sigma-hole interactions\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Halogen, chalcogen, and hydrogen bonding in organoiodine cocrystals of heterocyclic thio­nes: imidazolidine-2-thione, 2-mercaptobenzimidazole, 2-mercapto-5-methyl­benzimidazole, 2-mercaptobenzoxazole, and 2-mercaptobenzo­thia­zole

crossmark logo

aDepartment of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, SC 29634, USA
*Correspondence e-mail: billp@clemson.edu

Edited by T. Roseveare, University of Sheffield, United Kingdom (Received 21 August 2022; accepted 27 September 2022; online 9 November 2022)

Through the combination of heterocyclic thio­nes with variation in the identity of the heterocyclic elements, namely, imidazolidine-2-thione, 2-mercaptobenzimid­azole, 2-mercapto-5-methyl­benz­imidazole, 2-mercaptobenzoxazole, and 2-mer­captobenzo­thia­zole with the common halogen-bond donors 1,2-, 1,3-, and 1,4-di­iodo­tetra­fluoro­benzene, 1,3,5-tri­fluoro­tri­iodo­benzene, and tetra­iodo­ethyl­ene, a series of 18 new crystalline structures were characterized. In most cases, N—H⋯S hydrogen bonding was observed, with these inter­actions in imidazole-con­taining structures typically resulting in two-dimensional motifs (i.e. ribbons). Lacking the second N—H group, the thia­zole and oxazole hydrogen bonding resulted in only dimeric pairs. C—I⋯S and C—I⋯I halogen bonding, as well as C=S⋯I chalcogen bonding, served to consolidate the packing by linking the hydrogen-bonding ribbons or dimeric pairs.

1. Introduction

Halogen and chalcogen bonding, defined by IUPAC as `a net attractive inter­action between an electrophilic region associated with…' a halogen or chalcogen atom, respectively, `…in a mol­ecular entity and a nucleophilic region in another, or the same, mol­ecular entity (Desiraju et al., 2013[Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711-1713.]; Aakeroy et al., 2019[Aakeroy, C. B., Bryce, D. L., Desiraju, G. R., Frontera, A., Legon, A. C., Nicotra, F., Rissanen, K., Scheiner, S., Terraneo, G., Metrangolo, P. & Resnati, G. (2019). Pure Appl. Chem. 91, 1889-1892.]),' has drawn increasing attention in recent years (Parisini et al., 2011[Parisini, E., Metrangolo, P., Pilati, T., Resnati, G. & Terraneo, G. (2011). Chem. Soc. Rev. 40, 2267-2278.]; Zhou et al., 2010[Zhou, P., Tian, F., Zou, J. & Shang, Z. (2010). Mini Rev. Med. Chem. 10, 309-314.]; Ajani et al., 2015[Ajani, H., Carlsson, A. C. C., Cavallo, G., Deepa, P., Erdelyi, M., Fourmigue, M., Haukka, M., Hobza, P., Huber, S. M., Jin, W. J., Kolar, M. H., Lieffrig, J., Metrangolo, P., Pang, X., Pecina, A., Priimagi, A., Resnati, G., Rissanen, K., Saccone, M., Schindler, S., Taylor, M. S. & Veiga, A. X. (2015). In Topics in Current Chemistry: Halogen Bonding II. New York: Springer International Publishing.]; Arman et al., 2008[Arman, H. D., Biella, S., Bruce, D. W., Fourmigue, M., Hanks, T. W., Karpfen, A., Kochi, J. K., Legon, A. C., Metrangolo, P., Pennington, W. T., Pilati, T., Resnati, G. & Rosokha, S. V. (2008). In Structure and Bonding: Halogen Bonding. New York: Springer International Publishing.]; Aakeroy et al., 2015[Aakeroy, C. B., Bryce, D. L., Cavallo, G., Clark, T., Herrebout, W., Hill, J. G., Ho, P. S., Jentzsch, A. V., Legon, A. C., Matile, S., Metrangolo, P., Murray, J. S., Pilati, T., Politzer, P., Resnati, G., Spartz, C. L., Terraneo, G., Tew, D. P., Viger-Gravel, J. & Walker, N. R. (2015). In Topics in Current Chemistry: Halogen Bonding I. New York: Springer International Publishing.]; Metrangolo & Resnati, 2012[Metrangolo, P. & Resnati, G. (2012). Cryst. Growth Des. 12, 5835-5838.]; Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]; Metrangolo et al., 2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]; Legon, 1998[Legon, A. C. (1998). Chem. Eur. J. 4, 1890-1897.]). Similar to hydrogen bonding, halogen bonding is strong, selective, and directional. Organic iodines are among the most commonly utilized halogen-bond donors (Corradi et al., 2000[Corradi, E., Meille, S. V., Messina, M. T., Metrangolo, P. & Resnati, G. (2000). Angew. Chem. Int. Ed. 39, 1782-1786.]), largely due to their greater polarizability. When paired with halogen-bond acceptor mol­ecules with a diversity of heteroatoms, the combined effects of halogen, chalcogen, and hydrogen bonding can be revealed. Imidazoles, thia­zoles, and oxazoles are ideal systems to study in this regard.

Benzimidazole, and its derivatives, have been investigated for a diverse range of biological applications, including in the treatment of tuberculosis (Foks et al., 2006[Foks, H., Pancechowska-Ksepko, D., Kuzmierkiewicz, W., Zwolska, Z., Augustynowicz-Kopec, E. & Janowiec, M. (2006). Chem. Heterocycl. Com­pd. 42, 611-614.]), as anti­microbial agents (Alasmary et al., 2015[Alasmary, F. A. S., Snelling, A. M., Zain, M. E., Alafeefy, A. M., Awaad, A. S. & Karodia, N. (2015). Molecules, 20, 15206-15223.]), and also as analgesic and anti-inflammatory com­pounds (Achar et al., 2010[Achar, K. C. S., Hosamani, K. M. & Seetharamareddy, H. R. (2010). Eur. J. Med. Chem. 45, 2048-2054.]; Fletcher et al., 2006[Fletcher, S. R., McIver, E., Lewis, S., Burkamp, F., Leech, C., Mason, G., Boyce, S., Morrison, D., Richards, G., Sutton, K. & Jones, A. B. (2006). Bioorg. Med. Chem. Lett. 16, 2872-2876.]). These mercaptobenzimidazoles, thia­zoles, and oxazoles have also seen significant utilization as ligands in transition-metal com­plexes. Providing some insight into the role of heteroatoms in differing positions, of the 31 crystal structures containing 2-mercaptobenzo­thia­zole (MBZTH) and a transition metal currently deposited with the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), all demonstrate metal coordination through the thione S atom and not the thia­zole S atom. They range from simple species, such as (2-mer­cap­to­benzo­thia­zole)bis­(tri­phenyl­phosphine)silver(I) iodide (Banti et al., 2014[Banti, C. N., Kyros, L., Geromichalos, G. D., Kourkoumelis, N., Kubicki, M. & Hadjikakou, S. K. (2014). Eur. J. Med. Chem. 77, 388-399.]), to more com­plex copper and ruthenium com­plexes (Zhou et al., 2013a[Zhou, W. X., Yin, B., Li, J., Sun, W. J. & Zhang, F. X. (2013a). Inorg. Chim. Acta, 408, 209-213.]; Zafar et al., 2019[Zafar, M., Ramalakshmi, Rongala, Rongala, R., Pradhan, A. N., Pathak, K., Roisnel, T., Halet, J. F. & Ghosh, S. (2019). Dalton Trans. 48, 7413-7424.]). Similarly, the mercaptobenzimidazole (or benzimidazole­thione) derivatives present an inter­esting field of study for their potential inter­molecular inter­actions in halogen-bonding systems (Fig. 1[link]). In these systems, hydrogen, halogen, and chalcogen bonding are all viable inter­molecular inter­actions, and structural studies of the cocrystals can be useful in determining which inter­actions are preferred as the organo­iodine and the heterocyclic systems are varied.

[Figure 1]
Figure 1
Organoiodines and mercapto­imidazoles utilized in this study.

Our group has recently been inter­ested in the role of the S atom in I⋯S halogen- and chalcogen-bonding inter­actions as a crystal design tool, as well as their roles in the formation of deep eutectic solvents derived from halogen bonding (Peloquin et al., 2021a[Peloquin, A. J., Alapati, S., McMillen, C. D., Hanks, T. W. & Pennington, W. T. (2021a). Molecules, 26, 4985-4994.],b[Peloquin, A. J., McCollum, J. M., McMillen, C. D. & Pennington, W. T. (2021b). Angew. Chem. Int. Ed. 60, 22983-22989.],c[Peloquin, A. J., McMillen, C. D., Iacono, S. T. & Pennington, W. T. (2021c). Chem. Eur. J. 27, 8398-8405.],d[Peloquin, A. J., Ragusa, A. C., McMillen, C. D. & Pennington, W. T. (2021d). Acta Cryst. C77, 599-609.], 2022[Peloquin, A. J., Hill, S. C., Arman, H. D., McMillen, C. D., Rabinovich, D. & Pennington, W. T. (2022). J. Chem. Crystallogr. 52, 62-72.]). Herein, we report the solid-state structures of 18 new cocrystals derived from the combination of the heterocyclic mol­ecules imidazolidine-2-thione (IT), 2-mercaptobenzimidazole (MBZIM), 2-mercapto-5-methyl­benz­imidazole (MMBZIM), 2-mercaptobenzoxazole (MBZOX), and 2-mercaptobenzo­thia­zole (MBZTH) with the organic halo­gen-bond donors 1,2-di­iodo­tetra­fluoro­benzene (1,2-F4DIB), 1,3-di­iodo­tetra­fluoro­benzene (1,3-F4DIB), 1,4-tetra­fluoro­benzene (1,4-F4DIB), 1,3,5-tri­fluoro-2,4,6-tri­iodo­ben­zene (1,3,5-F3I3B), and tetra­iodo­ethyl­ene (TIE). This diverse pool of substrates yielded structures with the crystal packing dominated by N—H⋯S hydrogen bonding, leading to thio­amide dimers, with longer-range packing motifs created through C—I⋯S and C—I⋯I halogen bonding, as well as the occasional C=S⋯I chalcogen bond.

2. Experimental

2.1. Materials and instrumentation

For single-crystal X-ray analysis, crystals were mounted on low background cryogenic loops using paratone oil. Data were collected using Mo Kα radiation (λ = 0.71073 Å) on a Bruker D8 Venture diffractometer with an Incoatec Iµs microfocus source and a Photon 2 detector.

2.2. Preparation of cocrystals

Cocrystals were synthesized using imidazolidine-2-thione (TCI Americas, 98%), 2-mercaptobenzimidazole (Acros, 98%), 2-mercapto-5-methyl­benzimidazole (Acros, 99%), 2-mer­captobenzoxazole (Acros, 99%), 2-mercaptobenzo­thia­zole (Acros, 98%), 1,2-di­iodo­tetra­fluoro­benzene (Synquest Lab­oratories, 99%), 1,3-di­iodo­tetra­fluoro­benzene (Synquest Lab­oratories, 97%), 1,4-tetra­fluoro­benzene (Synquest Lab­ora­tories, 97%), 1,3,5-tri­fluoro-2,4,6-tri­iodo­benzene (Synquest Laboratories, 99%), and tetra­iodo­ethyl­ene (Santa Cruz Biotechnologies, 98%). Solvents were obtained from Fisher Scientific. All materials were used as received without further purification. Crystals were formed by slow evaporation under ambient conditions (20–23 °C). Methanol was utilized for the majority of cocrystal preparations; however, if this was not successful, acetone or ethyl acetate was utilized.

2.2.1. 2(IT)·(1,3-F4DIB)

Imidazolidine-2-thione (50 mg, 0.489 mmol) and 1,3-di­iodo­tetra­fluoro­benzene (196 mg, 0.489 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless needle-like crystals of 2(IT)·(1,3-F4DIB) were obtained after 3 d.

2.2.2. (IT)·(1,3,5-F3I3B)

Imidazolidine-2-thione (50 mg, 0.489 mmol) and 1,3,5-tri­fluoro-2,4,6-tri­iodo­benzene (249 mg, 0.489 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless needle-like crystals of (IT)·(1,3,5-F3I3B) were obtained after 4 d.

2.2.3. 4(MBZIM)·3(1,3-F4DIB)

2-Mercaptobenzimidazole (34 mg, 0.227 mmol) and 1,3-di­iodo­tetra­fluoro­benzene (49 mg, 0.122 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless needle-like crystals of 4(MBZIM)·3(1,3-F4DIB) were obtained after 4 d.

2.2.4. (MBZIM)·(1,4-F4DIB)

2-Mercaptobenzimidazole (19 mg, 0.126 mmol) and 1,4-di­iodo­tetra­fluoro­benzene (50 mg, 0.124 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless plate-like crystals of (MBZIM)·(1,4-F4DIB) were obtained after 3 d.

2.2.5. (MBZIM)·(TIE)

2-Mercaptobenzimidazole (30 mg, 0.200 mmol) and tetra­iodo­ethyl­ene (55 mg, 0.103 mmol) were weighed into a 20 ml glass vial. Ethyl acetate (15 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless tabular crystals of (MBZIM)·(TIE) were obtained after 7 d.

2.2.6. (MMBZIM)·(1,2-F4DIB)

2-Mercapto-5-methyl­benz­imidazole (20 mg, 0.122 mmol) and 1,2-di­iodo­tetra­fluoro­benzene (48 mg, 0.119 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless columnar crystals of (MMBZIM)·(1,2-F4DIB) were obtained after 3 d.

2.2.7. 2(MMBZIM)·(1,4-F4DIB)·2(H2O)

2-Mercapto-5-methyl­benzimidazole (40 mg, 0.244 mmol) and 1,4-di­iodo­tetra­fluoro­benzene (51 mg, 0.127 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless plate-like crystals of 2(MMBZIM)·(1,4-F4DIB)·2(H2O) were obtained after 3 d.

2.2.8. (MMBZIM)·(1,3,5-F3I3B)

2-Mercapto-5-methyl­benz­imidazole (31 mg, 0.189 mmol) and 1,3,5-tri­fluoro-2,4,6-tri­iodo­benzene (50 mg, 0.098 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless needle-like crystals of (MMBZIM)·(1,3,5-F3I3B) were obtained after 4 d.

2.2.9. (MBZOX)·(1,2-F4DIB)

2-Mercaptobenzoxazole (20 mg, 0.132 mmol) and 1,2-di­iodo­tetra­fluoro­benzene (102 mg, 0.254 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless needle-like crystals of (MBZOX)·(1,2-F4DIB) were obtained after 3 d.

2.2.10. (MBZOX)·(1,3-F4DIB)

2-Mercaptobenzoxazole (19 mg, 0.126 mmol) and 1,3-di­iodo­tetra­fluoro­benzene (104 mg, 0.259 mmol) were weighed into a 20 ml glass vial. Acetone (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless columnar crystals of (MBZOX)·(1,3-F4DIB) were obtained after 2 d.

2.2.11. 2(MBZOX)·(1,4-F4DIB)

2-Mercaptobenzoxazole (40 mg, 0.265 mmol) and 1,4-di­iodo­tetra­fluoro­benzene (50 mg, 0.124 mmol) were weighed into a 20 ml glass vial. Acetone (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless columnar crystals of 2(MBZOX)·(1,4-F4DIB) were obtained after 2 d.

2.2.12. (MBZOX)·(1,3,5-F3I3B)

2-Mercaptobenzoxazole (15 mg, 0.099 mmol) and 1,3,5-tri­fluoro-2,4,6-tri­iodo­benzene (50 mg, 0.098 mmol) were weighed into a 20 ml glass vial. Acetone (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless columnar crystals of (MBZOX)·(1,3,5-F3I3B) were obtained after 1 d.

2.2.13. 3(MBZTH)·4(1,2-F4DIB)

2-mercaptobenzo­thia­zole (21 mg, 0.126 mmol) and 1,2-di­iodo­tetra­fluoro­benzene (103 mg, 0.256 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless plate-like crystals of 3(MBZTH)·4(1,2-F4DIB) were obtained after 3 d.

2.2.14. (MBZTH)·(1,3-F4DIB)

2-Mercaptobenzo­thia­zole (24 mg, 0.143 mmol) and 1,3-di­iodo­tetra­fluoro­benzene (50 mg, 0.124 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless plate-like crystals of (MBZTH)·(1,3-F4DIB) were obtained after 3 d.

2.2.15. (MBZTH)·2(1,3-F4DIB)

2-Mercaptobenzo­thia­zole (22 mg, 0.132 mmol) and 1,3-di­iodo­tetra­fluoro­benzene (98 mg, 0.244 mmol) were weighed into a 20 ml glass vial. Methanol (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless tabular crystals of (MBZTH)·2(1,3-F4DIB) were obtained after 4 d.

2.2.16. 2(MBZTH)·(1,4-F4DIB)

2-Mercaptobenzo­thia­zole (46 mg, 0.275 mmol) and 1,4-di­iodo­tetra­fluoro­benzene (50 mg, 0.124 mmol) were weighed into a 20 ml glass vial. Acetone (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless needle-like crystals of 2(MBZTH)·(1,4-F4DIB) were obtained after 2 d.

2.2.17. (MBZTH)·(1,3,5-F3I3B)

2-Mercaptobenzo­thia­zole (32 mg, 0.191 mmol) and 1,3,5-tri­fluoro-2,4,6-tri­iodo­benzene (50 mg, 0.098 mmol) were weighed into a 20 ml glass vial. Acetone (10 ml) was added and the mixture was stirred until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless tabular crystals of (MBZTH)·(1,3,5-F3I3B) were obtained after 2 d.

2.2.18. (MBZTH)·(TIE)

2-Mercaptobenzo­thia­zole (33 mg, 0.197 mmol) and tetra­iodo­ethyl­ene (50 mg, 0.094 mmol) were weighed into a 20 ml glass vial. Methanol (15 ml) was added and the mixture was stirred with gentle heating until a clear solution was obtained. The solvent was allowed to evaporate slowly and colorless block-like crystals of (MBZTH)·(TIE) were obtained after 5 d.

2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms on C atoms were calculated in idealized positions riding on their parent atoms, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for other H atoms. H atoms on heteroatoms were located in difference Fourier maps and refined isotropically, utilizing appropriate restraints [N—H = 0.86 (2) Å] where necessary to maintain chemically reasonable geometries. The H atoms of the water molecule in 2(MMBZIM)·(1,4-F4DIB)·2(H2O) were modeled in a disordered arrangement due to symmetry considerations.

Table 1
Experimental details

Experiments were carried out at 100 K with Mo Kα radiation using a Bruker D8 Venture Photon 2 diffractometer. Absorption was corrected for by multi-scan methods (SADABS; Bruker, 2017[Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]). H atoms were treated by a mixture of independent and constrained refinement, except for 3(MBZTH)·4(1,2-F4DIB), for which H-atom parameters were constrained.

  2(IT)·(1,3-F4DIB) (IT)·(1,3,5-F3I3B) 4(MBZIM)·3(1,3-F4DIB) (MBZIM)·(1,4-F4DIB)
Crystal data
Chemical formula C6F4I2·2C3H6N2S C6F3I3·C3H6N2S 3C6F4I2·4C7H6N2S C6F4I2·C7H6N2S
Mr 606.18 611.92 1806.37 552.06
Crystal system, space group Orthorhombic, Pbcn Orthorhombic, Pbca Triclinic, P[\overline{1}] Monoclinic, P21/c
a, b, c (Å) 15.6704 (7), 8.9924 (4), 26.0573 (10) 18.0407 (14), 7.2816 (6), 22.1250 (19) 8.4573 (14), 17.725 (3), 18.759 (4) 5.5641 (2), 33.1320 (11), 8.4710 (3)
α, β, γ (°) 90, 90, 90 90, 90, 90 106.997 (7), 93.229 (7), 92.034 (7) 90, 92.754 (1), 90
V3) 3671.9 (3) 2906.5 (4) 2680.9 (9) 1559.82 (9)
Z 8 8 2 4
μ (mm−1) 3.69 6.61 3.72 4.20
Crystal size (mm) 0.18 × 0.17 × 0.13 0.22 × 0.08 × 0.04 0.34 × 0.04 × 0.04 0.22 × 0.18 × 0.06
 
Data collection
Tmin, Tmax 0.639, 0.746 0.563, 0.746 0.668, 0.746 0.501, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 112821, 5376, 5198 49179, 3615, 3220 118524, 12297, 10558 45583, 4579, 4211
Rint 0.035 0.043 0.056 0.050
(sin θ/λ)max−1) 0.705 0.667 0.651 0.709
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.032, 1.25 0.019, 0.040, 1.11 0.021, 0.041, 1.06 0.020, 0.044, 1.12
No. of reflections 5376 3615 12297 4579
No. of parameters 234 172 717 207
No. of restraints 0 2 8 0
Δρmax, Δρmin (e Å−3) 0.42, −0.37 0.57, −0.77 0.52, −0.75 0.49, −0.68
  (MBZIM)·(TIE) (MMBZIM)·(1,2-F4DIB) 2(MMBZIM)·(1,4-F4DIB)·2(H2O) (MMBZIM)·(1,3,5-F3I3B)
Crystal data
Chemical formula C2I4·C7H6N2S C6F4I2·C8H8N2S C6F4I2·2C8H8N2S·2(H2O) C6F3I3·C8H8N2S
Mr 681.82 566.08 766.34 673.98
Crystal system, space group Orthorhombic, Pnma Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, P21/c
a, b, c (Å) 11.7547 (10), 8.3525 (7), 15.1077 (13) 4.5504 (5), 13.2872 (14), 13.8064 (14) 4.9088 (3), 11.4670 (8), 11.9686 (8) 15.191 (2), 5.0074 (7), 22.715 (3)
α, β, γ (°) 90, 90, 90 94.766 (4), 98.124 (4), 99.588 (4) 106.644 (2), 98.058 (2), 92.811 (2) 90, 97.460 (6), 90
V3) 1483.3 (2) 809.97 (15) 636.27 (7) 1713.3 (4)
Z 4 2 1 4
μ (mm−1) 8.52 4.05 2.69 5.62
Crystal size (mm) 0.30 × 0.14 × 0.11 0.19 × 0.07 × 0.04 0.31 × 0.11 × 0.08 0.26 × 0.04 × 0.04
 
Data collection
Tmin, Tmax 0.256, 0.746 0.636, 0.746 0.536, 0.746 0.582, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 32859, 1993, 1885 21426, 3704, 3174 31584, 3558, 3500 23258, 3971, 3039
Rint 0.055 0.042 0.036 0.069
(sin θ/λ)max−1) 0.671 0.650 0.696 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.062, 1.26 0.026, 0.055, 1.24 0.014, 0.034, 1.18 0.047, 0.105, 1.22
No. of reflections 1993 3704 3558 3971
No. of parameters 89 217 184 217
No. of restraints 0 1 7 1
Δρmax, Δρmin (e Å−3) 1.25, −1.48 1.33, −1.06 0.44, −0.42 2.37, −1.89
  (MBZOX)·(1,2-F4DIB) (MBZOX)·(1,3-F4DIB) 2(MBZOX)·(1,4-F4DIB) (MBZOX)·(1,3,5-F3I3B)
Crystal data
Chemical formula C6F4I2·C7H5NOS C6F4I2·C7H5NOS C6F4I2·2C7H5NOS C6F3I3·C7H5NOS
Mr 553.04 553.04 704.22 660.94
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c Monoclinic, C2/c Monoclinic, P21/c
a, b, c (Å) 13.7789 (12), 4.4129 (4), 25.252 (2) 15.1655 (8), 4.3803 (2), 23.0358 (12) 31.025 (4), 4.3159 (5), 19.061 (2) 14.9295 (7), 4.6119 (2), 23.5065 (12)
α, β, γ (°) 90, 96.337 (3), 90 90, 99.923 (2), 90 90, 114.434 (4), 90 90, 92.548 (2), 90
V3) 1526.0 (2) 1507.36 (13) 2323.6 (5) 1616.90 (13)
Z 4 4 4 4
μ (mm−1) 4.30 4.35 2.94 5.96
Crystal size (mm) 0.46 × 0.06 × 0.02 0.23 × 0.12 × 0.09 0.29 × 0.12 × 0.03 0.22 × 0.06 × 0.05
 
Data collection
Tmin, Tmax 0.578, 0.745 0.541, 0.746 0.637, 0.746 0.551, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 12498, 3210, 2510 39610, 4625, 4119 25197, 2950, 2571 19413, 3348, 2845
Rint 0.066 0.042 0.047 0.050
(sin θ/λ)max−1) 0.634 0.716 0.675 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.087, 1.11 0.022, 0.048, 1.16 0.028, 0.060, 1.32 0.029, 0.061, 1.22
No. of reflections 3210 4625 2950 3348
No. of parameters 203 203 149 203
No. of restraints 0 0 0 0
Δρmax, Δρmin (e Å−3) 1.58, −1.52 0.96, −1.35 1.54, −1.15 0.80, −0.77
  3(MBZTH)·4(1,2-F4DIB) (MBZTH)·(1,3-F4DIB) (MBZTH)·2(1,3-F4DIB) 2(MBZTH)·(1,4-F4DIB)
Crystal data
Chemical formula 4C6F4I2·3C7H5NS2 C6F4I2·C7H5NS2 4C6F4I2·2C7H5NS2 C6F4I2·2C7H5NS2
Mr 2109.16 569.10 1941.92 736.34
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, P21 Monoclinic, P21/n
a, b, c (Å) 7.9410 (8), 14.8483 (15), 24.641 (3) 7.2175 (4), 8.2675 (5), 14.4498 (9) 4.5581 (3), 34.358 (2), 15.6075 (10) 5.5057 (2), 15.6087 (7), 13.5194 (6)
α, β, γ (°) 79.264 (4), 87.104 (4), 82.784 (4) 97.936 (2), 91.297 (2), 109.178 (2) 90, 94.707 (2), 90 90, 94.259 (2), 90
V3) 2830.9 (5) 804.44 (8) 2436.0 (3) 1158.61 (8)
Z 2 2 2 2
μ (mm−1) 4.69 4.20 5.36 3.12
Crystal size (mm) 0.30 × 0.13 × 0.04 0.33 × 0.27 × 0.06 0.18 × 0.12 × 0.04 0.17 × 0.09 × 0.04
 
Data collection
Tmin, Tmax 0.570, 0.746 0.496, 0.746 0.568, 0.746 0.559, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 78566, 12466, 11325 27899, 4701, 4391 56285, 12660, 11766 22270, 3402, 2811
Rint 0.067 0.036 0.050 0.049
(sin θ/λ)max−1) 0.642 0.706 0.678 0.706
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.220, 1.06 0.018, 0.044, 1.09 0.026, 0.046, 1.09 0.027, 0.057, 1.15
No. of reflections 12466 4701 12660 3402
No. of parameters 704 203 622 149
No. of restraints 66 0 2 0
Δρmax, Δρmin (e Å−3) 2.61, −1.48 1.08, −1.11 1.01, −0.71 0.90, −0.79
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.454 (15)
  (MBZTH)·(1,3,5-F3I3B) (MBZTH)·(TIE)
Crystal data
Chemical formula C6F3I3·C7H5NS2 C2I4·C7H5NS2
Mr 677.00 698.86
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
a, b, c (Å) 15.2665 (6), 4.7380 (2), 23.2215 (10) 7.4085 (6), 10.8180 (9), 11.1989 (10)
α, β, γ (°) 90, 93.139 (2), 90 66.616 (3), 70.765 (3), 70.792 (3)
V3) 1677.15 (12) 757.20 (11)
Z 4 2
μ (mm−1) 5.86 8.48
Crystal size (mm) 0.16 × 0.08 × 0.05 0.08 × 0.07 × 0.07
 
Data collection
Tmin, Tmax 0.610, 0.746 0.589, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 35222, 4212, 3611 22463, 3484, 3037
Rint 0.057 0.052
(sin θ/λ)max−1) 0.669 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.052, 1.18 0.029, 0.072, 1.13
No. of reflections 4212 3484
No. of parameters 203 159
No. of restraints 1 7
Δρmax, Δρmin (e Å−3) 0.67, −0.73 1.43, −1.76
com­puter programs: APEX3 (Bruker, 2017[Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2017[Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

3. Results and discussion

3.1. Cocrystals of imidazolidine-2-thione (IT)

The smallest of the sulfur-containing com­pounds within this study, imidazolidine-2-thione, contains a thio­urea functionality within a five-membered saturated ring. The first cocrystal formed with this com­pound in the present study is 2(IT)·(1,3-F4DIB), which was refined in the ortho­rhom­bic space group Pbcn with two unique mol­ecules of IT and one mol­ecule of 1,3-F4DIB in the asymmetric unit (Fig. 2[link]). As is common in thio­urea-containing structures, a pair of N—H⋯S hydrogen bonds links thio­urea mol­ecules, in this case, into tetra­meric units (Table 2[link]) (Peloquin et al., 2021d[Peloquin, A. J., Ragusa, A. C., McMillen, C. D. & Pennington, W. T. (2021d). Acta Cryst. C77, 599-609.], 2022[Peloquin, A. J., Hill, S. C., Arman, H. D., McMillen, C. D., Rabinovich, D. & Pennington, W. T. (2022). J. Chem. Crystallogr. 52, 62-72.]). This is in contrast to the formation of hydrogen-bonded ribbons and discrete dimers, which are formed in the previously published 2(IT)·(1,2-F4DIB) and (IT)·2(1,2-F4DIB) cocrystals, respectively (Happonen et al., 2021[Happonen, L., Rautiainen, J. M. & Valkonen, A. (2021). Cryst. Growth Des. 21, 3409-3419.]). Tetra­meric units align into staggered stacks in the b direction. These stacks are separated by additional tetra­meric units, with the planes of the tetra­mers inclined by approximately 64°. This arrangement of inclined hydrogen-bonding units is also observed in the dimeric units of (IT)·(1,4-F4DIB) (Happonen et al., 2021[Happonen, L., Rautiainen, J. M. & Valkonen, A. (2021). Cryst. Growth Des. 21, 3409-3419.]). At the end of each tetra­mer, the remaining N—H hydrogen serves to link to the next inclined tetra­mer via N—H⋯S hydrogen bonding. The S atom at this end, S1, acts as a C—I⋯S halogen-bond acceptor to two different 1,3-F4DIB mol­ecules (Table 3[link]). These halogen-bonding inter­actions link adjacent stacks of tetra­mers in the c direction. The second IT-containing co­crystal of this study, (IT)·(1,3,5-F3I3B), was refined in the ortho­rhom­bic space group Pbca with one mol­ecule each of IT and 1,3,5-F3I3B in the asymmetric unit. This structure represents the only example within this study without N—H⋯S hydrogen bonding (Table 4[link]). Instead, C—I⋯S halogen bonding occurs between alternating mol­ecules of IT and 1,3,5-F3I3B to form chains propagating in the c direction. The third I atom of 1,3,5-F3I3B, which does not participate in significant inter­actions with sulfur, instead serves to link chains in the ac plane via C—I⋯I halogen bonding.

Table 2
Hydrogen-bond geometry (Å, °) for 2(IT)·(1,3-F4DIB)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯S1i 0.81 (2) 2.77 (2) 3.5551 (14) 163 (2)
N2—HN2⋯S2ii 0.83 (2) 2.53 (2) 3.3507 (14) 172 (2)
C2—H2B⋯F2 0.99 2.55 3.3392 (19) 136
C3—H3B⋯S2 0.99 2.94 3.7351 (19) 138
N3—HN3⋯S2iii 0.79 (2) 2.54 (2) 3.3171 (15) 167 (2)
N4—HN4⋯I2iv 0.83 (2) 3.31 (2) 3.7383 (14) 114.9 (18)
N4—HN4⋯S1ii 0.83 (2) 2.63 (2) 3.4562 (14) 179 (2)
C5—H5A⋯I1v 0.99 3.20 3.9922 (16) 138
C5—H5B⋯F4 0.99 2.45 3.2774 (19) 140
C6—H6B⋯I1vi 0.99 3.18 3.9223 (16) 133
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+1, -y+2, -z+1]; (iii) [-x+1, -y+1], [-z+1]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (v) [-x+1, y, -z+{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 3
Halogen- and chalcogen-bond geometries (Å, °)

Compound   d(DA) RXBi θ(C—DA) θ(DA—C) θ1θ2ii ψiii
2(IT)·(1,3-F4DIB) I1⋯S1 3.2265 (6) 0.85 174.51 (4) 113.51 (5) 61.00 0.79
  I2⋯S1 3.2860 (5) 0.87 176.10 (4) 99.67 (5) 76.43 0.03
(IT)·(1,3,5-F3I3B) I1⋯I3 3.8376 (6) 0.97 162.95 (8) 106.24 (7) 56.71 0.64
  I2⋯S1 3.1505 (8) 0.83 171.86 (7) 101.89 (10) 69.97 0.48
  I3⋯S1 3.1754 (8) 0.84 177.68 (8) 90.59 (9) 87.09 0.18
4(MBZIM)·3(1,3-F4DIB) I1⋯S3 3.3361 (10) 0.88 172.18 (8) 136.86 (8) 35.32 0.83
  I6⋯S2 3.2150 (9) 0.85 166.06 (8) 134.24 (8) 31.82 0.74
(MBZIM)·(1,4-F4DIB) I1⋯S1 3.2573 (9) 0.86 168.29 (6) 131.28 (8) 37.01 0.57
(MBZIM)·(TIE) I1⋯S1 3.5368 (14) 0.94 173.83 (17) 71.37 (16) 102.46 0.66
  I3⋯S1 3.2702 (14) 0.87 177.05 (17) 118.15 (17) 58.90 0.64
(MMBZIM)·(1,2-F4DIB) I1⋯S1 3.6404 (10) 0.96 154.63 (12) 95.76 (13) 58.87 0.47
  I2⋯S1 3.2307 (11) 0.85 169.63 (11) 106.66 (15) 62.97 0.04
2(MMBZIM)·(1,4-F4DIB)·2(H2O) I1⋯S1 3.2516 (4) 0.86 169.16 (4) 96.12 (4) 73.04 0.37
(MMBZIM)·(1,3,5-F3I3B) I2⋯S1 3.474 (2) 0.92 164.1 (3) 92.1 (3) 72.0 0.71
  I3⋯S1 3.463 (2) 0.92 176.7 (3) 96.5 (3) 80.2 0.50
(MBZOX)·(1,2-F4DIB) I2⋯S1 3.2853 (19) 0.87 166.65 (19) 105.4 (3) 61.3 0.19
(MBZOX)·(1,3-F4DIB) I1⋯S1 3.4132 (7) 0.90 174.53 (6) 105.63 (8) 68.90 0.19
  I2⋯S1 3.6787 (6) 0.97 159.40 (6) 92.48 (7) 66.92 0.66
  S1⋯I1 3.7536 (7) 0.99 160.34 (7) 105.80 (6) 54.54 0.53
2(MBZOX)·(1,4-F4DIB) I1⋯S1 3.2287 (11) 0.85 174.60 (9) 109.39 (13) 65.21 0.74
(MBZOX)·(1,3,5-F3I3B) I1⋯S1 3.4114 (14) 0.90 171.55 (13) 100.14 (19) 71.41 0.14
  I2⋯I3 3.9110 (7) 0.99 147.22 (13) 79.55 (13) 67.67 0.62
  I3⋯S1 3.6774 (13) 0.97 157.67 (15) 95.79 (16) 61.88 0.67
  S1⋯I1 3.7385 (14) 0.99 163.12 (17) 98.99 (14) 64.13 0.44
3(MBZTH)·4(1,2-F4DIB) I1⋯S5 3.380 (4) 0.89 177.9 (4) 113.3 (5) 64.6 0.81
  I2⋯S5 3.353 (4) 0.89 163.7 (4) 128.9 (5) 34.8 0.61
  I3⋯S3 3.371 (5) 0.89 169.0 (4) 96.4 (7) 72.6 0.02
  I4⋯S3 3.754 (4) 0.99 173.7 (4) 100.5 (6) 73.2 0.76
  I5⋯S1 3.380 (4) 0.89 177.9 (4) 113.3 (5) 64.6 0.81
  I6⋯I7 3.8766 (14) 0.95 170.5 (4) 118.1 (4) 52.4 0.73
  I6⋯S1 3.391 (5) 0.90 168.1 (4) 111.3 (6) 56.8 0.76
(MBZTH)·(1,3-F4DIB) I1⋯S1 3.3724 (5) 0.89 168.06 (6) 120.18 (6) 47.88 0.64
  I2⋯S1 3.4140 (5) 0.90 157.68 (4) 106.00 (5) 51.68 0.66
(MBZTH)·2(1,3-F4DIB) I1⋯S3 3.3426 (17) 0.88 168.34 (18) 103.3 (2) 65.0 0.25
  I2⋯S2 3.7429 (17) 0.99 152.94 (18) 121.7 (4)iii 31.2 0.23
  I3⋯S1 3.3548 (18) 0.89 166.60 (17) 100.3 (2) 66.3 0.64
  I4⋯S4 3.6744 (17) 0.97 148.74 (18) 118.4 (4)iii 30.4 0.65
  I5⋯I4 3.7971 (10) 0.96 163.30 (19) 82.92 (18) 80.38 0.52
  I8⋯I2 3.7950 (9) 0.96 170.03 (18) 84.69 (18) 85.34 0.71
2(MBZTH)·(1,4-F4DIB) I1⋯S1 3.3013 (7) 0.87 178.16 (7) 103.84 (10) 74.32 0.60
(MBZTH)·(1,3,5-F3I3B) I1⋯S1 3.4551 (10) 0.91 169.01 (9) 97.89 (13) 71.12 0.71
  S2⋯I3 3.7777 (10) 1.00 158.73 (12) 117.64 (10) 41.09 0.52
(MBZTH)·(TIE) I1⋯I3 3.9459 (7) 1.00 171.07 (14) 70.7 (3) 100.4 0.55
  I3⋯S1 3.2826 (13) 0.87 162.1 (3) 122.51 (19) 39.6 0.41
  I4⋯S1 3.6514 (19) 0.97 161.9 (3) 77.0 (2) 84.9 0.46
Notes: (i) RXB = d(XY)/Σd(vdW), the ratio of the distance between the donor atom (i.e. I) and the acceptor atom (i.e. S) to the sum of their van der Waals (vdW) radii (S = 1.80 Å and I = 1.98 Å) (Auffinger et al., 2004[Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789-16794.]). (ii) θ1θ2 = |{[θ(C—DA)] – [θ(DA—C)]}|. (iii) Linearity parameter (Setter et al., 2020[Setter, C. J., Whittaker, J. J., Brock, A. J., Athukorala Arachchige, K. S., McMurtrie, J. C., Clegg, J. K. & Pfrunder, M. C. (2020). CrystEngComm, 22, 1687-1690.]).

Table 4
Hydrogen-bond geometry (Å, °) for (IT)·(1,3,5-F3I3B)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—HN2⋯I2i 0.83 (2) 3.10 (3) 3.742 (3) 137 (3)
C2—H2B⋯I1ii 0.99 3.31 3.927 (3) 122
C2—H2B⋯F3iii 0.99 2.47 3.147 (3) 125
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Cocrystalline structures containing IT. Hydrogen and halogen bonding are indicated by black dotted lines. Displacement ellipsoids are drawn at the 50% probability level. H atoms, except those bound to N atoms, have been omitted for clarity.

3.2. Cocrystals of 2-mercaptobenzimidazole (MBZIM)

Moving to the larger thio­urea-containing mol­ecule 2-mer­cap­tobenzimidazole (MBZIM) yielded three new structures dominated by co-operative hydrogen and halogen bonding (Fig. 3[link]). With 1,3-F4DIB, the cocrystalline structure of 4(MBZIM)·3(1,3-F4DIB) was obtained in the triclinic space group P[\overline{1}], with four unique mol­ecules of MBZIM and three mol­ecules of 1,3-F4DIB in the asymmetric unit. In this structure, hydrogen bonding between thio­urea mol­ecules contributes to the formation of ribbons propagating along the a axis (Table 5[link]). Two of the three 1,3-F4DIB mol­ecules are pendants along these chains, linked via C—I⋯S. The second I atom of these particular 1,3-F4DIB mol­ecules does not contribute to significant halogen- or chalcogen-bonding inter­actions. This hydrogen-bonding thio­urea ribbon with halogen-bonding pendants is analogous to that observed in (MBZIM)·(1,2-F4DIB) (Arman et al., 2008[Arman, H. D., Biella, S., Bruce, D. W., Fourmigue, M., Hanks, T. W., Karpfen, A., Kochi, J. K., Legon, A. C., Metrangolo, P., Pennington, W. T., Pilati, T., Resnati, G. & Rosokha, S. V. (2008). In Structure and Bonding: Halogen Bonding. New York: Springer International Publishing.], 2010[Arman, H. D., Gieseking, R. L., Hanks, T. W. & Pennington, W. T. (2010). Chem. Commun. 46, 1854-1856.]). The final unique 1,3-F4DIB mol­ecule lies between the ring planes of the pendant mol­ecules of 1,3-F4DIB, contributing to only weak C—I⋯H, C—F⋯H, and C—F⋯F—C inter­actions. The combination of MBZIM and 1,4-F4DIB resulted in the (MBZIM)·(1,4-F4DIB) cocrystal, refined in the monoclinic space group P21/c, with one mol­ecule each of both MBZIM and 1,4-F4DIB in the asymmetric unit. Just as in 4(MBZIM)·3(1,3-F4DIB), the structure of (MBZIM)·(1,4-F4DIB) consists of ribbons of MBZIM mol­ecules propagating in the c direction, formed through thio­urea hydrogen bonding (Table 6[link]). Mol­ecules of 1,4-F4DIB act as pendants along these ribbons, linked via C—I⋯S halogen bonding.

Table 5
Hydrogen-bond geometry (Å, °) for 4(MBZIM)·3(1,3-F4DIB)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯S2i 0.85 (2) 2.52 (2) 3.357 (2) 172 (3)
N2—HN2⋯S2 0.85 (2) 2.46 (2) 3.297 (2) 166 (2)
N3—HN3⋯S1 0.85 (2) 2.51 (2) 3.348 (2) 173 (3)
N4—HN4⋯S1ii 0.85 (2) 2.50 (2) 3.326 (2) 166 (2)
N5—HN5⋯S4i 0.85 (2) 2.49 (2) 3.326 (2) 169 (3)
N6—HN6⋯S4 0.85 (2) 2.43 (2) 3.270 (2) 169 (3)
C17—H17⋯F36iii 0.95 2.61 3.385 (3) 139
C20—H20⋯F36iv 0.95 2.51 3.235 (3) 133
N7—HN7⋯S3 0.84 (2) 2.47 (2) 3.300 (2) 170 (3)
N8—HN8⋯S3ii 0.85 (2) 2.48 (2) 3.302 (2) 163 (3)
Symmetry codes: (i) x+1, y, z; (ii) [x-1, y, z]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x, -y+1, -z+1].

Table 6
Hydrogen-bond geometry (Å, °) for (MBZIM)·(1,4-F4DIB)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯S1i 0.84 (3) 2.47 (3) 3.3089 (18) 172 (2)
N2—HN2⋯S1ii 0.86 (3) 2.50 (3) 3.3527 (17) 172 (2)
Symmetry codes: (i) [-x+1, -y+1, -z+2]; (ii) [-x+1, -y+1, -z+1].
[Figure 3]
Figure 3
Cocrystal structures containing MBZIM. Hydrogen and halogen bonding are indicated by black dotted lines. Displacement ellipsoids are drawn at the 50% probability level. H atoms, except those bound to N atoms, have been omitted for clarity.

With four I atoms available, tetra­iodo­ethyl­ene (TIE) often enables structural motifs that are different from the typical aromatic halogen-bond donors. The cocrystal (MBZIM)·(TIE) was refined in the ortho­rhom­bic space group Pnma, with one mol­ecule each of MBZIM and TIE in the asymmetric unit. As in the previous examples, mol­ecules of MBZIM form infinite ribbons through thio­urea hydrogen bonding (Table 7[link]). Three of the four I atoms of TIE function as C—I⋯S halogen-bond donor atoms to link these ribbons, creating a three-dimensional framework through the combination of hydrogen and halogen bonding. The fourth I atom participates in a C—I⋯π inter­action [I⋯π = 3.351 (3) Å] to reinforce the frame­work.

Table 7
Hydrogen-bond geometry (Å, °) for (MBZIM)·(TIE)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯S1i 0.87 (5) 2.47 (5) 3.335 (3) 178 (5)
C3—H3⋯I1ii 0.95 3.28 3.881 (4) 123
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

3.3. Cocrystals of 2-mercapto-5-methyl­benzimidazole (MMBZIM)

Adding a methyl group to MBZIM, resulting in 2-mercapto-5-methyl­benzimidazole (MMBZIM), induces significant changes to the overall hydrogen- and halogen-bonding motifs. The structural literature of this substrate is limited, having only been characterized by single-crystal X-ray diffraction when acting as a ligand for transition metals coordinating through its S atom (Lin et al., 2017[Lin, S., Cui, Y. Z., Qiu, Q. M., Han, H. L., Li, Z. F., Liu, M., Xin, X. L. & Jin, Q. H. (2017). Polyhedron, 134, 319-329.]; Ozturk et al., 2009[Ozturk, I. I., Hadjikakou, S. K., Hadjiliadis, N., Kourkoumelis, N., Kubicki, M., Tasiopoulos, A. J., Scleiman, H., Barsan, M. M., Butler, I. S. & Balzarini, J. (2009). Inorg. Chem. 48, 2233-2245.]; Mitra et al., 2012[Mitra, R., Das, S., Shinde, S. V., Sinha, S., Somasundaram, K. & Samuelson, A. G. (2012). Chem. Eur. J. 18, 12278-12291.]). The first halogen-bonded cocrystal of MMBZIM in this study, (MMBZIM)·(1,2-F4DIB), was refined in the triclinic space group P[\overline{1}], with one mol­ecule each of MMBZIM and 1,2-F4DIB in the asymmetric unit (Fig. 4[link]). A discrete hydrogen-bonded dimer of two MMBZIM mol­ecules is observed, in contrast to the infinite ribbons in (MBZIM)·(1,2-F4DIB) and most of the cocrystals in the present study (Table 8[link]). Two mol­ecules of 1,2-F4DIB per MMBZIM molecule link the dimers via C—I⋯S halogen bonds, leading to the formation of chains along the c axis.

Table 8
Hydrogen-bond geometry (Å, °) for (MMBZIM)·(1,2-F4DIB)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯S1i 0.88 (5) 2.57 (5) 3.444 (3) 173 (4)
N2—HN2⋯I1 0.85 (2) 3.07 (3) 3.780 (3) 142 (3)
N2—HN2⋯F4 0.85 (2) 2.56 (3) 3.122 (4) 124 (3)
C3—H3⋯I2ii 0.95 3.06 3.966 (4) 160
C6—H6⋯F4 0.95 2.63 3.262 (4) 125
Symmetry codes: (i) [-x, -y+1, -z+2]; (ii) x, y, z+1.
[Figure 4]
Figure 4
Cocrystalline structures containing MMBZIM. Hydrogen and halogen bonding are indicated by black dotted lines. Displacement ellipsoids are drawn at the 50% probability level. H atoms, except those bound to N atoms, have been omitted for clarity.

Isolated as a hydrated cocrystal from adventitious water, 2(MMBZIM)·(1,4-F4DIB)·2(H2O) crystallizes in the triclinic space group P[\overline{1}] with one mol­ecule each of MMBZIM and H2O, as well as half a mol­ecule of 1,4-F4DIB, in the asymmetric unit. All attempts to obtain an nonhydrated cocrystal with 1,4-F4DIB were unsuccessful, suggesting the packing arrangement formed strictly by halogen bonding contains small but meaningful voids that must be occupied by the water mol­ecule. Discrete hydrogen-bonded dimers are again observed by hydrogen bonding of the thio­amides (Table 9[link]). Differing from (MMBZIM)·(1,2-F4DIB), with two halogen bonds to each S atom, 2(MMBZIM)·(1,4-F4DIB)·2(H2O) utilizes one C—I⋯S halogen bond and one O—H⋯S hydro­gen bond at each S atom. It is the halogen bonding that contributes to the formation of infinite chains by linking the discrete dimers. The water mol­ecule also acts as an N—H⋯O hydrogen-bond acceptor from the N atom that does not participate in thio­amide hydrogen bonding and so is an inter­mediate linker facilitating the formation of an expanded thio­amide ribbon motif.

Table 9
Hydrogen-bond geometry (Å, °) for 2(MMBZIM)·(1,4-F4DIB)·2(H2O)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O1 0.83 (2) 2.06 (2) 2.8763 (17) 166 (2)
N2—HN2⋯S1i 0.88 (2) 2.57 (2) 3.4211 (13) 164 (2)
C4—H4⋯I1ii 0.95 3.03 3.9505 (14) 164
O1—H1AO⋯O1iii 0.88 (2) 1.85 (2) 2.708 (3) 163 (4)
O1—H1BO⋯O1iv 0.88 (2) 1.89 (2) 2.759 (3) 167 (4)
O1—H2O1⋯I1 0.87 (2) 3.16 (3) 3.7419 (12) 126 (2)
O1—H2O1⋯S1iii 0.87 (2) 2.65 (2) 3.4251 (13) 149 (3)
Symmetry codes: (i) [-x+2, -y+2, -z+1]; (ii) x, y+1, z; (iii) [-x+2, -y+1,] [-z+1]; (iv) [-x+1, -y+1, -z+1].

Finally, the combination of 1,3,5-F3I3B and MMBZIM resulted in the cocrystal (MMBZIM)·(1,3,5-F3I3B), refined in the monoclinic space group P21/c with one unique mol­ecule of each com­ponent in the asymmetric unit. The overall packing motif in this structure is strikingly similar to that in (MMBZIM)·(1,2-F4DIB). Two mol­ecules of MMBZIM form dimeric pairs through hydrogen bonding of the thio­amides (Table 10[link]). The remaining N—H hydrogens are involved in weak N—H⋯I hydrogen bonds [H⋯I = 3.02 (8) Å]. A pair of C—I⋯S halogen bonds occurs at each S atom, contributing to chains propagating in the a direction. The third I atom is oriented as a potential acceptor for a C—F⋯I inter­action, though the inter­action distance is very near the sum of the van der Waals radii and it is unclear if there is a significant attraction to this inter­action. Given the similar motifs of (MMBZIM)·(1,3,5-F3I3B) to (MMBZIM)·(1,2-F4DIB), it may be that the C—F⋯I contact is merely coincident within the motif formed by the N—H⋯S and C—I⋯S inter­actions.

Table 10
Hydrogen-bond geometry (Å, °) for (MMBZIM)·(1,3,5-F3I3B)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯S1i 0.86 (2) 2.57 (3) 3.426 (7) 173 (10)
N2—HN2⋯I2ii 0.85 (8) 3.02 (8) 3.657 (7) 133 (7)
C3—H3⋯I3iii 0.95 3.12 4.035 (9) 163
C6—H6⋯I1iv 0.95 3.14 3.927 (8) 142
Symmetry codes: (i) [-x+1, -y+3, -z+1]; (ii) [x-1, y+1, z]; (iii) x, y+1, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

3.4. Cocrystals of 2-mercaptobenzoxazole (MBZOX)

While infinite ribbons commonly formed through hydrogen bonding of the thio­ureas in MBZIM, substituting one secondary N atom for an O atom in 2-mercaptobenzoxazole (MBZOX) allows for the study of the structural motifs when only dimers can form through hydrogen bonding (Fig. 5[link]). The structural literature surrounding MBZOX is sparse, limited to three reports of it acting as a ligand through the S atom in transition-metal com­plexes (McFarlane et al., 1998[McFarlane, W., Akrivos, P. D., Aslanidis, P., Karagiannidis, P., Hatzisymeon, C., Numan, M. & Kokkou, S. (1998). Inorg. Chim. Acta, 281, 121-125.]; Nakahodo et al., 2000[Nakahodo, T., Horn, E. & Tiekink, E. R. T. (2000). Acta Cryst. C56, 1316-1318.]; Mitra et al., 2012[Mitra, R., Das, S., Shinde, S. V., Sinha, S., Somasundaram, K. & Samuelson, A. G. (2012). Chem. Eur. J. 18, 12278-12291.]) and its reaction with diiodine (Cristiani et al., 1995[Cristiani, F., Devillanova, F. A., Isaia, F., Lippolis, V., Verani, G. & Demartin, F. (1995). Polyhedron, 14, 2937-2943.]). Combined with 1,2-F4DIB, the cocrystalline structure of (MBZOX)·(1,2-F4DIB) was refined in the monoclinic space group P21/n, with one unique mol­ecule each of MBZOX and 1,2-F4DIB in the asymmetric unit. Here, a hydrogen-bonding thio­amide dimer is formed (Table 11[link]), with each S atom acting as an acceptor to a single C—I⋯S halogen bond. The second I atom does not contribute to an additional halogen bond, instead being involved in a weak C—I⋯π inter­action. This discrete four-mol­ecule unit formed through hydrogen and halogen bonding stands in stark contrast to the infinite hydrogen-bonding ribbon with pendant halogen-bonded 1,2-F4DIB mol­ecules observed in (MBZIM)·(1,2-F4DIB). The pattern of inter­actions in (MBZOX)·(1,3-F4DIB), which crystallizes in the monoclinic space group P21/c, with one mol­ecule each of MBZOX and 1,3-F4DIB in the asymmetric unit, is more com­plex. Thio­amide hydrogen-bonding dimers are once again observed (Table 12[link]). These dimers stack along the b axis. Mol­ecules of 1,3-F4DIB link neighboring stacks of dimers in the a direction. One of the I atoms serves as both a C—I⋯S halogen-bond donor and a C=S⋯I chalcogen-bond acceptor. The combination of halo­gen, chalcogen, and hydrogen-bonding results in the formation of a two-dimensional motif of inter­molecular inter­actions. In 2(MBZOX)·(1,4-F4DIB), which was refined in the monoclinic space group C2/c, with one mol­ecule of MBZOX and one-half of a mol­ecule of 1,4-F4DIB, the packing motif is more reminiscent of its MMBZIM analogue. Thio­amide hydrogen-bonding dimers are linked into chains through C—I⋯S halogen bonding (Table 13[link]). The final example in the MBZOX series, (MBZOX)·(1,3,5-F3I3B), was refined in the monoclinic space group P21/c, with one mol­ecule each of MBZOX and 1,3,5-F3I3B in the asymmetric unit. Much of the packing is similar to (MBZOX)·(1,3-F4DIB), with thio­amide hydrogen-bonding dimers stacking in the b direction (Table 14[link]). Neighboring stacks are linked along the a axis by both C—I⋯S halogen bonding and a C=S⋯I chalcogen bond to again form a two-dimensional substructure. In this instance though, the third I atom of 1,3,5-F3I3B acts as a C—I⋯I halogen-bond donor, further consolidating the packing in the c direction to form a three-dimensional framework. In all cases of these MBZOX cocrystals, hydrogen- and halogen-bonding preference is given toward the thione S atom as the acceptor rather than the O atom of the heterocycle.

Table 11
Hydrogen-bond geometry (Å, °) for (MBZOX)·(1,2-F4DIB)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯S1i 0.85 (8) 2.50 (8) 3.335 (6) 167 (8)
C3—H3⋯I2ii 0.95 3.19 4.108 (7) 162
Symmetry codes: (i) [-x, -y, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 12
Hydrogen-bond geometry (Å, °) for (MBZOX)·(1,3-F4DIB)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯S1i 0.88 (3) 2.52 (3) 3.3906 (19) 172 (3)
C3—H3⋯I1ii 0.95 3.10 4.030 (2) 166
Symmetry codes: (i) [-x+2, -y+2, -z+1]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 13
Hydrogen-bond geometry (Å, °) for 2(MBZOX)·(1,4-F4DIB)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯S1i 0.87 (4) 2.45 (4) 3.316 (3) 178 (4)
C3—H3⋯I1ii 0.95 3.16 4.066 (3) 159
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x+1, -y+1, -z+1].

Table 14
Hydrogen-bond geometry (Å, °) for (MBZOX)·(1,3,5-F3I3B)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯S1i 0.85 (7) 2.53 (7) 3.377 (4) 176 (6)
C3—H3⋯I1ii 0.95 3.04 3.969 (5) 167
C6—H6⋯I2iii 0.95 3.23 4.009 (5) 140
Symmetry codes: (i) [-x+2, -y, -z+1]; (ii) [-x+2, -y+1, -z+1]; (iii) [x, -y+{\script{5\over 2}}], [z-{\script{1\over 2}}].
[Figure 5]
Figure 5
Cocrystalline structures containing MBZOX. Hydrogen and halogen bonding are indicated by black dotted lines. Displacement ellipsoids are drawn at the 50% probability level. H atoms, except those bound to N atoms, have been omitted for clarity.

3.5. Cocrystals of 2-mercaptobenzo­thia­zole (MBZTH)

As with MBZOX, 2-mercaptobenzo­thia­zole lacks the thio­urea functionality to allow for the formation of infinite ribbons through hydrogen bonding; however, the additional S atom can potentially act in either halogen- or chalcogen-bonding inter­actions (Fig. 6[link]). Just as with MBZOX, the prior structural literature is dominated by examples of MBZTH acting as a ligand in transition-metal com­plexes (Aslanidis et al., 2002[Aslanidis, P., Cox, P. J., Karagiannidis, P., Hadjikakou, S. K. & Antoniadis, C. D. (2002). Eur. J. Inorg. Chem. 2002, 2216-2222.]; Zhou et al., 2013b[Zhou, W. X., Yin, B., Li, J., Sun, W. J. & Zhang, F. X. (2013b). Inorg. Chim. Acta, 408, 209-213.]; Hadjikakou & Kubicki, 2000[Hadjikakou, S. K. & Kubicki, M. (2000). Polyhedron, 19, 2231-2236.]) or reactions with dihalides (Daga et al., 2002[Daga, V., Hadjikakou, S. K., Hadjiliadis, N., Kubicki, M., Santos, J. & Butler, I. (2002). Eur. J. Inorg. Chem. 2002, 1718-1728.]; Koskinen et al., 2015a[Koskinen, L., Hirva, P., Hasu, A., Jääskeläinen, S., Koivistoinen, J., Pettersson, M. & Haukka, M. (2015a). CrystEngComm, 17, 2718-2727.],b[Koskinen, L., Jääskeläinen, S., Hirva, P. & Haukka, M. (2015b). Cryst. Growth Des. 15, 1160-1167.]). The first and most com­plex of the MBZTH structures obtained, 3(MBZTH)·4(1,2-F4DIB), crystallized in the triclinic space group P[\overline{1}], with three mol­ecules of MBZTH and four mol­ecules of 1,2-F4DIB in the asymmetric unit. Thio­amide dimers stack along the a axis (Table 15[link]), with one mol­ecule of 1,2-F4DIB within alternating layers. The remaining mol­ecules of 1,2-F4DIB are oriented approximately perpendicular to the thio­amide dimers, linking layers of the stack through a series of C—I⋯S halogen bonds. The intra-stack mol­ecule of 1,2-F4DIB is also linked to a mol­ecule of 1,2-F4DIB on the edge of the stack through a C—I⋯I halogen bond. This com­plex series of inter­actions ultimately forms a three-dimensional framework.

Table 15
Hydrogen-bond geometry (Å, °) for 3(MBZTH)·4(1,2-F4DIB)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—HN2⋯S1 0.88 2.45 3.326 (14) 174
N1—HN1⋯S3 0.88 2.40 3.266 (14) 169
C6—H6⋯F10i 0.95 2.60 3.29 (2) 130
N3—HN3⋯S5ii 0.88 2.42 3.290 (14) 170
C17—H17⋯F16 0.95 2.30 3.232 (18) 166
C20—H20⋯F2 0.95 2.53 3.128 (18) 121
C20—H20⋯F3 0.95 2.54 3.181 (17) 125
Symmetry codes: (i) [x+1, y-1, z]; (ii) [-x+1, -y+1, -z].
[Figure 6]
Figure 6
Cocrystalline structures containing MBZTH. Hydrogen and halogen bonding are indicated by black dotted lines. Displacement ellipsoids are drawn at the 50% probability level. H atoms, except those bound to N atoms, have been omitted for clarity.

The packing motif of (MBZTH)·(1,3-F4DIB), refined in the triclinic space group P[\overline{1}], with one mol­ecule each of MBZTH and 1,3-F4DIB within the asymmetric unit, is similar to that of (MMBZIM)·(1,2-F4DIB) and (MMBZIM)·(1,3,5-F3I3B). Thio­­amide hydrogen-bonding dimers (Table 16[link]) are linked by a pair of unique C—I⋯S halogen bonds to the thione S atom, forming chains in the c direction. Crystallizing in the monoclinic space group P21, the asymmetric unit of (MBZTH)·2(1,3-F4DIB) contains two unique mol­ecules of MBZTH and four mol­ecules of 1,3-F4DIB. In this case, the thio­amide hydrogen-bonding dimers (Table 17[link]) are linked by mol­ecules of 1,3-F4DIB via C—I⋯S halogen bonding to form chains. These inter­actions occur to the thione and thia­zole S atoms, with the inter­action to the thione S atom occurring at a distance approximately 0.35 Å shorter than to the thia­zole S atom. The remaining two mol­ecules of 1,3-F4DIB are located as pendants along the chain, linked by C—I⋯I halogen bonding.

Table 16
Hydrogen-bond geometry (Å, °) for (MBZTH)·(1,3-F4DIB)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯S1i 0.87 (3) 2.45 (3) 3.3120 (15) 175 (2)
Symmetry code: (i) [-x+2, -y+2, -z+2].

Table 17
Hydrogen-bond geometry (Å, °) for (MBZTH)·2(1,3-F4DIB)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯S3 0.89 (6) 2.51 (6) 3.376 (6) 165 (5)
C3—H3⋯I1 0.95 3.10 3.976 (7) 154
N2—HN2⋯S1 0.85 (3) 2.52 (3) 3.360 (6) 169 (7)
C10—H10⋯I3i 0.95 3.09 4.006 (6) 161
Symmetry code: (i) x, y, z+1.

The packing motif of 2(MBZTH)·(1,4-F4DIB), refined in the monoclinic space group P21/n, with one com­plete mol­ecule of MBZTH and one-half of a mol­ecule of 1,4-F4DIB in the asymmetric unit, is similar to that of 2(MBZOX)·(1,4-F4DIB). Thio­amide hydrogen-bonding dimers (Table 18[link]) are linked into chains via C—I⋯S halogen bonding to the thione S atom. As the final example with an aromatic halogen-bond donor, (MBZTH)·(1,3,5-F3I3B) was obtained in the monoclinic space group P21/c, with one unique mol­ecule each of both MBZTH and 1,3,5-F3I3B in the asymmetric unit. The primary packing motif is similar to that of (MBZTH)·2(1,3-F4DIB), with the thio­amide hydrogen-bonding dimers (Table 19[link]) linked into chains by C—I⋯S halogen bonds to both the thione and thia­zole S atoms. The third I atom serves to link neighboring chains through a weak C—I⋯S—C inter­action to a thia­zole S atom; however, the geometry of this inter­action [C—I⋯S = 149.3 (1) and 142.48 (13)°] is indicative of a dispersive Type I inter­action and not a true halogen or chalcogen bond. Finally, (MBZTH)·(TIE) crystallized in the triclinic space group P[\overline{1}] with one unique mol­ecule of MBZTH and two unique half mol­ecules of TIE in the asymmetric unit. Thio­amide hydro­gen-bonding dimers (Table 20[link]) are linked into chains by C—I⋯S halogen bonding to the thione S atom. These chains are linked in the ab plane by additional C—I⋯S halogen bonding to the thione S atom. The second unique TIE mol­ecule serves to consolidate the packing in the c direction via C—I⋯I halogen bonding, forming a three-dimensional framework.

Table 18
Hydrogen-bond geometry (Å, °) for 2(MBZTH)·(1,4-F4DIB)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯S1i 0.78 (3) 2.60 (3) 3.369 (2) 170 (3)
C3—H3⋯F1ii 0.95 2.50 3.333 (3) 146
C6—H6⋯F2iii 0.95 2.44 3.357 (3) 162
Symmetry codes: (i) [-x-1, -y+1, -z+1]; (ii) [-x, -y+1, -z+1]; (iii) [-x+{\script{3\over 2}}], [y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 19
Hydrogen-bond geometry (Å, °) for (MBZTH)·(1,3,5-F3I3B)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯S1i 0.86 (2) 2.54 (2) 3.389 (3) 172 (4)
C3—H3⋯I1ii 0.95 3.03 3.928 (4) 159
Symmetry codes: (i) [-x+2, -y+2, -z+1]; (ii) [-x+2, -y+1, -z+1].

Table 20
Hydrogen-bond geometry (Å, °) for (MBZTH)·(TIE)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯S1i 0.85 (2) 2.43 (2) 3.275 (5) 170 (6)
Symmetry code: (i) [-x, -y+1, -z+2].

4. Conclusion

A rich structural chemistry of cocrystals was observed between organoiodine mol­ecules and heterocyclic thio­nes in the present study of 18 crystal structures. The structures are primarily directed by the co-operative effects of hydrogen- and halogen-bonding inter­actions. Certain features of the long-range structures were controlled through the selection of the heterocyclic thione, where the formation of primarily hydrogen-bonded ribbons in benzimidazoles could be truncated to hydrogen-bonded dimers in benzoxazoles and benzo­thia­zoles. The hydrogen-bonded units were then aggregated into longer-range one- or two-dimensional motifs through C—I⋯S halogen bonding. Additional C—I⋯I halogen bonding, either through the stoichiometric excess of organoiodine or through the use of more iodine-rich organo­iodine substrates (tetra­iodo­ethyl­ene, for example) extended some structures into three-dimensional frameworks. The RXB value for the majority of the halogen-bonding inter­actions lies within a typical range from 0.85 to 1.0. The inter­actions to a thione S atom generally occurred at shorter distances than the thiane S atom, as expected due to the hybridization state. The linearity parameter, ψ, ranges from 0.02 to 0.83. This wide range is supported by the distribution of electron density on S or I acceptor atoms. Occasional C=S⋯I chalcogen bonding was observed. Halogen-bond preference toward the thione S atom over the heterocyclic O or S atom was observed in both the benzoxazoles and benzo­thia­zoles. However, there were at least some occasional occurrences of C—I⋯S to the thia­zole S atom.

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b). Molecular graphics: Mercury (Macrae et al., 2020) for 2IT_13F4DIB, 4MBZIM_313F4DIB, MBZIM_14F4DIB, MBZIM_TIE, MMBZIM_12F4DIB, 2MMBZIM_14F4DIB_2H2O, MMBZIM_135F3I3B, MBZOX_12F4DIB, MBZOX_13F4DIB, 2MBZOX_14F4DIB, MBZOX_135F3I3B, 3MBZTH_412F4DIB, MBZTH_13F4DIB, MBZTH_213F4DIB, 2MBZTH_14F4DIB, MBZTH_135F3I3B, MBZTH_TIE; OLEX2 (Dolomanov et al., 2009) for IT_135F3I3B. For all structures, software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1,2,3,5-Tetrafluoro-4,6-diiodobenzene–imidazolidine-2-thione (1/2) (2IT_13F4DIB) top
Crystal data top
C6F4I2·2C3H6N2SDx = 2.193 Mg m3
Mr = 606.18Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 9343 reflections
a = 15.6704 (7) Åθ = 2.6–30.1°
b = 8.9924 (4) ŵ = 3.69 mm1
c = 26.0573 (10) ÅT = 100 K
V = 3671.9 (3) Å3Block, colourless
Z = 80.18 × 0.17 × 0.13 mm
F(000) = 2288
Data collection top
Bruker D8 Venture Photon 2
diffractometer
5198 reflections with I > 2σ(I)
Radiation source: Incoatec IµSRint = 0.035
φ and ω scansθmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 2222
Tmin = 0.639, Tmax = 0.746k = 1212
112821 measured reflectionsl = 3631
5376 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0054P)2 + 3.3158P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.032(Δ/σ)max = 0.003
S = 1.25Δρmax = 0.42 e Å3
5376 reflectionsΔρmin = 0.36 e Å3
234 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00082 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.71842 (2)0.27502 (2)0.20785 (2)0.01326 (3)
I20.98485 (2)0.54110 (2)0.35028 (2)0.01761 (3)
F10.89456 (6)0.34626 (11)0.26335 (4)0.01975 (19)
F20.81145 (7)0.69420 (11)0.38910 (4)0.0230 (2)
F30.64754 (6)0.66108 (12)0.36116 (4)0.0232 (2)
F40.60595 (6)0.48196 (12)0.28175 (4)0.0215 (2)
C70.74984 (10)0.40891 (16)0.27097 (5)0.0139 (3)
C80.83358 (10)0.42536 (17)0.28725 (6)0.0145 (3)
C90.85758 (10)0.51990 (17)0.32680 (6)0.0157 (3)
C100.79313 (10)0.59875 (17)0.35087 (6)0.0165 (3)
C110.70856 (10)0.58350 (18)0.33669 (6)0.0172 (3)
C120.68786 (10)0.49038 (18)0.29640 (6)0.0155 (3)
S10.68567 (2)0.95036 (4)0.61354 (2)0.01476 (7)
N10.69251 (9)0.72075 (15)0.54616 (5)0.0166 (3)
HN10.7189 (14)0.672 (3)0.5672 (9)0.027 (6)*
N20.64832 (10)0.92951 (15)0.51306 (5)0.0182 (3)
HN20.6289 (14)1.015 (2)0.5136 (8)0.022 (5)*
C10.67475 (9)0.86294 (17)0.55568 (6)0.0134 (3)
C20.68382 (11)0.68448 (18)0.49167 (6)0.0186 (3)
H2A0.6441570.6001340.4864600.022*
H2B0.7397720.6597160.4762280.022*
C30.64743 (11)0.82909 (18)0.46895 (6)0.0199 (3)
H3A0.6838950.8671310.4408420.024*
H3B0.5887260.8142310.4558820.024*
S20.42217 (3)0.71986 (5)0.49680 (2)0.02184 (9)
N30.47631 (10)0.51791 (16)0.42741 (5)0.0199 (3)
HN30.4952 (13)0.467 (2)0.4491 (9)0.020 (5)*
N40.40214 (9)0.69778 (16)0.39417 (5)0.0173 (3)
HN40.3816 (15)0.783 (3)0.3921 (9)0.028 (6)*
C40.43369 (10)0.64323 (17)0.43758 (6)0.0150 (3)
C50.46475 (10)0.47080 (17)0.37446 (6)0.0166 (3)
H5A0.4230290.3884690.3718610.020*
H5B0.5194450.4393280.3588550.020*
C60.43059 (11)0.61337 (18)0.34929 (6)0.0180 (3)
H6A0.4760220.6666610.3303440.022*
H6B0.3826410.5918360.3256950.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01584 (5)0.01297 (5)0.01098 (4)0.00009 (3)0.00092 (3)0.00036 (3)
I20.01801 (5)0.01630 (5)0.01853 (5)0.00213 (4)0.00276 (4)0.00185 (4)
F10.0169 (4)0.0213 (5)0.0210 (5)0.0041 (4)0.0008 (4)0.0073 (4)
F20.0276 (5)0.0234 (5)0.0182 (5)0.0016 (4)0.0000 (4)0.0098 (4)
F30.0216 (5)0.0265 (5)0.0215 (5)0.0042 (4)0.0058 (4)0.0079 (4)
F40.0143 (4)0.0284 (5)0.0217 (5)0.0006 (4)0.0006 (4)0.0042 (4)
C70.0190 (7)0.0121 (6)0.0105 (6)0.0010 (5)0.0006 (5)0.0002 (5)
C80.0170 (7)0.0124 (6)0.0141 (6)0.0019 (5)0.0012 (5)0.0001 (5)
C90.0175 (7)0.0140 (7)0.0155 (7)0.0009 (5)0.0013 (5)0.0000 (5)
C100.0222 (8)0.0144 (7)0.0128 (6)0.0015 (6)0.0005 (6)0.0015 (5)
C110.0205 (7)0.0159 (7)0.0152 (7)0.0022 (6)0.0043 (6)0.0010 (6)
C120.0150 (7)0.0167 (7)0.0146 (6)0.0010 (6)0.0007 (5)0.0014 (5)
S10.01883 (17)0.01408 (16)0.01138 (15)0.00309 (13)0.00079 (13)0.00015 (13)
N10.0220 (7)0.0127 (6)0.0150 (6)0.0032 (5)0.0018 (5)0.0014 (5)
N20.0277 (7)0.0133 (6)0.0136 (6)0.0055 (5)0.0030 (5)0.0008 (5)
C10.0119 (6)0.0140 (6)0.0142 (6)0.0004 (5)0.0011 (5)0.0008 (5)
C20.0259 (8)0.0148 (7)0.0152 (7)0.0014 (6)0.0001 (6)0.0028 (6)
C30.0276 (8)0.0180 (7)0.0141 (7)0.0030 (6)0.0023 (6)0.0026 (6)
S20.0339 (2)0.01651 (18)0.01508 (17)0.01055 (16)0.00313 (16)0.00093 (14)
N30.0280 (7)0.0164 (6)0.0151 (6)0.0094 (6)0.0051 (5)0.0000 (5)
N40.0212 (7)0.0146 (6)0.0161 (6)0.0054 (5)0.0028 (5)0.0010 (5)
C40.0143 (7)0.0127 (6)0.0179 (7)0.0004 (5)0.0011 (5)0.0015 (5)
C50.0197 (7)0.0139 (7)0.0161 (7)0.0018 (6)0.0003 (6)0.0003 (5)
C60.0221 (8)0.0167 (7)0.0153 (7)0.0043 (6)0.0022 (6)0.0002 (6)
Geometric parameters (Å, º) top
I1—C72.0969 (14)N2—C31.462 (2)
I2—C92.0947 (16)C2—H2A0.9900
F1—C81.3442 (17)C2—H2B0.9900
F2—C101.3459 (17)C2—C31.538 (2)
F3—C111.3445 (18)C3—H3A0.9900
F4—C121.3412 (18)C3—H3B0.9900
C7—C81.387 (2)S2—C41.6995 (16)
C7—C121.385 (2)N3—HN30.79 (2)
C8—C91.388 (2)N3—C41.337 (2)
C9—C101.384 (2)N3—C51.455 (2)
C10—C111.383 (2)N4—HN40.83 (2)
C11—C121.382 (2)N4—C41.328 (2)
S1—C11.7088 (15)N4—C61.464 (2)
N1—HN10.81 (2)C5—H5A0.9900
N1—C11.332 (2)C5—H5B0.9900
N1—C21.463 (2)C5—C61.536 (2)
N2—HN20.83 (2)C6—H6A0.9900
N2—C11.3280 (19)C6—H6B0.9900
C8—C7—I1121.56 (11)H2A—C2—H2B109.1
C12—C7—I1120.94 (11)C3—C2—H2A111.2
C12—C7—C8117.43 (14)C3—C2—H2B111.2
F1—C8—C7118.31 (13)N2—C3—C2102.49 (12)
F1—C8—C9118.39 (14)N2—C3—H3A111.3
C7—C8—C9123.29 (14)N2—C3—H3B111.3
C8—C9—I2122.05 (11)C2—C3—H3A111.3
C10—C9—I2121.04 (11)C2—C3—H3B111.3
C10—C9—C8116.90 (14)H3A—C3—H3B109.2
F2—C10—C9120.43 (14)C4—N3—HN3122.5 (16)
F2—C10—C11117.74 (14)C4—N3—C5111.80 (13)
C11—C10—C9121.83 (14)C5—N3—HN3124.0 (16)
F3—C11—C10120.23 (14)C4—N4—HN4122.7 (16)
F3—C11—C12120.52 (15)C4—N4—C6112.06 (13)
C12—C11—C10119.23 (14)C6—N4—HN4122.8 (16)
F4—C12—C7120.34 (14)N3—C4—S2125.10 (12)
F4—C12—C11118.37 (14)N4—C4—S2125.73 (12)
C11—C12—C7121.29 (15)N4—C4—N3109.17 (14)
C1—N1—HN1119.7 (16)N3—C5—H5A111.4
C1—N1—C2112.04 (13)N3—C5—H5B111.4
C2—N1—HN1125.6 (16)N3—C5—C6101.85 (12)
C1—N2—HN2121.3 (15)H5A—C5—H5B109.3
C1—N2—C3112.46 (13)C6—C5—H5A111.4
C3—N2—HN2125.8 (15)C6—C5—H5B111.4
N1—C1—S1125.81 (12)N4—C6—C5101.41 (12)
N2—C1—S1124.18 (12)N4—C6—H6A111.5
N2—C1—N1110.01 (14)N4—C6—H6B111.5
N1—C2—H2A111.2C5—C6—H6A111.5
N1—C2—H2B111.2C5—C6—H6B111.5
N1—C2—C3102.68 (12)H6A—C6—H6B109.3
I1—C7—C8—F13.75 (19)C9—C10—C11—C121.9 (2)
I1—C7—C8—C9175.92 (12)C10—C11—C12—F4177.15 (14)
I1—C7—C12—F41.7 (2)C10—C11—C12—C71.9 (2)
I1—C7—C12—C11177.34 (12)C12—C7—C8—F1179.43 (13)
I2—C9—C10—F21.9 (2)C12—C7—C8—C90.9 (2)
I2—C9—C10—C11178.45 (12)N1—C2—C3—N24.94 (17)
F1—C8—C9—I20.4 (2)C1—N1—C2—C35.82 (18)
F1—C8—C9—C10179.48 (14)C1—N2—C3—C22.96 (19)
F2—C10—C11—F30.8 (2)C2—N1—C1—S1174.62 (12)
F2—C10—C11—C12177.76 (14)C2—N1—C1—N24.27 (19)
F3—C11—C12—F41.4 (2)C3—N2—C1—S1178.31 (12)
F3—C11—C12—C7179.58 (14)C3—N2—C1—N10.6 (2)
C7—C8—C9—I2179.89 (11)N3—C5—C6—N418.18 (16)
C7—C8—C9—C100.9 (2)C4—N3—C5—C616.94 (18)
C8—C7—C12—F4178.51 (14)C4—N4—C6—C515.47 (18)
C8—C7—C12—C110.5 (2)C5—N3—C4—S2172.13 (12)
C8—C9—C10—F2179.09 (14)C5—N3—C4—N47.96 (19)
C8—C9—C10—C110.6 (2)C6—N4—C4—S2174.32 (12)
C9—C10—C11—F3179.53 (14)C6—N4—C4—N35.59 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···S1i0.81 (2)2.77 (2)3.5551 (14)163 (2)
N2—HN2···S2ii0.83 (2)2.53 (2)3.3507 (14)172 (2)
C2—H2B···F20.992.553.3392 (19)136
C3—H3B···S20.992.943.7351 (19)138
N3—HN3···S2iii0.79 (2)2.54 (2)3.3171 (15)167 (2)
N4—HN4···I2iv0.83 (2)3.31 (2)3.7383 (14)114.9 (18)
N4—HN4···S1ii0.83 (2)2.63 (2)3.4562 (14)179 (2)
C5—H5A···I1v0.993.203.9922 (16)138
C5—H5B···F40.992.453.2774 (19)140
C6—H6B···I1vi0.993.183.9223 (16)133
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x+3/2, y+1/2, z; (v) x+1, y, z+1/2; (vi) x1/2, y+1/2, z+1/2.
Imidazolidine-2-thione–1,3,5-trifluoro-2,4,6-triiodobenzene (1/1) (IT_135F3I3B) top
Crystal data top
C6F3I3·C3H6N2SDx = 2.797 Mg m3
Mr = 611.92Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9914 reflections
a = 18.0407 (14) Åθ = 2.9–28.3°
b = 7.2816 (6) ŵ = 6.61 mm1
c = 22.1250 (19) ÅT = 100 K
V = 2906.5 (4) Å3Tabular, colourless
Z = 80.22 × 0.08 × 0.04 mm
F(000) = 2208
Data collection top
Bruker D8 Venture Photon 2
diffractometer
3220 reflections with I > 2σ(I)
Radiation source: Incoatec IµSRint = 0.043
φ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 2424
Tmin = 0.563, Tmax = 0.746k = 99
49179 measured reflectionsl = 2829
3615 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0114P)2 + 5.9439P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.040(Δ/σ)max = 0.002
S = 1.11Δρmax = 0.57 e Å3
3615 reflectionsΔρmin = 0.77 e Å3
172 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.000108 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.53750 (2)0.23369 (3)0.54191 (2)0.01895 (5)
I20.82382 (2)0.16514 (2)0.68496 (2)0.01507 (5)
I30.83267 (2)0.32805 (2)0.41594 (2)0.01451 (5)
F10.65074 (9)0.1654 (2)0.64879 (8)0.0189 (4)
F20.88045 (8)0.2474 (2)0.55242 (8)0.0197 (4)
F30.65981 (9)0.3180 (2)0.44277 (8)0.0179 (3)
C40.65271 (14)0.2418 (4)0.54544 (13)0.0139 (5)
C50.69034 (15)0.2057 (4)0.59879 (13)0.0146 (5)
C60.76726 (14)0.2079 (4)0.60287 (13)0.0135 (5)
C70.80537 (14)0.2449 (4)0.54993 (13)0.0140 (5)
C80.77196 (14)0.2814 (4)0.49545 (13)0.0133 (5)
C90.69470 (14)0.2803 (4)0.49494 (13)0.0137 (5)
S10.57097 (4)0.61400 (10)0.79736 (3)0.01671 (14)
N10.52694 (14)0.2877 (4)0.84174 (13)0.0228 (6)
HN10.4953 (19)0.345 (6)0.8617 (18)0.057 (14)*
N20.62179 (16)0.2684 (4)0.78288 (13)0.0257 (6)
HN20.6527 (16)0.308 (5)0.7585 (14)0.029 (10)*
C10.57324 (15)0.3832 (4)0.80740 (12)0.0161 (6)
C20.54227 (16)0.0908 (4)0.84203 (14)0.0222 (6)
H2A0.4985780.0192830.8286180.027*
H2B0.5575620.0481980.8826510.027*
C30.60613 (19)0.0758 (4)0.79654 (16)0.0277 (7)
H3A0.6497510.0144190.8146600.033*
H3B0.5907830.0079580.7598440.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01058 (8)0.02130 (10)0.02496 (11)0.00013 (7)0.00038 (7)0.00336 (8)
I20.01700 (9)0.01397 (9)0.01424 (10)0.00039 (6)0.00190 (7)0.00115 (7)
I30.01480 (8)0.01468 (9)0.01405 (9)0.00001 (6)0.00204 (7)0.00044 (7)
F10.0176 (8)0.0235 (9)0.0157 (9)0.0029 (7)0.0045 (7)0.0016 (7)
F20.0101 (7)0.0284 (10)0.0205 (9)0.0005 (6)0.0003 (6)0.0023 (8)
F30.0170 (7)0.0204 (9)0.0163 (9)0.0018 (7)0.0034 (6)0.0024 (7)
C40.0098 (11)0.0127 (13)0.0193 (14)0.0006 (10)0.0004 (10)0.0018 (11)
C50.0172 (12)0.0111 (13)0.0155 (14)0.0027 (10)0.0038 (11)0.0007 (11)
C60.0161 (12)0.0118 (13)0.0124 (13)0.0014 (10)0.0043 (10)0.0012 (10)
C70.0118 (11)0.0110 (13)0.0191 (15)0.0014 (10)0.0010 (10)0.0000 (11)
C80.0141 (12)0.0111 (13)0.0148 (14)0.0003 (10)0.0033 (10)0.0016 (11)
C90.0137 (12)0.0120 (13)0.0153 (14)0.0024 (10)0.0036 (10)0.0001 (11)
S10.0211 (3)0.0144 (3)0.0146 (3)0.0003 (3)0.0002 (3)0.0002 (3)
N10.0236 (13)0.0181 (13)0.0267 (15)0.0027 (10)0.0051 (11)0.0020 (11)
N20.0321 (14)0.0158 (13)0.0292 (16)0.0020 (11)0.0127 (12)0.0046 (12)
C10.0168 (13)0.0223 (15)0.0092 (14)0.0006 (11)0.0037 (10)0.0001 (11)
C20.0244 (14)0.0209 (15)0.0213 (16)0.0062 (12)0.0049 (12)0.0046 (13)
C30.0397 (18)0.0155 (15)0.0278 (18)0.0006 (14)0.0044 (15)0.0037 (13)
Geometric parameters (Å, º) top
I1—C42.081 (2)S1—C11.696 (3)
I2—C62.106 (3)N1—HN10.831 (19)
I3—C82.100 (3)N1—C11.326 (4)
F1—C51.349 (3)N1—C21.460 (4)
F2—C71.356 (3)N2—HN20.827 (18)
F3—C91.343 (3)N2—C11.327 (4)
C4—C51.387 (4)N2—C31.462 (4)
C4—C91.379 (4)C2—H2A0.9900
C5—C61.391 (4)C2—H2B0.9900
C6—C71.385 (4)C2—C31.534 (4)
C7—C81.374 (4)C3—H3A0.9900
C8—C91.394 (4)C3—H3B0.9900
C5—C4—I1121.0 (2)C2—N1—HN1128 (3)
C9—C4—I1121.6 (2)C1—N2—HN2119 (3)
C9—C4—C5117.4 (2)C1—N2—C3113.1 (3)
F1—C5—C4118.7 (2)C3—N2—HN2127 (3)
F1—C5—C6118.5 (3)N1—C1—S1125.4 (2)
C4—C5—C6122.8 (3)N1—C1—N2108.7 (3)
C5—C6—I2122.5 (2)N2—C1—S1125.9 (2)
C7—C6—I2121.18 (19)N1—C2—H2A111.4
C7—C6—C5116.3 (2)N1—C2—H2B111.4
F2—C7—C6117.7 (2)N1—C2—C3102.1 (2)
F2—C7—C8118.1 (2)H2A—C2—H2B109.2
C8—C7—C6124.2 (2)C3—C2—H2A111.4
C7—C8—I3122.51 (19)C3—C2—H2B111.4
C7—C8—C9116.4 (3)N2—C3—C2102.3 (3)
C9—C8—I3121.0 (2)N2—C3—H3A111.3
F3—C9—C4118.7 (2)N2—C3—H3B111.3
F3—C9—C8118.3 (2)C2—C3—H3A111.3
C4—C9—C8122.9 (3)C2—C3—H3B111.3
C1—N1—HN1118 (3)H3A—C3—H3B109.2
C1—N1—C2113.5 (3)
I1—C4—C5—F10.2 (3)C5—C6—C7—F2179.8 (2)
I1—C4—C5—C6179.3 (2)C5—C6—C7—C81.1 (4)
I1—C4—C9—F31.7 (4)C6—C7—C8—I3177.9 (2)
I1—C4—C9—C8178.1 (2)C6—C7—C8—C90.1 (4)
I2—C6—C7—F21.9 (3)C7—C8—C9—F3179.0 (2)
I2—C6—C7—C8177.3 (2)C7—C8—C9—C41.2 (4)
I3—C8—C9—F32.9 (3)C9—C4—C5—F1179.2 (2)
I3—C8—C9—C4176.8 (2)C9—C4—C5—C60.2 (4)
F1—C5—C6—I23.4 (4)N1—C2—C3—N25.8 (3)
F1—C5—C6—C7178.2 (2)C1—N1—C2—C33.7 (3)
F2—C7—C8—I32.9 (4)C1—N2—C3—C26.8 (4)
F2—C7—C8—C9179.1 (2)C2—N1—C1—S1179.8 (2)
C4—C5—C6—I2177.1 (2)C2—N1—C1—N20.4 (4)
C4—C5—C6—C71.2 (4)C3—N2—C1—S1175.8 (2)
C5—C4—C9—F3179.2 (2)C3—N2—C1—N14.8 (4)
C5—C4—C9—C81.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—HN2···I2i0.83 (2)3.10 (3)3.742 (3)137 (3)
C2—H2B···I1ii0.993.313.927 (3)122
C2—H2B···F3iii0.992.473.147 (3)125
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1, y1/2, z+3/2; (iii) x, y+1/2, z+1/2.
1H-1,3-Benzodiazole-2-thiol–1,2,3,5-tetrafluoro-4,6-diiodobenzene (4/3) (4MBZIM_313F4DIB) top
Crystal data top
3C6F4I2·4C7H6N2SZ = 2
Mr = 1806.37F(000) = 1692
Triclinic, P1Dx = 2.238 Mg m3
a = 8.4573 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 17.725 (3) ÅCell parameters from 9879 reflections
c = 18.759 (4) Åθ = 2.4–27.5°
α = 106.997 (7)°µ = 3.72 mm1
β = 93.229 (7)°T = 100 K
γ = 92.034 (7)°Needle, colourless
V = 2680.9 (9) Å30.34 × 0.04 × 0.04 mm
Data collection top
Bruker D8 Venture Photon 2
diffractometer
10558 reflections with I > 2σ(I)
Radiation source: Incoatec IµSRint = 0.056
φ and ω scansθmax = 27.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 1010
Tmin = 0.668, Tmax = 0.746k = 2323
118524 measured reflectionsl = 2424
12297 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.0068P)2 + 2.3276P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
12297 reflectionsΔρmax = 0.52 e Å3
717 parametersΔρmin = 0.75 e Å3
8 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.23723 (2)0.28696 (2)0.64287 (2)0.01892 (4)
I20.11203 (2)0.62311 (2)0.81696 (2)0.02185 (4)
F290.12514 (17)0.43584 (9)0.76730 (8)0.0228 (3)
F300.28968 (19)0.64658 (9)0.67800 (9)0.0259 (3)
F310.41295 (19)0.54429 (9)0.56177 (9)0.0271 (4)
F320.38986 (17)0.38762 (9)0.54469 (8)0.0234 (3)
C290.2585 (3)0.40830 (15)0.65651 (14)0.0161 (5)
C300.1965 (3)0.46280 (16)0.71636 (14)0.0182 (5)
C310.2045 (3)0.54314 (15)0.72577 (14)0.0166 (5)
C320.2787 (3)0.56938 (15)0.67263 (14)0.0186 (5)
C330.3417 (3)0.51713 (16)0.61237 (14)0.0193 (5)
C340.3307 (3)0.43733 (16)0.60458 (14)0.0183 (5)
I30.39366 (2)0.29864 (2)0.15711 (2)0.02594 (4)
I40.19057 (2)0.58106 (2)0.39910 (2)0.02628 (4)
F330.31982 (19)0.47479 (9)0.24734 (9)0.0278 (4)
F340.11956 (18)0.43808 (10)0.46524 (9)0.0290 (4)
F350.17740 (18)0.28360 (10)0.41706 (9)0.0295 (4)
F360.30202 (17)0.22313 (9)0.28451 (9)0.0256 (3)
C350.2209 (3)0.46038 (15)0.35750 (15)0.0190 (5)
C360.2842 (3)0.42746 (16)0.28917 (14)0.0191 (5)
C370.3114 (3)0.34781 (15)0.26241 (14)0.0178 (5)
C380.2759 (3)0.30052 (15)0.30711 (15)0.0192 (5)
C390.2115 (3)0.33102 (16)0.37517 (15)0.0210 (6)
C400.1836 (3)0.40999 (16)0.39927 (14)0.0200 (5)
I50.82526 (2)0.39902 (2)0.11345 (2)0.02532 (4)
I60.75419 (2)0.73973 (2)0.07191 (2)0.01718 (4)
F370.85766 (18)0.58847 (9)0.05559 (8)0.0244 (3)
F380.59562 (17)0.64129 (9)0.16783 (8)0.0218 (3)
F390.54190 (18)0.48581 (9)0.14581 (9)0.0262 (4)
F400.63996 (18)0.38040 (9)0.02360 (9)0.0255 (3)
C410.7536 (3)0.48240 (15)0.01841 (14)0.0169 (5)
C420.7782 (3)0.56261 (15)0.00623 (14)0.0164 (5)
C430.7249 (3)0.61822 (14)0.05532 (14)0.0149 (5)
C440.6468 (3)0.59054 (15)0.10618 (14)0.0168 (5)
C450.6198 (3)0.51085 (15)0.09575 (14)0.0180 (5)
C460.6721 (3)0.45764 (15)0.03328 (15)0.0182 (5)
S11.26980 (7)0.02971 (4)0.13364 (4)0.01658 (13)
N11.3937 (2)0.08314 (13)0.19002 (11)0.0155 (4)
HN11.487 (2)0.0747 (18)0.1788 (17)0.031 (9)*
N21.1363 (2)0.08180 (12)0.18912 (11)0.0153 (4)
HN21.041 (2)0.0708 (15)0.1806 (14)0.015 (7)*
C11.2668 (3)0.04645 (15)0.17100 (13)0.0158 (5)
C21.3451 (3)0.14290 (15)0.21949 (13)0.0154 (5)
C31.4285 (3)0.19430 (15)0.24861 (14)0.0188 (5)
H31.5408140.1949120.2489740.023*
C41.3406 (3)0.24474 (16)0.27716 (14)0.0208 (6)
H41.3939230.2806710.2977430.025*
C51.1748 (3)0.24408 (16)0.27645 (14)0.0197 (5)
H51.1185780.2798490.2962630.024*
C61.0905 (3)0.19247 (15)0.24751 (14)0.0182 (5)
H60.9781440.1919150.2471430.022*
C71.1792 (3)0.14174 (15)0.21913 (13)0.0159 (5)
S20.76230 (7)0.07080 (4)0.13517 (3)0.01460 (12)
N30.8902 (2)0.04164 (12)0.07893 (12)0.0142 (4)
HN30.985 (2)0.0339 (17)0.0913 (16)0.026 (8)*
N40.6315 (2)0.03610 (12)0.07390 (11)0.0134 (4)
HN40.539 (2)0.0257 (15)0.0851 (15)0.016 (7)*
C80.7619 (3)0.00336 (14)0.09496 (13)0.0135 (5)
C90.8425 (3)0.10176 (14)0.04983 (13)0.0149 (5)
C100.9275 (3)0.15703 (15)0.02577 (14)0.0186 (5)
H101.0401740.1603780.0288300.022*
C110.8386 (3)0.20721 (15)0.00307 (15)0.0199 (5)
H110.8922590.2463170.0196490.024*
C120.6733 (3)0.20197 (15)0.00842 (14)0.0185 (5)
H120.6174750.2366370.0296810.022*
C130.5882 (3)0.14726 (15)0.01657 (13)0.0160 (5)
H130.4755080.1437800.0132820.019*
C140.6767 (3)0.09798 (14)0.04661 (13)0.0137 (5)
S30.21077 (7)1.09011 (4)0.59658 (4)0.01674 (13)
N50.3335 (2)0.98621 (12)0.66496 (12)0.0153 (4)
HN50.427 (2)0.9957 (18)0.6541 (17)0.035 (9)*
N60.0755 (2)0.98679 (12)0.66091 (12)0.0149 (4)
HN60.020 (2)0.9958 (16)0.6501 (15)0.021 (8)*
C150.2063 (3)1.02032 (14)0.64225 (13)0.0147 (5)
C160.2825 (3)0.92908 (14)0.69697 (13)0.0149 (5)
C170.3645 (3)0.87884 (15)0.72898 (14)0.0196 (5)
H170.4770190.8788910.7316570.024*
C180.2730 (3)0.82880 (15)0.75670 (14)0.0211 (6)
H180.3243180.7934630.7787750.025*
C190.1078 (3)0.82884 (15)0.75312 (14)0.0213 (6)
H190.0498120.7930800.7722930.026*
C200.0256 (3)0.87954 (15)0.72240 (14)0.0186 (5)
H200.0868420.8802440.7208100.022*
C210.1171 (3)0.92909 (14)0.69418 (13)0.0141 (5)
S40.29930 (7)0.99445 (4)0.61172 (3)0.01608 (12)
N70.1672 (2)1.09905 (13)0.54729 (12)0.0157 (4)
HN70.073 (2)1.0901 (18)0.5580 (17)0.033 (9)*
N80.4249 (2)1.09692 (13)0.54319 (12)0.0156 (4)
HN80.519 (2)1.0848 (17)0.5511 (17)0.029 (8)*
C220.2972 (3)1.06481 (14)0.56708 (13)0.0146 (5)
C230.2121 (3)1.15416 (14)0.51139 (13)0.0145 (5)
C240.1251 (3)1.20294 (15)0.48049 (14)0.0186 (5)
H240.0126561.2032490.4816150.022*
C250.2099 (3)1.25129 (15)0.44782 (14)0.0189 (5)
H250.1542621.2857310.4262920.023*
C260.3758 (3)1.25043 (15)0.44591 (14)0.0189 (5)
H260.4298721.2844700.4231940.023*
C270.4633 (3)1.20121 (15)0.47629 (14)0.0185 (5)
H270.5758251.2005570.4748340.022*
C280.3778 (3)1.15290 (14)0.50896 (13)0.0147 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01909 (8)0.01702 (9)0.02029 (9)0.00047 (6)0.00052 (6)0.00538 (7)
I20.02488 (9)0.02320 (9)0.01763 (9)0.00734 (7)0.00435 (7)0.00505 (7)
F290.0267 (8)0.0243 (9)0.0207 (8)0.0015 (6)0.0077 (6)0.0105 (7)
F300.0389 (9)0.0165 (8)0.0242 (9)0.0008 (7)0.0055 (7)0.0085 (7)
F310.0365 (9)0.0267 (9)0.0217 (8)0.0001 (7)0.0121 (7)0.0112 (7)
F320.0259 (8)0.0241 (9)0.0192 (8)0.0051 (6)0.0067 (6)0.0034 (7)
C290.0157 (12)0.0150 (13)0.0176 (13)0.0003 (9)0.0012 (9)0.0052 (11)
C300.0148 (12)0.0233 (14)0.0179 (13)0.0010 (10)0.0011 (10)0.0080 (11)
C310.0165 (12)0.0192 (14)0.0134 (12)0.0051 (10)0.0015 (9)0.0035 (10)
C320.0210 (13)0.0174 (14)0.0185 (13)0.0012 (10)0.0005 (10)0.0074 (11)
C330.0193 (13)0.0244 (15)0.0167 (13)0.0000 (10)0.0034 (10)0.0098 (11)
C340.0151 (12)0.0228 (14)0.0154 (13)0.0019 (10)0.0009 (9)0.0030 (11)
I30.03176 (10)0.02680 (10)0.01832 (9)0.00506 (7)0.00720 (7)0.00377 (8)
I40.02547 (9)0.01905 (9)0.02967 (10)0.00413 (7)0.00068 (7)0.00011 (8)
F330.0386 (9)0.0238 (9)0.0252 (9)0.0027 (7)0.0080 (7)0.0127 (7)
F340.0306 (9)0.0367 (10)0.0183 (8)0.0053 (7)0.0094 (7)0.0040 (7)
F350.0325 (9)0.0313 (10)0.0308 (9)0.0031 (7)0.0084 (7)0.0182 (8)
F360.0261 (8)0.0155 (8)0.0351 (10)0.0008 (6)0.0060 (7)0.0067 (7)
C350.0159 (12)0.0174 (14)0.0218 (14)0.0018 (10)0.0004 (10)0.0029 (11)
C360.0178 (12)0.0221 (14)0.0190 (13)0.0006 (10)0.0005 (10)0.0090 (11)
C370.0169 (12)0.0206 (14)0.0149 (13)0.0025 (10)0.0004 (9)0.0035 (11)
C380.0142 (12)0.0180 (14)0.0243 (14)0.0006 (10)0.0012 (10)0.0048 (11)
C390.0181 (13)0.0272 (15)0.0201 (14)0.0035 (10)0.0008 (10)0.0116 (12)
C400.0159 (12)0.0275 (15)0.0151 (13)0.0007 (10)0.0017 (10)0.0039 (11)
I50.02794 (9)0.02317 (10)0.01987 (9)0.00810 (7)0.00031 (7)0.00193 (7)
I60.01777 (8)0.01347 (8)0.02020 (9)0.00095 (6)0.00012 (6)0.00532 (7)
F370.0293 (8)0.0248 (9)0.0215 (8)0.0003 (7)0.0103 (6)0.0092 (7)
F380.0267 (8)0.0201 (8)0.0186 (8)0.0047 (6)0.0078 (6)0.0039 (7)
F390.0332 (9)0.0240 (9)0.0274 (9)0.0000 (7)0.0085 (7)0.0158 (7)
F400.0338 (9)0.0131 (8)0.0291 (9)0.0013 (6)0.0028 (7)0.0066 (7)
C410.0172 (12)0.0161 (13)0.0151 (13)0.0049 (10)0.0016 (9)0.0011 (10)
C420.0149 (12)0.0198 (14)0.0155 (13)0.0007 (10)0.0013 (9)0.0064 (11)
C430.0149 (12)0.0125 (12)0.0174 (13)0.0015 (9)0.0011 (9)0.0049 (10)
C440.0162 (12)0.0176 (13)0.0161 (13)0.0027 (10)0.0006 (9)0.0041 (11)
C450.0182 (12)0.0182 (14)0.0195 (13)0.0002 (10)0.0004 (10)0.0090 (11)
C460.0213 (13)0.0106 (13)0.0217 (14)0.0014 (10)0.0053 (10)0.0050 (11)
S10.0117 (3)0.0187 (3)0.0194 (3)0.0011 (2)0.0010 (2)0.0057 (3)
N10.0100 (10)0.0206 (12)0.0150 (11)0.0013 (8)0.0013 (8)0.0037 (9)
N20.0094 (10)0.0198 (12)0.0169 (11)0.0021 (8)0.0008 (8)0.0057 (9)
C10.0141 (12)0.0179 (13)0.0123 (12)0.0001 (9)0.0015 (9)0.0002 (10)
C20.0142 (12)0.0165 (13)0.0125 (12)0.0001 (9)0.0003 (9)0.0001 (10)
C30.0141 (12)0.0223 (14)0.0182 (13)0.0028 (10)0.0003 (10)0.0029 (11)
C40.0229 (13)0.0214 (14)0.0178 (13)0.0037 (11)0.0007 (10)0.0052 (11)
C50.0235 (13)0.0191 (14)0.0148 (13)0.0021 (10)0.0026 (10)0.0026 (11)
C60.0163 (12)0.0203 (14)0.0157 (13)0.0001 (10)0.0015 (10)0.0019 (11)
C70.0165 (12)0.0174 (13)0.0127 (12)0.0013 (10)0.0010 (9)0.0029 (10)
S20.0118 (3)0.0130 (3)0.0192 (3)0.0003 (2)0.0004 (2)0.0054 (3)
N30.0096 (10)0.0158 (11)0.0180 (11)0.0016 (8)0.0003 (8)0.0061 (9)
N40.0112 (10)0.0133 (11)0.0153 (11)0.0011 (8)0.0004 (8)0.0036 (9)
C80.0126 (11)0.0128 (12)0.0127 (12)0.0017 (9)0.0000 (9)0.0004 (10)
C90.0154 (12)0.0147 (13)0.0138 (12)0.0003 (9)0.0011 (9)0.0030 (10)
C100.0148 (12)0.0200 (14)0.0208 (14)0.0018 (10)0.0018 (10)0.0058 (11)
C110.0216 (13)0.0173 (14)0.0221 (14)0.0012 (10)0.0041 (10)0.0079 (11)
C120.0231 (13)0.0154 (13)0.0167 (13)0.0030 (10)0.0006 (10)0.0045 (11)
C130.0146 (12)0.0164 (13)0.0147 (12)0.0044 (9)0.0019 (9)0.0003 (10)
C140.0143 (11)0.0126 (12)0.0132 (12)0.0006 (9)0.0027 (9)0.0022 (10)
S30.0129 (3)0.0165 (3)0.0224 (3)0.0008 (2)0.0024 (2)0.0079 (3)
N50.0123 (10)0.0155 (11)0.0178 (11)0.0017 (8)0.0011 (8)0.0042 (9)
N60.0103 (10)0.0145 (11)0.0194 (11)0.0007 (8)0.0007 (8)0.0043 (9)
C150.0139 (11)0.0145 (13)0.0142 (12)0.0017 (9)0.0023 (9)0.0015 (10)
C160.0165 (12)0.0135 (13)0.0118 (12)0.0002 (9)0.0012 (9)0.0005 (10)
C170.0189 (13)0.0204 (14)0.0163 (13)0.0065 (10)0.0022 (10)0.0003 (11)
C180.0306 (14)0.0167 (14)0.0141 (13)0.0056 (11)0.0041 (10)0.0022 (11)
C190.0300 (14)0.0166 (14)0.0179 (14)0.0005 (11)0.0020 (11)0.0063 (11)
C200.0206 (13)0.0167 (13)0.0165 (13)0.0009 (10)0.0015 (10)0.0020 (11)
C210.0158 (12)0.0137 (12)0.0108 (12)0.0019 (9)0.0008 (9)0.0007 (10)
S40.0130 (3)0.0184 (3)0.0182 (3)0.0002 (2)0.0001 (2)0.0078 (3)
N70.0114 (10)0.0195 (12)0.0159 (11)0.0007 (8)0.0008 (8)0.0054 (9)
N80.0111 (10)0.0199 (12)0.0168 (11)0.0001 (8)0.0016 (8)0.0070 (9)
C220.0146 (12)0.0152 (13)0.0119 (12)0.0007 (9)0.0003 (9)0.0007 (10)
C230.0166 (12)0.0127 (12)0.0110 (12)0.0000 (9)0.0001 (9)0.0011 (10)
C240.0182 (12)0.0192 (14)0.0164 (13)0.0050 (10)0.0018 (10)0.0028 (11)
C250.0254 (13)0.0141 (13)0.0169 (13)0.0022 (10)0.0030 (10)0.0044 (11)
C260.0242 (13)0.0166 (13)0.0153 (13)0.0017 (10)0.0009 (10)0.0037 (11)
C270.0164 (12)0.0191 (14)0.0187 (13)0.0018 (10)0.0005 (10)0.0035 (11)
C280.0162 (12)0.0134 (12)0.0143 (12)0.0012 (9)0.0016 (9)0.0037 (10)
Geometric parameters (Å, º) top
I1—C292.090 (3)C6—C71.390 (3)
I2—C312.088 (2)S2—C81.696 (2)
F29—C301.348 (3)N3—HN30.846 (17)
F30—C321.342 (3)N3—C81.354 (3)
F31—C331.344 (3)N3—C91.394 (3)
F32—C341.343 (3)N4—HN40.849 (16)
C29—C301.392 (3)N4—C81.356 (3)
C29—C341.387 (3)N4—C141.390 (3)
C30—C311.382 (4)C9—C101.388 (3)
C31—C321.387 (3)C9—C141.398 (3)
C32—C331.382 (4)C10—H100.9500
C33—C341.378 (4)C10—C111.390 (3)
I3—C372.083 (2)C11—H110.9500
I4—C352.082 (3)C11—C121.394 (3)
F33—C361.343 (3)C12—H120.9500
F34—C401.344 (3)C12—C131.391 (4)
F35—C391.342 (3)C13—H130.9500
F36—C381.342 (3)C13—C141.388 (3)
C35—C361.390 (4)S3—C151.699 (2)
C35—C401.389 (4)N5—HN50.850 (17)
C36—C371.386 (4)N5—C151.360 (3)
C37—C381.385 (4)N5—C161.388 (3)
C38—C391.383 (4)N6—HN60.851 (17)
C39—C401.373 (4)N6—C151.348 (3)
I5—C412.092 (2)N6—C211.390 (3)
I6—C432.088 (2)C16—C171.394 (3)
F37—C421.347 (3)C16—C211.398 (3)
F38—C441.345 (3)C17—H170.9500
F39—C451.344 (3)C17—C181.386 (4)
F40—C461.343 (3)C18—H180.9500
C41—C421.379 (4)C18—C191.396 (4)
C41—C461.382 (4)C19—H190.9500
C42—C431.390 (3)C19—C201.387 (3)
C43—C441.382 (3)C20—H200.9500
C44—C451.377 (4)C20—C211.386 (3)
C45—C461.378 (4)S4—C221.693 (2)
S1—C11.693 (3)N7—HN70.844 (17)
N1—HN10.847 (17)N7—C221.358 (3)
N1—C11.358 (3)N7—C231.391 (3)
N1—C21.390 (3)N8—HN80.852 (17)
N2—HN20.854 (16)N8—C221.353 (3)
N2—C11.358 (3)N8—C281.389 (3)
N2—C71.390 (3)C23—C241.386 (3)
C2—C31.385 (3)C23—C281.398 (3)
C2—C71.404 (3)C24—H240.9500
C3—H30.9500C24—C251.388 (3)
C3—C41.384 (4)C25—H250.9500
C4—H40.9500C25—C261.401 (3)
C4—C51.402 (3)C26—H260.9500
C5—H50.9500C26—C271.388 (4)
C5—C61.390 (3)C27—H270.9500
C6—H60.9500C27—C281.390 (3)
C30—C29—I1121.55 (18)C8—N3—HN3123 (2)
C34—C29—I1120.98 (19)C8—N3—C9110.03 (19)
C34—C29—C30117.4 (2)C9—N3—HN3126 (2)
F29—C30—C29118.4 (2)C8—N4—HN4122.6 (18)
F29—C30—C31118.6 (2)C8—N4—C14109.91 (19)
C31—C30—C29123.0 (2)C14—N4—HN4126.3 (18)
C30—C31—I2121.81 (18)N3—C8—S2126.82 (17)
C30—C31—C32117.5 (2)N3—C8—N4107.3 (2)
C32—C31—I2120.72 (19)N4—C8—S2125.90 (18)
F30—C32—C31120.7 (2)N3—C9—C14106.2 (2)
F30—C32—C33118.0 (2)C10—C9—N3132.1 (2)
C33—C32—C31121.3 (2)C10—C9—C14121.7 (2)
F31—C33—C32120.0 (2)C9—C10—H10121.9
F31—C33—C34120.4 (2)C9—C10—C11116.3 (2)
C34—C33—C32119.6 (2)C11—C10—H10121.9
F32—C34—C29120.3 (2)C10—C11—H11119.0
F32—C34—C33118.5 (2)C10—C11—C12122.1 (2)
C33—C34—C29121.2 (2)C12—C11—H11119.0
C36—C35—I4122.13 (19)C11—C12—H12119.2
C40—C35—I4120.40 (19)C13—C12—C11121.6 (2)
C40—C35—C36117.4 (2)C13—C12—H12119.2
F33—C36—C35118.6 (2)C12—C13—H13121.8
F33—C36—C37118.7 (2)C14—C13—C12116.4 (2)
C37—C36—C35122.7 (2)C14—C13—H13121.8
C36—C37—I3121.94 (19)N4—C14—C9106.5 (2)
C38—C37—I3120.42 (19)C13—C14—N4131.5 (2)
C38—C37—C36117.6 (2)C13—C14—C9121.9 (2)
F36—C38—C37120.2 (2)C15—N5—HN5122 (2)
F36—C38—C39118.4 (2)C15—N5—C16109.8 (2)
C39—C38—C37121.4 (2)C16—N5—HN5128 (2)
F35—C39—C38120.0 (2)C15—N6—HN6125.4 (19)
F35—C39—C40120.6 (2)C15—N6—C21110.28 (19)
C40—C39—C38119.4 (2)C21—N6—HN6124.0 (19)
F34—C40—C35120.2 (2)N5—C15—S3126.48 (18)
F34—C40—C39118.3 (2)N6—C15—S3126.32 (18)
C39—C40—C35121.5 (2)N6—C15—N5107.2 (2)
C42—C41—I5122.49 (18)N5—C16—C17132.2 (2)
C42—C41—C46117.7 (2)N5—C16—C21106.5 (2)
C46—C41—I5119.79 (19)C17—C16—C21121.2 (2)
F37—C42—C41119.0 (2)C16—C17—H17121.8
F37—C42—C43118.4 (2)C18—C17—C16116.4 (2)
C41—C42—C43122.6 (2)C18—C17—H17121.8
C42—C43—I6122.78 (18)C17—C18—H18119.1
C44—C43—I6119.64 (18)C17—C18—C19121.9 (2)
C44—C43—C42117.6 (2)C19—C18—H18119.1
F38—C44—C43120.5 (2)C18—C19—H19119.0
F38—C44—C45118.2 (2)C20—C19—C18122.0 (2)
C45—C44—C43121.4 (2)C20—C19—H19119.0
F39—C45—C44120.0 (2)C19—C20—H20122.0
F39—C45—C46120.8 (2)C21—C20—C19116.1 (2)
C44—C45—C46119.3 (2)C21—C20—H20122.0
F40—C46—C41120.7 (2)N6—C21—C16106.2 (2)
F40—C46—C45117.8 (2)C20—C21—N6131.4 (2)
C45—C46—C41121.5 (2)C20—C21—C16122.4 (2)
C1—N1—HN1123 (2)C22—N7—HN7124 (2)
C1—N1—C2110.7 (2)C22—N7—C23110.29 (19)
C2—N1—HN1126 (2)C23—N7—HN7125 (2)
C1—N2—HN2124.7 (18)C22—N8—HN8122 (2)
C1—N2—C7110.48 (19)C22—N8—C28110.6 (2)
C7—N2—HN2124.7 (18)C28—N8—HN8127 (2)
N1—C1—S1127.03 (19)N7—C22—S4126.72 (18)
N1—C1—N2106.5 (2)N8—C22—S4126.58 (18)
N2—C1—S1126.41 (18)N8—C22—N7106.7 (2)
N1—C2—C7106.0 (2)N7—C23—C28106.2 (2)
C3—C2—N1132.4 (2)C24—C23—N7132.1 (2)
C3—C2—C7121.6 (2)C24—C23—C28121.6 (2)
C2—C3—H3121.5C23—C24—H24121.5
C4—C3—C2116.9 (2)C23—C24—C25116.9 (2)
C4—C3—H3121.5C25—C24—H24121.5
C3—C4—H4119.2C24—C25—H25119.3
C3—C4—C5121.6 (2)C24—C25—C26121.4 (2)
C5—C4—H4119.2C26—C25—H25119.3
C4—C5—H5119.1C25—C26—H26119.1
C6—C5—C4121.8 (2)C27—C26—C25121.8 (2)
C6—C5—H5119.1C27—C26—H26119.1
C5—C6—H6121.8C26—C27—H27121.7
C7—C6—C5116.5 (2)C26—C27—C28116.5 (2)
C7—C6—H6121.8C28—C27—H27121.7
N2—C7—C2106.3 (2)N8—C28—C23106.2 (2)
N2—C7—C6132.0 (2)N8—C28—C27132.1 (2)
C6—C7—C2121.6 (2)C27—C28—C23121.7 (2)
I1—C29—C30—F291.8 (3)N1—C2—C7—C6177.7 (2)
I1—C29—C30—C31178.02 (18)C1—N1—C2—C3177.6 (3)
I1—C29—C34—F320.7 (3)C1—N1—C2—C70.7 (3)
I1—C29—C34—C33178.45 (19)C1—N2—C7—C20.1 (3)
I2—C31—C32—F301.4 (3)C1—N2—C7—C6177.9 (3)
I2—C31—C32—C33179.38 (19)C2—N1—C1—S1179.67 (19)
F29—C30—C31—I20.8 (3)C2—N1—C1—N20.8 (3)
F29—C30—C31—C32179.9 (2)C2—C3—C4—C50.2 (4)
F30—C32—C33—F310.7 (4)C3—C2—C7—N2177.6 (2)
F30—C32—C33—C34179.2 (2)C3—C2—C7—C60.5 (4)
F31—C33—C34—F321.3 (4)C3—C4—C5—C60.4 (4)
F31—C33—C34—C29179.6 (2)C4—C5—C6—C70.2 (4)
C29—C30—C31—I2179.37 (18)C5—C6—C7—N2177.3 (3)
C29—C30—C31—C320.3 (4)C5—C6—C7—C20.2 (4)
C30—C29—C34—F32178.6 (2)C7—N2—C1—S1179.44 (19)
C30—C29—C34—C330.5 (4)C7—N2—C1—N10.6 (3)
C30—C31—C32—F30179.5 (2)C7—C2—C3—C40.2 (4)
C30—C31—C32—C330.3 (4)N3—C9—C10—C11177.7 (3)
C31—C32—C33—F31180.0 (2)N3—C9—C14—N40.1 (3)
C31—C32—C33—C340.1 (4)N3—C9—C14—C13176.7 (2)
C32—C33—C34—F32178.6 (2)C8—N3—C9—C10179.5 (3)
C32—C33—C34—C290.5 (4)C8—N3—C9—C141.5 (3)
C34—C29—C30—F29179.7 (2)C8—N4—C14—C91.3 (3)
C34—C29—C30—C310.1 (4)C8—N4—C14—C13177.6 (3)
I3—C37—C38—F363.5 (3)C9—N3—C8—S2176.81 (19)
I3—C37—C38—C39175.80 (19)C9—N3—C8—N42.3 (3)
I4—C35—C36—F333.1 (3)C9—C10—C11—C120.7 (4)
I4—C35—C36—C37177.10 (19)C10—C9—C14—N4179.3 (2)
I4—C35—C40—F343.5 (3)C10—C9—C14—C132.5 (4)
I4—C35—C40—C39175.96 (19)C10—C11—C12—C131.6 (4)
F33—C36—C37—I33.5 (3)C11—C12—C13—C140.4 (4)
F33—C36—C37—C38179.1 (2)C12—C13—C14—N4177.5 (2)
F35—C39—C40—F340.8 (4)C12—C13—C14—C91.6 (4)
F35—C39—C40—C35178.7 (2)C14—N4—C8—S2176.89 (18)
F36—C38—C39—F350.3 (4)C14—N4—C8—N32.2 (3)
F36—C38—C39—C40179.9 (2)C14—C9—C10—C111.3 (4)
C35—C36—C37—I3176.28 (19)N5—C16—C17—C18179.3 (3)
C35—C36—C37—C381.2 (4)N5—C16—C21—N60.4 (3)
C36—C35—C40—F34178.9 (2)N5—C16—C21—C20179.2 (2)
C36—C35—C40—C391.6 (4)C15—N5—C16—C17179.3 (3)
C36—C37—C38—F36179.0 (2)C15—N5—C16—C210.6 (3)
C36—C37—C38—C391.7 (4)C15—N6—C21—C161.2 (3)
C37—C38—C39—F35179.6 (2)C15—N6—C21—C20179.8 (3)
C37—C38—C39—C400.6 (4)C16—N5—C15—S3177.01 (19)
C38—C39—C40—F34179.4 (2)C16—N5—C15—N61.3 (3)
C38—C39—C40—C351.1 (4)C16—C17—C18—C190.3 (4)
C40—C35—C36—F33179.3 (2)C17—C16—C21—N6178.5 (2)
C40—C35—C36—C370.4 (4)C17—C16—C21—C200.3 (4)
I5—C41—C42—F373.0 (3)C17—C18—C19—C200.7 (4)
I5—C41—C42—C43177.25 (18)C18—C19—C20—C211.2 (4)
I5—C41—C46—F400.8 (3)C19—C20—C21—N6179.1 (2)
I5—C41—C46—C45178.55 (18)C19—C20—C21—C160.7 (4)
I6—C43—C44—F382.9 (3)C21—N6—C15—S3176.77 (19)
I6—C43—C44—C45177.54 (18)C21—N6—C15—N51.6 (3)
F37—C42—C43—I62.7 (3)C21—C16—C17—C180.8 (4)
F37—C42—C43—C44178.6 (2)N7—C23—C24—C25179.5 (2)
F38—C44—C45—F391.2 (3)N7—C23—C28—N80.2 (3)
F38—C44—C45—C46179.6 (2)N7—C23—C28—C27179.8 (2)
F39—C45—C46—F401.2 (3)C22—N7—C23—C24179.2 (3)
F39—C45—C46—C41179.4 (2)C22—N7—C23—C280.3 (3)
C41—C42—C43—I6177.57 (18)C22—N8—C28—C230.7 (3)
C41—C42—C43—C441.1 (4)C22—N8—C28—C27179.8 (3)
C42—C41—C46—F40178.0 (2)C23—N7—C22—S4179.87 (19)
C42—C41—C46—C451.3 (4)C23—N7—C22—N80.8 (3)
C42—C43—C44—F38178.4 (2)C23—C24—C25—C260.3 (4)
C42—C43—C44—C451.2 (4)C24—C23—C28—N8178.7 (2)
C43—C44—C45—F39179.2 (2)C24—C23—C28—C270.8 (4)
C43—C44—C45—C460.0 (4)C24—C25—C26—C270.2 (4)
C44—C45—C46—F40178.1 (2)C25—C26—C27—C280.2 (4)
C44—C45—C46—C411.3 (4)C26—C27—C28—N8179.1 (3)
C46—C41—C42—F37179.8 (2)C26—C27—C28—C230.3 (4)
C46—C41—C42—C430.1 (4)C28—N8—C22—S4179.97 (19)
N1—C2—C3—C4176.7 (3)C28—N8—C22—N71.0 (3)
N1—C2—C7—N20.4 (3)C28—C23—C24—C250.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···S2i0.85 (2)2.52 (2)3.357 (2)172 (3)
N2—HN2···S20.85 (2)2.46 (2)3.297 (2)166 (2)
N3—HN3···S10.85 (2)2.51 (2)3.348 (2)173 (3)
N4—HN4···S1ii0.85 (2)2.50 (2)3.326 (2)166 (2)
N5—HN5···S4i0.85 (2)2.49 (2)3.326 (2)169 (3)
N6—HN6···S40.85 (2)2.43 (2)3.270 (2)169 (3)
C17—H17···F36iii0.952.613.385 (3)139
C20—H20···F36iv0.952.513.235 (3)133
N7—HN7···S30.84 (2)2.47 (2)3.300 (2)170 (3)
N8—HN8···S3ii0.85 (2)2.48 (2)3.302 (2)163 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1.
1H-1,3-Benzodiazole-2-thiol–1,2,4,5-tetrafluoro-3,6-diiodobenzene (1/1) (MBZIM_14F4DIB) top
Crystal data top
C6F4I2·C7H6N2SF(000) = 1024
Mr = 552.06Dx = 2.351 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.5641 (2) ÅCell parameters from 9812 reflections
b = 33.1320 (11) Åθ = 2.5–30.2°
c = 8.4710 (3) ŵ = 4.20 mm1
β = 92.754 (1)°T = 100 K
V = 1559.82 (9) Å3Plate, colourless
Z = 40.22 × 0.18 × 0.06 mm
Data collection top
Bruker D8 Venture Photon 2
diffractometer
4211 reflections with I > 2σ(I)
Radiation source: Incoatec IµSRint = 0.050
φ and ω scansθmax = 30.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 77
Tmin = 0.501, Tmax = 0.746k = 4646
45583 measured reflectionsl = 1111
4579 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.020H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.0059P)2 + 1.8833P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.002
4579 reflectionsΔρmax = 0.49 e Å3
207 parametersΔρmin = 0.67 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.61301 (2)0.38195 (2)0.76376 (2)0.01796 (4)
I20.89550 (3)0.17772 (2)0.69482 (2)0.02372 (4)
F11.0451 (2)0.33570 (4)0.60867 (16)0.0251 (3)
F21.1463 (3)0.25762 (4)0.57675 (17)0.0283 (3)
F30.4636 (3)0.22323 (4)0.85802 (18)0.0292 (3)
F40.3576 (2)0.30171 (4)0.88704 (18)0.0285 (3)
C80.6955 (4)0.32080 (6)0.7457 (2)0.0160 (4)
C90.8965 (4)0.30829 (6)0.6680 (2)0.0176 (4)
C100.9499 (4)0.26788 (7)0.6526 (2)0.0182 (4)
C110.8062 (4)0.23834 (6)0.7151 (2)0.0174 (4)
C120.6066 (4)0.25062 (7)0.7940 (3)0.0188 (4)
C130.5531 (4)0.29113 (7)0.8091 (3)0.0193 (4)
S10.58078 (9)0.48006 (2)0.75000 (6)0.01583 (10)
N10.2303 (3)0.52614 (5)0.8744 (2)0.0153 (3)
HN10.276 (5)0.5218 (8)0.969 (3)0.023 (7)*
N20.2252 (3)0.52735 (5)0.6175 (2)0.0149 (3)
HN20.276 (5)0.5229 (8)0.525 (3)0.023 (7)*
C10.3405 (4)0.51181 (6)0.7471 (2)0.0143 (4)
C20.0446 (4)0.55224 (6)0.8266 (2)0.0147 (4)
C30.1194 (4)0.57380 (6)0.9113 (2)0.0180 (4)
H00G0.1162500.5731271.0234600.022*
C40.2889 (4)0.59651 (7)0.8238 (3)0.0196 (4)
H00M0.4047400.6117270.8772140.024*
C50.2920 (4)0.59733 (7)0.6581 (3)0.0203 (4)
H00J0.4099960.6131830.6021050.024*
C60.1275 (4)0.57565 (6)0.5737 (2)0.0186 (4)
H00L0.1302220.5762830.4615020.022*
C70.0408 (4)0.55303 (6)0.6613 (2)0.0147 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02099 (7)0.01539 (7)0.01731 (7)0.00072 (5)0.00093 (5)0.00014 (5)
I20.03021 (8)0.01541 (7)0.02536 (8)0.00224 (6)0.00059 (6)0.00099 (5)
F10.0259 (7)0.0215 (6)0.0286 (7)0.0048 (6)0.0099 (6)0.0039 (5)
F20.0264 (7)0.0260 (7)0.0339 (8)0.0022 (6)0.0152 (6)0.0012 (6)
F30.0255 (7)0.0191 (7)0.0440 (9)0.0047 (6)0.0132 (6)0.0058 (6)
F40.0222 (7)0.0248 (7)0.0400 (8)0.0019 (6)0.0160 (6)0.0021 (6)
C80.0175 (9)0.0145 (9)0.0159 (9)0.0007 (8)0.0011 (7)0.0006 (7)
C90.0195 (10)0.0183 (10)0.0151 (9)0.0039 (8)0.0025 (8)0.0026 (7)
C100.0171 (10)0.0210 (10)0.0169 (9)0.0011 (8)0.0036 (8)0.0004 (8)
C110.0199 (10)0.0146 (9)0.0174 (10)0.0004 (8)0.0018 (8)0.0009 (7)
C120.0187 (10)0.0178 (10)0.0200 (10)0.0040 (8)0.0030 (8)0.0013 (8)
C130.0172 (10)0.0202 (10)0.0207 (10)0.0021 (8)0.0041 (8)0.0001 (8)
S10.0208 (2)0.0150 (2)0.0116 (2)0.00308 (19)0.00018 (18)0.00025 (16)
N10.0177 (8)0.0184 (8)0.0096 (8)0.0020 (7)0.0017 (6)0.0003 (6)
N20.0175 (8)0.0172 (8)0.0101 (8)0.0005 (7)0.0010 (6)0.0007 (6)
C10.0180 (9)0.0129 (9)0.0119 (8)0.0026 (8)0.0003 (7)0.0004 (7)
C20.0150 (9)0.0152 (9)0.0139 (9)0.0016 (8)0.0011 (7)0.0003 (7)
C30.0198 (10)0.0191 (10)0.0151 (9)0.0017 (8)0.0010 (8)0.0029 (7)
C40.0182 (10)0.0201 (10)0.0206 (10)0.0009 (8)0.0021 (8)0.0022 (8)
C50.0191 (10)0.0186 (10)0.0229 (11)0.0009 (8)0.0017 (8)0.0021 (8)
C60.0203 (10)0.0212 (10)0.0139 (9)0.0000 (8)0.0021 (8)0.0021 (7)
C70.0158 (9)0.0158 (9)0.0125 (9)0.0017 (8)0.0006 (7)0.0007 (7)
Geometric parameters (Å, º) top
I1—C82.084 (2)N1—C21.393 (3)
I2—C112.078 (2)N2—HN20.86 (3)
F1—C91.342 (2)N2—C11.347 (3)
F2—C101.338 (2)N2—C71.397 (3)
F3—C121.338 (2)C2—C31.385 (3)
F4—C131.346 (2)C2—C71.400 (3)
C8—C91.388 (3)C3—H00G0.9500
C8—C131.387 (3)C3—C41.392 (3)
C9—C101.379 (3)C4—H00M0.9500
C10—C111.386 (3)C4—C51.402 (3)
C11—C121.384 (3)C5—H00J0.9500
C12—C131.382 (3)C5—C61.388 (3)
S1—C11.700 (2)C6—H00L0.9500
N1—HN10.84 (3)C6—C71.387 (3)
N1—C11.352 (2)
C9—C8—I1120.68 (15)C7—N2—HN2128.7 (18)
C13—C8—I1121.91 (15)N1—C1—S1126.31 (16)
C13—C8—C9117.41 (19)N2—C1—S1126.27 (15)
F1—C9—C8120.03 (19)N2—C1—N1107.42 (18)
F1—C9—C10118.85 (18)N1—C2—C7106.11 (17)
C10—C9—C8121.11 (19)C3—C2—N1131.90 (19)
F2—C10—C9118.48 (19)C3—C2—C7121.97 (19)
F2—C10—C11120.25 (19)C2—C3—H00G121.6
C9—C10—C11121.27 (19)C2—C3—C4116.70 (19)
C10—C11—I2120.42 (15)C4—C3—H00G121.6
C12—C11—I2121.65 (16)C3—C4—H00M119.4
C12—C11—C10117.92 (19)C3—C4—C5121.2 (2)
F3—C12—C11120.16 (19)C5—C4—H00M119.4
F3—C12—C13119.09 (19)C4—C5—H00J119.0
C13—C12—C11120.75 (19)C6—C5—C4121.9 (2)
F4—C13—C8119.71 (19)C6—C5—H00J119.0
F4—C13—C12118.75 (19)C5—C6—H00L121.7
C12—C13—C8121.54 (19)C7—C6—C5116.65 (19)
C1—N1—HN1125.0 (18)C7—C6—H00L121.7
C1—N1—C2110.19 (17)N2—C7—C2106.19 (17)
C2—N1—HN1124.6 (18)C6—C7—N2132.27 (18)
C1—N2—HN2121.0 (19)C6—C7—C2121.53 (19)
C1—N2—C7110.07 (17)
I1—C8—C9—F12.5 (3)C13—C8—C9—F1177.88 (19)
I1—C8—C9—C10178.66 (16)C13—C8—C9—C101.0 (3)
I1—C8—C13—F41.1 (3)N1—C2—C3—C4178.1 (2)
I1—C8—C13—C12178.80 (17)N1—C2—C7—N20.1 (2)
I2—C11—C12—F30.8 (3)N1—C2—C7—C6178.62 (19)
I2—C11—C12—C13178.65 (17)C1—N1—C2—C3179.2 (2)
F1—C9—C10—F21.0 (3)C1—N1—C2—C71.0 (2)
F1—C9—C10—C11178.30 (19)C1—N2—C7—C20.9 (2)
F2—C10—C11—I20.8 (3)C1—N2—C7—C6179.4 (2)
F2—C10—C11—C12179.3 (2)C2—N1—C1—S1178.30 (15)
F3—C12—C13—F40.4 (3)C2—N1—C1—N21.6 (2)
F3—C12—C13—C8179.7 (2)C2—C3—C4—C50.0 (3)
C8—C9—C10—F2179.86 (19)C3—C2—C7—N2178.50 (19)
C8—C9—C10—C110.6 (3)C3—C2—C7—C60.2 (3)
C9—C8—C13—F4179.28 (19)C3—C4—C5—C60.1 (3)
C9—C8—C13—C120.8 (3)C4—C5—C6—C70.0 (3)
C9—C10—C11—I2178.52 (17)C5—C6—C7—N2178.2 (2)
C9—C10—C11—C120.0 (3)C5—C6—C7—C20.1 (3)
C10—C11—C12—F3179.3 (2)C7—N2—C1—S1178.36 (15)
C10—C11—C12—C130.2 (3)C7—N2—C1—N11.5 (2)
C11—C12—C13—F4179.8 (2)C7—C2—C3—C40.1 (3)
C11—C12—C13—C80.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···S1i0.84 (3)2.47 (3)3.3089 (18)172 (2)
N2—HN2···S1ii0.86 (3)2.50 (3)3.3527 (17)172 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1.
1H-1,3-Benzodiazole-2-thiol–1,1,2,2-tetraiodoethene (1/1) (MBZIM_TIE) top
Crystal data top
C2I4·C7H6N2SDx = 3.053 Mg m3
Mr = 681.82Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 32859 reflections
a = 11.7547 (10) Åθ = 2.2–28.5°
b = 8.3525 (7) ŵ = 8.52 mm1
c = 15.1077 (13) ÅT = 100 K
V = 1483.3 (2) Å3Plank, colourless
Z = 40.30 × 0.14 × 0.11 mm
F(000) = 1208
Data collection top
Bruker D8 Venture Photon 2
diffractometer
1885 reflections with I > 2σ(I)
Radiation source: Incoatec IµSRint = 0.055
φ and ω scansθmax = 28.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 1515
Tmin = 0.256, Tmax = 0.746k = 1111
32859 measured reflectionsl = 2020
1993 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0213P)2 + 6.7951P]
where P = (Fo2 + 2Fc2)/3
S = 1.25(Δ/σ)max = 0.001
1993 reflectionsΔρmax = 1.25 e Å3
89 parametersΔρmin = 1.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.71885 (3)0.2500000.41396 (2)0.01158 (9)
I20.48169 (3)0.2500000.27066 (2)0.01399 (9)
I30.29263 (3)0.2500000.46197 (2)0.01401 (9)
I40.52953 (3)0.2500000.60280 (2)0.02001 (10)
C50.5414 (5)0.2500000.4030 (4)0.0165 (11)
C60.4724 (5)0.2500000.4721 (4)0.0174 (11)
S11.01449 (11)0.2500000.45747 (8)0.0100 (2)
N10.9064 (3)0.3808 (4)0.5997 (2)0.0103 (6)
HN10.925 (4)0.478 (6)0.586 (3)0.016 (12)*
C10.9436 (4)0.2500000.5556 (3)0.0113 (10)
C20.8394 (3)0.3332 (4)0.6716 (2)0.0101 (7)
C30.7765 (3)0.4217 (5)0.7322 (2)0.0124 (7)
H30.7768300.5354660.7322340.015*
C40.7128 (3)0.3335 (5)0.7928 (2)0.0134 (7)
H40.6681320.3886960.8353320.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.00779 (16)0.01634 (17)0.01059 (16)0.0000.00164 (11)0.000
I20.01027 (17)0.02331 (19)0.00839 (16)0.0000.00137 (11)0.000
I30.00843 (16)0.01822 (18)0.01538 (17)0.0000.00119 (12)0.000
I40.01263 (18)0.0392 (2)0.00821 (17)0.0000.00150 (12)0.000
C50.012 (3)0.023 (3)0.014 (3)0.0000.002 (2)0.000
C60.019 (3)0.025 (3)0.008 (2)0.0000.004 (2)0.000
S10.0102 (5)0.0095 (5)0.0102 (5)0.0000.0029 (4)0.000
N10.0103 (14)0.0088 (14)0.0117 (14)0.0008 (11)0.0015 (11)0.0004 (11)
C10.008 (2)0.014 (2)0.012 (2)0.0000.0048 (18)0.000
C20.0090 (15)0.0123 (18)0.0090 (15)0.0000 (13)0.0024 (12)0.0001 (13)
C30.0132 (17)0.0116 (16)0.0125 (16)0.0013 (13)0.0002 (13)0.0011 (13)
C40.0109 (16)0.0172 (19)0.0119 (16)0.0023 (14)0.0030 (13)0.0017 (14)
Geometric parameters (Å, º) top
I1—C52.093 (6)N1—C21.400 (4)
I2—C52.119 (6)C2—C2i1.390 (7)
I3—C62.118 (6)C2—C31.389 (5)
I4—C62.086 (5)C3—H30.9500
C5—C61.321 (8)C3—C41.393 (5)
S1—C11.701 (6)C4—C4i1.395 (8)
N1—HN10.87 (5)C4—H40.9500
N1—C11.352 (4)
I1—C5—I2113.9 (3)N1i—C1—N1107.8 (5)
C6—C5—I1123.3 (4)C2i—C2—N1106.5 (2)
C6—C5—I2122.8 (4)C3—C2—N1131.3 (3)
I4—C6—I3112.9 (3)C3—C2—C2i122.2 (2)
C5—C6—I3123.7 (4)C2—C3—H3122.1
C5—C6—I4123.3 (5)C2—C3—C4115.9 (3)
C1—N1—HN1124 (3)C4—C3—H3122.1
C1—N1—C2109.6 (3)C3—C4—C4i121.9 (2)
C2—N1—HN1127 (3)C3—C4—H4119.0
N1—C1—S1126.0 (2)C4i—C4—H4119.0
N1i—C1—S1126.0 (2)
I1—C5—C6—I3180.000 (1)C1—N1—C2—C3174.9 (4)
I1—C5—C6—I40.000 (1)C2—N1—C1—S1172.5 (3)
I2—C5—C6—I30.000 (1)C2—N1—C1—N1i2.6 (5)
I2—C5—C6—I4180.000 (1)C2i—C2—C3—C40.3 (4)
N1—C2—C3—C4175.8 (4)C2—C3—C4—C4i0.3 (4)
C1—N1—C2—C2i1.6 (3)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···S1ii0.87 (5)2.47 (5)3.335 (3)178 (5)
C3—H3···I1iii0.953.283.881 (4)123
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x+3/2, y+1, z+1/2.
5-Methyl-1H-1,3-benzodiazole-2-thiol–1,2,3,4-tetrafluoro-5,6-diiodobenzene (1/1) (MMBZIM_12F4DIB) top
Crystal data top
C6F4I2·C8H8N2SZ = 2
Mr = 566.08F(000) = 528
Triclinic, P1Dx = 2.321 Mg m3
a = 4.5504 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.2872 (14) ÅCell parameters from 9940 reflections
c = 13.8064 (14) Åθ = 2.3–27.5°
α = 94.766 (4)°µ = 4.05 mm1
β = 98.124 (4)°T = 100 K
γ = 99.588 (4)°Needle, colourless
V = 809.97 (15) Å30.19 × 0.07 × 0.04 mm
Data collection top
Bruker D8 Venture Photon 2
diffractometer
3174 reflections with I > 2σ(I)
Radiation source: Incoatec IµSRint = 0.042
φ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 55
Tmin = 0.636, Tmax = 0.746k = 1717
21426 measured reflectionsl = 1717
3704 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.055 w = 1/[σ2(Fo2) + 2.2494P]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max < 0.001
3704 reflectionsΔρmax = 1.33 e Å3
217 parametersΔρmin = 1.06 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.65636 (6)0.37716 (2)0.58352 (2)0.02050 (7)
I20.65659 (5)0.36653 (2)0.30961 (2)0.01661 (7)
F10.1607 (5)0.17992 (18)0.21872 (16)0.0254 (5)
F20.2407 (6)0.04739 (19)0.29154 (19)0.0334 (6)
F30.2418 (6)0.05622 (19)0.4886 (2)0.0326 (6)
F40.1622 (6)0.1944 (2)0.61205 (17)0.0280 (6)
C90.3758 (8)0.2652 (3)0.4798 (3)0.0154 (7)
C100.3778 (8)0.2613 (3)0.3784 (3)0.0151 (7)
C110.1718 (9)0.1857 (3)0.3168 (3)0.0174 (8)
C120.0361 (9)0.1169 (3)0.3527 (3)0.0206 (8)
C130.0373 (9)0.1222 (3)0.4535 (3)0.0206 (8)
C140.1684 (9)0.1943 (3)0.5145 (3)0.0182 (8)
S10.0441 (2)0.50172 (8)0.83086 (7)0.0204 (2)
N10.2256 (7)0.3842 (3)0.9578 (2)0.0184 (7)
HN10.165 (10)0.414 (4)1.008 (4)0.029 (13)*
N20.2606 (7)0.3443 (2)0.8049 (2)0.0165 (7)
HN20.254 (9)0.349 (3)0.7436 (15)0.009 (10)*
C10.1504 (9)0.4093 (3)0.8658 (3)0.0186 (8)
C20.3863 (8)0.3038 (3)0.9558 (3)0.0172 (8)
C30.5098 (9)0.2511 (3)1.0292 (3)0.0215 (8)
H30.4939860.2679541.0962350.026*
C40.6580 (9)0.1726 (3)1.0008 (3)0.0222 (8)
H40.7450450.1355001.0498150.027*
C50.6828 (9)0.1464 (3)0.9019 (3)0.0227 (9)
C60.5606 (9)0.2004 (3)0.8290 (3)0.0180 (8)
H60.5787920.1848470.7619420.022*
C70.4108 (9)0.2782 (3)0.8579 (3)0.0176 (8)
C80.8415 (9)0.0590 (3)0.8758 (3)0.0245 (9)
H8A0.7271330.0055230.8909360.037*
H8B1.0449030.0714300.9141240.037*
H8C0.8552110.0542700.8054160.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02224 (14)0.02260 (14)0.01557 (12)0.00692 (10)0.00119 (9)0.00285 (10)
I20.01925 (13)0.01578 (12)0.01588 (12)0.00435 (9)0.00466 (9)0.00245 (9)
F10.0295 (13)0.0253 (13)0.0173 (11)0.0002 (10)0.0002 (10)0.0036 (10)
F20.0269 (14)0.0274 (14)0.0386 (15)0.0070 (11)0.0003 (11)0.0060 (11)
F30.0246 (13)0.0283 (14)0.0489 (17)0.0016 (11)0.0171 (12)0.0143 (12)
F40.0320 (14)0.0389 (15)0.0181 (12)0.0110 (11)0.0106 (10)0.0116 (11)
C90.0157 (18)0.0167 (18)0.0136 (17)0.0051 (15)0.0014 (14)0.0022 (14)
C100.0173 (18)0.0148 (18)0.0135 (17)0.0033 (14)0.0024 (14)0.0016 (14)
C110.0205 (19)0.0172 (19)0.0151 (18)0.0071 (15)0.0012 (14)0.0000 (15)
C120.0161 (19)0.0167 (19)0.027 (2)0.0010 (15)0.0000 (15)0.0015 (16)
C130.0132 (18)0.0170 (19)0.035 (2)0.0052 (15)0.0101 (16)0.0061 (17)
C140.021 (2)0.021 (2)0.0155 (18)0.0099 (16)0.0041 (15)0.0056 (15)
S10.0227 (5)0.0197 (5)0.0214 (5)0.0062 (4)0.0081 (4)0.0052 (4)
N10.0228 (18)0.0185 (17)0.0150 (16)0.0047 (14)0.0065 (13)0.0005 (13)
N20.0214 (17)0.0202 (17)0.0102 (15)0.0073 (13)0.0045 (12)0.0037 (13)
C10.021 (2)0.0172 (19)0.0179 (19)0.0010 (15)0.0066 (15)0.0044 (15)
C20.0175 (19)0.0193 (19)0.0152 (18)0.0014 (15)0.0063 (14)0.0018 (15)
C30.024 (2)0.029 (2)0.0122 (18)0.0037 (17)0.0042 (15)0.0039 (16)
C40.020 (2)0.026 (2)0.019 (2)0.0011 (17)0.0010 (15)0.0054 (16)
C50.0158 (19)0.025 (2)0.026 (2)0.0015 (16)0.0018 (16)0.0020 (17)
C60.0193 (19)0.0207 (19)0.0145 (18)0.0041 (16)0.0039 (15)0.0014 (15)
C70.0192 (19)0.0186 (19)0.0146 (18)0.0027 (15)0.0023 (14)0.0018 (15)
C80.020 (2)0.026 (2)0.029 (2)0.0066 (17)0.0019 (17)0.0049 (18)
Geometric parameters (Å, º) top
I1—C92.095 (4)N2—HN20.850 (18)
I2—C102.106 (4)N2—C11.358 (5)
F1—C111.344 (4)N2—C71.393 (5)
F2—C121.340 (4)C2—C31.385 (5)
F3—C131.340 (4)C2—C71.391 (5)
F4—C141.352 (4)C3—H30.9500
C9—C101.399 (5)C3—C41.392 (6)
C9—C141.383 (5)C4—H40.9500
C10—C111.389 (5)C4—C51.406 (6)
C11—C121.377 (6)C5—C61.390 (5)
C12—C131.389 (6)C5—C81.511 (6)
C13—C141.358 (6)C6—H60.9500
S1—C11.693 (4)C6—C71.391 (5)
N1—HN10.88 (5)C8—H8A0.9800
N1—C11.351 (5)C8—H8B0.9800
N1—C21.392 (5)C8—H8C0.9800
C10—C9—I1123.8 (3)N2—C1—S1125.9 (3)
C14—C9—I1117.3 (3)C3—C2—N1132.5 (4)
C14—C9—C10118.8 (3)C3—C2—C7120.7 (4)
C9—C10—I2125.0 (3)C7—C2—N1106.9 (3)
C11—C10—I2116.6 (3)C2—C3—H3121.3
C11—C10—C9118.3 (4)C2—C3—C4117.4 (4)
F1—C11—C10120.6 (3)C4—C3—H3121.3
F1—C11—C12117.3 (3)C3—C4—H4119.0
C12—C11—C10122.0 (4)C3—C4—C5122.1 (4)
F2—C12—C11120.9 (4)C5—C4—H4119.0
F2—C12—C13120.0 (4)C4—C5—C8119.4 (4)
C11—C12—C13119.1 (4)C6—C5—C4120.0 (4)
F3—C13—C12119.2 (4)C6—C5—C8120.6 (4)
F3—C13—C14121.4 (4)C5—C6—H6121.2
C14—C13—C12119.3 (4)C5—C6—C7117.5 (4)
F4—C14—C9120.6 (3)C7—C6—H6121.2
F4—C14—C13116.9 (4)C2—C7—N2105.5 (3)
C13—C14—C9122.5 (4)C6—C7—N2132.2 (3)
C1—N1—HN1121 (3)C6—C7—C2122.3 (3)
C1—N1—C2110.4 (3)C5—C8—H8A109.5
C2—N1—HN1128 (3)C5—C8—H8B109.5
C1—N2—HN2124 (3)C5—C8—H8C109.5
C1—N2—C7111.0 (3)H8A—C8—H8B109.5
C7—N2—HN2125 (3)H8A—C8—H8C109.5
N1—C1—S1127.9 (3)H8B—C8—H8C109.5
N1—C1—N2106.2 (3)
I1—C9—C10—I20.5 (5)C14—C9—C10—C110.4 (5)
I1—C9—C10—C11177.4 (3)N1—C2—C3—C4179.6 (4)
I1—C9—C14—F43.9 (5)N1—C2—C7—N20.5 (4)
I1—C9—C14—C13175.8 (3)N1—C2—C7—C6179.7 (4)
I2—C10—C11—F11.7 (5)C1—N1—C2—C3179.6 (4)
I2—C10—C11—C12175.5 (3)C1—N1—C2—C70.0 (4)
F1—C11—C12—F20.1 (5)C1—N2—C7—C20.8 (4)
F1—C11—C12—C13178.3 (3)C1—N2—C7—C6179.4 (4)
F2—C12—C13—F31.0 (5)C2—N1—C1—S1180.0 (3)
F2—C12—C13—C14178.9 (3)C2—N1—C1—N20.5 (4)
F3—C13—C14—F41.7 (5)C2—C3—C4—C50.2 (6)
F3—C13—C14—C9178.0 (3)C3—C2—C7—N2179.2 (4)
C9—C10—C11—F1178.8 (3)C3—C2—C7—C60.7 (6)
C9—C10—C11—C121.5 (6)C3—C4—C5—C60.8 (6)
C10—C9—C14—F4179.0 (3)C3—C4—C5—C8178.8 (4)
C10—C9—C14—C131.3 (6)C4—C5—C6—C71.3 (6)
C10—C11—C12—F2177.2 (3)C5—C6—C7—N2178.5 (4)
C10—C11—C12—C131.0 (6)C5—C6—C7—C21.3 (6)
C11—C12—C13—F3179.2 (3)C7—N2—C1—S1179.6 (3)
C11—C12—C13—C140.7 (6)C7—N2—C1—N10.8 (4)
C12—C13—C14—F4178.4 (3)C7—C2—C3—C40.1 (6)
C12—C13—C14—C91.9 (6)C8—C5—C6—C7178.3 (4)
C14—C9—C10—I2176.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···S1i0.88 (5)2.57 (5)3.444 (3)173 (4)
N2—HN2···I10.85 (2)3.07 (3)3.780 (3)142 (3)
N2—HN2···F40.85 (2)2.56 (3)3.122 (4)124 (3)
C3—H3···I2ii0.953.063.966 (4)160
C6—H6···F40.952.633.262 (4)125
Symmetry codes: (i) x, y+1, z+2; (ii) x, y, z+1.
5-Methyl-1H-1,3-benzodiazole-2-thiol–1,2,4,5-tetrafluoro-3,6-diiodobenzene–water (2/1/2) (2MMBZIM_14F4DIB_2H2O) top
Crystal data top
C6F4I2·2C8H8N2S·2(H2O)Z = 1
Mr = 766.34F(000) = 370
Triclinic, P1Dx = 2.000 Mg m3
a = 4.9088 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4670 (8) ÅCell parameters from 9704 reflections
c = 11.9686 (8) Åθ = 3.0–29.6°
α = 106.644 (2)°µ = 2.69 mm1
β = 98.058 (2)°T = 100 K
γ = 92.811 (2)°Plate, colourless
V = 636.27 (7) Å30.31 × 0.11 × 0.08 mm
Data collection top
Bruker D8 Venture Photon 2
diffractometer
3500 reflections with I > 2σ(I)
Radiation source: Incoatec IµSRint = 0.036
φ and ω scansθmax = 29.7°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 66
Tmin = 0.536, Tmax = 0.746k = 1515
31584 measured reflectionsl = 1616
3558 independent reflections
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.014H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.034 w = 1/[σ2(Fo2) + 0.4884P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.002
3558 reflectionsΔρmax = 0.44 e Å3
184 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.44701 (2)0.37987 (2)0.76749 (2)0.01303 (3)
F10.8875 (2)0.62085 (8)0.83664 (8)0.02138 (19)
F21.31349 (19)0.70566 (8)1.01073 (9)0.02069 (19)
C90.7732 (3)0.45489 (12)0.90761 (12)0.0132 (2)
C100.9374 (3)0.56045 (13)0.91719 (13)0.0143 (3)
C111.1591 (3)0.60420 (12)1.00759 (13)0.0145 (3)
S11.03801 (7)0.78475 (3)0.43889 (3)0.01464 (7)
N10.7347 (3)0.75457 (11)0.60568 (11)0.0147 (2)
HN10.770 (4)0.6828 (15)0.5977 (19)0.023 (5)*
N20.7391 (3)0.93710 (11)0.58449 (11)0.0138 (2)
HN20.788 (4)1.0008 (16)0.5627 (18)0.025 (5)*
C10.8342 (3)0.82603 (13)0.54519 (12)0.0136 (2)
C20.5751 (3)0.82008 (13)0.68510 (13)0.0136 (2)
C30.5789 (3)0.93718 (12)0.67155 (12)0.0129 (2)
C40.4354 (3)1.02719 (13)0.73639 (13)0.0154 (3)
H40.4375941.1062460.7258780.018*
C50.2880 (3)0.99734 (13)0.81756 (13)0.0157 (3)
C60.2857 (3)0.87925 (14)0.83004 (13)0.0173 (3)
H60.1837140.8605850.8855800.021*
C70.4267 (3)0.78842 (14)0.76427 (14)0.0176 (3)
H70.4216290.7086730.7731700.021*
C80.1331 (3)1.09189 (15)0.89265 (14)0.0207 (3)
H8A0.0418761.0529720.9012300.031*
H8B0.0953441.1559120.8546960.031*
H8C0.2450151.1281880.9707840.031*
O10.7691 (3)0.49501 (11)0.54916 (12)0.0247 (2)
H1AO0.936 (5)0.503 (4)0.532 (4)0.023 (10)*0.5
H1BO0.594 (5)0.486 (4)0.516 (4)0.034 (13)*0.5
H2O10.778 (6)0.432 (2)0.575 (3)0.063 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01281 (5)0.01303 (5)0.01267 (5)0.00156 (3)0.00261 (3)0.00256 (3)
F10.0247 (5)0.0200 (4)0.0214 (4)0.0027 (4)0.0034 (4)0.0133 (4)
F20.0216 (4)0.0163 (4)0.0242 (5)0.0061 (3)0.0011 (4)0.0096 (4)
C90.0124 (6)0.0130 (6)0.0129 (6)0.0018 (5)0.0027 (5)0.0016 (5)
C100.0160 (6)0.0138 (6)0.0145 (6)0.0027 (5)0.0034 (5)0.0058 (5)
C110.0152 (6)0.0114 (6)0.0171 (6)0.0000 (5)0.0044 (5)0.0037 (5)
S10.01389 (15)0.01446 (15)0.01405 (15)0.00125 (12)0.00305 (12)0.00144 (12)
N10.0158 (6)0.0114 (5)0.0165 (6)0.0028 (4)0.0036 (5)0.0031 (4)
N20.0140 (5)0.0117 (5)0.0161 (6)0.0008 (4)0.0037 (4)0.0039 (4)
C10.0117 (6)0.0133 (6)0.0136 (6)0.0005 (5)0.0006 (5)0.0021 (5)
C20.0126 (6)0.0123 (6)0.0156 (6)0.0012 (5)0.0011 (5)0.0042 (5)
C30.0112 (6)0.0125 (6)0.0138 (6)0.0012 (5)0.0014 (5)0.0027 (5)
C40.0149 (6)0.0121 (6)0.0180 (7)0.0014 (5)0.0020 (5)0.0030 (5)
C50.0125 (6)0.0172 (6)0.0152 (6)0.0013 (5)0.0012 (5)0.0017 (5)
C60.0168 (6)0.0203 (7)0.0164 (6)0.0014 (5)0.0044 (5)0.0072 (5)
C70.0188 (7)0.0165 (6)0.0195 (7)0.0031 (5)0.0035 (6)0.0082 (5)
C80.0188 (7)0.0211 (7)0.0209 (7)0.0039 (6)0.0074 (6)0.0019 (6)
O10.0289 (6)0.0185 (5)0.0315 (6)0.0046 (5)0.0105 (5)0.0118 (5)
Geometric parameters (Å, º) top
I1—C92.0981 (14)C3—C41.3888 (19)
F1—C101.3424 (16)C4—H40.9500
F2—C111.3452 (16)C4—C51.396 (2)
C9—C101.3882 (19)C5—C61.404 (2)
C9—C11i1.386 (2)C5—C81.509 (2)
C10—C111.383 (2)C6—H60.9500
S1—C11.7035 (15)C6—C71.392 (2)
N1—HN10.830 (15)C7—H70.9500
N1—C11.3542 (19)C8—H8A0.9800
N1—C21.3926 (18)C8—H8B0.9800
N2—HN20.876 (15)C8—H8C0.9800
N2—C11.3557 (18)O1—H1AO0.880 (18)
N2—C31.3905 (18)O1—H1BO0.883 (18)
C2—C31.3975 (19)O1—H2O10.872 (17)
C2—C71.387 (2)
C10—C9—I1122.63 (11)C4—C3—N2131.65 (13)
C11i—C9—I1120.13 (10)C4—C3—C2121.84 (13)
C11i—C9—C10117.17 (13)C3—C4—H4121.2
F1—C10—C9120.35 (13)C3—C4—C5117.61 (13)
F1—C10—C11118.48 (12)C5—C4—H4121.2
C11—C10—C9121.15 (13)C4—C5—C6119.91 (13)
F2—C11—C9i120.02 (13)C4—C5—C8120.20 (14)
F2—C11—C10118.29 (13)C6—C5—C8119.89 (14)
C10—C11—C9i121.68 (13)C5—C6—H6118.7
C1—N1—HN1124.2 (15)C7—C6—C5122.63 (14)
C1—N1—C2110.28 (12)C7—C6—H6118.7
C2—N1—HN1125.5 (15)C2—C7—C6116.72 (14)
C1—N2—HN2123.8 (14)C2—C7—H7121.6
C1—N2—C3110.09 (12)C6—C7—H7121.6
C3—N2—HN2125.8 (14)C5—C8—H8A109.5
N1—C1—S1126.80 (11)C5—C8—H8B109.5
N1—C1—N2107.02 (12)C5—C8—H8C109.5
N2—C1—S1126.17 (11)H8A—C8—H8B109.5
N1—C2—C3106.11 (12)H8A—C8—H8C109.5
C7—C2—N1132.60 (13)H8B—C8—H8C109.5
C7—C2—C3121.28 (13)H1AO—O1—H2O1101 (3)
N2—C3—C2106.49 (12)H1BO—O1—H2O1101 (3)
I1—C9—C10—F11.58 (19)C1—N2—C3—C4178.92 (15)
I1—C9—C10—C11176.86 (10)C2—N1—C1—S1179.80 (11)
F1—C10—C11—F20.3 (2)C2—N1—C1—N20.27 (16)
F1—C10—C11—C9i178.58 (13)C2—C3—C4—C50.7 (2)
C9—C10—C11—F2178.75 (13)C3—N2—C1—S1179.96 (11)
C9—C10—C11—C9i0.1 (2)C3—N2—C1—N10.44 (16)
C11i—C9—C10—F1178.54 (12)C3—C2—C7—C60.8 (2)
C11i—C9—C10—C110.1 (2)C3—C4—C5—C60.9 (2)
N1—C2—C3—N20.25 (15)C3—C4—C5—C8178.66 (13)
N1—C2—C3—C4178.92 (13)C4—C5—C6—C70.2 (2)
N1—C2—C7—C6179.24 (15)C5—C6—C7—C20.6 (2)
N2—C3—C4—C5179.03 (14)C7—C2—C3—N2178.58 (13)
C1—N1—C2—C30.01 (16)C7—C2—C3—C40.1 (2)
C1—N1—C2—C7178.65 (16)C8—C5—C6—C7179.33 (14)
C1—N2—C3—C20.43 (16)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O10.83 (2)2.06 (2)2.8763 (17)166 (2)
N2—HN2···S1ii0.88 (2)2.57 (2)3.4211 (13)164 (2)
C4—H4···I1iii0.953.033.9505 (14)164
O1—H1AO···O1iv0.88 (2)1.85 (2)2.708 (3)163 (4)
O1—H1BO···O1v0.88 (2)1.89 (2)2.759 (3)167 (4)
O1—H2O1···I10.87 (2)3.16 (3)3.7419 (12)126 (2)
O1—H2O1···S1iv0.87 (2)2.65 (2)3.4251 (13)149 (3)
Symmetry codes: (ii) x+2, y+2, z+1; (iii) x, y+1, z; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1.
5-Methyl-1H-1,3-benzodiazole-2-thiol–1,3,5-trifluoro-2,4,6-\ triiodobenzene (1/1) (MMBZIM_135F3I3B) top
Crystal data top
C6F3I3·C8H8N2SF(000) = 1232
Mr = 673.98Dx = 2.613 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.191 (2) ÅCell parameters from 9964 reflections
b = 5.0074 (7) Åθ = 2.4–27.5°
c = 22.715 (3) ŵ = 5.62 mm1
β = 97.460 (6)°T = 100 K
V = 1713.3 (4) Å3Needle, colourless
Z = 40.26 × 0.04 × 0.04 mm
Data collection top
Bruker D8 Venture Photon 2
diffractometer
3039 reflections with I > 2σ(I)
Radiation source: Incoatec IµSRint = 0.069
φ and ω scansθmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 1919
Tmin = 0.582, Tmax = 0.746k = 66
23258 measured reflectionsl = 2929
3971 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + 32.9663P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max < 0.001
3971 reflectionsΔρmax = 2.36 e Å3
215 parametersΔρmin = 1.89 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.83468 (4)0.73539 (12)0.22592 (3)0.02269 (15)
I21.12973 (3)0.55191 (11)0.42927 (2)0.01871 (14)
I30.78829 (3)0.06392 (11)0.42073 (2)0.01766 (13)
F11.0160 (3)0.7879 (10)0.3105 (2)0.0238 (11)
F20.9829 (3)0.1538 (10)0.4578 (2)0.0217 (11)
F30.7534 (3)0.2862 (11)0.3013 (2)0.0226 (11)
C90.8839 (5)0.5360 (16)0.3041 (4)0.0161 (16)
C100.9672 (5)0.5984 (17)0.3334 (4)0.0166 (17)
C111.0030 (5)0.4712 (18)0.3850 (4)0.0190 (17)
C120.9504 (5)0.2824 (17)0.4079 (3)0.0146 (16)
C130.8652 (5)0.2139 (17)0.3811 (4)0.0178 (17)
C140.8346 (5)0.3458 (17)0.3285 (4)0.0159 (16)
S10.34092 (13)1.4956 (4)0.50777 (9)0.0186 (4)
N10.4563 (5)1.2204 (15)0.4472 (3)0.0196 (15)
HN10.505 (4)1.302 (17)0.460 (4)0.024*
N20.3181 (5)1.1018 (15)0.4239 (3)0.0179 (15)
HN20.264 (7)1.10 (2)0.427 (4)0.021*
C10.3721 (5)1.2703 (16)0.4592 (4)0.0160 (16)
C20.4551 (5)1.0249 (17)0.4036 (4)0.0173 (17)
C30.5223 (6)0.9016 (18)0.3782 (4)0.0206 (18)
H30.5824560.9523120.3890460.025*
C40.5000 (5)0.7020 (17)0.3364 (4)0.0204 (18)
C50.4109 (6)0.6252 (18)0.3226 (4)0.0212 (18)
H50.3968020.4846200.2949240.025*
C60.3427 (6)0.7456 (17)0.3477 (4)0.0187 (17)
H60.2825400.6958370.3365640.022*
C70.3663 (5)0.9433 (18)0.3902 (4)0.0183 (17)
C80.5709 (6)0.561 (2)0.3080 (4)0.027 (2)
H8A0.5885560.3981570.3301930.041*
H8B0.6225210.6791840.3082750.041*
H8C0.5479990.5154070.2669040.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0241 (3)0.0236 (3)0.0196 (3)0.0058 (2)0.0002 (2)0.0034 (2)
I20.0134 (2)0.0228 (3)0.0198 (3)0.0017 (2)0.0018 (2)0.0022 (2)
I30.0150 (2)0.0183 (3)0.0204 (3)0.0014 (2)0.0050 (2)0.0012 (2)
F10.023 (3)0.026 (3)0.024 (3)0.008 (2)0.005 (2)0.007 (2)
F20.017 (2)0.027 (3)0.019 (3)0.000 (2)0.001 (2)0.005 (2)
F30.012 (2)0.031 (3)0.023 (3)0.002 (2)0.0043 (19)0.000 (2)
C90.017 (4)0.014 (4)0.017 (4)0.003 (3)0.002 (3)0.003 (3)
C100.011 (4)0.022 (4)0.018 (4)0.000 (3)0.006 (3)0.000 (3)
C110.015 (4)0.024 (5)0.017 (4)0.002 (3)0.001 (3)0.003 (3)
C120.014 (4)0.020 (4)0.009 (4)0.001 (3)0.001 (3)0.005 (3)
C130.015 (4)0.021 (4)0.017 (4)0.001 (3)0.003 (3)0.003 (3)
C140.012 (4)0.018 (4)0.017 (4)0.000 (3)0.001 (3)0.002 (3)
S10.0153 (9)0.0217 (11)0.0185 (10)0.0007 (8)0.0010 (8)0.0038 (8)
N10.017 (3)0.018 (4)0.024 (4)0.002 (3)0.002 (3)0.002 (3)
N20.010 (3)0.021 (4)0.022 (4)0.001 (3)0.001 (3)0.003 (3)
C10.019 (4)0.010 (4)0.019 (4)0.002 (3)0.002 (3)0.003 (3)
C20.017 (4)0.018 (4)0.017 (4)0.003 (3)0.005 (3)0.010 (3)
C30.016 (4)0.021 (4)0.026 (5)0.003 (3)0.008 (3)0.003 (4)
C40.016 (4)0.018 (4)0.028 (5)0.002 (3)0.003 (3)0.010 (4)
C50.020 (4)0.021 (4)0.023 (5)0.006 (3)0.005 (3)0.002 (4)
C60.017 (4)0.019 (4)0.019 (4)0.002 (3)0.001 (3)0.000 (3)
C70.009 (3)0.026 (5)0.020 (4)0.004 (3)0.000 (3)0.001 (4)
C80.021 (4)0.032 (5)0.030 (5)0.005 (4)0.010 (4)0.003 (4)
Geometric parameters (Å, º) top
I1—C92.089 (8)N2—HN20.84 (10)
I2—C112.093 (8)N2—C11.363 (11)
I3—C132.094 (8)N2—C71.378 (11)
F1—C101.349 (9)C2—C31.382 (12)
F2—C121.342 (9)C2—C71.405 (11)
F3—C141.340 (9)C3—H30.9500
C9—C101.388 (11)C3—C41.390 (12)
C9—C141.372 (12)C4—C51.402 (11)
C10—C111.381 (12)C4—C81.500 (12)
C11—C121.382 (12)C5—H50.9500
C12—C131.399 (11)C5—C61.384 (12)
C13—C141.391 (11)C6—H60.9500
S1—C11.688 (8)C6—C71.396 (12)
N1—HN10.86 (2)C8—H8A0.9800
N1—C11.365 (11)C8—H8B0.9800
N1—C21.391 (11)C8—H8C0.9800
C10—C9—I1120.3 (6)N2—C1—N1106.1 (7)
C14—C9—I1121.5 (6)N1—C2—C7106.4 (7)
C14—C9—C10118.2 (8)C3—C2—N1132.1 (8)
F1—C10—C9119.0 (7)C3—C2—C7121.3 (8)
F1—C10—C11118.5 (7)C2—C3—H3120.7
C11—C10—C9122.5 (8)C2—C3—C4118.7 (8)
C10—C11—I2123.7 (6)C4—C3—H3120.7
C10—C11—C12116.9 (7)C3—C4—C5119.4 (8)
C12—C11—I2119.5 (6)C3—C4—C8120.4 (8)
F2—C12—C11118.6 (7)C5—C4—C8120.1 (8)
F2—C12—C13117.9 (7)C4—C5—H5118.6
C11—C12—C13123.4 (8)C6—C5—C4122.8 (8)
C12—C13—I3120.8 (6)C6—C5—H5118.6
C14—C13—I3122.8 (6)C5—C6—H6121.5
C14—C13—C12116.4 (8)C5—C6—C7117.1 (8)
F3—C14—C9119.0 (7)C7—C6—H6121.5
F3—C14—C13118.4 (7)N2—C7—C2106.1 (7)
C9—C14—C13122.6 (8)N2—C7—C6133.3 (7)
C1—N1—HN1129 (7)C6—C7—C2120.6 (8)
C1—N1—C2110.2 (7)C4—C8—H8A109.5
C2—N1—HN1120 (7)C4—C8—H8B109.5
C1—N2—HN2118 (7)C4—C8—H8C109.5
C1—N2—C7111.2 (7)H8A—C8—H8B109.5
C7—N2—HN2131 (7)H8A—C8—H8C109.5
N1—C1—S1127.0 (6)H8B—C8—H8C109.5
N2—C1—S1126.9 (6)
I1—C9—C10—F10.4 (10)C14—C9—C10—C111.9 (13)
I1—C9—C10—C11179.5 (6)N1—C2—C3—C4177.5 (9)
I1—C9—C14—F30.4 (11)N1—C2—C7—N22.9 (9)
I1—C9—C14—C13178.8 (6)N1—C2—C7—C6179.7 (8)
I2—C11—C12—F20.8 (10)C1—N1—C2—C3177.6 (9)
I2—C11—C12—C13179.5 (6)C1—N1—C2—C72.6 (9)
I3—C13—C14—F32.0 (11)C1—N2—C7—C22.3 (10)
I3—C13—C14—C9177.2 (6)C1—N2—C7—C6179.2 (9)
F1—C10—C11—I20.8 (11)C2—N1—C1—S1178.7 (6)
F1—C10—C11—C12178.6 (7)C2—N1—C1—N21.2 (9)
F2—C12—C13—I33.6 (10)C2—C3—C4—C52.1 (13)
F2—C12—C13—C14178.2 (7)C2—C3—C4—C8179.5 (8)
C9—C10—C11—I2178.3 (6)C3—C2—C7—N2178.5 (8)
C9—C10—C11—C122.3 (13)C3—C2—C7—C64.0 (13)
C10—C9—C14—F3179.0 (7)C3—C4—C5—C62.0 (14)
C10—C9—C14—C130.2 (13)C4—C5—C6—C72.7 (13)
C10—C11—C12—F2179.8 (7)C5—C6—C7—N2179.7 (9)
C10—C11—C12—C131.1 (13)C5—C6—C7—C23.7 (13)
C11—C12—C13—I3177.6 (6)C7—N2—C1—S1179.4 (6)
C11—C12—C13—C140.5 (12)C7—N2—C1—N10.7 (10)
C12—C13—C14—F3179.9 (7)C7—C2—C3—C43.1 (13)
C12—C13—C14—C90.9 (12)C8—C4—C5—C6179.4 (9)
C14—C9—C10—F1179.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···S1i0.86 (2)2.57 (2)3.427 (7)174 (9)
N2—HN2···I2ii0.84 (10)3.03 (10)3.657 (7)133 (8)
C3—H3···I3iii0.953.124.035 (9)163
C6—H6···I1iv0.953.143.927 (8)142
Symmetry codes: (i) x+1, y+3, z+1; (ii) x1, y+1, z; (iii) x, y+1, z; (iv) x+1, y1/2, z+1/2.
1,3-Benzoxazole-2-thiol–1,2,3,4-tetrafluoro-5,6-diiodobenzene (1/1) (MBZOX_12F4DIB) top
Crystal data top
C6F4I2·C7H5NOSF(000) = 1024
Mr = 553.04Dx = 2.407 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.7789 (12) ÅCell parameters from 5954 reflections
b = 4.4129 (4) Åθ = 3.0–26.8°
c = 25.252 (2) ŵ = 4.30 mm1
β = 96.337 (3)°T = 100 K
V = 1526.0 (2) Å3Needle, colourless
Z = 40.46 × 0.06 × 0.02 mm
Data collection top
Bruker D8 Venture Photon 2
diffractometer
2510 reflections with I > 2σ(I)
Radiation source: Incoatec IµSRint = 0.066
φ and ω scansθmax = 26.8°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 1717
Tmin = 0.578, Tmax = 0.745k = 55
12498 measured reflectionsl = 3131
3210 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0191P)2 + 7.3427P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
3210 reflectionsΔρmax = 1.58 e Å3
203 parametersΔρmin = 1.52 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.30796 (3)0.08467 (10)0.67864 (2)0.02151 (14)
I20.44314 (3)0.05194 (10)0.81380 (2)0.01770 (13)
F10.6245 (3)0.3640 (9)0.80387 (17)0.0263 (10)
F20.6876 (3)0.6765 (10)0.7230 (2)0.0339 (11)
F30.5903 (3)0.6411 (10)0.62370 (19)0.0350 (11)
F40.4320 (3)0.2897 (10)0.60463 (17)0.0298 (10)
C80.4399 (5)0.1468 (15)0.6957 (3)0.0158 (15)
C90.4896 (5)0.1682 (14)0.7472 (3)0.0158 (15)
C100.5749 (5)0.3417 (15)0.7561 (3)0.0180 (16)
C110.6078 (5)0.4963 (15)0.7141 (3)0.0250 (17)
C120.5583 (6)0.4836 (16)0.6629 (3)0.0273 (18)
C130.4767 (5)0.3023 (16)0.6542 (3)0.0209 (16)
S10.07783 (13)0.0388 (4)0.57938 (7)0.0193 (4)
O10.2157 (3)0.4196 (10)0.55679 (19)0.0193 (11)
N10.1100 (4)0.3227 (13)0.4874 (2)0.0152 (13)
HN10.068 (6)0.228 (18)0.466 (3)0.03 (2)*
C10.1325 (5)0.2629 (14)0.5389 (3)0.0147 (14)
C20.1772 (5)0.5252 (15)0.4695 (3)0.0158 (14)
C30.1868 (5)0.6569 (16)0.4216 (3)0.0219 (16)
H30.1418100.6174050.3910530.026*
C40.2659 (5)0.8527 (15)0.4193 (3)0.0212 (16)
H40.2748970.9482010.3865230.025*
C50.3316 (6)0.9111 (16)0.4637 (3)0.0229 (16)
H50.3844481.0458510.4606490.028*
C60.3218 (5)0.7761 (15)0.5130 (3)0.0193 (16)
H60.3665960.8134080.5436310.023*
C70.2429 (5)0.5852 (14)0.5140 (3)0.0142 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0210 (3)0.0213 (2)0.0210 (3)0.0009 (2)0.0034 (2)0.0037 (2)
I20.0223 (2)0.0177 (2)0.0130 (2)0.0024 (2)0.00165 (18)0.00026 (18)
F10.018 (2)0.031 (2)0.027 (3)0.0013 (18)0.0068 (18)0.0058 (19)
F20.021 (2)0.029 (2)0.052 (3)0.0102 (19)0.010 (2)0.003 (2)
F30.043 (3)0.027 (2)0.039 (3)0.001 (2)0.020 (2)0.012 (2)
F40.041 (3)0.032 (2)0.015 (2)0.005 (2)0.001 (2)0.0042 (19)
C80.011 (3)0.021 (3)0.016 (4)0.005 (3)0.004 (3)0.003 (3)
C90.016 (3)0.013 (3)0.020 (4)0.005 (3)0.007 (3)0.002 (3)
C100.016 (4)0.015 (3)0.023 (4)0.004 (3)0.001 (3)0.006 (3)
C110.024 (4)0.014 (4)0.038 (5)0.002 (3)0.010 (4)0.002 (3)
C120.037 (5)0.021 (4)0.027 (4)0.005 (3)0.019 (4)0.013 (3)
C130.027 (4)0.020 (3)0.016 (4)0.010 (3)0.001 (3)0.006 (3)
S10.0249 (9)0.0194 (9)0.0132 (9)0.0053 (7)0.0007 (7)0.0000 (7)
O10.023 (3)0.017 (2)0.017 (3)0.000 (2)0.003 (2)0.003 (2)
N10.021 (3)0.013 (3)0.010 (3)0.000 (2)0.002 (3)0.003 (2)
C10.013 (3)0.012 (3)0.019 (4)0.004 (3)0.003 (3)0.002 (3)
C20.021 (4)0.016 (3)0.011 (4)0.000 (3)0.004 (3)0.002 (3)
C30.026 (4)0.021 (4)0.018 (4)0.000 (3)0.000 (3)0.009 (3)
C40.029 (4)0.016 (3)0.019 (4)0.002 (3)0.005 (3)0.004 (3)
C50.029 (4)0.018 (4)0.022 (4)0.000 (3)0.008 (3)0.008 (3)
C60.017 (4)0.018 (4)0.021 (4)0.002 (3)0.003 (3)0.003 (3)
C70.022 (4)0.012 (3)0.010 (3)0.003 (3)0.005 (3)0.002 (3)
Geometric parameters (Å, º) top
I1—C82.088 (7)O1—C71.390 (8)
I2—C92.101 (7)N1—HN10.85 (8)
F1—C101.322 (8)N1—C11.330 (9)
F2—C111.355 (8)N1—C21.396 (9)
F3—C121.323 (8)C2—C31.364 (10)
F4—C131.333 (8)C2—C71.387 (9)
C8—C91.406 (10)C3—H30.9500
C8—C131.394 (10)C3—C41.397 (10)
C9—C101.400 (9)C4—H40.9500
C10—C111.380 (11)C4—C51.385 (10)
C11—C121.396 (11)C5—H50.9500
C12—C131.378 (11)C5—C61.399 (10)
S1—C11.662 (7)C6—H60.9500
O1—C11.372 (8)C6—C71.378 (9)
C9—C8—I1123.2 (5)O1—C1—S1121.1 (5)
C13—C8—I1117.8 (5)N1—C1—S1130.3 (5)
C13—C8—C9118.9 (6)N1—C1—O1108.6 (6)
C8—C9—I2123.3 (5)C3—C2—N1133.8 (6)
C10—C9—I2116.7 (5)C3—C2—C7121.2 (6)
C10—C9—C8120.0 (6)C7—C2—N1104.9 (6)
F1—C10—C9121.8 (7)C2—C3—H3121.6
F1—C10—C11118.9 (6)C2—C3—C4116.9 (6)
C11—C10—C9119.3 (7)C4—C3—H3121.6
F2—C11—C10119.5 (7)C3—C4—H4119.1
F2—C11—C12118.9 (7)C5—C4—C3121.7 (7)
C10—C11—C12121.6 (7)C5—C4—H4119.1
F3—C12—C11120.2 (7)C4—C5—H5119.3
F3—C12—C13121.2 (7)C4—C5—C6121.4 (7)
C13—C12—C11118.6 (7)C6—C5—H5119.3
F4—C13—C8121.1 (6)C5—C6—H6122.2
F4—C13—C12117.3 (7)C7—C6—C5115.5 (6)
C12—C13—C8121.5 (7)C7—C6—H6122.2
C1—O1—C7107.2 (5)C2—C7—O1108.7 (5)
C1—N1—HN1126 (6)C6—C7—O1128.1 (6)
C1—N1—C2110.5 (6)C6—C7—C2123.2 (6)
C2—N1—HN1123 (6)
I1—C8—C9—I24.0 (8)C13—C8—C9—I2179.9 (5)
I1—C8—C9—C10176.3 (5)C13—C8—C9—C100.5 (10)
I1—C8—C13—F43.7 (9)N1—C2—C3—C4179.9 (7)
I1—C8—C13—C12173.9 (5)N1—C2—C7—O10.7 (7)
I2—C9—C10—F10.7 (8)N1—C2—C7—C6179.5 (6)
I2—C9—C10—C11178.7 (5)C1—O1—C7—C21.1 (7)
F1—C10—C11—F22.7 (10)C1—O1—C7—C6180.0 (7)
F1—C10—C11—C12179.5 (6)C1—N1—C2—C3179.7 (7)
F2—C11—C12—F31.3 (10)C1—N1—C2—C70.1 (7)
F2—C11—C12—C13179.3 (6)C2—N1—C1—S1179.8 (5)
F3—C12—C13—F40.7 (10)C2—N1—C1—O10.8 (7)
F3—C12—C13—C8177.0 (6)C2—C3—C4—C50.1 (10)
C8—C9—C10—F1179.0 (6)C3—C2—C7—O1179.6 (6)
C8—C9—C10—C111.6 (10)C3—C2—C7—C60.7 (11)
C9—C8—C13—F4179.8 (6)C3—C4—C5—C60.1 (11)
C9—C8—C13—C122.2 (10)C4—C5—C6—C70.4 (10)
C9—C10—C11—F2176.7 (6)C5—C6—C7—O1179.3 (6)
C9—C10—C11—C120.1 (10)C5—C6—C7—C20.7 (10)
C10—C11—C12—F3178.1 (6)C7—O1—C1—S1179.7 (5)
C10—C11—C12—C132.5 (11)C7—O1—C1—N11.2 (7)
C11—C12—C13—F4178.7 (6)C7—C2—C3—C40.3 (10)
C11—C12—C13—C83.7 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···S1i0.85 (8)2.50 (8)3.335 (6)167 (8)
C3—H3···I2ii0.953.194.108 (7)162
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+1/2, z1/2.
1,3-Benzoxazole-2-thiol–1,2,3,5-tetrafluoro-4,6-diiodobenzene (1/1) (MBZOX_13F4DIB) top
Crystal data top
C6F4I2·C7H5NOSF(000) = 1024
Mr = 553.04Dx = 2.437 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.1655 (8) ÅCell parameters from 9330 reflections
b = 4.3803 (2) Åθ = 2.7–30.6°
c = 23.0358 (12) ŵ = 4.35 mm1
β = 99.923 (2)°T = 100 K
V = 1507.36 (13) Å3Needle, colourless
Z = 40.23 × 0.12 × 0.09 mm
Data collection top
Bruker D8 Venture Photon 2
diffractometer
4119 reflections with I > 2σ(I)
Radiation source: Incoatec IµSRint = 0.042
φ and ω scansθmax = 30.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 2121
Tmin = 0.541, Tmax = 0.746k = 66
39610 measured reflectionsl = 3232
4625 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0088P)2 + 2.2764P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.002
4625 reflectionsΔρmax = 0.96 e Å3
203 parametersΔρmin = 1.35 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.71955 (2)0.00881 (3)0.06483 (2)0.01983 (4)
I20.36910 (2)0.55990 (4)0.09449 (2)0.02789 (5)
F10.51550 (9)0.1796 (3)0.04571 (6)0.0245 (3)
F20.50261 (12)0.8071 (4)0.20979 (7)0.0336 (4)
F30.67787 (12)0.7060 (4)0.24932 (7)0.0422 (4)
F40.77333 (10)0.3490 (4)0.18773 (7)0.0352 (4)
C80.64548 (14)0.2498 (5)0.11554 (10)0.0173 (4)
C90.55516 (14)0.3056 (5)0.09648 (10)0.0171 (4)
C100.50419 (15)0.4888 (5)0.12703 (10)0.0187 (4)
C110.54714 (17)0.6213 (5)0.17885 (11)0.0223 (5)
C120.63676 (18)0.5704 (6)0.19943 (10)0.0250 (5)
C130.68526 (16)0.3866 (6)0.16770 (11)0.0226 (5)
S10.85453 (4)0.94524 (12)0.49409 (2)0.01660 (10)
O10.82568 (10)0.5576 (3)0.40484 (7)0.0155 (3)
N10.96873 (12)0.6582 (4)0.43253 (8)0.0150 (3)
HN11.0171 (19)0.742 (7)0.4529 (13)0.024 (7)*
C10.88629 (14)0.7182 (5)0.44345 (9)0.0151 (4)
C20.96367 (14)0.4504 (5)0.38611 (9)0.0140 (4)
C31.02660 (14)0.3138 (5)0.35766 (10)0.0173 (4)
H31.0887600.3548700.3685810.021*
C40.99394 (15)0.1129 (5)0.31216 (10)0.0176 (4)
H41.0350030.0135450.2916290.021*
C50.90240 (15)0.0533 (5)0.29583 (10)0.0182 (4)
H50.8828490.0853130.2645310.022*
C60.83913 (14)0.1930 (5)0.32450 (10)0.0177 (4)
H60.7767860.1548600.3137330.021*
C70.87317 (14)0.3897 (5)0.36943 (9)0.0141 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01738 (7)0.02028 (7)0.02311 (8)0.00339 (5)0.00709 (5)0.00604 (5)
I20.01897 (8)0.03084 (9)0.03563 (10)0.00756 (6)0.00974 (6)0.00672 (7)
F10.0175 (6)0.0307 (8)0.0242 (7)0.0014 (5)0.0005 (5)0.0107 (6)
F20.0534 (10)0.0242 (8)0.0266 (8)0.0077 (7)0.0170 (7)0.0037 (6)
F30.0559 (11)0.0436 (10)0.0218 (8)0.0054 (8)0.0080 (7)0.0099 (7)
F40.0236 (7)0.0491 (10)0.0282 (8)0.0008 (7)0.0088 (6)0.0030 (7)
C80.0163 (9)0.0162 (10)0.0195 (11)0.0003 (8)0.0035 (8)0.0023 (8)
C90.0185 (10)0.0153 (9)0.0174 (10)0.0022 (8)0.0031 (8)0.0011 (8)
C100.0191 (10)0.0166 (10)0.0217 (11)0.0012 (8)0.0069 (8)0.0039 (8)
C110.0341 (13)0.0159 (10)0.0188 (11)0.0031 (9)0.0098 (9)0.0012 (8)
C120.0371 (14)0.0225 (11)0.0132 (10)0.0046 (10)0.0017 (9)0.0004 (9)
C130.0211 (11)0.0260 (12)0.0188 (11)0.0016 (9)0.0023 (9)0.0068 (9)
S10.0159 (2)0.0171 (2)0.0175 (2)0.00208 (18)0.00487 (19)0.00332 (19)
O10.0127 (7)0.0170 (7)0.0166 (7)0.0007 (5)0.0023 (6)0.0018 (6)
N10.0138 (8)0.0160 (8)0.0150 (9)0.0025 (6)0.0022 (6)0.0024 (7)
C10.0147 (9)0.0138 (9)0.0159 (10)0.0011 (7)0.0005 (7)0.0027 (7)
C20.0148 (9)0.0123 (9)0.0144 (9)0.0004 (7)0.0015 (7)0.0013 (7)
C30.0149 (9)0.0189 (10)0.0184 (10)0.0007 (8)0.0037 (8)0.0027 (8)
C40.0205 (10)0.0166 (10)0.0166 (10)0.0019 (8)0.0059 (8)0.0020 (8)
C50.0228 (10)0.0173 (10)0.0147 (10)0.0019 (8)0.0034 (8)0.0000 (8)
C60.0153 (9)0.0180 (10)0.0187 (11)0.0032 (8)0.0005 (8)0.0010 (8)
C70.0151 (9)0.0144 (9)0.0134 (9)0.0007 (7)0.0038 (7)0.0016 (7)
Geometric parameters (Å, º) top
I1—C82.089 (2)O1—C71.389 (3)
I2—C102.080 (2)N1—HN10.88 (3)
F1—C91.339 (3)N1—C11.343 (3)
F2—C111.339 (3)N1—C21.396 (3)
F3—C121.347 (3)C2—C31.383 (3)
F4—C131.346 (3)C2—C71.386 (3)
C8—C91.386 (3)C3—H30.9500
C8—C131.384 (3)C3—C41.393 (3)
C9—C101.387 (3)C4—H40.9500
C10—C111.385 (3)C4—C51.399 (3)
C11—C121.378 (4)C5—H50.9500
C12—C131.382 (4)C5—C61.396 (3)
S1—C11.666 (2)C6—H60.9500
O1—C11.360 (2)C6—C71.377 (3)
C9—C8—I1121.04 (17)O1—C1—S1121.49 (15)
C13—C8—I1121.61 (17)N1—C1—S1129.70 (17)
C13—C8—C9117.2 (2)N1—C1—O1108.82 (18)
F1—C9—C8118.4 (2)C3—C2—N1133.9 (2)
F1—C9—C10118.4 (2)C3—C2—C7121.1 (2)
C8—C9—C10123.2 (2)C7—C2—N1104.99 (18)
C9—C10—I2120.27 (17)C2—C3—H3121.8
C11—C10—I2122.39 (17)C2—C3—C4116.4 (2)
C11—C10—C9117.3 (2)C4—C3—H3121.8
F2—C11—C10120.5 (2)C3—C4—H4119.1
F2—C11—C12118.2 (2)C3—C4—C5121.9 (2)
C12—C11—C10121.2 (2)C5—C4—H4119.1
F3—C12—C11120.4 (2)C4—C5—H5119.3
F3—C12—C13119.9 (2)C6—C5—C4121.5 (2)
C11—C12—C13119.7 (2)C6—C5—H5119.3
F4—C13—C8120.2 (2)C5—C6—H6122.2
F4—C13—C12118.5 (2)C7—C6—C5115.5 (2)
C12—C13—C8121.3 (2)C7—C6—H6122.2
C1—O1—C7107.32 (16)C2—C7—O1108.94 (18)
C1—N1—HN1122.5 (19)C6—C7—O1127.43 (19)
C1—N1—C2109.92 (18)C6—C7—C2123.6 (2)
C2—N1—HN1127.6 (19)
I1—C8—C9—F12.6 (3)C13—C8—C9—F1179.0 (2)
I1—C8—C9—C10176.56 (17)C13—C8—C9—C100.1 (3)
I1—C8—C13—F41.6 (3)N1—C2—C3—C4179.9 (2)
I1—C8—C13—C12176.58 (18)N1—C2—C7—O10.2 (2)
I2—C10—C11—F21.1 (3)N1—C2—C7—C6180.0 (2)
I2—C10—C11—C12180.00 (18)C1—O1—C7—C20.6 (2)
F1—C9—C10—I20.6 (3)C1—O1—C7—C6179.6 (2)
F1—C9—C10—C11178.8 (2)C1—N1—C2—C3179.9 (2)
F2—C11—C12—F30.2 (3)C1—N1—C2—C70.3 (2)
F2—C11—C12—C13178.2 (2)C2—N1—C1—S1179.30 (17)
F3—C12—C13—F40.3 (4)C2—N1—C1—O10.7 (2)
F3—C12—C13—C8178.4 (2)C2—C3—C4—C50.3 (3)
C8—C9—C10—I2179.72 (17)C3—C2—C7—O1179.62 (19)
C8—C9—C10—C110.3 (3)C3—C2—C7—C60.2 (3)
C9—C8—C13—F4178.0 (2)C3—C4—C5—C60.0 (3)
C9—C8—C13—C120.1 (3)C4—C5—C6—C70.2 (3)
C9—C10—C11—F2178.3 (2)C5—C6—C7—O1179.9 (2)
C9—C10—C11—C120.6 (3)C5—C6—C7—C20.1 (3)
C10—C11—C12—F3178.7 (2)C7—O1—C1—S1179.20 (15)
C10—C11—C12—C130.7 (4)C7—O1—C1—N10.8 (2)
C11—C12—C13—F4177.8 (2)C7—C2—C3—C40.4 (3)
C11—C12—C13—C80.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···S1i0.88 (3)2.52 (3)3.3906 (19)172 (3)
C3—H3···I1ii0.953.104.030 (2)166
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1/2, z+1/2.
1,3-Benzoxazole-2-thiol–1,2,4,5-tetrafluoro-3,6-diiodobenzene (2/1) (2MBZOX_14F4DIB) top
Crystal data top
C6F4I2·2C7H5NOSF(000) = 1336
Mr = 704.22Dx = 2.013 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 31.025 (4) ÅCell parameters from 9971 reflections
b = 4.3159 (5) Åθ = 2.4–28.7°
c = 19.061 (2) ŵ = 2.94 mm1
β = 114.434 (4)°T = 100 K
V = 2323.6 (5) Å3Tabular, colourless
Z = 40.29 × 0.12 × 0.03 mm
Data collection top
Bruker D8 Venture Photon 2
diffractometer
2571 reflections with I > 2σ(I)
Radiation source: Incoatec IµSRint = 0.047
φ and ω scansθmax = 28.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 4141
Tmin = 0.637, Tmax = 0.746k = 55
25197 measured reflectionsl = 2525
2950 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060 w = 1/[σ2(Fo2) + 11.7646P]
where P = (Fo2 + 2Fc2)/3
S = 1.32(Δ/σ)max = 0.002
2950 reflectionsΔρmax = 1.54 e Å3
149 parametersΔρmin = 1.15 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.64136 (2)0.39079 (5)0.46092 (2)0.01937 (7)
F10.71102 (7)0.7954 (5)0.60381 (11)0.0276 (5)
F20.70741 (7)0.4164 (5)0.36823 (11)0.0273 (5)
C80.70659 (11)0.6029 (8)0.48500 (19)0.0189 (6)
C90.72975 (11)0.7707 (8)0.55172 (19)0.0194 (7)
C100.72770 (12)0.5825 (8)0.43364 (19)0.0201 (7)
S10.54594 (3)0.0194 (2)0.43700 (5)0.01964 (17)
O10.49241 (8)0.4059 (5)0.32770 (12)0.0181 (5)
N10.46292 (10)0.3062 (7)0.41195 (16)0.0180 (6)
HN10.4609 (14)0.224 (10)0.452 (2)0.028 (11)*
C10.49912 (12)0.2491 (8)0.39283 (18)0.0182 (6)
C20.43102 (12)0.5092 (8)0.35848 (18)0.0187 (6)
C30.38827 (12)0.6362 (8)0.35038 (19)0.0227 (7)
H30.3745670.5924710.3855780.027*
C40.36660 (12)0.8320 (8)0.2875 (2)0.0253 (7)
H40.3372640.9257460.2797390.030*
C50.38649 (13)0.8950 (8)0.2355 (2)0.0251 (7)
H50.3704061.0309390.1935810.030*
C60.42930 (12)0.7643 (8)0.24340 (19)0.0224 (7)
H60.4430550.8052670.2081350.027*
C70.45026 (11)0.5714 (7)0.30592 (18)0.0181 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01700 (11)0.01887 (11)0.02288 (11)0.00041 (8)0.00889 (8)0.00070 (8)
F10.0248 (10)0.0379 (12)0.0253 (10)0.0054 (9)0.0154 (9)0.0045 (9)
F20.0246 (10)0.0342 (12)0.0238 (10)0.0064 (9)0.0107 (9)0.0095 (9)
C80.0180 (15)0.0161 (15)0.0231 (16)0.0009 (12)0.0092 (13)0.0014 (13)
C90.0178 (15)0.0229 (17)0.0198 (16)0.0016 (13)0.0101 (13)0.0002 (13)
C100.0196 (16)0.0197 (16)0.0190 (15)0.0010 (13)0.0061 (13)0.0027 (13)
S10.0185 (4)0.0201 (4)0.0209 (4)0.0009 (3)0.0089 (3)0.0015 (3)
O10.0198 (11)0.0198 (12)0.0159 (10)0.0014 (9)0.0087 (9)0.0002 (9)
N10.0202 (14)0.0190 (14)0.0166 (13)0.0002 (11)0.0092 (11)0.0030 (11)
C10.0217 (16)0.0163 (16)0.0172 (15)0.0055 (13)0.0085 (13)0.0038 (12)
C20.0239 (17)0.0140 (15)0.0164 (15)0.0035 (13)0.0064 (13)0.0009 (12)
C30.0219 (16)0.0246 (18)0.0220 (16)0.0004 (14)0.0094 (14)0.0018 (14)
C40.0212 (17)0.0241 (19)0.0289 (18)0.0004 (14)0.0088 (15)0.0016 (15)
C50.0274 (18)0.0215 (17)0.0206 (16)0.0003 (15)0.0041 (14)0.0016 (14)
C60.0274 (18)0.0226 (18)0.0174 (16)0.0048 (14)0.0097 (14)0.0001 (13)
C70.0185 (15)0.0158 (16)0.0194 (15)0.0034 (12)0.0073 (13)0.0026 (12)
Geometric parameters (Å, º) top
I1—C82.092 (3)N1—C21.397 (4)
F1—C91.346 (4)C2—C31.383 (5)
F2—C101.347 (4)C2—C71.388 (4)
C8—C91.379 (5)C3—H30.9500
C8—C101.388 (4)C3—C41.391 (5)
C9—C10i1.385 (5)C4—H40.9500
S1—C11.670 (3)C4—C51.393 (5)
O1—C11.352 (4)C5—H50.9500
O1—C71.394 (4)C5—C61.393 (5)
N1—HN10.87 (4)C6—H60.9500
N1—C11.339 (4)C6—C71.376 (5)
C9—C8—I1121.3 (2)C3—C2—C7121.4 (3)
C9—C8—C10117.8 (3)C7—C2—N1105.2 (3)
C10—C8—I1120.9 (2)C2—C3—H3122.1
F1—C9—C8120.2 (3)C2—C3—C4115.9 (3)
F1—C9—C10i118.8 (3)C4—C3—H3122.1
C8—C9—C10i121.1 (3)C3—C4—H4118.9
F2—C10—C8120.7 (3)C3—C4—C5122.2 (3)
F2—C10—C9i118.1 (3)C5—C4—H4118.9
C9i—C10—C8121.2 (3)C4—C5—H5119.1
C1—O1—C7107.4 (2)C6—C5—C4121.8 (3)
C1—N1—HN1123 (3)C6—C5—H5119.1
C1—N1—C2109.7 (3)C5—C6—H6122.4
C2—N1—HN1128 (3)C7—C6—C5115.2 (3)
O1—C1—S1122.1 (2)C7—C6—H6122.4
N1—C1—S1128.6 (3)C2—C7—O1108.5 (3)
N1—C1—O1109.2 (3)C6—C7—O1128.1 (3)
C3—C2—N1133.4 (3)C6—C7—C2123.5 (3)
I1—C8—C9—F11.5 (4)C1—N1—C2—C70.1 (4)
I1—C8—C9—C10i178.3 (3)C2—N1—C1—S1179.1 (3)
I1—C8—C10—F22.3 (4)C2—N1—C1—O10.4 (4)
I1—C8—C10—C9i178.3 (3)C2—C3—C4—C50.4 (5)
C9—C8—C10—F2178.5 (3)C3—C2—C7—O1178.4 (3)
C9—C8—C10—C9i0.9 (6)C3—C2—C7—C61.1 (5)
C10—C8—C9—F1179.4 (3)C3—C4—C5—C60.3 (6)
C10—C8—C9—C10i0.9 (6)C4—C5—C6—C70.3 (5)
N1—C2—C3—C4179.6 (3)C5—C6—C7—O1179.0 (3)
N1—C2—C7—O10.5 (3)C5—C6—C7—C20.4 (5)
N1—C2—C7—C6180.0 (3)C7—O1—C1—S1179.5 (2)
C1—O1—C7—C20.8 (3)C7—O1—C1—N10.8 (3)
C1—O1—C7—C6179.8 (3)C7—C2—C3—C41.0 (5)
C1—N1—C2—C3178.6 (4)
Symmetry code: (i) x+3/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···S1ii0.87 (4)2.45 (4)3.316 (3)178 (4)
C3—H3···I1iii0.953.164.066 (3)159
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y+1, z+1.
1,3-Benzoxazole-2-thiol–1,3,5-trifluoro-2,4,6-triiodobenzene (1/1) (MBZOX_135F3I3B) top
Crystal data top
C6F3I3·C7H5NOSF(000) = 1200
Mr = 660.94Dx = 2.715 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.9295 (7) ÅCell parameters from 9982 reflections
b = 4.6119 (2) Åθ = 2.7–26.5°
c = 23.5065 (12) ŵ = 5.96 mm1
β = 92.548 (2)°T = 100 K
V = 1616.90 (13) Å3Column, colourless
Z = 40.22 × 0.06 × 0.05 mm
Data collection top
Bruker D8 Venture Photon 2
diffractometer
2845 reflections with I > 2σ(I)
Radiation source: Incoatec IµSRint = 0.050
φ and ω scansθmax = 26.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 1818
Tmin = 0.551, Tmax = 0.745k = 55
19413 measured reflectionsl = 2929
3348 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0015P)2 + 8.0148P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max = 0.002
3348 reflectionsΔρmax = 0.80 e Å3
203 parametersΔρmin = 0.77 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.70807 (2)0.45232 (7)0.55419 (2)0.01748 (9)
I20.67869 (2)1.23515 (8)0.76030 (2)0.02173 (10)
I30.36351 (2)1.08539 (8)0.59175 (2)0.02080 (10)
F10.75694 (18)0.8001 (7)0.66897 (14)0.0224 (7)
F20.4884 (2)1.2983 (7)0.69902 (14)0.0233 (7)
F30.50893 (19)0.6840 (7)0.54104 (13)0.0216 (7)
C80.6336 (3)0.7273 (11)0.6051 (2)0.0148 (10)
C90.6700 (3)0.8566 (12)0.6536 (2)0.0171 (11)
C100.6230 (3)1.0473 (12)0.6861 (2)0.0172 (11)
C110.5357 (3)1.1100 (11)0.6684 (2)0.0182 (11)
C120.4950 (3)0.9888 (12)0.6197 (2)0.0161 (11)
C130.5456 (3)0.8001 (11)0.5888 (2)0.0150 (11)
S10.85264 (8)0.0073 (3)0.48739 (6)0.0189 (3)
O10.8417 (2)0.3886 (8)0.40283 (15)0.0173 (8)
N10.9806 (3)0.3173 (10)0.43450 (19)0.0160 (9)
HN11.021 (4)0.235 (15)0.456 (3)0.04 (2)*
C10.8953 (3)0.2405 (12)0.4417 (2)0.0179 (11)
C20.9850 (3)0.5192 (11)0.3901 (2)0.0161 (11)
C31.0549 (4)0.6679 (12)0.3661 (2)0.0214 (12)
H31.1155540.6405910.3788750.026*
C41.0309 (4)0.8596 (12)0.3222 (2)0.0209 (12)
H41.0763690.9653010.3042200.025*
C50.9402 (4)0.9002 (12)0.3038 (2)0.0215 (12)
H50.9261651.0340520.2740180.026*
C60.8718 (3)0.7504 (12)0.3281 (2)0.0194 (11)
H60.8108840.7749320.3155580.023*
C70.8969 (3)0.5632 (11)0.3715 (2)0.0175 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01571 (16)0.01825 (18)0.01870 (18)0.00147 (13)0.00332 (13)0.00178 (14)
I20.02249 (18)0.0226 (2)0.01963 (19)0.00506 (14)0.00417 (14)0.00151 (15)
I30.01328 (16)0.0296 (2)0.01939 (19)0.00433 (14)0.00095 (13)0.00351 (16)
F10.0106 (14)0.0263 (18)0.0298 (18)0.0009 (12)0.0040 (13)0.0000 (15)
F20.0196 (15)0.0230 (18)0.0274 (18)0.0043 (13)0.0018 (13)0.0061 (15)
F30.0164 (15)0.0279 (18)0.0201 (16)0.0002 (13)0.0031 (12)0.0072 (14)
C80.019 (3)0.006 (2)0.018 (3)0.0031 (19)0.004 (2)0.002 (2)
C90.010 (2)0.021 (3)0.020 (3)0.001 (2)0.001 (2)0.007 (2)
C100.015 (2)0.024 (3)0.012 (3)0.003 (2)0.000 (2)0.001 (2)
C110.018 (3)0.011 (3)0.026 (3)0.001 (2)0.007 (2)0.003 (2)
C120.011 (2)0.020 (3)0.017 (3)0.001 (2)0.001 (2)0.002 (2)
C130.015 (2)0.015 (3)0.014 (3)0.0009 (19)0.002 (2)0.001 (2)
S10.0167 (6)0.0202 (7)0.0200 (7)0.0025 (5)0.0036 (5)0.0035 (6)
O10.0153 (17)0.019 (2)0.0177 (19)0.0016 (14)0.0007 (14)0.0059 (16)
N10.012 (2)0.023 (3)0.012 (2)0.0051 (18)0.0012 (17)0.0016 (19)
C10.016 (2)0.022 (3)0.016 (3)0.006 (2)0.002 (2)0.005 (2)
C20.014 (2)0.015 (3)0.018 (3)0.004 (2)0.001 (2)0.004 (2)
C30.018 (3)0.025 (3)0.021 (3)0.002 (2)0.002 (2)0.001 (2)
C40.023 (3)0.020 (3)0.020 (3)0.002 (2)0.011 (2)0.002 (2)
C50.037 (3)0.017 (3)0.011 (3)0.004 (2)0.003 (2)0.002 (2)
C60.016 (3)0.021 (3)0.021 (3)0.005 (2)0.002 (2)0.002 (2)
C70.018 (3)0.014 (3)0.020 (3)0.001 (2)0.002 (2)0.004 (2)
Geometric parameters (Å, º) top
I1—C82.096 (5)O1—C71.387 (6)
I2—C102.086 (5)N1—HN10.85 (7)
I3—C122.091 (5)N1—C11.340 (7)
F1—C91.356 (5)N1—C21.403 (7)
F2—C111.347 (6)C2—C31.389 (8)
F3—C131.340 (6)C2—C71.383 (7)
C8—C91.378 (7)C3—H30.9500
C8—C131.392 (7)C3—C41.393 (8)
C9—C101.378 (8)C4—H40.9500
C10—C111.381 (7)C4—C51.415 (8)
C11—C121.389 (7)C5—H50.9500
C12—C131.379 (7)C5—C61.377 (8)
S1—C11.666 (6)C6—H60.9500
O1—C11.370 (6)C6—C71.376 (8)
C9—C8—I1122.3 (4)O1—C1—S1121.6 (4)
C9—C8—C13117.1 (5)N1—C1—S1130.2 (4)
C13—C8—I1120.5 (4)N1—C1—O1108.3 (5)
F1—C9—C8118.4 (5)C3—C2—N1133.7 (5)
F1—C9—C10118.7 (5)C7—C2—N1104.9 (4)
C10—C9—C8122.9 (5)C7—C2—C3121.4 (5)
C9—C10—I2122.3 (4)C2—C3—H3121.9
C9—C10—C11117.7 (5)C2—C3—C4116.2 (5)
C11—C10—I2120.0 (4)C4—C3—H3121.9
F2—C11—C10119.0 (5)C3—C4—H4119.3
F2—C11—C12118.7 (5)C3—C4—C5121.4 (5)
C10—C11—C12122.4 (5)C5—C4—H4119.3
C11—C12—I3122.9 (4)C4—C5—H5119.2
C13—C12—I3119.8 (4)C6—C5—C4121.6 (5)
C13—C12—C11117.3 (5)C6—C5—H5119.2
F3—C13—C8118.6 (4)C5—C6—H6122.0
F3—C13—C12118.7 (4)C7—C6—C5116.1 (5)
C12—C13—C8122.7 (5)C7—C6—H6122.0
C1—O1—C7107.6 (4)C2—C7—O1109.0 (5)
C1—N1—HN1117 (5)C6—C7—O1127.6 (5)
C1—N1—C2110.2 (4)C6—C7—C2123.4 (5)
C2—N1—HN1132 (5)
I1—C8—C9—F10.7 (7)C13—C8—C9—F1177.0 (5)
I1—C8—C9—C10177.2 (4)C13—C8—C9—C100.9 (8)
I1—C8—C13—F32.0 (7)N1—C2—C3—C4178.6 (5)
I1—C8—C13—C12177.5 (4)N1—C2—C7—O11.3 (6)
I2—C10—C11—F21.5 (7)N1—C2—C7—C6179.5 (5)
I2—C10—C11—C12179.3 (4)C1—O1—C7—C21.3 (6)
I3—C12—C13—F30.4 (7)C1—O1—C7—C6179.6 (5)
I3—C12—C13—C8179.9 (4)C1—N1—C2—C3179.1 (6)
F1—C9—C10—I23.2 (7)C1—N1—C2—C70.9 (6)
F1—C9—C10—C11177.6 (5)C2—N1—C1—S1179.1 (4)
F2—C11—C12—I30.1 (7)C2—N1—C1—O10.2 (6)
F2—C11—C12—C13179.1 (5)C2—C3—C4—C50.5 (8)
C8—C9—C10—I2178.9 (4)C3—C2—C7—O1179.7 (5)
C8—C9—C10—C110.3 (8)C3—C2—C7—C61.0 (8)
C9—C8—C13—F3178.3 (5)C3—C4—C5—C60.6 (8)
C9—C8—C13—C121.1 (8)C4—C5—C6—C70.8 (8)
C9—C10—C11—F2179.2 (5)C5—C6—C7—O1179.9 (5)
C9—C10—C11—C120.1 (8)C5—C6—C7—C21.1 (8)
C10—C11—C12—I3179.2 (4)C7—O1—C1—S1180.0 (4)
C10—C11—C12—C130.1 (8)C7—O1—C1—N10.7 (6)
C11—C12—C13—F3178.7 (5)C7—C2—C3—C40.7 (8)
C11—C12—C13—C80.7 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···S1i0.85 (7)2.53 (7)3.377 (4)176 (6)
C3—H3···I1ii0.953.043.969 (5)167
C6—H6···I2iii0.953.234.009 (5)140
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z+1; (iii) x, y+5/2, z1/2.
1,3-Benzothiazole-2-thiol)–1,2,3,4-tetrafluoro-5,6-diiodobenzene (3/4) (3MBZTH_412F4DIB) top
Crystal data top
4C6F4I2·3C7H5NS2V = 2830.9 (5) Å3
Mr = 2109.16Z = 2
Triclinic, P1F(000) = 1940
a = 7.9410 (8) ÅDx = 2.474 Mg m3
b = 14.8483 (15) ÅMo Kα radiation, λ = 0.71073 Å
c = 24.641 (3) ŵ = 4.69 mm1
α = 79.264 (4)°T = 100 K
β = 87.104 (4)°Plate, colourless
γ = 82.784 (4)°0.30 × 0.13 × 0.04 mm
Data collection top
Bruker D8 Venture Photon 2
diffractometer
11325 reflections with I > 2σ(I)
Radiation source: Incoatec IµSRint = 0.067
φ and ω scansθmax = 27.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 1010
Tmin = 0.570, Tmax = 0.746k = 1919
78566 measured reflectionsl = 3131
12466 independent reflections
Refinement top
Refinement on F266 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.220 w = 1/[σ2(Fo2) + (0.1285P)2 + 109.2112P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
12466 reflectionsΔρmax = 2.61 e Å3
704 parametersΔρmin = 1.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.36226 (13)1.16753 (7)0.05962 (4)0.0199 (2)
I20.11193 (13)1.17703 (7)0.07045 (4)0.0192 (2)
S30.8569 (5)0.2851 (3)0.27854 (18)0.0222 (8)
S40.9358 (5)0.3501 (3)0.15807 (18)0.0219 (8)
F10.1901 (12)0.9764 (7)0.0748 (4)0.023 (2)
F20.0046 (12)0.8143 (6)0.0705 (4)0.0210 (18)
F30.3454 (12)0.8083 (6)0.0614 (4)0.0218 (19)
F40.4959 (11)0.9599 (7)0.0585 (4)0.023 (2)
N20.7575 (18)0.4523 (10)0.2157 (6)0.022 (3)
HN20.7021180.4727630.2436750.026*
C80.8414 (19)0.3657 (12)0.2214 (7)0.022 (3)
C90.8613 (18)0.4590 (11)0.1256 (8)0.022 (3)
C100.877 (2)0.5034 (12)0.0712 (7)0.025 (3)
H100.9461020.4746100.0451080.030*
C110.792 (3)0.5893 (13)0.0558 (8)0.033 (3)
H110.7929080.6171750.0178590.040*
C120.704 (2)0.6375 (13)0.0933 (8)0.029 (3)
H120.6569030.6997440.0812560.035*
C130.683 (2)0.5975 (11)0.1470 (8)0.024 (3)
H130.6169990.6290530.1724750.029*
C140.764 (2)0.5071 (12)0.1632 (7)0.021 (3)
C220.2314 (19)1.0522 (10)0.0647 (6)0.014 (3)
C230.0557 (18)1.0544 (10)0.0689 (6)0.016 (3)
C240.0213 (17)0.9775 (10)0.0714 (6)0.014 (2)
C250.0758 (19)0.8923 (10)0.0684 (6)0.015 (2)
C260.2483 (19)0.8892 (10)0.0642 (6)0.016 (3)
C270.3254 (18)0.9675 (10)0.0619 (6)0.015 (3)
I30.64678 (12)1.13261 (7)0.23166 (4)0.0194 (2)
I40.18439 (13)1.10869 (8)0.23135 (5)0.0227 (2)
F50.1660 (12)0.9119 (8)0.2046 (5)0.028 (2)
F60.4004 (14)0.7773 (7)0.1803 (5)0.032 (2)
F70.7341 (13)0.8013 (7)0.1742 (5)0.028 (2)
F80.8342 (12)0.9554 (7)0.1967 (5)0.027 (2)
C280.548 (2)1.0190 (11)0.2120 (6)0.019 (3)
C290.3765 (17)1.0068 (10)0.2139 (6)0.014 (3)
C300.3304 (19)0.9261 (12)0.2037 (6)0.019 (3)
C310.447 (2)0.8555 (11)0.1910 (7)0.020 (3)
C320.618 (2)0.8672 (12)0.1869 (7)0.022 (3)
C330.6663 (18)0.9461 (11)0.1986 (7)0.018 (3)
I50.23233 (12)0.71859 (7)0.32850 (4)0.0183 (2)
I60.23322 (12)0.70593 (7)0.32425 (4)0.0200 (2)
F90.4093 (13)0.8951 (8)0.3451 (4)0.028 (2)
F100.2991 (13)1.0414 (7)0.3748 (5)0.028 (2)
F110.0385 (13)1.0534 (7)0.3782 (5)0.027 (2)
F120.2640 (12)0.9152 (7)0.3547 (5)0.026 (2)
C340.0485 (19)0.8268 (10)0.3394 (6)0.017 (3)
C350.1293 (18)0.8223 (10)0.3377 (6)0.015 (2)
C360.2433 (18)0.8975 (10)0.3469 (6)0.016 (2)
C370.1897 (18)0.9730 (10)0.3622 (6)0.015 (2)
C380.016 (2)0.9776 (11)0.3644 (7)0.020 (3)
C390.097 (2)0.9065 (10)0.3535 (7)0.019 (3)
I70.02233 (13)0.46575 (7)0.37019 (4)0.0196 (2)
I80.02757 (15)0.35978 (8)0.51719 (5)0.0269 (3)
F130.1440 (16)0.1570 (8)0.5289 (4)0.036 (3)
F140.3307 (17)0.0627 (7)0.4593 (5)0.037 (3)
F150.3867 (14)0.1426 (7)0.3536 (4)0.030 (2)
F160.2600 (13)0.3180 (7)0.3159 (4)0.026 (2)
C400.1256 (19)0.3310 (9)0.4037 (6)0.015 (3)
C410.100 (2)0.2902 (12)0.4582 (7)0.020 (3)
C420.171 (2)0.2029 (13)0.4767 (7)0.025 (3)
C430.263 (2)0.1486 (12)0.4419 (7)0.023 (3)
C440.292 (2)0.1890 (11)0.3876 (7)0.022 (3)
C450.223 (2)0.2791 (10)0.3680 (6)0.017 (3)
S10.5243 (5)0.5375 (3)0.31454 (16)0.0193 (7)
S20.4491 (5)0.4693 (3)0.43557 (17)0.0217 (8)
N10.6185 (17)0.3686 (9)0.3737 (6)0.020 (2)
HN10.6711750.3490370.3450430.025*
C10.5386 (19)0.4543 (10)0.3712 (6)0.0156 (18)
C20.518 (2)0.3547 (12)0.4654 (7)0.022 (3)
C30.498 (2)0.3107 (13)0.5198 (6)0.024 (3)
H30.4423440.3422800.5470450.029*
C40.566 (3)0.2171 (16)0.5328 (9)0.042 (5)
H40.5485010.1832010.5689020.050*
C50.659 (3)0.1730 (14)0.4927 (8)0.037 (5)
H50.7052270.1103130.5027920.044*
C60.684 (2)0.2196 (12)0.4377 (8)0.028 (4)
H60.7466400.1902470.4106140.033*
C70.610 (2)0.3135 (11)0.4259 (8)0.024 (3)
S50.5779 (5)0.3528 (3)0.04223 (16)0.0185 (7)
S60.4242 (5)0.3654 (3)0.15534 (16)0.0196 (7)
N30.3879 (16)0.4977 (9)0.0733 (5)0.016 (2)
HN30.3976010.5312730.0401380.019*
C150.4623 (19)0.4112 (10)0.0858 (6)0.016 (3)
C160.3061 (19)0.4678 (10)0.1659 (6)0.016 (3)
C170.216 (2)0.4894 (11)0.2134 (6)0.021 (3)
H170.2157140.4454120.2467900.025*
C180.128 (2)0.5768 (12)0.2101 (7)0.025 (3)
H180.0745190.5942320.2425020.030*
C190.116 (2)0.6408 (11)0.1597 (8)0.026 (4)
H190.0483830.6986790.1582410.032*
C200.2008 (19)0.6197 (10)0.1133 (7)0.019 (3)
H200.1978340.6633130.0797450.022*
C210.2922 (19)0.5323 (10)0.1166 (6)0.015 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0179 (5)0.0178 (5)0.0249 (5)0.0061 (4)0.0017 (4)0.0046 (4)
I20.0168 (5)0.0176 (4)0.0238 (5)0.0017 (3)0.0003 (4)0.0076 (4)
S30.026 (2)0.0144 (17)0.026 (2)0.0011 (14)0.0023 (16)0.0064 (15)
S40.0223 (19)0.0171 (18)0.027 (2)0.0012 (14)0.0041 (16)0.0092 (15)
F10.014 (4)0.025 (5)0.030 (5)0.001 (4)0.001 (4)0.004 (4)
F20.021 (2)0.022 (2)0.022 (2)0.0089 (18)0.0027 (18)0.0044 (18)
F30.016 (4)0.016 (4)0.032 (5)0.004 (3)0.000 (4)0.006 (4)
F40.007 (4)0.024 (5)0.038 (6)0.004 (3)0.001 (4)0.006 (4)
N20.020 (7)0.020 (7)0.026 (7)0.002 (5)0.001 (5)0.009 (6)
C80.011 (7)0.025 (8)0.032 (9)0.002 (6)0.011 (6)0.011 (7)
C90.004 (6)0.021 (8)0.043 (10)0.000 (5)0.001 (6)0.011 (7)
C100.030 (7)0.021 (7)0.025 (7)0.001 (6)0.012 (6)0.009 (6)
C110.042 (7)0.028 (7)0.031 (7)0.011 (6)0.019 (6)0.013 (6)
C120.028 (7)0.025 (7)0.034 (7)0.002 (6)0.010 (6)0.008 (6)
C130.012 (7)0.019 (8)0.041 (10)0.001 (6)0.005 (7)0.007 (7)
C140.023 (8)0.024 (8)0.019 (7)0.009 (6)0.015 (6)0.010 (6)
C220.018 (7)0.014 (6)0.006 (6)0.004 (5)0.001 (5)0.001 (5)
C230.009 (5)0.018 (6)0.018 (6)0.001 (5)0.002 (5)0.001 (5)
C240.005 (5)0.016 (5)0.021 (5)0.002 (4)0.004 (4)0.004 (4)
C250.016 (6)0.013 (6)0.016 (6)0.000 (5)0.002 (5)0.004 (5)
C260.016 (7)0.015 (7)0.017 (7)0.006 (5)0.008 (6)0.008 (6)
C270.012 (6)0.012 (6)0.020 (7)0.001 (5)0.004 (5)0.005 (6)
I30.0164 (5)0.0180 (5)0.0230 (5)0.0020 (3)0.0015 (4)0.0025 (4)
I40.0135 (4)0.0257 (5)0.0256 (5)0.0039 (4)0.0016 (4)0.0007 (4)
F50.010 (4)0.041 (6)0.036 (6)0.007 (4)0.001 (4)0.012 (5)
F60.026 (5)0.025 (5)0.049 (7)0.004 (4)0.003 (5)0.013 (5)
F70.022 (5)0.028 (5)0.036 (6)0.000 (4)0.004 (4)0.015 (4)
F80.009 (4)0.028 (5)0.047 (6)0.003 (4)0.001 (4)0.013 (5)
C280.019 (8)0.017 (7)0.016 (7)0.001 (6)0.008 (6)0.001 (6)
C290.006 (6)0.018 (7)0.022 (7)0.003 (5)0.001 (5)0.010 (6)
C300.013 (7)0.034 (9)0.008 (6)0.003 (6)0.005 (5)0.001 (6)
C310.016 (7)0.020 (7)0.025 (8)0.000 (6)0.005 (6)0.004 (6)
C320.020 (8)0.027 (8)0.021 (8)0.001 (6)0.004 (6)0.007 (6)
C330.004 (6)0.022 (8)0.028 (8)0.002 (5)0.003 (6)0.007 (6)
I50.0127 (4)0.0181 (4)0.0233 (5)0.0019 (3)0.0022 (4)0.0047 (4)
I60.0161 (5)0.0194 (5)0.0249 (5)0.0025 (4)0.0033 (4)0.0039 (4)
F90.016 (5)0.031 (5)0.032 (5)0.002 (4)0.001 (4)0.004 (4)
F100.022 (5)0.020 (5)0.042 (6)0.008 (4)0.002 (4)0.010 (4)
F110.025 (5)0.022 (5)0.038 (6)0.004 (4)0.001 (4)0.013 (4)
F120.012 (4)0.020 (5)0.043 (6)0.002 (4)0.001 (4)0.003 (4)
C340.014 (7)0.008 (6)0.023 (7)0.003 (5)0.003 (6)0.007 (5)
C350.008 (5)0.016 (5)0.020 (5)0.001 (4)0.003 (4)0.004 (4)
C360.006 (4)0.017 (5)0.020 (5)0.001 (4)0.001 (4)0.004 (4)
C370.006 (5)0.017 (5)0.021 (5)0.001 (4)0.001 (4)0.001 (4)
C380.021 (8)0.017 (7)0.021 (7)0.001 (6)0.004 (6)0.003 (6)
C390.027 (8)0.010 (6)0.019 (7)0.004 (6)0.001 (6)0.000 (5)
I70.0181 (5)0.0162 (4)0.0234 (5)0.0003 (3)0.0028 (4)0.0016 (4)
I80.0288 (6)0.0313 (6)0.0212 (5)0.0007 (4)0.0039 (4)0.0091 (4)
F130.048 (7)0.029 (6)0.022 (5)0.004 (5)0.001 (5)0.012 (4)
F140.056 (8)0.018 (5)0.033 (6)0.009 (5)0.011 (5)0.000 (4)
F150.031 (6)0.030 (5)0.030 (5)0.010 (4)0.007 (4)0.016 (4)
F160.026 (5)0.030 (5)0.018 (5)0.003 (4)0.006 (4)0.001 (4)
C400.019 (7)0.007 (6)0.017 (7)0.003 (5)0.002 (5)0.002 (5)
C410.015 (6)0.027 (7)0.017 (6)0.002 (5)0.006 (5)0.003 (5)
C420.019 (6)0.035 (7)0.013 (5)0.009 (5)0.001 (5)0.007 (5)
C430.022 (6)0.022 (7)0.020 (6)0.004 (6)0.008 (5)0.004 (5)
C440.024 (8)0.020 (8)0.024 (8)0.002 (6)0.002 (6)0.009 (6)
C450.018 (7)0.014 (7)0.016 (7)0.003 (5)0.002 (6)0.000 (6)
S10.0186 (17)0.0161 (17)0.0224 (18)0.0004 (14)0.0010 (14)0.0038 (14)
S20.0197 (18)0.0264 (19)0.0195 (17)0.0001 (15)0.0006 (14)0.0077 (15)
N10.020 (5)0.021 (5)0.023 (5)0.004 (4)0.001 (4)0.007 (4)
C10.015 (4)0.019 (4)0.017 (4)0.006 (3)0.002 (3)0.010 (3)
C20.015 (7)0.030 (9)0.021 (8)0.008 (6)0.003 (6)0.003 (7)
C30.019 (8)0.042 (10)0.010 (7)0.005 (7)0.001 (6)0.001 (7)
C40.041 (12)0.051 (13)0.032 (10)0.030 (10)0.007 (9)0.011 (9)
C50.058 (13)0.026 (9)0.022 (9)0.008 (9)0.008 (8)0.010 (7)
C60.031 (9)0.018 (8)0.033 (9)0.004 (7)0.012 (7)0.001 (7)
C70.026 (8)0.014 (7)0.031 (9)0.002 (6)0.009 (7)0.002 (6)
S50.0195 (18)0.0119 (16)0.0226 (18)0.0032 (13)0.0020 (14)0.0028 (14)
S60.0213 (18)0.0154 (17)0.0201 (18)0.0013 (14)0.0005 (14)0.0005 (14)
N30.016 (6)0.014 (6)0.017 (6)0.004 (5)0.000 (5)0.003 (5)
C150.018 (7)0.011 (6)0.020 (7)0.002 (5)0.007 (6)0.001 (5)
C160.013 (7)0.015 (7)0.019 (7)0.001 (5)0.002 (5)0.002 (6)
C170.031 (9)0.021 (8)0.009 (6)0.001 (7)0.003 (6)0.002 (6)
C180.016 (7)0.030 (9)0.028 (8)0.004 (6)0.001 (6)0.009 (7)
C190.033 (9)0.012 (7)0.033 (9)0.007 (6)0.006 (7)0.008 (7)
C200.016 (7)0.014 (7)0.024 (8)0.005 (6)0.013 (6)0.000 (6)
C210.018 (7)0.012 (6)0.016 (7)0.005 (5)0.004 (5)0.004 (5)
Geometric parameters (Å, º) top
I1—C222.094 (15)C35—C361.39 (2)
I2—C232.121 (15)C36—C371.37 (2)
S3—C81.669 (18)C37—C381.40 (2)
S4—C81.738 (18)C38—C391.35 (2)
S4—C91.711 (17)I7—C402.097 (14)
F1—C241.341 (16)I8—C412.086 (17)
F2—C251.344 (17)F13—C421.358 (19)
F3—C261.355 (16)F14—C431.320 (19)
F4—C271.344 (17)F15—C441.328 (18)
N2—HN20.8800F16—C451.341 (18)
N2—C81.36 (2)C40—C411.38 (2)
N2—C141.40 (2)C40—C451.41 (2)
C9—C101.39 (3)C41—C421.35 (2)
C9—C141.42 (2)C42—C431.40 (2)
C10—H100.9500C43—C441.38 (2)
C10—C111.36 (2)C44—C451.39 (2)
C11—H110.9500S1—C11.680 (16)
C11—C121.38 (3)S2—C11.747 (15)
C12—H120.9500S2—C21.755 (19)
C12—C131.36 (3)N1—HN10.8800
C13—H130.9500N1—C11.34 (2)
C13—C141.41 (2)N1—C71.39 (2)
C22—C231.39 (2)C2—C31.39 (2)
C22—C271.391 (19)C2—C71.38 (2)
C23—C241.35 (2)C3—H30.9500
C24—C251.408 (19)C3—C41.41 (3)
C25—C261.36 (2)C4—H40.9500
C26—C271.37 (2)C4—C51.41 (3)
I3—C282.089 (16)C5—H50.9500
I4—C292.097 (14)C5—C61.42 (3)
F5—C301.347 (18)C6—H60.9500
F6—C311.336 (19)C6—C71.43 (2)
F7—C321.330 (19)S5—C151.671 (16)
F8—C331.355 (17)S6—C151.749 (16)
C28—C291.40 (2)S6—C161.740 (15)
C28—C331.42 (2)N3—HN30.8800
C29—C301.37 (2)N3—C151.331 (19)
C30—C311.38 (2)N3—C211.416 (19)
C31—C321.38 (2)C16—C171.41 (2)
C32—C331.36 (2)C16—C211.40 (2)
I5—C342.077 (14)C17—H170.9500
I6—C352.092 (15)C17—C181.38 (2)
F9—C361.326 (17)C18—H180.9500
F10—C371.323 (17)C18—C191.41 (3)
F11—C381.359 (19)C19—H190.9500
F12—C391.348 (19)C19—C201.36 (2)
C34—C351.43 (2)C20—H200.9500
C34—C391.40 (2)C20—C211.40 (2)
C9—S4—C893.5 (8)C39—C38—F11120.7 (15)
C8—N2—HN2121.8C39—C38—C37120.0 (15)
C8—N2—C14116.5 (14)F12—C39—C34119.1 (14)
C14—N2—HN2121.8F12—C39—C38117.8 (14)
S3—C8—S4123.8 (10)C38—C39—C34123.1 (16)
N2—C8—S3127.4 (14)C41—C40—I7123.4 (11)
N2—C8—S4108.8 (13)C41—C40—C45118.8 (14)
C10—C9—S4131.6 (13)C45—C40—I7117.7 (11)
C10—C9—C14118.2 (15)C40—C41—I8123.5 (12)
C14—C9—S4110.2 (14)C42—C41—I8116.4 (12)
C9—C10—H10120.7C42—C41—C40119.9 (15)
C11—C10—C9118.6 (17)F13—C42—C43114.0 (15)
C11—C10—H10120.7C41—C42—F13123.0 (15)
C10—C11—H11118.7C41—C42—C43122.7 (15)
C10—C11—C12122.6 (19)F14—C43—C42123.2 (15)
C12—C11—H11118.7F14—C43—C44118.8 (16)
C11—C12—H12119.4C44—C43—C42117.9 (15)
C13—C12—C11121.1 (18)F15—C44—C43120.7 (15)
C13—C12—H12119.4F15—C44—C45119.1 (15)
C12—C13—H13121.5C43—C44—C45120.3 (15)
C12—C13—C14116.9 (16)F16—C45—C40120.7 (13)
C14—C13—H13121.5F16—C45—C44118.9 (14)
N2—C14—C9111.1 (15)C44—C45—C40120.3 (14)
N2—C14—C13126.8 (15)C1—S2—C292.1 (8)
C13—C14—C9122.1 (16)C1—N1—HN1123.1
C23—C22—I1124.6 (10)C1—N1—C7113.8 (14)
C23—C22—C27117.2 (14)C7—N1—HN1123.1
C27—C22—I1118.1 (11)S1—C1—S2123.6 (9)
C22—C23—I2123.4 (11)N1—C1—S1125.7 (12)
C24—C23—I2114.8 (10)N1—C1—S2110.7 (12)
C24—C23—C22121.8 (14)C3—C2—S2128.6 (14)
F1—C24—C23123.9 (13)C7—C2—S2108.1 (12)
F1—C24—C25115.8 (13)C7—C2—C3123.1 (17)
C23—C24—C25120.3 (13)C2—C3—H3121.6
F2—C25—C24122.3 (13)C2—C3—C4116.9 (17)
F2—C25—C26119.2 (13)C4—C3—H3121.6
C26—C25—C24118.5 (13)C3—C4—H4119.6
F3—C26—C25120.0 (13)C3—C4—C5120.8 (17)
F3—C26—C27119.2 (13)C5—C4—H4119.6
C25—C26—C27120.8 (13)C4—C5—H5119.0
F4—C27—C22120.4 (13)C4—C5—C6122.0 (19)
F4—C27—C26118.2 (13)C6—C5—H5119.0
C26—C27—C22121.4 (14)C5—C6—H6122.2
C29—C28—I3125.4 (11)C5—C6—C7115.5 (18)
C29—C28—C33117.2 (14)C7—C6—H6122.2
C33—C28—I3117.3 (11)N1—C7—C6123.2 (17)
C28—C29—I4122.4 (11)C2—C7—N1115.2 (15)
C30—C29—I4118.3 (10)C2—C7—C6121.5 (17)
C30—C29—C28119.3 (14)C16—S6—C1591.6 (7)
F5—C30—C29121.1 (14)C15—N3—HN3122.0
F5—C30—C31116.1 (15)C15—N3—C21116.0 (13)
C29—C30—C31122.7 (14)C21—N3—HN3122.0
F6—C31—C30122.3 (14)S5—C15—S6123.6 (9)
F6—C31—C32118.6 (15)N3—C15—S5125.8 (12)
C30—C31—C32119.1 (15)N3—C15—S6110.6 (12)
F7—C32—C31121.1 (15)C17—C16—S6129.9 (12)
F7—C32—C33119.9 (14)C21—C16—S6110.9 (11)
C33—C32—C31119.0 (15)C21—C16—C17118.9 (14)
F8—C33—C28118.8 (14)C16—C17—H17121.0
F8—C33—C32118.6 (14)C18—C17—C16117.9 (15)
C32—C33—C28122.6 (14)C18—C17—H17121.0
C35—C34—I5123.6 (11)C17—C18—H18119.0
C39—C34—I5119.6 (11)C17—C18—C19121.9 (15)
C39—C34—C35116.6 (14)C19—C18—H18119.0
C34—C35—I6123.6 (11)C18—C19—H19119.9
C36—C35—I6116.8 (10)C20—C19—C18120.3 (15)
C36—C35—C34119.6 (14)C20—C19—H19119.9
F9—C36—C35120.7 (14)C19—C20—H20121.0
F9—C36—C37117.6 (13)C19—C20—C21118.0 (15)
C37—C36—C35121.5 (13)C21—C20—H20121.0
F10—C37—C36121.4 (13)C16—C21—N3110.8 (13)
F10—C37—C38119.6 (14)C20—C21—N3126.5 (14)
C36—C37—C38119.0 (14)C20—C21—C16122.6 (14)
F11—C38—C37119.3 (14)
I1—C22—C23—I20.4 (18)F11—C38—C39—F123 (2)
I1—C22—C23—C24179.1 (11)F11—C38—C39—C34179.7 (14)
I1—C22—C27—F42.9 (19)C34—C35—C36—F9179.6 (14)
I1—C22—C27—C26179.1 (11)C34—C35—C36—C376 (2)
I2—C23—C24—F10 (2)C35—C34—C39—F12178.7 (13)
I2—C23—C24—C25177.4 (11)C35—C34—C39—C381 (2)
S4—C9—C10—C11174.9 (14)C35—C36—C37—F10175.0 (14)
S4—C9—C14—N20.4 (17)C35—C36—C37—C385 (2)
S4—C9—C14—C13178.2 (13)C36—C37—C38—F11178.3 (14)
F1—C24—C25—F22 (2)C36—C37—C38—C39