research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Synthesis, and spectroscopic and structural characterization of three new styryl­quinoline–benzimidazole hybrids

crossmark logo

aLaboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and cSchool of Chemistry, University of St Andrews, Fife, KY16 9ST, United Kingdom
*Correspondence e-mail: cg@st-andrews.ac.uk

Edited by A. R. Kennedy, University of Strathclyde, United Kingdom (Received 8 September 2022; accepted 17 October 2022; online 25 October 2022)

Three new 4-styryl­quinoline–benzimidazole hybrids have been synthesized using a reaction sequence in which 2-methyl­quinoline precursors first undergo selective oxidation by selenium dioxide to form the corresponding 2-formyl­quinoline inter­mediates, followed by oxidative cyclo­condensation reactions with benzene-1,2-diamine to yield the hybrid products. The formyl inter­mediates and the hybrid products have all been fully characterized using a combination of IR, 1H and 13C NMR spectroscopy, and high-resolution mass spectrometry, and the structures of the three hybrid products have been determined using single-crystal X-ray diffraction. Ethyl (E)-2-(1H-benzo[d]imidazol-2-yl)-4-(4-chloro­styr­yl)quinoline-3-carboxyl­ate, C27H20ClN3O2, (IIIa), and ethyl (E)-2-(1H-ben­zo[d]imidazol-2-yl)-4-(2-meth­oxy­styr­yl)quinoline-3-carboxyl­ate, C28H23N3O3, (IIIb), both crystallize in the solvent-free form with Z′ = 1, but ethyl (E)-2-(1H-benzo[d]imidazol-2-yl)-4-(4-methyl­styr­yl)quinoline-3-carboxyl­ate, C28H23N3O2, (IIIc), crystallizes as a partial hexane solvate with Z′ = 3, and the ester group in one of the independent mol­ecules is disordered over two sets of atomic sites having occupancies of 0.765 (7) and 0.235 (7). The mol­ecules of (IIIc) enclose continuous channels which are occupied by disordered solvent mol­ecules having partial occupancy. In all of the mol­ecules of (IIIa)–(IIIc), the styryl­quinoline fragment is markedly nonplanar. Different combinations of N—H⋯O and C—H⋯π hydrogen bonds generate supra­molecular assemblies which are two-dimensional in (IIIb) and (IIIc), but three-dimensional in (IIIa). Comparisons are made with the structures of some related com­pounds.

1. Introduction

Among different privileged scaffolds, quinolines can be considered as one of the most versatile pharmacophores due to their presence in a wide variety of natural and synthetic mol­ecules. Quinoline derivatives exhibit a broad range of biological activity, such as anti­malarial (e.g. quinine and mefloquine) (Hu et al., 2017[Hu, Y.-Q., Gao, C., Zhang, S., Xu, L., Xu, Z., Feng, L.-S., Wu, X. & Zhao, F. (2017). Eur. J. Med. Chem. 139, 22-47.]; Kaur et al., 2010[Kaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245-3264.]; Orozco et al., 2020[Orozco, D., Kouznetsov, V. V., Bermúdez, A., Vargas Méndez, L. Y., Mendoza Salgado, A. R. & Meléndez Gómez, C. M. (2020). RSC Adv. 10, 4876-4898.]), anti­viral (e.g. saquinavir) (Matada et al., 2021[Matada, B. S., Pattanashettar, R. & Yernale, N. G. (2021). Bioorg. Med. Chem. 32, 115973.]), anti­cancer (e.g. camptothecin and topotecan) (Afzal et al., 2015[Afzal, O., Kumar, S., Haider, M. R., Ali, M. R., Kumar, R., Jaggi, M. & Bawa, S. (2015). Eur. J. Med. Chem. 97, 871-910.]; Lauria et al., 2021[Lauria, A., La Monica, G., Bono, A. & Martorana, A. (2021). Eur. J. Med. Chem. 220, 113555.]; Musiol, 2017[Musiol, R. (2017). Exp. Opin. Drug. Discov. 12, 583-597.]; Yadav & Shah, 2021[Yadav, P. & Shah, K. (2021). Bioorg. Chem. 109, 104639.]) and anti-­asthmatic (e.g. montelukast) (Matada et al., 2021[Matada, B. S., Pattanashettar, R. & Yernale, N. G. (2021). Bioorg. Med. Chem. 32, 115973.]; Nayak, 2004[Nayak, A. (2004). Expert Opin. Pharmacother. 5, 679-686.]). Quinoline derivatives are also frequently used as building blocks in the design and synthesis of new biologically active mol­ecular hybrids with the aim of developing new chemical entities for further clinical assays (Jagdale & Patil, 2019[Jagdale, D. & Patil, P. (2019). World J. Pharm. Pharm. Sci. 8, 311-328.]; Yadav & Shah, 2021[Yadav, P. & Shah, K. (2021). Bioorg. Chem. 109, 104639.]).

The benzimidazole nucleus also constitutes a privileged scaffold which has been extensively studied as a potential building block for the development of biologically active mol­ecules with diverse applications as therapeutic agents, including anti­cancer agents (e.g. dovitinib and selumetinib) (Hernández-Romero et al., 2021[Hernández-Romero, D., Rosete-Luna, S., López-Monteon, A., Chávez-Piña, A., Pérez-Hernández, N., Marroquín-Flores, J., Cruz-Navarro, A., Pesado-Gómez, G., Morales-Morales, D. & Colorado-Peralta, R. (2021). Coord. Chem. Rev. 439, 213930.]), anthelmintics (e.g. albendazole, mebendazole and thabendazole) (Salahuddin et al., 2017[Salahuddin, Shaharyar, M. & Mazumder, A. (2017). Arab. J. Chem. 10, S157-S173.]) or antacids and anti-ulcer agents (e.g. omeprazole, lansoprazole and pantoprazole) (Gurvinder et al., 2013[Gurvinder, S., Maninderjit, K. & Mohan, C. (2013). Int. Res. J. Pharm. 4, 82-87.]).

Most of the synthetic methods for building the benzimidazole nucleus reported hitherto are based on cyclo­condensation reactions of benzene-1,2-di­amine (o-phenyl­enedi­amine) either with carboxaldehydes in the presence of Lewis acids or oxidizing agents (Agrawal et al., 2012[Agrawal, R., Jain, P. & Dikshit, S. N. (2012). Curr. Drug Targets, 13, 863-875.]; Bellam et al., 2017[Bellam, M., Gundluru, M., Sarva, S., Chadive, S., Netala, V. R., Tartte, V. & Cirandur, S. R. (2017). Chem. Heterocycl. C, 53, 173-178.]; Kidwai et al., 2010[Kidwai, M., Jahan, A. & Bhatnagar, D. (2010). J. Chem. Sci. 122, 607-612.]; Lin & Yang, 2005[Lin, S. & Yang, L. (2005). Tetrahedron Lett. 46, 4315-4319.]; Singh et al., 2000[Singh, M. P., Sasmal, S., Lu, W. & Chatterjee, M. N. (2000). Synthesis, 2000, 1380-1390.]), or with carb­oxy­lic acids in strongly acidic conditions at high tem­per­atures (Cosimelli et al., 2011[Cosimelli, B., Taliani, S., Greco, G., Novellino, E., Sala, A., Severi, E., Da Settimo, F., La Motta, C., Pugliesi, I., Antonioli, L., Fornai, M., Colucci, R., Blandizzi, C., Daniele, S., Trincavelli, M. L. & Martini, C. (2011). ChemMedChem, 6, 1909-1918.]; Singhal et al., 2019[Singhal, S., Khanna, P., Panda, S. S. & Khanna, L. (2019). J. Heterocycl. Chem. 56, 2702-2729.]). Because of the medicinal importance of quinoline and benz­imidazole derivatives, considerable efforts have been made in the development of novel quinoline–benzimidazole hybrids (Cosimelli et al., 2011[Cosimelli, B., Taliani, S., Greco, G., Novellino, E., Sala, A., Severi, E., Da Settimo, F., La Motta, C., Pugliesi, I., Antonioli, L., Fornai, M., Colucci, R., Blandizzi, C., Daniele, S., Trincavelli, M. L. & Martini, C. (2011). ChemMedChem, 6, 1909-1918.]; Hranjec et al., 2010[Hranjec, M., Pavlović, G., Marjanović, M., Kralj, M. & Karminski-Zamola, G. (2010). Eur. J. Med. Chem. 45, 2405-2417.]; Mantu et al., 2016[Mantu, D., Antoci, V., Moldoveanu, C., Zbancioc, G. & Mangalagiu, I. I. (2016). J. Enzyme Inhib. Med. Chem. 31, 96-103.]; Perin et al., 2016[Perin, N., Nhili, R., Cindrić, M., Bertoša, B., Vušak, D., Martin-Kleiner, I., Laine, W., Karminski-Zamola, G., Kralj, M., David-Cordonnier, M. H. & Hranjec, M. (2016). Eur. J. Med. Chem. 122, 530-545.]; Renhowe et al., 2009[Renhowe, P. A., Pecchi, S., Shafer, C. M., Machajewski, T. D., Jazan, E. M., Taylor, C., Antonios-McCrea, W., McBride, C. M., Frazier, K., Wiesmann, M., Lapointe, G. R., Feucht, P. H., Warne, R. L., Heise, C. C., Menezes, D., Aardalen, K., Ye, H., He, M., Le, V., Vora, J., Jansen, J. M., Wernette-Hammond, M. E. & Harris, A. L. (2009). J. Med. Chem. 52, 278-292.]; Yaragorla & Vijaya Babu, 2017[Yaragorla, S. & Vijaya Babu, P. (2017). Tetrahedron Lett. 58, 1879-1882.]).

[Scheme 1]

With these considerations in mind, and as a continuation of our earlier work on the synthesis of polysusbstituted 4-sty­ryl­quinolines from 2′-amino­phenyl­chalcones and 1,3-dicarbonyl com­pounds (Meléndez et al., 2020[Meléndez, A., Plata, E., Rodríguez, D., Ardila, D., Guerrero, S. A., Acosta, L. M., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804-1822.]), we report here the syn­thesis and spectroscopic characterization of three representative examples of a novel class of mol­ecular hybrids of the type benzimidazole-4-styryl­quinoline, namely, ethyl (E)-2-(1H-benzo[d]imidazol-2-yl)-4-(4-chloro­styr­yl)quinoline-3-car­boxyl­ate, (IIIa)[link], ethyl (E)-2-(1H-benzo[d]imidazol-2-yl)-4-(2-meth­oxy­styr­yl)quinoline-3-carboxyl­ate, (IIIb)[link], and ethyl (E)-2-(1H-benzo[d]imidazol-2-yl)-4-(4-methyl­styr­yl)quinoline-3-carboxyl­ate, (IIIc)[link], which differ only in the nature of the substituents in the benzene ring of the styryl fragment (see Scheme 1[link]), along with the mol­ecular and supra­molecular structures of the hybrid products (IIIa)–(IIIc) (Figs. 1[link]–3[link][link]).

[Figure 1]
Figure 1
The mol­ecular structure of com­pound (IIIa)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of com­pound (IIIb)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
The three independent mol­ecules of com­pound (IIIc)[link], showing the atom-labelling schemes for (a) mol­ecule 1, where the minor disorder com­ponent has been drawn using broken lines, (b) mol­ecule 2 and (c) mol­ecule 3. Displacement ellipsoids are drawn at the 50% probability level.

2. Experimental

2.1. Synthesis and crystallization

The 4-styryl­quinoline precursors of type (I) (see Scheme 1[link]) were prepared using a previously reported method (Meléndez et al., 2020[Meléndez, A., Plata, E., Rodríguez, D., Ardila, D., Guerrero, S. A., Acosta, L. M., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804-1822.]; Rodríguez et al., 2020[Rodríguez, D., Guerrero, S. A., Palma, A., Cobo, J. & Glidewell, C. (2020). Acta Cryst. C76, 883-890.]). In the NMR data listed below, for compounds (III), unprimed ring atoms form part of the quinoline unit, ring atoms carrying a single prime form part of the benzimidazole unit and ring atoms carrying a double prime form part of the styryl unit (see Figs. 1[link] and 2[link]).

For the synthesis of the formyl inter­mediates of type (II), a suspension of the appropriate 4-styryl­quinoline-3-carboxyl­ate (I) (Meléndez et al., 2020[Meléndez, A., Plata, E., Rodríguez, D., Ardila, D., Guerrero, S. A., Acosta, L. M., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804-1822.]; see Scheme 1[link]) (1.0 mmol) and selenium dioxide (2.0 mmol) in 1,4-dioxane (5 ml) was stirred and heated at 373 K for the time required to com­plete the reaction. After the com­plete consumption of (I) [as monitored by thin-layer chromatography (TLC)], di­chloro­methane (15 ml) was added and the resulting suspension was filtered. The solvent was removed under reduced pressure and the resulting crude products were purified by flash column chromatography on silica gel using hexa­ne–ethyl acetate (10:1 v/v) as eluent to give the required formyl inter­mediates (IIa)–(IIc) as solid com­pounds.

Compound (IIa), ethyl (E)-4-(4-chloro­styr­yl)-2-formyl­quinoline-3-carboxyl­ate; yield 0.15 g (90%); m.p. 387–389 K; RF = 0.28 (12.5% ethyl acetate–hexa­ne). FT–IR (ATR, cm−1): 1727 (C=Oform­yl), 1706 (C=Oester), 1638 (C=N), 1612 (C=Cvin­yl), 1558 (C=Carom), 1488 (C=Carom), 971 (=C—Htrans). NMR (CDCl3): δ(1H) 10.19 (s, 1H, –COH), 8.28 (dd, J = 8.4, 1.3 Hz, 1H, H8), 8.20 (dd, J = 8.4, 1.5 Hz, 1H, H5), 7.88 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H, H7), 7.74 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H, H6), 7.51–7.48 (m, 2H, H2′, H6′), 7.45 (d, J = 16.5 Hz, 1H, HAC=), 7.41–7.38 (m, 2H, H3′, H5′), 7.03 (d, J = 16.5 Hz, 1H, =CHB), 4.45 (q, J = 7.2 Hz, 2H, –OCH2–), 1.33 (t, J = 7.2 Hz, 3H, –CH3); δ(13C) 192.5 (C=Oform­yl), 167.4 (C=Oester), 148.7 (C2), 147.5 (C8a), 143.1 (C4), 138.0 (=CHB), 135.0 (C4′), 134.5 (C1′), 131.1 (C7), 131.0 (C8), 130.0 (C6), 129.2 (C3′, C5′), 128.2 (C2′, C6′), 127.5 (C4a), 125.4 (C5), 124.2 (C3), 121.3 (HAC=), 62.2 (–OCH2–), 14.1 (–CH3). HRMS (ESI+) m/z found for [M + H]+ 366.0892, C21H16ClNO3 requires 366.0891.

Compound (IIb), ethyl (E)-2-formyl-4-(2-meth­oxy­styr­yl)quinoline-3-carboxyl­ate; yield 0.16 g (97%); m.p. 372–373 K; RF = 0.31 (12.5% ethyl acetate–hexa­ne). FT–IR (ATR, cm−1): 1726 (C=O), 1704 (C=O), 1597 (C=N), 1563 (C=Cvin­yl), 1484 (C=Carom), 1462 (C=Carom), 970 (=C—Htrans). NMR (CDCl3): δ(1H) 10.19 (s, 1H, –COH), 8.28 (ddd, J = 8.5, 1.4, 0.7 Hz, 1H, H5), 8.27 (ddd, J = 8.6, 1.4, 0.7 Hz, 1H, H8), 7.86 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H, H7), 7.72 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H, H6), 7.62 (dd, J = 7.6, 1.7 Hz, 1H, H6′), 7.54 (d, J = 16.7 Hz, 1H, HAC=), 7.42 (d, J = 16.7 Hz, 1H, =CHB), 7.34 (ddd, J = 8.3, 7.4, 1.7 Hz, 1H, H4′), 7.02 (td, J = 7.4, 1.1 Hz, 1H, H5′), 6.95 (dd, J = 8.3, 1.1 Hz, 1H, H3′), 4.47 (q, J = 7.2 Hz, 2H, –OCH2–), 3.88 (s, 3H, 2′-OCH3), 1.36 (t, J = 7.2 Hz, 3H, –CH3); δ(13C) 192.6 (C=Oformyl), 167.3 (C=Oester), 157.5 (C2′), 148.6 (C2), 147.5 (C8a), 144.2 (C4), 134.7 (=CHB), 130.9 (C8), 130.8 (C7), 130.2 (C4′), 129.8 (C6), 127.7 (C4a), 127.5 (C6′), 125.7 (C5), 125.1 (C1′), 124.1 (C3), 121.2 (HAC=), 120.8 (C5′), 111.1 (C3′), 62.0 (–OCH2–), 55.5 (2′-OCH3), 14.0 (–CH3). HRMS (ESI+) m/z found for [M + H]+ 362.1388, C22H19NO4 requires 362.13868.

Compound (IIc), ethyl (E)-2-formyl-4-(4-methyl­styr­yl)quinoline-3-carboxyl­ate; yield 0.145 g (92%); m.p. 364–365 K; RF = 0.32 (12.5% ethyl acetate–hexane). FT–IR (ATR, cm−1): 1707 (C=Oform­yl/ester), 1628 (C=N), 1560 (C=Cvin­yl), 1513 (C=Carom), 1463 (C=Carom), 987 (=C—Htrans). NMR (CDCl3): δ(1H) 10.19 (s, 1H, –COH), 8.27 (dd, J = 8.3, 1.3 Hz, 1H, H8), 8.23 (dd, J = 8.4, 1.3 Hz, 1H, H5), 7.86 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H, H7), 7.72 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H, H6), 7.46 (d, J = 7.8 Hz, 2H, H2′, H6′), 7.43 (d, J = 16.6 Hz, 1H, HAC=), 7.23 (d, J = 7.8 Hz, 2H, H3′, H5′), 7.06 (d, J = 16.6 Hz, 1H, =CHB), 4.46 (q, J = 7.2 Hz, 2H, –OCH2–), 2.40 (s, 3H, 4′-CH3), 1.34 (t, J = 7.2 Hz, 3H, –CH3); δ(13C) 192.6 (C=Oform­yl), 167.6 (C=Oester), 148.6 (C2), 147.5 (C8a), 143.7 (C4), 139.3 (=CHB, C4′), 133.3 (C1′), 131.0 (C7), 130.9 (C8), 129.8 (C6), 129.7 (C3′, C5′), 127.7 (C4a), 127.0 (C2′, C6′), 125.6 (C5), 124.2 (C3), 119.6 (HAC=), 62.1 (–OCH2–), 21.4 (4′-CH3), 14.3 (–CH3). HRMS (ESI+) m/z found for [M + H]+ 346.1452, C22H19NO3 requires 346.1438.

For the synthesis of the benzimidazole products of type (III), a suspension of the appropriate formyl derivatives (II) (1.0 mmol), o-phenyl­enedi­amine (1.0 mmol) and ceric am­monium nitrate (CAN) (10 mol%) in methanol (2 ml) was magnetically stirred at ambient tem­per­ature for the time required to com­plete the reaction. After the com­plete con­sumption of (II) (as monitored by TLC), methanol was removed under reduced pressure and the crude products were purified by flash column chromatography on silica gel using hexa­ne–ethyl acetate (8:1 v/v) as eluent to yield the target hybrid products (IIIa)–(IIIc), which were then recrystallized from hexa­ne–ethyl acetate (7:1 v/v), at ambient tem­per­ature and in the presence of air, to give yellow crystals suitable for single-crystal X-ray diffraction.

Compound (IIIa)[link], ethyl (E)-2-(1H-benzo[d]imidazol-2-yl)-4-(4-chloro­styr­yl)quinoline-3-carboxyl­ate; yield 0.145 g (65%); m.p. 447–448 K; RF = 0.31 (15% ethyl acetate–hexa­ne). FT–IR (ATR, cm−1): 3377 (N—H), 1716 (C=O), 1583 (C=N), 1488 (C=Cvin­yl), 1455 (C=Carom), 1434 (C=Carom), 964 (=C—Htrans). NMR (CDCl3): δ(1H) 10.69 (s, 1H, N—H), 8.15 (ddd, J = 8.4, 1.5, 0.7 Hz, 1H, H5), 8.13 (ddd, J = 8.4, 1.4, 0.7 Hz, 1H, H8), 7.82–7.79 (m, 1H, H4′), 7.78 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H, H′), 7.61 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H, H6), 7.53–7.51 (m, 1H, H′′), 7.51–7.49 (m, 2H, H6′′, H2′′), 7.49 (d, J = 16.6 Hz, 1H, HAC=), 7.41–7.38 (m, 2H, H3′′, H5′′), 7.33–7.29 (m, 1H, H6′), 7.27 (ddd, J = 8.5, 7.2, 1.0 Hz, 1H, H5′), 7.09 (d, J = 16.6 Hz, 1H, =CHB), 4.59 (q, J = 7.2 Hz, 2H, –OCH2–), 1.39 (t, J = 7.1 Hz, 3H, -CH3); δ(13C) 168.0 (C=O), 149.3 (C2), 147.2 (C8a), 144.6 (C3′a), 143.9 (C2′), 142.9 (C4), 137.7 (=CHB), 134.7 (C4′′), 133.6 (C1′′, C7′a), 130.8 (C7), 129.7 (C8), 129.1 (C3′′, C5′′), 128.2 (C2′′, C6′′), 127.9 (C6), 126.1 (C4a), 125.5 (C5), 125.4 (C3), 124.4 (C6′), 122.5 (C5′), 121.9 (HAC=), 121.0 (C4′), 111.1 (C7′), 62.2 (–OCH2–), 14.1 (–CH3). HRMS (ESI+) m/z found for [M + H]+ 454.1317, C27H20ClN3O2 requires 454.1317.

Compound (IIIb)[link], ethyl (E)-2-(1H-benzo[d]imidazol-2-yl)-4-(2-meth­oxy­styr­yl)quinoline-3-carboxyl­ate; yield: 0.12 g (65%); m.p. 452–453 K, RF = 0.30 (15% ethyl acetate–hexa­ne). FT–IR (ATR, cm−1): 3432 (N—H), 1713 (C=O), 1568 (C=N), 1487 (C=Cvin­yl), 1467 (C=Carom), 1439 (C=Carom), 984 (=C—Htrans). NMR (CDCl3): δ(1H) 10.72 (s, 1H, N—H), 8.25 (ddd, J = 8.5, 1.4, 0.6 Hz, 1H, H5), 8.12 (ddd, J = 8.6, 1.4, 0.6 Hz, 1H, H8), 7.82–7.80 (m, 1H, H4′), 7.77 (ddd, J = 8.3, 6.8, 1.4 Hz, 1H, H7), 7.66 (dd, J = 7.7, 1.7 Hz, 1H, H6′′), 7.60 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H, H6), 7.58 (d, J = 16.7 Hz, 1H, HAC=), 7.52–7.50 (m, 1H, H7′), 7.50 (d, J = 16.7 Hz, 1H, =CHB), 7.35 (ddd, J = 8.3, 7.4, 1.7 Hz, 1H, H4′′), 7.32–7.24 (m, 2H, H5′, H6′), 7.03 (td, J = 7.5, 1.1 Hz, 1H, H5′′), 6.95 (dd, J = 8.3, 1.1 Hz, 1H, H3′′), 4.62 (q, J = 7.2 Hz, 2H, –OCH2–), 3.89 (s, 3H, 2′′-OCH3), 1.41 (t, J = 7.2 Hz, 3H, –CH3); δ(13C) 168.2 (C=Oester), 157.7 (C2′), 149.5 (C2), 147.2 (C8a), 144.7 (C3′a), 144.1 (C2′), 143.9 (C4), 134.3 (=CHB), 133.5 (C7′a), 130.6 (C7), 130.0 (C4′′), 129.6 (C8), 127.7 (C6), 127.4 (C6′′), 126.4 (C4a), 125.8 (C5), 125.4 (C1′′), 125.2 (C3), 124.2 (C6′), 122.3 (C5′), 121.8 (HAC=), 121.0 (C4′), 120.9 (C5′′), 111.1 (C7′), 62.0 (–OCH2–), 55.5 (2′′-OCH3), 14.0 (–CH3). HRMS (ESI+) m/z found for [M + H]+ 450.1815, C28H23N3O3 requires 450.1812.

Compound (IIIc)[link], ethyl (E)-2-(1H-benzo[d]imidazol-2-yl)-4-(4-methyl­styr­yl)quinoline-3-carboxyl­ate; yield 0.135 g (65%); m.p. 418–419 K; RF = 0.30 (15% ethyl acetate–hexa­ne). FT–IR (ATR, cm−1): 3439 (N—H), 1705 (C=O), 1564 (C=N), 1510 (C=Cvin­yl), 1494 (C=Carom), 1434 (C=Carom), 976 (=C—Htrans). NMR (CDCl3): δ(1H) 13.05 (s, 1H, N—H), 8.31 (d, J = 8.4 Hz, 1H, H5), 8.22 (d, J = 8.4 Hz, 1H, H8), 7.94 (t, J = 7.6 Hz, 1H, H7), 7.75 (t, J = 7.6 Hz, 1H, H6), 7.68–7.64 (m, 2H, H4′, H7′), 7.64 (d, J = 16.5 Hz, 1H, HAC=), 7.61–7.59 (m, 2H, H2′′, H6′′), 7.31–7.24 (m, 4H, H5′, H6′, H3′′, H5′′), 7.08 (d, J = 16.5 Hz, 1H, =CHB), 4.42 (q, J = 7.2 Hz, 2H, –OCH2–), 2.36 (s, 3H, 4′′-CH3), 1.27 (t, J = 7.1 Hz, 3H, –CH3); δ(13C) 167.6 (C=O), 149.7 (C2), 147.1 (C8a), 144.8 (C2′), 144.1 (C3′a), 143.5 (C4), 139.1 (C4′′), 138.5 (=CHB), 135.1 (C1′′), 133.7 (C7′a), 131.8 (C7), 129.9 (C3′′, C5′′), 129.7 (C8), 128.7 (C6), 127.6 (C2′′, C6′′), 126.3 (C5), 125.9 (C4a), 125.4 (C3), 124.3 (C6′), 122.6 (C5′), 120.9 (HAC=), 120.2 (C4′), 112.7 (C7′), 61.8 (–OCH2–), 21.4 (4′′-CH3), 14.4 (–CH3). HRMS (ESI+) m/z found for [M + H]+ 434.1860, C28H23N3O2 requires 434.1863.

2.2. Refinement

Crystal data, data collection and refinement details for com­pounds (IIIa)–(IIIc) are summarized in Table 1[link]. For each of these com­pounds, one bad outlier reflection, i.e. [\overline{3}]96 for (IIIa)[link], 303 for (IIIb)[link] and [\overline{1}]05 for (IIIc)[link], was omitted from the data set. All H atoms were located in difference maps. H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions, with C—H distances of 0.95 (alkenic and aromatic), 0.98 (CH3) or 0.99 Å (CH2) and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. For the H atoms bonded to N atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N), giving the N—H distances shown in Table 3.

Table 1
Experimental details

Experiments were carried out at 100 K with Mo Kα radiation using a Bruker D8 Venture diffractometer. Absorption was corrected for by multi-scan methods (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]). H atoms were treated by a mixture of independent and constrained refinement.

  (IIIa) (IIIb) (IIIc)
Crystal data
Chemical formula C27H20ClN3O2 C28H23N3O3 C28H23N3O2(+solvent)
Mr 453.91 449.49 433.49
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n Monoclinic, P21/n
a, b, c (Å) 12.1791 (5), 18.8348 (7), 10.7533 (4) 15.8086 (14), 6.9536 (6), 20.4101 (19) 20.2611 (7), 9.8675 (4), 36.8434 (14)
β (°) 114.242 (1) 94.330 (4) 104.332 (1)
V3) 2249.19 (15) 2237.2 (3) 7136.7 (5)
Z 4 4 12
μ (mm−1) 0.20 0.09 0.08
Crystal size (mm) 0.18 × 0.16 × 0.12 0.16 × 0.12 × 0.08 0.18 × 0.12 × 0.06
 
Data collection
Tmin, Tmax 0.928, 0.976 0.817, 0.993 0.917, 0.995
No. of measured, independent and observed [I > 2σ(I)] reflections 56016, 4969, 4417 41777, 5131, 3453 151790, 17718, 10436
Rint 0.051 0.132 0.188
(sin θ/λ)max−1) 0.642 0.650 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 1.05 0.059, 0.133, 1.06 0.096, 0.216, 1.08
No. of reflections 4969 5131 17718
No. of parameters 302 312 921
No. of restraints 0 0 7
Δρmax, Δρmin (e Å−3) 0.61, −0.32 0.25, −0.26 0.71, −0.41
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2017[Bruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

For com­pound (IIIa)[link], the final difference map contained one fairly large maximum, 0.61 e Å−3, at 0.5175, 0.8375, 0.7907. An attempt to treat this as the O atom of a partial-occupancy water mol­ecule gave a refined occupancy of 0.057 (3), but the angles subtended at this site by every pair of potential donors and/or acceptors which were within plausible hydrogen-bonding range were all less than 60°, some of them barely half the idealized tetra­hedral value. Accordingly, this possibility was discounted.

For com­pound (IIIc)[link], the crystals were consistently of poor quality; this com­pound crystallizes in the space group P21/n with Z′ = 3 and, for the best crystal examined, the Rint value was 0.176. In mol­ecule 1 of (IIIc)[link], containing atom N11, the ester group is disordered over two sets of atomic sites having unequal occupancy. For the minor disorder com­ponent, the bonded distances and the [1,3] nonbonded distances were restrained to have the same values as the corresponding distances in the major com­ponent, subject to s.u. values of 0.01 and 0.02 Å, respectively. In addition, the anisotropic displacement parameters for pairs of partial-occupancy atoms within essentially the same physical space were constrained to be equal. Conventional refinement then converged only to R1 = 0.132 and wR2 = 0.391, and examination of the structure of (IIIc)[link] at this point using PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) confirmed that no additional crystallographic symmetry was present and that twinning was also absent. However, PLATON showed that the structure formed by the mol­ecules of (IIIc)[link] enclosed two voids, centred at (0,0,0) and ([1 \over 2], [1 \over 2], [1 \over 2]) and each of volume ca 314 Å3, and that corresponding voids in unit cells related by translation along [010] are connected, thus forming continuous channels along (0, y, 0) and ([1 \over 2], y, [1 \over 2]). Further examination of this structure using the SQUEEZE procedure (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) indicated that each void contained around 55 electrons not hitherto accounted for, equivalent to just over one mol­ecule of hexane per void. The largest peaks in the difference map for (IIIc)[link] lie within the channels, in the form of a zigzag chain, but no convincing solvent model could be developed from these peaks. It seems possible that the channels contain partial-occupancy disordered and possibly mobile hexane mol­ecules. Accordingly, the reflection data were subjected to the SQUEEZE procedure (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]), and the resultant modified reflection file was used for the refinement reported here; the final refined values of the site-occupancy factors for the disordered ester group were 0.765 (7) and 0.235 (7).

3. Results and discussion

The synthesis of the hybrid products (IIIa)–(IIIc) (see Scheme 1[link]) starts from the precursor ethyl (E)-2-methyl-4-sty­ryl­quinoline-3-carboxyl­ates (Ia)–(Ic), using methods recently reported by us (Meléndez et al., 2020[Meléndez, A., Plata, E., Rodríguez, D., Ardila, D., Guerrero, S. A., Acosta, L. M., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804-1822.]). The conversion of precursors (Ia)–(Ic) to the formyl inter­mediates (IIa)–(IIc) was effected by selective oxidation of the 2-methyl group using selenium dioxide in refluxing 1,4-dioxane as the oxidant (Yaragorla & Vijaya Babu, 2017[Yaragorla, S. & Vijaya Babu, P. (2017). Tetrahedron Lett. 58, 1879-1882.]). The inter­mediates were isolated in yields of over 90%, and the conversion of the 2-methyl group to a 2-formyl group was confirmed by both the 1H and 13C NMR spectra (see Section 2.1[link]) Finally, the formyl inter­mediates (IIa)–(IIc) were successfully converted into the target hybrid products (IIIa)–(IIIc) in yields of 65% by means of an oxidative cyclo­condensation reaction with o-phenyl­enedi­amine (1,2-di­amino­benzene), promoted by cerium(IV) ammonium nitrate (CAN) (see Scheme 1[link]).

Compounds (IIa)–(IIc) and (IIIa)–(IIIc) were all fully characterized using IR, 1H and 13C NMR spectroscopy, and high-resolution mass spectrometry (see Section 2.1[link]). The form­ation of the required benzimidazole–quinoline mol­ecular hybrid products (IIIa)–(IIIc) was confirmed by the disappearance of the formyl signals from both the 1H and 13C NMR spectra, and their replacement by new sets of signals corresponding to the five H atoms and seven C atoms of the newly formed benzimidazole ring, and by the appearance of new signals in the IR spectra corresponding to the N—H unit of the newly-formed benzimidazole ring.

The precursors of type (I) were prepared (Meléndez et al., 2020[Meléndez, A., Plata, E., Rodríguez, D., Ardila, D., Guerrero, S. A., Acosta, L. M., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804-1822.]; Rodríguez et al., 2020[Rodríguez, D., Guerrero, S. A., Palma, A., Cobo, J. & Glidewell, C. (2020). Acta Cryst. C76, 883-890.]) using a two-step reaction sequence starting from 2-amino­aceto­phenone, a substituted benzaldehyde and a 1,3-dicarbonyl com­pound. With such simple starting materials, a wide range of substituted derivatives is readily available, opening the way to the formation of a rich and diverse library of substituted styryl­quinoline–benzimidazole products and their analogues.

The constitutions of com­pounds (IIIa)–(IIIc), which were deduced from the spectroscopic data, were fully confirmed by the results of single-crystal X-ray diffraction (Figs. 1[link]–3[link][link]), which additionally provided information on the mol­ecular conformations and the inter­molecular inter­actions in the solid state. Compound (IIIc)[link] crystallizes with Z′ = 3, but a search for possible additional crystallographic symmetry revealed none; it will be convenient to refer to the mol­ecules of (IIIc)[link] containing atoms N11, N21 and N31 (Fig. 3[link]) as mol­ecules 1–3, respectively.

The mol­ecules of com­pounds (IIIa)–(IIIc) exhibit no inter­nal symmetry, as indicated by the key torsion angles (Table 2[link]). They are thus not superimposable upon their mirror images and hence they are conformationally chiral (Moss, 1996[Moss, G. P. (1996). Pure Appl. Chem. 68, 2193-2222.]; Flack & Bernardinelli, 1999[Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915.]). In each com­pound, the styryl­quinoline fragment is nonplanar, as indicated by the values of the C3—C4—C41—C42 torsion angle (Table 2[link]). We have noted previously (Vera et al., 2022[Vera, D. R., Mantilla, J. P., Palma, A., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 524-530.]) that 4-styryl­quinoline derivatives typically have nonplanar skeletons, whereas 2-sty­ryl­quinolines and 8-styryl­quinolines typically have planar skeletons.

Table 2
Selected torsion and dihedral angles (°) for com­pounds (IIIa)–(IIIc)

The term dihedral here refers to the dihedral angle between the pyridine and the imidazole rings. In order to specify an asymmetric unit in which the three independent mol­ecules of (IIIc)[link] were linked by hydrogen bonds, it was necessary to select mol­ecule 2 (x = 2) to be the conformational enanti­omer opposite from those selected for mol­ecules 1 and 3 (x = 1 and 3) (see text). For ease of com­parison, the values of the torsion angles cited for x = 2 refer to the inverted mol­ecule at (−x, −y, −z) so that the values refer to corresponding conformational enanti­omers for all three mol­ecules, with positive values for the torsion angles Cx3—Cx4—Cx41—Cx41.

Compounds (IIIa) and (IIIb)      
Parameter (IIIa) (IIIb)  
N1—C2—C22—N21 10.95 (18) 8.2 (2)  
C2—C3—C31—O31 −99.75 (18) −98.1 (3)  
C2—C3—C31—O32 81.29 (15) 85.2 (2)  
C3—C4—C41—C42 53.3 (2) 49.8 (3)  
C41—C42—C421—C422 169.18 (14) −167.1 (2)  
Dihedral 11.62 (1) 8.52 (3)  
       
Compound (IIIc)      
Parameter x = 1 x = 2 x = 3
Nx1—Cx2—Cx22—Nx21 9.0 (5) 31.1 (4) 22.1 (4)
Cx2—Cx3—Cx31—Ox31 84.4 (5) −103.2 (4) −102.2 (4)
Cx2—Cx3—Cx31—Ox32 −97.2 (4) 78.9 (4) 78.3 (4)
Cx3—Cx4—Cx41—Cx42 65.6 (6) 42.9 (5) 47.0 (5)
Cx41—Cx42—Cx43—Cx44 −168.5 (4) 155.1 (4) 171.9 (4)
Dihedral 12.4 (3) 32.26 (11) 23.24 (18)

In all the mol­ecules of (IIIa)–(IIIc), the benzimidazole fragments have the N—H unit directed away from the ester group, so precluding the possibility intra­molecular N—H⋯O hydrogen bonding; the pyridine and imidazole rings are not coplanar, as shown by the dihedral angles between their planes (Table 2[link]). In one of the mol­ecules of (IIIc)[link], the ester group is disordered over two sets of atomic sites, having occupancies 0.765 (7) and 0.235 (7) [see Fig. 3[link](a)]. The only 2-benzimidazolyl­quinoline derivatives recorded in the Cam­bridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) are titanium com­plexes in which the quinolone N atom and one of the imidazole N atoms are both coordinated to Ti, forming a five-membered ring, and hence the conformations of the organic ligands in these com­pounds are not usefully com­parable with those in metal-free systems. The orientations of the ester groups relative to the pyridine ring may be a consequence of the N—H⋯O hydrogen bond (see below), as in every mol­ecule in (IIIa)–(IIIc), the carbonyl O atom acts as an acceptor in such an inter­action.

While com­pounds (IIIa)[link] and (IIIb)[link] crystallize in the sol­vent-free form, com­pound (IIIc)[link] contains disordered solvent within continuous channels; hence, it is to be expected that the supra­molecular assembly for (IIIc)[link] will differ from those of (IIIa)[link] and (IIIb)[link], as the Z′ value immediately indicates.

For com­pound (IIIa)[link], the supra­molecular assembly is based upon three hydrogen bonds, one of the N—H⋯O type and two of the C—H⋯π type (Table 2[link]), and the combination of these three inter­actions links the mol­ecules of (IIIa)[link] into a three-dimensional framework structure. However, the for­mation of the framework is readily analysed in terms of three simple substructures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]), each involving just one type of hydrogen bond.

In the first substructure, mol­ecules of (IIIa)[link] which are related by the c-glide plane at y = [3 \over 4] are linked by N—H⋯O to form a C(7) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [001] direction (Fig. 4[link]). A second substructure involves the C—H⋯π hydrogen bond having atom C422 as the donor (Table 2[link]); this inter­action links mol­ecules of (IIIa)[link] which are related by the 21 screw axis along (1, y, [3 \over 4]) to form a chain running parallel to the [010] direction (Fig. 5[link]). The combination of the chains along [010] and [001] gives rise to a sheet lying parallel to (100). Adjacent sheets are then linked by the third substructure, which is built from C—H⋯π hydrogen bonds having atom C426 as the donor, which links inversion-related mol­ecules from adjacent sheets (Fig. 6[link]), so com­pleting the three-dimensional assembly.

[Figure 4]
Figure 4
Part of the crystal structure of com­pound (IIIa)[link], showing the formation of a C(7) chain built from N—H⋯O hydrogen bonds and running parallel to the [001] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 5]
Figure 5
Part of the crystal structure of com­pound (IIIa)[link], showing the formation of a chain built from C—H⋯π hydrogen bonds and running parallel to the [010] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 6]
Figure 6
Part of the crystal structure of com­pound (IIIa)[link], showing the formation of a cyclic centrosymmetric motif built from C—H⋯π hydrogen bonds and linking adjacent (100) sheets. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motif shown have been omitted. The atom marked with an asterisk (*) is at the symmetry position (−x + 1, −y + 1, −z + 1).

An N—H⋯O hydrogen bond is also present in the structure of com­pound (IIIb)[link] (Table 3[link]), and this links mol­ecules which are related by the 21 screw axis along ([1 \over 4], y, [3 \over 4]) to form a C(7) chain running parallel to the [010] direction (Fig. 7[link]). The C—H⋯π hydrogen bond (Table 3[link]) links inversion-related mol­ecules in adjacent chains into a cyclic centrosymmetric motif (Fig. 8[link]), which links the [010] chains into a sheet lying parallel to (101). There are no direction-specific inter­actions between adjacent sheets in (IIIb)[link]; the only other short inter­molecular contact in the structure involves a C—H bond in a methyl group, which is almost certainly undergoing rapid rotation about the adjacent C—C bond (Riddell & Rogerson, 1996[Riddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493-504.], 1997[Riddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249-256.]).

Table 3
Hydrogen bonds (Å, °) for com­pounds (IIIa)–(IIIc)

Cg1–Cg5 represent the centroids of the rings C23A/C24–C27/C27A, N1/C2–C4/C4A/C8A, C421–C426, C24A/C25–C28/C28A and C23A/C27A/C227/C226/C225/C224, respectively.

  D—H⋯A   D—H H⋯A DA D—H⋯A
(IIIa) N21—H21⋯O31i   0.832 (19) 2.379 (18) 3.0764 (16) 141.8 (16)
  C422—H422⋯Cg1ii   0.95 2.53 3.4420 (17) 168
  C426—H426⋯Cg2iii   0.95 2.68 3.5161 (18) 148
(IIIb) N21—H21⋯O31iv   0.86 (3) 2.45 (2) 3.081 (3) 130.4 (19)
  C7—H7⋯Cg3iii   0.95 2.95 3.704 (2) 138
  C33—H33BCg3v   0.98 2.98 3.768 (3) 139
(IIIc) N121—H121⋯O231   0.78 (4) 2.17 (4) 2.876 (4) 150 (4)
  N221—H221⋯O331   0.83 (4) 2.13 (4) 2.882 (4) 151 (4)
  N321—H321⋯O131vi   0.84 (4) 2.20 (4) 2.910 (4) 141 (3)
  N321—H321⋯O431vi   0.84 (4) 2.35 (5) 4.03 (3) 137 (3)
  C127—H127⋯N223   0.95 2.58 3.432 (5) 149
  C227—H227⋯N323   0.95 2.62 3.522 (5) 159
  C332—H32BCg4iv   0.99 2.80 3.702 (5) 152
  C347—H347⋯Cg5vii   0.95 2.70 3.548 (5) 149
Symmetry codes: (i) x, −y + [{3\over 2}], z + [{1\over 2}]; (ii) −x + 2, y − [{1\over 2}], −z + [{3\over 2}]; (iii) −x + 1, −y + 1, −z + 1; (iv) −x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (v) −x, −y + 1, −z + 1; (vi) x − 1, y, z; (vii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{3\over 2}].
[Figure 7]
Figure 7
Part of the crystal structure of com­pound (IIIb)[link], showing the formation of a C(7) chain built from N—H⋯O hydrogen bonds and running parallel to the [010] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 8]
Figure 8
Part of the crystal structure of com­pound (IIIb)[link], showing the formation of a cyclic centrosymmetric motif built from C—H⋯π hydrogen bonds and linking adjacent [010] chains. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motif shown have been omitted. The atom marked with an asterisk (*) is at the symmetry position (−x + 1, −y + 1, −z + 1).

The hydrogen-bonded supra­molecular assembly in com­pound (IIIc)[link], where Z′ = 3, is also two-dimensional and can readily be analysed in terms of two simple substructures. In the first of these, the three independent N—H⋯O hydrogen bonds of com­pound (IIIc)[link] are linked by two N—H⋯O hydrogen bonds (Table 3[link]) to form a linear three-mol­ecule aggregate, and aggregates of this type which are related by translation are linked by a third N—H⋯O hydrogen bond to form a C33(21) chain running parallel to the [100] direction (Fig. 9[link]). The formation of this chain is thus analogous to those formed in com­pounds (IIIa)[link] and (IIIb)[link] (Figs. 4[link] and 7[link]), but it is inter­esting to note that the com­ponents of the chains formed by N—H⋯O hydrogen bonds are related by a c-glide plane in (IIIa)[link], by a 21 screw axis in (IIIb)[link] and by translation in (IIIc)[link].

[Figure 9]
Figure 9
Part of the crystal structure of com­pound (IIIc)[link], showing the formation of a C33(21) chain built from N—H⋯O hydrogen bonds and running parallel to the [100] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the minor disorder com­ponent and the H atoms not involved in the motif shown have been omitted.

The second substructure in (IIIc)[link] is built from two C—H⋯π hydrogen bonds in which mol­ecule 3 acts as a twofold donor and mol­ecule 2 acts as a twofold acceptor. These two inter­actions generate a chain running parallel to the [010] direction (Fig. 10[link]). The combination of the chains running parallel to [100] and [010] generates a sheet lying parallel to (001) and occupying the domain [1 \over 2] < z < 1.0; a second sheet, related to the first by inversion, occupies the domain 0 < z < [1 \over 2], but there are no direction-specific inter­actions between adjacent sheets.

[Figure 10]
Figure 10
Part of the crystal structure of com­pound (IIIc)[link], showing the formation of a chain parallel to [010] built from C—H⋯π hydrogen bonds (drawn as dashed lines). For the sake of clarity, the minor disorder com­ponent and the H atoms bonded to those atoms not involved in the motif shown have been omitted.

In summary, therefore, we have developed an efficient and versatile synthetic route to novel hybrid (E)-2-(1H-benzo[d]imidazol-2-yl)-4-styryl­quinolines from very simple starting materials; we have fully characterized by spectroscopic means (IR, 1H and 13C NMR spectroscopy, and HR-MS) three representative examples, together with one inter­mediate on the pathway to each product, and we have determined the mol­ecular and supra­molecular structures of the three products thus formed.

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

Ethyl (E)-2-(1H-benzo[d]imidazol-2-yl)-4-(4-chlorostyryl)quinoline-3-carboxylate (IIIa) top
Crystal data top
C27H20ClN3O2F(000) = 944
Mr = 453.91Dx = 1.340 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.1791 (5) ÅCell parameters from 4970 reflections
b = 18.8348 (7) Åθ = 2.1–27.1°
c = 10.7533 (4) ŵ = 0.20 mm1
β = 114.242 (1)°T = 100 K
V = 2249.19 (15) Å3Block, yellow
Z = 40.18 × 0.16 × 0.12 mm
Data collection top
Bruker D8 Venture
diffractometer
4969 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube4417 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.051
φ and ω scansθmax = 27.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1515
Tmin = 0.928, Tmax = 0.976k = 2424
56016 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0407P)2 + 1.3439P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4969 reflectionsΔρmax = 0.61 e Å3
302 parametersΔρmin = 0.31 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.61736 (10)0.70058 (6)0.74826 (11)0.0183 (2)
C20.68196 (12)0.68530 (7)0.67887 (13)0.0167 (3)
C30.69721 (12)0.61526 (7)0.63775 (13)0.0175 (3)
C40.64259 (12)0.55932 (7)0.67335 (14)0.0187 (3)
C4A0.57161 (12)0.57459 (8)0.74822 (14)0.0208 (3)
C50.50806 (14)0.52179 (9)0.78603 (17)0.0284 (3)
H50.51300.47350.76330.034*
C60.43975 (15)0.54013 (10)0.85510 (18)0.0342 (4)
H60.39650.50440.87850.041*
C70.43243 (15)0.61107 (10)0.89209 (18)0.0337 (4)
H70.38520.62270.94100.040*
C80.49288 (14)0.66333 (9)0.85805 (16)0.0264 (3)
H80.48810.71110.88360.032*
C8A0.56266 (12)0.64610 (8)0.78455 (14)0.0195 (3)
N210.73895 (11)0.81164 (6)0.70447 (12)0.0181 (2)
H210.7141 (16)0.8189 (9)0.7648 (18)0.022*
C220.73830 (12)0.74719 (7)0.64549 (13)0.0168 (3)
N230.78911 (10)0.74835 (6)0.55841 (12)0.0171 (2)
C23A0.82380 (12)0.81859 (7)0.55848 (13)0.0163 (3)
C240.87973 (12)0.85111 (7)0.48286 (14)0.0184 (3)
H240.90260.82440.42230.022*
C250.90064 (13)0.92333 (8)0.49918 (14)0.0209 (3)
H250.93660.94680.44710.025*
C260.86988 (13)0.96280 (7)0.59119 (15)0.0224 (3)
H260.88591.01230.60000.027*
C270.81683 (13)0.93144 (7)0.66942 (15)0.0204 (3)
H270.79780.95800.73310.025*
C27A0.79275 (12)0.85891 (7)0.64982 (14)0.0176 (3)
C310.76581 (13)0.60392 (7)0.55054 (14)0.0193 (3)
O310.71791 (10)0.59501 (6)0.42844 (10)0.0248 (2)
O320.88455 (9)0.60386 (5)0.62542 (10)0.0206 (2)
C320.95836 (14)0.60314 (9)0.54758 (16)0.0277 (3)
H32A0.93180.64100.47750.033*
H32B0.95050.55680.50110.033*
C331.08654 (15)0.61522 (10)0.64479 (17)0.0319 (4)
H33A1.09450.66250.68550.048*
H33B1.13860.61180.59560.048*
H33C1.11050.57920.71690.048*
C410.65296 (13)0.48504 (7)0.63462 (14)0.0214 (3)
H410.58040.45930.58850.026*
C420.75590 (13)0.45149 (7)0.65934 (14)0.0203 (3)
H420.82840.47700.70750.024*
C4210.76708 (13)0.37824 (7)0.61848 (14)0.0196 (3)
C4220.87940 (13)0.34507 (8)0.67006 (15)0.0220 (3)
H4220.94720.36960.73390.026*
C4230.89420 (13)0.27699 (8)0.63010 (15)0.0236 (3)
H4230.97100.25480.66720.028*
C4240.79541 (14)0.24190 (7)0.53548 (15)0.0213 (3)
Cl440.81186 (4)0.15782 (2)0.47785 (4)0.02788 (11)
C4250.68187 (14)0.27275 (8)0.48351 (16)0.0257 (3)
H4250.61440.24780.41980.031*
C4260.66857 (14)0.34035 (8)0.52589 (16)0.0263 (3)
H4260.59090.36150.49140.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0156 (5)0.0207 (6)0.0172 (5)0.0011 (4)0.0053 (5)0.0001 (4)
C20.0158 (6)0.0183 (6)0.0142 (6)0.0012 (5)0.0043 (5)0.0004 (5)
C30.0168 (6)0.0181 (6)0.0153 (6)0.0009 (5)0.0043 (5)0.0002 (5)
C40.0161 (6)0.0184 (6)0.0172 (6)0.0011 (5)0.0024 (5)0.0011 (5)
C4A0.0162 (6)0.0239 (7)0.0192 (6)0.0028 (5)0.0042 (5)0.0023 (5)
C50.0246 (8)0.0277 (8)0.0320 (8)0.0067 (6)0.0108 (7)0.0028 (6)
C60.0264 (8)0.0409 (9)0.0389 (9)0.0101 (7)0.0171 (7)0.0059 (7)
C70.0240 (8)0.0480 (10)0.0352 (9)0.0042 (7)0.0185 (7)0.0015 (7)
C80.0209 (7)0.0343 (8)0.0258 (7)0.0009 (6)0.0114 (6)0.0012 (6)
C8A0.0149 (6)0.0249 (7)0.0171 (6)0.0020 (5)0.0049 (5)0.0014 (5)
N210.0198 (6)0.0175 (6)0.0200 (6)0.0007 (4)0.0112 (5)0.0014 (4)
C220.0160 (6)0.0169 (6)0.0164 (6)0.0000 (5)0.0053 (5)0.0007 (5)
N230.0173 (5)0.0165 (5)0.0172 (5)0.0012 (4)0.0069 (5)0.0005 (4)
C23A0.0141 (6)0.0159 (6)0.0162 (6)0.0006 (5)0.0035 (5)0.0002 (5)
C240.0165 (6)0.0212 (7)0.0167 (6)0.0009 (5)0.0061 (5)0.0010 (5)
C250.0193 (7)0.0212 (7)0.0214 (7)0.0019 (5)0.0077 (6)0.0028 (5)
C260.0225 (7)0.0155 (6)0.0279 (7)0.0000 (5)0.0091 (6)0.0006 (5)
C270.0209 (7)0.0164 (6)0.0248 (7)0.0022 (5)0.0102 (6)0.0011 (5)
C27A0.0143 (6)0.0179 (6)0.0196 (6)0.0010 (5)0.0061 (5)0.0014 (5)
C310.0246 (7)0.0127 (6)0.0218 (7)0.0018 (5)0.0108 (6)0.0005 (5)
O310.0320 (6)0.0236 (5)0.0198 (5)0.0064 (4)0.0116 (4)0.0048 (4)
O320.0226 (5)0.0209 (5)0.0216 (5)0.0021 (4)0.0124 (4)0.0016 (4)
C320.0301 (8)0.0320 (8)0.0293 (8)0.0015 (6)0.0208 (7)0.0018 (6)
C330.0279 (8)0.0438 (10)0.0290 (8)0.0063 (7)0.0167 (7)0.0097 (7)
C410.0223 (7)0.0174 (6)0.0210 (7)0.0040 (5)0.0053 (6)0.0011 (5)
C420.0211 (7)0.0190 (7)0.0178 (6)0.0035 (5)0.0048 (5)0.0003 (5)
C4210.0221 (7)0.0189 (7)0.0173 (6)0.0007 (5)0.0076 (5)0.0021 (5)
C4220.0181 (7)0.0250 (7)0.0221 (7)0.0029 (5)0.0076 (6)0.0002 (5)
C4230.0185 (7)0.0254 (7)0.0280 (8)0.0010 (6)0.0105 (6)0.0016 (6)
C4240.0258 (7)0.0182 (7)0.0235 (7)0.0001 (5)0.0138 (6)0.0014 (5)
Cl440.0312 (2)0.02163 (18)0.0356 (2)0.00184 (14)0.01853 (17)0.00355 (14)
C4250.0233 (7)0.0209 (7)0.0256 (7)0.0006 (6)0.0026 (6)0.0017 (6)
C4260.0211 (7)0.0220 (7)0.0279 (8)0.0029 (6)0.0021 (6)0.0005 (6)
Geometric parameters (Å, º) top
N1—C21.3192 (18)C26—C271.386 (2)
N1—C8A1.3648 (18)C26—H260.9500
C2—C31.4276 (19)C27—C27A1.3950 (19)
C2—C221.4699 (18)C27—H270.9500
C3—C41.3814 (19)C31—O311.2097 (17)
C3—C311.5054 (19)C31—O321.3355 (18)
C4—C4A1.432 (2)O32—C321.4584 (17)
C4—C411.4798 (19)C32—C331.497 (2)
C4A—C51.418 (2)C32—H32A0.9900
C4A—C8A1.419 (2)C32—H32B0.9900
C5—C61.368 (2)C33—H33A0.9800
C5—H50.9500C33—H33B0.9800
C6—C71.407 (3)C33—H33C0.9800
C6—H60.9500C41—C421.330 (2)
C7—C81.366 (2)C41—H410.9500
C7—H70.9500C42—C4211.4710 (19)
C8—C8A1.416 (2)C42—H420.9500
C8—H80.9500C421—C4221.395 (2)
N21—C221.3681 (17)C421—C4261.400 (2)
N21—C27A1.3724 (18)C422—C4231.387 (2)
N21—H210.832 (19)C422—H4220.9500
C22—N231.3176 (18)C423—C4241.384 (2)
N23—C23A1.3888 (17)C423—H4230.9500
C23A—C241.3984 (19)C424—C4251.388 (2)
C23A—C27A1.4104 (19)C424—Cl441.7417 (15)
C24—C251.382 (2)C425—C4261.384 (2)
C24—H240.9500C425—H4250.9500
C25—C261.406 (2)C426—H4260.9500
C25—H250.9500
C2—N1—C8A118.18 (12)C26—C27—C27A116.56 (13)
N1—C2—C3124.08 (12)C26—C27—H27121.7
N1—C2—C22114.31 (12)C27A—C27—H27121.7
C3—C2—C22121.60 (12)N21—C27A—C27132.71 (13)
C4—C3—C2118.71 (13)N21—C27A—C23A105.10 (12)
C4—C3—C31121.20 (12)C27—C27A—C23A122.18 (13)
C2—C3—C31120.00 (12)O31—C31—O32125.06 (13)
C3—C4—C4A118.24 (13)O31—C31—C3123.52 (13)
C3—C4—C41122.46 (13)O32—C31—C3111.42 (11)
C4A—C4—C41119.29 (12)C31—O32—C32115.10 (11)
C5—C4A—C8A118.29 (14)O32—C32—C33108.03 (12)
C5—C4A—C4123.15 (14)O32—C32—H32A110.1
C8A—C4A—C4118.55 (13)C33—C32—H32A110.1
C6—C5—C4A120.25 (15)O32—C32—H32B110.1
C6—C5—H5119.9C33—C32—H32B110.1
C4A—C5—H5119.9H32A—C32—H32B108.4
C5—C6—C7121.11 (15)C32—C33—H33A109.5
C5—C6—H6119.4C32—C33—H33B109.5
C7—C6—H6119.4H33A—C33—H33B109.5
C8—C7—C6120.31 (15)C32—C33—H33C109.5
C8—C7—H7119.8H33A—C33—H33C109.5
C6—C7—H7119.8H33B—C33—H33C109.5
C7—C8—C8A119.85 (15)C42—C41—C4125.13 (13)
C7—C8—H8120.1C42—C41—H41117.4
C8A—C8—H8120.1C4—C41—H41117.4
N1—C8A—C8117.57 (13)C41—C42—C421125.54 (13)
N1—C8A—C4A122.22 (13)C41—C42—H42117.2
C8—C8A—C4A120.19 (13)C421—C42—H42117.2
C22—N21—C27A106.86 (12)C422—C421—C426117.94 (13)
C22—N21—H21124.9 (12)C422—C421—C42119.81 (13)
C27A—N21—H21128.2 (12)C426—C421—C42122.23 (13)
N23—C22—N21113.56 (12)C423—C422—C421121.44 (13)
N23—C22—C2126.10 (12)C423—C422—H422119.3
N21—C22—C2120.32 (12)C421—C422—H422119.3
C22—N23—C23A104.30 (11)C424—C423—C422119.01 (14)
N23—C23A—C24129.62 (12)C424—C423—H423120.5
N23—C23A—C27A110.17 (12)C422—C423—H423120.5
C24—C23A—C27A120.21 (12)C423—C424—C425121.18 (14)
C25—C24—C23A117.75 (13)C423—C424—Cl44120.24 (12)
C25—C24—H24121.1C425—C424—Cl44118.58 (11)
C23A—C24—H24121.1C426—C425—C424118.97 (14)
C24—C25—C26121.43 (13)C426—C425—H425120.5
C24—C25—H25119.3C424—C425—H425120.5
C26—C25—H25119.3C425—C426—C421121.42 (14)
C27—C26—C25121.83 (13)C425—C426—H426119.3
C27—C26—H26119.1C421—C426—H426119.3
C25—C26—H26119.1
C8A—N1—C2—C30.8 (2)C22—N23—C23A—C27A0.58 (15)
C8A—N1—C2—C22179.45 (11)N23—C23A—C24—C25177.68 (13)
N1—C2—C3—C40.8 (2)C27A—C23A—C24—C251.25 (19)
C22—C2—C3—C4179.50 (12)C23A—C24—C25—C261.7 (2)
N1—C2—C3—C31175.82 (12)C24—C25—C26—C270.3 (2)
C22—C2—C3—C313.93 (19)C25—C26—C27—C27A1.5 (2)
C2—C3—C4—C4A0.94 (19)C22—N21—C27A—C27179.06 (15)
C31—C3—C4—C4A175.59 (12)C22—N21—C27A—C23A0.60 (14)
C2—C3—C4—C41179.70 (12)C26—C27—C27A—N21177.70 (14)
C31—C3—C4—C413.2 (2)C26—C27—C27A—C23A1.9 (2)
C3—C4—C4A—C5177.73 (14)N23—C23A—C27A—N210.03 (15)
C41—C4—C4A—C51.1 (2)C24—C23A—C27A—N21179.15 (12)
C3—C4—C4A—C8A1.22 (19)N23—C23A—C27A—C27179.68 (12)
C41—C4—C4A—C8A179.99 (12)C24—C23A—C27A—C270.6 (2)
C8A—C4A—C5—C60.3 (2)C4—C3—C31—O3176.74 (18)
C4—C4A—C5—C6178.61 (14)C2—C3—C31—O3199.75 (16)
C4A—C5—C6—C71.1 (3)C4—C3—C31—O32102.22 (14)
C5—C6—C7—C80.7 (3)C2—C3—C31—O3281.29 (15)
C6—C7—C8—C8A0.4 (2)O31—C31—O32—C329.23 (19)
C2—N1—C8A—C8179.52 (13)C3—C31—O32—C32171.82 (11)
C2—N1—C8A—C4A1.06 (19)C31—O32—C32—C33170.82 (12)
C7—C8—C8A—N1177.42 (14)C3—C4—C41—C4253.3 (2)
C7—C8—C8A—C4A1.1 (2)C4A—C4—C41—C42127.99 (16)
C5—C4A—C8A—N1177.70 (13)C4—C41—C42—C421178.50 (13)
C4—C4A—C8A—N11.3 (2)C41—C42—C421—C422169.18 (14)
C5—C4A—C8A—C80.7 (2)C41—C42—C421—C42612.4 (2)
C4—C4A—C8A—C8179.72 (13)C426—C421—C422—C4230.8 (2)
C27A—N21—C22—N231.05 (16)C42—C421—C422—C423177.66 (13)
C27A—N21—C22—C2177.61 (12)C421—C422—C423—C4241.0 (2)
N1—C2—C22—N23167.50 (13)C422—C423—C424—C4252.0 (2)
C3—C2—C22—N2312.3 (2)C422—C423—C424—Cl44177.41 (11)
N1—C2—C22—N2110.98 (18)C423—C424—C425—C4261.2 (2)
C3—C2—C22—N21169.25 (12)Cl44—C424—C425—C426178.24 (12)
N21—C22—N23—C23A1.00 (15)C424—C425—C426—C4210.7 (2)
C2—C22—N23—C23A177.57 (13)C422—C421—C426—C4251.6 (2)
C22—N23—C23A—C24178.45 (14)C42—C421—C426—C425176.78 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O31i0.832 (19)2.379 (18)3.0764 (16)141.8 (16)
C422—H422···Cg1ii0.952.533.4420 (17)168
C426—H426···Cg2iii0.952.683.5161 (18)148
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y1/2, z+3/2; (iii) x+1, y+1, z+1.
Ethyl (E)-2-(1H-benzo[d]imidazol-2-yl)-4-(2-methoxystyryl)quinoline-3-carboxylate (IIIb) top
Crystal data top
C28H23N3O3F(000) = 944
Mr = 449.49Dx = 1.335 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.8086 (14) ÅCell parameters from 5132 reflections
b = 6.9536 (6) Åθ = 2.6–27.5°
c = 20.4101 (19) ŵ = 0.09 mm1
β = 94.330 (4)°T = 100 K
V = 2237.2 (3) Å3Needle, yellow
Z = 40.16 × 0.12 × 0.08 mm
Data collection top
Bruker D8 Venture
diffractometer
5131 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube3453 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.132
φ and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 2020
Tmin = 0.817, Tmax = 0.993k = 89
41777 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0344P)2 + 1.5171P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
5131 reflectionsΔρmax = 0.25 e Å3
312 parametersΔρmin = 0.26 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.37557 (11)0.3293 (2)0.72892 (9)0.0195 (4)
C20.29526 (13)0.3281 (3)0.70558 (11)0.0186 (4)
C30.26834 (13)0.3275 (3)0.63748 (11)0.0186 (4)
C40.32852 (13)0.3338 (3)0.59196 (11)0.0182 (4)
C4A0.41582 (13)0.3367 (3)0.61566 (11)0.0190 (4)
C50.48284 (14)0.3481 (3)0.57350 (11)0.0212 (5)
H50.47030.35290.52730.025*
C60.56541 (14)0.3524 (3)0.59865 (12)0.0240 (5)
H60.60960.36030.56970.029*
C70.58556 (14)0.3454 (3)0.66684 (12)0.0248 (5)
H70.64320.34760.68370.030*
C80.52242 (14)0.3354 (3)0.70901 (12)0.0237 (5)
H80.53660.33020.75500.028*
C8A0.43614 (13)0.3327 (3)0.68461 (11)0.0190 (4)
N210.25802 (12)0.3542 (3)0.82060 (9)0.0206 (4)
H210.3081 (16)0.383 (3)0.8370 (12)0.025*
C220.23316 (13)0.3287 (3)0.75589 (11)0.0196 (5)
N230.15053 (11)0.3073 (2)0.74424 (9)0.0209 (4)
C23A0.11934 (14)0.3222 (3)0.80584 (11)0.0202 (5)
C240.03559 (14)0.3150 (3)0.82354 (12)0.0238 (5)
H240.01030.29470.79150.029*
C250.02187 (15)0.3381 (3)0.88899 (12)0.0259 (5)
H250.03450.33470.90210.031*
C260.08929 (15)0.3665 (3)0.93656 (12)0.0252 (5)
H260.07740.38170.98120.030*
C270.17264 (15)0.3732 (3)0.92050 (11)0.0227 (5)
H270.21830.39190.95290.027*
C27A0.18591 (14)0.3508 (3)0.85421 (11)0.0195 (5)
C310.17588 (13)0.3095 (3)0.61517 (11)0.0192 (5)
O310.14140 (10)0.1618 (2)0.59753 (8)0.0241 (4)
O320.13828 (9)0.4826 (2)0.61431 (8)0.0205 (3)
C320.04685 (13)0.4797 (3)0.60150 (13)0.0260 (5)
H32A0.02030.40840.63660.031*
H32B0.03100.41650.55890.031*
C330.01804 (15)0.6852 (3)0.59996 (14)0.0330 (6)
H33A0.03610.74730.64180.049*
H33B0.04390.68990.59300.049*
H33C0.04320.75290.56400.049*
C410.30552 (13)0.3388 (3)0.52082 (11)0.0203 (5)
H410.33220.25060.49340.024*
C420.24894 (13)0.4615 (3)0.49307 (11)0.0198 (5)
H420.22300.54700.52180.024*
C4210.22240 (13)0.4790 (3)0.42301 (11)0.0191 (4)
C4220.17514 (14)0.6410 (3)0.40045 (11)0.0223 (5)
C4230.14768 (14)0.6617 (3)0.33470 (12)0.0261 (5)
H4230.11620.77220.32020.031*
C4240.16638 (15)0.5204 (4)0.29022 (12)0.0283 (5)
H4240.14690.53320.24530.034*
C4250.21333 (15)0.3602 (4)0.31092 (12)0.0282 (5)
H4250.22660.26440.28020.034*
C4260.24080 (14)0.3407 (3)0.37668 (11)0.0238 (5)
H4260.27290.23060.39050.029*
O4220.15917 (11)0.7714 (2)0.44836 (8)0.0311 (4)
C4270.10924 (16)0.9370 (3)0.43045 (14)0.0325 (6)
H27A0.13621.00920.39640.049*
H27B0.10491.01900.46910.049*
H27C0.05240.89660.41350.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0208 (9)0.0145 (8)0.0231 (10)0.0002 (7)0.0019 (8)0.0005 (7)
C20.0194 (11)0.0097 (9)0.0268 (12)0.0011 (8)0.0034 (9)0.0009 (8)
C30.0192 (11)0.0106 (9)0.0262 (12)0.0004 (8)0.0017 (9)0.0003 (8)
C40.0207 (11)0.0097 (9)0.0242 (12)0.0012 (8)0.0012 (9)0.0001 (8)
C4A0.0212 (11)0.0108 (9)0.0252 (12)0.0006 (8)0.0030 (9)0.0004 (8)
C50.0239 (11)0.0157 (10)0.0242 (12)0.0004 (9)0.0028 (9)0.0009 (9)
C60.0204 (11)0.0207 (11)0.0319 (13)0.0003 (9)0.0081 (10)0.0016 (10)
C70.0169 (11)0.0239 (11)0.0331 (13)0.0010 (9)0.0016 (9)0.0024 (10)
C80.0225 (11)0.0242 (11)0.0239 (12)0.0006 (9)0.0009 (9)0.0013 (9)
C8A0.0194 (10)0.0130 (10)0.0247 (12)0.0009 (8)0.0031 (9)0.0006 (9)
N210.0201 (9)0.0176 (9)0.0243 (10)0.0006 (8)0.0028 (8)0.0008 (8)
C220.0208 (11)0.0123 (9)0.0258 (12)0.0025 (8)0.0021 (9)0.0017 (9)
N230.0219 (10)0.0143 (9)0.0270 (11)0.0004 (7)0.0050 (8)0.0001 (7)
C23A0.0224 (11)0.0127 (9)0.0258 (12)0.0007 (8)0.0046 (9)0.0021 (9)
C240.0227 (11)0.0170 (10)0.0319 (13)0.0006 (9)0.0035 (10)0.0008 (9)
C250.0243 (12)0.0198 (11)0.0353 (14)0.0009 (9)0.0124 (10)0.0044 (10)
C260.0337 (13)0.0165 (11)0.0269 (13)0.0015 (9)0.0109 (10)0.0029 (9)
C270.0286 (12)0.0148 (10)0.0246 (12)0.0003 (9)0.0014 (10)0.0015 (9)
C27A0.0223 (11)0.0107 (9)0.0260 (12)0.0018 (8)0.0059 (9)0.0033 (9)
C310.0196 (11)0.0163 (10)0.0221 (12)0.0012 (8)0.0047 (9)0.0015 (9)
O310.0242 (8)0.0177 (8)0.0302 (9)0.0025 (6)0.0002 (7)0.0020 (7)
O320.0150 (7)0.0164 (7)0.0302 (9)0.0013 (6)0.0019 (6)0.0008 (6)
C320.0171 (11)0.0216 (11)0.0390 (14)0.0019 (9)0.0003 (10)0.0017 (10)
C330.0234 (12)0.0247 (12)0.0507 (17)0.0047 (10)0.0021 (11)0.0009 (11)
C410.0198 (11)0.0169 (10)0.0244 (12)0.0003 (9)0.0030 (9)0.0010 (9)
C420.0199 (11)0.0165 (10)0.0235 (12)0.0018 (8)0.0044 (9)0.0013 (9)
C4210.0149 (10)0.0178 (10)0.0245 (12)0.0015 (8)0.0013 (9)0.0016 (9)
C4220.0219 (11)0.0168 (10)0.0283 (12)0.0007 (9)0.0022 (9)0.0025 (9)
C4230.0208 (11)0.0248 (12)0.0321 (13)0.0007 (9)0.0018 (10)0.0058 (10)
C4240.0232 (12)0.0361 (13)0.0249 (13)0.0045 (10)0.0023 (10)0.0030 (11)
C4250.0259 (12)0.0318 (13)0.0270 (13)0.0024 (10)0.0033 (10)0.0053 (10)
C4260.0208 (11)0.0224 (11)0.0280 (12)0.0000 (9)0.0010 (9)0.0012 (10)
O4220.0402 (10)0.0194 (8)0.0329 (10)0.0113 (7)0.0021 (8)0.0001 (7)
C4270.0349 (14)0.0166 (11)0.0456 (16)0.0069 (10)0.0007 (12)0.0034 (11)
Geometric parameters (Å, º) top
N1—C21.322 (3)C27—C27A1.393 (3)
N1—C8A1.366 (3)C27—H270.9500
C2—C31.422 (3)C31—O311.205 (3)
C2—C221.473 (3)C31—O321.342 (2)
C3—C41.380 (3)O32—C321.449 (2)
C3—C311.503 (3)C32—C331.499 (3)
C4—C4A1.428 (3)C32—H32A0.9900
C4—C411.470 (3)C32—H32B0.9900
C4A—C51.417 (3)C33—H33A0.9800
C4A—C8A1.420 (3)C33—H33B0.9800
C5—C61.366 (3)C33—H33C0.9800
C5—H50.9500C41—C421.331 (3)
C6—C71.405 (3)C41—H410.9500
C6—H60.9500C42—C4211.465 (3)
C7—C81.368 (3)C42—H420.9500
C7—H70.9500C421—C4261.395 (3)
C8—C8A1.416 (3)C421—C4221.410 (3)
C8—H80.9500C422—O4221.371 (3)
N21—C221.361 (3)C422—C4231.386 (3)
N21—C27A1.374 (3)C423—C4241.385 (3)
N21—H210.86 (3)C423—H4230.9500
C22—N231.318 (3)C424—C4251.386 (3)
N23—C23A1.389 (3)C424—H4240.9500
C23A—C241.399 (3)C425—C4261.386 (3)
C23A—C27A1.402 (3)C425—H4250.9500
C24—C251.379 (3)C426—H4260.9500
C24—H240.9500O422—C4271.428 (3)
C25—C261.401 (3)C427—H27A0.9800
C25—H250.9500C427—H27B0.9800
C26—C271.382 (3)C427—H27C0.9800
C26—H260.9500
C2—N1—C8A117.64 (19)N21—C27A—C27132.4 (2)
N1—C2—C3124.08 (19)N21—C27A—C23A104.95 (19)
N1—C2—C22114.92 (19)C27—C27A—C23A122.7 (2)
C3—C2—C22121.00 (19)O31—C31—O32124.8 (2)
C4—C3—C2119.16 (19)O31—C31—C3124.68 (19)
C4—C3—C31120.2 (2)O32—C31—C3110.43 (17)
C2—C3—C31120.58 (19)C31—O32—C32115.13 (16)
C3—C4—C4A118.0 (2)O32—C32—C33106.74 (18)
C3—C4—C41122.3 (2)O32—C32—H32A110.4
C4A—C4—C41119.67 (19)C33—C32—H32A110.4
C5—C4A—C8A118.7 (2)O32—C32—H32B110.4
C5—C4A—C4122.9 (2)C33—C32—H32B110.4
C8A—C4A—C4118.44 (19)H32A—C32—H32B108.6
C6—C5—C4A120.7 (2)C32—C33—H33A109.5
C6—C5—H5119.7C32—C33—H33B109.5
C4A—C5—H5119.7H33A—C33—H33B109.5
C5—C6—C7120.7 (2)C32—C33—H33C109.5
C5—C6—H6119.7H33A—C33—H33C109.5
C7—C6—H6119.7H33B—C33—H33C109.5
C8—C7—C6120.2 (2)C42—C41—C4122.9 (2)
C8—C7—H7119.9C42—C41—H41118.5
C6—C7—H7119.9C4—C41—H41118.5
C7—C8—C8A120.6 (2)C41—C42—C421127.0 (2)
C7—C8—H8119.7C41—C42—H42116.5
C8A—C8—H8119.7C421—C42—H42116.5
N1—C8A—C8118.2 (2)C426—C421—C422117.5 (2)
N1—C8A—C4A122.61 (19)C426—C421—C42123.1 (2)
C8—C8A—C4A119.21 (19)C422—C421—C42119.41 (19)
C22—N21—C27A107.01 (19)O422—C422—C423124.1 (2)
C22—N21—H21126.7 (17)O422—C422—C421114.6 (2)
C27A—N21—H21125.8 (17)C423—C422—C421121.3 (2)
N23—C22—N21113.53 (19)C424—C423—C422119.6 (2)
N23—C22—C2125.3 (2)C424—C423—H423120.2
N21—C22—C2121.20 (19)C422—C423—H423120.2
C22—N23—C23A104.06 (19)C423—C424—C425120.4 (2)
N23—C23A—C24129.7 (2)C423—C424—H424119.8
N23—C23A—C27A110.44 (19)C425—C424—H424119.8
C24—C23A—C27A119.9 (2)C426—C425—C424119.7 (2)
C25—C24—C23A117.8 (2)C426—C425—H425120.2
C25—C24—H24121.1C424—C425—H425120.2
C23A—C24—H24121.1C425—C426—C421121.5 (2)
C24—C25—C26121.4 (2)C425—C426—H426119.2
C24—C25—H25119.3C421—C426—H426119.2
C26—C25—H25119.3C422—O422—C427118.62 (19)
C27—C26—C25122.0 (2)O422—C427—H27A109.5
C27—C26—H26119.0O422—C427—H27B109.5
C25—C26—H26119.0H27A—C427—H27B109.5
C26—C27—C27A116.3 (2)O422—C427—H27C109.5
C26—C27—H27121.9H27A—C427—H27C109.5
C27A—C27—H27121.9H27B—C427—H27C109.5
C8A—N1—C2—C30.9 (3)C27A—C23A—C24—C250.5 (3)
C8A—N1—C2—C22178.71 (17)C23A—C24—C25—C260.5 (3)
N1—C2—C3—C41.9 (3)C24—C25—C26—C270.1 (3)
C22—C2—C3—C4177.70 (18)C25—C26—C27—C27A0.3 (3)
N1—C2—C3—C31174.88 (19)C22—N21—C27A—C27178.5 (2)
C22—C2—C3—C315.5 (3)C22—N21—C27A—C23A0.0 (2)
C2—C3—C4—C4A1.3 (3)C26—C27—C27A—N21178.1 (2)
C31—C3—C4—C4A175.49 (18)C26—C27—C27A—C23A0.3 (3)
C2—C3—C4—C41178.34 (19)N23—C23A—C27A—N210.4 (2)
C31—C3—C4—C414.9 (3)C24—C23A—C27A—N21178.86 (18)
C3—C4—C4A—C5178.35 (19)N23—C23A—C27A—C27179.15 (19)
C41—C4—C4A—C51.3 (3)C24—C23A—C27A—C270.1 (3)
C3—C4—C4A—C8A0.1 (3)C4—C3—C31—O3178.6 (3)
C41—C4—C4A—C8A179.70 (19)C2—C3—C31—O3198.1 (3)
C8A—C4A—C5—C60.9 (3)C4—C3—C31—O3298.1 (2)
C4—C4A—C5—C6179.3 (2)C2—C3—C31—O3285.2 (2)
C4A—C5—C6—C70.1 (3)O31—C31—O32—C3210.7 (3)
C5—C6—C7—C80.4 (3)C3—C31—O32—C32172.58 (18)
C6—C7—C8—C8A0.2 (3)C31—O32—C32—C33177.8 (2)
C2—N1—C8A—C8179.57 (19)C3—C4—C41—C4249.8 (3)
C2—N1—C8A—C4A0.6 (3)C4A—C4—C41—C42129.9 (2)
C7—C8—C8A—N1177.8 (2)C4—C41—C42—C421179.4 (2)
C7—C8—C8A—C4A1.2 (3)C41—C42—C421—C42613.7 (3)
C5—C4A—C8A—N1177.42 (18)C41—C42—C421—C422167.1 (2)
C4—C4A—C8A—N11.1 (3)C426—C421—C422—O422179.99 (19)
C5—C4A—C8A—C81.6 (3)C42—C421—C422—O4220.7 (3)
C4—C4A—C8A—C8179.97 (19)C426—C421—C422—C4230.2 (3)
C27A—N21—C22—N230.5 (2)C42—C421—C422—C423179.0 (2)
C27A—N21—C22—C2178.98 (18)O422—C422—C423—C424179.3 (2)
N1—C2—C22—N23172.40 (19)C421—C422—C423—C4240.4 (3)
C3—C2—C22—N238.0 (3)C422—C423—C424—C4251.0 (3)
N1—C2—C22—N218.2 (3)C423—C424—C425—C4260.8 (3)
C3—C2—C22—N21171.44 (19)C424—C425—C426—C4210.0 (3)
N21—C22—N23—C23A0.7 (2)C422—C421—C426—C4250.4 (3)
C2—C22—N23—C23A178.73 (19)C42—C421—C426—C425178.8 (2)
C22—N23—C23A—C24178.5 (2)C423—C422—O422—C4271.8 (3)
C22—N23—C23A—C27A0.7 (2)C421—C422—O422—C427177.9 (2)
N23—C23A—C24—C25178.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O31i0.86 (3)2.45 (2)3.081 (3)130.4 (19)
C7—H7···Cg3ii0.952.953.704 (2)138
C33—H33B···Cg3iii0.982.983.768 (3)139
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.
Ethyl (E)-2-(1H-benzo[d]imidazol-2-yl)-4-(4-methylstyryl)quinoline-3-carboxylate (IIIc) top
Crystal data top
C28H23N3O2(+solvent)F(000) = 2736
Mr = 433.49Dx = 1.210 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 20.2611 (7) ÅCell parameters from 16392 reflections
b = 9.8675 (4) Åθ = 2.1–27.5°
c = 36.8434 (14) ŵ = 0.08 mm1
β = 104.332 (1)°T = 100 K
V = 7136.7 (5) Å3Block, yellow
Z = 120.18 × 0.12 × 0.06 mm
Data collection top
Bruker D8 Venture
diffractometer
17718 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube10436 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.188
φ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 2427
Tmin = 0.917, Tmax = 0.995k = 1313
151790 measured reflectionsl = 4949
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.096H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.216 w = 1/[σ2(Fo2) + (0.0622P)2 + 9.4649P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
17718 reflectionsΔρmax = 0.71 e Å3
921 parametersΔρmin = 0.41 e Å3
7 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N110.64456 (15)0.3471 (3)0.62137 (9)0.0355 (7)
C120.66488 (17)0.4506 (4)0.60418 (10)0.0308 (8)
C130.72133 (17)0.4442 (4)0.58762 (10)0.0333 (8)
C140.75387 (19)0.3205 (4)0.58717 (11)0.0420 (9)
C14A0.7320 (2)0.2079 (4)0.60474 (11)0.0396 (9)
C150.7616 (2)0.0754 (5)0.60593 (13)0.0511 (11)
H150.79820.06040.59450.061*
C160.7379 (2)0.0292 (4)0.62321 (12)0.0512 (11)
H160.75730.11690.62310.061*
C170.6857 (2)0.0092 (4)0.64109 (12)0.0505 (11)
H170.67040.08270.65350.061*
C180.6563 (2)0.1157 (4)0.64088 (12)0.0465 (10)
H180.62080.12810.65330.056*
C18A0.67797 (19)0.2270 (4)0.62234 (10)0.0364 (8)
N1210.57389 (15)0.5901 (3)0.61973 (9)0.0331 (7)
H1210.571 (2)0.544 (4)0.6359 (12)0.040*
C1220.62381 (17)0.5755 (4)0.60133 (10)0.0299 (7)
N1230.62852 (14)0.6795 (3)0.57985 (9)0.0347 (7)
C13A0.57782 (17)0.7680 (4)0.58403 (11)0.0337 (8)
C1240.5582 (2)0.8933 (4)0.56728 (12)0.0442 (10)
H1240.58120.93160.55020.053*
C1250.5046 (2)0.9600 (4)0.57620 (13)0.0478 (10)
H1250.49051.04530.56500.057*
C1260.4704 (2)0.9040 (4)0.60171 (13)0.0466 (10)
H1260.43360.95260.60720.056*
C1270.48890 (19)0.7810 (4)0.61883 (12)0.0411 (9)
H1270.46610.74390.63620.049*
C17A0.54308 (17)0.7130 (4)0.60929 (10)0.0330 (8)
C1310.74500 (17)0.5681 (4)0.57115 (10)0.0334 (8)0.765 (7)
O1310.7853 (5)0.6465 (5)0.5902 (2)0.0331 (13)0.765 (7)
O1320.7216 (6)0.5752 (8)0.53417 (12)0.0383 (13)0.765 (7)
C1320.7296 (4)0.7060 (6)0.51783 (16)0.0426 (16)0.765 (7)
H12A0.77760.71950.51690.051*0.765 (7)
H12B0.71680.77960.53300.051*0.765 (7)
C1330.6839 (3)0.7073 (8)0.47906 (17)0.069 (2)0.765 (7)
H13A0.69890.63780.46390.103*0.765 (7)
H13B0.68590.79650.46770.103*0.765 (7)
H13C0.63700.68840.48020.103*0.765 (7)
C4310.74500 (17)0.5681 (4)0.57115 (10)0.0334 (8)0.235 (7)
O4310.7777 (17)0.669 (2)0.5846 (8)0.0331 (13)0.235 (7)
O4320.713 (2)0.568 (3)0.5347 (4)0.0383 (13)0.235 (7)
C4320.7402 (14)0.667 (2)0.5129 (6)0.0426 (16)0.235 (7)
H42A0.73760.63100.48750.051*0.235 (7)
H42B0.78850.68600.52520.051*0.235 (7)
C4330.6982 (11)0.793 (2)0.5108 (6)0.069 (2)0.235 (7)
H43A0.70450.83120.53590.103*0.235 (7)
H43B0.65000.77050.50050.103*0.235 (7)
H43C0.71270.85890.49450.103*0.235 (7)
C1410.8099 (2)0.3044 (4)0.56772 (12)0.0466 (10)
H1410.80200.24670.54650.056*
C1420.86871 (19)0.3644 (4)0.57804 (11)0.0371 (8)
H1420.87610.41950.59980.044*
C1430.92535 (18)0.3559 (3)0.55940 (10)0.0324 (8)
C1440.98867 (19)0.4063 (4)0.57757 (11)0.0368 (8)
H1440.99500.44390.60190.044*
C1451.0427 (2)0.4029 (4)0.56108 (11)0.0372 (8)
H1451.08590.43600.57460.045*
C1461.03553 (19)0.3523 (3)0.52527 (10)0.0332 (8)
C1470.9723 (2)0.3021 (4)0.50679 (10)0.0363 (8)
H1470.96600.26610.48230.044*
C1480.9181 (2)0.3036 (4)0.52355 (11)0.0376 (9)
H1480.87530.26840.51030.045*
C1491.0933 (2)0.3530 (4)0.50624 (11)0.0435 (10)
H19A1.07970.40410.48280.065*
H19B1.10430.25960.50080.065*
H19C1.13330.39560.52270.065*
N210.36983 (13)0.6413 (3)0.74361 (8)0.0255 (6)
C220.39299 (15)0.5757 (3)0.71802 (9)0.0228 (7)
C230.45502 (16)0.5028 (3)0.72552 (9)0.0240 (7)
C240.49360 (16)0.4947 (3)0.76188 (9)0.0250 (7)
C24A0.47137 (16)0.5669 (3)0.79006 (9)0.0259 (7)
C250.50790 (18)0.5692 (4)0.82827 (10)0.0329 (8)
H250.54860.51780.83610.039*
C260.48539 (19)0.6443 (4)0.85388 (10)0.0360 (8)
H260.51100.64620.87920.043*
C270.4247 (2)0.7186 (4)0.84299 (11)0.0398 (9)
H270.40950.77030.86110.048*
C280.38725 (18)0.7176 (4)0.80678 (10)0.0323 (8)
H280.34620.76840.79980.039*
C28A0.40938 (16)0.6410 (3)0.77963 (9)0.0255 (7)
N2210.28038 (13)0.5999 (3)0.67225 (8)0.0249 (6)
H2210.2562 (18)0.598 (4)0.6873 (10)0.030*
C2220.34962 (15)0.5864 (3)0.67940 (9)0.0237 (7)
N2230.37256 (13)0.5872 (3)0.64918 (8)0.0284 (6)
C23A0.31525 (16)0.6028 (4)0.62004 (10)0.0298 (8)
C2240.30957 (18)0.6133 (4)0.58170 (10)0.0399 (9)
H2240.34870.61000.57180.048*
C2250.24521 (19)0.6287 (4)0.55859 (11)0.0428 (10)
H2250.23980.63490.53230.051*
C2260.18766 (19)0.6352 (4)0.57305 (11)0.0396 (9)
H2260.14420.64660.55620.048*
C2270.19185 (17)0.6255 (4)0.61115 (10)0.0319 (8)
H2270.15260.62980.62090.038*
C27A0.25686 (16)0.6093 (3)0.63411 (9)0.0268 (7)
C2310.48094 (15)0.4459 (3)0.69372 (9)0.0250 (7)
O2310.52647 (11)0.4968 (2)0.68279 (6)0.0286 (5)
O2320.44922 (11)0.3315 (2)0.68030 (6)0.0286 (5)
C2320.4724 (2)0.2648 (4)0.65030 (11)0.0409 (9)
H22A0.46630.16560.65190.049*
H22B0.52160.28280.65350.049*
C2330.4339 (2)0.3139 (5)0.61268 (11)0.0512 (11)
H23A0.38500.29930.60980.077*
H23B0.44870.26390.59310.077*
H23C0.44260.41080.61040.077*
C2410.55673 (17)0.4152 (3)0.77195 (9)0.0281 (7)
H2410.59500.45400.78910.034*
C2420.56372 (17)0.2923 (3)0.75858 (10)0.0299 (7)
H2420.52420.25380.74250.036*
C2430.62568 (16)0.2102 (3)0.76605 (10)0.0279 (7)
C2440.63350 (18)0.1128 (3)0.74041 (10)0.0317 (8)
H2440.59770.09890.71860.038*
C2450.69160 (18)0.0354 (4)0.74559 (10)0.0339 (8)
H2450.69590.02810.72690.041*
C2460.74444 (17)0.0492 (4)0.77797 (11)0.0347 (8)
C2470.73682 (18)0.1458 (4)0.80455 (11)0.0353 (8)
H2470.77170.15690.82690.042*
C2480.67847 (18)0.2256 (4)0.79839 (10)0.0341 (8)
H2480.67440.29170.81650.041*
C2490.80557 (19)0.0432 (4)0.78489 (12)0.0421 (9)
H29A0.79150.13600.78880.063*
H29B0.83960.01270.80720.063*
H29C0.82530.04100.76320.063*
N310.06783 (13)0.4999 (3)0.67001 (8)0.0264 (6)
C320.01172 (16)0.5723 (3)0.67408 (9)0.0240 (7)
C330.04542 (15)0.5615 (3)0.70565 (9)0.0237 (7)
C340.03971 (15)0.4802 (3)0.73528 (9)0.0236 (7)
C34A0.02118 (16)0.4027 (3)0.73171 (10)0.0257 (7)
C350.03341 (17)0.3183 (3)0.76035 (10)0.0307 (8)
H350.00060.31320.78370.037*
C360.09204 (17)0.2437 (3)0.75474 (11)0.0345 (8)
H360.09960.18780.77430.041*
C370.14136 (17)0.2492 (4)0.72016 (11)0.0341 (8)
H370.18090.19410.71610.041*
C380.13218 (17)0.3331 (3)0.69278 (10)0.0312 (8)
H380.16610.33840.66980.037*
C38A0.07252 (16)0.4130 (3)0.69793 (9)0.0254 (7)
N3210.07317 (14)0.7115 (3)0.62130 (8)0.0278 (6)
H3210.1103 (19)0.676 (4)0.6225 (10)0.033*
C3220.01260 (15)0.6683 (3)0.64356 (9)0.0248 (7)
N3230.04071 (14)0.7238 (3)0.63484 (8)0.0302 (6)
C33A0.01310 (17)0.8090 (3)0.60491 (10)0.0311 (8)
C3240.04516 (19)0.8953 (4)0.58475 (11)0.0377 (9)
H3240.09340.90040.59000.045*
C3250.0046 (2)0.9733 (4)0.55677 (11)0.0398 (9)
H3250.02541.03340.54280.048*
C3260.0664 (2)0.9657 (4)0.54870 (11)0.0405 (9)
H3260.09271.02040.52920.049*
C3270.09926 (19)0.8814 (3)0.56811 (10)0.0344 (8)
H3270.14760.87750.56270.041*
C37A0.05854 (17)0.8019 (3)0.59612 (10)0.0290 (7)
C3310.11146 (16)0.6307 (3)0.70544 (9)0.0258 (7)
O3310.15984 (11)0.5698 (2)0.69974 (7)0.0268 (5)
O3320.11019 (12)0.7628 (2)0.71233 (8)0.0403 (7)
C3320.1667 (2)0.8451 (4)0.70250 (16)0.0643 (15)
H32A0.18310.79980.68240.077*
H32B0.15020.93680.69380.077*
C3330.2202 (3)0.8535 (5)0.73593 (14)0.0640 (13)
H33A0.20220.89130.75610.096*
H33B0.25650.91220.73160.096*
H33C0.23850.76270.74300.096*
C3410.09338 (16)0.4734 (3)0.77049 (10)0.0277 (7)
H3410.10710.38620.78050.033*
C3420.12401 (16)0.5807 (3)0.78924 (11)0.0321 (8)
H3420.11260.66650.77770.039*
C3430.17340 (18)0.5806 (4)0.82569 (11)0.0377 (9)
C3440.20722 (19)0.7005 (4)0.83935 (13)0.0450 (10)
H3440.19830.78060.82470.054*
C3450.2535 (2)0.7041 (5)0.87395 (14)0.0540 (12)
H3450.27700.78610.88230.065*
C3460.2661 (2)0.5907 (5)0.89666 (13)0.0533 (12)
C3470.2323 (2)0.4711 (5)0.88365 (13)0.0592 (13)
H3470.24050.39180.89870.071*
C3480.1865 (2)0.4667 (4)0.84858 (12)0.0482 (11)
H3480.16370.38420.84010.058*
C3490.3150 (2)0.5952 (6)0.93514 (14)0.0764 (17)
H39A0.35980.62580.93280.115*
H39B0.31920.50450.94630.115*
H39C0.29780.65830.95120.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0347 (16)0.0345 (16)0.0373 (18)0.0039 (13)0.0092 (14)0.0038 (14)
C120.0246 (17)0.0376 (19)0.0294 (19)0.0013 (14)0.0049 (14)0.0062 (15)
C130.0286 (18)0.038 (2)0.032 (2)0.0014 (15)0.0060 (15)0.0088 (16)
C140.033 (2)0.054 (2)0.038 (2)0.0078 (18)0.0071 (17)0.0084 (19)
C14A0.040 (2)0.046 (2)0.031 (2)0.0078 (17)0.0039 (17)0.0035 (17)
C150.047 (2)0.056 (3)0.051 (3)0.018 (2)0.014 (2)0.005 (2)
C160.068 (3)0.041 (2)0.042 (2)0.012 (2)0.008 (2)0.0037 (19)
C170.069 (3)0.042 (2)0.042 (2)0.007 (2)0.016 (2)0.0037 (19)
C180.061 (3)0.039 (2)0.040 (2)0.008 (2)0.015 (2)0.0003 (18)
C18A0.038 (2)0.041 (2)0.029 (2)0.0044 (16)0.0055 (16)0.0051 (16)
N1210.0319 (16)0.0360 (17)0.0352 (18)0.0018 (13)0.0156 (14)0.0026 (14)
C1220.0256 (17)0.0347 (19)0.0307 (19)0.0030 (14)0.0093 (14)0.0059 (15)
N1230.0284 (15)0.0360 (17)0.0431 (19)0.0023 (13)0.0152 (14)0.0007 (14)
C13A0.0257 (18)0.0347 (19)0.044 (2)0.0021 (15)0.0140 (16)0.0029 (16)
C1240.039 (2)0.038 (2)0.059 (3)0.0024 (17)0.020 (2)0.0023 (19)
C1250.043 (2)0.036 (2)0.065 (3)0.0023 (18)0.015 (2)0.001 (2)
C1260.036 (2)0.044 (2)0.063 (3)0.0041 (18)0.020 (2)0.010 (2)
C1270.034 (2)0.041 (2)0.053 (3)0.0030 (17)0.0216 (18)0.0073 (19)
C17A0.0289 (18)0.0328 (19)0.040 (2)0.0020 (15)0.0131 (16)0.0054 (16)
C1310.0209 (16)0.047 (2)0.034 (2)0.0033 (16)0.0093 (15)0.0116 (17)
O1310.020 (3)0.036 (2)0.041 (3)0.006 (2)0.0034 (17)0.001 (2)
O1320.025 (4)0.0526 (19)0.0392 (16)0.0086 (15)0.0124 (13)0.0011 (13)
C1320.041 (3)0.043 (4)0.045 (3)0.002 (3)0.013 (2)0.001 (3)
C1330.062 (4)0.092 (5)0.049 (4)0.036 (4)0.007 (3)0.006 (3)
C4310.0209 (16)0.047 (2)0.034 (2)0.0033 (16)0.0093 (15)0.0116 (17)
O4310.020 (3)0.036 (2)0.041 (3)0.006 (2)0.0034 (17)0.001 (2)
O4320.025 (4)0.0526 (19)0.0392 (16)0.0086 (15)0.0124 (13)0.0011 (13)
C4320.041 (3)0.043 (4)0.045 (3)0.002 (3)0.013 (2)0.001 (3)
C4330.062 (4)0.092 (5)0.049 (4)0.036 (4)0.007 (3)0.006 (3)
C1410.041 (2)0.048 (2)0.050 (3)0.0078 (19)0.0087 (19)0.007 (2)
C1420.043 (2)0.036 (2)0.033 (2)0.0046 (17)0.0111 (17)0.0024 (16)
C1430.038 (2)0.0268 (17)0.033 (2)0.0070 (15)0.0096 (16)0.0024 (15)
C1440.046 (2)0.0339 (19)0.030 (2)0.0018 (17)0.0095 (17)0.0018 (16)
C1450.040 (2)0.0323 (19)0.039 (2)0.0001 (16)0.0106 (17)0.0001 (16)
C1460.042 (2)0.0258 (17)0.033 (2)0.0068 (15)0.0117 (17)0.0048 (15)
C1470.050 (2)0.0306 (19)0.0268 (19)0.0072 (17)0.0059 (17)0.0005 (15)
C1480.041 (2)0.0320 (19)0.038 (2)0.0060 (16)0.0067 (17)0.0028 (16)
C1490.055 (3)0.037 (2)0.043 (2)0.0140 (18)0.021 (2)0.0094 (18)
N210.0252 (14)0.0245 (14)0.0274 (15)0.0022 (11)0.0076 (12)0.0022 (12)
C220.0212 (15)0.0199 (15)0.0289 (18)0.0022 (12)0.0097 (13)0.0006 (13)
C230.0248 (16)0.0198 (15)0.0273 (18)0.0031 (12)0.0064 (13)0.0000 (13)
C240.0252 (16)0.0225 (16)0.0281 (18)0.0025 (13)0.0082 (14)0.0022 (13)
C24A0.0295 (17)0.0222 (16)0.0274 (18)0.0061 (13)0.0096 (14)0.0004 (13)
C250.0351 (19)0.0317 (18)0.031 (2)0.0033 (15)0.0070 (16)0.0019 (15)
C260.042 (2)0.040 (2)0.0241 (19)0.0074 (17)0.0054 (16)0.0023 (16)
C270.049 (2)0.040 (2)0.034 (2)0.0040 (18)0.0179 (18)0.0096 (17)
C280.0343 (19)0.0339 (19)0.0301 (19)0.0031 (15)0.0110 (16)0.0017 (15)
C28A0.0282 (17)0.0231 (16)0.0266 (18)0.0048 (13)0.0093 (14)0.0015 (13)
N2210.0200 (13)0.0308 (15)0.0252 (15)0.0001 (11)0.0083 (11)0.0024 (12)
C2220.0197 (15)0.0211 (15)0.0306 (18)0.0008 (12)0.0066 (13)0.0001 (13)
N2230.0234 (14)0.0347 (16)0.0275 (15)0.0041 (12)0.0073 (12)0.0024 (12)
C23A0.0213 (16)0.0376 (19)0.0296 (19)0.0053 (14)0.0048 (14)0.0015 (15)
C2240.0283 (19)0.063 (3)0.031 (2)0.0084 (18)0.0105 (16)0.0011 (18)
C2250.036 (2)0.062 (3)0.030 (2)0.0106 (19)0.0053 (17)0.0009 (19)
C2260.0283 (19)0.052 (2)0.034 (2)0.0048 (17)0.0003 (16)0.0021 (18)
C2270.0217 (16)0.041 (2)0.033 (2)0.0036 (14)0.0064 (14)0.0035 (16)
C27A0.0238 (16)0.0284 (17)0.0278 (18)0.0019 (13)0.0053 (14)0.0032 (14)
C2310.0202 (15)0.0251 (16)0.0281 (18)0.0042 (13)0.0031 (13)0.0048 (14)
O2310.0214 (11)0.0360 (13)0.0294 (13)0.0006 (10)0.0085 (10)0.0001 (10)
O2320.0268 (12)0.0271 (12)0.0320 (13)0.0001 (10)0.0073 (10)0.0049 (10)
C2320.039 (2)0.041 (2)0.042 (2)0.0036 (17)0.0095 (18)0.0151 (18)
C2330.053 (3)0.062 (3)0.038 (2)0.012 (2)0.013 (2)0.012 (2)
C2410.0278 (17)0.0302 (18)0.0250 (18)0.0011 (14)0.0041 (14)0.0045 (14)
C2420.0268 (17)0.0298 (18)0.0310 (19)0.0035 (14)0.0029 (14)0.0046 (15)
C2430.0243 (17)0.0230 (16)0.035 (2)0.0033 (13)0.0049 (15)0.0037 (14)
C2440.0323 (19)0.0254 (17)0.033 (2)0.0017 (14)0.0004 (15)0.0050 (15)
C2450.036 (2)0.0307 (18)0.035 (2)0.0017 (15)0.0089 (16)0.0021 (15)
C2460.0272 (18)0.0287 (18)0.046 (2)0.0009 (14)0.0057 (16)0.0096 (16)
C2470.0282 (18)0.0303 (18)0.043 (2)0.0034 (15)0.0005 (16)0.0018 (16)
C2480.0335 (19)0.0285 (18)0.036 (2)0.0009 (15)0.0000 (16)0.0021 (15)
C2490.034 (2)0.036 (2)0.057 (3)0.0052 (16)0.0105 (19)0.0093 (19)
N310.0245 (14)0.0273 (14)0.0302 (16)0.0004 (11)0.0122 (12)0.0050 (12)
C320.0238 (16)0.0239 (16)0.0267 (17)0.0018 (13)0.0109 (13)0.0045 (13)
C330.0220 (15)0.0189 (15)0.0319 (18)0.0029 (12)0.0103 (14)0.0037 (13)
C340.0208 (15)0.0173 (15)0.0327 (18)0.0060 (12)0.0067 (13)0.0054 (13)
C34A0.0240 (16)0.0192 (15)0.0367 (19)0.0054 (12)0.0128 (14)0.0022 (14)
C350.0246 (17)0.0295 (18)0.038 (2)0.0072 (14)0.0077 (15)0.0073 (15)
C360.0319 (19)0.0258 (17)0.050 (2)0.0071 (14)0.0187 (17)0.0103 (16)
C370.0224 (17)0.0323 (19)0.049 (2)0.0001 (14)0.0122 (16)0.0023 (17)
C380.0286 (17)0.0293 (18)0.036 (2)0.0010 (14)0.0086 (15)0.0041 (15)
C38A0.0219 (16)0.0245 (16)0.0327 (19)0.0027 (13)0.0126 (14)0.0017 (14)
N3210.0230 (14)0.0278 (15)0.0326 (16)0.0000 (11)0.0069 (12)0.0008 (12)
C3220.0210 (15)0.0235 (16)0.0316 (18)0.0027 (13)0.0094 (14)0.0014 (14)
N3230.0264 (15)0.0297 (15)0.0370 (17)0.0045 (12)0.0129 (13)0.0027 (13)
C33A0.0323 (18)0.0292 (18)0.035 (2)0.0047 (14)0.0133 (16)0.0031 (15)
C3240.0330 (19)0.035 (2)0.049 (2)0.0031 (16)0.0177 (18)0.0051 (17)
C3250.049 (2)0.0283 (19)0.045 (2)0.0011 (17)0.0173 (19)0.0083 (17)
C3260.047 (2)0.0301 (19)0.041 (2)0.0055 (17)0.0042 (18)0.0050 (17)
C3270.0331 (19)0.0303 (18)0.039 (2)0.0026 (15)0.0065 (16)0.0007 (16)
C37A0.0297 (18)0.0238 (16)0.035 (2)0.0006 (14)0.0105 (15)0.0022 (15)
C3310.0259 (17)0.0207 (15)0.0312 (19)0.0032 (13)0.0079 (14)0.0010 (14)
O3310.0215 (11)0.0214 (11)0.0393 (14)0.0040 (9)0.0109 (10)0.0009 (10)
O3320.0267 (13)0.0208 (12)0.080 (2)0.0030 (10)0.0251 (13)0.0107 (12)
C3320.035 (2)0.040 (2)0.112 (4)0.0104 (19)0.007 (3)0.031 (3)
C3330.072 (3)0.053 (3)0.072 (4)0.012 (2)0.026 (3)0.007 (3)
C3410.0226 (16)0.0238 (16)0.037 (2)0.0045 (13)0.0079 (14)0.0009 (14)
C3420.0250 (17)0.0257 (17)0.045 (2)0.0044 (14)0.0078 (15)0.0027 (16)
C3430.0266 (18)0.0330 (19)0.049 (2)0.0028 (15)0.0013 (16)0.0106 (17)
C3440.034 (2)0.034 (2)0.062 (3)0.0004 (16)0.005 (2)0.0107 (19)
C3450.030 (2)0.047 (3)0.078 (3)0.0024 (18)0.001 (2)0.029 (2)
C3460.029 (2)0.064 (3)0.058 (3)0.010 (2)0.0061 (19)0.031 (2)
C3470.060 (3)0.050 (3)0.051 (3)0.013 (2)0.018 (2)0.011 (2)
C3480.049 (2)0.034 (2)0.048 (3)0.0007 (18)0.013 (2)0.0105 (19)
C3490.049 (3)0.098 (4)0.067 (3)0.015 (3)0.014 (2)0.047 (3)
Geometric parameters (Å, º) top
N11—C121.320 (5)C225—C2261.398 (5)
N11—C18A1.361 (5)C225—H2250.9500
C12—C131.425 (5)C226—C2271.388 (5)
C12—C1221.476 (5)C226—H2260.9500
C13—C141.389 (5)C227—C27A1.387 (5)
C13—C1311.496 (5)C227—H2270.9500
C14—C14A1.412 (6)C231—O2311.204 (4)
C14—C1411.493 (5)C231—O2321.332 (4)
C14A—C18A1.416 (5)O232—C2321.461 (4)
C14A—C151.435 (6)C232—C2331.494 (6)
C15—C161.360 (6)C232—H22A0.9900
C15—H150.9500C232—H22B0.9900
C16—C171.392 (6)C233—H23A0.9800
C16—H160.9500C233—H23B0.9800
C17—C181.369 (6)C233—H23C0.9800
C17—H170.9500C241—C2421.330 (5)
C18—C18A1.419 (6)C241—H2410.9500
C18—H180.9500C242—C2431.462 (5)
N121—C1221.358 (4)C242—H2420.9500
N121—C17A1.375 (5)C243—C2441.384 (5)
N121—H1210.76 (4)C243—C2481.399 (5)
C122—N1231.314 (4)C244—C2451.376 (5)
N123—C13A1.385 (4)C244—H2440.9500
C13A—C1241.395 (5)C245—C2461.399 (5)
C13A—C17A1.407 (5)C245—H2450.9500
C124—C1251.377 (5)C246—C2471.402 (5)
C124—H1240.9500C246—C2491.508 (5)
C125—C1261.412 (6)C247—C2481.391 (5)
C125—H1250.9500C247—H2470.9500
C126—C1271.377 (6)C248—H2480.9500
C126—H1260.9500C249—H29A0.9800
C127—C17A1.403 (5)C249—H29B0.9800
C127—H1270.9500C249—H29C0.9800
C131—O1311.214 (5)N31—C321.319 (4)
C131—O1321.329 (5)N31—C38A1.361 (4)
O132—C1321.450 (7)C32—C331.428 (5)
C132—C1331.498 (8)C32—C3221.467 (5)
C132—H12A0.9900C33—C341.382 (5)
C132—H12B0.9900C33—C3311.504 (4)
C133—H13A0.9800C34—C34A1.430 (4)
C133—H13B0.9800C34—C3411.474 (5)
C133—H13C0.9800C34A—C351.413 (5)
O432—C4321.456 (11)C34A—C38A1.414 (5)
C432—C4331.499 (12)C35—C361.369 (5)
C432—H42A0.9900C35—H350.9500
C432—H42B0.9900C36—C371.412 (5)
C433—H43A0.9800C36—H360.9500
C433—H43B0.9800C37—C381.353 (5)
C433—H43C0.9800C37—H370.9500
C141—C1421.301 (5)C38—C38A1.416 (4)
C141—H1410.9500C38—H380.9500
C142—C1431.478 (5)N321—C3221.365 (4)
C142—H1420.9500N321—C37A1.371 (4)
C143—C1441.384 (5)N321—H3210.84 (4)
C143—C1481.391 (5)C322—N3231.320 (4)
C144—C1451.379 (5)N323—C33A1.389 (4)
C144—H1440.9500C33A—C3241.392 (5)
C145—C1461.384 (5)C33A—C37A1.409 (5)
C145—H1450.9500C324—C3251.383 (5)
C146—C1471.385 (5)C324—H3240.9500
C146—C1491.505 (5)C325—C3261.396 (5)
C147—C1481.386 (5)C325—H3250.9500
C147—H1470.9500C326—C3271.372 (5)
C148—H1480.9500C326—H3260.9500
C149—H19A0.9800C327—C37A1.393 (5)
C149—H19B0.9800C327—H3270.9500
C149—H19C0.9800C331—O3311.212 (4)
N21—C221.322 (4)C331—O3321.330 (4)
N21—C28A1.370 (4)O332—C3321.519 (5)
C22—C231.414 (4)C332—C3331.427 (7)
C22—C2221.479 (5)C332—H32A0.9900
C23—C241.376 (5)C332—H32B0.9900
C23—C2311.507 (4)C333—H33A0.9800
C24—C24A1.421 (4)C333—H33B0.9800
C24—C2411.468 (4)C333—H33C0.9800
C24A—C251.419 (5)C341—C3421.331 (5)
C24A—C28A1.422 (5)C341—H3410.9500
C25—C261.363 (5)C342—C3431.463 (5)
C25—H250.9500C342—H3420.9500
C26—C271.403 (5)C343—C3481.391 (6)
C26—H260.9500C343—C3441.396 (5)
C27—C281.362 (5)C344—C3451.383 (6)
C27—H270.9500C344—H3440.9500
C28—C28A1.412 (5)C345—C3461.383 (7)
C28—H280.9500C345—H3450.9500
N221—C2221.368 (4)C346—C3471.389 (6)
N221—C27A1.371 (4)C346—C3491.516 (6)
N221—H2210.82 (4)C347—C3481.393 (6)
C222—N2231.309 (4)C347—H3470.9500
N223—C23A1.381 (4)C348—H3480.9500
C23A—C2241.392 (5)C349—H39A0.9800
C23A—C27A1.406 (4)C349—H39B0.9800
C224—C2251.378 (5)C349—H39C0.9800
C224—H2240.9500
C12—N11—C18A118.3 (3)C227—C226—C225122.3 (3)
N11—C12—C13123.4 (3)C227—C226—H226118.9
N11—C12—C122116.3 (3)C225—C226—H226118.9
C13—C12—C122120.3 (3)C27A—C227—C226115.8 (3)
C14—C13—C12118.5 (3)C27A—C227—H227122.1
C14—C13—C131120.8 (3)C226—C227—H227122.1
C12—C13—C131120.6 (3)N221—C27A—C227132.0 (3)
C13—C14—C14A118.9 (3)N221—C27A—C23A105.3 (3)
C13—C14—C141121.2 (4)C227—C27A—C23A122.6 (3)
C14A—C14—C141119.9 (4)O231—C231—O232124.7 (3)
C14—C14A—C18A118.1 (3)O231—C231—C23123.2 (3)
C14—C14A—C15123.8 (4)O232—C231—C23112.1 (3)
C18A—C14A—C15118.2 (4)C231—O232—C232116.5 (3)
C16—C15—C14A120.8 (4)O232—C232—C233111.3 (3)
C16—C15—H15119.6O232—C232—H22A109.4
C14A—C15—H15119.6C233—C232—H22A109.4
C15—C16—C17120.7 (4)O232—C232—H22B109.4
C15—C16—H16119.6C233—C232—H22B109.4
C17—C16—H16119.6H22A—C232—H22B108.0
C18—C17—C16120.4 (4)C232—C233—H23A109.5
C18—C17—H17119.8C232—C233—H23B109.5
C16—C17—H17119.8H23A—C233—H23B109.5
C17—C18—C18A120.8 (4)C232—C233—H23C109.5
C17—C18—H18119.6H23A—C233—H23C109.5
C18A—C18—H18119.6H23B—C233—H23C109.5
N11—C18A—C14A122.7 (4)C242—C241—C24124.0 (3)
N11—C18A—C18118.3 (3)C242—C241—H241118.0
C14A—C18A—C18119.0 (4)C24—C241—H241118.0
C122—N121—C17A107.3 (3)C241—C242—C243127.0 (3)
C122—N121—H121123 (3)C241—C242—H242116.5
C17A—N121—H121128 (3)C243—C242—H242116.5
N123—C122—N121113.1 (3)C244—C243—C248117.7 (3)
N123—C122—C12124.8 (3)C244—C243—C242119.7 (3)
N121—C122—C12122.0 (3)C248—C243—C242122.7 (3)
C122—N123—C13A105.0 (3)C245—C244—C243122.0 (3)
N123—C13A—C124130.3 (3)C245—C244—H244119.0
N123—C13A—C17A109.7 (3)C243—C244—H244119.0
C124—C13A—C17A120.0 (3)C244—C245—C246120.8 (4)
C125—C124—C13A118.3 (4)C244—C245—H245119.6
C125—C124—H124120.9C246—C245—H245119.6
C13A—C124—H124120.9C245—C246—C247117.9 (3)
C124—C125—C126121.2 (4)C245—C246—C249120.6 (4)
C124—C125—H125119.4C247—C246—C249121.4 (3)
C126—C125—H125119.4C248—C247—C246120.5 (3)
C127—C126—C125121.8 (4)C248—C247—H247119.8
C127—C126—H126119.1C246—C247—H247119.8
C125—C126—H126119.1C247—C248—C243121.1 (3)
C126—C127—C17A116.6 (4)C247—C248—H248119.4
C126—C127—H127121.7C243—C248—H248119.4
C17A—C127—H127121.7C246—C249—H29A109.5
N121—C17A—C127132.9 (3)C246—C249—H29B109.5
N121—C17A—C13A105.0 (3)H29A—C249—H29B109.5
C127—C17A—C13A122.1 (3)C246—C249—H29C109.5
O131—C131—O132125.3 (5)H29A—C249—H29C109.5
O131—C131—C13121.6 (5)H29B—C249—H29C109.5
O132—C131—C13113.0 (4)C32—N31—C38A118.3 (3)
C131—O132—C132115.1 (5)N31—C32—C33123.7 (3)
O132—C132—C133107.3 (5)N31—C32—C322114.6 (3)
O132—C132—H12A110.3C33—C32—C322121.7 (3)
C133—C132—H12A110.3C34—C33—C32118.5 (3)
O132—C132—H12B110.3C34—C33—C331121.1 (3)
C133—C132—H12B110.3C32—C33—C331120.3 (3)
H12A—C132—H12B108.5C33—C34—C34A118.5 (3)
C132—C133—H13A109.5C33—C34—C341122.3 (3)
C132—C133—H13B109.5C34A—C34—C341119.2 (3)
H13A—C133—H13B109.5C35—C34A—C38A118.2 (3)
C132—C133—H13C109.5C35—C34A—C34123.6 (3)
H13A—C133—H13C109.5C38A—C34A—C34118.2 (3)
H13B—C133—H13C109.5C36—C35—C34A120.7 (3)
O432—C432—C433107.0 (14)C36—C35—H35119.7
O432—C432—H42A110.3C34A—C35—H35119.7
C433—C432—H42A110.3C35—C36—C37120.6 (3)
O432—C432—H42B110.3C35—C36—H36119.7
C433—C432—H42B110.3C37—C36—H36119.7
H42A—C432—H42B108.6C38—C37—C36119.9 (3)
C432—C433—H43A109.5C38—C37—H37120.0
C432—C433—H43B109.5C36—C37—H37120.0
H43A—C433—H43B109.5C37—C38—C38A120.7 (3)
C432—C433—H43C109.5C37—C38—H38119.6
H43A—C433—H43C109.5C38A—C38—H38119.6
H43B—C433—H43C109.5N31—C38A—C34A122.5 (3)
C142—C141—C14124.2 (4)N31—C38A—C38117.8 (3)
C142—C141—H141117.9C34A—C38A—C38119.7 (3)
C14—C141—H141117.9C322—N321—C37A107.3 (3)
C141—C142—C143126.8 (4)C322—N321—H321121 (3)
C141—C142—H142116.6C37A—N321—H321131 (3)
C143—C142—H142116.6N323—C322—N321113.1 (3)
C144—C143—C148117.3 (3)N323—C322—C32126.8 (3)
C144—C143—C142119.2 (3)N321—C322—C32120.1 (3)
C148—C143—C142123.4 (3)C322—N323—C33A104.6 (3)
C145—C144—C143121.4 (4)N323—C33A—C324130.1 (3)
C145—C144—H144119.3N323—C33A—C37A110.0 (3)
C143—C144—H144119.3C324—C33A—C37A119.9 (3)
C144—C145—C146121.4 (4)C325—C324—C33A117.9 (3)
C144—C145—H145119.3C325—C324—H324121.0
C146—C145—H145119.3C33A—C324—H324121.0
C145—C146—C147117.7 (3)C324—C325—C326121.3 (3)
C145—C146—C149122.1 (4)C324—C325—H325119.3
C147—C146—C149120.2 (3)C326—C325—H325119.3
C146—C147—C148121.0 (3)C327—C326—C325121.9 (4)
C146—C147—H147119.5C327—C326—H326119.0
C148—C147—H147119.5C325—C326—H326119.0
C147—C148—C143121.2 (4)C326—C327—C37A116.9 (3)
C147—C148—H148119.4C326—C327—H327121.5
C143—C148—H148119.4C37A—C327—H327121.5
C146—C149—H19A109.5N321—C37A—C327132.9 (3)
C146—C149—H19B109.5N321—C37A—C33A105.1 (3)
H19A—C149—H19B109.5C327—C37A—C33A122.0 (3)
C146—C149—H19C109.5O331—C331—O332125.0 (3)
H19A—C149—H19C109.5O331—C331—C33122.3 (3)
H19B—C149—H19C109.5O332—C331—C33112.6 (3)
C22—N21—C28A117.6 (3)C331—O332—C332115.3 (3)
N21—C22—C23124.4 (3)C333—C332—O332106.3 (5)
N21—C22—C222114.8 (3)C333—C332—H32A110.5
C23—C22—C222120.8 (3)O332—C332—H32A110.5
C24—C23—C22118.9 (3)C333—C332—H32B110.5
C24—C23—C231120.8 (3)O332—C332—H32B110.5
C22—C23—C231120.1 (3)H32A—C332—H32B108.7
C23—C24—C24A118.4 (3)C332—C333—H33A109.5
C23—C24—C241121.8 (3)C332—C333—H33B109.5
C24A—C24—C241119.8 (3)H33A—C333—H33B109.5
C25—C24A—C24123.4 (3)C332—C333—H33C109.5
C25—C24A—C28A117.9 (3)H33A—C333—H33C109.5
C24—C24A—C28A118.6 (3)H33B—C333—H33C109.5
C26—C25—C24A120.9 (3)C342—C341—C34124.6 (3)
C26—C25—H25119.5C342—C341—H341117.7
C24A—C25—H25119.5C34—C341—H341117.7
C25—C26—C27120.4 (4)C341—C342—C343127.0 (3)
C25—C26—H26119.8C341—C342—H342116.5
C27—C26—H26119.8C343—C342—H342116.5
C28—C27—C26120.8 (3)C348—C343—C344117.6 (4)
C28—C27—H27119.6C348—C343—C342122.8 (3)
C26—C27—H27119.6C344—C343—C342119.6 (4)
C27—C28—C28A120.0 (3)C345—C344—C343121.0 (4)
C27—C28—H28120.0C345—C344—H344119.5
C28A—C28—H28120.0C343—C344—H344119.5
N21—C28A—C28118.2 (3)C346—C345—C344121.2 (4)
N21—C28A—C24A121.9 (3)C346—C345—H345119.4
C28—C28A—C24A119.9 (3)C344—C345—H345119.4
C222—N221—C27A106.5 (3)C345—C346—C347118.5 (4)
C222—N221—H221128 (3)C345—C346—C349121.5 (4)
C27A—N221—H221125 (3)C347—C346—C349120.0 (5)
N223—C222—N221113.5 (3)C346—C347—C348120.3 (4)
N223—C222—C22124.6 (3)C346—C347—H347119.8
N221—C222—C22121.9 (3)C348—C347—H347119.8
C222—N223—C23A104.8 (3)C343—C348—C347121.3 (4)
N223—C23A—C224129.7 (3)C343—C348—H348119.3
N223—C23A—C27A109.9 (3)C347—C348—H348119.3
C224—C23A—C27A120.3 (3)C346—C349—H39A109.5
C225—C224—C23A117.6 (3)C346—C349—H39B109.5
C225—C224—H224121.2H39A—C349—H39B109.5
C23A—C224—H224121.2C346—C349—H39C109.5
C224—C225—C226121.3 (4)H39A—C349—H39C109.5
C224—C225—H225119.3H39B—C349—H39C109.5
C226—C225—H225119.3
C18A—N11—C12—C132.0 (5)C222—N223—C23A—C27A0.8 (4)
C18A—N11—C12—C122175.5 (3)N223—C23A—C224—C225179.9 (4)
N11—C12—C13—C144.6 (5)C27A—C23A—C224—C2250.7 (6)
C122—C12—C13—C14172.8 (3)C23A—C224—C225—C2260.8 (6)
N11—C12—C13—C131175.3 (3)C224—C225—C226—C2270.5 (7)
C122—C12—C13—C1317.3 (5)C225—C226—C227—C27A0.2 (6)
C12—C13—C14—C14A3.1 (5)C222—N221—C27A—C227179.3 (4)
C131—C13—C14—C14A176.8 (3)C222—N221—C27A—C23A0.9 (4)
C12—C13—C14—C141175.3 (4)C226—C227—C27A—N221178.1 (4)
C131—C13—C14—C1414.8 (6)C226—C227—C27A—C23A0.1 (5)
C13—C14—C14A—C18A0.5 (6)N223—C23A—C27A—N2211.1 (4)
C141—C14—C14A—C18A179.0 (4)C224—C23A—C27A—N221178.3 (3)
C13—C14—C14A—C15179.8 (4)N223—C23A—C27A—C227179.7 (3)
C141—C14—C14A—C151.3 (6)C224—C23A—C27A—C2270.4 (5)
C14—C14A—C15—C16179.7 (4)C24—C23—C231—O23171.5 (4)
C18A—C14A—C15—C160.6 (6)C22—C23—C231—O231103.2 (4)
C14A—C15—C16—C171.9 (7)C24—C23—C231—O232106.4 (3)
C15—C16—C17—C181.4 (7)C22—C23—C231—O23278.9 (4)
C16—C17—C18—C18A0.3 (7)O231—C231—O232—C2320.3 (5)
C12—N11—C18A—C14A2.0 (5)C23—C231—O232—C232177.6 (3)
C12—N11—C18A—C18179.9 (3)C231—O232—C232—C23390.0 (4)
C14—C14A—C18A—N113.2 (6)C23—C24—C241—C24243.0 (5)
C15—C14A—C18A—N11177.0 (4)C24A—C24—C241—C242137.7 (3)
C14—C14A—C18A—C18178.6 (4)C24—C241—C242—C243177.1 (3)
C15—C14A—C18A—C181.1 (6)C241—C242—C243—C244155.0 (3)
C17—C18—C18A—N11176.7 (4)C241—C242—C243—C24824.8 (5)
C17—C18—C18A—C14A1.6 (6)C248—C243—C244—C2451.7 (5)
C17A—N121—C122—N1230.5 (4)C242—C243—C244—C245178.1 (3)
C17A—N121—C122—C12176.2 (3)C243—C244—C245—C2462.4 (5)
N11—C12—C122—N123167.4 (3)C244—C245—C246—C2471.2 (5)
C13—C12—C122—N12310.2 (5)C244—C245—C246—C249175.2 (3)
N11—C12—C122—N1218.9 (5)C245—C246—C247—C2480.5 (5)
C13—C12—C122—N121173.5 (3)C249—C246—C247—C248176.9 (3)
N121—C122—N123—C13A0.7 (4)C246—C247—C248—C2431.1 (5)
C12—C122—N123—C13A175.9 (3)C244—C243—C248—C2470.0 (5)
C122—N123—C13A—C124178.4 (4)C242—C243—C248—C247179.8 (3)
C122—N123—C13A—C17A0.7 (4)C38A—N31—C32—C332.1 (4)
N123—C13A—C124—C125179.1 (4)C38A—N31—C32—C322176.9 (3)
C17A—C13A—C124—C1250.0 (6)N31—C32—C33—C346.2 (5)
C13A—C124—C125—C1260.2 (6)C322—C32—C33—C34172.7 (3)
C124—C125—C126—C1270.1 (7)N31—C32—C33—C331170.2 (3)
C125—C126—C127—C17A0.8 (6)C322—C32—C33—C33110.8 (4)
C122—N121—C17A—C127179.4 (4)C32—C33—C34—C34A4.8 (4)
C122—N121—C17A—C13A0.0 (4)C331—C33—C34—C34A171.6 (3)
C126—C127—C17A—N121178.3 (4)C32—C33—C34—C341173.9 (3)
C126—C127—C17A—C13A1.0 (6)C331—C33—C34—C3419.7 (4)
N123—C13A—C17A—N1210.4 (4)C33—C34—C34A—C35178.7 (3)
C124—C13A—C17A—N121178.8 (3)C341—C34—C34A—C350.0 (4)
N123—C13A—C17A—C127179.9 (3)C33—C34—C34A—C38A0.1 (4)
C124—C13A—C17A—C1270.7 (6)C341—C34—C34A—C38A178.8 (3)
C14—C13—C131—O13193.5 (7)C38A—C34A—C35—C363.1 (5)
C12—C13—C131—O13186.4 (7)C34—C34A—C35—C36178.2 (3)
C14—C13—C131—O13281.5 (8)C34A—C35—C36—C370.3 (5)
C12—C13—C131—O13298.6 (7)C35—C36—C37—C382.8 (5)
O131—C131—O132—C13218.8 (15)C36—C37—C38—C38A1.9 (5)
C13—C131—O132—C132166.4 (7)C32—N31—C38A—C34A3.3 (4)
C131—O132—C132—C133164.1 (8)C32—N31—C38A—C38178.3 (3)
C13—C14—C141—C14265.7 (6)C35—C34A—C38A—N31174.5 (3)
C14A—C14—C141—C142115.9 (5)C34—C34A—C38A—N314.3 (4)
C14—C141—C142—C143178.1 (4)C35—C34A—C38A—C384.0 (4)
C141—C142—C143—C144168.6 (4)C34—C34A—C38A—C38177.2 (3)
C141—C142—C143—C14813.7 (6)C37—C38—C38A—N31177.0 (3)
C148—C143—C144—C1451.0 (5)C37—C38—C38A—C34A1.5 (5)
C142—C143—C144—C145178.8 (3)C37A—N321—C322—N3230.1 (4)
C143—C144—C145—C1461.7 (6)C37A—N321—C322—C32178.6 (3)
C144—C145—C146—C1471.5 (5)N31—C32—C322—N323159.5 (3)
C144—C145—C146—C149177.5 (3)C33—C32—C322—N32321.5 (5)
C145—C146—C147—C1480.5 (5)N31—C32—C322—N32122.2 (4)
C149—C146—C147—C148178.5 (3)C33—C32—C322—N321156.8 (3)
C146—C147—C148—C1430.2 (5)N321—C322—N323—C33A0.0 (4)
C144—C143—C148—C1470.1 (5)C32—C322—N323—C33A178.4 (3)
C142—C143—C148—C147177.8 (3)C322—N323—C33A—C324178.6 (4)
C28A—N21—C22—C231.5 (5)C322—N323—C33A—C37A0.1 (4)
C28A—N21—C22—C222176.8 (3)N323—C33A—C324—C325177.7 (4)
N21—C22—C23—C242.2 (5)C37A—C33A—C324—C3251.0 (5)
C222—C22—C23—C24179.6 (3)C33A—C324—C325—C3260.4 (6)
N21—C22—C23—C231172.5 (3)C324—C325—C326—C3270.4 (6)
C222—C22—C23—C2315.6 (4)C325—C326—C327—C37A0.8 (6)
C22—C23—C24—C24A3.7 (4)C322—N321—C37A—C327176.9 (4)
C231—C23—C24—C24A171.0 (3)C322—N321—C37A—C33A0.1 (4)
C22—C23—C24—C241176.9 (3)C326—C327—C37A—N321177.7 (4)
C231—C23—C24—C2418.4 (5)C326—C327—C37A—C33A1.4 (5)
C23—C24—C24A—C25178.2 (3)N323—C33A—C37A—N3210.2 (4)
C241—C24—C24A—C251.2 (5)C324—C33A—C37A—N321178.7 (3)
C23—C24—C24A—C28A1.7 (4)N323—C33A—C37A—C327177.4 (3)
C241—C24—C24A—C28A178.9 (3)C324—C33A—C37A—C3271.5 (5)
C24—C24A—C25—C26177.6 (3)C34—C33—C331—O33174.2 (4)
C28A—C24A—C25—C262.3 (5)C32—C33—C331—O331102.2 (4)
C24A—C25—C26—C271.3 (5)C34—C33—C331—O332105.4 (3)
C25—C26—C27—C280.1 (6)C32—C33—C331—O33278.3 (4)
C26—C27—C28—C28A0.0 (6)O331—C331—O332—C33216.0 (5)
C22—N21—C28A—C28176.2 (3)C33—C331—O332—C332164.4 (3)
C22—N21—C28A—C24A3.6 (4)C331—O332—C332—C33393.7 (4)
C27—C28—C28A—N21179.2 (3)C33—C34—C341—C34247.0 (5)
C27—C28—C28A—C24A1.0 (5)C34A—C34—C341—C342131.6 (3)
C25—C24A—C28A—N21178.1 (3)C34—C341—C342—C343174.7 (3)
C24—C24A—C28A—N212.0 (5)C341—C342—C343—C34810.9 (6)
C25—C24A—C28A—C282.1 (5)C341—C342—C343—C344172.0 (4)
C24—C24A—C28A—C28177.8 (3)C348—C343—C344—C3451.8 (6)
C27A—N221—C222—N2230.4 (4)C342—C343—C344—C345179.1 (4)
C27A—N221—C222—C22178.9 (3)C343—C344—C345—C3462.2 (6)
N21—C22—C222—N223147.3 (3)C344—C345—C346—C3471.4 (7)
C23—C22—C222—N22331.0 (5)C344—C345—C346—C349178.0 (4)
N21—C22—C222—N22131.0 (4)C345—C346—C347—C3480.5 (7)
C23—C22—C222—N221150.7 (3)C349—C346—C347—C348179.0 (4)
N221—C222—N223—C23A0.2 (4)C344—C343—C348—C3470.9 (6)
C22—C222—N223—C23A178.2 (3)C342—C343—C348—C347178.0 (4)
C222—N223—C23A—C224178.4 (4)C346—C347—C348—C3430.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N121—H121···O2310.76 (4)2.19 (4)2.876 (4)150 (4)
N221—H221···O3310.84 (4)2.13 (4)2.882 (4)151 (4)
N321—H321···O131i0.85 (4)2.18 (4)2.885 (4)142 (3)
C127—H127···N2230.952.583.432 (5)149
C227—H227···N3230.952.623.522 (5)159
C332—H32B···Cg4ii0.952.803.702 (5)152
C347—H347···Cg5iii0.952.703.548 (5)149
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y1/2, z+3/2.
Selected torsion and dihedral angles (°) for compounds (IIIa)–(IIIc) top
Compounds (IIIa) and (IIIb)
Parameter(IIIa)(IIIb)
N1—C2—C22—N2110.95 (18)8.2 (2)
C2—C3—C31—O31-99.75 (18)-98.1 (3)
C2—C3—C31—O3281.29 (15)85.2 (2)
C3—C4—C41—C4253.3 (2)49.8 (3)
C41—C42—C421—C422169.18 (14)-167.1 (2)
Dihedral11.62 (1)8.52 (3)
Compound (IIIc)
Parameterx = 1x = 2x = 3
Nx1—Cx2—Cx22Nx219.0 (5)31.1 (4)22.1 (4)
Cx2—Cx3—Cx31—Ox3184.4 (5)-103.2 (4)-102.2 (4)
Cx2—Cx3—Cx31—Ox32-97.2 (4)78.9 (4)78.3 (4)
Cx3—Cx4—Cx41—Cx4265.6 (6)42.9 (5)47.0 (5)
Cx41—Cx42—Cx43—Cx44-168.5 (4)155.1 (4)171.9 (4)
Dihedral12.4 (3)32.26 (11)23.24 (18)
The term dihedral here refers to the dihedral angle between the pyridine and the imidazole rings.

In order to specify an asymmetric unit in which the three independent molecules of (IIIc) were linked by hydrogen bonds, it was necessary to selected molecule 2 (x = 2) to be the conformational enantiomer opposite from those selected for molecules 1 and 3 (x = 1 and 3) (see text). For ease of comparison, the values of the torsional angles cited above for x = 2 refer to the inverted molecule at (-x, -y, -z) so that the values refer to corresponding conformational enantiomers for all three molecules, with positive values for the torsional angles Cx3—Cx4—Cx41—Cx41.
Hydrogen bonds (Å, °) for compounds (IIIa)–(IIIc) top
CompoundD—H···AD—HH···AD···AD—H···A
(IIIa)N21—H21···O31i0.832 (19)2.379 (18)3.0764 (16)141.8 (16)
C422—H422···Cg1ii0.952.533.4420 (17)168
C426—H426···Cg2iii0.952.683.5161 (18)148
(IIIb)N21—H21···O31iv0.86 (3)2.45 (2)3.081 (3)130.4 (19)
C7—H7···Cg3iii0.952.953.704 (2)138
C33—H33B···Cg3v0.982.983.768 (3)139
(IIIc)N121—H121···O2310.78 (4)2.17 (4)2.876 (4)150 (4)
N221—H221···O3310.83 (4)2.13 (4)2.882 (4)151 (4)
N321—H321···O131vi0.84 (4)2.20 (4)2.910 (4)141 (3)
N321—H321···O431vi0.84 (4)2.35 (5)4.03 (3)137 (3)
C127—H127···N2230.952.583.432 (5)149
C227—H227···N3230.952.623.522 (5)159
C332—H32B···Cg4iv0.992.803.702 (5)152
C347—H347···Cg5vii0.952.703.548 (5)149
Cg1–Cg5 represent the centroids of the rings C23A/C24–C27/C27A, N1/C2–C4/C4A/C8A, C421–C426, C24A/C25–C28/C28A and C23A/C27A/C227/C226/C225/C224, respectively.

Symmetry codes: (i) x, -y+3/2, z+1/2; (ii) -x+2, y-1/2, -z+3/2; (iii) -x+1, -y+1, -z+1; (iv) -x+1/2, y+1/2, -z+3/2; (v) -x, -y+1, -z+1; (vi) x-1, y, z; (vii) -x+1/2, y-1/2, -z+3/2.
 

Acknowledgements

JC and ID thank the Centro de Instrumentación Científico-Técnica of the Universidad de Jaén (UJA) and its staff for the data collection. AP acknowledges support from the Vicerrectoría de Investigación y Extensión of the Industrial University of Santander. JC thanks the Universidad de Jaén and the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía, Spain), for financial support. ID also thanks Vicerrectoría de Investigación of Universidad de Jaén for a PhD Scholar fellowship.

Funding information

Funding for this research was provided by: Vicerrectoría de Investigación y Extensión of the Industrial University of Santander (grant No. 2680).

References

First citationAfzal, O., Kumar, S., Haider, M. R., Ali, M. R., Kumar, R., Jaggi, M. & Bawa, S. (2015). Eur. J. Med. Chem. 97, 871–910.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAgrawal, R., Jain, P. & Dikshit, S. N. (2012). Curr. Drug Targets, 13, 863–875.  CrossRef CAS PubMed Google Scholar
First citationBellam, M., Gundluru, M., Sarva, S., Chadive, S., Netala, V. R., Tartte, V. & Cirandur, S. R. (2017). Chem. Heterocycl. C, 53, 173–178.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosimelli, B., Taliani, S., Greco, G., Novellino, E., Sala, A., Severi, E., Da Settimo, F., La Motta, C., Pugliesi, I., Antonioli, L., Fornai, M., Colucci, R., Blandizzi, C., Daniele, S., Trincavelli, M. L. & Martini, C. (2011). ChemMedChem, 6, 1909–1918.  CrossRef CAS PubMed Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurvinder, S., Maninderjit, K. & Mohan, C. (2013). Int. Res. J. Pharm. 4, 82–87.  Google Scholar
First citationHernández-Romero, D., Rosete-Luna, S., López-Monteon, A., Chávez-Piña, A., Pérez-Hernández, N., Marroquín-Flores, J., Cruz-Navarro, A., Pesado-Gómez, G., Morales-Morales, D. & Colorado-Peralta, R. (2021). Coord. Chem. Rev. 439, 213930.  Google Scholar
First citationHranjec, M., Pavlović, G., Marjanović, M., Kralj, M. & Karminski-Zamola, G. (2010). Eur. J. Med. Chem. 45, 2405–2417.  CSD CrossRef CAS PubMed Google Scholar
First citationHu, Y.-Q., Gao, C., Zhang, S., Xu, L., Xu, Z., Feng, L.-S., Wu, X. & Zhao, F. (2017). Eur. J. Med. Chem. 139, 22–47.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJagdale, D. & Patil, P. (2019). World J. Pharm. Pharm. Sci. 8, 311–328.  CAS Google Scholar
First citationKaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245–3264.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKidwai, M., Jahan, A. & Bhatnagar, D. (2010). J. Chem. Sci. 122, 607–612.  CrossRef CAS Google Scholar
First citationLauria, A., La Monica, G., Bono, A. & Martorana, A. (2021). Eur. J. Med. Chem. 220, 113555.  Web of Science CrossRef PubMed Google Scholar
First citationLin, S. & Yang, L. (2005). Tetrahedron Lett. 46, 4315–4319.  CrossRef CAS Google Scholar
First citationMantu, D., Antoci, V., Moldoveanu, C., Zbancioc, G. & Mangalagiu, I. I. (2016). J. Enzyme Inhib. Med. Chem. 31, 96–103.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMatada, B. S., Pattanashettar, R. & Yernale, N. G. (2021). Bioorg. Med. Chem. 32, 115973.  Web of Science CrossRef PubMed Google Scholar
First citationMeléndez, A., Plata, E., Rodríguez, D., Ardila, D., Guerrero, S. A., Acosta, L. M., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804–1822.  Google Scholar
First citationMoss, G. P. (1996). Pure Appl. Chem. 68, 2193–2222.  CrossRef CAS Web of Science Google Scholar
First citationMusiol, R. (2017). Exp. Opin. Drug. Discov. 12, 583–597.  Web of Science CrossRef CAS Google Scholar
First citationNayak, A. (2004). Expert Opin. Pharmacother. 5, 679–686.  CrossRef PubMed CAS Google Scholar
First citationOrozco, D., Kouznetsov, V. V., Bermúdez, A., Vargas Méndez, L. Y., Mendoza Salgado, A. R. & Meléndez Gómez, C. M. (2020). RSC Adv. 10, 4876–4898.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPerin, N., Nhili, R., Cindrić, M., Bertoša, B., Vušak, D., Martin-Kleiner, I., Laine, W., Karminski-Zamola, G., Kralj, M., David-Cordonnier, M. H. & Hranjec, M. (2016). Eur. J. Med. Chem. 122, 530–545.  CrossRef CAS PubMed Google Scholar
First citationRenhowe, P. A., Pecchi, S., Shafer, C. M., Machajewski, T. D., Jazan, E. M., Taylor, C., Antonios-McCrea, W., McBride, C. M., Frazier, K., Wiesmann, M., Lapointe, G. R., Feucht, P. H., Warne, R. L., Heise, C. C., Menezes, D., Aardalen, K., Ye, H., He, M., Le, V., Vora, J., Jansen, J. M., Wernette-Hammond, M. E. & Harris, A. L. (2009). J. Med. Chem. 52, 278–292.  CrossRef PubMed CAS Google Scholar
First citationRiddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493–504.  CrossRef Web of Science Google Scholar
First citationRiddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249–256.  CrossRef Web of Science Google Scholar
First citationRodríguez, D., Guerrero, S. A., Palma, A., Cobo, J. & Glidewell, C. (2020). Acta Cryst. C76, 883–890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalahuddin, Shaharyar, M. & Mazumder, A. (2017). Arab. J. Chem. 10, S157–S173.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, M. P., Sasmal, S., Lu, W. & Chatterjee, M. N. (2000). Synthesis, 2000, 1380–1390.  CrossRef Google Scholar
First citationSinghal, S., Khanna, P., Panda, S. S. & Khanna, L. (2019). J. Heterocycl. Chem. 56, 2702–2729.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVera, D. R., Mantilla, J. P., Palma, A., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 524–530.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYadav, P. & Shah, K. (2021). Bioorg. Chem. 109, 104639.  Web of Science CrossRef PubMed Google Scholar
First citationYaragorla, S. & Vijaya Babu, P. (2017). Tetrahedron Lett. 58, 1879–1882.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds