 (9)0.0110 (8)0.0150 (8)0.0004 (7)0.0049 (7)0.0025 (6)
C30.0209 (9)0.0211 (10)0.0135 (8)0.0014 (8)0.0038 (7)0.0009 (7)
O240.023 (2)0.080 (9)0.022 (2)0.016 (3)0.0111 (17)0.017 (3)
Geometric parameters (Å, º) top
W1—Sb13.2668 (2)Na3—O172.4480 (19)
W1—O1i2.1899 (12)Na3—O182.3414 (15)
W1—O2i2.2339 (13)Na3—O18ii2.3414 (15)
W1—O41.7435 (14)Na3—O192.3733 (18)
W1—O51.7449 (13)Na3—O19ii2.3733 (18)
W1—O61.9391 (13)Na4—O132.3669 (17)
W1—O81.9471 (13)Na4—O142.4085 (17)
W2—Sb13.2772 (1)Na4—O152.3636 (17)
W2—O1i2.2106 (12)Na4—O162.3479 (19)
W2—O32.2599 (12)Na4—O172.3585 (17)
W2—O71.7455 (14)Na4—O182.3655 (18)
W2—O81.9387 (13)O13—H130.90 (2)
W2—O91.7312 (13)O13—C11.428 (2)
W2—O101.9477 (13)O14—H140.91 (2)
W3—Sb13.2348 (1)O14—C31.431 (3)
W3—O22.1925 (12)O15—H15A0.88 (2)
W3—O32.2189 (12)O15—H15B0.84 (2)
W3—O6i1.9416 (13)O16—H16A0.90 (3)
W3—O101.9383 (13)O16—H16B0.88 (2)
W3—O111.7452 (13)O17—H17A0.92 (2)
W3—O121.7394 (13)O17—H17B0.88 (2)
Sb1—O11.9885 (12)O18—H18A0.92 (2)
Sb1—O1i1.9885 (12)O18—H18B0.91 (2)
Sb1—O2i1.9773 (12)O19—H19A0.90 (2)
Sb1—O21.9773 (12)O19—H19B0.88 (2)
Sb1—O31.9830 (12)O20—H20A0.92 (3)
Sb1—O3i1.9830 (12)O20—H20B0.91 (3)
Na1—Na23.4647 (18)O21—H21A0.89 (2)
Na1—O212.4404 (18)O21—H21B0.89 (3)
Na1—O21ii2.4405 (18)O22—H22A0.91 (2)
Na1—O22ii2.3394 (18)O22—H22B0.89 (2)
Na1—O222.3394 (18)O23—H23A0.8740
Na1—O23ii2.371 (6)O23—H23B0.8741
Na1—O232.371 (6)N1—H1A0.9100
Na1—O242.346 (6)N1—H1B0.9100
Na1—O24ii2.346 (6)N1—H1C0.9100
Na2—Na33.5381 (18)N1—C21.496 (2)
Na2—O192.4322 (19)C1—H1D0.9900
Na2—O19ii2.4322 (19)C1—H1E0.9900
Na2—O202.346 (2)C1—C21.531 (3)
Na2—O20ii2.346 (2)C2—H21.0000
Na2—O21ii2.4752 (19)C2—C31.517 (3)
Na2—O212.4752 (19)C3—H3A0.9900
Na3—Na43.4130 (11)C3—H3B0.9900
Na3—Na4ii3.4130 (11)O24—H24A0.8699
Na3—O17ii2.4480 (19)O24—H24B0.8705
O1i—W1—Sb136.42 (3)O24—Na1—Na283.2 (5)
O1i—W1—O2i72.79 (4)O24ii—Na1—O2180.7 (3)
O2i—W1—Sb136.37 (3)O24ii—Na1—O21ii89.8 (4)
O4—W1—Sb1130.41 (5)O24—Na1—O21ii80.7 (3)
O4—W1—O1i94.83 (6)O24—Na1—O2189.8 (4)
O4—W1—O2i163.66 (6)O24ii—Na1—O23ii17.2 (3)
O4—W1—O5103.63 (7)O24—Na1—O23ii175.4 (5)
O4—W1—O695.64 (6)O24—Na1—O24ii166.4 (9)
O4—W1—O8100.73 (6)Na1—Na2—Na3180.0
O5—W1—Sb1125.95 (5)O19—Na2—Na1138.05 (4)
O5—W1—O1i160.13 (6)O19ii—Na2—Na1138.06 (4)
O5—W1—O2i90.26 (6)O19—Na2—Na341.95 (4)
O5—W1—O699.11 (6)O19ii—Na2—Na341.94 (4)
O5—W1—O895.10 (6)O19ii—Na2—O1983.89 (9)
O6—W1—Sb177.17 (4)O19ii—Na2—O21176.21 (6)
O6—W1—O1i86.15 (5)O19—Na2—O2193.33 (5)
O6—W1—O2i73.36 (5)O19—Na2—O21ii176.21 (6)
O6—W1—O8155.13 (5)O19ii—Na2—O21ii93.33 (5)
O8—W1—Sb177.96 (4)O20ii—Na2—Na185.11 (7)
O8—W1—O1i74.00 (5)O20—Na2—Na185.11 (7)
O8—W1—O2i86.33 (5)O20ii—Na2—Na394.89 (7)
O1i—W2—Sb136.33 (3)O20—Na2—Na394.89 (7)
O1i—W2—O372.77 (4)O20—Na2—O1990.93 (7)
O3—W2—Sb136.45 (3)O20—Na2—O19ii96.34 (7)
O7—W2—Sb1128.97 (5)O20ii—Na2—O19ii90.93 (7)
O7—W2—O1i93.49 (6)O20ii—Na2—O1996.34 (7)
O7—W2—O3163.07 (6)O20—Na2—O20ii170.23 (13)
O7—W2—O8100.36 (6)O20—Na2—O2186.25 (7)
O7—W2—O1095.81 (6)O20ii—Na2—O21ii86.26 (7)
O8—W2—Sb177.78 (4)O20ii—Na2—O2186.81 (7)
O8—W2—O1i73.67 (5)O20—Na2—O21ii86.81 (7)
O8—W2—O385.49 (5)O21ii—Na2—Na144.78 (4)
O8—W2—O10153.80 (5)O21—Na2—Na144.78 (4)
O9—W2—Sb1127.21 (5)O21ii—Na2—Na3135.22 (4)
O9—W2—O1i161.88 (6)O21—Na2—Na3135.22 (4)
O9—W2—O391.10 (6)O21ii—Na2—O2189.56 (9)
O9—W2—O7103.75 (7)Na4ii—Na3—Na2128.30 (2)
O9—W2—O897.40 (6)Na4—Na3—Na2128.29 (2)
O9—W2—O1098.60 (6)Na4ii—Na3—Na4103.41 (4)
O10—W2—Sb176.02 (4)O17—Na3—Na2140.10 (4)
O10—W2—O1i84.96 (5)O17ii—Na3—Na2140.10 (4)
O10—W2—O373.62 (5)O17ii—Na3—Na4ii43.71 (4)
O2—W3—Sb136.78 (3)O17—Na3—Na443.71 (4)
O2—W3—O373.84 (4)O17ii—Na3—Na476.82 (5)
O3—W3—Sb137.06 (3)O17—Na3—Na4ii76.82 (5)
O6i—W3—Sb177.99 (4)O17ii—Na3—O1779.80 (9)
O6i—W3—O274.28 (5)O18ii—Na3—Na296.98 (5)
O6i—W3—O385.85 (5)O18—Na3—Na296.98 (5)
O10—W3—Sb177.24 (4)O18ii—Na3—Na4ii43.80 (4)
O10—W3—O285.43 (5)O18ii—Na3—Na4124.83 (5)
O10—W3—O374.75 (5)O18—Na3—Na4ii124.84 (5)
O10—W3—O6i155.22 (5)O18—Na3—Na443.80 (4)
O11—W3—Sb1126.05 (4)O18—Na3—O1787.51 (6)
O11—W3—O2160.69 (5)O18ii—Na3—O17ii87.51 (6)
O11—W3—O389.55 (5)O18ii—Na3—O1781.79 (6)
O11—W3—O6i95.15 (6)O18—Na3—O17ii81.79 (6)
O11—W3—O1099.89 (6)O18—Na3—O18ii166.05 (10)
O12—W3—Sb1129.14 (5)O18ii—Na3—O1990.52 (6)
O12—W3—O293.06 (6)O18ii—Na3—O19ii99.67 (6)
O12—W3—O3163.91 (6)O18—Na3—O1999.67 (6)
O12—W3—O6i99.77 (6)O18—Na3—O19ii90.52 (6)
O12—W3—O1095.30 (6)O19—Na3—Na243.24 (4)
O12—W3—O11104.81 (6)O19ii—Na3—Na243.24 (4)
W1—Sb1—W1i180.0O19—Na3—Na4143.27 (4)
W1i—Sb1—W2i59.590 (4)O19—Na3—Na4ii95.82 (4)
W1—Sb1—W259.590 (4)O19ii—Na3—Na4ii143.27 (4)
W1i—Sb1—W2120.410 (3)O19ii—Na3—Na495.82 (4)
W1—Sb1—W2i120.411 (3)O19ii—Na3—O1797.35 (6)
W2—Sb1—W2i180.0O19ii—Na3—O17ii171.87 (6)
W3i—Sb1—W1i119.789 (2)O19—Na3—O17171.87 (6)
W3—Sb1—W1i60.211 (2)O19—Na3—O17ii97.35 (6)
W3i—Sb1—W160.211 (2)O19ii—Na3—O1986.47 (9)
W3—Sb1—W1119.789 (2)O13—Na4—Na3134.78 (5)
W3—Sb1—W260.200 (4)O13—Na4—O1481.91 (6)
W3—Sb1—W2i119.800 (5)O14—Na4—Na3142.74 (5)
W3i—Sb1—W2i60.200 (4)O15—Na4—Na394.91 (5)
W3i—Sb1—W2119.801 (5)O15—Na4—O1381.40 (6)
W3—Sb1—W3i180.0O15—Na4—O1483.06 (6)
O1—Sb1—W1139.17 (4)O15—Na4—O1895.30 (6)
O1—Sb1—W1i40.83 (4)O16—Na4—Na391.62 (6)
O1i—Sb1—W140.83 (4)O16—Na4—O1392.36 (7)
O1i—Sb1—W1i139.17 (4)O16—Na4—O1493.13 (7)
O1—Sb1—W2138.80 (4)O16—Na4—O15173.08 (7)
O1i—Sb1—W2i138.80 (3)O16—Na4—O1791.86 (7)
O1—Sb1—W2i41.20 (4)O16—Na4—O1891.03 (7)
O1i—Sb1—W241.19 (3)O17—Na4—Na345.83 (4)
O1—Sb1—W3i90.19 (4)O17—Na4—O1389.02 (6)
O1i—Sb1—W3i89.82 (4)O17—Na4—O14169.82 (6)
O1i—Sb1—W390.18 (4)O17—Na4—O1591.04 (6)
O1—Sb1—W389.81 (4)O17—Na4—O1889.07 (6)
O1—Sb1—O1i180.0O18—Na4—Na343.24 (4)
O2i—Sb1—W142.06 (4)O18—Na4—O13176.16 (6)
O2i—Sb1—W1i137.94 (4)O18—Na4—O1499.71 (6)
O2—Sb1—W1137.94 (4)Na4—O13—H13115.7 (19)
O2—Sb1—W1i42.06 (4)C1—O13—Na4123.74 (12)
O2—Sb1—W290.01 (4)C1—O13—H13109.0 (19)
O2i—Sb1—W289.99 (4)Na4—O14—H14117 (3)
O2—Sb1—W2i89.99 (4)C3—O14—Na4129.46 (12)
O2i—Sb1—W2i90.01 (4)C3—O14—H14106 (3)
O2i—Sb1—W3i41.59 (4)Na4—O15—H15A121.8 (17)
O2—Sb1—W3i138.40 (4)Na4—O15—H15B132 (2)
O2i—Sb1—W3138.41 (4)H15A—O15—H15B102 (3)
O2—Sb1—W341.60 (4)Na4—O16—H16A126 (4)
O2i—Sb1—O197.11 (5)Na4—O16—H16B129 (2)
O2i—Sb1—O1i82.89 (5)H16A—O16—H16B104 (4)
O2—Sb1—O182.89 (5)Na3—O17—H17A121 (2)
O2—Sb1—O1i97.11 (5)Na3—O17—H17B104 (2)
O2—Sb1—O2i180.0Na4—O17—Na390.46 (6)
O2i—Sb1—O3i84.00 (5)Na4—O17—H17A121 (2)
O2i—Sb1—O396.00 (5)Na4—O17—H17B120 (2)
O2—Sb1—O384.00 (5)H17A—O17—H17B101 (3)
O2—Sb1—O3i96.00 (5)Na3—O18—Na492.96 (6)
O3—Sb1—W1i90.07 (4)Na3—O18—H18A117.0 (17)
O3—Sb1—W189.93 (4)Na3—O18—H18B127 (2)
O3i—Sb1—W1i89.93 (4)Na4—O18—H18A111.3 (17)
O3i—Sb1—W190.07 (4)Na4—O18—H18B106 (2)
O3i—Sb1—W2137.39 (4)H18A—O18—H18B101 (3)
O3—Sb1—W242.61 (4)Na2—O19—H19A130 (2)
O3—Sb1—W2i137.39 (4)Na2—O19—H19B104 (2)
O3i—Sb1—W2i42.61 (4)Na3—O19—Na294.82 (6)
O3—Sb1—W342.41 (3)Na3—O19—H19A109 (2)
O3—Sb1—W3i137.59 (3)Na3—O19—H19B121 (2)
O3i—Sb1—W3i42.41 (3)H19A—O19—H19B101 (3)
O3i—Sb1—W3137.59 (4)Na2—O20—H20A130 (4)
O3i—Sb1—O183.80 (5)Na2—O20—H20B126 (3)
O3i—Sb1—O1i96.21 (5)H20A—O20—H20B104 (4)
O3—Sb1—O1i83.79 (5)Na1—O21—Na289.63 (6)
O3—Sb1—O196.20 (5)Na1—O21—H21A104 (2)
O3—Sb1—O3i180.00 (6)Na1—O21—H21B103 (3)
W1i—O1—W2i95.28 (5)Na2—O21—H21A132 (2)
Sb1—O1—W1i102.75 (5)Na2—O21—H21B109 (3)
Sb1—O1—W2i102.47 (5)H21A—O21—H21B113 (3)
W3—O2—W1i94.91 (5)Na1—O22—H22A131.2 (19)
Sb1—O2—W1i101.57 (5)Na1—O22—H22B125 (2)
Sb1—O2—W3101.63 (5)H22A—O22—H22B95 (3)
W3—O3—W293.64 (5)Na1—O23—H23A109.8
Sb1—O3—W2100.94 (5)Na1—O23—H23B109.3
Sb1—O3—W3100.53 (5)H23A—O23—H23B104.3
W1—O6—W3i114.36 (6)H1A—N1—H1B109.5
W2—O8—W1113.61 (6)H1A—N1—H1C109.5
W3—O10—W2114.38 (6)H1B—N1—H1C109.5
O21—Na1—Na245.59 (4)C2—N1—H1A109.5
O21ii—Na1—Na245.59 (4)C2—N1—H1B109.5
O21—Na1—O21ii91.19 (9)C2—N1—H1C109.5
O22—Na1—Na2133.05 (5)O13—C1—H1D109.1
O22ii—Na1—Na2133.05 (5)O13—C1—H1E109.1
O22—Na1—O2187.99 (6)O13—C1—C2112.67 (15)
O22ii—Na1—O21ii87.99 (6)H1D—C1—H1E107.8
O22—Na1—O21ii172.04 (6)C2—C1—H1D109.1
O22ii—Na1—O21172.04 (6)C2—C1—H1E109.1
O22ii—Na1—O2293.90 (10)N1—C2—C1108.36 (15)
O22ii—Na1—O2384.0 (2)N1—C2—H2107.3
O22—Na1—O2382.30 (18)N1—C2—C3110.62 (16)
O22—Na1—O23ii84.0 (2)C1—C2—H2107.3
O22ii—Na1—O23ii82.30 (18)C3—C2—C1115.57 (17)
O22—Na1—O24ii97.9 (4)C3—C2—H2107.3
O22ii—Na1—O24ii91.4 (3)O14—C3—C2112.56 (16)
O22—Na1—O2491.4 (3)O14—C3—H3A109.1
O22ii—Na1—O2497.9 (4)O14—C3—H3B109.1
O23ii—Na1—Na2100.1 (2)C2—C3—H3A109.1
O23—Na1—Na2100.1 (2)C2—C3—H3B109.1
O23—Na1—O21103.9 (2)H3A—C3—H3B107.8
O23ii—Na1—O2190.22 (18)Na1—O24—H24A115.3
O23ii—Na1—O23159.8 (5)Na1—O24—H24B115.9
O24ii—Na1—Na283.2 (5)H24A—O24—H24B104.5
Na4—O13—C1—C251.8 (2)O13—C1—C2—C380.5 (2)
Na4—O14—C3—C231.5 (2)N1—C2—C3—O1456.4 (2)
O13—C1—C2—N144.2 (2)C1—C2—C3—O1467.2 (2)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z+1/2.
POTs with SbIII/V as the only heteroion [based on the Inorganic Crystal Structure Database (FIZ, Karlsruhe; https://www.fiz-informationsdienste.de/DB/icsd/www-recherche.html) and the Cambridge Structural Database (CSD; Groom et al., 2016) in April 2021] top
POTTypeReferences
K5Na2[SbVWVI6O24]AndersonLee & Sasaki (1987)
K5.5H1.5[SbVWVI6O24]AndersonNaruke & Yamase (1992)
Na7[SbVWVI6O24]AndersonMukhacheva et al. (2017)
K6[H12SbV6WVI4O36]/Park et al. (1994)
(NH4)9[SbVWVI18O60(OH)2]DawsonZhang et al. (2010)
Na9[SbIIIWVI9O33]KegginBösing et al. (1997)
K12[SbIII2WVI22O74(OH)2]KrebsBösing et al. (1997)
[N(CH3)4]10Na12[Na2SbIII8WVI36O132(H2O)4]/Bösing et al. (1997)
\ (H2en)8H6{[SbIII2(WVIO2)2(B-β-SbIIIWVI9O33)\ 2][(WVIO2)2(WVIO3)2(B-β-SbIIIWVI9O33)2]} (en = ethylenediamine)KrebsXin et al. (2019)
K11Na16[H2(SbW9O33)(W5O12)(Sb2W29O103)]/Tanuhadi et al. (2021)
 

Acknowledgements

The authors are grateful to Ass.-Prof. Dr. P. Unfried for support with the TGA and to Ao.Univ.-Prof. Mag. Dr. K. Richter for PXRD measurements at the Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna. We thank Elias Tanuhadi, MSc, for valuable discussions concerning this work.

Funding information

Funding for this research was provided by: Austrian Science Fund (grant No. P33927 to NIG; grant No. P33089 to AR); the Erasmus+ program (scholarship No. 1016/2020 to KS) and the University of Vienna.

References

First citationAnderson, J. S. (1937). Nature, 140, 850.  CrossRef Google Scholar
First citationAndreessen, B. & Steinbüchel, A. (2011). AMB Express, 1, article No. 12.  Google Scholar
First citationBarbera, V., Leonardi, G., Valerio, A. M., Rubino, L., Sun, S., Famulari, A., Galimberti, M., Citterio, A. & Sebastiano, R. (2020). ACS Sustainable Chem. Eng. 8, 9356–9366.  CrossRef CAS Google Scholar
First citationBijelic, A., Aureliano, M. & Rompel, A. (2018). Chem. Commun. 54, 1153–1169.  Web of Science CrossRef CAS Google Scholar
First citationBijelic, A., Aureliano, M. & Rompel, A. (2019). Angew. Chem. Int. Ed. 58, 2980–2999.  Web of Science CrossRef CAS Google Scholar
First citationBijelic, A. & Rompel, A. (2015). Coord. Chem. Rev. 299, 22–38.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBijelic, A. & Rompel, A. (2017). Acc. Chem. Res. 50, 1441–1448.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBijelic, A. & Rompel, A. (2018). ChemTexts, 4, article No. 10.  CrossRef Google Scholar
First citationBlazevic, A. & Rompel, A. (2016). Coord. Chem. Rev. 307, 42–64.  Web of Science CrossRef CAS Google Scholar
First citationBösing, M., Loose, I., Pohlmann, H. & Krebs, B. (1997). Chem. Eur. J. 3, 1232–1237.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCherevan, A. S., Nandan, S. P., Roger, I., Liu, R., Streb, C. & Eder, D. (2020). Adv. Sci. 7, article No. 1903511.  CrossRef Google Scholar
First citationClemente-Juan, J. M., Coronado, E. & Gaita-Ariño, A. (2012). Chem. Soc. Rev. 41, 7464–7478.  Web of Science CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEvans, H. T. Jr (1948). J. Am. Chem. Soc. 70, 1291–1292.  CrossRef ICSD CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGumerova, N. I., Caldera Fraile, T., Roller, A., Giester, G., Pascual-Borràs, M., Ohlin, C. A. & Rompel, A. (2019). Inorg. Chem. 58, 106–113.  CrossRef CAS PubMed Google Scholar
First citationGumerova, N. I. & Rompel, A. (2020). Chem. Soc. Rev. 49, 7568–7601.  CrossRef CAS PubMed Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U., Joo, H.-C. & Park, K.-M. (2004). Acta Cryst. E60, i55–i57.  CrossRef IUCr Journals Google Scholar
First citationLee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc. 15, 37–45.  Web of Science CrossRef CAS Google Scholar
First citationLee, U. K. & Sasaki, Y. (1987). Bull. Korean Chem. Soc. 8, 1–3.  CAS Google Scholar
First citationLi, Q. & Wei, Y. (2021). Chem. Commun. 57, 3865–3868.  CrossRef CAS Google Scholar
First citationLindqvist, I. (1959). Ark. Kemi. 2, 323.  Google Scholar
First citationLiu, W., Lin, Z., Bassil, B. S., Al-Oweini, R. & Kortz, U. (2015). CHIMIA Int. J. Chem. 69, 537–540.  CrossRef CAS Google Scholar
First citationMukhacheva, A. A., Abramov, P. A. & Sokolov, M. N. (2017). Curr. Inorg. Chem. 7, 4–7.  CrossRef CAS Google Scholar
First citationNaruke, H. & Yamase, T. (1992). Acta Cryst. C48, 597–599.  CrossRef CAS IUCr Journals Google Scholar
First citationOgawa, A., Yamato, H., Lee, U., Ichida, H., Kobayashi, A. & Sasaki, Y. (1988). Acta Cryst. C44, 1879–1881.  CrossRef CAS IUCr Journals Google Scholar
First citationPark, K. M., Ozawa, Y. & Lee, U. (1994). J. Korean Chem. Soc. 3, 359–365.  Google Scholar
First citationPope, M. (1983). In Heteropoly and Isopoly Oxometalates. Berlin: Springer.  Google Scholar
First citationQu, X., Yang, Y., Zhang, F. & Yu, X. (2012). Struct. Chem. 23, 1867–1872.  Web of Science CrossRef ICSD CAS Google Scholar
First citationRhule, J. T., Hill, C. L., Judd, D. A. & Schinazi, R. F. (1998). Chem. Rev. 98, 327–358.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTanuhadi, E., Al-Sayed, E., Novitchi, G., Roller, A., Giester, G. & Rompel, A. (2020). Inorg. Chem. 59, 8461–8467.  CrossRef CAS PubMed Google Scholar
First citationTanuhadi, E., Gumerova, N. I., Prado-Roller, A., Mautner, A. & Rompel, A. (2021). Inorg. Chem. 60, 8917–8923.  CrossRef CAS PubMed Google Scholar
First citationTanuhadi, E., Roller, A., Giester, G., Kampatsikas, I. & Rompel, A. (2018). Dalton Trans. 47, 15651–15655.  CrossRef CAS PubMed Google Scholar
First citationWang, S.-S. & Yang, G.-Y. (2015). Chem. Rev. 115, 4893–4962.  Web of Science CrossRef CAS PubMed Google Scholar
First citationXin, X., Ma, Y., Hou, L., Wang, Y., Xue, X., Lin, J. & Han, Z. (2019). Inorg. Chem. 58, 9567–9571.  CrossRef CAS PubMed Google Scholar
First citationZhang, J., Huang, Y., Hao, J. & Wei, Y. (2017). Inorg. Chem. Front. 4, 1215–1218.  CrossRef CAS Google Scholar
First citationZhang, Y.-Y., Liu, S., Yu, C., Tang, Q., Liang, D., Zhang, C., Ma, F., Li, S., Zhang, W. & Tan, R. (2010). Inorg. Chem. Commun. 13, 1418–1420.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds