research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Synthesis and spectroscopic and structural characterization of spiro­[indoline-3,3′-indolizine]s formed by 1,3-dipolar cyclo­additions between isatins, pipecolic acid and an electron-deficient alkene

crossmark logo

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, A.A. 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and cSchool of Chemistry, University of St Andrews, Fife, KY16 9ST, United Kingdom
*Correspondence e-mail: cg@st-andrews.ac.uk

Edited by A. R. Kennedy, University of Strathclyde, United Kingdom (Received 21 June 2021; accepted 11 July 2021; online 6 August 2021)

Five new spiro­[indoline-3,3′-indolizine]s have been synthesized with high regio- and stereo­specificity in one-pot three-com­ponent reactions between a sub­sti­tuted indole-2,3-dione, (S)-pipecolic acid and trans-3-benzoyl­acrylic acid, and subsequently characterized using a combination of elemental analysis, IR and 1H and 13C NMR spectroscopy, mass spectrometry and crystal structure analysis. (1′SR,2′SR,3RS,8a′RS)-2′-Benzoyl-5-fluoro-2-oxo-1′,5′,6′,7′,8′,8a′-hexa­hydro-2′H-spiro­[indoline-3,3′-indolizine]-1′-carb­oxy­lic acid, C23H21FN2O4, (I), and (1′SR,2′SR,3RS,8a′RS)-2′-benzoyl-5-methyl-2-oxo-1′,5′,6′,7′,8′,8a′-hexa­hy­dro-2′H-spiro[indoline-3,3′-indolizine]-1′-carb­oxy­lic acid, C24H24N2O4, (II), are isomorphous, as are (1′SR,2′SR,3RS,8a′RS)-2′-benzoyl-1-methyl-2-oxo-1′,5′,6′,7′,8′,8a′-hexa­hydro-2′H-spiro­[indoline-3,3′-indolizine]-1′-carb­oxy­lic acid, C24H24N2O4, (III), and (1′SR,2′SR,3RS,8a′RS)-2′-benzoyl-5-chloro-1-methyl-2-oxo-1′,5′,6′,7′,8′,8a′-hexa­hydro-2′H-spiro­[indoline-3,3′-indolizine]-1′-carb­oxy­lic acid, C24H23ClN2O4, (IV). Within each isomorphous pair, the spiro ring systems show some conformational differences. In each of (I) and (II), the mol­ecules are linked into com­plex sheets by a combination of four types of hydrogen bond, and in each of (III) and (IV), a combination of O—H⋯O and C—H⋯π(arene) hydrogen bonds links the mol­ecules to form a chain of centrosymmetric rings. In (1′SR,2′SR,3RS,8a′RS)-2′-benzoyl-1-hexyl-2-oxo-1′,5′,6′,7′,8′,8a′-hexa­hydro-2′H-spiro­[indoline-3,3′-indolizine]-1′-carb­oxy­lic acid, C29H34N2O4, (V), a combination of five hydrogen bonds links the mol­ecules into sheets of alternating R22(16) and R66(46) rings. A mechanism is proposed for the formation of com­pounds (I)–(V) and some com­parisons with related structures are made.

1. Introduction

Spirooxindoles are a privileged category of heterocycles con­taining a unique and versatile scaffold for novel drug dis­covery in fields as diverse as analgesics, anti­cancer, anti-inflammatory and anti­microbial agents, and anti­oxidants, whose structure–activity relationships and mol­ecular mechanisms of action have recently been reviewed (Zhou et al., 2020[Zhou, L.-M., Qu, R.-Y. & Yang, G.-F. (2020). Exp. Opin. Drug. Discov. 15, 603-625.]).

Multicom­ponent reactions can provide versatile and efficient routes to new heterocyclic systems, permitting the incor­poration of a wide variety of functionalities by the com­bination of three or more simple building blocks (Dömling, 2002[Dömling, A. (2002). Curr. Opin. Chem. Biol. 6, 306-313.]; Hulme & Gore, 2003[Hulme, C. & Gore, V. (2003). Curr. Med. Chem. 10, 51-80.]; Orru & de Greef, 2003[Orru, R. V. A. & de Greef, M. (2003). Synthesis, pp. 1471-1499.]; Quiroga et al., 2007[Quiroga, J., Portilla, J., Serrano, H., Abonía, R., Insuasty, B., Nogueras, M. & Cobo, J. (2007). Tetrahedron Lett. 48, 1987-1990.], 2014[Quiroga, J., Gálvez, J., Abonía, R., Insuasty, B., Ortíz, A., Cobo, J. & Nogueras, M. (2014). Molecules, 19, 4284-4300.]). The spirooxindole core is readily obtained using 1,3-dipolar cycloadditions between electron-deficient alkenes and an azomethine ylide, generated in situ from an isatin (indole-2,3-dione) and an amino acid (Grigg et al., 1984[Grigg, R., Aly, M. F., Sridharan, V. & Thianpatanagul, S. (1984). J. Chem. Soc. Chem. Commun. pp. 182-183.]; Al-Majid et al., 2020[Al-Majid, A. M., Ghawas, H. M., Islam, M. S., Soliman, S. M., El-Senduny, F. F., Badria, F. A., Ali, M., Shaik, M. R., Ghabbour, H. A. & Barakat, A. (2020). J. Mol. Struct. 1204, 127500.]; Ghosh et al., 2020[Ghosh, R., Vitor, J. B., Mendes, E., Paulo, A. & Acharya, P. C. (2020). ACS Omega, 5, 27332-27343.]). We have recently reported the regio- and stereo­specific synthesis, spec­troscopic characterization and crystal structures of some spiro­[indoline-3,3′-pyrrolizine]s (Quiroga et al., 2017[Quiroga, J., Romo, P., Cobo, J. & Glidewell, C. (2017). Acta Cryst. C73, 1109-1115.]) and di­spiro­[indoline-3,3′-pyrrolizine-1′,5′-thia­zolidine]s (Romo et al., 2020[Romo, P., Quiroga, J., Cobo, J. & Glidewell, C. (2020). Acta Cryst. C76, 779-785.]), formed in a single step from mixtures of a substituted isatin, a cyclic amino com­pound and an electron-deficient alkene. As a development of these previous studies, we have now investigated the reactions between isatins, pipecolic acid [(RS)-piperidine-2-carboxylic acid] and trans-3-benzoyl­acrylic acid [(E)-4-oxo-4-phenyl­but-2-enoic acid] to form spiro­[indoline-3,3′-indolizine]s. Here we report the synthesis and spectroscopic charaterization, and the mol­ecular and supra­molecular structures of five representative examples, namely, (1′SR,2′SR,3RS,8a′RS)-2′-benzoyl-5-fluoro-2-oxo-1′,5′,6′,7′,8′,8a′-hexa­hydro-2′H-spiro­[indoline-3,3′-indolizine]-1′-carb­oxy­lic acid, (I)[link], (1′SR,2′SR,3RS,8a′RS)-2′-benzoyl-5-methyl-2-oxo-1′,5′,6′,7′,8′,8a′-hexa­hydro-2′H-spiro­[indoline-3,3′-indolizine]-1′-carb­ox­y­lic acid, (II)[link], (1′SR,2′SR,3RS,8a′RS)-2′-benzoyl-1-methyl-2-oxo-1′,5′,6′,7′,8′,8a′-hexa­hydro-2′H-spiro­[indoline-3,3′-indolizine]-1′-carb­oxy­lic acid, (III)[link], (1′SR,2′SR,3RS,8a′RS)-2′-ben­zoyl-5-chloro-1-methyl-2-oxo-1′,5′,6′,7′,8′,8a′-hexa­hydro-2′H-spiro­[indoline-3,3′-indolizine]-1′-carb­oxy­lic acid, (IV)[link], and (1′SR,2′SR,3RS,8a′RS)-2′-benzoyl-1-hexyl-2-oxo-1′,5′,6′,7′,8′,8a′-hexa­hydro-2′H-spiro­[indoline-3,3′-indolizine]-1′-carb­oxy­lic acid, (V)[link] (Scheme 1[link]).

[Scheme 1]

Compounds (I)–(V) were formed in yields between 48 and 69% in one-pot reactions between an appropriately substituted isatin (see Scheme 2[link]), pipecolic acid acting as the cyclic amine com­ponent and trans-3-benzoyl­acrylic acid acting as the electron-deficient alkene to give the products defined in Scheme 1[link] and Figs. 1[link]–5[link][link][link][link]. Products (I)–(V) were all isolated as single racemic stereoisomers and all have been characterized by a combination of elemental analysis, IR and 1H and 13C NMR spectroscopy, mass spectrometry and X-ray crystal structure analysis, which enables a com­plete definition of the stereochemistry.

[Figure 1]
Figure 1
The mol­ecular structure of the (1′S,2′S,3RS,8a′R) enanti­omer of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of the (1′S,2′S,3RS,8a′R) enanti­omer of compound (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of the (1′S,2′S,3RS,8a′R) enanti­omer of compound (III)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4]
Figure 4
The mol­ecular structure of the (1′S,2′S,3RS,8a′R) enanti­omer of compound (IV)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 5]
Figure 5
The mol­ecular structure of the (1′S,2′S,3RS,8a′R) enanti­omer of compound (V)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

2. Experimental

2.1. Synthesis and crystallization

All reagents and solvents were obtained commercially and all were used as recieved. For the synthesis of com­pounds (I)–(V), mixtures of pipecolic acid (64.6 mg, 0.5 mmol), the appropriately substituted isatin (0.5 mmol) [5-fluoro­isatin (83.5 mg) for (I)[link], 5-methyl­isatin (80.6 mg) for (II)[link], 1-methyl­isatin (80.6 mg) for (III)[link], 5-chloro-1-methyl­isatin (97.8 mg) for (IV)[link] and 1-hexyl­isatin (115.6 mg) for (V)] and trans-3-ben­zoyl­acrylic acid [(E)-4-oxo-4-phenyl­but-2-enoic acid] (88.1 mg, 0.5 mmol) in aceto­nitrile (10 ml) were heated under reflux until the reactions were com­plete, as judged by thin-layer chromatography (TLC) monitoring (reactions times were all in the range 8–12 h). The reaction mixtures were allowed to cool to ambient temperature, giving the crystalline products (I)–(V), which were collected by filtration and then dried in air. No further purification was required, as judged by TLC and spectroscopic examination, and crystals suitable for single-crystal X-ray diffraction were, in each case, selected directly from the synthesized samples.

[Scheme 2]

Compound (I)[link]: yield 68%; m.p. 508–509 K. Analysis found (%): C 67.6, H 5.2, N 6.8; calculated for C23H21FN2O4 (%): C 67.6, H 5.2, N 6.9. FT–IR (ATR, cm−1): 3478, 3096, 2937, 1715, 1676. NMR (DMSO-d6): δ(1H) 1.11–1.23 (m, 2H, H8′, H7′), 1.23–1.33 (m, 1H, H6′), 1.42–1.54 (m, 1H, H7′), 1.66–1.79 (m, 1H, H8′), 2.05–2.19 (m, 2H, H5′, H6′), 2.20–2.32 (m, 1H, H5′), 3.25 (t, J = 10.0 Hz, 1H, H8a′), 3.45 (t, J = 9.7 Hz, 1H, H1′), 4.50 (d, J = 9.7 Hz, 1H, H2′), 6.41 (dd, J = 8.6, 4.3 Hz, 1H), 6.54 (dd, J = 8.2, 2.7 Hz, 1H), 6.78 (td, J = 9.0, 2.7 Hz, 1H), 7.32 (t, J = 7.6 Hz, 2H), 7.40–7.51 (m, 3H), 10.52 (s, 1H, NH), 12.69 (s, 1H, COOH); δ(13C) 23.7 (C8′), 25.5 (C7′), 31.8 (C6′), 45.6 (C5′), 50.5 (C1′), 55.1 (C2′), 61.5 (C8a′), 71.6 (C3, C-spiro), 110.4 (d, JC–F = 6.9 Hz, CH), 113.5 (d, JC–F = 24.7 Hz, CH), 116.0 (d, JC–F = 23.6 Hz, CH), 127.6 (CH), 129.0 (CH), 129.4 (d, JC–F = 7.4 Hz, C), 133.8 (CH), 136.9 (C), 139.0 (C), 159.5 (C), 173.4 (COOH), 179.3 (C2), 197.4 (C—CO—C). MS (EI, 70 eV) m/z (%): 408 (M+, 10), 368 (17), 336 (37), 313 (12), 275 (36), 259 (16), 231 (39), 141 (22), 105 (49), 77 (34).

Compound (II)[link]: yield 48%; m.p. 529–530 K. Analysis found (%): C 71.2, H 5.9, N 7.0; calculated for C24H24N2O4 (%): C 71.3, H 6.0, N 6.9. FT–IR (ATR, cm−1): 3364, 3225, 2957, 1741, 1704, 1668. NMR (DMSO-d6): δ(1H) 1.10–1.20 (m, 2H, H8′, H7′), 1.21–1.32 (m, 1H, H6′), 1.43–1.50 (m, 1H, H7′), 1.67–1.74 (m, 1H, H8′), 2.05–2.18 (m, 5H, 5-CH3, H5′, H6′), 2.23 (td, J = 10.9, 2.8 Hz, 1H, H5′), 3.22–3.29 (m, 1H, H8a′), 3.44 (t, J = 9.8 Hz, 1H, H1′), 4.47 (d, J = 9.6 Hz, 1H, H2′), 6.30 (d, J = 7.8 Hz, 1H, H7), 6.57 (s, 1H, H4), 6.71 (d, J = 7.8 Hz, 1H, H6), 7.28 (t, J = 7.7 Hz, 2H, Hm), 7.38 (d, J = 7.3 Hz, 2H, Ho), 7.43 (t, J = 7.3 Hz, 1H, Hp), 10.35 (s, 1H, NH), 12.62 (s, 1H, COOH); δ(13C) 21.0 (5-CH3), 23.8 (C8′), 25.5 (C7′), 31.8 (C6′), 45.6 (C5′), 50.5 (C1′), 54.9 (C2′), 61.4 (C8a′), 71.4 (C-spiro), 109.1 (CH, C7), 126.7 (CH, C4), 127.5 (C), 127.6 (CH, Co), 128.8 (CH, Cm), 129.7 (CH, C6), 130.9 (C), 133.4 (CH, Cp), 137.2 (C), 140.3 (C), 173.6 (COOH), 179.3 (C2), 197.6 (C—CO—C). MS (EI, 70 eV) m/z (%): 404 (M+, 9), 368 (5), 332 (39), 315 (15), 271 (30), 255 (17), 227 (69), 141 (33), 105 (100), 77 (69).

Compound (III)[link]: yield 49%; m.p. 492–493 K. Analysis found (%): C 71.3, H 5.9, N 6.9; calculated for C24H24N2O4 (%): C 71.3, H 6.0, N 6.9. FT–IR (ATR, cm−1): 2941, 2356, 1709, 1677. NMR (DMSO-d6): δ(1H) 1.09–1.21 (m, 2H, H8′, H7′), 1.21–1.36 (m, 1H, H6′), 1.38–1.52 (m, 1H, H7′), 1.66–1.81 (m, 1H, H8′), 2.01–2.18 (m, 2H, H5′, H6′), 2.23 (t, J = 10.2 Hz, 1H, H5′), 2.98 (s, 3H, N—CH3), 3.22–3.29 (m, 1H, H8a′), 3.42 (t, J = 10.0 Hz, 1H, H1′), 4.47 (d, J = 9.8 Hz, 1H, H2′), 6.52 (d, J = 7.8 Hz, 1H), 6.79–6.90 (m, 2H), 7.01 (t, J = 7.5 Hz, 1H), 7.20–7.31 (m, 4H), 7.37–7.47 (m, 1H), 12.66 (s, 1H, COOH); δ(13C) 23.7 (C8′), 25.4 (C7′), 26.2 (CH3), 31.8 (C6′), 45.6 (C5′), 50.4 (C1′), 55.9 (C2′), 61.8 (C8a′), 71.1 (C3, C-spiro), 108.2 (CH), 122.9 (CH), 125.6 (CH), 127.0 (C), 127.4 (CH), 128.7 (CH), 129.6 (CH), 133.5 (CH), 137.0 (C), 144.0 (C), 173.4 (COOH), 177.4 (C2), 197.3 (C—CO—C). MS (EI, 70 eV) m/z (%): 404 (M+, 1), 393 (12), 368 (22), 339 (26), 313 (70), 264 (34), 236 (16), 57 (100).

Compound (IV)[link]: yield 69%; m.p. 497–497 K. Analysis found (%): C 65.6, H 5.2, N 6.4; calculated for C24H23ClN2O4 (%): C 65.7, H 5.3, N 6.4. FT–IR (ATR, cm−1): 3378, 3227, 2957, 1744, 1708, 1668. NMR (DMSO-d6): δ(1H) 1.11–1.22 (m, 2H), 1.22–1.36 (m, 1H), 1.40–1.50 (m, 1H), 1.66–1.79 (m, 1H), 2.05–2.19 (m, 2H), 2.19–2.29 (m, 1H), 2.97 (s, 3H, CH3), 3.24 (td, J = 10.2, 2.5 Hz, 1H, H8a′), 3.43 (t, J = 10.0 Hz, 1H, H1′), 4.48 (d, J = 9.9 Hz, 1H, H2′), 6.56 (d, J = 8.3 Hz, 1H), 6.79 (d, J = 2.1 Hz, 1H), 7.09 (dd, J = 8.3, 2.2 Hz, 1H), 7.23–7.35 (m, 4H), 7.45 (td, J = 7.0, 1.6 Hz, 1H); δ(13C) 23.6 (C8′), 25.4 (C7′), 26.4 (CH3), 31.7 (C6′), 45.7 (C5′), 50.2 (C1′), 56.1 (C2′), 62.0 (C8a′), 71.1 (C3, C-spiro), 109.9 (CH), 125.5 (CH), 127.0 (C), 127.4 (CH), 128.9 (CH), 129.2 (C), 129.5 (CH), 133.8 (CH), 136.8 (C), 142.9 (C), 173.3 (COOH), 177.0 (C2), 197.3 (C—CO—C). MS (EI, 70 eV) m/z (%): 438 (M+, 1), 336 (17), 313 (18), 275 (17), 231 (30), 141 (41), 105 (91), 77 (55), 57 (87), 43 (100).

Compound (V)[link]: yield 48%; m.p. 449–450 K. Analysis found (%): C 73.4, H 7.2, N 5.9; calculated for C29H34N2O4 (%): C 73.4, H 7.2, N 5.9. FT–IR (ATR, cm−1): 2931, 2858, 1723, 1684, 1662. NMR (DMSO-d6): δ(1H) 0.79–0.91 (m, 3H, CH3), 1.08–1.22 (m, 2H), 1.20–1.33 (m, 7H), 1.35–1.57 (m, 3H), 1.66–1.78 (m, 1H), 2.00–2.10 (m, 1H), 2.11–2.27 (m, 2H), 3.23–3.29 (m, 1H, H8a′), 3.37–3.51 (m, 2H, NCHH, H1′), 3.60 (dt, J = 14.5, 7.4 Hz, 1H, NCHH), 4.48 (d, J = 9.7 Hz, 1H, H2′), 6.60 (d, J = 7.8 Hz, 1H), 6.74–6.91 (m, 2H), 7.01 (t, J = 7.5 Hz, 1H), 7.19–7.32 (m, 4H), 7.42 (t, J = 7.2 Hz, 1H), 12.68 (s, 1H, COOH); δ(13C) 14.3 (CH3), 22.5 (CH2), 23.7 (C8′), 25.5 (C7′), 26.4 (CH2), 27.4 (CH2), 31.3 (CH2), 31.8 (C6′), 39.7 (CH2), 45.5 (C5′), 50.5 (C1′), 55.4 (C2′), 61.6 (C8a′), 70.9 (C3, C-spiro), 108.4 (CH), 122.7 (CH), 126.0 (CH), 126.9 (C), 127.5 (CH), 128.8 (CH), 129.6 (CH), 133.5 (CH), 143.5 (C), 173.5 (COOH), 177.2 (C2), 197.4 (C—CO—C). MS (EI, 70 eV) m/z (%): 475 (M+ + H, 3), 368 (22), 339 (35), 313 (75), 264 (39).

2.2. Refinement

Crystal data, data collection and refinement details are summarized in Table 1[link]. The crystallographic atom labelling followed the convention employed previously (Quiroga et al., 2017[Quiroga, J., Romo, P., Cobo, J. & Glidewell, C. (2017). Acta Cryst. C73, 1109-1115.]; Romo et al., 2020[Romo, P., Quiroga, J., Cobo, J. & Glidewell, C. (2020). Acta Cryst. C76, 779-785.]). For com­pound (II)[link], five low-angle reflections which had been attenuated by the beam stop (101, 111, 0[\overline{1}]1, [\overline{1}]02 and [\overline{1}]03) were omitted from the data set. All H atoms were located in difference maps. H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions, with C—H = 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic C—H) and Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. For the H atoms bonded to N or O atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O), giving the N—H and O—H distances shown in Table 2[link].

Table 1
Experimental details

Experiments were carried out at 100 K with Mo Kα radiation using a Bruker D8 Venture diffractometer. Absorption was corrected for by multi-scan methods (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]). H atoms were treated by a mixture of independent and constrained refinement.

  (I) (II) (III)
Crystal data
Chemical formula C23H21FN2O4 C24H24N2O4 C24H24N2O4
Mr 408.42 404.45 404.45
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
a, b, c (Å) 8.1440 (5), 8.4565 (5), 14.9945 (8) 8.1874 (6), 8.5015 (6), 15.5775 (12) 8.6535 (4), 9.2064 (4), 14.4327 (6)
α, β, γ (°) 87.549 (2), 79.926 (2), 68.467 (2) 85.775 (3), 77.641 (3), 68.022 (2) 72.660 (1), 74.539 (1), 65.930 (2)
V3) 945.52 (10) 982.15 (13) 988.16 (8)
Z 2 2 2
μ (mm−1) 0.11 0.09 0.09
Crystal size (mm) 0.26 × 0.21 × 0.12 0.16 × 0.12 × 0.07 0.19 × 0.19 × 0.12
 
Data collection
Tmin, Tmax 0.939, 0.987 0.934, 0.993 0.944, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 50206, 4727, 3889 40953, 4490, 3667 47689, 4917, 4145
Rint 0.068 0.069 0.057
(sin θ/λ)max−1) 0.668 0.650 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 1.04 0.040, 0.098, 1.03 0.039, 0.098, 1.04
No. of reflections 4727 4490 4917
No. of parameters 277 278 275
Δρmax, Δρmin (e Å−3) 0.32, −0.26 0.34, −0.22 0.30, −0.33
  (IV) (V)
Crystal data
Chemical formula C24H23ClN2O4 C29H34N2O4
Mr 438.89 474.58
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
a, b, c (Å) 8.7914 (9), 9.3155 (10), 14.6188 (15) 11.0442 (4), 17.4707 (6), 13.0081 (4)
α, β, γ (°) 73.437 (4), 76.259 (4), 64.156 (3) 90, 90.215 (1), 90
V3) 1023.84 (19) 2509.89 (15)
Z 2 4
μ (mm−1) 0.22 0.08
Crystal size (mm) 0.41 × 0.32 × 0.14 0.23 × 0.13 × 0.12
 
Data collection
Tmin, Tmax 0.934, 0.969 0.921, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 41790, 5097, 4493 24313, 5765, 4619
Rint 0.055 0.059
(sin θ/λ)max−1) 0.668 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 1.03 0.043, 0.102, 1.03
No. of reflections 5097 5765
No. of parameters 284 320
Δρmax, Δρmin (e Å−3) 0.33, −0.31 0.29, −0.26
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2017[Bruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Table 2
Hydrogen-bond parameters (Å, °)

Cg1 represents the centroid of the C221–C226 ring.

  D—H⋯A D—H H⋯A DA D—H⋯A
(I) N11—H11⋯O227i 0.868 (18) 2.242 (17) 2.9756 (16) 142.2 (13)
  O212—H212⋯O12ii 0.899 (19) 1.873 (19) 2.7723 (14) 178.4 (15)
  C22—H22⋯O211ii 1.00 2.22 3.1930 (15) 164
  C16—H15⋯Cg1iii 0.95 2.63 3.4966 (14) 152
(II) N11—H11⋯O227i 0.880 (18) 2.181 (18) 2.9598 (18) 147.3 (15)
  O212—H212⋯O12ii 0.89 (2) 1.88 (2) 2.7691 (15) 179 (2)
  C22—H22⋯O211ii 1.00 2.21 3.1894 (16) 165
  C16—H15⋯Cg1iii 0.95 2.75 3.6366 (16) 155
(III) O212—H212⋯O211ii 0.920 (19) 1.798 (19) 2.7162 (14) 175.5 (16)
  C16—H16⋯Cg1iv 0.95 2.70 3.5181 (17) 144
(IV) O212—H212⋯O211ii 0.863 (19) 1.854 (19) 2.7152 (14) 175.3 (16)
  C16—H16⋯Cg1iv 0.95 2.52 3.3872 (14) 152
(V) O212—H212⋯O12ii 0.915 (18) 1.744 (18) 2.6589 (13) 178.5 (15)
  C113—H11F⋯O227v 0.99 2.51 3.4738 (17) 163
  C16—H16⋯O227vi 0.95 2.48 3.3947 (17) 162
  C22—H22⋯O211ii 1.00 2.57 3.5693 (16) 177
  C226—H226⋯O211ii 0.95 2.50 3.3854 (17) 155
Symmetry codes: (i) x + 1, y, z; (ii) −x + 1, −y + 1, −z + 1; (iii) −x + 2, −y + 1, −z; (iv) −x, −y + 1, −z; (v) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (vi) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}].

3. Results and discussion

All of the signals for the H and C atoms in com­pounds (I)–(V) were observed in their NMR spectra, with the sole exception of the carboxyl H-atom signal in com­pound (IV)[link]. All of the signals were assigned using one-dimensional spectra and two-dimensional COSY, HSQC and HMBC spectra. In terms of the formation of the spiro ring system, it is necessary to consider the NMR spectra only for com­pound (I)[link], as those for (II)–(V) follow very similar lines, apart from the obvious differences arising from the differences in the peripheral substituents. The signals from atoms H1′ and H2′, bonded to atoms C1′ and C2′ (C21 and C22 in the crystallographic numbering scheme; see Fig. 1[link]) which originated in the electron-deficient alkene, show a mutual coupling of 9.7 Hz, while H1′ is similarly coupled to H8a′, bonded to C8a′ (C28A). These signals confirm the formation of the new ring and the magnitude of the coupling constants show (Karplus, 1959[Karplus, M. (1959). J. Chem. Phys. 30, 11-15.]) that atom H1′ is trans to both H2′ and H8′, so establishing the relative stereochemistry at atoms C1′, C2′ and C8a′ (C21, C22 and C28A). However, the NMR data do not allow definition of the stereochemistry of the spiro C atom relative to these three centres, nor that of the relative location of the benzoyl and carbonyl substituents, both of which were determined from the single-crystal diffraction study.

Compounds (I)[link] and (II)[link] are isomorphous, as are com­pounds (III)[link] and (IV)[link] (Table 1[link]). Each com­pound contains four contiguous stereogenic centres, at atoms C21, C22, C13 and C28A (Figs. 1[link]–5[link][link][link][link]), and the centrosymmetric space groups (Table 1[link]) confirm that each com­pound has crystallized as a racemic mixture. For each com­pound, the reference mol­ecule was selected as one having the R configuration at atom C13; on this basis, the configurations at atoms C21, C22 and C28A are S, S and R, respectively, with these atoms corresponding to locants C3, C1′, C2′ and C8a′ in the chemical numbering scheme, so that the overall configuration in each of (I)–(V) is (1′SR,2′SR,3RS,8a′RS). The structure analyses also show that for each com­pound, the carboxyl group is bonded to atom C21 and the benzoyl group is bonded to atom C22 (Figs. 1[link]–5[link][link][link][link]).

A plausible mechanism for the formation of com­pounds (I)–(V), based on previous work (Pardasani et al., 2003[Pardasani, R. T., Pardasani, P., Chaturvedi, V., Yadav, S. K., Saxena, A. & Sharma, I. (2003). Heteroatom Chem. 14, 36-41.]; Quiroga et al., 2017[Quiroga, J., Romo, P., Cobo, J. & Glidewell, C. (2017). Acta Cryst. C73, 1109-1115.]; Romo et al., 2020[Romo, P., Quiroga, J., Cobo, J. & Glidewell, C. (2020). Acta Cryst. C76, 779-785.]), involves a condensation reaction between a substituted isatin (A) (Scheme 2) and pipecolic acid (B) to give inter­mediate (C), followed by dehydration to (D) and deca­rboxylation to give the ylide (E). The subsequent reaction between ylide (E) and trans-3-ben­zoyl­acrylic acid (F), neither of which contains any stereogenic centres, is both regio- and stereo­specific. Compounds (I)–(V) were all formed as racemic mixtures of a single stereoisomer, and formation of the alternative regioisomers of type (G) was not detected in any of the reactions. The endo approach of the alkene to the ylide is preferred over the alternative exo approach, as its transition state is better stabilized by ππ inter­actions between the aryl groups in the two reaction com­ponents.

The synthetic pathway defined in Scheme 2[link] thus significantly amplifies the scope of the ylide/alkene route to novel spiro com­pounds. The product yields, which are com­parable with, say, those of a three-step process with conversions of 80–85% at each stage, are regarded as entirely acceptable in view of the one-step nature of the procedure, the ready availability of starting materials which permit a very wide range of substituent combinations, and the regio- and stereo­specificity giving racemic mixtures of single stereoisomers.

The conformations (Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]) of the five-membered ring containing atom N24 show some unexpected variations. Thus, in the isomorphous pair (I)[link] and (II)[link], this ring adopts a half-chair conformation in (I)[link], but an envelope conformation in (II)[link]. In (I)[link], the ring is twisted about a line between atom C22 and the mid-point of the N24—C28A bond, such that atoms C13 and C21 are displaced to either side of the plane through atoms C22, N24 and C28A by 0.5324 (18) and 0.6374 (15) Å, respectively. In contrast, the corresponding ring in (II)[link] adopts an envelope conformation, with the ring folded across the C21⋯N24 line and with atom C28A displaced by 0.6528 (19) Å from the plane through atoms C21, C22, C13 and N24. Similarly, in the isomorphous pair (III)[link] and (IV)[link], this ring adopts a half-chair conformation, but now twisted across the line between atom C13 and the mid-point of the C21—C28A bond, with atoms C22 and C24 displaced to either side of the plane through C13, C21 and C28A by 0.5410 (18) and 0.5819 (16) Å, respectively, while in (IV)[link], this ring adopts the envelope conformation, folded across the C21⋯C24 line, with atom C28A displaced by 0.6709 (16) Å from the plane of the other four atoms. The same envelope conformation is found in (V)[link], with a displacement of 0.6284 (19) Å for atom C28A. In each of (I)–(V), the six-membered ring containing atom N24 adopts an almost perfect chair conformation, with substituents C13 and C21 both in equatorial sites. The values of the ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]; Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]) are summarized in Table 3[link]. In view of the conformational differences within the isomorphous pairs (I)/(II) and (III)/(IV), it may not be appropriate to regard these pairs as strictly isostructural (Acosta et al., 2009[Acosta, L. M., Bahsas, A., Palma, A., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, o92-o96.]; Blanco et al., 2012[Blanco, M. C., Palma, A., Cobo, J. & Glidewell, C. (2012). Acta Cryst. C68, o195-o198.]).

Table 3
Ring-puckering parameters (Å, °)

Parameters for rings A and B are calculated for the atom sequences N24—C13—C22—C21—C28A and N24—C25—C26—C27—C28—C28A, respectively.

Ring A Q2 φ2  
(I) 0.4391 (11) 333.05 (17)  
(II) 0.4363 (14) 332.26 (19)  
(III) 0.4436 (13) 312.16 (17)  
(IV) 0.4456 (13) 317.67 (17)  
(V) 0.4125 (13) 327.81 (18)  
       
Ring B Q θ φ
(I) 0.5673 (14) 175.99 (14) 227.3 (19)
(II) 0.5670 (15) 176.31 (15) 226 (2)
(III) 0.5846 (14) 176.53 (14) 141 (3)
(IV) 0.5913 (14) 176.98 (14) 132 (3)
(V) 0.5778 (14) 179.45 (14) 219 (22)

In the structure of com­pound (I)[link], four hydrogen bonds (Table 2[link]) link the mol­ecules into com­plex sheets whose formation can, however, be readily analysed in terms of two one-dimensional substructures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). A combination of O—H⋯O and N—H⋯O hydrogen bonds forms a ribbon in the form of a chain of edge-fused centrosymmetric rings running parallel to [100], in which R22(16) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) rings centred at (n + [1 \over 2], [1 \over 2], [1 \over 2]) alternate with R44(22) rings centred at (n, [1 \over 2], [1 \over 2]), where n represents an integer in each case (Fig. 6[link]). The formation of this ribbon is modestly enhanced by a C—H⋯O hydrogen bond involving a C—H bond of rather low acidity. In the second substructure, a combination of O—H⋯O and C—H⋯π(arene) hydrogen bonds forms a second chain of rings, this time running parallel to [10[\overline{1}]], in which R22(16) rings centred at (n + [1 \over 2], [1 \over 2], −n + [1 \over 2]) alternate with rings formed by the C—H⋯π(arene) hydrogen bonds, which are centred at (n, [1 \over 2], 1 − n), where n represents an integer in each case (Fig. 7[link]). The combination of these two chain motifs generates a sheet lying parallel to (101), but there are no direction-specific inter­actions between adjacent sheets. The supra­molecular assembly of the isomorphous com­pound (II)[link] is entirely similar to that in (I)[link].

[Figure 6]
Figure 6
Part of the crystal structure of com­pound (I)[link], showing the formation of a chain of rings along [100] built from O—H⋯O and N—H⋯O hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms have all been omitted.
[Figure 7]
Figure 7
Part of the crystal structure of com­pound (I)[link], showing the formation of a chain of rings along [10[\overline{1}]] built from O—H⋯O and C—H⋯π(arene) hydrogen bonds. For the sake of clarity, H atoms bonded to those C atoms not involved in the motif shown have been omitted.

In the isomorphous pair of com­pounds (III)[link] and (IV)[link], there are just two hydrogen bonds (Table 2[link]), and these link the mol­ecules into a chain of centrosymmetric rings running parallel to [101], in which R22(8) rings formed by the O—H⋯O hydrogen bonds and centred at (n + [1 \over 2], [1 \over 2], n + [1 \over 2]) alternate with rings formed by C—H⋯π(arene) hydrogen bonds and centred at (n, [1 \over 2], n), where n represents an integer in each case (Fig. 8[link]). There are no direction-specific inter­actions between adjacent chains.

[Figure 8]
Figure 8
Part of the crystal structure of com­pound (III)[link], showing the formation of a chain of rings along [101] built from O—H⋯O and C—H⋯π(arene) hydrogen bonds. For the sake of clarity, H atoms not involved in the motif shown have been omitted.

Five hydrogen bonds (Table 2[link]) link the mol­ecules of com­pound (V)[link] into sheets lying parallel to (10[\overline{1}]), but the formation of the sheet can, in fact, be analysed in terms of just two of these inter­actions, those having atoms O212 and C16 as the donors. Inversion-related pairs of mol­ecules are linked by paired O—H⋯O hydrogen bonds to form centrosymmetric R22(16) dimers, of the type seen also in com­pounds (I)[link] and (II)[link], although in (V)[link] the dimer formation is weakly augmented by two C—H⋯O inter­actions. Linkage of these dimers by the C—H⋯O hydrogen bond involving atom C16 then generates a sheet in which centrosymmetric rings of R22(16) and R66(46) types alternate in a chessboard fashion (Fig. 9[link]). There are no direction-specific inter­actions between adjacent sheets.

[Figure 9]
Figure 9
Part of the crystal structure of com­pound (V)[link], showing the formation of a sheet lying parallel to (10[\overline{1}]) built from O—H⋯O and C—H⋯O hydrogen bonds. For the sake of clarity, H atoms bonded to those C atoms not involved in the motif shown have been omitted.

Overall, therefore, the supra­molecular assembly is one-dimensional in each of com­pounds (III)[link] and (IV)[link], and two-dimensional in (I)[link], (II)[link] and (V)[link]; however, a three-dimensional assembly is not observed amongst the examples reported here. This may be contrasted with the behaviour observed in two spiro­[indoline-3,3′-pyrrolizine]s (Quiroga et al., 2017[Quiroga, J., Romo, P., Cobo, J. & Glidewell, C. (2017). Acta Cryst. C73, 1109-1115.]). In (1′RS,2′RS,3SR,7a′RR)-1′,2′-bis­(4-chloro­benzo­yl)-5,7-di­chloro-2-oxo-1′,2′,5′,6′,7′,7a′-hexa­hydro­spiro­[indoline-3,3′-pyrrolizine], which crystallizes as a partial di­chloro­methane solvate, the heterocyclic mol­ecules are linked by N—H⋯O hydrogen bonds to form R22(8) dimers, while in (1′RS,2′RS,3SR,7a′SR)-2′-benzoyl-1-hexyl-2-oxo-1′,2′,5′,6′,7′,7a′-hexa­hydro­spiro­[indo­line-3,3′-pyrrolizine]-1′-carb­oxy­lic acid, the mol­ecules are linked by O—H⋯O hydrogen bonds to form cyclic R66(48) hexa­mers with [\overline{3}] (S6) symmetry, which are further linked by C—H⋯O hydrogen bonds to form a three-dimensional framework structure.

In summary, therefore, we have developed a new application of the ylide/alkene procedure, which we have now used for the formation of spiro­[indoline-3,3′-indolizine]s in a single step, using simple and readily available starting materials. This approach permits the incorporation of a wide variety of substituents and other functional groups for further elaboration. Five representative examples have been fully characterized spectroscopically and structurally, and their patterns of supra­molecular assembly have been analysed, described and illustrated.

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

(1'SR,2'SR,3RS,8a'RS)-2'-Benzoyl-5-fluoro-2-oxo-1',5',6',7',8',8a'-hexahydro-2'H-spiro[indoline-3,3'-indolizine]-1'-carboxylic acid (I) top
Crystal data top
C23H21FN2O4Z = 2
Mr = 408.42F(000) = 428
Triclinic, P1Dx = 1.434 Mg m3
a = 8.1440 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.4565 (5) ÅCell parameters from 4727 reflections
c = 14.9945 (8) Åθ = 2.6–28.4°
α = 87.549 (2)°µ = 0.11 mm1
β = 79.926 (2)°T = 100 K
γ = 68.467 (2)°Block, colourless
V = 945.52 (10) Å30.26 × 0.21 × 0.12 mm
Data collection top
Bruker D8 Venture
diffractometer
4727 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube3889 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.068
φ and ω scansθmax = 28.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1010
Tmin = 0.939, Tmax = 0.987k = 1111
50206 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0348P)2 + 0.5208P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4727 reflectionsΔρmax = 0.32 e Å3
277 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N111.08269 (14)0.39724 (14)0.25922 (7)0.0158 (2)
H111.170 (2)0.426 (2)0.2691 (10)0.019*
C120.95853 (15)0.37142 (15)0.32522 (8)0.0134 (2)
O120.94302 (11)0.39830 (11)0.40642 (6)0.01625 (18)
C130.84286 (15)0.29780 (14)0.27968 (8)0.0126 (2)
C13A0.92063 (16)0.29951 (15)0.18062 (8)0.0139 (2)
C140.88091 (17)0.24167 (16)0.10478 (8)0.0166 (2)
H140.78640.19990.10910.020*
C150.98626 (17)0.24807 (16)0.02246 (8)0.0182 (3)
F150.94893 (11)0.19433 (11)0.05352 (5)0.02647 (19)
C161.12559 (17)0.30658 (16)0.01302 (8)0.0188 (3)
H161.19240.30990.04520.023*
C171.16756 (16)0.36082 (16)0.08971 (8)0.0172 (2)
H171.26400.40010.08530.021*
C17A1.06354 (16)0.35527 (15)0.17253 (8)0.0143 (2)
C210.57206 (15)0.27283 (15)0.37179 (8)0.0133 (2)
H210.51760.21970.33280.016*
C220.63827 (15)0.40201 (15)0.31493 (8)0.0125 (2)
H220.62850.49600.35620.015*
N240.86385 (13)0.12371 (12)0.30761 (7)0.0134 (2)
C251.04769 (16)0.00583 (15)0.30830 (9)0.0177 (2)
H25A1.09900.04250.35510.021*
H25B1.12310.00440.24870.021*
C261.04418 (18)0.17129 (16)0.32871 (9)0.0208 (3)
H26A1.16700.25190.33170.025*
H26B1.00090.21050.27940.025*
C270.92145 (17)0.16920 (16)0.41871 (9)0.0193 (3)
H27A0.97410.14510.46880.023*
H27B0.91300.28270.42820.023*
C280.73338 (16)0.03508 (15)0.42078 (8)0.0160 (2)
H28A0.67200.07000.37820.019*
H28B0.66270.02660.48240.019*
C28A0.74292 (16)0.13729 (15)0.39444 (8)0.0134 (2)
H28C0.78620.18180.44270.016*
C2110.43487 (16)0.35381 (15)0.45420 (8)0.0148 (2)
O2110.45433 (12)0.31384 (11)0.53129 (6)0.0196 (2)
O2120.28836 (12)0.47406 (12)0.43253 (7)0.0212 (2)
H2120.212 (3)0.517 (2)0.4842 (12)0.032*
C2270.53320 (15)0.47914 (15)0.23910 (8)0.0136 (2)
O2270.44923 (12)0.40598 (12)0.20899 (6)0.0192 (2)
C2210.53110 (16)0.64745 (15)0.20304 (8)0.0149 (2)
C2220.42462 (17)0.72116 (17)0.13716 (9)0.0192 (3)
H2220.36170.66110.11450.023*
C2230.41032 (19)0.88090 (18)0.10488 (9)0.0229 (3)
H2230.33630.93070.06100.028*
C2240.50443 (19)0.96829 (17)0.13682 (9)0.0219 (3)
H2240.49401.07810.11490.026*
C2250.61343 (19)0.89555 (17)0.20057 (9)0.0207 (3)
H2250.67970.95430.22120.025*
C2260.62558 (17)0.73600 (16)0.23430 (8)0.0174 (2)
H2260.69850.68730.27880.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0137 (5)0.0190 (5)0.0171 (5)0.0089 (4)0.0027 (4)0.0011 (4)
C120.0106 (5)0.0111 (5)0.0172 (6)0.0025 (4)0.0027 (4)0.0013 (4)
O120.0148 (4)0.0182 (4)0.0156 (4)0.0053 (3)0.0035 (3)0.0006 (3)
C130.0119 (5)0.0116 (5)0.0146 (5)0.0046 (4)0.0027 (4)0.0016 (4)
C13A0.0121 (5)0.0127 (5)0.0156 (5)0.0031 (4)0.0022 (4)0.0017 (4)
C140.0155 (6)0.0163 (6)0.0183 (6)0.0058 (5)0.0036 (5)0.0003 (4)
C150.0196 (6)0.0184 (6)0.0143 (6)0.0032 (5)0.0049 (5)0.0006 (4)
F150.0287 (4)0.0362 (5)0.0158 (4)0.0126 (4)0.0043 (3)0.0041 (3)
C160.0161 (6)0.0197 (6)0.0160 (6)0.0028 (5)0.0001 (5)0.0033 (5)
C170.0135 (6)0.0168 (6)0.0199 (6)0.0048 (5)0.0017 (5)0.0045 (5)
C17A0.0132 (5)0.0129 (5)0.0159 (6)0.0036 (4)0.0030 (4)0.0028 (4)
C210.0121 (5)0.0135 (5)0.0151 (5)0.0058 (4)0.0020 (4)0.0019 (4)
C220.0109 (5)0.0121 (5)0.0144 (5)0.0041 (4)0.0022 (4)0.0015 (4)
N240.0117 (5)0.0109 (4)0.0163 (5)0.0036 (4)0.0006 (4)0.0020 (4)
C250.0129 (6)0.0145 (6)0.0224 (6)0.0021 (5)0.0009 (5)0.0016 (5)
C260.0190 (6)0.0133 (6)0.0252 (7)0.0018 (5)0.0009 (5)0.0018 (5)
C270.0196 (6)0.0138 (6)0.0237 (6)0.0054 (5)0.0043 (5)0.0047 (5)
C280.0165 (6)0.0143 (6)0.0182 (6)0.0068 (5)0.0033 (5)0.0034 (4)
C28A0.0118 (5)0.0132 (5)0.0146 (5)0.0043 (4)0.0012 (4)0.0015 (4)
C2110.0134 (5)0.0130 (5)0.0194 (6)0.0068 (4)0.0020 (4)0.0019 (4)
O2110.0209 (5)0.0180 (4)0.0168 (4)0.0043 (4)0.0013 (3)0.0012 (3)
O2120.0129 (4)0.0230 (5)0.0214 (5)0.0009 (4)0.0001 (4)0.0029 (4)
C2270.0096 (5)0.0153 (5)0.0146 (5)0.0034 (4)0.0008 (4)0.0002 (4)
O2270.0187 (4)0.0224 (5)0.0214 (4)0.0112 (4)0.0081 (4)0.0034 (4)
C2210.0132 (5)0.0149 (6)0.0143 (5)0.0030 (4)0.0011 (4)0.0009 (4)
C2220.0160 (6)0.0218 (6)0.0194 (6)0.0057 (5)0.0052 (5)0.0043 (5)
C2230.0206 (6)0.0242 (7)0.0210 (6)0.0045 (5)0.0060 (5)0.0083 (5)
C2240.0242 (7)0.0155 (6)0.0213 (6)0.0040 (5)0.0005 (5)0.0050 (5)
C2250.0269 (7)0.0171 (6)0.0186 (6)0.0093 (5)0.0032 (5)0.0017 (5)
C2260.0201 (6)0.0160 (6)0.0161 (6)0.0064 (5)0.0038 (5)0.0017 (4)
Geometric parameters (Å, º) top
N11—C121.3576 (16)C25—H25B0.9900
N11—C17A1.4111 (15)C26—C271.5289 (18)
N11—H110.870 (17)C26—H26A0.9900
C12—O121.2243 (14)C26—H26B0.9900
C12—C131.5599 (16)C27—C281.5312 (17)
C13—N241.4696 (15)C27—H27A0.9900
C13—C13A1.5110 (16)C27—H27B0.9900
C13—C221.5767 (16)C28—C28A1.5199 (16)
C13A—C141.3891 (17)C28—H28A0.9900
C13A—C17A1.3929 (17)C28—H28B0.9900
C14—C151.3858 (18)C28A—H28C1.0000
C14—H140.9500C211—O2111.2111 (15)
C15—F151.3652 (14)C211—O2121.3342 (15)
C15—C161.3793 (19)O212—H2120.898 (19)
C16—C171.3955 (18)C227—O2271.2234 (15)
C16—H160.9500C227—C2211.4960 (17)
C17—C17A1.3849 (17)C221—C2261.3971 (17)
C17—H170.9500C221—C2221.4023 (17)
C21—C2111.5074 (16)C222—C2231.3859 (19)
C21—C28A1.5253 (16)C222—H2220.9500
C21—C221.5501 (16)C223—C2241.392 (2)
C21—H211.0000C223—H2230.9500
C22—C2271.5225 (16)C224—C2251.3876 (19)
C22—H221.0000C224—H2240.9500
N24—C251.4643 (15)C225—C2261.3955 (18)
N24—C28A1.4695 (15)C225—H2250.9500
C25—C261.5255 (17)C226—H2260.9500
C25—H25A0.9900
C12—N11—C17A111.66 (10)H25A—C25—H25B108.4
C12—N11—H11124.4 (10)C25—C26—C27110.53 (10)
C17A—N11—H11123.6 (10)C25—C26—H26A109.5
O12—C12—N11125.70 (11)C27—C26—H26A109.5
O12—C12—C13126.21 (11)C25—C26—H26B109.5
N11—C12—C13108.08 (10)C27—C26—H26B109.5
N24—C13—C13A110.59 (9)H26A—C26—H26B108.1
N24—C13—C12112.62 (9)C26—C27—C28111.69 (10)
C13A—C13—C12101.43 (9)C26—C27—H27A109.3
N24—C13—C22103.20 (9)C28—C27—H27A109.3
C13A—C13—C22120.13 (10)C26—C27—H27B109.3
C12—C13—C22109.18 (9)C28—C27—H27B109.3
C14—C13A—C17A120.40 (11)H27A—C27—H27B107.9
C14—C13A—C13130.03 (11)C28A—C28—C27110.73 (10)
C17A—C13A—C13109.26 (10)C28A—C28—H28A109.5
C15—C14—C13A116.59 (11)C27—C28—H28A109.5
C15—C14—H14121.7C28A—C28—H28B109.5
C13A—C14—H14121.7C27—C28—H28B109.5
F15—C15—C16118.31 (11)H28A—C28—H28B108.1
F15—C15—C14117.98 (12)N24—C28A—C28110.49 (9)
C16—C15—C14123.71 (12)N24—C28A—C21100.03 (9)
C15—C16—C17119.45 (12)C28—C28A—C21116.54 (10)
C15—C16—H16120.3N24—C28A—H28C109.8
C17—C16—H16120.3C28—C28A—H28C109.8
C17A—C17—C16117.57 (12)C21—C28A—H28C109.8
C17A—C17—H17121.2O211—C211—O212123.70 (11)
C16—C17—H17121.2O211—C211—C21124.07 (11)
C17—C17A—C13A122.25 (11)O212—C211—C21112.23 (10)
C17—C17A—N11128.25 (11)C211—O212—H212107.8 (11)
C13A—C17A—N11109.48 (10)O227—C227—C221120.37 (11)
C211—C21—C28A113.48 (10)O227—C227—C22120.55 (11)
C211—C21—C22112.77 (10)C221—C227—C22119.07 (10)
C28A—C21—C22104.15 (9)C226—C221—C222118.98 (11)
C211—C21—H21108.7C226—C221—C227122.84 (11)
C28A—C21—H21108.7C222—C221—C227118.15 (11)
C22—C21—H21108.7C223—C222—C221120.56 (12)
C227—C22—C21113.74 (9)C223—C222—H222119.7
C227—C22—C13113.26 (9)C221—C222—H222119.7
C21—C22—C13103.95 (9)C222—C223—C224119.96 (12)
C227—C22—H22108.6C222—C223—H223120.0
C21—C22—H22108.6C224—C223—H223120.0
C13—C22—H22108.6C225—C224—C223120.19 (12)
C25—N24—C28A113.80 (9)C225—C224—H224119.9
C25—N24—C13116.13 (9)C223—C224—H224119.9
C28A—N24—C13107.07 (9)C224—C225—C226119.93 (12)
N24—C25—C26108.45 (10)C224—C225—H225120.0
N24—C25—H25A110.0C226—C225—H225120.0
C26—C25—H25A110.0C225—C226—C221120.37 (12)
N24—C25—H25B110.0C225—C226—H226119.8
C26—C25—H25B110.0C221—C226—H226119.8
C17A—N11—C12—O12179.45 (11)C12—C13—N24—C2545.23 (13)
C17A—N11—C12—C131.88 (13)C22—C13—N24—C25162.84 (9)
O12—C12—C13—N2463.41 (15)C13A—C13—N24—C28A164.16 (9)
N11—C12—C13—N24115.26 (11)C12—C13—N24—C28A83.15 (11)
O12—C12—C13—C13A178.37 (11)C22—C13—N24—C28A34.46 (11)
N11—C12—C13—C13A2.96 (12)C28A—N24—C25—C2661.11 (13)
O12—C12—C13—C2250.60 (15)C13—N24—C25—C26173.87 (10)
N11—C12—C13—C22130.73 (10)N24—C25—C26—C2757.14 (14)
N24—C13—C13A—C1456.89 (16)C25—C26—C27—C2854.26 (14)
C12—C13—C13A—C14176.57 (12)C26—C27—C28—C28A51.69 (14)
C22—C13—C13A—C1463.11 (17)C25—N24—C28A—C2859.49 (13)
N24—C13—C13A—C17A116.61 (11)C13—N24—C28A—C28170.79 (9)
C12—C13—C13A—C17A3.07 (12)C25—N24—C28A—C21177.10 (9)
C22—C13—C13A—C17A123.40 (11)C13—N24—C28A—C2147.38 (11)
C17A—C13A—C14—C151.96 (18)C27—C28—C28A—N2452.77 (13)
C13—C13A—C14—C15174.84 (12)C27—C28—C28A—C21166.01 (10)
C13A—C14—C15—F15179.10 (11)C211—C21—C28A—N24163.33 (9)
C13A—C14—C15—C160.47 (19)C22—C21—C28A—N2440.31 (11)
F15—C15—C16—C17179.43 (11)C211—C21—C28A—C2877.61 (13)
C14—C15—C16—C171.0 (2)C22—C21—C28A—C28159.38 (10)
C15—C16—C17—C17A0.95 (18)C28A—C21—C211—O2111.72 (17)
C16—C17—C17A—C13A0.55 (18)C22—C21—C211—O211119.85 (13)
C16—C17—C17A—N11177.65 (12)C28A—C21—C211—O212178.78 (10)
C14—C13A—C17A—C172.07 (18)C22—C21—C211—O21260.65 (13)
C13—C13A—C17A—C17176.29 (11)C21—C22—C227—O22722.27 (16)
C14—C13A—C17A—N11176.43 (11)C13—C22—C227—O22796.13 (13)
C13—C13A—C17A—N112.20 (13)C21—C22—C227—C221156.56 (10)
C12—N11—C17A—C17178.22 (12)C13—C22—C227—C22185.04 (13)
C12—N11—C17A—C13A0.16 (14)O227—C227—C221—C226179.45 (12)
C211—C21—C22—C22792.63 (12)C22—C227—C221—C2261.71 (17)
C28A—C21—C22—C227143.89 (10)O227—C227—C221—C2222.72 (17)
C211—C21—C22—C13143.74 (10)C22—C227—C221—C222176.12 (11)
C28A—C21—C22—C1320.27 (11)C226—C221—C222—C2231.31 (19)
N24—C13—C22—C227116.45 (10)C227—C221—C222—C223176.60 (11)
C13A—C13—C22—C2277.17 (15)C221—C222—C223—C2241.0 (2)
C12—C13—C22—C227123.56 (10)C222—C223—C224—C2250.4 (2)
N24—C13—C22—C217.49 (11)C223—C224—C225—C2261.5 (2)
C13A—C13—C22—C21131.11 (11)C224—C225—C226—C2211.2 (2)
C12—C13—C22—C21112.51 (10)C222—C221—C226—C2250.20 (18)
C13A—C13—N24—C2567.46 (13)C227—C221—C226—C225177.61 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O227i0.868 (18)2.242 (17)2.9756 (16)142.2 (13)
O212—H212···O12ii0.899 (19)1.873 (19)2.7723 (14)178.4 (15)
C22—H22···O211ii1.002.223.1930 (15)164
C16—H16···Cg1iii0.952.633.4966 (14)152
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z.
(1'SR,2'SR,3RS,8a'RS)-2'-Benzoyl-5-methyl-2-oxo-1',5',6',7',8',8a'-hexahydro-2'H-spiro[indoline-3,3'-indolizine]-1'-carboxylic acid (II) top
Crystal data top
C24H24N2O4Z = 2
Mr = 404.45F(000) = 428
Triclinic, P1Dx = 1.368 Mg m3
a = 8.1874 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5015 (6) ÅCell parameters from 4495 reflections
c = 15.5775 (12) Åθ = 2.7–27.5°
α = 85.775 (3)°µ = 0.09 mm1
β = 77.641 (3)°T = 100 K
γ = 68.022 (2)°Block, colourless
V = 982.15 (13) Å30.16 × 0.12 × 0.07 mm
Data collection top
Bruker D8 Venture
diffractometer
4490 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube3667 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.069
φ and ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1010
Tmin = 0.934, Tmax = 0.993k = 1111
40953 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.5075P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4490 reflectionsΔρmax = 0.34 e Å3
278 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N111.09701 (16)0.39151 (15)0.26240 (8)0.0156 (2)
H111.187 (2)0.415 (2)0.2728 (11)0.019*
C120.96755 (17)0.37128 (16)0.32786 (9)0.0132 (3)
O120.94935 (13)0.39794 (12)0.40602 (6)0.0162 (2)
C130.85035 (17)0.30208 (16)0.28577 (9)0.0120 (2)
C13A0.93032 (17)0.30520 (16)0.18913 (9)0.0131 (3)
C140.88832 (18)0.25617 (16)0.11664 (9)0.0150 (3)
H140.78960.22000.12360.018*
C150.99176 (19)0.25999 (17)0.03299 (9)0.0167 (3)
C161.13690 (19)0.31229 (17)0.02505 (9)0.0177 (3)
H161.20600.31680.03180.021*
C171.18385 (18)0.35820 (17)0.09780 (9)0.0174 (3)
H171.28450.39130.09150.021*
C17A1.07816 (18)0.35368 (16)0.17934 (9)0.0146 (3)
C210.57635 (17)0.27666 (16)0.37763 (9)0.0127 (3)
H210.52320.22580.34030.015*
C220.64524 (17)0.40613 (16)0.32191 (8)0.0118 (2)
H220.63530.49760.36180.014*
N240.87015 (15)0.12758 (13)0.31379 (7)0.0127 (2)
C251.05406 (18)0.00874 (17)0.31350 (10)0.0172 (3)
H25A1.10400.04370.35810.021*
H25B1.13160.00810.25520.021*
C261.04917 (19)0.16755 (17)0.33436 (10)0.0200 (3)
H26A1.17180.24880.33670.024*
H26B1.00760.20500.28720.024*
C270.92344 (19)0.16700 (17)0.42207 (10)0.0182 (3)
H27A0.97400.14440.47000.022*
H27B0.91470.28020.43190.022*
C280.73517 (18)0.03248 (16)0.42473 (9)0.0150 (3)
H28A0.67560.06570.38400.018*
H28B0.66190.02520.48480.018*
C28A0.74617 (17)0.13950 (16)0.39850 (8)0.0126 (3)
H28C0.78810.18170.44470.015*
C1510.9470 (2)0.20877 (19)0.04700 (9)0.0221 (3)
H51A0.94630.29420.09290.033*
H51B0.82820.20020.03130.033*
H51C1.03750.09860.06880.033*
C2110.43611 (17)0.35525 (16)0.45817 (9)0.0139 (3)
O2110.45181 (14)0.31099 (12)0.53233 (6)0.0192 (2)
O2120.29169 (13)0.47851 (13)0.43809 (7)0.0209 (2)
H2120.216 (3)0.518 (2)0.4883 (13)0.031*
C2270.54194 (17)0.48792 (16)0.24979 (9)0.0131 (3)
O2270.45460 (13)0.42065 (12)0.22238 (7)0.0179 (2)
C2210.54491 (17)0.65538 (16)0.21388 (9)0.0142 (3)
C2220.44259 (19)0.73206 (18)0.15024 (9)0.0190 (3)
H2220.37910.67470.12910.023*
C2230.4330 (2)0.89047 (19)0.11780 (10)0.0219 (3)
H2230.36160.94230.07540.026*
C2240.5281 (2)0.97386 (18)0.14737 (10)0.0211 (3)
H2240.52151.08260.12510.025*
C2250.6322 (2)0.89864 (18)0.20929 (9)0.0203 (3)
H2250.69830.95520.22880.024*
C2260.64013 (19)0.73990 (17)0.24298 (9)0.0171 (3)
H2260.71060.68910.28590.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0125 (5)0.0182 (6)0.0185 (6)0.0087 (5)0.0031 (5)0.0008 (4)
C120.0111 (6)0.0095 (6)0.0186 (7)0.0034 (5)0.0036 (5)0.0015 (5)
O120.0149 (5)0.0176 (5)0.0170 (5)0.0064 (4)0.0040 (4)0.0012 (4)
C130.0107 (6)0.0109 (6)0.0147 (6)0.0044 (5)0.0026 (5)0.0007 (5)
C13A0.0118 (6)0.0103 (6)0.0158 (6)0.0034 (5)0.0012 (5)0.0012 (5)
C140.0142 (6)0.0130 (6)0.0171 (7)0.0048 (5)0.0025 (5)0.0013 (5)
C150.0189 (7)0.0120 (6)0.0168 (7)0.0032 (5)0.0035 (5)0.0021 (5)
C160.0174 (7)0.0144 (6)0.0164 (7)0.0034 (5)0.0015 (5)0.0032 (5)
C170.0135 (6)0.0150 (6)0.0218 (7)0.0056 (5)0.0005 (5)0.0038 (5)
C17A0.0133 (6)0.0121 (6)0.0175 (7)0.0037 (5)0.0032 (5)0.0021 (5)
C210.0120 (6)0.0129 (6)0.0140 (6)0.0058 (5)0.0021 (5)0.0011 (5)
C220.0097 (6)0.0117 (6)0.0133 (6)0.0041 (5)0.0010 (5)0.0000 (5)
N240.0115 (5)0.0104 (5)0.0147 (5)0.0036 (4)0.0008 (4)0.0015 (4)
C250.0121 (6)0.0149 (6)0.0214 (7)0.0030 (5)0.0009 (5)0.0020 (5)
C260.0173 (7)0.0132 (6)0.0242 (7)0.0016 (5)0.0008 (6)0.0013 (5)
C270.0182 (7)0.0135 (6)0.0219 (7)0.0056 (5)0.0039 (6)0.0042 (5)
C280.0153 (6)0.0136 (6)0.0165 (6)0.0066 (5)0.0023 (5)0.0021 (5)
C28A0.0119 (6)0.0124 (6)0.0131 (6)0.0045 (5)0.0014 (5)0.0002 (5)
C1510.0271 (8)0.0229 (7)0.0158 (7)0.0089 (6)0.0042 (6)0.0008 (5)
C2110.0119 (6)0.0118 (6)0.0194 (7)0.0070 (5)0.0011 (5)0.0007 (5)
O2110.0216 (5)0.0169 (5)0.0154 (5)0.0049 (4)0.0002 (4)0.0001 (4)
O2120.0128 (5)0.0217 (5)0.0207 (5)0.0006 (4)0.0011 (4)0.0023 (4)
C2270.0094 (6)0.0138 (6)0.0138 (6)0.0031 (5)0.0006 (5)0.0014 (5)
O2270.0166 (5)0.0207 (5)0.0202 (5)0.0100 (4)0.0065 (4)0.0016 (4)
C2210.0122 (6)0.0144 (6)0.0135 (6)0.0031 (5)0.0006 (5)0.0010 (5)
C2220.0167 (7)0.0217 (7)0.0188 (7)0.0072 (5)0.0049 (5)0.0021 (5)
C2230.0201 (7)0.0222 (7)0.0208 (7)0.0045 (6)0.0071 (6)0.0067 (6)
C2240.0233 (7)0.0148 (6)0.0215 (7)0.0055 (6)0.0016 (6)0.0052 (5)
C2250.0255 (7)0.0181 (7)0.0185 (7)0.0106 (6)0.0024 (6)0.0009 (5)
C2260.0196 (7)0.0170 (7)0.0153 (7)0.0067 (5)0.0053 (5)0.0022 (5)
Geometric parameters (Å, º) top
N11—C121.3568 (17)C26—C271.524 (2)
N11—C17A1.4090 (18)C26—H26A0.9900
N11—H110.880 (18)C26—H26B0.9900
C12—O121.2223 (16)C27—C281.5316 (18)
C12—C131.5637 (17)C27—H27A0.9900
C13—N241.4740 (16)C27—H27B0.9900
C13—C13A1.5102 (18)C28—C28A1.5191 (17)
C13—C221.5736 (17)C28—H28A0.9900
C13A—C141.3820 (19)C28—H28B0.9900
C13A—C17A1.3941 (18)C28A—H28C1.0000
C14—C151.3993 (19)C151—H51A0.9800
C14—H140.9500C151—H51B0.9800
C15—C161.396 (2)C151—H51C0.9800
C15—C1511.507 (2)C211—O2111.2066 (17)
C16—C171.396 (2)C211—O2121.3328 (16)
C16—H160.9500O212—H2120.89 (2)
C17—C17A1.3822 (19)C227—O2271.2221 (16)
C17—H170.9500C227—C2211.4977 (18)
C21—C2111.5071 (18)C221—C2261.3958 (19)
C21—C28A1.5240 (17)C221—C2221.4004 (19)
C21—C221.5484 (17)C222—C2231.383 (2)
C21—H211.0000C222—H2220.9500
C22—C2271.5207 (18)C223—C2241.391 (2)
C22—H221.0000C223—H2230.9500
N24—C251.4652 (17)C224—C2251.386 (2)
N24—C28A1.4667 (17)C224—H2240.9500
C25—C261.5234 (19)C225—C2261.3949 (19)
C25—H25A0.9900C225—H2250.9500
C25—H25B0.9900C226—H2260.9500
C12—N11—C17A111.83 (11)C27—C26—H26A109.5
C12—N11—H11122.4 (11)C25—C26—H26B109.5
C17A—N11—H11125.5 (11)C27—C26—H26B109.5
O12—C12—N11125.93 (12)H26A—C26—H26B108.1
O12—C12—C13126.24 (12)C26—C27—C28111.64 (11)
N11—C12—C13107.79 (11)C26—C27—H27A109.3
N24—C13—C13A110.45 (10)C28—C27—H27A109.3
N24—C13—C12112.14 (10)C26—C27—H27B109.3
C13A—C13—C12101.50 (10)C28—C27—H27B109.3
N24—C13—C22103.04 (10)H27A—C27—H27B108.0
C13A—C13—C22120.34 (11)C28A—C28—C27110.56 (11)
C12—C13—C22109.64 (10)C28A—C28—H28A109.5
C14—C13A—C17A120.18 (12)C27—C28—H28A109.5
C14—C13A—C13130.47 (12)C28A—C28—H28B109.5
C17A—C13A—C13109.09 (11)C27—C28—H28B109.5
C13A—C14—C15119.72 (12)H28A—C28—H28B108.1
C13A—C14—H14120.1N24—C28A—C28110.52 (10)
C15—C14—H14120.1N24—C28A—C21100.15 (10)
C16—C15—C14118.78 (13)C28—C28A—C21116.59 (11)
C16—C15—C151120.68 (13)N24—C28A—H28C109.7
C14—C15—C151120.54 (13)C28—C28A—H28C109.7
C17—C16—C15122.22 (13)C21—C28A—H28C109.7
C17—C16—H16118.9C15—C151—H51A109.5
C15—C16—H16118.9C15—C151—H51B109.5
C17A—C17—C16117.40 (13)H51A—C151—H51B109.5
C17A—C17—H17121.3C15—C151—H51C109.5
C16—C17—H17121.3H51A—C151—H51C109.5
C17—C17A—C13A121.67 (13)H51B—C151—H51C109.5
C17—C17A—N11128.78 (12)O211—C211—O212123.76 (13)
C13A—C17A—N11109.55 (12)O211—C211—C21124.00 (12)
C211—C21—C28A113.54 (11)O212—C211—C21112.24 (11)
C211—C21—C22112.94 (10)C211—O212—H212107.0 (13)
C28A—C21—C22104.05 (10)O227—C227—C221120.06 (12)
C211—C21—H21108.7O227—C227—C22120.97 (12)
C28A—C21—H21108.7C221—C227—C22118.95 (11)
C22—C21—H21108.7C226—C221—C222118.97 (12)
C227—C22—C21113.74 (10)C226—C221—C227122.95 (12)
C227—C22—C13113.22 (10)C222—C221—C227118.05 (12)
C21—C22—C13104.21 (10)C223—C222—C221120.67 (13)
C227—C22—H22108.5C223—C222—H222119.7
C21—C22—H22108.5C221—C222—H222119.7
C13—C22—H22108.5C222—C223—C224119.92 (13)
C25—N24—C28A113.82 (10)C222—C223—H223120.0
C25—N24—C13116.16 (10)C224—C223—H223120.0
C28A—N24—C13107.24 (10)C225—C224—C223120.16 (13)
N24—C25—C26108.39 (11)C225—C224—H224119.9
N24—C25—H25A110.0C223—C224—H224119.9
C26—C25—H25A110.0C224—C225—C226120.00 (13)
N24—C25—H25B110.0C224—C225—H225120.0
C26—C25—H25B110.0C226—C225—H225120.0
H25A—C25—H25B108.4C225—C226—C221120.27 (13)
C25—C26—C27110.73 (11)C225—C226—H226119.9
C25—C26—H26A109.5C221—C226—H226119.9
C17A—N11—C12—O12178.65 (12)C12—C13—N24—C2544.53 (15)
C17A—N11—C12—C133.25 (14)C22—C13—N24—C25162.34 (11)
O12—C12—C13—N2464.87 (16)C13A—C13—N24—C28A163.53 (10)
N11—C12—C13—N24113.22 (12)C12—C13—N24—C28A84.05 (12)
O12—C12—C13—C13A177.24 (12)C22—C13—N24—C28A33.76 (12)
N11—C12—C13—C13A4.66 (13)C28A—N24—C25—C2660.85 (14)
O12—C12—C13—C2248.94 (17)C13—N24—C25—C26173.85 (11)
N11—C12—C13—C22132.96 (11)N24—C25—C26—C2757.02 (15)
N24—C13—C13A—C1459.54 (18)C25—C26—C27—C2854.41 (16)
C12—C13—C13A—C14178.63 (13)C26—C27—C28—C28A51.88 (15)
C22—C13—C13A—C1460.28 (19)C25—N24—C28A—C2859.53 (14)
N24—C13—C13A—C17A114.56 (12)C13—N24—C28A—C28170.55 (10)
C12—C13—C13A—C17A4.53 (13)C25—N24—C28A—C21176.92 (10)
C22—C13—C13A—C17A125.62 (12)C13—N24—C28A—C2147.01 (12)
C17A—C13A—C14—C151.81 (19)C27—C28—C28A—N2452.98 (14)
C13—C13A—C14—C15175.36 (13)C27—C28—C28A—C21166.42 (11)
C13A—C14—C15—C160.56 (19)C211—C21—C28A—N24163.56 (10)
C13A—C14—C15—C151179.36 (12)C22—C21—C28A—N2440.38 (12)
C14—C15—C16—C171.0 (2)C211—C21—C28A—C2877.24 (14)
C151—C15—C16—C17179.03 (13)C22—C21—C28A—C28159.58 (11)
C15—C16—C17—C17A1.3 (2)C28A—C21—C211—O2112.64 (18)
C16—C17—C17A—C13A0.05 (19)C22—C21—C211—O211120.80 (14)
C16—C17—C17A—N11179.21 (13)C28A—C21—C211—O212177.92 (11)
C14—C13A—C17A—C171.5 (2)C22—C21—C211—O21259.76 (14)
C13—C13A—C17A—C17176.34 (12)C21—C22—C227—O22721.03 (17)
C14—C13A—C17A—N11177.78 (11)C13—C22—C227—O22797.69 (14)
C13—C13A—C17A—N112.97 (14)C21—C22—C227—C221157.53 (11)
C12—N11—C17A—C17179.51 (13)C13—C22—C227—C22183.75 (14)
C12—N11—C17A—C13A0.26 (15)O227—C227—C221—C226179.25 (13)
C211—C21—C22—C22791.97 (13)C22—C227—C221—C2260.68 (19)
C28A—C21—C22—C227144.45 (11)O227—C227—C221—C2221.31 (19)
C211—C21—C22—C13144.27 (11)C22—C227—C221—C222177.26 (12)
C28A—C21—C22—C1320.69 (13)C226—C221—C222—C2231.2 (2)
N24—C13—C22—C227117.31 (11)C227—C221—C222—C223176.82 (13)
C13A—C13—C22—C2276.13 (16)C221—C222—C223—C2241.1 (2)
C12—C13—C22—C227123.13 (11)C222—C223—C224—C2250.0 (2)
N24—C13—C22—C216.78 (12)C223—C224—C225—C2260.8 (2)
C13A—C13—C22—C21130.22 (12)C224—C225—C226—C2210.7 (2)
C12—C13—C22—C21112.78 (11)C222—C221—C226—C2250.3 (2)
C13A—C13—N24—C2567.89 (14)C227—C221—C226—C225177.60 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O227i0.880 (18)2.181 (18)2.9598 (18)147.3 (15)
O212—H212···O12ii0.89 (2)1.88 (2)2.7691 (15)179 (2)
C22—H22···O211ii1.002.213.1894 (16)165
C16—H16···Cg1iii0.952.753.6366 (16)155
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z.
(1'SR,2'SR,3RS,8a'RS)-2'-Benzoyl-1-methyl-2-oxo-1',5',6',7',8',8a'-hexahydro-2'H-spiro[indoline-3,3'-indolizine]-1'-carboxylic acid (III) top
Crystal data top
C24H24N2O4Z = 2
Mr = 404.45F(000) = 428
Triclinic, P1Dx = 1.359 Mg m3
a = 8.6535 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2064 (4) ÅCell parameters from 4917 reflections
c = 14.4327 (6) Åθ = 2.5–28.3°
α = 72.660 (1)°µ = 0.09 mm1
β = 74.539 (1)°T = 100 K
γ = 65.930 (2)°Block, colourless
V = 988.16 (8) Å30.19 × 0.19 × 0.12 mm
Data collection top
Bruker D8 Venture
diffractometer
4917 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube4145 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.057
φ and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1111
Tmin = 0.944, Tmax = 0.989k = 1212
47689 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.5593P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4917 reflectionsΔρmax = 0.30 e Å3
275 parametersΔρmin = 0.33 e Å3
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.14571 (13)0.47390 (13)0.23697 (8)0.0172 (2)
C120.07277 (16)0.47854 (15)0.30841 (9)0.0164 (2)
O120.07700 (12)0.39560 (11)0.39176 (6)0.0216 (2)
C130.01728 (15)0.60589 (14)0.26485 (8)0.0145 (2)
C13A0.00831 (15)0.65569 (14)0.15853 (8)0.0154 (2)
C140.04073 (17)0.76671 (15)0.08045 (9)0.0191 (2)
H140.11110.81840.08720.023*
C150.01538 (18)0.80155 (16)0.00889 (9)0.0220 (3)
H150.02010.87500.06400.026*
C160.12246 (18)0.72949 (16)0.01737 (9)0.0223 (3)
H160.16130.75650.07810.027*
C170.17467 (17)0.61819 (16)0.06124 (9)0.0202 (3)
H170.24920.56990.05560.024*
C17A0.11268 (15)0.58157 (15)0.14768 (9)0.0162 (2)
C210.21876 (15)0.65461 (14)0.33316 (8)0.0150 (2)
H210.24920.74010.27850.018*
C220.20367 (15)0.52841 (14)0.29027 (8)0.0143 (2)
H220.21100.42810.34340.017*
N240.06205 (13)0.75017 (12)0.30930 (7)0.0150 (2)
C250.24787 (15)0.80117 (15)0.34287 (9)0.0182 (2)
H25A0.27480.71840.39980.022*
H25B0.30610.81190.28940.022*
C260.31119 (16)0.96420 (16)0.37253 (10)0.0209 (3)
H26A0.43510.99540.40020.025*
H26B0.29621.04930.31360.025*
C270.21203 (17)0.95411 (17)0.44903 (10)0.0227 (3)
H27A0.24030.88060.51130.027*
H27B0.24751.06350.46250.027*
C280.01792 (16)0.89056 (15)0.41296 (10)0.0195 (3)
H28B0.01300.96980.35500.023*
H28C0.04380.87670.46550.023*
C28A0.03369 (15)0.72830 (14)0.38539 (8)0.0148 (2)
H28A0.00750.64680.44480.018*
C1110.22772 (18)0.35784 (17)0.25008 (10)0.0235 (3)
H1A0.25700.31440.32050.035*
H1B0.14900.26840.21790.035*
H1C0.33250.41240.22070.035*
C2110.34802 (15)0.58198 (15)0.40254 (9)0.0153 (2)
O2110.41199 (11)0.43600 (11)0.43615 (6)0.01863 (19)
O2120.38354 (12)0.69396 (11)0.42394 (7)0.0206 (2)
H2120.450 (2)0.646 (2)0.4728 (13)0.031*
C2270.34105 (15)0.47991 (15)0.20275 (9)0.0163 (2)
O2270.41306 (12)0.57337 (11)0.15069 (7)0.0230 (2)
C2210.38702 (16)0.31597 (15)0.18205 (9)0.0175 (2)
C2220.50576 (17)0.27607 (17)0.09776 (10)0.0219 (3)
H2220.55230.35380.05410.026*
C2230.55561 (18)0.12322 (18)0.07792 (11)0.0269 (3)
H2230.63520.09730.02020.032*
C2240.48988 (18)0.00793 (17)0.14186 (11)0.0258 (3)
H2240.52550.09690.12840.031*
C2250.37201 (18)0.04642 (16)0.22556 (10)0.0232 (3)
H2250.32690.03230.26930.028*
C2260.31981 (17)0.19981 (15)0.24544 (9)0.0193 (2)
H2260.23810.22590.30240.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0174 (5)0.0186 (5)0.0179 (5)0.0074 (4)0.0045 (4)0.0044 (4)
C120.0154 (5)0.0161 (5)0.0174 (5)0.0040 (4)0.0031 (4)0.0051 (4)
O120.0257 (5)0.0239 (5)0.0164 (4)0.0122 (4)0.0047 (4)0.0000 (3)
C130.0148 (5)0.0150 (5)0.0139 (5)0.0045 (4)0.0037 (4)0.0034 (4)
C13A0.0153 (5)0.0154 (5)0.0145 (5)0.0022 (4)0.0043 (4)0.0045 (4)
C140.0211 (6)0.0167 (6)0.0181 (6)0.0050 (5)0.0040 (5)0.0035 (4)
C150.0263 (7)0.0172 (6)0.0158 (6)0.0016 (5)0.0044 (5)0.0020 (5)
C160.0249 (7)0.0205 (6)0.0170 (6)0.0013 (5)0.0087 (5)0.0063 (5)
C170.0190 (6)0.0206 (6)0.0205 (6)0.0015 (5)0.0074 (5)0.0081 (5)
C17A0.0155 (5)0.0153 (5)0.0165 (5)0.0020 (4)0.0036 (4)0.0058 (4)
C210.0151 (5)0.0149 (5)0.0153 (5)0.0040 (4)0.0047 (4)0.0035 (4)
C220.0144 (5)0.0145 (5)0.0139 (5)0.0035 (4)0.0050 (4)0.0029 (4)
N240.0135 (5)0.0164 (5)0.0158 (5)0.0032 (4)0.0046 (4)0.0056 (4)
C250.0135 (6)0.0208 (6)0.0202 (6)0.0039 (5)0.0042 (4)0.0064 (5)
C260.0150 (6)0.0221 (6)0.0240 (6)0.0006 (5)0.0057 (5)0.0093 (5)
C270.0192 (6)0.0250 (6)0.0237 (6)0.0014 (5)0.0056 (5)0.0124 (5)
C280.0182 (6)0.0190 (6)0.0229 (6)0.0027 (5)0.0070 (5)0.0092 (5)
C28A0.0140 (5)0.0164 (5)0.0144 (5)0.0038 (4)0.0051 (4)0.0038 (4)
C1110.0234 (7)0.0278 (7)0.0259 (6)0.0146 (6)0.0053 (5)0.0062 (5)
C2110.0132 (5)0.0182 (6)0.0154 (5)0.0057 (4)0.0016 (4)0.0054 (4)
O2110.0188 (4)0.0163 (4)0.0213 (4)0.0037 (3)0.0079 (3)0.0045 (3)
O2120.0221 (5)0.0181 (4)0.0261 (5)0.0074 (4)0.0126 (4)0.0031 (4)
C2270.0143 (5)0.0173 (6)0.0157 (5)0.0028 (4)0.0054 (4)0.0027 (4)
O2270.0228 (5)0.0225 (5)0.0214 (5)0.0090 (4)0.0007 (4)0.0039 (4)
C2210.0157 (6)0.0175 (6)0.0175 (6)0.0010 (5)0.0067 (4)0.0050 (4)
C2220.0186 (6)0.0245 (6)0.0204 (6)0.0045 (5)0.0029 (5)0.0068 (5)
C2230.0217 (7)0.0301 (7)0.0259 (7)0.0011 (6)0.0027 (5)0.0148 (6)
C2240.0265 (7)0.0197 (6)0.0305 (7)0.0015 (5)0.0124 (6)0.0117 (5)
C2250.0273 (7)0.0172 (6)0.0252 (6)0.0050 (5)0.0110 (5)0.0032 (5)
C2260.0202 (6)0.0192 (6)0.0172 (6)0.0032 (5)0.0062 (5)0.0048 (5)
Geometric parameters (Å, º) top
N11—C121.3633 (15)C26—C271.5307 (17)
N11—C17A1.4136 (16)C26—H26A0.9900
N11—C1111.4517 (16)C26—H26B0.9900
C12—O121.2179 (15)C27—C281.5325 (18)
C12—C131.5562 (17)C27—H27A0.9900
C13—N241.4754 (15)C27—H27B0.9900
C13—C13A1.5142 (16)C28—C28A1.5181 (16)
C13—C221.5703 (16)C28—H28B0.9900
C13A—C141.3809 (17)C28—H28C0.9900
C13A—C17A1.3955 (17)C28A—H28A1.0000
C14—C151.4005 (17)C111—H1A0.9800
C14—H140.9500C111—H1B0.9800
C15—C161.387 (2)C111—H1C0.9800
C15—H150.9500C211—O2111.2230 (15)
C16—C171.3974 (19)C211—O2121.3235 (15)
C16—H160.9500O212—H2120.918 (19)
C17—C17A1.3844 (17)C227—O2271.2229 (15)
C17—H170.9500C227—C2211.4970 (17)
C21—C2111.5129 (16)C221—C2261.3997 (18)
C21—C221.5316 (16)C221—C2221.4009 (17)
C21—C28A1.5389 (16)C222—C2231.3883 (19)
C21—H211.0000C222—H2220.9500
C22—C2271.5202 (16)C223—C2241.389 (2)
C22—H221.0000C223—H2230.9500
N24—C251.4646 (15)C224—C2251.389 (2)
N24—C28A1.4663 (14)C224—H2240.9500
C25—C261.5243 (17)C225—C2261.3902 (18)
C25—H25A0.9900C225—H2250.9500
C25—H25B0.9900C226—H2260.9500
C12—N11—C17A111.16 (10)C27—C26—H26A109.5
C12—N11—C111122.90 (11)C25—C26—H26B109.5
C17A—N11—C111125.54 (10)C27—C26—H26B109.5
O12—C12—N11125.34 (12)H26A—C26—H26B108.1
O12—C12—C13126.26 (11)C26—C27—C28111.24 (10)
N11—C12—C13108.40 (10)C26—C27—H27A109.4
N24—C13—C13A109.58 (9)C28—C27—H27A109.4
N24—C13—C12114.07 (10)C26—C27—H27B109.4
C13A—C13—C12101.40 (9)C28—C27—H27B109.4
N24—C13—C22103.18 (9)H27A—C27—H27B108.0
C13A—C13—C22119.93 (10)C28A—C28—C27109.13 (10)
C12—C13—C22109.16 (9)C28A—C28—H28B109.9
C14—C13A—C17A120.01 (11)C27—C28—H28B109.9
C14—C13A—C13130.66 (11)C28A—C28—H28C109.9
C17A—C13A—C13109.04 (10)C27—C28—H28C109.9
C13A—C14—C15118.65 (12)H28B—C28—H28C108.3
C13A—C14—H14120.7N24—C28A—C28109.13 (9)
C15—C14—H14120.7N24—C28A—C21100.22 (9)
C16—C15—C14120.39 (12)C28—C28A—C21117.69 (10)
C16—C15—H15119.8N24—C28A—H28A109.8
C14—C15—H15119.8C28—C28A—H28A109.8
C15—C16—C17121.63 (12)C21—C28A—H28A109.8
C15—C16—H16119.2N11—C111—H1A109.5
C17—C16—H16119.2N11—C111—H1B109.5
C17A—C17—C16116.84 (12)H1A—C111—H1B109.5
C17A—C17—H17121.6N11—C111—H1C109.5
C16—C17—H17121.6H1A—C111—H1C109.5
C17—C17A—C13A122.42 (12)H1B—C111—H1C109.5
C17—C17A—N11127.90 (12)O211—C211—O212123.38 (11)
C13A—C17A—N11109.65 (10)O211—C211—C21123.98 (11)
C211—C21—C22113.57 (10)O212—C211—C21112.63 (10)
C211—C21—C28A112.59 (9)C211—O212—H212109.6 (11)
C22—C21—C28A101.53 (9)O227—C227—C221120.83 (11)
C211—C21—H21109.6O227—C227—C22120.29 (11)
C22—C21—H21109.6C221—C227—C22118.88 (10)
C28A—C21—H21109.6C226—C221—C222119.04 (12)
C227—C22—C21114.71 (10)C226—C221—C227122.34 (11)
C227—C22—C13112.82 (9)C222—C221—C227118.59 (12)
C21—C22—C13104.68 (9)C223—C222—C221120.17 (13)
C227—C22—H22108.1C223—C222—H222119.9
C21—C22—H22108.1C221—C222—H222119.9
C13—C22—H22108.1C222—C223—C224120.42 (13)
C25—N24—C28A113.12 (9)C222—C223—H223119.8
C25—N24—C13116.19 (9)C224—C223—H223119.8
C28A—N24—C13109.17 (9)C225—C224—C223119.82 (13)
N24—C25—C26108.98 (10)C225—C224—H224120.1
N24—C25—H25A109.9C223—C224—H224120.1
C26—C25—H25A109.9C224—C225—C226120.16 (13)
N24—C25—H25B109.9C224—C225—H225119.9
C26—C25—H25B109.9C226—C225—H225119.9
H25A—C25—H25B108.3C225—C226—C221120.38 (12)
C25—C26—C27110.78 (10)C225—C226—H226119.8
C25—C26—H26A109.5C221—C226—H226119.8
C17A—N11—C12—O12178.10 (12)C13A—C13—N24—C2581.00 (12)
C111—N11—C12—O124.9 (2)C12—C13—N24—C2531.88 (14)
C17A—N11—C12—C131.37 (13)C22—C13—N24—C25150.16 (10)
C111—N11—C12—C13174.54 (11)C13A—C13—N24—C28A149.64 (10)
O12—C12—C13—N2467.14 (16)C12—C13—N24—C28A97.48 (11)
N11—C12—C13—N24113.38 (11)C22—C13—N24—C28A20.80 (12)
O12—C12—C13—C13A175.18 (12)C28A—N24—C25—C2660.70 (13)
N11—C12—C13—C13A4.30 (12)C13—N24—C25—C26171.86 (10)
O12—C12—C13—C2247.67 (16)N24—C25—C26—C2754.77 (14)
N11—C12—C13—C22131.81 (10)C25—C26—C27—C2853.79 (15)
N24—C13—C13A—C1458.53 (16)C26—C27—C28—C28A55.03 (14)
C12—C13—C13A—C14179.42 (12)C25—N24—C28A—C2863.03 (13)
C22—C13—C13A—C1460.41 (17)C13—N24—C28A—C28165.94 (10)
N24—C13—C13A—C17A115.11 (11)C25—N24—C28A—C21172.75 (9)
C12—C13—C13A—C17A5.78 (12)C13—N24—C28A—C2141.72 (11)
C22—C13—C13A—C17A125.94 (11)C27—C28—C28A—N2458.10 (13)
C17A—C13A—C14—C150.44 (18)C27—C28—C28A—C21171.32 (10)
C13—C13A—C14—C15173.50 (12)C211—C21—C28A—N24166.70 (9)
C13A—C14—C15—C162.01 (19)C22—C21—C28A—N2444.91 (10)
C14—C15—C16—C171.4 (2)C211—C21—C28A—C2875.21 (13)
C15—C16—C17—C17A0.81 (19)C22—C21—C28A—C28163.00 (10)
C16—C17—C17A—C13A2.43 (18)C22—C21—C211—O21112.78 (17)
C16—C17—C17A—N11179.96 (12)C28A—C21—C211—O211101.91 (13)
C14—C13A—C17A—C171.85 (19)C22—C21—C211—O212167.84 (10)
C13—C13A—C17A—C17172.59 (11)C28A—C21—C211—O21277.47 (13)
C14—C13A—C17A—N11179.84 (11)C21—C22—C227—O22725.39 (16)
C13—C13A—C17A—N115.40 (13)C13—C22—C227—O22794.37 (13)
C12—N11—C17A—C17175.33 (12)C21—C22—C227—C221154.21 (10)
C111—N11—C17A—C1711.7 (2)C13—C22—C227—C22186.03 (13)
C12—N11—C17A—C13A2.52 (14)O227—C227—C221—C226173.53 (12)
C111—N11—C17A—C13A170.43 (12)C22—C227—C221—C2266.07 (17)
C211—C21—C22—C22781.62 (12)O227—C227—C221—C2224.40 (18)
C28A—C21—C22—C227157.27 (9)C22—C227—C221—C222176.00 (11)
C211—C21—C22—C13154.19 (10)C226—C221—C222—C2230.08 (19)
C28A—C21—C22—C1333.08 (11)C227—C221—C222—C223177.92 (12)
N24—C13—C22—C227134.20 (10)C221—C222—C223—C2240.7 (2)
C13A—C13—C22—C22712.06 (15)C222—C223—C224—C2250.8 (2)
C12—C13—C22—C227104.14 (11)C223—C224—C225—C2260.0 (2)
N24—C13—C22—C218.81 (11)C224—C225—C226—C2210.79 (19)
C13A—C13—C22—C21113.33 (11)C222—C221—C226—C2250.83 (18)
C12—C13—C22—C21130.47 (10)C227—C221—C226—C225177.09 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O212—H212···O211i0.920 (19)1.798 (19)2.7162 (14)175.5 (16)
C16—H16···Cg1ii0.952.703.5181 (17)144
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
(1'SR,2'SR,3RS,8a'RS)-2'-Benzoyl-5-chloro-1-methyl-2-oxo-1',5',6',7',8',8a'-hexahydro-2'H-spiro[indoline-3,3'-indolizine]-1'-carboxylic acid (IV) top
Crystal data top
C24H23ClN2O4Z = 2
Mr = 438.89F(000) = 460
Triclinic, P1Dx = 1.424 Mg m3
a = 8.7914 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3155 (10) ÅCell parameters from 5097 reflections
c = 14.6188 (15) Åθ = 2.5–28.3°
α = 73.437 (4)°µ = 0.22 mm1
β = 76.259 (4)°T = 100 K
γ = 64.156 (3)°Plate, colourless
V = 1023.84 (19) Å30.41 × 0.32 × 0.14 mm
Data collection top
Bruker D8 Venture
diffractometer
5097 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube4493 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.055
φ and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1111
Tmin = 0.934, Tmax = 0.969k = 1212
41790 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0282P)2 + 0.5813P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5097 reflectionsΔρmax = 0.33 e Å3
284 parametersΔρmin = 0.31 e Å3
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.14842 (12)0.46216 (12)0.25503 (7)0.01402 (19)
C120.06065 (14)0.46906 (14)0.31797 (8)0.0140 (2)
O120.05142 (11)0.39188 (11)0.40072 (6)0.01929 (18)
C130.02210 (14)0.59386 (14)0.26669 (8)0.0126 (2)
C13A0.01677 (14)0.63206 (14)0.16485 (8)0.0126 (2)
C140.02219 (14)0.73536 (14)0.08315 (8)0.0141 (2)
H140.09520.78660.08270.017*
C150.04979 (15)0.76167 (14)0.00131 (8)0.0145 (2)
Cl150.00313 (4)0.89173 (4)0.10324 (2)0.02027 (8)
C160.15833 (14)0.69000 (14)0.00037 (8)0.0151 (2)
H160.20520.71130.05670.018*
C170.19881 (14)0.58679 (14)0.08303 (8)0.0149 (2)
H170.27390.53760.08400.018*
C17A0.12529 (14)0.55880 (14)0.16370 (8)0.0127 (2)
C210.22086 (14)0.65003 (14)0.33088 (8)0.0133 (2)
H210.24760.73430.27790.016*
C220.21110 (14)0.52179 (14)0.28854 (8)0.0127 (2)
H220.22970.42020.33960.015*
N240.05893 (12)0.74457 (12)0.30519 (7)0.01319 (19)
C250.24257 (14)0.79743 (15)0.33804 (9)0.0167 (2)
H25A0.26400.71570.39400.020*
H25B0.30280.80730.28590.020*
C260.30912 (15)0.96175 (15)0.36651 (9)0.0197 (2)
H26A0.43140.99440.39270.024*
H26B0.29841.04550.30880.024*
C270.20907 (16)0.95248 (16)0.44219 (9)0.0201 (2)
H27A0.23140.87900.50280.024*
H27B0.24781.06220.45580.024*
C280.01738 (15)0.88889 (15)0.40660 (9)0.0175 (2)
H28B0.00710.96740.34960.021*
H28C0.04650.87640.45770.021*
C28A0.03774 (14)0.72514 (14)0.38034 (8)0.0138 (2)
H28A0.01660.64510.43860.017*
C1110.24901 (16)0.36509 (16)0.27979 (9)0.0209 (3)
H1A0.25060.31430.34850.031*
H1B0.19880.28010.24180.031*
H1C0.36580.43510.26590.031*
C2110.34812 (14)0.57889 (14)0.40220 (8)0.0140 (2)
O2110.40115 (11)0.43658 (10)0.44479 (6)0.01692 (17)
O2120.39375 (12)0.68921 (11)0.41496 (7)0.02076 (19)
H2120.459 (2)0.644 (2)0.4597 (13)0.031*
C2270.34164 (14)0.47834 (14)0.20089 (8)0.0141 (2)
O2270.40243 (11)0.57494 (11)0.15070 (6)0.02011 (19)
C2210.39422 (14)0.31536 (15)0.17815 (8)0.0155 (2)
C2220.51533 (15)0.27592 (16)0.09744 (9)0.0201 (2)
H2220.56030.35280.05840.024*
C2230.56952 (16)0.12514 (17)0.07448 (10)0.0250 (3)
H2230.65190.09890.01990.030*
C2240.50392 (17)0.01235 (16)0.13093 (10)0.0252 (3)
H2240.54130.09070.11480.030*
C2250.38392 (17)0.04960 (15)0.21088 (10)0.0220 (3)
H2250.33910.02780.24930.026*
C2260.32927 (15)0.20059 (15)0.23469 (9)0.0175 (2)
H2260.24750.22570.28960.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0148 (4)0.0167 (5)0.0131 (5)0.0087 (4)0.0029 (4)0.0019 (4)
C120.0130 (5)0.0150 (5)0.0143 (5)0.0050 (4)0.0023 (4)0.0040 (4)
O120.0248 (4)0.0215 (4)0.0132 (4)0.0121 (4)0.0051 (3)0.0008 (3)
C130.0133 (5)0.0139 (5)0.0116 (5)0.0054 (4)0.0036 (4)0.0023 (4)
C13A0.0124 (5)0.0135 (5)0.0123 (5)0.0037 (4)0.0036 (4)0.0040 (4)
C140.0143 (5)0.0146 (5)0.0148 (5)0.0062 (4)0.0035 (4)0.0028 (4)
C150.0162 (5)0.0136 (5)0.0115 (5)0.0036 (4)0.0024 (4)0.0024 (4)
Cl150.02631 (15)0.02091 (15)0.01277 (13)0.01030 (12)0.00413 (10)0.00057 (11)
C160.0144 (5)0.0164 (5)0.0137 (5)0.0020 (4)0.0052 (4)0.0057 (4)
C170.0128 (5)0.0170 (5)0.0167 (5)0.0049 (4)0.0037 (4)0.0065 (4)
C17A0.0117 (5)0.0131 (5)0.0125 (5)0.0036 (4)0.0017 (4)0.0038 (4)
C210.0143 (5)0.0143 (5)0.0131 (5)0.0055 (4)0.0047 (4)0.0033 (4)
C220.0127 (5)0.0143 (5)0.0123 (5)0.0050 (4)0.0044 (4)0.0028 (4)
N240.0125 (4)0.0146 (5)0.0135 (4)0.0041 (4)0.0046 (3)0.0043 (4)
C250.0129 (5)0.0187 (6)0.0182 (6)0.0046 (4)0.0037 (4)0.0048 (5)
C260.0163 (5)0.0191 (6)0.0215 (6)0.0024 (5)0.0051 (5)0.0062 (5)
C270.0206 (6)0.0187 (6)0.0195 (6)0.0031 (5)0.0041 (5)0.0081 (5)
C280.0186 (6)0.0159 (5)0.0188 (6)0.0043 (4)0.0061 (4)0.0060 (5)
C28A0.0147 (5)0.0149 (5)0.0127 (5)0.0050 (4)0.0048 (4)0.0033 (4)
C1110.0215 (6)0.0266 (6)0.0208 (6)0.0162 (5)0.0010 (5)0.0046 (5)
C2110.0120 (5)0.0179 (5)0.0139 (5)0.0061 (4)0.0015 (4)0.0057 (4)
O2110.0172 (4)0.0170 (4)0.0178 (4)0.0058 (3)0.0074 (3)0.0030 (3)
O2120.0249 (5)0.0192 (4)0.0244 (5)0.0104 (4)0.0149 (4)0.0013 (4)
C2270.0115 (5)0.0178 (5)0.0139 (5)0.0046 (4)0.0059 (4)0.0032 (4)
O2270.0203 (4)0.0233 (5)0.0191 (4)0.0117 (4)0.0004 (3)0.0045 (4)
C2210.0125 (5)0.0181 (6)0.0158 (5)0.0027 (4)0.0063 (4)0.0052 (4)
C2220.0152 (5)0.0249 (6)0.0203 (6)0.0054 (5)0.0031 (4)0.0085 (5)
C2230.0174 (6)0.0294 (7)0.0256 (7)0.0011 (5)0.0033 (5)0.0149 (6)
C2240.0244 (6)0.0186 (6)0.0304 (7)0.0020 (5)0.0124 (5)0.0116 (5)
C2250.0253 (6)0.0158 (6)0.0244 (6)0.0046 (5)0.0114 (5)0.0026 (5)
C2260.0182 (5)0.0173 (6)0.0164 (6)0.0038 (4)0.0065 (4)0.0042 (4)
Geometric parameters (Å, º) top
N11—C121.3639 (14)C26—C271.5319 (17)
N11—C17A1.4070 (15)C26—H26A0.9900
N11—C1111.4454 (15)C26—H26B0.9900
C12—O121.2194 (14)C27—C281.5331 (17)
C12—C131.5570 (16)C27—H27A0.9900
C13—N241.4776 (14)C27—H27B0.9900
C13—C13A1.5145 (15)C28—C28A1.5199 (16)
C13—C221.5719 (15)C28—H28B0.9900
C13A—C141.3811 (16)C28—H28C0.9900
C13A—C17A1.3993 (15)C28A—H28A1.0000
C14—C151.3962 (16)C111—H1A0.9800
C14—H140.9500C111—H1B0.9800
C15—C161.3868 (17)C111—H1C0.9800
C15—Cl151.7469 (12)C211—O2111.2210 (15)
C16—C171.3939 (17)C211—O2121.3253 (14)
C16—H160.9500O212—H2120.861 (19)
C17—C17A1.3844 (15)C227—O2271.2208 (15)
C17—H170.9500C227—C2211.4941 (16)
C21—C2111.5138 (15)C221—C2261.3987 (17)
C21—C221.5342 (15)C221—C2221.4036 (17)
C21—C28A1.5354 (15)C222—C2231.3863 (18)
C21—H211.0000C222—H2220.9500
C22—C2271.5214 (16)C223—C2241.388 (2)
C22—H221.0000C223—H2230.9500
N24—C251.4673 (14)C224—C2251.388 (2)
N24—C28A1.4690 (14)C224—H2240.9500
C25—C261.5249 (17)C225—C2261.3931 (17)
C25—H25A0.9900C225—H2250.9500
C25—H25B0.9900C226—H2260.9500
C12—N11—C17A111.19 (9)C27—C26—H26A109.5
C12—N11—C111123.70 (10)C25—C26—H26B109.5
C17A—N11—C111125.09 (10)C27—C26—H26B109.5
O12—C12—N11125.38 (11)H26A—C26—H26B108.1
O12—C12—C13126.20 (10)C26—C27—C28110.63 (10)
N11—C12—C13108.41 (9)C26—C27—H27A109.5
N24—C13—C13A109.50 (9)C28—C27—H27A109.5
N24—C13—C12112.67 (9)C26—C27—H27B109.5
C13A—C13—C12101.12 (9)C28—C27—H27B109.5
N24—C13—C22103.27 (8)H27A—C27—H27B108.1
C13A—C13—C22120.84 (9)C28A—C28—C27108.82 (10)
C12—C13—C22109.74 (9)C28A—C28—H28B109.9
C14—C13A—C17A120.08 (10)C27—C28—H28B109.9
C14—C13A—C13130.54 (10)C28A—C28—H28C109.9
C17A—C13A—C13108.96 (10)C27—C28—H28C109.9
C13A—C14—C15117.48 (10)H28B—C28—H28C108.3
C13A—C14—H14121.3N24—C28A—C28109.52 (9)
C15—C14—H14121.3N24—C28A—C21100.39 (9)
C16—C15—C14122.44 (11)C28—C28A—C21117.23 (10)
C16—C15—Cl15118.92 (9)N24—C28A—H28A109.7
C14—C15—Cl15118.63 (9)C28—C28A—H28A109.7
C15—C16—C17120.11 (11)C21—C28A—H28A109.7
C15—C16—H16119.9N11—C111—H1A109.5
C17—C16—H16119.9N11—C111—H1B109.5
C17A—C17—C16117.40 (10)H1A—C111—H1B109.5
C17A—C17—H17121.3N11—C111—H1C109.5
C16—C17—H17121.3H1A—C111—H1C109.5
C17—C17A—C13A122.48 (11)H1B—C111—H1C109.5
C17—C17A—N11127.79 (10)O211—C211—O212123.38 (11)
C13A—C17A—N11109.70 (10)O211—C211—C21124.14 (10)
C211—C21—C22113.64 (9)O212—C211—C21112.47 (10)
C211—C21—C28A111.18 (9)C211—O212—H212108.4 (12)
C22—C21—C28A101.78 (9)O227—C227—C221120.95 (11)
C211—C21—H21110.0O227—C227—C22120.35 (10)
C22—C21—H21110.0C221—C227—C22118.70 (10)
C28A—C21—H21110.0C226—C221—C222119.04 (11)
C227—C22—C21114.31 (9)C226—C221—C227122.62 (11)
C227—C22—C13112.89 (9)C222—C221—C227118.34 (11)
C21—C22—C13104.88 (9)C223—C222—C221120.25 (12)
C227—C22—H22108.2C223—C222—H222119.9
C21—C22—H22108.2C221—C222—H222119.9
C13—C22—H22108.2C222—C223—C224120.23 (12)
C25—N24—C28A112.33 (9)C222—C223—H223119.9
C25—N24—C13115.84 (9)C224—C223—H223119.9
C28A—N24—C13108.07 (8)C223—C224—C225120.21 (12)
N24—C25—C26109.23 (10)C223—C224—H224119.9
N24—C25—H25A109.8C225—C224—H224119.9
C26—C25—H25A109.8C224—C225—C226119.93 (13)
N24—C25—H25B109.8C224—C225—H225120.0
C26—C25—H25B109.8C226—C225—H225120.0
H25A—C25—H25B108.3C225—C226—C221120.34 (12)
C25—C26—C27110.77 (10)C225—C226—H226119.8
C25—C26—H26A109.5C221—C226—H226119.8
C17A—N11—C12—O12176.56 (11)C12—C13—C22—C21124.92 (9)
C111—N11—C12—O122.39 (19)C13A—C13—N24—C2578.27 (12)
C17A—N11—C12—C134.44 (12)C12—C13—N24—C2533.43 (13)
C111—N11—C12—C13176.60 (10)C22—C13—N24—C25151.76 (9)
O12—C12—C13—N2469.41 (14)C13A—C13—N24—C28A154.71 (9)
N11—C12—C13—N24109.58 (10)C12—C13—N24—C28A93.59 (11)
O12—C12—C13—C13A173.79 (11)C22—C13—N24—C28A24.75 (11)
N11—C12—C13—C13A7.22 (11)C28A—N24—C25—C2660.42 (12)
O12—C12—C13—C2245.06 (15)C13—N24—C25—C26174.72 (9)
N11—C12—C13—C22135.95 (9)N24—C25—C26—C2755.47 (13)
N24—C13—C13A—C1460.82 (15)C25—C26—C27—C2854.63 (14)
C12—C13—C13A—C14179.93 (11)C26—C27—C28—C28A55.81 (13)
C22—C13—C13A—C1458.85 (17)C25—N24—C28A—C2862.97 (12)
N24—C13—C13A—C17A111.53 (10)C13—N24—C28A—C28168.01 (9)
C12—C13—C13A—C17A7.57 (11)C25—N24—C28A—C21173.08 (9)
C22—C13—C13A—C17A128.80 (11)C13—N24—C28A—C2144.06 (11)
C17A—C13A—C14—C150.28 (16)C27—C28—C28A—N2459.01 (12)
C13—C13A—C14—C15171.92 (11)C27—C28—C28A—C21172.44 (10)
C13A—C14—C15—C160.77 (17)C211—C21—C28A—N24165.95 (9)
C13A—C14—C15—Cl15179.98 (8)C22—C21—C28A—N2444.61 (10)
C14—C15—C16—C170.27 (17)C211—C21—C28A—C2875.60 (13)
Cl15—C15—C16—C17179.48 (9)C22—C21—C28A—C28163.06 (9)
C15—C16—C17—C17A0.72 (16)C22—C21—C211—O21120.85 (16)
C16—C17—C17A—C13A1.22 (17)C28A—C21—C211—O21193.26 (13)
C16—C17—C17A—N11178.99 (11)C22—C21—C211—O212160.36 (10)
C14—C13A—C17A—C170.72 (17)C28A—C21—C211—O21285.52 (12)
C13—C13A—C17A—C17172.57 (10)C21—C22—C227—O22724.47 (15)
C14—C13A—C17A—N11178.86 (10)C13—C22—C227—O22795.31 (12)
C13—C13A—C17A—N115.57 (12)C21—C22—C227—C221155.15 (10)
C12—N11—C17A—C17177.39 (11)C13—C22—C227—C22185.07 (12)
C111—N11—C17A—C173.68 (18)O227—C227—C221—C226179.08 (11)
C12—N11—C17A—C13A0.62 (13)C22—C227—C221—C2260.54 (16)
C111—N11—C17A—C13A178.32 (11)O227—C227—C221—C2220.08 (16)
C211—C21—C22—C22786.04 (12)C22—C227—C221—C222179.70 (10)
C28A—C21—C22—C227154.35 (9)C226—C221—C222—C2230.09 (18)
C211—C21—C22—C13149.80 (9)C227—C221—C222—C223179.10 (11)
C28A—C21—C22—C1330.18 (11)C221—C222—C223—C2240.25 (19)
N24—C13—C22—C227129.63 (10)C222—C223—C224—C2250.2 (2)
C13A—C13—C22—C2276.93 (14)C223—C224—C225—C2260.10 (19)
C12—C13—C22—C227110.01 (10)C224—C225—C226—C2210.26 (18)
N24—C13—C22—C214.57 (11)C222—C221—C226—C2250.17 (17)
C13A—C13—C22—C21118.14 (11)C227—C221—C226—C225179.32 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O212—H212···O211i0.863 (19)1.854 (19)2.7152 (14)175.3 (16)
C16—H16···Cg1ii0.952.523.3872 (14)152
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
(1'SR,2'SR,3RS,8a'RS)-2'-Benzoyl-1-hexyl-2-oxo-1',5',6',7',8',8a'-hexahydro-2'H-spiro[indoline-3,3'-indolizine]-1'-carboxylic acid (V) top
Crystal data top
C29H34N2O4F(000) = 1016
Mr = 474.58Dx = 1.256 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.0442 (4) ÅCell parameters from 5765 reflections
b = 17.4707 (6) Åθ = 2.2–27.5°
c = 13.0081 (4) ŵ = 0.08 mm1
β = 90.215 (1)°T = 100 K
V = 2509.89 (15) Å3Block, colourless
Z = 40.23 × 0.13 × 0.12 mm
Data collection top
Bruker D8 Venture
diffractometer
5765 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube4619 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.059
φ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1414
Tmin = 0.921, Tmax = 0.990k = 2122
24313 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.9168P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5765 reflectionsΔρmax = 0.29 e Å3
320 parametersΔρmin = 0.26 e Å3
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.22287 (10)0.48035 (7)0.18134 (8)0.0148 (2)
C120.32622 (12)0.49126 (8)0.23582 (9)0.0129 (3)
O120.36289 (9)0.55415 (5)0.26592 (7)0.0164 (2)
C130.39048 (11)0.41293 (7)0.25035 (10)0.0118 (3)
C13A0.30516 (11)0.35997 (8)0.19371 (10)0.0136 (3)
C140.31398 (12)0.28250 (8)0.17408 (10)0.0173 (3)
H140.38240.25410.19690.021*
C150.21988 (13)0.24655 (9)0.11982 (11)0.0215 (3)
H150.22350.19310.10690.026*
C160.12169 (13)0.28869 (9)0.08490 (11)0.0238 (3)
H160.05850.26350.04860.029*
C170.11376 (13)0.36756 (9)0.10203 (11)0.0210 (3)
H170.04680.39650.07730.025*
C17A0.20708 (12)0.40190 (8)0.15632 (10)0.0149 (3)
C210.55038 (11)0.39258 (7)0.37985 (10)0.0120 (3)
H210.57330.33750.37190.014*
C220.41156 (11)0.39777 (7)0.36885 (9)0.0112 (3)
H220.38190.44300.40870.013*
N240.51257 (9)0.40998 (6)0.20792 (8)0.0126 (2)
C250.52881 (12)0.44460 (9)0.10668 (10)0.0172 (3)
H25A0.51940.50080.11140.021*
H25B0.46690.42480.05830.021*
C260.65518 (12)0.42485 (9)0.06784 (10)0.0200 (3)
H26A0.66920.45040.00100.024*
H26B0.66150.36890.05720.024*
C270.75124 (12)0.45069 (9)0.14523 (11)0.0200 (3)
H27A0.75050.50720.15040.024*
H27B0.83230.43470.12100.024*
C280.72742 (12)0.41587 (8)0.25140 (10)0.0163 (3)
H28A0.73710.35960.24820.020*
H28B0.78680.43620.30160.020*
C28A0.59937 (11)0.43555 (8)0.28612 (9)0.0122 (3)
H18C0.59170.49200.29680.015*
C1110.13937 (12)0.54202 (8)0.15437 (10)0.0177 (3)
H11A0.10020.52980.08780.021*
H11B0.18600.58990.14530.021*
C1120.04138 (12)0.55524 (8)0.23478 (11)0.0178 (3)
H11C0.07920.57230.30000.021*
H11D0.00190.50670.24810.021*
C1130.04843 (12)0.61569 (8)0.19747 (11)0.0175 (3)
H11E0.08900.59660.13450.021*
H11F0.00310.66250.17880.021*
C1140.14507 (13)0.63668 (8)0.27627 (11)0.0191 (3)
H11G0.18250.58920.30290.023*
H11H0.10630.66350.33480.023*
C1150.24331 (13)0.68768 (9)0.23080 (12)0.0231 (3)
H11I0.28610.65920.17580.028*
H11J0.20480.73300.19900.028*
C1160.33563 (14)0.71456 (9)0.30990 (12)0.0273 (3)
H11K0.37580.67000.34040.041*
H11L0.39610.74710.27620.041*
H11M0.29430.74380.36390.041*
C2110.60196 (12)0.41976 (7)0.48092 (10)0.0126 (3)
O2110.70490 (8)0.44278 (6)0.49134 (7)0.0193 (2)
O2120.52409 (8)0.41326 (6)0.55863 (7)0.0159 (2)
H2120.5642 (15)0.4242 (10)0.6185 (14)0.024*
C2270.34460 (12)0.32642 (8)0.40512 (9)0.0124 (3)
O2270.39880 (8)0.26668 (5)0.42060 (7)0.0170 (2)
C2210.20965 (12)0.33008 (8)0.41731 (10)0.0141 (3)
C2220.14638 (13)0.26082 (9)0.41690 (12)0.0214 (3)
H2220.18920.21410.40870.026*
C2230.02173 (14)0.25984 (9)0.42841 (13)0.0270 (3)
H2230.02060.21250.42840.032*
C2240.04133 (13)0.32800 (9)0.43998 (12)0.0240 (3)
H2240.12680.32730.44790.029*
C2250.02029 (13)0.39690 (9)0.43991 (11)0.0202 (3)
H2250.02320.44340.44760.024*
C2260.14587 (12)0.39867 (8)0.42859 (10)0.0162 (3)
H2260.18770.44620.42850.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0116 (5)0.0188 (6)0.0139 (5)0.0019 (4)0.0010 (4)0.0009 (5)
C120.0128 (6)0.0169 (7)0.0090 (6)0.0003 (5)0.0016 (5)0.0008 (5)
O120.0202 (5)0.0146 (5)0.0143 (4)0.0002 (4)0.0022 (4)0.0002 (4)
C130.0108 (6)0.0131 (6)0.0115 (6)0.0002 (5)0.0009 (5)0.0003 (5)
C13A0.0125 (6)0.0187 (7)0.0096 (6)0.0031 (5)0.0008 (5)0.0011 (5)
C140.0172 (7)0.0192 (7)0.0154 (6)0.0017 (5)0.0006 (5)0.0017 (5)
C150.0234 (7)0.0218 (8)0.0194 (7)0.0072 (6)0.0023 (6)0.0068 (6)
C160.0180 (7)0.0334 (9)0.0201 (7)0.0098 (6)0.0016 (6)0.0079 (6)
C170.0133 (7)0.0335 (9)0.0163 (7)0.0009 (6)0.0019 (5)0.0011 (6)
C17A0.0132 (6)0.0202 (7)0.0114 (6)0.0009 (5)0.0016 (5)0.0001 (5)
C210.0111 (6)0.0115 (6)0.0133 (6)0.0004 (5)0.0006 (5)0.0007 (5)
C220.0105 (6)0.0129 (6)0.0102 (6)0.0002 (5)0.0008 (5)0.0004 (5)
N240.0104 (5)0.0166 (6)0.0107 (5)0.0005 (4)0.0001 (4)0.0001 (4)
C250.0162 (7)0.0237 (7)0.0118 (6)0.0009 (5)0.0010 (5)0.0012 (5)
C260.0178 (7)0.0278 (8)0.0145 (6)0.0001 (6)0.0037 (5)0.0000 (6)
C270.0137 (6)0.0268 (8)0.0195 (7)0.0017 (6)0.0053 (5)0.0015 (6)
C280.0113 (6)0.0209 (7)0.0167 (6)0.0005 (5)0.0007 (5)0.0007 (5)
C28A0.0116 (6)0.0133 (6)0.0117 (6)0.0005 (5)0.0007 (5)0.0000 (5)
C1110.0148 (7)0.0226 (7)0.0158 (6)0.0044 (5)0.0004 (5)0.0040 (5)
C1120.0152 (7)0.0204 (7)0.0178 (7)0.0020 (5)0.0004 (5)0.0021 (6)
C1130.0161 (7)0.0167 (7)0.0196 (7)0.0009 (5)0.0015 (5)0.0024 (5)
C1140.0190 (7)0.0182 (7)0.0202 (7)0.0016 (5)0.0033 (5)0.0019 (6)
C1150.0228 (8)0.0213 (8)0.0252 (8)0.0062 (6)0.0048 (6)0.0036 (6)
C1160.0252 (8)0.0259 (8)0.0308 (8)0.0059 (6)0.0098 (7)0.0054 (7)
C2110.0135 (6)0.0102 (6)0.0140 (6)0.0022 (5)0.0006 (5)0.0008 (5)
O2110.0138 (5)0.0261 (6)0.0180 (5)0.0034 (4)0.0024 (4)0.0023 (4)
O2120.0151 (5)0.0209 (5)0.0116 (4)0.0021 (4)0.0004 (4)0.0006 (4)
C2270.0143 (6)0.0145 (6)0.0084 (6)0.0005 (5)0.0017 (5)0.0009 (5)
O2270.0166 (5)0.0149 (5)0.0194 (5)0.0010 (4)0.0010 (4)0.0022 (4)
C2210.0132 (6)0.0180 (7)0.0112 (6)0.0015 (5)0.0003 (5)0.0036 (5)
C2220.0187 (7)0.0168 (7)0.0287 (8)0.0007 (6)0.0006 (6)0.0059 (6)
C2230.0188 (7)0.0229 (8)0.0393 (9)0.0078 (6)0.0012 (6)0.0087 (7)
C2240.0127 (7)0.0342 (9)0.0250 (8)0.0019 (6)0.0003 (6)0.0072 (7)
C2250.0163 (7)0.0251 (8)0.0193 (7)0.0039 (6)0.0022 (5)0.0011 (6)
C2260.0146 (6)0.0177 (7)0.0162 (6)0.0003 (5)0.0009 (5)0.0008 (5)
Geometric parameters (Å, º) top
N11—C121.3547 (17)C28—H28B0.9900
N11—C17A1.4194 (18)C28A—H18C1.0000
N11—C1111.4601 (17)C111—C1121.5255 (19)
C12—O121.2343 (16)C111—H11A0.9900
C12—C131.5527 (18)C111—H11B0.9900
C13—N241.4599 (16)C112—C1131.5268 (19)
C13—C13A1.5106 (17)C112—H11C0.9900
C13—C221.5804 (17)C112—H11D0.9900
C13A—C141.381 (2)C113—C1141.5272 (19)
C13A—C17A1.3938 (19)C113—H11E0.9900
C14—C151.4025 (19)C113—H11F0.9900
C14—H140.9500C114—C1151.522 (2)
C15—C161.386 (2)C114—H11G0.9900
C15—H150.9500C114—H11H0.9900
C16—C171.399 (2)C115—C1161.525 (2)
C16—H160.9500C115—H11I0.9900
C17—C17A1.3839 (19)C115—H11J0.9900
C17—H170.9500C116—H11K0.9800
C21—C2111.5076 (17)C116—H11L0.9800
C21—C28A1.5322 (18)C116—H11M0.9800
C21—C221.5419 (17)C211—O2111.2130 (16)
C21—H211.0000C211—O2121.3345 (16)
C22—C2271.5251 (18)O212—H2120.914 (18)
C22—H221.0000C227—O2271.2195 (16)
N24—C251.4608 (17)C227—C2211.5007 (18)
N24—C28A1.4648 (16)C221—C2221.3974 (19)
C25—C261.5256 (19)C221—C2261.3979 (19)
C25—H25A0.9900C222—C2231.385 (2)
C25—H25B0.9900C222—H2220.9500
C26—C271.528 (2)C223—C2241.388 (2)
C26—H26A0.9900C223—H2230.9500
C26—H26B0.9900C224—C2251.383 (2)
C27—C281.5327 (19)C224—H2240.9500
C27—H27A0.9900C225—C2261.3956 (19)
C27—H27B0.9900C225—H2250.9500
C28—C28A1.5255 (18)C226—H2260.9500
C28—H28A0.9900
C12—N11—C17A111.00 (11)H28A—C28—H28B108.2
C12—N11—C111123.51 (12)N24—C28A—C28109.31 (10)
C17A—N11—C111125.48 (11)N24—C28A—C2199.85 (10)
O12—C12—N11124.47 (12)C28—C28A—C21117.11 (11)
O12—C12—C13126.63 (11)N24—C28A—H18C110.0
N11—C12—C13108.88 (11)C28—C28A—H18C110.0
N24—C13—C13A111.67 (10)C21—C28A—H18C110.0
N24—C13—C12114.04 (10)N11—C111—C112113.33 (11)
C13A—C13—C12101.33 (10)N11—C111—H11A108.9
N24—C13—C22103.29 (9)C112—C111—H11A108.9
C13A—C13—C22117.54 (11)N11—C111—H11B108.9
C12—C13—C22109.40 (10)C112—C111—H11B108.9
C14—C13A—C17A120.39 (12)H11A—C111—H11B107.7
C14—C13A—C13130.27 (12)C111—C112—C113110.39 (11)
C17A—C13A—C13109.32 (12)C111—C112—H11C109.6
C13A—C14—C15118.65 (13)C113—C112—H11C109.6
C13A—C14—H14120.7C111—C112—H11D109.6
C15—C14—H14120.7C113—C112—H11D109.6
C16—C15—C14120.29 (14)H11C—C112—H11D108.1
C16—C15—H15119.9C112—C113—C114114.05 (11)
C14—C15—H15119.9C112—C113—H11E108.7
C15—C16—C17121.37 (13)C114—C113—H11E108.7
C15—C16—H16119.3C112—C113—H11F108.7
C17—C16—H16119.3C114—C113—H11F108.7
C17A—C17—C16117.48 (13)H11E—C113—H11F107.6
C17A—C17—H17121.3C115—C114—C113112.26 (12)
C16—C17—H17121.3C115—C114—H11G109.2
C17—C17A—C13A121.77 (13)C113—C114—H11G109.2
C17—C17A—N11128.78 (13)C115—C114—H11H109.2
C13A—C17A—N11109.44 (11)C113—C114—H11H109.2
C211—C21—C28A113.97 (11)H11G—C114—H11H107.9
C211—C21—C22115.77 (11)C114—C115—C116113.29 (12)
C28A—C21—C22104.56 (10)C114—C115—H11I108.9
C211—C21—H21107.4C116—C115—H11I108.9
C28A—C21—H21107.4C114—C115—H11J108.9
C22—C21—H21107.4C116—C115—H11J108.9
C227—C22—C21113.98 (11)H11I—C115—H11J107.7
C227—C22—C13111.65 (10)C115—C116—H11K109.5
C21—C22—C13104.07 (10)C115—C116—H11L109.5
C227—C22—H22109.0H11K—C116—H11L109.5
C21—C22—H22109.0C115—C116—H11M109.5
C13—C22—H22109.0H11K—C116—H11M109.5
C13—N24—C25116.29 (10)H11L—C116—H11M109.5
C13—N24—C28A109.25 (10)O211—C211—O212123.36 (12)
C25—N24—C28A114.68 (10)O211—C211—C21123.56 (12)
N24—C25—C26108.69 (11)O212—C211—C21113.04 (11)
N24—C25—H25A110.0C211—O212—H212108.4 (11)
C26—C25—H25A110.0O227—C227—C221120.41 (12)
N24—C25—H25B110.0O227—C227—C22120.81 (12)
C26—C25—H25B110.0C221—C227—C22118.73 (11)
H25A—C25—H25B108.3C222—C221—C226119.37 (12)
C25—C26—C27110.42 (11)C222—C221—C227117.35 (12)
C25—C26—H26A109.6C226—C221—C227123.28 (12)
C27—C26—H26A109.6C223—C222—C221120.49 (14)
C25—C26—H26B109.6C223—C222—H222119.8
C27—C26—H26B109.6C221—C222—H222119.8
H26A—C26—H26B108.1C222—C223—C224120.02 (14)
C26—C27—C28110.81 (11)C222—C223—H223120.0
C26—C27—H27A109.5C224—C223—H223120.0
C28—C27—H27A109.5C225—C224—C223119.97 (13)
C26—C27—H27B109.5C225—C224—H224120.0
C28—C27—H27B109.5C223—C224—H224120.0
H27A—C27—H27B108.1C224—C225—C226120.57 (14)
C28A—C28—C27109.86 (11)C224—C225—H225119.7
C28A—C28—H28A109.7C226—C225—H225119.7
C27—C28—H28A109.7C225—C226—C221119.57 (13)
C28A—C28—H28B109.7C225—C226—H226120.2
C27—C28—H28B109.7C221—C226—H226120.2
C17A—N11—C12—O12178.71 (12)C13A—C13—N24—C28A157.26 (11)
C111—N11—C12—O122.2 (2)C12—C13—N24—C28A88.61 (12)
C17A—N11—C12—C130.36 (14)C22—C13—N24—C28A30.02 (13)
C111—N11—C12—C13179.47 (11)C13—N24—C25—C26170.95 (11)
O12—C12—C13—N2457.46 (17)C28A—N24—C25—C2659.88 (15)
N11—C12—C13—N24120.85 (12)N24—C25—C26—C2756.02 (16)
O12—C12—C13—C13A177.58 (12)C25—C26—C27—C2855.76 (16)
N11—C12—C13—C13A0.73 (13)C26—C27—C28—C28A55.23 (15)
O12—C12—C13—C2257.63 (16)C13—N24—C28A—C28167.41 (11)
N11—C12—C13—C22124.06 (11)C25—N24—C28A—C2860.00 (14)
N24—C13—C13A—C1454.77 (18)C13—N24—C28A—C2143.98 (12)
C12—C13—C13A—C14176.56 (13)C25—N24—C28A—C21176.57 (11)
C22—C13—C13A—C1464.33 (18)C27—C28—C28A—N2455.48 (14)
N24—C13—C13A—C17A123.36 (12)C27—C28—C28A—C21168.00 (11)
C12—C13—C13A—C17A1.57 (13)C211—C21—C28A—N24166.73 (10)
C22—C13—C13A—C17A117.54 (12)C22—C21—C28A—N2439.35 (12)
C17A—C13A—C14—C152.7 (2)C211—C21—C28A—C2875.50 (14)
C13—C13A—C14—C15179.32 (13)C22—C21—C28A—C28157.13 (11)
C13A—C14—C15—C161.4 (2)C12—N11—C111—C11289.99 (15)
C14—C15—C16—C170.3 (2)C17A—N11—C111—C11288.98 (16)
C15—C16—C17—C17A0.8 (2)N11—C111—C112—C113175.28 (11)
C16—C17—C17A—C13A0.6 (2)C111—C112—C113—C114176.02 (12)
C16—C17—C17A—N11177.99 (13)C112—C113—C114—C115171.33 (12)
C14—C13A—C17A—C172.4 (2)C113—C114—C115—C116175.52 (13)
C13—C13A—C17A—C17179.29 (12)C28A—C21—C211—O21133.95 (18)
C14—C13A—C17A—N11176.46 (12)C22—C21—C211—O211155.29 (13)
C13—C13A—C17A—N111.89 (14)C28A—C21—C211—O212148.37 (11)
C12—N11—C17A—C17179.86 (13)C22—C21—C211—O21227.03 (16)
C111—N11—C17A—C170.8 (2)C21—C22—C227—O22714.10 (17)
C12—N11—C17A—C13A1.42 (15)C13—C22—C227—O227103.47 (13)
C111—N11—C17A—C13A179.49 (12)C21—C22—C227—C221168.39 (11)
C211—C21—C22—C22789.51 (14)C13—C22—C227—C22174.03 (14)
C28A—C21—C22—C227144.23 (11)O227—C227—C221—C22218.16 (18)
C211—C21—C22—C13148.63 (11)C22—C227—C221—C222159.35 (12)
C28A—C21—C22—C1322.37 (12)O227—C227—C221—C226162.00 (12)
N24—C13—C22—C227120.05 (11)C22—C227—C221—C22620.49 (18)
C13A—C13—C22—C2273.40 (16)C226—C221—C222—C2230.5 (2)
C12—C13—C22—C227118.14 (12)C227—C221—C222—C223179.61 (13)
N24—C13—C22—C213.34 (12)C221—C222—C223—C2240.3 (2)
C13A—C13—C22—C21126.79 (11)C222—C223—C224—C2250.1 (2)
C12—C13—C22—C21118.47 (11)C223—C224—C225—C2260.2 (2)
C13A—C13—N24—C2571.00 (14)C224—C225—C226—C2210.1 (2)
C12—C13—N24—C2543.13 (15)C222—C221—C226—C2250.4 (2)
C22—C13—N24—C25161.76 (11)C227—C221—C226—C225179.75 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O212—H212···O12i0.915 (18)1.744 (18)2.6589 (13)178.5 (15)
C113—H11F···O227ii0.992.513.4738 (17)163
C16—H16···O227iii0.952.483.3947 (17)162
C22—H22···O211i1.002.573.5693 (16)177
C226—H226···O211i0.952.503.3854 (17)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2.
Hydrogen-bond parameters (Å, °) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)N11—H11···O227i0.868 (18)2.242 (17)2.9756 (16)142.2 (13)
O212—H212···O12ii0.899 (19)1.873 (19)2.7723 (14)178.4 (15)
C22—H22···O211ii1.002.223.1930 (15)164
C16—H15···Cg1iii0.952.633.4966 (14)152
()I)N11—H11···O227i0.880 (18)2.181 (18)2.9598 (18)147.3 (15)
O212—H212···O12ii0.89 (2)1.88 (2)2.7691 (15)179 (2)
C22—H22···O211ii1.002.213.1894 (16)165
C16—H15···Cg1iii0.952.753.6366 (16)155
(III)O212—H212···O211ii0.920 (19)1.798 (19)2.7162 (14)175.5 (16)
C16—H16···Cg1iv0.952.703.5181 (17)144
(IV)O212—H212···O211ii0.863 (19)1.854 (19)2.7152 (14)175.3 (16)
C16—H16···Cg1iv0.952.523.3872 (14)152
(V)O212—H212···O12ii0.915 (18)1.744 (18)2.6589 (13)178.5 (15)
C113—H11F···O227v0.992.513.4738 (17)163
C16—H16···O227vi0.952.483.3947 (17)162
C22—H22···O211ii1.002.573.5693 (16)177
C226—H226···O211ii0.952.503.3854 (17)155
Cg1 represents the centroid of the C221–C226 ring.

Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z; (iv) -x, -y+1, -z; (v) -x+1/2, y+1/2, -z+1/2; (vi) x-1/2, -y+1/2, z-1/2.
Ring-puckering parameters (Å, °) top
Ring AQ2φ2
(I)0.4391 (11)333.05 (17)
(II)0.4363 (14)332.26 (19)
(III)0.4436 (13)312.16 (17)
(IV)0.4456 (13)317.67 (17)
(V)0.4125 (13)327.81 (18)
Ring BQθφ
(I)0.5673 (14)175.99 (14)227.3 (19)
(II)0.5670 (15)176.31 (15)226 (2)
(III)0.5846 (14)176.53 (14)141 (3)
(IV)0.5913 (14)176.98 (14)132 (3)
(V)0.5778 (14)179.45 (14)219 (22)
Parameters for rings A and B are calculated for the atom sequences N24—C13—C22—C21—C28A and N24—C25—C26—C27—C28—C28A, respectively
 

Acknowledgements

The authors thank the Centro de Instrumentación Cientifico-Técnica of the Universidad de Jaén (UJA) and its staff for the data collection, and thank COLCIENCIAS, the Universidad del Valle, the Universidad de Jaén and the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía, Spain) for financial support.

References

First citationAcosta, L. M., Bahsas, A., Palma, A., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, o92–o96.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Majid, A. M., Ghawas, H. M., Islam, M. S., Soliman, S. M., El-Senduny, F. F., Badria, F. A., Ali, M., Shaik, M. R., Ghabbour, H. A. & Barakat, A. (2020). J. Mol. Struct. 1204, 127500.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlanco, M. C., Palma, A., Cobo, J. & Glidewell, C. (2012). Acta Cryst. C68, o195–o198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDömling, A. (2002). Curr. Opin. Chem. Biol. 6, 306–313.  Web of Science PubMed Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGhosh, R., Vitor, J. B., Mendes, E., Paulo, A. & Acharya, P. C. (2020). ACS Omega, 5, 27332–27343.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGrigg, R., Aly, M. F., Sridharan, V. & Thianpatanagul, S. (1984). J. Chem. Soc. Chem. Commun. pp. 182–183.  CrossRef Web of Science Google Scholar
First citationHulme, C. & Gore, V. (2003). Curr. Med. Chem. 10, 51–80.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKarplus, M. (1959). J. Chem. Phys. 30, 11–15.  CrossRef CAS Web of Science Google Scholar
First citationOrru, R. V. A. & de Greef, M. (2003). Synthesis, pp. 1471–1499.  Web of Science CrossRef Google Scholar
First citationPardasani, R. T., Pardasani, P., Chaturvedi, V., Yadav, S. K., Saxena, A. & Sharma, I. (2003). Heteroatom Chem. 14, 36–41.  Web of Science CrossRef CAS Google Scholar
First citationQuiroga, J., Gálvez, J., Abonía, R., Insuasty, B., Ortíz, A., Cobo, J. & Nogueras, M. (2014). Molecules, 19, 4284–4300.  Web of Science CrossRef PubMed Google Scholar
First citationQuiroga, J., Portilla, J., Serrano, H., Abonía, R., Insuasty, B., Nogueras, M. & Cobo, J. (2007). Tetrahedron Lett. 48, 1987–1990.  Web of Science CrossRef CAS Google Scholar
First citationQuiroga, J., Romo, P., Cobo, J. & Glidewell, C. (2017). Acta Cryst. C73, 1109–1115.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRomo, P., Quiroga, J., Cobo, J. & Glidewell, C. (2020). Acta Cryst. C76, 779–785.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhou, L.-M., Qu, R.-Y. & Yang, G.-F. (2020). Exp. Opin. Drug. Discov. 15, 603–625.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds