research papers
N-Cycloamino substituent effects on the packing architecture of ortho-sulfanilamide molecular crystals and their in silico carbonic anhydrase II and IX inhibitory activities
aDepartment of Chemistry, University of Lagos, Akoka-Yaba, Lagos, Nigeria, and bDepartment of Chemistry, Nelson Mandela University, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: adeniyi.ogunlaja@mandela.ac.za, familonio@unilag.edu.ng
In the search for new `sulfa drugs' with therapeutic properties, o-nitrosulfonamides and N-cycloamino-o-sulfanilamides were synthesized and characterized using techniques including 1H NMR, 13C NMR and FT–IR spectroscopy, and single-crystal X-ray diffraction (SC-XRD). The calculated density functional theory (DFT)-optimized geometry of the molecules showed similar conformations to those obtained by SC-XRD. Molecular docking of N-piperidinyl-o-sulfanilamide and N-indolinyl-o-sulfanilamide supports the notion that o-sulfanilamides are able to bind to human carbonic anhydrase II and IX inhibitors (hCA II and IX; PDB entries 4iwz and 5fl4). Hirshfeld surface analyses and DFT studies of three o-nitrosulfonamides {1-[(2-nitrophenyl)sulfonyl]pyrrolidine, C10H12N2O4S, 1, 1-[(2-nitrophenyl)sulfonyl]piperidine, C11H14N2O4S, 2, and 1-[(2-nitrophenyl)sulfonyl]-2,3-dihydro-1H-indole, C14H12N2O4S, 3} and three N-cycloamino-o-sulfanilamides [2-(pyrrolidine-1-sulfonyl)aniline, C10H14N2O2S, 4, 2-(piperidine-1-sulfonyl)aniline, C11H16N2O2S, 5, and 2-(2,3-dihydro-1H-indole-1-sulfonyl)aniline, C14H14N2O2S, 6] suggested that forces such as hydrogen bonding and π–π interactions hold molecules together and further showed that charge transfer could promote bioactivity and the ability to form biological interactions at the piperidinyl and phenyl moieties.
1. Introduction
Sulfanilamide (4-aminobenzenesulfonamide) is aptly described as the antecedent of the group of therapeutics known as `sulfa drugs', which ushered in the modern era of antibacterial chemotherapy (Ajani et al., 2012). Although it had been a component of a staple azo dye in the colour industry since the beginning of the 20th century, it did not gain prominence in medicine until the 1930s when Gerhard Domagk and co-workers patented Prontosil, A (Fig. 1), a sulfanilamide prodrug, which not only revolutionized the treatment of bacterial infections, but chemotherapy as a whole, and led to the development of other drugs for non-infectious diseases.
It has been established that the bacteriostatic properties of sulfanilamides (Fig. 1) are predicated based on two major motifs: the aryl amine (–NH2) and sulfonamide (–SO2NHR) groups (Lesch, 2007). A free or hydrolysable substituted amino (–NHR′) moiety that is para to the sulfonamido group has been reported to be crucial for antibacterial activity, whereas modification of the position to the ortho and/or meta position results in non-antibacterial activities (Ajani et al., 2012). The derivatization of the sulfonamido group with heterocycles has also produced more potent antibiotics (Ajani et al., 2012; Lesch, 2007). In addition, it has been long reported that no correlations exist between the toxicities and therapeutic efficiencies, as well as toxicities and solubilities, of the three isomers of sulfanilamide, as evidenced by the finding that even though meta-sulfanilamide C was the least toxic of the three, only para-sulfanilamide B possessed bacteriostatic activity (Laug & Morris, 1939). Notably, the inhibitions of the Helicobacter pylori α-class carbonic anhydrase (hpCA) (Nishimori et al., 2006) and tumour-associated transmembrane carbonic anhydrase IX (CA IX) (Vullo et al., 2003) isozymes have been observed with ortho-sulfanilamide D (orthanilamide). E are derivatives of sulfanilamide and remain an important class of drugs, with antibacterial and non-antibacterial potencies, such as diuretic, antimicrobial, anti-epileptic, antileprotic, antimalarial, hypoglycemic, antiretroviral, antithyroid and anti-inflammatory activities (Gul et al., 2016; Henry, 1943; Casini et al., 2002; Mohan et al., 2006; Alex & Storer, 2010).
They also inhibit carbonic anhydrase (Gul et al., 2016; Ghorab et al., 2014; Nocentini et al., 2016) and have been reported to show in vivo and/or in vitro antitumour activities (Boyland, 1946). Many of these sulfonamide-based (sulfa) drugs, reported to be in clinical trials, are devoid of the side effects plaguing most of the current pharmacological agents (Casini et al., 2002; Owa et al., 2002; Lavanya, 2017; Andreucci et al., 2019).
The identification of pharmacologically active moieties in model molecules and lead candidates of physiological significance from a vast array of substances, with the potential of further optimization, is a crucial facet of rational drug design and discovery (Voronin et al., 2020). The process of optimization, it must be noted, typically involves structure–activity relationship studies that facilitate the selection of molecules with optimal receptor affinities (Bloom & Laubach, 1962; Kalgutkar et al., 2010; Sly & Hu, 1995; Lehtonen et al., 2004; Żołnowska et al., 2014; Thiry et al., 2008; Angeli et al., 2020; Güzel-Akdemir et al., 2015; Rutkauskas et al., 2014; Congiu et al., 2014; Temperini et al., 2008a,b; Chiche et al., 2010; Türeci et al., 1998; PDB, http://www.rcsb.org/pdb; Berman et al., 2000). In continuation of the design of potential `sulfa drugs', we report the synthesis, structural and theoretical studies, and docking application of the o-nitrosulfonamides 1-[(2-nitrophenyl)sulfonyl]pyrrolidine, 1, 1-[(2-nitrophenyl)sulfonyl]piperidine, 2, and 1-[(2-nitrophenyl)sulfonyl]-2,3-dihydro-1H-indole, 3, and the N-cycloamino-o-sulfanilamides 2-(pyrrolidine-1-sulfonyl)aniline, 4, 2-(piperidine-1-sulfonyl)aniline, 5, and 2-(2,3-dihydro-1H-indole-1-sulfonyl)aniline, 6. The crystal structures, density functional theory (DFT) studies, Hirshfeld surface analysis, molecular electrostatic potential and electronic properties of the title sulfonamides and sulfanilamides (1–6) have been discussed. Molecular docking experiments with carbonic anhydrase II (PDB entry 4iwz) and IX (5fl4) active sites were conducted in order to predict their binding interactions with 1–6 (Scheme 1).
2. Experimental
2.1. Instruments and measurements
All reagents were purchased from Millipore Sigma (Germany and South Africa) and were used without purification. The melting points were determined on an Electrothermal digital melting-point apparatus and are uncorrected. Reactions were monitored by 254 precoated plates using a dichloromethane/n-hexane (2 or 1.4:1 v/v) solvent system visualized under a UV lamp (254 nm). was performed with silica gel (70–230 mesh ASTM) and mobile phases were as indicated. Sample crystallization was achieved by the slow evaporation of the indicated solvent systems at ambient temperature. IR spectra were obtained using a Bruker Tensor 27 platinum ATR–FT–IR spectrometer. The ATR–FT–IR spectra were acquired in a single mode with a resolution of 4 cm−1 over 32 scans, in the region 4000–650 cm−1. 1H and 13C NMR spectra were recorded, in CDCl3, on a Bruker 400 MHz spectrometer. (δ) values were measured in parts per million (ppm) downfield from tetramethylsilane (TMS) and coupling constants (J) are reported in hertz (Hz). Theoretical studies were performed for the compounds and, in each case, their SC-XRD structures were used for optimization and global reactivity descriptor (GRD) calculations.
(TLC) on Merck silica gel 60 F2.2. Synthesis and crystallization
2.2.1. Synthesis of N-cycloamino-o-nitrobenzenesulfonamides 1–3
o-Nitrobenzenesulfonyl chloride (1.00 mmol) was added slowly to a stirring dried toluene solution (30 ml) of the cycloamine (2.20 mmol) at ambient temperature and stirred for 12 h, monitored by TLC. The reaction mixture was then diluted with dichloromethane (30 ml) and washed with distilled water (3 × 10 ml). The organic layer was separated, dried over anhydrous sodium sulfate, filtered and concentrated to an oil, which was purified by on silica gel (dichloromethane/n-hexane, 2:1 v/v). Crystals were obtained by the slow solvent evaporation of the requisite eluates at ambient temperature, except for 5, which was recrystallized from dichloromethane, slowly evaporated and filtered to give single crystals.
2.2.1.1. N-Pyrrolidinyl-o-nitrobenzenesulfonamide, 1. o-Nitrobenzenesulfonyl chloride (3.00 g, 13.54 mmol) and pyrrolidine (2.12 g, 2.45 ml, 29.81 mmol). Yellow crystals (2.95 g, 85%); RF = 0.44 (CH2Cl2/n-hexane, 2:1 v/v); m.p. 81.7–81.9 °C. IR (Bruker, ATR, ν, cm−1): 3080 (aryl C—H str.), 2968 (sp3-C—H str.), 1597 (aryl C=C str.), 1543 (asym C—NO2 str.), 1344 (sym C—NO2 str.), 1342 (asym SO2—N str.), 1163 (sym SO2—N str.), 1078 (C—N str.). 1H NMR (Bruker, 400 MHz, CDCl3, δH, ppm): 7.94 (1H, d, J = 8 Hz, ArH), 7.62 (2H, t, J = 4 Hz, ArH), 7.54 (1H, d, J = 8 Hz, ArH), 3.37–3.35 (4H, m, –CH2NCH2–), 1.85 (4H, m, –CH2CH2–). 13C NMR (Bruker, 100 MHz, CDCl3, δC, ppm): 148.4, 133.5, 132.1, 131.5, 130.6, 123.9 (ArH), 48.2 (–CH2NCH2–), 25.9 (–CH2CH2–).
2.2.1.2. N-Piperidinyl-o-nitrobenzenesulfonamide, 2. o-Nitrobenzenesulfonyl chloride (5.00 g, 22.57 mmol) and piperidine (3.84 g, 4.45 ml, 45.1 mmol). Yellow crystals (4.97 g, 81.5%); RF = 0.56 (CH2Cl2/n-hexane, 2:1 v/v); m.p. 91.6–91.8 °C. IR (Bruker, ATR, ν, cm−1): 3076 (aryl C—H str.), 2947 (sp3-C—H str.), 1552 (aryl C=C str.), 1550 (asym C—NO2 str.), 1354 (sym C—NO2 str.), 1350 (asym SO2—N str.), 1166 (sym SO2—N str.), 1056 (C—N str.). 1H NMR (Bruker, 400 MHz, CDCl3, δH, ppm): 7.96 (1H, d, J = 4 Hz, ArH), 7.70 (2H, t, J = 4 Hz, ArH), 7.59 (1H, d, J = 8 Hz, ArH), 3.26–3.24 (4H, m, –CH2NCH2–), 1.64–1.63 (4H, m, –CH2CH2CH2–), 1.55–1.54 (2H, m, –CH2CH2CH2–). 13C NMR (Bruker, 100 MHz, CDCl3, δC, ppm): 148.5, 133.6, 131.6, 131.5, 130.8, 123.5 (ArH), 47.0 (–CH2NCH2–), 25.4 (–CH2CH2CH2–), 23.5 (–CH2CH2CH2–).
2.2.1.3. N-Indolinyl-o-nitrobenzenesulfonamide, 3. o-Nitrobenzenesulfonyl chloride (3.00 g, 13.54 mmol) and indoline (3.55 g, 3.34 ml, 29.79 mmol). Yellow crystals (3.11 g, 75.5%); RF = 0.79 (CH2Cl2/n-hexane, 2:1 v/v); m.p. 106.5–106.8 °C. IR (Bruker, ATR, ν, cm−1): 3077 (aryl C—H str.), 2976 (sp3-C—H str.), 1594 (aryl C=C str.), 1536 (asym C—NO2 str.), 1356 (sym C—NO2 str.), 1355 (asym SO2—N str.), 1161 (sym SO2—N str.), 1051 (C—N str.). 1H NMR (Bruker, 400 MHz, CDCl3, δH, ppm): 7.95 (1H, d, J = 8 Hz, ArH), 7.71 (1H, t, J = 8 Hz, ArH), 7.62 (2H, t, J = 8 Hz, ArH), 7.48 (1H, d, J = 8 Hz, ArH), 7.21 (2H, t, J = 8 Hz, ArH), 7.05 (1H, t, J = 8 Hz, ArH), 4.17 (2H, t, J = 8 Hz, –NCH2–), 3.10 (2H, t, J = 8 Hz, –NCH2CH2–). 13C NMR (Bruker, 100 MHz, CDCl3, δC, ppm): 148.4, 141.1, 134.1, 131.8, 131.7, 131.6, 130.2, 127.8, 125.5, 124.3, 124.2, 114.5 (ArH), 50.5 (–NCH2–), 28.0 (–NCH2CH2–).
2.2.2. N-Cycloamino-o-sulfanilamides 4–6
An evacuated nitrogen-gas-filled round-bottomed flask was charged with N-cycloamino-o-nitrobenzenesulfonamides 1–3 (15.63 mmol) dissolved in ethanol (30 ml), at ambient temperature, and 10% palladium-on-charcoal catalyst (3.35 mol%) was added, with stirring. Hydrogen gas was then introduced via a balloon and stirring continued at ambient temperature for 12 h. The reaction mixture was filtered and the solvent was evaporated in vacuo. The resulting residue was extracted into dichloromethane (50 ml), dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to afford an oil, which was purified on a silica-gel column using dichloromethane and n-hexane (2:1 v/v). Crystals were obtained via slow solvent evaporation of the eluates at ambient temperature.
2.2.2.1. N-Pyrrolidinyl-o-sulfanilamide, 4. N-Pyrrolidinyl-o-nitrobenzenesulfonamide 1 (4.00 g, 15.63 mmol) with 10% palladium-on-charcoal catalyst (0.56 g, 5.26 mmol). Off-white crystals (2.90 g, 82%); RF = 0.40 (CH2Cl2/n-hexane, 2:1 v/v); m.p. 75.2–75.4 °C. IR (Bruker, ATR, ν, cm−1): 3464, 3363 (N—H str.), 3003 (aryl C—H str.), 2947 (sp3-C—H str.), 1620 (aryl C=C str.), 1323 (asym SO2—N str.), 1132 (sym SO2—N str.), 1307 (C—N str.). 1H NMR (Bruker, 400 MHz, CDCl3, δH, ppm): 7.63 (1H, d, J = 8 Hz, ArH), 7.28 (1H, t, J = 8 Hz, ArH), 6.74 (2H, d, J = 8 Hz, ArH), 5.13 (2H, s, NH), 3.31 (4H, m, –CH2NCH2–), 1.80 (4H, m, –CH2CH2–). 13C NMR (Bruker, 100 MHz, CDCl3, δC, ppm): 146.4, 134.0, 130.2, 119.1, 117.6, 117.1 (ArH), 47.8 (–CH2NCH2–), 25.2 (–CH2CH2–).
2.2.2.2. N-Piperidinyl-o-sulfanilamide, 5. N-Piperidinyl-o-nitrobenzenesulfonamide 2 (4.00 g, 14.81 mmol) with 10% palladium-on-charcoal catalyst (0.53 g, 4.98 mmol). Off-white crystals (3.06 g, 86%); RF = 0.57 (CH2Cl2/n-hexane, 2:1 v/v); m.p. 76.6–76.8 °C. IR (Bruker, ATR, ν, cm−1): 3487; 3383 (N—H str.), 3072 (aryl C—H str.), 2947 (sp3-C—H str.), 1606 (aryl C=C str.), 1309 (asym SO2—N str.), 1136 (sym SO2—N str.), 1336 (C—N str.). 1H NMR (Bruker, 400 MHz, CDCl3, δH, ppm): 7.48 (1H, d, J = 8 Hz, ArH), 7.21 (1H, t, J = 8 Hz, ArH), 6.67 (1H, d, J = 8 Hz, ArH), 6.64 (1H, d, J = 8 Hz, ArH), 4.99 (2H, s, NH), 3.03–3.00 (4H, m, –CH2NCH2–), 1.56–1.53 (4H, m, –CH2CH2CH2–), 1.39–1.37 (2H, m, –CH2CH2CH2–). 13C NMR (Bruker, 100 MHz, CDCl3, δC, ppm): 146.3, 134.0, 130.1, 118.0, 117.6, 117.0 (ArH), 46.8 (–CH2NCH2–), 25.2 (–CH2CH2CH2–), 23.6 (–CH2CH2CH2–).
2.2.2.3. N-Indolinyl-o-sulfanilamide, 6. N-Indolinyl-o-nitrobenzenesulfonamide 3 (2.50 g, 8.22 mmol) with 10% palladium-on-charcoal catalyst (0.29 g, 2.73 mmol). Off-white crystals (1.69 g, 75%); RF = 0.80 (CH2Cl2/n-hexane, 2:1 v/v); m.p.: 111.9–112 °C. IR (Bruker, ATR, ν, cm−1): 3448, 3367 (N—H str.), 3070 (aryl C—H str.), 2924 (sp3-C—H str.), 1597 (aryl C=C str.), 1327 (asym SO2—N str.), 1138 (sym SO2—N str.), 1330 (C—N str.). 1H NMR (Bruker, 400 MHz, CDCl3, δH, ppm): 7.48 (2H, d, J = 8 Hz, ArH), 7.16 (1H, t, J = 8 Hz, ArH), 7.08 (1H, t, J = 6 Hz, ArH), 7.03 (1H, d, J = 8 Hz, ArH), 6.90 (1H, t, J = 8 Hz, ArH), 6.58 (1H, d, J = 8 Hz, ArH), 6.55 (1H, d, J = 8 Hz, ArH), 5.00 (2H, s, NH), 3.96 (2H, t, J = 8 Hz, –NCH2–), 2.86 (2H, t, J = 8 Hz, –NCH2CH2–). 13C NMR (Bruker, 100 MHz, CDCl3, δC, ppm): 146.4, 142.3, 134.4, 132.1, 129.8, 127.6, 125.1, 123.7, 119.4, 117.7, 117.3, 115.1 (ArH), 50.0 (–NCH2–), 28.1 (–NCH2CH2). Reaction synthesis of nitrosulfonamides 1–3 and aminosulfonamides 4–6 are presented in Scheme S1 in the supporting information. The FT–IR, MS and 1H/13C NMR spectra of compounds 1–6 are also presented in the supporting information.
2.3. Docking studies
2.3.1. Preparation of the ligands for docking
The X-ray crystal structures of synthesized compounds 1–6 (CIF files) were imported directly into the Schrödinger Suite (Schrödinger, 2022) for preparation. The reference drugs N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)-2-(thiophen-2-yl)acetamide (A) and 5-[1-(naphthalen-1-yl)-1,2,3-triazol-4-yl]thiophene-2-sulfonamide (B) were based on chemical structures downloaded from the PubChem (https://pubchem.ncbi.nlm.nih.gov/) website in SDF format. A and B were used as reference compounds because they are natural ligands in the crystalline state of 5fl4 and 4iwz. The Ligprep module of the molecular modelling platform of the Schrödinger Suite (Schrödinger, 2022) was then used to prepare the imported structures by assigning bond lengths, bond angles, generating possible ionization states at pH 7 using Epik and finally to optimize using the OPLS4 force field (Nainwal et al., 2018).
2.3.2. Protein preparation
The protein structures of 4iwz and 5fl4, with resolutions of 1.60 and 1.82 Å, respectively, were downloaded from the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB). Retrieved crystal coordinates were prepared in the `Protein Preparation Wizard' of the Schrödinger Suite (Schrödinger, 2022), with default parameters of assigning bond orders, optimizing and minimization using OPLS4. A receptor grid generation module was applied to the prepared proteins by selecting the corresponding cocrystallized ligand to define the binding site. A default parameter for the radii of van der Waals having a scaling factor of 1 Å with a partial charge cut-off of 0.25 Å was used (Panwar & Singh, 2021; Yang et al., 2022).
2.3.3. Molecular docking
Docking calculations were executed in the extra precision (XP) mode of the Glide module in the molecular modelling platform of the Schrödinger Suite (Schrödinger, 2022). The complexes with the highest negative docking scores have better binding towards the respective proteins 4iwz and 5fl4. Docking calculations of the synthesized N-cycloamino derivatives against the hCA II (PDB entry 5fl4) and XII (4iw7) isoforms will provide a selectivity profile that may be interesting for the development of novel anticancer agents with limited side effects. The hCA II (PDB entry 5fl4) and XII (4iw7) carbonic anhydrase isoforms have recently emerged as excellent targets for the design of novel therapeutic strategies for cancer, due to their involvement in the survival of tumour cells, as well as in the insurgence of resistance to classical anticancer protocols (Milite et al., 2019).
2.4. DFT calculations
Theoretical studies were performed for compounds 1–6 whereupon the SC-XRD structures of the compounds were used for optimization and global reactivity descriptor (GRD) calculations. Computational studies and molecular electrostatic potential (MEP) for 1–6 were carried out using the GAUSSIAN16 software package (Frisch et al., 2016), whereas the calculations were performed using the standard hybrid density functional method (B3LYP) with a basis set of the 6-311++G**(p,d) level (Becke, 1993). Optimized molecules were obtained with the Chemcraft visualization program (https://www.chemcraftprog.com/).
2.5. Refinement
Crystal data, data collection and structure . Carbon-bound H atoms were added in idealized geometrical positions in a riding model. Nitrogen-bound H atoms were located in a difference map and refined freely.
details are summarized in Table 13. Results and discussion
3.1. Chemistry
The N-cycloamino-o-sulfanilamides 4–6 were prepared via a two-step reaction, starting from the condensation reaction of o-nitrobenzenesulfonyl chloride with alicyclic in toluene, at ambient temperature, to afford N-cycloamino-o-nitrobenzenesulfonamide adducts 1–3 (Scheme S1 in the supporting information). The use of toluene as a nonpolar reaction medium was, amongst other reasons, to drive the forward reaction. In the second step, adducts 1–3 were hydrogenated with hydrogen gas, in ethanol at ambient temperature, in the presence of 10% palladium-on-activated catalyst to give the target N-cycloamino-o-sulfanilamides 4–6 in 72–86% yield. The reactions were monitored by TLC.
All the compounds synthesized were characterized by their melting points and IR, 1H/13C NMR and MS spectra. In the IR spectra of o-nitrosulfonamide adducts 1–3, the strong absorption bands observed at 1355–1342 and 1171–1161 cm−1 were ascribed to the asymmetric and symmetric stretching frequencies, respectively, of the SO2—N moiety, thereby alluding to the formation of the sulfonamide bond. The disappearances of the SO2—Cl (1420 and 1220 cm−1) and N—H (3286–3265 cm−1) stretching bands in the IR spectra of o-nitrobenzenesulfonyl chloride and cycloamines, respectively, were good indicators of a successful condensation reaction. This was corroborated by the shift of the sulfonyl (–SO2–) absorption bands from 1420 and 1220 (in o-nitrobenzenesulfonyl chloride) to 1355–1342 and 1171–1161 cm−1 (in 1–3). It is noteworthy that the lower wavenumbers observed in the IR spectra of o-nitrosulfonamides 1–3 for –SO2– were not unusual as the Cl atom bonded to it had been replaced by a less electronegative N atom. In the IR spectra of o-sulfanilamides 4–6, the appearance of two N—H stretching bands in the higher frequency region around 3467 ± 20 and 3383 ± 10 cm−1, and the disappearance of the nitro (NO2) absorption bands (observed at 1550–1536 and 1369–1342 cm−1) in the spectra of 1–3 were attributed to the successful catalytic reduction of the nitro group to the amino group.
The 1H NMR spectra of o-nitrosulfonamides 1–3 were additive of the individual spectra of the starting materials (i.e. o-nitrobenzenesulfonyl chloride and cycloamines), with the disappearance of the nitrogen proton peaks of cycloamines. The aromatic protons of o-sulfanilamides 4–6 resonated upfield in comparison to the same aromatic protons in precursors 1–3. This general shift towards tetramethylsilane (TMS) was credited to the newly formed amino groups whose lone-pair electrons are suspected of having caused the increased mesomeric shielding of the aromatic protons. D2O-exchangeable singlets were also observed in the 1H NMR spectra of 4–6 between 5.13 and 4.99 ppm for the newly-formed amino protons. The success of the catalytic hydrogenation of nitro adducts 1–3 was corroborated by the 13C NMR spectra of 4–6, where the requisite C atoms (C—NO2 → C—NH2) resonated upfield in the range 133.9–130.1 ppm. The spectroscopic data analyses of the synthesized compounds were consistent with the assigned structures of the compounds.
3.2. Crystal structure
The molecules of 1–3 and 4–6 crystallized in the monoclinic P21/n or P21/c (No. 14), except for 5, which crystallized in the orthorhombic Pbca (No. 61). In addition, they all had one molecule in the with the exception of 4, with two independent molecules per cell. The two molecules per of compound 4 were identical but for the conformation of the pyrrolidine group (cf. Fig. S1 in the supporting information). It is noteworthy that the pyrrolidine ring in 1 is disordered. The molecular structures of 1–3 and 4–6 are shown in Fig. 2, while the crystal data collection parameters of o-nitrosulfonamides 1–3 and N-cycloamino-o-sulfanilamides 4–6 are presented in Table 1. They are compared with the data of para-sulfanilamide and ortho-sulfanilamide, which crystallize in the orthorhombic Pbca (No. 61) and monoclinic P21/c (No. 14) space groups, respectively (Gelbrich et al., 2008; Shad et al., 2008). Several sulfonamide derivatives have also been reported (El-Gaby et al., 2020). Selected bond lengths and angles, as determined from the SC-XRD experiments, are collected in Table S1 (see supporting information).
It is instructive to note that the amino (NH2) group in N-cycloamino-o-sulfanilamides 4–6 contributed significantly to their hydrogen-bond interactions (cf. Table 2). In all three structures, there were intramolecular N—H⋯O=S interactions resulting in ring closures that can be described with S(6) graph-set descriptors (Bernstein et al., 1995; Etter et al., 1990). Furthermore, compounds 5 and 6 exhibited infinite-chain intermolecular N—H⋯O=S interactions with C(6) descriptors. Interestingly, no infinite chain interaction was observed in 4; instead, four molecules were linked into a ring structure with an R44(24) descriptor. The p-sulfanilamide (Gelbrich et al., 2008) and o-sulfanilamide (Shad et al., 2008) structures also each have a number of infinite-chain interactions and ring structures. Fig. 3 shows selected hydrogen-bond, C—H⋯(π ring) and π–π stacking interactions for sulfonamides 1–3 and sulfanilamides 4–6. All the hydrogen bonds were of moderate (mostly electrostatic) strength (Jeffrey, 1997), with 4 giving the strongest hydrogen bonds (Table 2). Additionally, the compounds also exhibited both intra- and intermolecular C—H⋯O=S interactions, with the length of the shortest interactions varying in the range 2.30–2.48 Å.
|
The only π–π stacking interaction of note occurred in 3, where two centroid-to-centroid interactions with distances of 3.6967 (11) Å were observed between the centrosymmetric indoline moieties. An N=O⋯π ring interaction of 3.657 (2) Å was also evident in 3, whereas intermolecular C—H⋯(π ring) interactions of 2.97 Å and S=O⋯(π ring) interactions of 3.5773 (15) Å were present in the structure of its hydrogenated analogue 6. The packing diagrams of the crystal structures of compounds 1–6 are shown in Fig. S2 in the supporting information.
3.3. Hirshfeld surface analysis
The Hirshfeld surface analyses (Turner et al., 2017) of compounds 1–6 showed intermolecular interactions such as O—H⋯O, O—H⋯N and C—H⋯π. Two sharp O—H spikes typical of an O—H⋯O interaction from 1 contributed the highest O⋯H interaction of 42.3%. The fingerprint plots showed that C⋯H contacts were highest for 6 (30.4%), and this is closely related to C—H⋯π interactions (McKinnon et al., 2007; Kolade et al., 2020). The percentages of the major contributions, e.g. C⋯H, O⋯H and N⋯H interatomic contacts, for each molecule are compiled in Table 3.
|
The molecular Hirshfeld surfaces, mapped as dnorm, shape index and curvedness, confirmed interactions between neighbouring molecules of 1–6 and are presented in Fig. S3. The large circular depressions (deep red) visible on the dnorm surfaces typically indicate that the molecule has a donor site(s) (e.g. amine and/or sulfone) or interactions with proteins.
Fingerprint plots of o-nitrosulfonamides 1–3 and N-cycloamino-o-sulfanilamides 4–6 in full and resolved into C⋯H, O⋯H and N⋯H are presented in Fig. S4 (supporting information). The intermolecular O⋯H and N⋯H interactions appear as two distinct spikes of almost equal length in the 2D (two-dimensional) fingerprint plots in the region 1.2 < (de + di) < 2.9 Å as light-sky-blue patterns in full fingerprint 2D plots and characterized to be 2.56 ± 0.21 Å corresponds to O⋯H contacts which contributes the majority of the surface area. 2D fingerprint plots reveal the contributions of these interactions in the quantitatively and are presented in Table 4 (with minimum and maximum values of dnorm, di and de provided). Complementary regions are also visible in the fingerprint plots (Fig. S4), where one molecule acts as a donor (de > di) and the other acts as an acceptor (de < di). This finding was validated by the calculated molecular electrostatic potential of 1–6 (Fig. S5). The negative potential (acceptor) is indicated as a red surface around the O atoms attached to sulfur (–SO2) and the N atoms attached to oxygen (–NO2). The blue/purple surface area indicates that the positive potential (donor) is mapped in the proximity of the H atoms (Fig. S5).
|
3.4. Global reactivity descriptors (GRDs)
The full geometry of optimized molecules 1–6 presented bond lengths similar to those obtained from the crystal data. A comparison of selected torsion angles of the crystal structures of 1–6 and the DFT-optimized molecules showed that conformation of the molecules did not change significantly in the DFT-optimized state (Fig. S6). Generally, the observed, almost flat, O—S—N—C torsion angle of the DFT-optimized molecules suggest that the lone pairs on sulfur may have contributed to the π-electron delocalization that is observed in the DFT molecules.
The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) electrons are distributed around various moieties within the various molecules (Fig. 4). Generally, electron distribution is mainly scattered in the HOMO over the phenyl, sulfur and indolinyl/pyrrolidinyl rings, with the exception of 3 and 5. The LUMO is mainly spread over the phenyl moieties. This indicates that there is a transfer of charge between the indolinyl/pyrrolidinyl rings and the phenyl moieties within the molecule.
The HOMO–LUMO gap, which describes the stability of molecules and predicts reactivity between species by providing the electrical transport properties, as well as electron carrier and mobility in molecules (Rathi et al., 2020), are provided in Table 5. N-Indolinyl-o-nitrobenzenesulfonamide 3 displayed the smallest energy gap (3.24 eV), indicating that it was the softest molecule with good polarizability and reactivity, whereas N-piperidinyl-o-sulfanilamide 5 presented the largest energy gap of 4.924 eV, thereby corroborating its high chemical hardness of 2.462 eV (cf. Table 5). The lowest LUMO energy was obtained from 3 (ELUMO = −3.175 eV), indicating that it is the best of the molecules analyzed, whereas 6 was the best in the series, with the highest HOMO energy (EHOMO) of −6.142 eV (Table 5). The observed large energy gap (4.924 eV) in 5 suggests that charge transfer could promote its bioactivity and ability to form biological interactions at the piperidinyl and phenyl moiety (Al-Wahaibi et al., 2019). Therefore, the predicted order of biological interactions are 5 > 6 > 4 > 2 > 1 > 3.
|
The I), (A), (μ), (χ), global hardness (η), global softness (S) and global (ω) values were calculated using the HOMO and LUMO energy values and are collated in Table 5. The lowest I value of 6.142 eV originated from sulfanilamide 6, whereas sulfonamide 3 gave the largest A value of 3.175 eV. Amongst the compounds studied, 2 gave the highest χ value of 5.1795 eV. Interestingly, sulfanilamide 5 displayed the highest η value of 2.462 eV and the lowest chemical softness (S) of 0.406 eV, thus alluding to its having the most reactive nature of all the molecules investigated. The highest global of 29.597 eV was also recorded for sulfonamide 2, indicating that it is a strong electrophile. In general, the chemical reactivities of compounds 1–6 have been shown to vary with the groups attached to the compounds (Abbaz et al., 2018).
(3.5. Docking studies
1–6 with human carbonic anhydrase II and IX inhibitors (hCA II and IX; PDB entries: 4iwz and 5fl4) (Biswas et al., 2013; Leitans et al., 2015), downloaded from the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) was carried out in Maestro (Version 13.1.137, MMshare Version 5.7.137, Release 2022-1, Platform Windows-x64) (Schrödinger, 2022). The binding strengths of the docked complexes were analysed through docking score, glide E-model and ligand efficiency (cf. Table 6). These energies define the degree of stability of binding between the respective isoenzymes and target compounds 1–6. N-(5-Sulfamoyl-1,3,4-thiadiazol-2-yl)-2-(thiophen-2-yl)acetamide (A) and 5-[1-(naphthalen-1-yl)-1,2,3-triazol-4-yl]thiophene-2-sulfonamide (B) were also docked with respective proteins 4iwz and 5fl4, and taken as reference or standard drugs. Docking poses for the synthesized compounds are displayed in Figs. S7–S18, while those for the reference drugs are shown in Figs. 5 and 6.
of synthesized
|
Docking calculations between 4iwz and A (reference drug) displayed a docking score of −2.252 kcal mol−1, which is higher than for all synthesized compounds 1–6 (cf. Table 6).
Also, A interacted with amino acid residues GLN92 (2.39 Å) and HIE64 (2.24 Å) via hydrogen-bonding interactions and with amino acid residue HIS94 (4.75 Å) via π–π stacking interactions (cf. Table 7). Some bad interactions/contacts were observed between the amino acid residue GLU106 and A (Fig. 5). Compound 2 displayed the best binding affinity among the synthesized compounds, with a docking score of −2.223 kcal mol−1, slightly lower than that of the reference drug. Sulfanilamides 4 and 5 also displayed significantly good binding affinities, with docking scores of −1.645 and −1.636 kcal mol−1, respectively. Sulfanilamide 6 was characterized by the lowest binding affinity, evidenced by its docking score of −0.784 kcal mol−1. Compound 6 displayed glide a E-model energy of −47.945 kcal mol−1 and a ligand efficiency of −0.041 kcal mol−1. Structurally, sulfanilamide 6 interacted with the protein 4iwz through hydrogen bonding with GLN92 (1.88 Å) and TRP5 (2.11 Å), and through π–π stacking with THR199 (1.81 Å) (Fig. S12).
|
To determine the mode of interaction of the synthesized compounds with human carbonic anhydrase IX inhibitor (hCA IX), the synthesized compounds were docked into the active site of 5fl4, and the results obtained were compared with the docked results of the reference drug B. We observed that the reference drug interacts with amino acid residues ASP13 (1.59–2.73 Å) and VAL130 (2.53 Å) via hydrogen bonding, and with HID94 (5.49 Å) via π–cation interactions (cf. Table 7). Furthermore, B exhibited a docking score of −1.969 kcal mol−1, a glide E-model energy of −41.029 kcal mol−1 and a ligand efficiency of −0.082 kcal mol−1, and is surrounded by several amino acid residues. Some of the residues are TRP9, PRO203, THR201, HID68, LEU199, HID94, GLN92, VAL171 and ZN264, with bad contacts or interactions observed on residue ASP131 (Fig. 6). Benzenesulfonamide 2 presented the highest binding affinity, with a docking score of −1.977 kcal mol−1, higher than the reference drug. All other synthesized compounds, except for N-cycloamino-o-nitrobenzenesulfonamide 1 (docking score = −0.807), displayed significantly good docking scores; however, they were lower than the reference drug (cf. Table 6). Compound 3 displayed hydrogen-bond interactions with amino acid residue GLN71, with a bond length of 2.26 Å, and a π–cation interaction with amino acid residue HID94, with a bond length of 4.05 Å (Fig. S15).
We observed that the docking scores of 2 with 4iwz and 5fl4 are close to those obtained for A with 4iwz and B with 5fl4. Docking scores of molecules with ring structures 1 and 3–6 (in the range > −1.67 kcal mol−1) also correlated with the and values presented in Table 5. This is informed by the HOMO and LUMO properties (Kumar et al., 2018).
4. Conclusion
o-Nitrosulfonamides 1–3 and N-cycloamino-o-sulfanilamides 4–6 have been successfully synthesized, characterized and the intermolecular interactions analysed, as well as being tested in silico for carbonic anhydrase II (4iwz) and IX (5fl4) inhibitory activities. The results obtained from crystal packing and DFT analysis suggests that the molecules are held together by forces such as hydrogen bonding and π–π interactions. The results of the DFT study of compounds 1–6 were correlated with the molecular docking data and indicate that and of the title compounds play an important role in their interaction with carbonic anhydrase II (4iwz) and IX (5fl4).
O-Nitrosulfonamide 2 displayed a good docking score against 4iwz (lower than the reference drug) and the best against 5fl4 (higher than the reference drug). These results provided a valuable synthesis approach and structural and docking information for compounds 1–6 that may be used for the development of potent antibacterial drugs.
Supporting information
https://doi.org/10.1107/S2053229622010130/oj3005sup1.cif
contains datablocks ka097, ja198, ja250, ja192, ka115, ja189, global. DOI:Structure factors: contains datablock ka097. DOI: https://doi.org/10.1107/S2053229622010130/oj3005ka097sup2.hkl
Structure factors: contains datablock ja198. DOI: https://doi.org/10.1107/S2053229622010130/oj3005ja198sup3.hkl
Structure factors: contains datablock ja250. DOI: https://doi.org/10.1107/S2053229622010130/oj3005ja250sup4.hkl
Structure factors: contains datablock ja192. DOI: https://doi.org/10.1107/S2053229622010130/oj3005ja192sup5.hkl
Structure factors: contains datablock ka115. DOI: https://doi.org/10.1107/S2053229622010130/oj3005ka115sup6.hkl
Structure factors: contains datablock ja189. DOI: https://doi.org/10.1107/S2053229622010130/oj3005ja189sup7.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2053229622010130/oj3005ka097sup8.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229622010130/oj3005ja198sup9.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229622010130/oj3005ja250sup10.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229622010130/oj3005ja192sup11.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229622010130/oj3005ka115sup12.cml
Supporting information file. DOI: https://doi.org/10.1107/S2053229622010130/oj3005ja189sup13.cml
Additional figures, tables and spectra. DOI: https://doi.org/10.1107/S2053229622010130/oj3005sup14.pdf
For all structures, data collection: APEX2 (Bruker, 2011); cell
APEX2 (Bruker, 2011); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b) and ShelXle (Hübschle et al., 2011); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020).C10H12N2O4S | F(000) = 536 |
Mr = 256.28 | Dx = 1.493 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.6173 (5) Å | Cell parameters from 9888 reflections |
b = 14.6662 (9) Å | θ = 2.7–28.3° |
c = 9.4885 (6) Å | µ = 0.29 mm−1 |
β = 108.075 (3)° | T = 200 K |
V = 1140.01 (12) Å3 | Block, yellow |
Z = 4 | 0.67 × 0.67 × 0.12 mm |
Bruker APEXII CCD diffractometer | 2849 independent reflections |
Radiation source: sealed tube | 2508 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.4°, θmin = 2.7° |
φ and ω scans | h = −11→11 |
Absorption correction: numerical (SADABS; Bruker, 2008) | k = −17→19 |
Tmin = 0.934, Tmax = 1.000 | l = −12→12 |
24329 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0517P)2 + 0.7926P] where P = (Fo2 + 2Fc2)/3 |
2849 reflections | (Δ/σ)max < 0.001 |
149 parameters | Δρmax = 0.43 e Å−3 |
20 restraints | Δρmin = −0.47 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C). The pyrrolidine group is disordered necessitating the use of the restraints SADI, EADP and SAME. Single-crystal X-ray diffraction (SC-XRD) data were collected at 200 or 296 K on a Bruker APEXII CCD diffractometer with graphite-monochromated Mo Kα radiation using the APEX2 data collection software and SAINT (Bruker 2012) for cell refinement and data reduction. The structures were solved by dual-space methods applying SHELXT2018 (Sheldrick, 2015a) and refined by least-squares procedures using SHELXL2018 (Sheldrick, 2015b). Data were corrected for absorption effects using the numerical method implemented in SADABS (Bruker 2012). All non-H atoms were refined anisotropically. The crystal structure diagrams were drawn with ORTEP-3 for Windows (Farrugia 2012). |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.49089 (5) | 0.66797 (3) | 0.32216 (4) | 0.02954 (13) | |
O1 | 0.52737 (15) | 0.62543 (9) | 0.46416 (13) | 0.0360 (3) | |
O2 | 0.41164 (17) | 0.75483 (10) | 0.29726 (18) | 0.0481 (4) | |
O3 | 0.91161 (16) | 0.56570 (9) | 0.57998 (13) | 0.0374 (3) | |
O4 | 0.74333 (16) | 0.49165 (8) | 0.40041 (15) | 0.0387 (3) | |
N1 | 0.3849 (2) | 0.59886 (12) | 0.20100 (17) | 0.0424 (4) | |
N2 | 0.82322 (16) | 0.55892 (9) | 0.45200 (15) | 0.0261 (3) | |
C21 | 0.67960 (18) | 0.68563 (10) | 0.28603 (17) | 0.0243 (3) | |
C22 | 0.82125 (18) | 0.63575 (9) | 0.35184 (16) | 0.0233 (3) | |
C23 | 0.9678 (2) | 0.65569 (11) | 0.32834 (19) | 0.0300 (3) | |
H23 | 1.063007 | 0.621352 | 0.376473 | 0.036* | |
C24 | 0.9742 (2) | 0.72656 (12) | 0.2335 (2) | 0.0347 (4) | |
H24 | 1.073735 | 0.740356 | 0.214723 | 0.042* | |
C25 | 0.8355 (2) | 0.77707 (12) | 0.1663 (2) | 0.0348 (4) | |
H25 | 0.839913 | 0.825347 | 0.100842 | 0.042* | |
C26 | 0.6899 (2) | 0.75768 (11) | 0.19374 (18) | 0.0304 (3) | |
H26 | 0.596179 | 0.793966 | 0.149089 | 0.036* | |
C11 | 0.3771 (10) | 0.4994 (5) | 0.2187 (8) | 0.0525 (5) | 0.579 (7) |
H11A | 0.365697 | 0.483433 | 0.316363 | 0.063* | 0.579 (7) |
H11B | 0.475419 | 0.469108 | 0.207784 | 0.063* | 0.579 (7) |
C12 | 0.2269 (6) | 0.4739 (3) | 0.0945 (5) | 0.0525 (5) | 0.579 (7) |
H12A | 0.126167 | 0.490743 | 0.117592 | 0.063* | 0.579 (7) |
H12B | 0.224619 | 0.407828 | 0.072438 | 0.063* | 0.579 (7) |
C13 | 0.2474 (6) | 0.5302 (4) | −0.0321 (5) | 0.0525 (5) | 0.579 (7) |
H13A | 0.142720 | 0.536536 | −0.112750 | 0.063* | 0.579 (7) |
H13B | 0.329694 | 0.502920 | −0.072615 | 0.063* | 0.579 (7) |
C14 | 0.3052 (11) | 0.6216 (4) | 0.0416 (7) | 0.0525 (5) | 0.579 (7) |
H14A | 0.384050 | 0.650475 | −0.001515 | 0.063* | 0.579 (7) |
H14B | 0.211994 | 0.663509 | 0.029701 | 0.063* | 0.579 (7) |
C15 | 0.3620 (14) | 0.5024 (7) | 0.2240 (11) | 0.0525 (5) | 0.421 (7) |
H15A | 0.289652 | 0.492782 | 0.285820 | 0.063* | 0.421 (7) |
H15B | 0.467484 | 0.471263 | 0.270293 | 0.063* | 0.421 (7) |
C16 | 0.2804 (9) | 0.4696 (4) | 0.0620 (7) | 0.0525 (5) | 0.421 (7) |
H16A | 0.362038 | 0.441474 | 0.021428 | 0.063* | 0.421 (7) |
H16B | 0.193459 | 0.424491 | 0.057238 | 0.063* | 0.421 (7) |
C17 | 0.2083 (8) | 0.5567 (5) | −0.0247 (7) | 0.0525 (5) | 0.421 (7) |
H17A | 0.207484 | 0.551559 | −0.128998 | 0.063* | 0.421 (7) |
H17B | 0.094759 | 0.566045 | −0.023970 | 0.063* | 0.421 (7) |
C18 | 0.3140 (15) | 0.6354 (6) | 0.0501 (10) | 0.0525 (5) | 0.421 (7) |
H18A | 0.399357 | 0.649069 | 0.003320 | 0.063* | 0.421 (7) |
H18B | 0.248645 | 0.691003 | 0.049588 | 0.063* | 0.421 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0263 (2) | 0.0333 (2) | 0.0318 (2) | 0.00668 (14) | 0.01314 (16) | 0.00676 (15) |
O1 | 0.0363 (6) | 0.0479 (7) | 0.0283 (6) | 0.0048 (5) | 0.0166 (5) | 0.0052 (5) |
O2 | 0.0392 (7) | 0.0428 (7) | 0.0700 (10) | 0.0185 (6) | 0.0280 (7) | 0.0142 (7) |
O3 | 0.0405 (7) | 0.0391 (7) | 0.0282 (6) | 0.0012 (5) | 0.0045 (5) | 0.0077 (5) |
O4 | 0.0373 (7) | 0.0259 (6) | 0.0495 (8) | −0.0061 (5) | 0.0087 (6) | 0.0034 (5) |
N1 | 0.0400 (8) | 0.0479 (9) | 0.0327 (8) | −0.0083 (7) | 0.0017 (6) | 0.0123 (7) |
N2 | 0.0242 (6) | 0.0237 (6) | 0.0306 (7) | 0.0030 (5) | 0.0090 (5) | 0.0045 (5) |
C21 | 0.0261 (7) | 0.0239 (7) | 0.0246 (7) | 0.0026 (5) | 0.0103 (6) | 0.0011 (5) |
C22 | 0.0276 (7) | 0.0195 (6) | 0.0231 (7) | 0.0016 (5) | 0.0081 (6) | 0.0009 (5) |
C23 | 0.0270 (8) | 0.0281 (7) | 0.0363 (9) | 0.0030 (6) | 0.0116 (7) | 0.0023 (6) |
C24 | 0.0350 (8) | 0.0329 (8) | 0.0428 (9) | −0.0009 (7) | 0.0218 (7) | 0.0038 (7) |
C25 | 0.0446 (10) | 0.0287 (8) | 0.0375 (9) | 0.0036 (7) | 0.0222 (8) | 0.0087 (7) |
C26 | 0.0351 (8) | 0.0272 (7) | 0.0305 (8) | 0.0080 (6) | 0.0125 (7) | 0.0075 (6) |
C11 | 0.0476 (9) | 0.0604 (10) | 0.0421 (7) | −0.0101 (7) | 0.0034 (6) | 0.0040 (7) |
C12 | 0.0476 (9) | 0.0604 (10) | 0.0421 (7) | −0.0101 (7) | 0.0034 (6) | 0.0040 (7) |
C13 | 0.0476 (9) | 0.0604 (10) | 0.0421 (7) | −0.0101 (7) | 0.0034 (6) | 0.0040 (7) |
C14 | 0.0476 (9) | 0.0604 (10) | 0.0421 (7) | −0.0101 (7) | 0.0034 (6) | 0.0040 (7) |
C15 | 0.0476 (9) | 0.0604 (10) | 0.0421 (7) | −0.0101 (7) | 0.0034 (6) | 0.0040 (7) |
C16 | 0.0476 (9) | 0.0604 (10) | 0.0421 (7) | −0.0101 (7) | 0.0034 (6) | 0.0040 (7) |
C17 | 0.0476 (9) | 0.0604 (10) | 0.0421 (7) | −0.0101 (7) | 0.0034 (6) | 0.0040 (7) |
C18 | 0.0476 (9) | 0.0604 (10) | 0.0421 (7) | −0.0101 (7) | 0.0034 (6) | 0.0040 (7) |
S1—O1 | 1.4285 (12) | C11—H11A | 0.9900 |
S1—O2 | 1.4300 (13) | C11—H11B | 0.9900 |
S1—N1 | 1.5913 (17) | C12—C13 | 1.513 (6) |
S1—C21 | 1.7818 (15) | C12—H12A | 0.9900 |
O3—N2 | 1.2209 (18) | C12—H12B | 0.9900 |
O4—N2 | 1.2157 (18) | C13—C14 | 1.522 (6) |
N1—C15 | 1.454 (10) | C13—H13A | 0.9900 |
N1—C11 | 1.472 (8) | C13—H13B | 0.9900 |
N1—C18 | 1.472 (8) | C14—H14A | 0.9900 |
N1—C14 | 1.492 (6) | C14—H14B | 0.9900 |
N2—C22 | 1.4706 (18) | C15—C16 | 1.555 (10) |
C21—C26 | 1.393 (2) | C15—H15A | 0.9900 |
C21—C22 | 1.394 (2) | C15—H15B | 0.9900 |
C22—C23 | 1.380 (2) | C16—C17 | 1.543 (8) |
C23—C24 | 1.387 (2) | C16—H16A | 0.9900 |
C23—H23 | 0.9500 | C16—H16B | 0.9900 |
C24—C25 | 1.382 (2) | C17—C18 | 1.505 (8) |
C24—H24 | 0.9500 | C17—H17A | 0.9900 |
C25—C26 | 1.388 (2) | C17—H17B | 0.9900 |
C25—H25 | 0.9500 | C18—H18A | 0.9900 |
C26—H26 | 0.9500 | C18—H18B | 0.9900 |
C11—C12 | 1.503 (8) | ||
O1—S1—O2 | 119.93 (9) | C13—C12—H12A | 111.4 |
O1—S1—N1 | 108.19 (8) | C11—C12—H12B | 111.4 |
O2—S1—N1 | 108.08 (9) | C13—C12—H12B | 111.4 |
O1—S1—C21 | 107.34 (7) | H12A—C12—H12B | 109.3 |
O2—S1—C21 | 104.85 (8) | C12—C13—C14 | 102.6 (4) |
N1—S1—C21 | 107.90 (8) | C12—C13—H13A | 111.2 |
C15—N1—C18 | 117.8 (5) | C14—C13—H13A | 111.2 |
C11—N1—C14 | 108.3 (4) | C12—C13—H13B | 111.2 |
C15—N1—S1 | 125.8 (4) | C14—C13—H13B | 111.2 |
C11—N1—S1 | 125.8 (3) | H13A—C13—H13B | 109.2 |
C18—N1—S1 | 116.2 (3) | N1—C14—C13 | 104.5 (4) |
C14—N1—S1 | 124.8 (2) | N1—C14—H14A | 110.8 |
O4—N2—O3 | 124.55 (14) | C13—C14—H14A | 110.8 |
O4—N2—C22 | 118.04 (13) | N1—C14—H14B | 110.8 |
O3—N2—C22 | 117.32 (13) | C13—C14—H14B | 110.8 |
C26—C21—C22 | 117.54 (14) | H14A—C14—H14B | 108.9 |
C26—C21—S1 | 118.12 (12) | N1—C15—C16 | 101.2 (6) |
C22—C21—S1 | 124.21 (11) | N1—C15—H15A | 111.5 |
C23—C22—C21 | 122.31 (14) | C16—C15—H15A | 111.5 |
C23—C22—N2 | 116.04 (13) | N1—C15—H15B | 111.5 |
C21—C22—N2 | 121.64 (13) | C16—C15—H15B | 111.5 |
C22—C23—C24 | 119.09 (15) | H15A—C15—H15B | 109.4 |
C22—C23—H23 | 120.5 | C17—C16—C15 | 104.7 (6) |
C24—C23—H23 | 120.5 | C17—C16—H16A | 110.8 |
C25—C24—C23 | 119.87 (15) | C15—C16—H16A | 110.8 |
C25—C24—H24 | 120.1 | C17—C16—H16B | 110.8 |
C23—C24—H24 | 120.1 | C15—C16—H16B | 110.8 |
C24—C25—C26 | 120.41 (15) | H16A—C16—H16B | 108.9 |
C24—C25—H25 | 119.8 | C18—C17—C16 | 107.4 (6) |
C26—C25—H25 | 119.8 | C18—C17—H17A | 110.2 |
C25—C26—C21 | 120.75 (15) | C16—C17—H17A | 110.2 |
C25—C26—H26 | 119.6 | C18—C17—H17B | 110.2 |
C21—C26—H26 | 119.6 | C16—C17—H17B | 110.2 |
N1—C11—C12 | 102.5 (5) | H17A—C17—H17B | 108.5 |
N1—C11—H11A | 111.3 | N1—C18—C17 | 100.8 (5) |
C12—C11—H11A | 111.3 | N1—C18—H18A | 111.6 |
N1—C11—H11B | 111.3 | C17—C18—H18A | 111.6 |
C12—C11—H11B | 111.3 | N1—C18—H18B | 111.6 |
H11A—C11—H11B | 109.2 | C17—C18—H18B | 111.6 |
C11—C12—C13 | 101.6 (5) | H18A—C18—H18B | 109.4 |
C11—C12—H12A | 111.4 | ||
O1—S1—N1—C15 | −13.5 (6) | O4—N2—C22—C21 | 65.74 (19) |
O2—S1—N1—C15 | −144.8 (6) | O3—N2—C22—C21 | −117.70 (16) |
C21—S1—N1—C15 | 102.3 (6) | C21—C22—C23—C24 | −1.4 (2) |
O1—S1—N1—C11 | −21.2 (5) | N2—C22—C23—C24 | 179.13 (15) |
O2—S1—N1—C11 | −152.5 (5) | C22—C23—C24—C25 | 1.2 (3) |
C21—S1—N1—C11 | 94.6 (5) | C23—C24—C25—C26 | 0.4 (3) |
O1—S1—N1—C18 | 171.1 (7) | C24—C25—C26—C21 | −1.8 (3) |
O2—S1—N1—C18 | 39.8 (7) | C22—C21—C26—C25 | 1.5 (2) |
C21—S1—N1—C18 | −73.1 (7) | S1—C21—C26—C25 | 177.41 (13) |
O1—S1—N1—C14 | 172.3 (5) | C14—N1—C11—C12 | −27.8 (8) |
O2—S1—N1—C14 | 41.0 (5) | S1—N1—C11—C12 | 163.9 (4) |
C21—S1—N1—C14 | −71.9 (5) | N1—C11—C12—C13 | 43.3 (8) |
O1—S1—C21—C26 | −152.34 (13) | C11—C12—C13—C14 | −42.6 (7) |
O2—S1—C21—C26 | −23.76 (15) | C11—N1—C14—C13 | 1.2 (8) |
N1—S1—C21—C26 | 91.26 (14) | S1—N1—C14—C13 | 169.7 (3) |
O1—S1—C21—C22 | 23.24 (15) | C12—C13—C14—N1 | 25.6 (7) |
O2—S1—C21—C22 | 151.82 (14) | C18—N1—C15—C16 | 6.6 (11) |
N1—S1—C21—C22 | −93.15 (15) | S1—N1—C15—C16 | −168.8 (4) |
C26—C21—C22—C23 | 0.1 (2) | N1—C15—C16—C17 | −21.2 (10) |
S1—C21—C22—C23 | −175.54 (12) | C15—C16—C17—C18 | 29.7 (11) |
C26—C21—C22—N2 | 179.49 (14) | C15—N1—C18—C17 | 11.2 (12) |
S1—C21—C22—N2 | 3.9 (2) | S1—N1—C18—C17 | −173.0 (5) |
O4—N2—C22—C23 | −114.81 (16) | C16—C17—C18—N1 | −24.5 (11) |
O3—N2—C22—C23 | 61.75 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11A···O1i | 0.99 | 2.56 | 3.398 (7) | 143 |
C11—H11B···O4 | 0.99 | 2.48 | 3.093 (8) | 120 |
C25—H25···O4ii | 0.95 | 2.54 | 3.240 (2) | 131 |
C25—H25···O1iii | 0.95 | 2.47 | 3.228 (2) | 137 |
C26—H26···O2 | 0.95 | 2.49 | 2.860 (2) | 103 |
C26—H26···O3iv | 0.95 | 2.56 | 3.467 (2) | 160 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+3/2, y+1/2, −z+1/2; (iii) x+1/2, −y+3/2, z−1/2; (iv) x−1/2, −y+3/2, z−1/2. |
C11H14N2O4S | F(000) = 568 |
Mr = 270.30 | Dx = 1.459 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.6881 (9) Å | Cell parameters from 9983 reflections |
b = 15.0266 (14) Å | θ = 2.6–28.3° |
c = 9.8337 (10) Å | µ = 0.27 mm−1 |
β = 106.526 (4)° | T = 296 K |
V = 1230.8 (2) Å3 | Block, colourless |
Z = 4 | 0.48 × 0.47 × 0.45 mm |
Bruker APEXII CCD diffractometer | 3059 independent reflections |
Radiation source: sealed tube | 2662 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.3°, θmin = 2.6° |
φ and ω scans | h = −11→11 |
Absorption correction: numerical (SADABS; Bruker, 2008) | k = −20→19 |
Tmin = 0.941, Tmax = 1.000 | l = −13→13 |
25328 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0546P)2 + 0.3577P] where P = (Fo2 + 2Fc2)/3 |
3059 reflections | (Δ/σ)max = 0.001 |
163 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C). Single-crystal X-ray diffraction (SC-XRD) data were collected at 200 or 296 K on a Bruker APEXII CCD diffractometer with graphite-monochromated Mo Kα radiation using the APEX2 data collection software and SAINT (Bruker 2012) for cell refinement and data reduction. The structures were solved by dual-space methods applying SHELXT2018 (Sheldrick, 2015a) and refined by least-squares procedures using SHELXL2018 (Sheldrick, 2015b). Data were corrected for absorption effects using the numerical method implemented in SADABS (Bruker 2012). All non-H atoms were refined anisotropically. The crystal structure diagrams were drawn with ORTEP-3 for Windows (Farrugia 2012). |
x | y | z | Uiso*/Ueq | ||
S1 | 0.50241 (4) | 0.66804 (2) | 0.66863 (4) | 0.04006 (12) | |
O1 | 0.57946 (15) | 0.75271 (8) | 0.69071 (16) | 0.0609 (3) | |
O2 | 0.46987 (14) | 0.62642 (8) | 0.53305 (11) | 0.0521 (3) | |
O3 | 0.23990 (17) | 0.49620 (9) | 0.58739 (17) | 0.0705 (4) | |
O4 | 0.08960 (18) | 0.57419 (11) | 0.41946 (13) | 0.0734 (4) | |
N1 | 0.61016 (14) | 0.60117 (8) | 0.78644 (13) | 0.0416 (3) | |
N2 | 0.17049 (15) | 0.56417 (9) | 0.54124 (14) | 0.0463 (3) | |
C11 | 0.5872 (2) | 0.50422 (11) | 0.76898 (19) | 0.0517 (4) | |
H11A | 0.564441 | 0.488569 | 0.669528 | 0.062* | |
H11B | 0.496745 | 0.485803 | 0.801683 | 0.062* | |
C12 | 0.7374 (2) | 0.45729 (13) | 0.8536 (2) | 0.0627 (5) | |
H12A | 0.720629 | 0.393457 | 0.845762 | 0.075* | |
H12B | 0.825213 | 0.471853 | 0.814835 | 0.075* | |
C13 | 0.7814 (2) | 0.48376 (14) | 1.0071 (2) | 0.0606 (5) | |
H13A | 0.881221 | 0.455002 | 1.057712 | 0.073* | |
H13B | 0.698481 | 0.463866 | 1.048463 | 0.073* | |
C14 | 0.8004 (2) | 0.58345 (15) | 1.0233 (2) | 0.0662 (5) | |
H14A | 0.819586 | 0.599222 | 1.122396 | 0.079* | |
H14B | 0.892831 | 0.602183 | 0.993857 | 0.079* | |
C15 | 0.6533 (2) | 0.63160 (13) | 0.93604 (18) | 0.0582 (4) | |
H15A | 0.564368 | 0.620532 | 0.975063 | 0.070* | |
H15B | 0.673748 | 0.695143 | 0.939930 | 0.070* | |
C21 | 0.31422 (16) | 0.68463 (9) | 0.70518 (14) | 0.0357 (3) | |
C22 | 0.17424 (16) | 0.63776 (9) | 0.64082 (14) | 0.0372 (3) | |
C23 | 0.02972 (18) | 0.65753 (11) | 0.66598 (17) | 0.0468 (3) | |
H23 | −0.062624 | 0.626220 | 0.619609 | 0.056* | |
C24 | 0.0237 (2) | 0.72436 (12) | 0.76084 (19) | 0.0530 (4) | |
H24 | −0.072622 | 0.737406 | 0.780184 | 0.064* | |
C25 | 0.1604 (2) | 0.77165 (12) | 0.82675 (18) | 0.0529 (4) | |
H25 | 0.156178 | 0.816624 | 0.890548 | 0.063* | |
C26 | 0.30433 (19) | 0.75250 (10) | 0.79841 (16) | 0.0449 (3) | |
H26 | 0.395471 | 0.785498 | 0.842346 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.03940 (19) | 0.0373 (2) | 0.0487 (2) | −0.00205 (13) | 0.02106 (15) | 0.00020 (13) |
O1 | 0.0540 (7) | 0.0420 (6) | 0.0951 (10) | −0.0107 (5) | 0.0347 (6) | 0.0018 (6) |
O2 | 0.0559 (6) | 0.0647 (7) | 0.0425 (6) | 0.0024 (5) | 0.0248 (5) | −0.0001 (5) |
O3 | 0.0696 (8) | 0.0434 (7) | 0.0929 (10) | 0.0075 (6) | 0.0143 (7) | −0.0118 (7) |
O4 | 0.0767 (9) | 0.0890 (10) | 0.0474 (7) | 0.0056 (8) | 0.0066 (6) | −0.0153 (7) |
N1 | 0.0405 (6) | 0.0379 (6) | 0.0457 (6) | 0.0027 (5) | 0.0110 (5) | −0.0090 (5) |
N2 | 0.0405 (6) | 0.0466 (7) | 0.0525 (7) | −0.0037 (5) | 0.0141 (5) | −0.0078 (6) |
C11 | 0.0540 (9) | 0.0402 (8) | 0.0565 (9) | 0.0011 (7) | 0.0089 (7) | −0.0080 (7) |
C12 | 0.0674 (11) | 0.0466 (9) | 0.0712 (11) | 0.0155 (8) | 0.0150 (9) | −0.0021 (8) |
C13 | 0.0515 (9) | 0.0706 (12) | 0.0588 (10) | 0.0106 (8) | 0.0142 (8) | 0.0126 (9) |
C14 | 0.0570 (10) | 0.0777 (13) | 0.0555 (10) | 0.0069 (9) | 0.0024 (8) | −0.0120 (9) |
C15 | 0.0583 (9) | 0.0592 (10) | 0.0521 (9) | 0.0086 (8) | 0.0074 (7) | −0.0185 (8) |
C21 | 0.0383 (6) | 0.0327 (6) | 0.0390 (6) | 0.0012 (5) | 0.0157 (5) | 0.0032 (5) |
C22 | 0.0403 (7) | 0.0344 (6) | 0.0381 (6) | 0.0015 (5) | 0.0128 (5) | 0.0032 (5) |
C23 | 0.0386 (7) | 0.0481 (8) | 0.0551 (9) | 0.0006 (6) | 0.0155 (6) | 0.0046 (7) |
C24 | 0.0493 (8) | 0.0539 (9) | 0.0645 (10) | 0.0104 (7) | 0.0302 (7) | 0.0049 (8) |
C25 | 0.0634 (10) | 0.0457 (8) | 0.0580 (9) | 0.0072 (7) | 0.0307 (8) | −0.0055 (7) |
C26 | 0.0491 (8) | 0.0386 (7) | 0.0496 (8) | −0.0008 (6) | 0.0184 (6) | −0.0045 (6) |
S1—O1 | 1.4252 (12) | C13—H13B | 0.9700 |
S1—O2 | 1.4263 (12) | C14—C15 | 1.506 (3) |
S1—N1 | 1.6160 (13) | C14—H14A | 0.9700 |
S1—C21 | 1.7885 (14) | C14—H14B | 0.9700 |
O3—N2 | 1.2070 (19) | C15—H15A | 0.9700 |
O4—N2 | 1.2132 (18) | C15—H15B | 0.9700 |
N1—C11 | 1.474 (2) | C21—C26 | 1.390 (2) |
N1—C15 | 1.4833 (19) | C21—C22 | 1.3921 (19) |
N2—C22 | 1.4713 (19) | C22—C23 | 1.379 (2) |
C11—C12 | 1.508 (2) | C23—C24 | 1.382 (2) |
C11—H11A | 0.9700 | C23—H23 | 0.9300 |
C11—H11B | 0.9700 | C24—C25 | 1.378 (3) |
C12—C13 | 1.501 (3) | C24—H24 | 0.9300 |
C12—H12A | 0.9700 | C25—C26 | 1.386 (2) |
C12—H12B | 0.9700 | C25—H25 | 0.9300 |
C13—C14 | 1.511 (3) | C26—H26 | 0.9300 |
C13—H13A | 0.9700 | ||
O1—S1—O2 | 119.57 (8) | C15—C14—C13 | 111.53 (16) |
O1—S1—N1 | 107.14 (7) | C15—C14—H14A | 109.3 |
O2—S1—N1 | 108.53 (7) | C13—C14—H14A | 109.3 |
O1—S1—C21 | 105.16 (7) | C15—C14—H14B | 109.3 |
O2—S1—C21 | 107.43 (7) | C13—C14—H14B | 109.3 |
N1—S1—C21 | 108.59 (6) | H14A—C14—H14B | 108.0 |
C11—N1—C15 | 114.07 (14) | N1—C15—C14 | 110.56 (14) |
C11—N1—S1 | 119.97 (10) | N1—C15—H15A | 109.5 |
C15—N1—S1 | 116.79 (10) | C14—C15—H15A | 109.5 |
O3—N2—O4 | 124.29 (15) | N1—C15—H15B | 109.5 |
O3—N2—C22 | 118.14 (13) | C14—C15—H15B | 109.5 |
O4—N2—C22 | 117.42 (14) | H15A—C15—H15B | 108.1 |
N1—C11—C12 | 109.30 (14) | C26—C21—C22 | 117.46 (13) |
N1—C11—H11A | 109.8 | C26—C21—S1 | 117.79 (11) |
C12—C11—H11A | 109.8 | C22—C21—S1 | 124.65 (11) |
N1—C11—H11B | 109.8 | C23—C22—C21 | 122.11 (13) |
C12—C11—H11B | 109.8 | C23—C22—N2 | 115.62 (13) |
H11A—C11—H11B | 108.3 | C21—C22—N2 | 122.27 (12) |
C13—C12—C11 | 111.34 (15) | C22—C23—C24 | 119.28 (15) |
C13—C12—H12A | 109.4 | C22—C23—H23 | 120.4 |
C11—C12—H12A | 109.4 | C24—C23—H23 | 120.4 |
C13—C12—H12B | 109.4 | C25—C24—C23 | 119.93 (14) |
C11—C12—H12B | 109.4 | C25—C24—H24 | 120.0 |
H12A—C12—H12B | 108.0 | C23—C24—H24 | 120.0 |
C12—C13—C14 | 110.97 (16) | C24—C25—C26 | 120.31 (15) |
C12—C13—H13A | 109.4 | C24—C25—H25 | 119.8 |
C14—C13—H13A | 109.4 | C26—C25—H25 | 119.8 |
C12—C13—H13B | 109.4 | C25—C26—C21 | 120.88 (15) |
C14—C13—H13B | 109.4 | C25—C26—H26 | 119.6 |
H13A—C13—H13B | 108.0 | C21—C26—H26 | 119.6 |
O1—S1—N1—C11 | −163.84 (12) | O2—S1—C21—C22 | 21.08 (14) |
O2—S1—N1—C11 | −33.45 (14) | N1—S1—C21—C22 | −96.11 (13) |
C21—S1—N1—C11 | 83.04 (13) | C26—C21—C22—C23 | 0.7 (2) |
O1—S1—N1—C15 | 51.20 (14) | S1—C21—C22—C23 | −175.47 (11) |
O2—S1—N1—C15 | −178.40 (12) | C26—C21—C22—N2 | −179.50 (13) |
C21—S1—N1—C15 | −61.91 (13) | S1—C21—C22—N2 | 4.32 (19) |
C15—N1—C11—C12 | −56.72 (19) | O3—N2—C22—C23 | −111.68 (16) |
S1—N1—C11—C12 | 157.43 (13) | O4—N2—C22—C23 | 64.06 (19) |
N1—C11—C12—C13 | 56.4 (2) | O3—N2—C22—C21 | 68.51 (19) |
C11—C12—C13—C14 | −56.2 (2) | O4—N2—C22—C21 | −115.74 (16) |
C12—C13—C14—C15 | 54.1 (2) | C21—C22—C23—C24 | −1.7 (2) |
C11—N1—C15—C14 | 55.3 (2) | N2—C22—C23—C24 | 178.45 (14) |
S1—N1—C15—C14 | −157.73 (14) | C22—C23—C24—C25 | 1.4 (2) |
C13—C14—C15—N1 | −52.6 (2) | C23—C24—C25—C26 | 0.0 (3) |
O1—S1—C21—C26 | −26.70 (14) | C24—C25—C26—C21 | −1.0 (3) |
O2—S1—C21—C26 | −155.08 (12) | C22—C21—C26—C25 | 0.7 (2) |
N1—S1—C21—C26 | 87.72 (12) | S1—C21—C26—C25 | 177.14 (12) |
O1—S1—C21—C22 | 149.47 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11A···O2 | 0.97 | 2.48 | 2.907 (2) | 107 |
C11—H11A···O2i | 0.97 | 2.59 | 3.476 (2) | 152 |
C15—H15B···O1 | 0.97 | 2.51 | 2.943 (2) | 107 |
C25—H25···O2ii | 0.93 | 2.57 | 3.3337 (19) | 140 |
C26—H26···O1 | 0.93 | 2.53 | 2.877 (2) | 103 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1/2, −y+3/2, z+1/2. |
C14H12N2O4S | F(000) = 632 |
Mr = 304.32 | Dx = 1.459 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4701 (5) Å | Cell parameters from 9952 reflections |
b = 23.6743 (12) Å | θ = 2.7–27.1° |
c = 7.8614 (5) Å | µ = 0.25 mm−1 |
β = 94.989 (3)° | T = 296 K |
V = 1385.02 (15) Å3 | Block, yellow |
Z = 4 | 0.62 × 0.51 × 0.43 mm |
Bruker APEXII CCD diffractometer | 3434 independent reflections |
Radiation source: sealed tube | 2864 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.4°, θmin = 2.7° |
φ and ω scans | h = −9→9 |
Absorption correction: numerical (SADABS; Bruker, 2008) | k = −31→28 |
Tmin = 0.913, Tmax = 1.000 | l = −10→10 |
28400 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0453P)2 + 0.5135P] where P = (Fo2 + 2Fc2)/3 |
3434 reflections | (Δ/σ)max = 0.002 |
190 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C). Single-crystal X-ray diffraction (SC-XRD) data were collected at 200 or 296 K on a Bruker APEXII CCD diffractometer with graphite-monochromated Mo Kα radiation using the APEX2 data collection software and SAINT (Bruker 2012) for cell refinement and data reduction. The structures were solved by dual-space methods applying SHELXT2018 (Sheldrick, 2015a) and refined by least-squares procedures using SHELXL2018 (Sheldrick, 2015b). Data were corrected for absorption effects using the numerical method implemented in SADABS (Bruker 2012). All non-H atoms were refined anisotropically. The crystal structure diagrams were drawn with ORTEP-3 for Windows (Farrugia 2012). |
x | y | z | Uiso*/Ueq | ||
S1 | 0.79243 (5) | 0.61702 (2) | 0.46891 (5) | 0.03709 (12) | |
O1 | 0.73327 (18) | 0.65999 (5) | 0.57767 (16) | 0.0546 (3) | |
O2 | 0.91672 (16) | 0.57553 (5) | 0.53509 (15) | 0.0487 (3) | |
O3 | 0.9987 (3) | 0.77311 (7) | 0.5254 (3) | 0.1022 (6) | |
O4 | 1.1144 (3) | 0.69290 (8) | 0.6043 (2) | 0.0839 (5) | |
N1 | 0.61681 (17) | 0.58580 (6) | 0.38325 (18) | 0.0418 (3) | |
N2 | 1.0368 (2) | 0.72407 (8) | 0.5003 (2) | 0.0611 (5) | |
C1 | 0.4442 (2) | 0.61631 (8) | 0.3457 (3) | 0.0549 (5) | |
H1A | 0.456425 | 0.646065 | 0.262694 | 0.066* | |
H1B | 0.404075 | 0.632810 | 0.448776 | 0.066* | |
C2 | 0.3136 (2) | 0.57142 (9) | 0.2744 (3) | 0.0576 (5) | |
H2A | 0.224774 | 0.563294 | 0.354023 | 0.069* | |
H2B | 0.252109 | 0.583591 | 0.166870 | 0.069* | |
C11 | 0.6039 (2) | 0.53032 (6) | 0.31204 (19) | 0.0368 (3) | |
C12 | 0.4274 (2) | 0.52060 (8) | 0.2492 (2) | 0.0436 (4) | |
C13 | 0.3805 (3) | 0.46882 (9) | 0.1789 (2) | 0.0572 (5) | |
H13 | 0.262278 | 0.461664 | 0.137548 | 0.069* | |
C14 | 0.5100 (3) | 0.42764 (9) | 0.1703 (2) | 0.0611 (5) | |
H14 | 0.478867 | 0.392525 | 0.123633 | 0.073* | |
C15 | 0.6852 (3) | 0.43842 (8) | 0.2306 (2) | 0.0567 (5) | |
H15 | 0.771627 | 0.410511 | 0.222516 | 0.068* | |
C16 | 0.7352 (2) | 0.48989 (7) | 0.3029 (2) | 0.0478 (4) | |
H16 | 0.853542 | 0.496970 | 0.344103 | 0.057* | |
C21 | 0.8884 (2) | 0.65319 (6) | 0.30000 (19) | 0.0365 (3) | |
C22 | 0.9890 (2) | 0.70184 (7) | 0.3266 (2) | 0.0466 (4) | |
C23 | 1.0551 (3) | 0.73080 (9) | 0.1950 (3) | 0.0681 (6) | |
H23 | 1.120293 | 0.763931 | 0.215631 | 0.082* | |
C24 | 1.0234 (3) | 0.70999 (11) | 0.0308 (3) | 0.0726 (6) | |
H24 | 1.068889 | 0.728941 | −0.059696 | 0.087* | |
C25 | 0.9256 (3) | 0.66178 (10) | 0.0010 (2) | 0.0609 (5) | |
H25 | 0.905119 | 0.647920 | −0.109653 | 0.073* | |
C26 | 0.8568 (2) | 0.63337 (8) | 0.1351 (2) | 0.0460 (4) | |
H26 | 0.788883 | 0.600801 | 0.113758 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0407 (2) | 0.0361 (2) | 0.0349 (2) | 0.00043 (15) | 0.00584 (15) | −0.00023 (14) |
O1 | 0.0670 (8) | 0.0504 (7) | 0.0492 (7) | −0.0017 (6) | 0.0214 (6) | −0.0118 (5) |
O2 | 0.0468 (7) | 0.0481 (7) | 0.0493 (7) | 0.0008 (5) | −0.0064 (5) | 0.0089 (5) |
O3 | 0.1429 (18) | 0.0630 (10) | 0.1030 (14) | −0.0190 (11) | 0.0239 (12) | −0.0363 (10) |
O4 | 0.0995 (13) | 0.0977 (13) | 0.0515 (9) | −0.0136 (10) | −0.0109 (8) | −0.0084 (9) |
N1 | 0.0335 (7) | 0.0364 (7) | 0.0555 (8) | 0.0049 (5) | 0.0039 (6) | 0.0012 (6) |
N2 | 0.0699 (11) | 0.0578 (10) | 0.0574 (10) | −0.0260 (9) | 0.0151 (8) | −0.0171 (8) |
C1 | 0.0417 (9) | 0.0549 (11) | 0.0684 (12) | 0.0155 (8) | 0.0075 (8) | 0.0090 (9) |
C2 | 0.0349 (9) | 0.0831 (14) | 0.0548 (11) | 0.0060 (9) | 0.0043 (8) | 0.0050 (10) |
C11 | 0.0387 (8) | 0.0370 (8) | 0.0348 (8) | −0.0030 (6) | 0.0032 (6) | 0.0070 (6) |
C12 | 0.0381 (8) | 0.0584 (10) | 0.0347 (8) | −0.0066 (7) | 0.0054 (6) | 0.0078 (7) |
C13 | 0.0530 (11) | 0.0703 (13) | 0.0478 (10) | −0.0229 (10) | 0.0017 (8) | 0.0001 (9) |
C14 | 0.0835 (15) | 0.0499 (11) | 0.0495 (11) | −0.0217 (10) | 0.0023 (10) | −0.0015 (8) |
C15 | 0.0749 (13) | 0.0394 (9) | 0.0548 (11) | 0.0063 (9) | −0.0001 (9) | 0.0024 (8) |
C16 | 0.0457 (9) | 0.0415 (9) | 0.0547 (10) | 0.0042 (7) | −0.0045 (8) | 0.0018 (7) |
C21 | 0.0382 (8) | 0.0369 (7) | 0.0349 (7) | 0.0017 (6) | 0.0052 (6) | 0.0008 (6) |
C22 | 0.0528 (10) | 0.0438 (9) | 0.0437 (9) | −0.0075 (7) | 0.0071 (7) | −0.0018 (7) |
C23 | 0.0842 (15) | 0.0601 (12) | 0.0616 (13) | −0.0261 (11) | 0.0150 (11) | 0.0068 (10) |
C24 | 0.0845 (16) | 0.0843 (15) | 0.0509 (12) | −0.0173 (13) | 0.0167 (11) | 0.0202 (11) |
C25 | 0.0674 (13) | 0.0810 (14) | 0.0344 (9) | −0.0051 (11) | 0.0056 (8) | 0.0028 (9) |
C26 | 0.0474 (9) | 0.0527 (10) | 0.0376 (8) | −0.0043 (7) | 0.0022 (7) | −0.0025 (7) |
S1—O2 | 1.4190 (12) | C13—C14 | 1.379 (3) |
S1—O1 | 1.4236 (12) | C13—H13 | 0.9300 |
S1—N1 | 1.6022 (14) | C14—C15 | 1.376 (3) |
S1—C21 | 1.7822 (15) | C14—H14 | 0.9300 |
O3—N2 | 1.216 (2) | C15—C16 | 1.382 (3) |
O4—N2 | 1.211 (2) | C15—H15 | 0.9300 |
N1—C11 | 1.428 (2) | C16—H16 | 0.9300 |
N1—C1 | 1.485 (2) | C21—C26 | 1.380 (2) |
N2—C22 | 1.478 (2) | C21—C22 | 1.381 (2) |
C1—C2 | 1.517 (3) | C22—C23 | 1.369 (3) |
C1—H1A | 0.9700 | C23—C24 | 1.382 (3) |
C1—H1B | 0.9700 | C23—H23 | 0.9300 |
C2—C12 | 1.497 (3) | C24—C25 | 1.364 (3) |
C2—H2A | 0.9700 | C24—H24 | 0.9300 |
C2—H2B | 0.9700 | C25—C26 | 1.387 (2) |
C11—C16 | 1.377 (2) | C25—H25 | 0.9300 |
C11—C12 | 1.386 (2) | C26—H26 | 0.9300 |
C12—C13 | 1.377 (3) | ||
O2—S1—O1 | 120.12 (8) | C12—C13—C14 | 119.61 (18) |
O2—S1—N1 | 108.69 (7) | C12—C13—H13 | 120.2 |
O1—S1—N1 | 107.25 (8) | C14—C13—H13 | 120.2 |
O2—S1—C21 | 108.23 (7) | C15—C14—C13 | 120.12 (18) |
O1—S1—C21 | 105.68 (7) | C15—C14—H14 | 119.9 |
N1—S1—C21 | 106.04 (7) | C13—C14—H14 | 119.9 |
C11—N1—C1 | 109.96 (13) | C14—C15—C16 | 121.33 (19) |
C11—N1—S1 | 127.90 (11) | C14—C15—H15 | 119.3 |
C1—N1—S1 | 121.62 (12) | C16—C15—H15 | 119.3 |
O4—N2—O3 | 125.30 (19) | C11—C16—C15 | 117.77 (17) |
O4—N2—C22 | 118.03 (17) | C11—C16—H16 | 121.1 |
O3—N2—C22 | 116.6 (2) | C15—C16—H16 | 121.1 |
N1—C1—C2 | 104.61 (14) | C26—C21—C22 | 118.20 (15) |
N1—C1—H1A | 110.8 | C26—C21—S1 | 119.31 (12) |
C2—C1—H1A | 110.8 | C22—C21—S1 | 122.45 (12) |
N1—C1—H1B | 110.8 | C23—C22—C21 | 122.03 (17) |
C2—C1—H1B | 110.8 | C23—C22—N2 | 116.49 (16) |
H1A—C1—H1B | 108.9 | C21—C22—N2 | 121.44 (15) |
C12—C2—C1 | 104.93 (14) | C22—C23—C24 | 118.92 (19) |
C12—C2—H2A | 110.8 | C22—C23—H23 | 120.5 |
C1—C2—H2A | 110.8 | C24—C23—H23 | 120.5 |
C12—C2—H2B | 110.8 | C25—C24—C23 | 120.27 (19) |
C1—C2—H2B | 110.8 | C25—C24—H24 | 119.9 |
H2A—C2—H2B | 108.8 | C23—C24—H24 | 119.9 |
C16—C11—C12 | 121.72 (16) | C24—C25—C26 | 120.26 (18) |
C16—C11—N1 | 129.46 (15) | C24—C25—H25 | 119.9 |
C12—C11—N1 | 108.81 (14) | C26—C25—H25 | 119.9 |
C13—C12—C11 | 119.44 (17) | C21—C26—C25 | 120.31 (17) |
C13—C12—C2 | 129.88 (17) | C21—C26—H26 | 119.8 |
C11—C12—C2 | 110.67 (15) | C25—C26—H26 | 119.8 |
O2—S1—N1—C11 | −26.31 (16) | N1—C11—C16—C15 | 178.24 (16) |
O1—S1—N1—C11 | −157.59 (13) | C14—C15—C16—C11 | −0.3 (3) |
C21—S1—N1—C11 | 89.85 (14) | O2—S1—C21—C26 | 90.65 (14) |
O2—S1—N1—C1 | 162.82 (14) | O1—S1—C21—C26 | −139.48 (14) |
O1—S1—N1—C1 | 31.54 (16) | N1—S1—C21—C26 | −25.83 (15) |
C21—S1—N1—C1 | −81.01 (15) | O2—S1—C21—C22 | −91.72 (15) |
C11—N1—C1—C2 | 10.22 (19) | O1—S1—C21—C22 | 38.16 (16) |
S1—N1—C1—C2 | −177.44 (12) | N1—S1—C21—C22 | 151.80 (14) |
N1—C1—C2—C12 | −9.09 (19) | C26—C21—C22—C23 | 0.8 (3) |
C1—N1—C11—C16 | 173.54 (17) | S1—C21—C22—C23 | −176.87 (17) |
S1—N1—C11—C16 | 1.8 (3) | C26—C21—C22—N2 | −176.72 (17) |
C1—N1—C11—C12 | −7.25 (18) | S1—C21—C22—N2 | 5.6 (2) |
S1—N1—C11—C12 | −178.98 (12) | O4—N2—C22—C23 | −122.4 (2) |
C16—C11—C12—C13 | 1.4 (2) | O3—N2—C22—C23 | 55.7 (3) |
N1—C11—C12—C13 | −177.85 (15) | O4—N2—C22—C21 | 55.3 (3) |
C16—C11—C12—C2 | −179.67 (16) | O3—N2—C22—C21 | −126.6 (2) |
N1—C11—C12—C2 | 1.05 (18) | C21—C22—C23—C24 | −1.4 (3) |
C1—C2—C12—C13 | −175.99 (18) | N2—C22—C23—C24 | 176.2 (2) |
C1—C2—C12—C11 | 5.3 (2) | C22—C23—C24—C25 | 0.9 (4) |
C11—C12—C13—C14 | −0.8 (3) | C23—C24—C25—C26 | 0.2 (4) |
C2—C12—C13—C14 | −179.42 (18) | C22—C21—C26—C25 | 0.3 (3) |
C12—C13—C14—C15 | −0.4 (3) | S1—C21—C26—C25 | 178.08 (14) |
C13—C14—C15—C16 | 1.0 (3) | C24—C25—C26—C21 | −0.8 (3) |
C12—C11—C16—C15 | −0.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16···O2 | 0.93 | 2.41 | 2.975 (2) | 119 |
C16—H16···O2i | 0.93 | 2.55 | 3.195 (2) | 127 |
C23—H23···O1ii | 0.93 | 2.30 | 3.085 (2) | 142 |
C26—H26···N1 | 0.93 | 2.60 | 2.982 (2) | 106 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1/2, −y+3/2, z−1/2. |
C10H14N2O2S | F(000) = 960 |
Mr = 226.29 | Dx = 1.373 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 16.399 (3) Å | Cell parameters from 9858 reflections |
b = 7.9485 (12) Å | θ = 2.3–28.3° |
c = 18.376 (3) Å | µ = 0.28 mm−1 |
β = 113.907 (6)° | T = 296 K |
V = 2189.7 (6) Å3 | Block, colourless |
Z = 8 | 0.47 × 0.32 × 0.20 mm |
Bruker APEXII CCD diffractometer | 5477 independent reflections |
Radiation source: sealed tube | 4489 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.4°, θmin = 2.3° |
φ and ω scans | h = −21→21 |
Absorption correction: numerical (SADABS; Bruker, 2008) | k = −10→10 |
Tmin = 0.927, Tmax = 1.000 | l = −24→24 |
55955 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: mixed |
wR(F2) = 0.107 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0553P)2 + 0.5724P] where P = (Fo2 + 2Fc2)/3 |
5477 reflections | (Δ/σ)max = 0.001 |
287 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C). The nitrogen-bound H atoms were located on a difference map and refined freely. A reflection with large difference between its observed and calculated intensities was omitted. This is due to obstruction by the beam stop. Single-crystal X-ray diffraction (SC-XRD) data were collected at 200 or 296 K on a Bruker APEXII CCD diffractometer with graphite-monochromated Mo Kα radiation using the APEX2 data collection software and SAINT (Bruker 2012) for cell refinement and data reduction. The structures were solved by dual-space methods applying SHELXT2018 (Sheldrick, 2015a) and refined by least-squares procedures using SHELXL2018 (Sheldrick, 2015b). Data were corrected for absorption effects using the numerical method implemented in SADABS (Bruker 2012). All non-H atoms were refined anisotropically. The crystal structure diagrams were drawn with ORTEP-3 for Windows (Farrugia 2012). |
x | y | z | Uiso*/Ueq | ||
S1 | 0.60593 (2) | 0.11220 (4) | 0.38373 (2) | 0.03995 (10) | |
S2 | 0.83675 (3) | 0.54094 (5) | 0.72672 (2) | 0.04473 (11) | |
O11 | 0.55812 (7) | 0.21253 (15) | 0.41849 (9) | 0.0639 (3) | |
O12 | 0.59914 (8) | 0.15372 (16) | 0.30611 (7) | 0.0604 (3) | |
O21 | 0.76909 (9) | 0.41413 (14) | 0.70735 (7) | 0.0567 (3) | |
O22 | 0.91886 (9) | 0.51408 (18) | 0.79373 (7) | 0.0691 (4) | |
N11 | 0.56877 (8) | −0.07718 (15) | 0.37882 (7) | 0.0403 (3) | |
N12 | 0.69275 (18) | 0.1559 (3) | 0.56795 (13) | 0.0824 (7) | |
N21 | 0.86112 (9) | 0.55871 (17) | 0.65022 (8) | 0.0461 (3) | |
N22 | 0.63790 (10) | 0.6609 (2) | 0.65060 (10) | 0.0564 (4) | |
C11 | 0.55387 (14) | −0.1535 (2) | 0.44477 (11) | 0.0597 (5) | |
H11A | 0.508003 | −0.094373 | 0.455235 | 0.072* | |
H11B | 0.608273 | −0.156605 | 0.492981 | 0.072* | |
C12 | 0.52380 (17) | −0.3286 (2) | 0.41255 (14) | 0.0740 (6) | |
H12A | 0.533347 | −0.407503 | 0.455504 | 0.089* | |
H12B | 0.461089 | −0.329150 | 0.376874 | 0.089* | |
C13 | 0.58061 (14) | −0.3722 (2) | 0.36888 (11) | 0.0592 (4) | |
H13A | 0.549989 | −0.450820 | 0.326115 | 0.071* | |
H13B | 0.636476 | −0.422062 | 0.404671 | 0.071* | |
C14 | 0.59696 (11) | −0.2074 (2) | 0.33613 (9) | 0.0490 (4) | |
H14A | 0.659546 | −0.194754 | 0.346526 | 0.059* | |
H14B | 0.561903 | −0.200442 | 0.279189 | 0.059* | |
C21 | 0.79052 (12) | 0.5923 (3) | 0.57112 (10) | 0.0560 (4) | |
H21A | 0.756395 | 0.691183 | 0.572202 | 0.067* | |
H21B | 0.750349 | 0.497049 | 0.552570 | 0.067* | |
C22 | 0.83964 (15) | 0.6204 (4) | 0.51900 (13) | 0.0842 (7) | |
H22A | 0.830797 | 0.525926 | 0.483167 | 0.101* | |
H22B | 0.818267 | 0.721612 | 0.487506 | 0.101* | |
C23 | 0.93579 (15) | 0.6377 (4) | 0.57256 (15) | 0.0835 (7) | |
H23A | 0.960942 | 0.736580 | 0.558485 | 0.100* | |
H23B | 0.968833 | 0.539558 | 0.568498 | 0.100* | |
C24 | 0.94016 (12) | 0.6543 (3) | 0.65616 (13) | 0.0707 (5) | |
H24A | 0.994454 | 0.605166 | 0.695106 | 0.085* | |
H24B | 0.936292 | 0.770978 | 0.669874 | 0.085* | |
C111 | 0.71909 (9) | 0.11558 (16) | 0.44789 (8) | 0.0362 (3) | |
C112 | 0.74894 (11) | 0.1352 (2) | 0.53050 (9) | 0.0492 (4) | |
C113 | 0.84137 (14) | 0.1302 (3) | 0.57508 (11) | 0.0701 (6) | |
H113 | 0.863875 | 0.141455 | 0.630123 | 0.084* | |
C114 | 0.89883 (13) | 0.1091 (3) | 0.53914 (14) | 0.0747 (6) | |
H114 | 0.959847 | 0.107237 | 0.570304 | 0.090* | |
C115 | 0.86913 (11) | 0.0906 (3) | 0.45820 (13) | 0.0648 (5) | |
H115 | 0.909391 | 0.076405 | 0.434745 | 0.078* | |
C116 | 0.77956 (10) | 0.0933 (2) | 0.41274 (10) | 0.0456 (3) | |
H116 | 0.758579 | 0.080195 | 0.357861 | 0.055* | |
C211 | 0.79105 (9) | 0.73166 (17) | 0.74078 (8) | 0.0391 (3) | |
C212 | 0.69962 (9) | 0.76850 (18) | 0.70242 (8) | 0.0395 (3) | |
C213 | 0.67185 (11) | 0.9265 (2) | 0.71751 (10) | 0.0475 (3) | |
H213 | 0.611709 | 0.954422 | 0.692911 | 0.057* | |
C214 | 0.73005 (12) | 1.0408 (2) | 0.76707 (11) | 0.0556 (4) | |
H214 | 0.709137 | 1.144299 | 0.775829 | 0.067* | |
C215 | 0.81985 (13) | 1.0037 (2) | 0.80430 (12) | 0.0638 (5) | |
H215 | 0.859590 | 1.081726 | 0.837922 | 0.077* | |
C216 | 0.84970 (11) | 0.8504 (2) | 0.79108 (10) | 0.0549 (4) | |
H216 | 0.910132 | 0.825037 | 0.816091 | 0.066* | |
H12C | 0.7160 (18) | 0.193 (4) | 0.6109 (17) | 0.095 (9)* | |
H12D | 0.641 (2) | 0.190 (4) | 0.5399 (19) | 0.113 (12)* | |
H21C | 0.5862 (16) | 0.690 (3) | 0.6389 (13) | 0.073 (7)* | |
H21D | 0.6538 (13) | 0.556 (3) | 0.6567 (12) | 0.060 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.02972 (16) | 0.03424 (17) | 0.0509 (2) | −0.00093 (12) | 0.01122 (14) | 0.00394 (13) |
S2 | 0.0512 (2) | 0.03890 (19) | 0.03977 (19) | 0.00835 (15) | 0.01394 (16) | 0.00206 (14) |
O11 | 0.0418 (6) | 0.0440 (6) | 0.1067 (10) | 0.0032 (5) | 0.0311 (6) | −0.0126 (6) |
O12 | 0.0500 (6) | 0.0649 (7) | 0.0500 (6) | −0.0067 (5) | 0.0034 (5) | 0.0230 (5) |
O21 | 0.0805 (8) | 0.0364 (5) | 0.0607 (7) | −0.0048 (5) | 0.0364 (6) | 0.0000 (5) |
O22 | 0.0678 (8) | 0.0739 (8) | 0.0485 (7) | 0.0292 (7) | 0.0060 (6) | 0.0050 (6) |
N11 | 0.0384 (6) | 0.0377 (6) | 0.0470 (6) | −0.0090 (5) | 0.0196 (5) | −0.0053 (5) |
N12 | 0.0955 (16) | 0.1087 (16) | 0.0550 (10) | −0.0348 (14) | 0.0430 (11) | −0.0311 (11) |
N21 | 0.0429 (6) | 0.0480 (7) | 0.0467 (7) | 0.0047 (5) | 0.0174 (5) | −0.0002 (5) |
N22 | 0.0381 (7) | 0.0600 (9) | 0.0651 (9) | −0.0058 (7) | 0.0148 (7) | −0.0136 (7) |
C11 | 0.0825 (12) | 0.0509 (9) | 0.0633 (10) | −0.0215 (9) | 0.0475 (10) | −0.0106 (8) |
C12 | 0.1049 (16) | 0.0496 (10) | 0.0838 (14) | −0.0309 (10) | 0.0550 (13) | −0.0085 (9) |
C13 | 0.0738 (11) | 0.0421 (8) | 0.0551 (10) | −0.0033 (8) | 0.0192 (9) | −0.0041 (7) |
C14 | 0.0550 (9) | 0.0456 (8) | 0.0495 (8) | −0.0087 (7) | 0.0242 (7) | −0.0122 (6) |
C21 | 0.0502 (9) | 0.0693 (11) | 0.0465 (9) | 0.0003 (8) | 0.0175 (7) | 0.0075 (8) |
C22 | 0.0775 (14) | 0.121 (2) | 0.0628 (12) | 0.0000 (13) | 0.0370 (11) | 0.0190 (12) |
C23 | 0.0653 (12) | 0.1083 (19) | 0.0937 (16) | 0.0056 (12) | 0.0495 (12) | 0.0194 (14) |
C24 | 0.0447 (9) | 0.0847 (14) | 0.0824 (13) | −0.0046 (9) | 0.0255 (9) | −0.0003 (11) |
C111 | 0.0322 (6) | 0.0331 (6) | 0.0394 (7) | −0.0036 (5) | 0.0105 (5) | 0.0005 (5) |
C112 | 0.0577 (9) | 0.0442 (8) | 0.0423 (8) | −0.0116 (7) | 0.0168 (7) | −0.0070 (6) |
C113 | 0.0710 (12) | 0.0640 (11) | 0.0459 (9) | −0.0063 (9) | −0.0066 (9) | −0.0071 (8) |
C114 | 0.0401 (9) | 0.0711 (13) | 0.0851 (15) | 0.0055 (8) | −0.0035 (9) | −0.0100 (11) |
C115 | 0.0383 (8) | 0.0682 (11) | 0.0867 (14) | 0.0021 (8) | 0.0240 (9) | −0.0051 (10) |
C116 | 0.0390 (7) | 0.0473 (8) | 0.0508 (8) | −0.0013 (6) | 0.0185 (6) | 0.0010 (6) |
C211 | 0.0400 (7) | 0.0362 (7) | 0.0388 (7) | 0.0002 (5) | 0.0138 (6) | −0.0023 (5) |
C212 | 0.0389 (7) | 0.0420 (7) | 0.0405 (7) | −0.0038 (6) | 0.0190 (6) | 0.0014 (6) |
C213 | 0.0458 (8) | 0.0462 (8) | 0.0578 (9) | 0.0050 (6) | 0.0286 (7) | 0.0064 (7) |
C214 | 0.0698 (11) | 0.0390 (8) | 0.0714 (11) | −0.0006 (7) | 0.0425 (9) | −0.0054 (7) |
C215 | 0.0622 (11) | 0.0522 (9) | 0.0772 (12) | −0.0157 (8) | 0.0285 (10) | −0.0267 (9) |
C216 | 0.0437 (8) | 0.0553 (9) | 0.0582 (10) | −0.0054 (7) | 0.0129 (7) | −0.0162 (8) |
S1—O12 | 1.4236 (13) | C21—H21A | 0.9700 |
S1—O11 | 1.4369 (12) | C21—H21B | 0.9700 |
S1—N11 | 1.6127 (12) | C22—C23 | 1.489 (3) |
S1—C111 | 1.7496 (14) | C22—H22A | 0.9700 |
S2—O22 | 1.4252 (12) | C22—H22B | 0.9700 |
S2—O21 | 1.4330 (13) | C23—C24 | 1.514 (3) |
S2—N21 | 1.6161 (14) | C23—H23A | 0.9700 |
S2—C211 | 1.7558 (14) | C23—H23B | 0.9700 |
N11—C11 | 1.462 (2) | C24—H24A | 0.9700 |
N11—C14 | 1.4813 (19) | C24—H24B | 0.9700 |
N12—C112 | 1.365 (3) | C111—C116 | 1.397 (2) |
N12—H12C | 0.78 (3) | C111—C112 | 1.402 (2) |
N12—H12D | 0.84 (3) | C112—C113 | 1.401 (3) |
N21—C24 | 1.468 (2) | C113—C114 | 1.363 (3) |
N21—C21 | 1.470 (2) | C113—H113 | 0.9300 |
N22—C212 | 1.372 (2) | C114—C115 | 1.373 (3) |
N22—H21C | 0.82 (2) | C114—H114 | 0.9300 |
N22—H21D | 0.87 (2) | C115—C116 | 1.364 (2) |
C11—C12 | 1.514 (2) | C115—H115 | 0.9300 |
C11—H11A | 0.9700 | C116—H116 | 0.9300 |
C11—H11B | 0.9700 | C211—C216 | 1.396 (2) |
C12—C13 | 1.496 (3) | C211—C212 | 1.405 (2) |
C12—H12A | 0.9700 | C212—C213 | 1.402 (2) |
C12—H12B | 0.9700 | C213—C214 | 1.364 (2) |
C13—C14 | 1.510 (2) | C213—H213 | 0.9300 |
C13—H13A | 0.9700 | C214—C215 | 1.381 (3) |
C13—H13B | 0.9700 | C214—H214 | 0.9300 |
C14—H14A | 0.9700 | C215—C216 | 1.371 (2) |
C14—H14B | 0.9700 | C215—H215 | 0.9300 |
C21—C22 | 1.497 (3) | C216—H216 | 0.9300 |
O12—S1—O11 | 118.78 (8) | C23—C22—C21 | 106.93 (17) |
O12—S1—N11 | 106.62 (7) | C23—C22—H22A | 110.3 |
O11—S1—N11 | 106.32 (7) | C21—C22—H22A | 110.3 |
O12—S1—C111 | 107.62 (7) | C23—C22—H22B | 110.3 |
O11—S1—C111 | 108.23 (7) | C21—C22—H22B | 110.3 |
N11—S1—C111 | 109.00 (6) | H22A—C22—H22B | 108.6 |
O22—S2—O21 | 118.33 (8) | C22—C23—C24 | 106.31 (16) |
O22—S2—N21 | 106.53 (8) | C22—C23—H23A | 110.5 |
O21—S2—N21 | 106.55 (7) | C24—C23—H23A | 110.5 |
O22—S2—C211 | 108.20 (7) | C22—C23—H23B | 110.5 |
O21—S2—C211 | 108.07 (7) | C24—C23—H23B | 110.5 |
N21—S2—C211 | 108.86 (7) | H23A—C23—H23B | 108.7 |
C11—N11—C14 | 110.00 (13) | N21—C24—C23 | 101.67 (16) |
C11—N11—S1 | 121.83 (10) | N21—C24—H24A | 111.4 |
C14—N11—S1 | 119.32 (10) | C23—C24—H24A | 111.4 |
C112—N12—H12C | 114 (2) | N21—C24—H24B | 111.4 |
C112—N12—H12D | 117 (2) | C23—C24—H24B | 111.4 |
H12C—N12—H12D | 117 (3) | H24A—C24—H24B | 109.3 |
C24—N21—C21 | 107.31 (14) | C116—C111—C112 | 120.86 (14) |
C24—N21—S2 | 120.18 (12) | C116—C111—S1 | 116.38 (11) |
C21—N21—S2 | 120.19 (11) | C112—C111—S1 | 122.75 (11) |
C212—N22—H21C | 113.7 (16) | N12—C112—C113 | 119.99 (18) |
C212—N22—H21D | 114.3 (13) | N12—C112—C111 | 123.25 (17) |
H21C—N22—H21D | 122 (2) | C113—C112—C111 | 116.75 (16) |
N11—C11—C12 | 101.23 (14) | C114—C113—C112 | 121.12 (17) |
N11—C11—H11A | 111.5 | C114—C113—H113 | 119.4 |
C12—C11—H11A | 111.5 | C112—C113—H113 | 119.4 |
N11—C11—H11B | 111.5 | C113—C114—C115 | 121.80 (17) |
C12—C11—H11B | 111.5 | C113—C114—H114 | 119.1 |
H11A—C11—H11B | 109.3 | C115—C114—H114 | 119.1 |
C13—C12—C11 | 104.33 (14) | C116—C115—C114 | 118.88 (18) |
C13—C12—H12A | 110.9 | C116—C115—H115 | 120.6 |
C11—C12—H12A | 110.9 | C114—C115—H115 | 120.6 |
C13—C12—H12B | 110.9 | C115—C116—C111 | 120.58 (16) |
C11—C12—H12B | 110.9 | C115—C116—H116 | 119.7 |
H12A—C12—H12B | 108.9 | C111—C116—H116 | 119.7 |
C12—C13—C14 | 105.24 (14) | C216—C211—C212 | 119.99 (14) |
C12—C13—H13A | 110.7 | C216—C211—S2 | 117.42 (11) |
C14—C13—H13A | 110.7 | C212—C211—S2 | 122.57 (11) |
C12—C13—H13B | 110.7 | N22—C212—C213 | 119.25 (14) |
C14—C13—H13B | 110.7 | N22—C212—C211 | 123.75 (14) |
H13A—C13—H13B | 108.8 | C213—C212—C211 | 116.98 (13) |
N11—C14—C13 | 104.53 (13) | C214—C213—C212 | 122.24 (15) |
N11—C14—H14A | 110.8 | C214—C213—H213 | 118.9 |
C13—C14—H14A | 110.8 | C212—C213—H213 | 118.9 |
N11—C14—H14B | 110.8 | C213—C214—C215 | 120.37 (15) |
C13—C14—H14B | 110.8 | C213—C214—H214 | 119.8 |
H14A—C14—H14B | 108.9 | C215—C214—H214 | 119.8 |
N21—C21—C22 | 104.32 (15) | C216—C215—C214 | 119.19 (16) |
N21—C21—H21A | 110.9 | C216—C215—H215 | 120.4 |
C22—C21—H21A | 110.9 | C214—C215—H215 | 120.4 |
N21—C21—H21B | 110.9 | C215—C216—C211 | 121.23 (16) |
C22—C21—H21B | 110.9 | C215—C216—H216 | 119.4 |
H21A—C21—H21B | 108.9 | C211—C216—H216 | 119.4 |
O12—S1—N11—C11 | −171.19 (13) | O11—S1—C111—C112 | 29.11 (14) |
O11—S1—N11—C11 | −43.54 (15) | N11—S1—C111—C112 | −86.12 (13) |
C111—S1—N11—C11 | 72.91 (14) | C116—C111—C112—N12 | −179.45 (18) |
O12—S1—N11—C14 | 44.67 (13) | S1—C111—C112—N12 | −1.1 (2) |
O11—S1—N11—C14 | 172.32 (12) | C116—C111—C112—C113 | −0.4 (2) |
C111—S1—N11—C14 | −71.23 (13) | S1—C111—C112—C113 | 178.01 (13) |
O22—S2—N21—C24 | −40.89 (16) | N12—C112—C113—C114 | 179.8 (2) |
O21—S2—N21—C24 | −168.09 (14) | C111—C112—C113—C114 | 0.7 (3) |
C211—S2—N21—C24 | 75.59 (15) | C112—C113—C114—C115 | −0.5 (3) |
O22—S2—N21—C21 | −178.33 (13) | C113—C114—C115—C116 | 0.0 (3) |
O21—S2—N21—C21 | 54.47 (14) | C114—C115—C116—C111 | 0.4 (3) |
C211—S2—N21—C21 | −61.86 (14) | C112—C111—C116—C115 | −0.2 (2) |
C14—N11—C11—C12 | −30.58 (19) | S1—C111—C116—C115 | −178.64 (14) |
S1—N11—C11—C12 | −177.66 (14) | O22—S2—C211—C216 | 23.95 (15) |
N11—C11—C12—C13 | 38.2 (2) | O21—S2—C211—C216 | 153.20 (13) |
C11—C12—C13—C14 | −32.5 (2) | N21—S2—C211—C216 | −91.45 (14) |
C11—N11—C14—C13 | 11.09 (18) | O22—S2—C211—C212 | −157.40 (13) |
S1—N11—C14—C13 | 159.11 (12) | O21—S2—C211—C212 | −28.14 (14) |
C12—C13—C14—N11 | 13.63 (19) | N21—S2—C211—C212 | 87.21 (13) |
C24—N21—C21—C22 | 31.2 (2) | C216—C211—C212—N22 | 178.30 (16) |
S2—N21—C21—C22 | 173.45 (15) | S2—C211—C212—N22 | −0.3 (2) |
N21—C21—C22—C23 | −11.7 (3) | C216—C211—C212—C213 | −0.2 (2) |
C21—C22—C23—C24 | −11.0 (3) | S2—C211—C212—C213 | −178.81 (11) |
C21—N21—C24—C23 | −37.5 (2) | N22—C212—C213—C214 | −178.60 (15) |
S2—N21—C24—C23 | −179.70 (14) | C211—C212—C213—C214 | 0.0 (2) |
C22—C23—C24—N21 | 29.2 (2) | C212—C213—C214—C215 | 0.3 (3) |
O12—S1—C111—C116 | −22.94 (13) | C213—C214—C215—C216 | −0.3 (3) |
O11—S1—C111—C116 | −152.46 (11) | C214—C215—C216—C211 | 0.0 (3) |
N11—S1—C111—C116 | 92.31 (12) | C212—C211—C216—C215 | 0.2 (3) |
O12—S1—C111—C112 | 158.62 (12) | S2—C211—C216—C215 | 178.89 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N12—H12C···O21 | 0.78 (3) | 2.39 (3) | 3.121 (2) | 155 (3) |
N12—H12D···O11 | 0.84 (3) | 2.10 (3) | 2.776 (3) | 138 (3) |
N22—H21C···O11i | 0.82 (2) | 2.30 (2) | 3.106 (2) | 168 (2) |
N22—H21D···O21 | 0.87 (2) | 2.07 (2) | 2.783 (2) | 138.8 (17) |
C114—H114···O22ii | 0.93 | 2.59 | 3.391 (2) | 144 |
C116—H116···O12 | 0.93 | 2.46 | 2.8505 (19) | 105 |
C216—H216···O22 | 0.93 | 2.52 | 2.897 (2) | 105 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, y−1/2, −z+3/2. |
C11H16N2O2S | Dx = 1.353 Mg m−3 |
Mr = 240.32 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9577 reflections |
a = 11.1747 (4) Å | θ = 2.9–28.3° |
b = 10.4850 (4) Å | µ = 0.26 mm−1 |
c = 20.1368 (8) Å | T = 200 K |
V = 2359.36 (15) Å3 | Block, colourless |
Z = 8 | 0.49 × 0.26 × 0.25 mm |
F(000) = 1024 |
Bruker APEXII CCD diffractometer | 2935 independent reflections |
Radiation source: sealed tube | 2583 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.3°, θmin = 2.0° |
φ and ω scans | h = −14→14 |
Absorption correction: numerical (SADABS; Bruker, 2008) | k = −13→13 |
Tmin = 0.944, Tmax = 1.000 | l = −26→26 |
57075 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: mixed |
wR(F2) = 0.087 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0456P)2 + 0.8126P] where P = (Fo2 + 2Fc2)/3 |
2935 reflections | (Δ/σ)max = 0.001 |
153 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C). The nitrogen-bound H atoms were located on a difference map and refined freely. Single-crystal X-ray diffraction (SC-XRD) data were collected at 200 or 296 K on a Bruker APEXII CCD diffractometer with graphite-monochromated Mo Kα radiation using the APEX2 data collection software and SAINT (Bruker 2012) for cell refinement and data reduction. The structures were solved by dual-space methods applying SHELXT2018 (Sheldrick, 2015a) and refined by least-squares procedures using SHELXL2018 (Sheldrick, 2015b). Data were corrected for absorption effects using the numerical method implemented in SADABS (Bruker 2012). All non-H atoms were refined anisotropically. The crystal structure diagrams were drawn with ORTEP-3 for Windows (Farrugia 2012). |
x | y | z | Uiso*/Ueq | ||
S1 | 0.66247 (2) | 0.46255 (3) | 0.35628 (2) | 0.02489 (10) | |
O1 | 0.78413 (7) | 0.45299 (8) | 0.37905 (5) | 0.0331 (2) | |
O2 | 0.60807 (8) | 0.58657 (8) | 0.35302 (5) | 0.0344 (2) | |
N1 | 0.48648 (11) | 0.51544 (13) | 0.23579 (7) | 0.0417 (3) | |
N2 | 0.58073 (8) | 0.37768 (9) | 0.40733 (5) | 0.0257 (2) | |
C11 | 0.65595 (9) | 0.38973 (11) | 0.27755 (6) | 0.0245 (2) | |
C12 | 0.56770 (10) | 0.41892 (11) | 0.22957 (6) | 0.0281 (2) | |
C13 | 0.56702 (11) | 0.34467 (13) | 0.17139 (6) | 0.0340 (3) | |
H13 | 0.509126 | 0.361787 | 0.138016 | 0.041* | |
C14 | 0.64803 (12) | 0.24808 (13) | 0.16172 (6) | 0.0357 (3) | |
H14 | 0.644395 | 0.199006 | 0.122112 | 0.043* | |
C15 | 0.73532 (11) | 0.22069 (12) | 0.20879 (6) | 0.0336 (3) | |
H15 | 0.791553 | 0.154219 | 0.201449 | 0.040* | |
C16 | 0.73871 (10) | 0.29170 (11) | 0.26622 (6) | 0.0280 (2) | |
H16 | 0.798089 | 0.273989 | 0.298703 | 0.034* | |
C21 | 0.61856 (11) | 0.24349 (12) | 0.41533 (6) | 0.0320 (3) | |
H21A | 0.706433 | 0.239499 | 0.421235 | 0.038* | |
H21B | 0.597532 | 0.194456 | 0.374968 | 0.038* | |
C22 | 0.55700 (14) | 0.18533 (15) | 0.47531 (7) | 0.0429 (3) | |
H22A | 0.584669 | 0.229165 | 0.516052 | 0.051* | |
H22B | 0.579347 | 0.094219 | 0.478891 | 0.051* | |
C23 | 0.42189 (13) | 0.19665 (15) | 0.47012 (8) | 0.0460 (3) | |
H23A | 0.392700 | 0.144432 | 0.432495 | 0.055* | |
H23B | 0.384336 | 0.164250 | 0.511330 | 0.055* | |
C24 | 0.38708 (12) | 0.33508 (15) | 0.45955 (8) | 0.0448 (3) | |
H24A | 0.408917 | 0.385359 | 0.499357 | 0.054* | |
H24B | 0.299337 | 0.341143 | 0.453508 | 0.054* | |
C25 | 0.44964 (11) | 0.39042 (13) | 0.39903 (7) | 0.0358 (3) | |
H25A | 0.423672 | 0.344456 | 0.358573 | 0.043* | |
H25B | 0.428110 | 0.481486 | 0.393957 | 0.043* | |
H1A | 0.4305 (18) | 0.5177 (17) | 0.2083 (9) | 0.050 (5)* | |
H1B | 0.4888 (14) | 0.5639 (15) | 0.2697 (8) | 0.037 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.02117 (15) | 0.02347 (15) | 0.03003 (16) | −0.00296 (9) | −0.00057 (10) | −0.00017 (10) |
O1 | 0.0226 (4) | 0.0393 (5) | 0.0373 (5) | −0.0060 (3) | −0.0045 (3) | −0.0021 (4) |
O2 | 0.0350 (5) | 0.0231 (4) | 0.0451 (5) | −0.0009 (3) | 0.0032 (4) | 0.0006 (4) |
N1 | 0.0315 (6) | 0.0460 (7) | 0.0476 (7) | 0.0119 (5) | −0.0111 (5) | 0.0009 (6) |
N2 | 0.0240 (4) | 0.0249 (5) | 0.0280 (5) | −0.0019 (4) | 0.0011 (4) | 0.0007 (4) |
C11 | 0.0214 (5) | 0.0253 (5) | 0.0267 (5) | −0.0027 (4) | 0.0000 (4) | 0.0037 (4) |
C12 | 0.0223 (5) | 0.0299 (6) | 0.0319 (6) | −0.0030 (4) | −0.0010 (4) | 0.0078 (5) |
C13 | 0.0318 (6) | 0.0419 (7) | 0.0284 (6) | −0.0068 (5) | −0.0052 (5) | 0.0056 (5) |
C14 | 0.0425 (7) | 0.0369 (7) | 0.0277 (6) | −0.0089 (5) | 0.0021 (5) | −0.0001 (5) |
C15 | 0.0360 (6) | 0.0300 (6) | 0.0349 (6) | 0.0010 (5) | 0.0073 (5) | 0.0021 (5) |
C16 | 0.0251 (5) | 0.0287 (6) | 0.0303 (5) | 0.0002 (4) | 0.0008 (4) | 0.0056 (4) |
C21 | 0.0366 (6) | 0.0278 (6) | 0.0315 (6) | 0.0029 (5) | 0.0030 (5) | 0.0057 (5) |
C22 | 0.0485 (8) | 0.0458 (8) | 0.0344 (7) | 0.0000 (6) | 0.0024 (6) | 0.0149 (6) |
C23 | 0.0457 (8) | 0.0512 (8) | 0.0409 (7) | −0.0114 (7) | 0.0090 (6) | 0.0132 (6) |
C24 | 0.0321 (6) | 0.0538 (9) | 0.0486 (8) | −0.0040 (6) | 0.0118 (6) | 0.0041 (7) |
C25 | 0.0234 (5) | 0.0384 (7) | 0.0455 (7) | −0.0019 (5) | 0.0014 (5) | 0.0089 (6) |
S1—O2 | 1.4369 (9) | C15—H15 | 0.9500 |
S1—O1 | 1.4382 (8) | C16—H16 | 0.9500 |
S1—N2 | 1.6381 (10) | C21—C22 | 1.5178 (17) |
S1—C11 | 1.7611 (12) | C21—H21A | 0.9900 |
N1—C12 | 1.3652 (17) | C21—H21B | 0.9900 |
N1—H1A | 0.836 (19) | C22—C23 | 1.518 (2) |
N1—H1B | 0.852 (17) | C22—H22A | 0.9900 |
N2—C21 | 1.4780 (15) | C22—H22B | 0.9900 |
N2—C25 | 1.4804 (15) | C23—C24 | 1.518 (2) |
C11—C16 | 1.4014 (16) | C23—H23A | 0.9900 |
C11—C12 | 1.4141 (15) | C23—H23B | 0.9900 |
C12—C13 | 1.4066 (18) | C24—C25 | 1.5200 (18) |
C13—C14 | 1.3723 (19) | C24—H24A | 0.9900 |
C13—H13 | 0.9500 | C24—H24B | 0.9900 |
C14—C15 | 1.3901 (18) | C25—H25A | 0.9900 |
C14—H14 | 0.9500 | C25—H25B | 0.9900 |
C15—C16 | 1.3759 (17) | ||
O2—S1—O1 | 118.52 (5) | N2—C21—C22 | 109.85 (11) |
O2—S1—N2 | 106.51 (5) | N2—C21—H21A | 109.7 |
O1—S1—N2 | 106.81 (5) | C22—C21—H21A | 109.7 |
O2—S1—C11 | 109.50 (5) | N2—C21—H21B | 109.7 |
O1—S1—C11 | 107.21 (5) | C22—C21—H21B | 109.7 |
N2—S1—C11 | 107.84 (5) | H21A—C21—H21B | 108.2 |
C12—N1—H1A | 117.2 (12) | C21—C22—C23 | 111.39 (11) |
C12—N1—H1B | 119.7 (10) | C21—C22—H22A | 109.4 |
H1A—N1—H1B | 122.5 (16) | C23—C22—H22A | 109.4 |
C21—N2—C25 | 112.41 (10) | C21—C22—H22B | 109.4 |
C21—N2—S1 | 115.21 (8) | C23—C22—H22B | 109.4 |
C25—N2—S1 | 115.59 (8) | H22A—C22—H22B | 108.0 |
C16—C11—C12 | 120.52 (11) | C24—C23—C22 | 109.84 (12) |
C16—C11—S1 | 115.92 (8) | C24—C23—H23A | 109.7 |
C12—C11—S1 | 123.37 (9) | C22—C23—H23A | 109.7 |
N1—C12—C13 | 118.89 (11) | C24—C23—H23B | 109.7 |
N1—C12—C11 | 124.15 (12) | C22—C23—H23B | 109.7 |
C13—C12—C11 | 116.94 (11) | H23A—C23—H23B | 108.2 |
C14—C13—C12 | 121.54 (11) | C23—C24—C25 | 111.08 (12) |
C14—C13—H13 | 119.2 | C23—C24—H24A | 109.4 |
C12—C13—H13 | 119.2 | C25—C24—H24A | 109.4 |
C13—C14—C15 | 121.24 (12) | C23—C24—H24B | 109.4 |
C13—C14—H14 | 119.4 | C25—C24—H24B | 109.4 |
C15—C14—H14 | 119.4 | H24A—C24—H24B | 108.0 |
C16—C15—C14 | 118.73 (12) | N2—C25—C24 | 109.28 (11) |
C16—C15—H15 | 120.6 | N2—C25—H25A | 109.8 |
C14—C15—H15 | 120.6 | C24—C25—H25A | 109.8 |
C15—C16—C11 | 121.03 (11) | N2—C25—H25B | 109.8 |
C15—C16—H16 | 119.5 | C24—C25—H25B | 109.8 |
C11—C16—H16 | 119.5 | H25A—C25—H25B | 108.3 |
O2—S1—N2—C21 | 177.25 (8) | N1—C12—C13—C14 | 178.65 (12) |
O1—S1—N2—C21 | −55.17 (9) | C11—C12—C13—C14 | 0.20 (17) |
C11—S1—N2—C21 | 59.79 (9) | C12—C13—C14—C15 | −0.85 (19) |
O2—S1—N2—C25 | 43.41 (10) | C13—C14—C15—C16 | 0.67 (19) |
O1—S1—N2—C25 | 170.99 (9) | C14—C15—C16—C11 | 0.15 (18) |
C11—S1—N2—C25 | −74.05 (10) | C12—C11—C16—C15 | −0.80 (17) |
O2—S1—C11—C16 | 158.65 (8) | S1—C11—C16—C15 | 174.39 (9) |
O1—S1—C11—C16 | 28.86 (10) | C25—N2—C21—C22 | −58.70 (14) |
N2—S1—C11—C16 | −85.83 (9) | S1—N2—C21—C22 | 166.02 (9) |
O2—S1—C11—C12 | −26.31 (11) | N2—C21—C22—C23 | 55.96 (15) |
O1—S1—C11—C12 | −156.11 (9) | C21—C22—C23—C24 | −54.92 (17) |
N2—S1—C11—C12 | 89.20 (10) | C22—C23—C24—C25 | 55.71 (17) |
C16—C11—C12—N1 | −177.75 (12) | C21—N2—C25—C24 | 59.34 (14) |
S1—C11—C12—N1 | 7.43 (17) | S1—N2—C25—C24 | −165.56 (9) |
C16—C11—C12—C13 | 0.61 (16) | C23—C24—C25—N2 | −57.41 (16) |
S1—C11—C12—C13 | −174.21 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.836 (19) | 2.496 (19) | 3.3000 (16) | 161.8 (16) |
N1—H1B···O2 | 0.852 (17) | 2.156 (17) | 2.8240 (17) | 135.1 (14) |
C16—H16···O1 | 0.95 | 2.48 | 2.8774 (15) | 105 |
C16—H16···O2ii | 0.95 | 2.48 | 3.2576 (14) | 139 |
C21—H21A···O1 | 0.99 | 2.55 | 2.9635 (15) | 105 |
C25—H25B···O2 | 0.99 | 2.44 | 2.8675 (15) | 106 |
Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) −x+3/2, y−1/2, z. |
C14H14N2O2S | F(000) = 576 |
Mr = 274.33 | Dx = 1.397 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.7990 (11) Å | Cell parameters from 9932 reflections |
b = 10.2612 (13) Å | θ = 2.4–28.4° |
c = 13.2010 (16) Å | µ = 0.25 mm−1 |
β = 100.682 (5)° | T = 296 K |
V = 1304.4 (3) Å3 | Block, colourless |
Z = 4 | 0.54 × 0.34 × 0.34 mm |
Bruker APEXII CCD diffractometer | 3275 independent reflections |
Radiation source: sealed tube | 2726 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.7°, θmin = 2.4° |
φ and ω scans | h = −13→13 |
Absorption correction: numerical (SADABS; Bruker, 2008) | k = −13→12 |
Tmin = 0.925, Tmax = 1.000 | l = −16→17 |
28600 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: mixed |
wR(F2) = 0.113 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.053P)2 + 0.4178P] where P = (Fo2 + 2Fc2)/3 |
3275 reflections | (Δ/σ)max < 0.001 |
180 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C). The nitrogen-bound H atoms were located on a difference map and refined freely. Single-crystal X-ray diffraction (SC-XRD) data were collected at 200 or 296 K on a Bruker APEXII CCD diffractometer with graphite-monochromated Mo Kα radiation using the APEX2 data collection software and SAINT (Bruker 2012) for cell refinement and data reduction. The structures were solved by dual-space methods applying SHELXT2018 (Sheldrick, 2015a) and refined by least-squares procedures using SHELXL2018 (Sheldrick, 2015b). Data were corrected for absorption effects using the numerical method implemented in SADABS (Bruker 2012). All non-H atoms were refined anisotropically. The crystal structure diagrams were drawn with ORTEP-3 for Windows (Farrugia 2012). |
x | y | z | Uiso*/Ueq | ||
S1 | 0.38977 (4) | 0.26951 (4) | 0.46693 (3) | 0.04455 (13) | |
O1 | 0.46972 (13) | 0.21097 (14) | 0.55683 (9) | 0.0646 (4) | |
O2 | 0.45941 (11) | 0.31734 (14) | 0.38820 (9) | 0.0593 (3) | |
N1 | 0.31329 (14) | 0.39561 (13) | 0.50488 (10) | 0.0476 (3) | |
N2 | 0.1992 (2) | 0.27928 (18) | 0.25271 (12) | 0.0630 (4) | |
C1 | 0.20394 (18) | 0.60239 (16) | 0.50168 (14) | 0.0536 (4) | |
H1A | 0.262936 | 0.675102 | 0.528584 | 0.064* | |
H1B | 0.119055 | 0.635928 | 0.460230 | 0.064* | |
C2 | 0.27807 (18) | 0.51224 (17) | 0.43895 (13) | 0.0532 (4) | |
H2A | 0.218044 | 0.489119 | 0.374487 | 0.064* | |
H2B | 0.361389 | 0.553051 | 0.423985 | 0.064* | |
C11 | 0.23714 (14) | 0.39828 (15) | 0.58651 (11) | 0.0418 (3) | |
C12 | 0.17276 (15) | 0.51848 (15) | 0.58744 (12) | 0.0457 (3) | |
C13 | 0.09543 (18) | 0.5451 (2) | 0.66236 (15) | 0.0621 (5) | |
H13 | 0.052108 | 0.625529 | 0.663818 | 0.074* | |
C14 | 0.08286 (19) | 0.4512 (2) | 0.73524 (14) | 0.0681 (5) | |
H14 | 0.030634 | 0.468525 | 0.785769 | 0.082* | |
C15 | 0.1472 (2) | 0.3326 (2) | 0.73330 (13) | 0.0626 (5) | |
H15 | 0.137895 | 0.270445 | 0.782820 | 0.075* | |
C16 | 0.22563 (19) | 0.30382 (18) | 0.65894 (13) | 0.0542 (4) | |
H16 | 0.269140 | 0.223417 | 0.657880 | 0.065* | |
C21 | 0.26219 (15) | 0.15726 (15) | 0.41371 (11) | 0.0437 (3) | |
C22 | 0.18015 (15) | 0.17834 (16) | 0.31512 (11) | 0.0460 (3) | |
C23 | 0.07113 (18) | 0.0912 (2) | 0.28389 (15) | 0.0631 (5) | |
H23 | 0.012937 | 0.103508 | 0.220484 | 0.076* | |
C24 | 0.0478 (3) | −0.0110 (2) | 0.3436 (2) | 0.0826 (7) | |
H24 | −0.026770 | −0.066288 | 0.320608 | 0.099* | |
C25 | 0.1320 (3) | −0.0348 (2) | 0.4375 (2) | 0.0866 (7) | |
H25 | 0.116577 | −0.106941 | 0.476522 | 0.104* | |
C26 | 0.2397 (2) | 0.04998 (18) | 0.47264 (15) | 0.0658 (5) | |
H26 | 0.297316 | 0.035268 | 0.535935 | 0.079* | |
H2C | 0.283 (3) | 0.308 (3) | 0.259 (2) | 0.093 (8)* | |
H2D | 0.143 (2) | 0.282 (2) | 0.1916 (19) | 0.079 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.03429 (19) | 0.0609 (3) | 0.0368 (2) | 0.00384 (14) | 0.00238 (14) | −0.00607 (15) |
O1 | 0.0543 (7) | 0.0854 (9) | 0.0466 (6) | 0.0190 (6) | −0.0106 (5) | −0.0049 (6) |
O2 | 0.0413 (6) | 0.0893 (9) | 0.0505 (6) | −0.0069 (6) | 0.0168 (5) | −0.0118 (6) |
N1 | 0.0533 (7) | 0.0477 (7) | 0.0460 (7) | −0.0005 (5) | 0.0201 (6) | 0.0009 (5) |
N2 | 0.0658 (10) | 0.0767 (11) | 0.0394 (7) | −0.0037 (8) | −0.0085 (7) | 0.0020 (7) |
C1 | 0.0514 (9) | 0.0459 (8) | 0.0602 (10) | −0.0043 (7) | 0.0018 (7) | −0.0025 (7) |
C2 | 0.0580 (9) | 0.0544 (9) | 0.0467 (8) | −0.0048 (7) | 0.0082 (7) | 0.0049 (7) |
C11 | 0.0386 (7) | 0.0491 (8) | 0.0382 (7) | −0.0074 (6) | 0.0089 (5) | −0.0069 (6) |
C12 | 0.0367 (7) | 0.0504 (8) | 0.0478 (8) | −0.0058 (6) | 0.0021 (6) | −0.0117 (6) |
C13 | 0.0494 (9) | 0.0730 (12) | 0.0643 (11) | 0.0018 (8) | 0.0120 (8) | −0.0241 (9) |
C14 | 0.0543 (10) | 0.1020 (16) | 0.0522 (10) | −0.0112 (10) | 0.0210 (8) | −0.0224 (10) |
C15 | 0.0631 (10) | 0.0831 (13) | 0.0444 (8) | −0.0183 (10) | 0.0172 (8) | −0.0028 (9) |
C16 | 0.0612 (10) | 0.0570 (9) | 0.0472 (8) | −0.0061 (8) | 0.0174 (7) | 0.0004 (7) |
C21 | 0.0431 (7) | 0.0464 (8) | 0.0408 (7) | 0.0043 (6) | 0.0059 (6) | −0.0059 (6) |
C22 | 0.0404 (7) | 0.0561 (9) | 0.0410 (7) | 0.0047 (6) | 0.0063 (6) | −0.0137 (7) |
C23 | 0.0492 (9) | 0.0793 (13) | 0.0604 (10) | −0.0090 (8) | 0.0090 (8) | −0.0296 (9) |
C24 | 0.0846 (15) | 0.0786 (14) | 0.0913 (16) | −0.0327 (12) | 0.0334 (13) | −0.0391 (13) |
C25 | 0.126 (2) | 0.0500 (11) | 0.0938 (17) | −0.0192 (12) | 0.0453 (16) | −0.0082 (11) |
C26 | 0.0888 (14) | 0.0504 (10) | 0.0582 (10) | 0.0058 (9) | 0.0139 (9) | 0.0003 (8) |
S1—O1 | 1.4277 (12) | C13—C14 | 1.383 (3) |
S1—O2 | 1.4317 (12) | C13—H13 | 0.9300 |
S1—N1 | 1.6205 (14) | C14—C15 | 1.373 (3) |
S1—C21 | 1.7486 (16) | C14—H14 | 0.9300 |
N1—C11 | 1.4203 (18) | C15—C16 | 1.387 (2) |
N1—C2 | 1.482 (2) | C15—H15 | 0.9300 |
N2—C22 | 1.358 (2) | C16—H16 | 0.9300 |
N2—H2C | 0.86 (3) | C21—C26 | 1.389 (2) |
N2—H2D | 0.89 (2) | C21—C22 | 1.414 (2) |
C1—C12 | 1.498 (2) | C22—C23 | 1.396 (2) |
C1—C2 | 1.514 (2) | C23—C24 | 1.357 (3) |
C1—H1A | 0.9700 | C23—H23 | 0.9300 |
C1—H1B | 0.9700 | C24—C25 | 1.378 (4) |
C2—H2A | 0.9700 | C24—H24 | 0.9300 |
C2—H2B | 0.9700 | C25—C26 | 1.380 (3) |
C11—C16 | 1.381 (2) | C25—H25 | 0.9300 |
C11—C12 | 1.386 (2) | C26—H26 | 0.9300 |
C12—C13 | 1.380 (2) | ||
O1—S1—O2 | 119.06 (8) | C12—C13—C14 | 119.49 (18) |
O1—S1—N1 | 107.04 (7) | C12—C13—H13 | 120.3 |
O2—S1—N1 | 105.10 (8) | C14—C13—H13 | 120.3 |
O1—S1—C21 | 107.35 (8) | C15—C14—C13 | 120.27 (16) |
O2—S1—C21 | 109.61 (7) | C15—C14—H14 | 119.9 |
N1—S1—C21 | 108.24 (7) | C13—C14—H14 | 119.9 |
C11—N1—C2 | 109.39 (13) | C14—C15—C16 | 121.27 (18) |
C11—N1—S1 | 126.02 (11) | C14—C15—H15 | 119.4 |
C2—N1—S1 | 122.27 (11) | C16—C15—H15 | 119.4 |
C22—N2—H2C | 115.9 (18) | C11—C16—C15 | 117.89 (18) |
C22—N2—H2D | 116.2 (15) | C11—C16—H16 | 121.1 |
H2C—N2—H2D | 120 (2) | C15—C16—H16 | 121.1 |
C12—C1—C2 | 104.35 (13) | C26—C21—C22 | 120.97 (16) |
C12—C1—H1A | 110.9 | C26—C21—S1 | 118.22 (13) |
C2—C1—H1A | 110.9 | C22—C21—S1 | 120.75 (12) |
C12—C1—H1B | 110.9 | N2—C22—C23 | 119.58 (16) |
C2—C1—H1B | 110.9 | N2—C22—C21 | 123.81 (15) |
H1A—C1—H1B | 108.9 | C23—C22—C21 | 116.57 (17) |
N1—C2—C1 | 104.80 (13) | C24—C23—C22 | 121.75 (19) |
N1—C2—H2A | 110.8 | C24—C23—H23 | 119.1 |
C1—C2—H2A | 110.8 | C22—C23—H23 | 119.1 |
N1—C2—H2B | 110.8 | C23—C24—C25 | 121.5 (2) |
C1—C2—H2B | 110.8 | C23—C24—H24 | 119.3 |
H2A—C2—H2B | 108.9 | C25—C24—H24 | 119.3 |
C16—C11—C12 | 121.52 (14) | C24—C25—C26 | 118.9 (2) |
C16—C11—N1 | 129.33 (15) | C24—C25—H25 | 120.5 |
C12—C11—N1 | 109.13 (13) | C26—C25—H25 | 120.5 |
C13—C12—C11 | 119.57 (16) | C25—C26—C21 | 120.1 (2) |
C13—C12—C1 | 130.07 (16) | C25—C26—H26 | 119.9 |
C11—C12—C1 | 110.35 (14) | C21—C26—H26 | 119.9 |
O1—S1—N1—C11 | −48.70 (15) | C13—C14—C15—C16 | −0.1 (3) |
O2—S1—N1—C11 | −176.21 (12) | C12—C11—C16—C15 | 0.0 (2) |
C21—S1—N1—C11 | 66.72 (14) | N1—C11—C16—C15 | 178.04 (15) |
O1—S1—N1—C2 | 150.47 (13) | C14—C15—C16—C11 | −0.1 (3) |
O2—S1—N1—C2 | 22.96 (14) | O1—S1—C21—C26 | 12.71 (16) |
C21—S1—N1—C2 | −94.10 (13) | O2—S1—C21—C26 | 143.37 (14) |
C11—N1—C2—C1 | 14.13 (17) | N1—S1—C21—C26 | −102.51 (14) |
S1—N1—C2—C1 | 177.78 (11) | O1—S1—C21—C22 | −169.99 (12) |
C12—C1—C2—N1 | −12.92 (16) | O2—S1—C21—C22 | −39.34 (14) |
C2—N1—C11—C16 | 172.19 (16) | N1—S1—C21—C22 | 74.79 (13) |
S1—N1—C11—C16 | 9.3 (2) | C26—C21—C22—N2 | −178.22 (17) |
C2—N1—C11—C12 | −9.61 (16) | S1—C21—C22—N2 | 4.6 (2) |
S1—N1—C11—C12 | −172.49 (11) | C26—C21—C22—C23 | 4.0 (2) |
C16—C11—C12—C13 | 0.1 (2) | S1—C21—C22—C23 | −173.18 (12) |
N1—C11—C12—C13 | −178.25 (13) | N2—C22—C23—C24 | −179.93 (19) |
C16—C11—C12—C1 | 179.21 (14) | C21—C22—C23—C24 | −2.1 (3) |
N1—C11—C12—C1 | 0.84 (16) | C22—C23—C24—C25 | −1.0 (3) |
C2—C1—C12—C13 | −173.18 (16) | C23—C24—C25—C26 | 2.1 (4) |
C2—C1—C12—C11 | 7.85 (17) | C24—C25—C26—C21 | −0.1 (3) |
C11—C12—C13—C14 | −0.2 (2) | C22—C21—C26—C25 | −3.0 (3) |
C1—C12—C13—C14 | −179.12 (16) | S1—C21—C26—C25 | 174.28 (16) |
C12—C13—C14—C15 | 0.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2C···O2 | 0.86 (3) | 2.19 (3) | 2.857 (2) | 134 (2) |
N2—H2D···O1i | 0.89 (2) | 2.22 (3) | 3.098 (2) | 169 (2) |
C15—H15···O2ii | 0.93 | 2.59 | 3.366 (2) | 141 |
C16—H16···O1 | 0.93 | 2.58 | 3.105 (2) | 117 |
C26—H26···O1 | 0.93 | 2.45 | 2.849 (3) | 106 |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x−1/2, −y+1/2, z+1/2. |
Compound | Interaction | D—H (Å) | H···A (Å) | D···A (Å) | D—H···A (°) | π–π (Å) |
o-Nitro sulfonamides | ||||||
1 | C11—H11A···O1i | 0.99 | 2.56 | 3.398 (7) | 143 | |
C11—H11B···O4 | 0.99 | 2.48 | 3.093 (9) | 120 | ||
C25—H25···O4ii | 0.95 | 2.54 | 3.240 (2) | 131 | ||
C25—H25···O1iii | 0.95 | 2.47 | 3.229 (2) | 137 | ||
C26—H26···O2 | 0.95 | 2.49 | 2.860 (2) | 103 | ||
C26—H26···O3iv | 0.95 | 2.56 | 3.467 (2) | 160 | ||
2 | C11—H11A···O2 | 0.97 | 2.48 | 2.907 (2) | 107 | |
C11—H11A···O2i | 0.97 | 2.59 | 3.476 (2) | 152 | ||
C15—H15B···O1 | 0.97 | 2.51 | 2.943 (2) | 107 | ||
C25—H25···O2v | 0.93 | 2.57 | 3.334 (2) | 140 | ||
C26—H26···O1 | 0.93 | 2.53 | 2.877 (2) | 103 | ||
3 | C16—H16···O2 | 0.93 | 2.41 | 2.975 (2) | 119 | |
C16—H16···O2vi | 0.93 | 2.55 | 3.195 (2) | 127 | ||
C23—H23···O1vii | 0.93 | 2.30 | 3.086 (3) | 142 | ||
C26—H26···N1 | 0.93 | 2.60 | 2.983 (2) | 105 | ||
Cg1···Cg2i | 3.6967 (11) | |||||
Cg2···Cg1i | 3.6968 (11) | |||||
N-Cycloamino-o-sulfanilamides | ||||||
4 | N12—H12C···O21 | 0.78 (3) | 2.40 (3) | 3.121 (3) | 155 (3) | |
N12—H12D···O11 | 0.84 (3) | 2.10 (3) | 2.776 (3) | 138 (3) | ||
N22—H21C···O11i | 0.82 (3) | 2.30 (3) | 3.106 (2) | 168 (2) | ||
N22—H21D···O21 | 0.87 (2) | 2.07 (2) | 2.783 (2) | 139 (2) | ||
C114—H114···O22xii | 0.93 | 2.59 | 3.391 (3) | 144 | ||
C116—H116···O12 | 0.93 | 2.46 | 2.851 (2) | 105 | ||
C216—H216···O22' | 0.93 | 2.52 | 2.897 (2) | 105 | ||
5 | N1—H1A···O1xiii | 0.836 (19) | 2.496 (19) | 3.2999 (16) | 161.8 (16) | |
N1—H1B···O2 | 0.852 (16) | 2.156 (16) | 2.8240 (17) | 135.1 (14) | ||
C16—H16···O1 | 0.95 | 2.48 | 2.8774 (15) | 105 | ||
C16—H16···O2xiv | 0.95 | 2.48 | 3.2577 (15) | 139 | ||
C21—H21A···O1 | 0.99 | 2.55 | 2.9635 (15) | 105 | ||
C25—H25B···O2 | 0.99 | 2.44 | 2.8675 (16) | 106 | ||
6 | N2—H2C···O2 | 0.86 (3) | 2.19 (3) | 2.857 (2) | 134 (2) | |
N2—H2D···O1xv | 0.89 (2) | 2.22 (2) | 3.098 (2) | 168.8 (19) | ||
C15—H15···O2xvi | 0.93 | 2.59 | 3.366 (2) | 141 | ||
C16—H16···O1 | 0.93 | 2.58 | 3.105 (2) | 117 | ||
C26—H26···O1 | 0.93 | 2.45 | 2.849 (2) | 106 | ||
C1—H1B···Cg1xvii | 0.97 | 2.97 | 3.817 (2) | 147 | ||
S1—O2···Cg2i | 3.5773 (15) |
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+3/2, y+1/2, z-1/2; (iii) x+1/2, -y+3/2, z+1/2; (iv) x+1/2, -y+3/2, z-1/2; (v) x-1/2, -y+3/2, z+1/2; (vi) -x+2, -y+1, -z+1; (vii) x+1/2, -y+3/2, z-1/2; (viii) x+1/2, -y+3/2, z+1/2; (ix) x+1/2, -y+1/2, z+1/2; (x) -x+1/2, y+1/2, -z+3/2; (xi) x, y, z+1; (xii) -x+2, y-1/2, -z+3/2; (xiii) x-1/2, y, -z+1/2; (xiv) -x+3/2, y-1/2, z; (xv) x-1/2, -y+1/2, z-1/2; (xvi) x-1/2, -y+1/2, z+1/2; (xvii) -x, -y+1, -z+1; (xviii) x, -y+1/2, z+1/2; (xix) -x+1, y-1/2, -z+3/2; (xx) x-1/2, -y+1/2, -z+1; (xxi) -x+1, -y, -z+1; (xxii) -x+1, y+1/2, z-1/2. Centroids for 3: Cg1 N1/C1/C2/C12/C11; Cg2 C11–C16; Cg3 C21–C26; for 4: Cg1 C22–C27; for 5 Cg1 C11–C16; Cg2 N1/C2/C1/C12/C11; for 6 Cg1 C21–C26. |
C···H | O···H | N···H | |
o-Nitro sulfonamides | |||
1 | 15.2 | 42.3 | 0.6 |
2 | 15.3 | 41.7 | 1.4 |
3 | 14.0 | 40.3 | 0.0 |
N-Cycloamino-o-sulfanilamides | |||
4 | 15.2 | 25.9 | 3.5 |
5 | 16.5 | 22.4 | 3.4 |
6 | 30.4 | 19.6 | 2.1 |
Compound | dnorm | di | de | |||
Minimum value | Maximum value | Minimum value | Maximum value | Minimum value | Maximum value | |
1 | –0.2565 | 0.9743 | 0.9092 | 2.3849 | 0.9083 | 2.4152 |
2 | –0.1071 | 1.0914 | 1.0665 | 2.4390 | 1.0669 | 2.4804 |
3 | –0.3223 | 1.7007 | 0.9319 | 2.6809 | 0.9322 | 2.6406 |
4 | –0.3784 | 1.2864 | 0.8873 | 2.4989 | 0.9319 | 2.4948 |
5 | –0.2060 | 1.3595 | 0.9944 | 2.6968 | 0.9957 | 2.5141 |
6 | –0.3866 | 1.2989 | 0.8842 | 2.7791 | 0.8838 | 2.5779 |
Parameter (eV) | o-Nitro sulfonamides | N-Cycloamino-o-sulfanilamides | ||||
1 | 2 | 3 | 4 | 5 | 6 | |
HOMO energy (EHOMO) | –7.228 | –7.386 | –6.415 | –6.189 | –6.211 | –6.142 |
LUMO energy (ELUMO) | –2.982 | –2.973 | –3.175 | –1.627 | –1.287 | –1.451 |
ΔE gap | 4.246 | 4.413 | 3.24 | 4.562 | 4.924 | 4.691 |
Ionization potential (I) | 7.228 | 7.386 | 6.415 | 6.189 | 6.211 | 6.142 |
Electron affinity (A) | 2.982 | 2.973 | 3.175 | 1.627 | 1.287 | 1.451 |
Chemical potential (µ) | –5.105 | –5.1795 | –4.795 | –3.908 | –3.749 | –3.7965 |
Electronegativity (χ) | 5.105 | 5.1795 | 4.795 | 3.908 | 3.749 | 3.7965 |
Global hardness (η) | 2.123 | 2.2065 | 1.62 | 2.281 | 2.462 | 2.3455 |
Global softness (S) | 0.471 | 0.453 | 0.617 | 0.438 | 0.406 | 0.426 |
Global electrophilicity (ω) | 27.664 | 29.597 | 18.624 | 17.418 | 17.301 | 16.903 |
1 | -1.351 | -0.807 | -38.102 | -40.980 | -0.079 | -0.047 |
2 | -2.223 | -1.977 | -41.329 | -42.073 | -0.124 | -0.110 |
3 | -1.288 | -1.538 | -40.486 | -38.954 | -0.061 | -0.073 |
4 | -1.645 | -1.451 | -37.113 | -35.898 | -0.110 | -0.097 |
5 | -1.636 | -1.605 | -41.034 | -34.609 | -0.102 | -0.100 |
6 | -0.784 | -1.368 | -47.945 | -42.454 | -0.041 | 0.072 |
A | -2.252 | - | -55.202 | - | -0.125 | - |
B | - | -1.969 | -41.029 | -0.082 |
Note: A is N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)-2-(thiophen-2-yl)acetamide and B is 5-[1-(naphthalen-1-yl)-1,2,3-triazol-4-yl]thiophene-2-sulfonamide. |
Isoenzyme/Entry | Carbonic anhydrase II (PDB id: 4iwz) | Carbonic anhydrase IX (PDB id: 5fl4) | ||
Hydrogen bond (Å) | π–π or π–cation (Å) | Hydrogen bond (Å) | π–π or π–cation (Å) | |
o-Nitrosulfonamides | ||||
1 | GLN92 (2.13) | GLN92 (2.14) | HID94 (4.08) π–cation | |
2 | ASN62 (2.33), ASN67 (2.55) | GLN71 (2.28), THR201 (2.13) | HID94 (4.07) π–cation | |
3 | GLN92 (2.25), ASN62 (2.74) | TRP5 (5.36) π–π stacking | GLN71 (2.26) | HID94 (4.05) π–cation |
N-Cycloamino-o-sulfanilamides | ||||
4 | GLN92 (2.04), THR199 (2.29) | THR201 (2.03) | ||
5 | GLN92 (1.78), THR199 (2.26) | |||
6 | GLN92 (1.88), TRP5 (2.11) | THR199 (1.81) π–π stacking | GLU92 (2.47) | |
A | GLN92 (2.39), HIE64 (2.24) | HIS94 (4.75) π–π stacking | ||
B | ASP13 (1.59), ??? (2.73), VAL130 (2.53) | HID94 (5.49) π–cation |
Note: A is N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)-2-(thiophen-2-yl)acetamide and B is 5-[1-(naphthalen-1-yl)-1,2,3-triazol-4-yl]thiophene-2-sulfonamide. |
Acknowledgements
This work was funded, in part, by the University of Lagos Central Research Committee, Nigerian Government TetFund IBR and National Research Foundation (NRF) of South Africa. The authors thank the Center for High Performance Computing (CHPC), Cape Town, South Africa, for providing the platform for carrying out the molecular modelling studies on the Schrödinger Platform for protein preparation. The authors have no relevant financial or nonfinancial interest to disclose. All authors contributed to the conception and design of the study. Material preparation, data collection and analysis were performed by Sherif O. Kolade, Eric C. Hosten, Allen T. Gordon, Idris A. Olasupo and Olayinka T. Asekun. The first draft of the manuscript was written by Josephat U. Izunobi, Adeniyi S. Ogunlaja and Oluwole B. Familoni, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Funding information
Funding for this research was provided by: University of Lagos Central Research Committee (grant No. CRC No. 2015/25 to Oluwole Familoni); Nigerian Government TetFund IBR (grant No. CRC/TETFUND/No. 2018/016 to Josephat Izunobi); National Research Foundation (NRF) of South Africa (grant No. Grant No: 129887).
References
Abbaz, T., Bendjeddou, A. & Villemin, D. (2018). Arch. Curr. Res. Int. 14, 1–13. CrossRef Google Scholar
Ajani, O. O., Familoni, O. B., Wu, F., Echeme, J. O. & Sujiang, Z. (2012). Int. J. Med. Chem. 2012, 367815. PubMed Google Scholar
Alex, A. A. & Storer, R. I. (2010). Metabolism, Pharmacokinetics and Toxicity of Functional Groups: Impact of Chemical Building Blocks on ADMET, edited by D. A. Smith, pp. 1–60. RSC Drug Discovery Series. Cambridge: Royal Society of Chemistry. Google Scholar
Al-Wahaibi, L. H., Joubert, J., Blacque, O., Al-Shaalan, N. H. & El-Emam, A. A. (2019). Sci. Rep. 9, 19745. Web of Science PubMed Google Scholar
Andreucci, E., Ruzzolini, J., Peppicelli, S., Bianchini, F., Laurenzana, A., Carta, F., Supuran, C. T. & Calorini, L. (2019). J. Enzyme Inhib. Med. Chem. 34, 117–123. Web of Science CrossRef CAS PubMed Google Scholar
Angeli, A., Ferraroni, M., Pinteala, M., Maier, S. S., Simionescu, B. C., Carta, F., Del Prete, S., Capasso, C. & Supuran, C. T. (2020). Molecules, 25, 2269. Web of Science CrossRef PubMed Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids Res. 28, 235–242. Web of Science CrossRef PubMed CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Biswas, S., McKenna, R. & Supuran, C. T. (2013). Bioorg. Med. Chem. Lett. 23, 5646–5649. Web of Science CrossRef CAS PubMed Google Scholar
Bloom, B. M. & Laubach, G. D. (1962). Annu. Rev. Pharmacol. 2, 67–108. CrossRef CAS Web of Science Google Scholar
Boyland, E. (1946). Biochem. J. 40, 55–58. CrossRef CAS Web of Science Google Scholar
Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2012). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Casini, A., Scozzafava, A., Mastrolorenzo, A. & Supuran, L. T. (2002). Curr. Cancer Drug Targets, 2, 55–75. Web of Science CrossRef PubMed CAS Google Scholar
Chiche, J., Brahimi-Horn, M. C. & Pouysségur, J. (2010). J. Cell. Mol. Med. 14, 771–794. Web of Science CrossRef CAS PubMed Google Scholar
Congiu, C., Onnis, V., Balboni, G. & Supuran, C. T. (2014). Bioorg. Med. Chem. Lett. 24, 1776–1779. Web of Science CrossRef CAS PubMed Google Scholar
El-Gaby, M. A., Ammar, Y. I. H., El-Qaliei, M. M., Ali, A. F., Hussein, M. & Faraghally, A. F. (2020). Egypt. J. Chem. 63, 5289–5327. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). GAUSSIAN16 and GaussView5.0. Gaussian Inc., Wallingford, CT, USA. https://gaussian.com/. Google Scholar
Gelbrich, T., Bingham, A. L., Threlfall, T. L. & Hursthouse, M. B. (2008). Acta Cryst. C64, o205–o207. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ghorab, M. M., Alsaid, M. S., Ceruso, M., Nissan, Y. M. & Supuran, C. T. (2014). Bioorg. Med. Chem. 22, 3684–3695. Web of Science CrossRef CAS PubMed Google Scholar
Gul, H. I., Tugrak, M., Sakagami, H., Taslimi, P., Gulcin, I. & Supuran, C. T. (2016). J. Enzyme Inhib. Med. Chem. 31, 1619–1624. Web of Science CrossRef CAS PubMed Google Scholar
Güzel-Akdemir, Ö., Akdemir, A., Karalı, N. & Supuran, C. T. (2015). Org. Biomol. Chem. 13, 6493–6499. Web of Science PubMed Google Scholar
Henry, R. J. (1943). Bacteriol. Rev. 7, 175–262. CrossRef PubMed CAS Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding, p. 228. Oxford University Press. Google Scholar
Kalgutkar, A. S., Jones, R. & Sawant, A. (2010). Metabolism, Pharmacokinetics and Toxicity of Functional Groups: Impact of Chemical Building Blocks on ADMET, edited by D. A. Smith, pp. 210–274. RSC Drug Discovery Series. Cambridge: Royal Society of Chemistry. Google Scholar
Kolade, S. O., Izunobi, J. U., Hosten, E. C., Olasupo, I. A., Ogunlaja, A. S. & Familoni, O. B. (2020). Acta Cryst. C76, 810–820. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kumar, S., Saini, V., Maurya, I. K., Sindhu, J., Kumari, M., Kataria, R. & Kumar, V. (2018). PLoS One, 13, e0196016. Web of Science CrossRef PubMed Google Scholar
Laug, E. P. & Morris, H. J. (1939). Exp. Biol. Med. 42, 541–543. CrossRef CAS Google Scholar
Lavanya, R. (2017). Int. J. Pharm. Sci. Invent. 6, 1–3. Google Scholar
Lehtonen, J., Shen, B., Vihinen, M., Casini, A., Scozzafava, A., Supuran, C. T., Parkkila, A. K., Saarnio, J., Kivelä, A. J., Waheed, A., Sly, W. S. & Parkkila, S. (2004). J. Biol. Chem. 279, 2719–2727. Web of Science CrossRef PubMed CAS Google Scholar
Leitans, J., Kazaks, A., Balode, A., Ivanova, J., Zalubovskis, R., Supuran, C. T. & Tars, K. (2015). J. Med. Chem. 58, 9004–9009. Web of Science CrossRef CAS PubMed Google Scholar
Lesch, J. E. (2007). The First Miracle Drugs: How the Sulfa Drugs Transformed Medicine, edited by John E. Lesch, pp. 1–364. Oxford University Press. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3818. Web of Science CrossRef Google Scholar
Milite, C., Amendola, G., Nocentini, A., Bua, S., Cipriano, A., Barresi, E., Feoli, A., Novellino, E., Da Settimo, F., Supuran, C. T., Castellano, S., Cosconati, S. & Taliani, S. (2019). J. Enzyme Inhib. Med. Chem. 34, 1697–1710. Web of Science CrossRef CAS PubMed Google Scholar
Mohan, R., Banerjee, M., Ray, A., Manna, T., Wilson, L., Owa, T., Bhattacharyya, B. & Panda, D. (2006). Biochemistry, 45, 5440–5449. Web of Science CrossRef PubMed CAS Google Scholar
Nainwal, L. M., Azad, C. S., Deswal, D. & Narula, A. K. (2018). ChemistrySelect, 3, 10762–10767. Web of Science CrossRef CAS Google Scholar
Nishimori, I., Minakuchi, T., Morimoto, K., Sano, S., Onishi, S., Takeuchi, H., Vullo, D., Scozzafava, A. & Supuran, C. T. (2006). J. Med. Chem. 49, 2117–2126. Web of Science CrossRef PubMed CAS Google Scholar
Nocentini, A., Ferraroni, M., Carta, F., Ceruso, M., Gratteri, P., Lanzi, C., Masini, E. & Supuran, C. T. (2016). J. Med. Chem. 59, 10692–10704. Web of Science CrossRef CAS PubMed Google Scholar
Owa, T., Yokoi, A., Yamazaki, K., Yoshimatsu, K., Yamori, T. & Nagasu, T. (2002). J. Med. Chem. 45, 4913–4922. Web of Science CrossRef PubMed CAS Google Scholar
Panwar, U. & Singh, S. K. (2021). Struct. Chem. 32, 337–352. Web of Science CrossRef CAS Google Scholar
Rathi, P. C., Ludlow, R. F. & Verdonk, M. L. (2020). J. Med. Chem. 63, 8778–8790. Web of Science CrossRef CAS PubMed Google Scholar
Rutkauskas, K., Zubrienė, A., Tumosienė, I., Kantminienė, K., Kažemėkaitė, M., Smirnov, A., Kazokaitė, J., Morkūnaitė, V., Čapkauskaitė, E., Manakova, E., Gražulis, S., Beresnevičius, Z. & Matulis, D. (2014). Molecules, 19, 17356–17380. Web of Science CrossRef PubMed Google Scholar
Shad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o635. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Schrödinger (2022). Schrödinger Suite. Release 2022-1. Schrödinger LLC, New York, USA. https://www.schrodinger.com/. Google Scholar
Sly, W. S. & Hu, P. Y. (1995). Annu. Rev. Biochem. 64, 375–401. CrossRef CAS PubMed Web of Science Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Temperini, C., Cecchi, A., Scozzafava, A. & Supuran, C. T. (2008a). Bioorg. Med. Chem. Lett. 18, 2567–2573. Web of Science CrossRef PubMed CAS Google Scholar
Temperini, C., Cecchi, A., Scozzafava, A. & Supuran, C. T. (2008b). Org. Biomol. Chem. 6, 2499–2506. Web of Science CrossRef PubMed CAS Google Scholar
Thiry, A., Supuran, C. T., Masereel, B. & Dogné, J. M. (2008). J. Med. Chem. 51, 3051–3056. Web of Science CrossRef PubMed CAS Google Scholar
Türeci, Ö., Sahin, U., Vollmar, E., Siemer, S., Göttert, E., Seitz, G., Parkkila, A. K., Shah, G. N., Grubb, J. H., Pfreundschuh, M. & Sly, W. S. (1998). Proc. Natl Acad. Sci. 95, 7608–7613. Web of Science PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. Google Scholar
Voronin, A. P., Volkova, T. V., Ilyukhin, A. B., Proshin, A. N. & Perlovich, G. L. (2020). CrystEngComm, 22, 349–360. Web of Science CSD CrossRef CAS Google Scholar
Vullo, D., Franchi, M., Gallori, E., Pastorek, J., Scozzafava, A., Pastorekova, S. & Supuran, C. T. (2003). Bioorg. Med. Chem. Lett. 13, 1005–1009. Web of Science CrossRef PubMed CAS Google Scholar
Yang, A. C., Vest, R. T., Kern, F., Lee, D. P., Agam, M., Maat, C. A., Losada, P. M., Chen, M. B., Schaum, N., Khoury, N., Toland, A., Calcuttawala, K., Shin, H., Pálovics, R., Shin, A., Wang, E. Y., Luo, J., Gate, D., Schulz-Schaeffer, J. A., Chu, P., Siegenthaler, J. A., McNerney, M. W., Keller, A. & Wyss-Coray, T. (2022). Nature, 603, 885–892. Web of Science CrossRef CAS PubMed Google Scholar
Żołnowska, B., Sławiński, J., Pogorzelska, A., Chojnacki, J., Vullo, D. & Supuran, C. T. (2014). Eur. J. Med. Chem. 71, 135–147. Web of Science PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.