research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

A three-step pathway from (2-amino­phenyl)chal­cones to novel styryl­quinoline–chalcone hybrids: synthesis and spectroscopic and structural characterization of three examples

crossmark logo

aLaboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, United Kingdom
*Correspondence e-mail: cg@st-andrews.ac.uk

Edited by A. G. Oliver, University of Notre Dame, USA (Received 31 October 2022; accepted 22 November 2022)

Three new styryl­quinoline–chalcone hybrids have been synthesized using a three-step pathway starting with Friedländer cyclo­condensation between (2-amino­phen­yl)chalcones and acetone to give 2-methyl-4-styryl­quinolines, followed by selective oxidation to the 2-formyl analogues, and finally Claisen–Schmidt condensation between the formyl inter­mediates and 1-acetyl­naph­tha­lene. All inter­mediates and the final products have been fully characterized by IR and 1H/13C NMR spectroscopy, and by high-resolution mass spectrometry, and the three products have been characterized by single-crystal X-ray diffraction. The mol­ecular conformations of (E)-3-{4-[(E)-2-phenyl­ethen­yl]quinolin-2-yl}-1-(naph­tha­len-1-yl)prop-2-en-1-one, C30H21NO, (IVa), and (E)-3-{4-[(E)-2-(4-fluoro­phen­yl)ethen­yl]quinolin-2-yl}-1-(naph­tha­len-1-yl)prop-2-en-1-one, C30H20FNO, (IVb), are very similar. In each com­pound, the mol­ecules are linked into a three-dimensional array by hydro­gen bonds, of the C—H⋯O and C—H⋯N types in (IVa), and of the C—H⋯O and C—H⋯π types in (IVb), and by two independent ππ stacking inter­actions. By contrast, the conformation of the chalcone unit in (E)-3-{4-[(E)-2-(2-chloro­phen­yl)ethen­yl]quinolin-2-yl}-1-(naph­tha­len-1-yl)prop-2-en-1-one, C30H20ClNO, (IVc), differs from those in (IVa) and (IVb). There are only weak hydro­gen bonds in the structure of (IVc), but a single rather weak ππ stacking inter­action links the mol­ecules into chains. Comparisons are made with some related structures.

1. Introduction

Styryl­quinolines constitute an important group of quinoline derivatives with high medicinal value due to their broad spectrum of bioactivities (Musiol, 2020[Musiol, R. (2020). Med. Chem. 16, 141-154.]), finding therapeutic applications as potential anti­cancer (Gao et al., 2018[Gao, W., Li, Z., Xu, Q. & Li, Y. (2018). RSC Adv. 8, 38844-38849.]; Mrozek-Wilczkiewicz et al., 2019[Mrozek-Wilczkiewicz, A., Kuczak, M., Malarz, K., Cieślik, W., Spaczyńska, E. & Musiol, R. (2019). Eur. J. Med. Chem. 177, 338-349.]), anti­fungal (Cieslik et al., 2012[Cieslik, W., Musiol, R., Nycz, J. E., Jampilek, J., Vejsova, M., Wolff, M., Machura, B. & Polanski, J. (2012). Bioorg. Med. Chem. 20, 6960-6968.]), anti­leishmanial (Luczywo et al., 2021[Luczywo, A., Sauter, I. P., Silva Ferreira, T. C., Cortez, M., Romanelli, G. P., Sathicq, G. & Asís, S. E. (2021). J. Heterocycl. Chem. 58, 822-832.]) and anti­retroviral (Mouscadet & Desmaële, 2010[Mouscadet, J. F. & Desmaële, D. (2010). Molecules, 15, 3048-3078.]) agents.

Their syntheses have presented a challenge because of the need for harsh reaction conditions and/or expensive catalysts normally required to couple the styryl fragment to the quinoline nucleus (Alacid & Nájera, 2009[Alacid, E. & Nájera, C. (2009). J. Org. Chem. 74, 8191-8195.]; Chaudhari et al., 2013[Chaudhari, C., Hakim Siddiki, S. M. A. & Shimizu, K. I. (2013). Tetrahedron Lett. 54, 6490-6493.]; Dabiri et al., 2008[Dabiri, M., Salehi, P., Baghbanzadeh, M. & Nikcheh, M. S. (2008). Tetrahedron Lett. 49, 5366-5368.]; Jamal et al., 2016[Jamal, Z., Teo, Y.-C. & Lim, G. S. (2016). Tetrahedron, 72, 2132-2138.]), although some alternative and versatile methodologies have been also described to overcome such obstacles (Satish et al., 2019[Satish, G., Ashok, P., Kota, L. & Ilangovan, A. (2019). ChemistrySelect, 4, 1346-1349.]; Meléndez et al., 2020[Meléndez, A., Plata, E., Rodríguez, D., Ardila, D., Guerrero, S., Acosta, L., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804-1822.]).

Chalcones also represent an outstanding class of com­pounds occurring in diverse natural and synthetic products. Apart from their natural occurrence and synthetic usage, they also show a wide range of biological activities (Zhuang et al., 2017[Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762-7810.]; Mohamed & Abuo-Rahma, 2020[Mohamed, M. F. A. & Abuo-Rahma, G. E. A. (2020). RSC Adv. 10, 31139-31155.]), in particular, their anti­bacterial (Xu et al., 2019[Xu, M., Wu, P., Shen, F., Ji, J. & Rakesh, K. P. (2019). Bioorg. Chem. 91, 103133.]), anti­colitic (Kim et al., 2019[Kim, W., Lee, H., Kim, S., Joo, S., Jeong, S., Yoo, J. W. & Jung, Y. (2019). Eur. J. Pharmacol. 865, 172722.]), anti­fungal (Andrade et al., 2018[Andrade, J. T., Santos, F. R. S., Lima, W. G., Sousa, C. D. F., Oliveira, L. S. F. M., Ribeiro, R. I. M. A., Gomes, A. J. P. S., Araújo, M. G. F., Villar, J. A. F. P. & Ferreira, J. M. S. (2018). J. Antibiot. 71, 702-712.]), anti­malarial (Domínguez et al., 2005[Domínguez, J. N., León, C., Rodrigues, J., Gamboa de Domínguez, N., Gut, J. & Rosenthal, P. J. (2005). J. Med. Chem. 48, 3654-3658.]), anti­oxidant (Vogel et al., 2010[Vogel, S., Barbic, M., Jürgenliemk, G. & Heilmann, J. (2010). Eur. J. Med. Chem. 45, 2206-2213.]) and anti­tumour (Sashidhara et al., 2010[Sashidhara, K. V., Kumar, A., Kumar, M., Sarkar, J. & Sinha, S. (2010). Bioorg. Med. Chem. Lett. 20, 7205-7211.]; Ouyang et al., 2021[Ouyang, Y., Li, J., Chen, X., Fu, X., Sun, S. & Wu, Q. (2021). Biomolecules, 11, 1-36.]; Wang et al., 2021[Wang, K.-L., Yu, Y.-C. & Hsia, S.-M. (2021). Cancers, 13, 115.]) properties. Although several methods have been reported for the construction of the chalcone scaffold (Eddarir et al., 2003[Eddarir, S., Cotelle, N., Bakkour, Y. & Rolando, C. (2003). Tetrahedron Lett. 44, 5359-5363.]; Reichwald et al., 2008[Reichwald, C., Shimony, O., Sacerdoti-Sierra, N., Jaffe, C. L. & Kunick, C. (2008). Bioorg. Med. Chem. Lett. 18, 1985-1989.]; Abbas Bukhari et al., 2012[Abbas Bukhari, S. N., Jasamal, M. & Jantan, I. (2012). Mini Rev. Med. Chem. 12, 394-1403.]), the base-catalyzed Claisen–Schmidt condensation is still the most convenient in terms of its simplicity and chemical versatility (Powers et al., 1998[Powers, D. G., Casebier, D. S., Fokas, D., Ryan, W. J., Troth, J. R. & Coffen, D. L. (1998). Tetrahedron, 54, 4085-4096.]).

[Scheme 1]

In addition, it is well documented that the combination of the quinoline ring and the chalcone moiety into a single mol­ecular entity results in promising mol­ecular hybrids which are useful inter­mediates in the design and development of new potential multitarget drugs (Atukuri et al., 2020[Atukuri, D., Vijayalaxmi, S., Sanjeevamurthy, R., Vidya, L., Prasannakumar, R. & Raghavendra, M. M. (2020). Bioorg. Chem. 105, 104419.]; Mohamed & Abuo-Rahma, 2020[Mohamed, M. F. A. & Abuo-Rahma, G. E. A. (2020). RSC Adv. 10, 31139-31155.]). This class of conjugated com­pounds are known to possess remarkable anti­bacterial (Zheng et al., 2011[Zheng, C. J., Jiang, S. M., Chen, Z. H., Ye, B. J. & Piao, H. R. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 689-695.]; Rao et al., 2017[Rao, N. S., Shaik, A. B., Routhu, S. R., Hussaini, S. M. A., Sunkari, S., Rao, A. V. S., Reddy, A. M., Alarifi, A. & Kamal, A. (2017). ChemistrySelect, 2, 2989-2996.]), anti­fungal (Rao et al., 2017[Rao, N. S., Shaik, A. B., Routhu, S. R., Hussaini, S. M. A., Sunkari, S., Rao, A. V. S., Reddy, A. M., Alarifi, A. & Kamal, A. (2017). ChemistrySelect, 2, 2989-2996.]), anti­malarial (Domínguez et al., 2005[Domínguez, J. N., León, C., Rodrigues, J., Gamboa de Domínguez, N., Gut, J. & Rosenthal, P. J. (2005). J. Med. Chem. 48, 3654-3658.]; Dave et al., 2009[Dave, S. S., Ghatole, A. M., Rahatgaonkar, A. M., Chorghade, M. S., Chauhan, P. & Srivastava, K. (2009). Indian J. Chem. Sect. B, 48, 1780-1793.]), analgesic (Chabukswar et al., 2016[Chabukswar, A. R., Kuchekar, B. S., Jagdale, S. C., Lokhande, P. D., Chabukswar, V. V., Shisodia, S. U., Mahabal, R. H., Londhe, A. M. & Ojha, N. S. (2016). Arabian Journal of Chemistry, 9, 704-712.]), anti-VIH (Chabukswar et al., 2016[Chabukswar, A. R., Kuchekar, B. S., Jagdale, S. C., Lokhande, P. D., Chabukswar, V. V., Shisodia, S. U., Mahabal, R. H., Londhe, A. M. & Ojha, N. S. (2016). Arabian Journal of Chemistry, 9, 704-712.]) and anti­cancer (Kotra et al., 2010[Kotra, V., Ganapaty, S. & Adapa, S. R. (2010). Indian J. Chem. Sect. B, 49, 1109-1116.]; Mohamed & Abuo-Rahma, 2020[Mohamed, M. F. A. & Abuo-Rahma, G. E. A. (2020). RSC Adv. 10, 31139-31155.]) activities. The potential therapeutic properties of such com­pounds have prompted us to develop different methodologies to access this kind of mol­ecular hybrid (de Carvalho Tavares et al., 2011[Carvalho Tavares, L. de, Johann, S., Maria de Almeida Alves, T., Guerra, J. C., Maria de Souza-Fagundes, E., Cisalpino, P. S., Bortoluzzi, A. J., Caramori, G. F., de Mattos Piccoli, R., Braibante, H. T. S., Braibante, M. E. F. & Pizzolatti, M. G. (2011). Eur. J. Med. Chem. 46, 4448-4456.]; Rosas-Sánchez et al., 2015[Rosas-Sánchez, A., Toscano, R. A., López-Cortés, J. G. & Ortega-Alfaro, M. C. (2015). Dalton Trans. 44, 578-590.]; Meléndez et al., 2020[Meléndez, A., Plata, E., Rodríguez, D., Ardila, D., Guerrero, S., Acosta, L., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804-1822.]; Mirzaei et al., 2020[Mirzaei, S., Hadizadeh, F., Eisvand, F., Mosaffa, F. & Ghodsi, R. (2020). J. Mol. Struct. 1202, 127310.]).

We have recently used Friedländer annulation reactions to develop facile alternative routes for building novel com­pounds containing the 4-styryl­quinoline framework, including some 4-styrylquinolinyl-3-chalcone hybrids, starting from (E)-1-(2-amino­phen­yl)-3-aryl­prop-2-en-1-ones of type (I) (see Scheme 1[link]) (Meléndez et al., 2020[Meléndez, A., Plata, E., Rodríguez, D., Ardila, D., Guerrero, S., Acosta, L., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804-1822.]; Rodríguez et al., 2020[Rodríguez, D., Guerrero, S. A., Palma, A., Cobo, J. & Glidewell, C. (2020). Acta Cryst. C76, 883-890.]). In this work, we describe the application of the same methodology to the preparation of substituted 2-methyl-4-styryl­quinolines (IIa)–(IIc) for use as precursors for the synthesis of the novel 4-styrylquinolinyl-2-chalcone mol­ecular hybrids (IVa)–(IVc) in two further steps, involving first the selective oxidation of the 2-methyl group to give the 2-formyl inter­mediates (III), followed by Claisen–Schmidt condensation to give the target products (IV). We report here the synthesis, spectroscopic characterization and mol­ecular and supra­molecular structures of a matched set of three closely-related 4-styrylquinolinyl-2-chalcone hybrids, namely, (E)-1-(naph­tha­len-1-yl)-3-{4-[(E)-2-phenylethenyl]quinolin-2-yl}prop-2-en-1-one, (IVa)[link], (E)-3-{4-[(E)-2-(4-fluoro­phen­yl)ethen­yl]quinolin-2-yl}-1-(naph­tha­len-1-yl)prop-2-en-1-one, (IVb)[link], and (E)-3-{4-[(E)-2-(2-chloro­phen­yl)ethen­yl]quinolin-2-yl}-1-(naph­tha­len-1-yl)prop-2-en-1-one, (IVc)[link] (Scheme 1[link] and Figs. 1[link]–3[link][link]), which differ only in the nature of the substituents at positions C2 and C4 in the styryl fragment.

[Figure 1]
Figure 1
The mol­ecular structure of com­pound (IVa)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of com­pound (IVb)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of com­pound (IVc)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

2. Experimental

2.1. Synthesis and crystallization

Compounds (IIa) and (IIc) were prepared using the pro­cedure recently described by Vera et al. (2022[Vera, D. R., Mantilla, J. P., Palma, A., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 524-530.]) for the synthesis of com­pound (IIb).

Compound (IIa): reaction time 15 h, yield 0.19 g (86%), yellow solid, m.p. 367–369 K, RF = 0.20 (12.5% ethyl acetate–hexa­ne). Compound (IIc): reaction time 14 h, yield 0.21 g (73%), yellow solid, m.p. 388–390 K, RF = 0.22 (12.5% ethyl acetate–hexa­ne).

For the synthesis of com­pounds (III), a suspension of the appropriate 2-methyl-4-styryl­quinoline (II) (1.0 mmol) and selenium dioxide (2.0 mmol) in 1,4-dioxane (5 ml) was stirred and heated at 373 K for the appropriate time. After the complete consumption of (II) [as monitored by thin-layer chromatography (TLC)], di­chloro­methane (15 ml) was added and the residual solid was removed by filtration. The solvent was removed under reduced pressure and the resulting crude products were purified by flash column chromatography on silica gel using hexa­ne–ethyl acetate mixtures as eluent (compositions ranged from 7:1 to 2:1 v/v) to give the required formyl inter­mediates (IIIa)–(IIIc) as solid com­pounds.

Compound (IIIa): reaction time, 1 h, yield 0.23 g (96%), yellow solid, m.p. 421–423 K, RF = 0.31 (9.1% ethyl acetate–hexa­ne). Compound (IIIb): reaction time, 1 h, yield 0.14 g (89%), yellow solid, m.p. 417–419 K, RF = 0.20 (9.1% ethyl acetate–hexa­ne). Compound (IIIc): reaction time, 2 h, yield 0.21 g (92%), pale orange solid, m.p. 431–433 K, RF = 0.28 (9.1% ethyl acetate–hexa­ne).

For the synthesis of com­pounds (IV), a mixture of the appropriate 2-formyl inter­mediate (III) (1.0 mmol), 1-aceto­naphthone (1.0 mmol) and potassium hydroxide (1.1 mmol) in ethanol (3 ml) was stirred at 298 K for the appropriate time. After complete consumption of (III) (monitored by TLC), the resulting precipitate was collected by filtration, washed with water (15 ml) and ethanol (10 ml), and then recrystallized from chloro­form–ethanol to afford the target mol­ecular hybrids (IV).

Compound (IVa)[link]: reaction time, 3 h, yield 0.13 g (82%), yellow solid, m.p. 450–452 K, RF = 0.22 (13% ethyl acetate–hexa­ne). Compound (IVb)[link]: reaction time, 2 h, yield 0.13 g (81%), yellow solid, m.p. 451–453 K, RF = 0.31 (13% ethyl acetate–hexa­ne). Compound (IVc)[link]: reaction time, 1 h, yield 0.14 g (95%), yellow solid, m.p. 441–443 K, RF = 0.20 (9% ethyl acetate–hexa­ne).

Full details of the spectroscopic characterization are included in the supporting information.

2.2. Refinement

Crystal data, data collection and refinement details for com­pounds (IVa)–(IVc) are summarized in Table 1[link]. Two bad outlier reflections ([\overline {12}]4 and [\overline 3],[\overline 6],12) were omitted from the data set for com­pound (IVb)[link]. All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions, with C—H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C).

Table 1
Experimental details

  (IVa) (IVb) (IVc)
Crystal data
Chemical formula C30H21NO C30H20FNO C30H20ClNO
Mr 411.48 429.47 445.92
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 100 100 100
a, b, c (Å) 9.6151 (4), 10.0235 (4), 12.6299 (5) 9.6679 (12), 10.1279 (12), 12.6482 (13) 3.9184 (1), 24.6546 (8), 21.8833 (6)
α, β, γ (°) 67.766 (1), 71.191 (1), 84.004 (2) 111.420 (4), 103.871 (4), 96.632 (5) 90, 91.271 (1), 90
V3) 1066.34 (8) 1090.7 (2) 2113.55 (10)
Z 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.08 0.09 0.21
Crystal size (mm) 0.12 × 0.10 × 0.05 0.17 × 0.14 × 0.10 0.22 × 0.19 × 0.04
 
Data collection
Diffractometer Bruker D8 Venture Bruker D8 Venture Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.928, 0.996 0.953, 0.992 0.912, 0.992
No. of measured, independent and observed [I > 2σ(I)] reflections 34856, 4719, 3964 47863, 5431, 4465 67339, 5301, 4855
Rint 0.052 0.057 0.049
(sin θ/λ)max−1) 0.642 0.668 0.670
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.03 0.044, 0.111, 1.04 0.046, 0.108, 1.16
No. of reflections 4719 5431 5301
No. of parameters 289 298 298
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.23 0.35, −0.25 0.40, −0.30
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2017[Bruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

3. Results and discussion

We have recently reported (Vera et al., 2022[Vera, D. R., Mantilla, J. P., Palma, A., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 524-530.]) a high-yield synthesis of the 2-methyl-4-styryl­quinoline (IIb) using the Friedländer cyclo­condensation between the chalcone (Ib) (see Scheme 1[link]) and acetone, along with its spectroscopic and crystallographic characterization. Using the same methodology, we have now prepared the corresponding styryl­quinolines (IIa) and (IIc) in yields of 86 and 73%, respectively. All of the precursors (IIa)–(IIc) underwent selective oxidation with selenium dioxide to give the corresponding 2-formyl inter­mediates (IIIa)–(IIIc) with yields in the range 89–96% (see Section 2.1[link]). Finally, Claisen–Schmidt condensation in the inter­mediates (III) with 1-aceto­naphthone (1-acetyl­naph­tha­lene) gave the target hybrid products (IV) with yields in the range 81–95%. Compounds (IIa), (IIc), (IIIa)–(IIIc) and (IVa)–(IVc) were all fully characterized by FT–IR and 1H/13C NMR spectroscopy, and by high-resolution mass spectrometry (HRMS); full details of the spectroscopic characterization are provided in the supporting information.

The main spectroscopic features for the precursors (IIa) and (IIc) matched perfectly those of previously reported analogues (Vera et al., 2022[Vera, D. R., Mantilla, J. P., Palma, A., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 524-530.]). The IR spectra of the formyl inter­mediates (III) showed the characteristic absorption band for the C=O group at 1699–1708 cm−1, and their 1H and 13C NMR spectra contained the corresponding signals for the formyl group in the ranges δ 10.24–10.25 and 194.1–194.2, respectively.

The presence of stretching vibration bands in the range 1727–1731 cm−1, attributed to a conjugated carbonyl group, are the salient features in the IR spectra of com­pounds (IVa)–(IVc). The formation of mol­ecular hybrids (IV) was established by disappearance of the formyl signals from both the 1H and 13C NMR spectra, and by the appearance of signals from the newly formed 3-aryl­propen-1-one fragment. As far as the Claisen–Schmidt condensation is con­cerned, it proceeded in a highly stereoselective manner, giving exclusively the E-stereoisomers, as indicated by the 1H NMR spectra. The trans configuration of the aryl­propen-1-one fragment was deduced on the basis of the coupling constant values (3JHA,HB = 15.9 Hz) between HA and HB (α,β-enonic H atoms), whose signals in the 1H NMR spectra appear at δ 7.91–7.93 and 7.78–7.79, respectively.

We also report here the mol­ecular and supra­molecular structures of the hybrid products (IVa)–(IVc) which fully confirm the mol­ecular structures deduced from the spectroscopic data, in particular, the E-configuration of both the styryl and the chalcone moieties (Figs. 1[link]–3[link][link]). This synthetic pathway (see Scheme 1[link]) is extremely versatile, in that it per­mits the introduction of substituents in both rings of the quinoline portion (cf. Rodríguez et al., 2020[Rodríguez, D., Guerrero, S. A., Palma, A., Cobo, J. & Glidewell, C. (2020). Acta Cryst. C76, 883-890.]), as well as in the styryl component (Vera et al., 2022[Vera, D. R., Mantilla, J. P., Palma, A., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 524-530.]), while the Claisen–Schmidt reaction step introduces a very wide range of syn­thetic options. In addition, the presence of the chalcone unit in the com­pounds of type (IV) provides scope for an extensive variety of further synthetic elaborations utilizing this fragment (Powers et al., 1998[Powers, D. G., Casebier, D. S., Fokas, D., Ryan, W. J., Troth, J. R. & Coffen, D. L. (1998). Tetrahedron, 54, 4085-4096.]; Mohamed & Abuo-Rahma, 2020[Mohamed, M. F. A. & Abuo-Rahma, G. E. A. (2020). RSC Adv. 10, 31139-31155.]).

For each of (IVa)–(IVc), the atom labelling (Figs. 1[link]–3[link][link]) follows that employed in recent reports on styryl­quinoline derivatives (Vera et al., 2022[Vera, D. R., Mantilla, J. P., Palma, A., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 524-530.]; Ardila et al., 2022[Ardila, D. M., Rodríguez, D. F., Palma, A., Díaz Costa, I., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 671-680.]). Compounds (IVa)[link] and (IVb)[link] are both triclinic (Table 1[link]), and their corresponding unit-cell repeat distances are fairly similar; however, these com­pounds are not isomorphous, as the inter-axial angles in (IVa)[link] are all less than 90°, whereas those in (IVb)[link] are all greater than 90°. Moreover, the correponding pairs of angles are not supplementary, especially the β angle. By con­trast, the crystals of (IVc)[link] are monoclinic. None of the mol­ecules in the products (IV) exhibits any inter­nal symmetry, so that they are all conformationally chiral (Moss, 1996[Moss, G. P. (1996). Pure Appl. Chem. 68, 2193-2222.]; Flack & Bernardinelli, 1999[Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915.]); the centrosymmetric space groups (Table 1[link]) confirm that equal numbers of the two conformational enanti­omers are present in each case. For each of (IVa)–(IVc), the reference mol­ecule was selected as one having a positive sign for the torsion angle C3—C4—C41—C42 (Table 2[link]). Overall the mol­ecular conformations of (IVa)[link] and (IVb)[link] are quite similar, but that for (IVc)[link] shows a marked difference in the orientation of the acyl fragment relative to the rest of the molecule, corresponding to a rotation of ca 180° around the C22—C23 bond (Table 2[link] and Figs. 1[link]–3[link][link]).

Table 2
Selected torsion angles (°) for com­pounds (IVa)–(IVc)

Parameter (IVa) (IVb) (IVc)
N1—C2—C21—C22 −178.23)12) −178.25 (12) −178.04 (14)
C21—C22—C23—O23 163.64 (12) 162.97 (12) −1.9 (2)
C21—C22—C23—C231 −14.95 (19) −15.59 (18) 169.99 (14)
C22—C23—C231—C232 −61.76 (17) −59.28 (16) 41.01 (19)
C3—C4—C41—C42 16.1 (2) 16.2 (2) 27.2 (2)
C41—C42—C421—C422 166.57 (13) 165.01 (13) −165.79 (15)

The supramolecular assembly in com­pound (IVa)[link] is three-dimensional and it dependes upon a combination of C—H⋯O and C—H⋯N hydro­gen bonds (Table 3[link]), and two different ππ stacking inter­actions. The formation of the three-dimensional framework structure is readily analysed in terms of three one-dimensional substructures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]), which, in the inter­ests of clarity and simplicity, are illustrated separately. Inversion-related pairs of mol­ecules are linked by almost linear C—H⋯O hydro­gen bonds to form cyclic centrosymmetric dimers con­taining an R22(8) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) ring, and this dimeric unit can be regarded as the basic building block in the overall structure.

Table 3
Hydro­gen bonds and short inter­molecular contacts (Å, °) for com­pounds (IVa)–(IVc)

Cg1 and Cg2 represent the centroids of the C231–C234/C240/C239 and C421–C426 rings, respectively.

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(IVa) C22—H22⋯O23i 0.95 2.57 3.5183 (17) 177
  C234—H234⋯N1ii 0.95 2.60 3.4207 (17) 145
  C422—H422⋯Cg1i 0.95 2.93 3.7418 (16) 144
(IVb) C22—H22⋯O23i 0.95 2.59 3.5407 (17) 176
  C234—H234⋯N1iii 0.95 2.67 3.5645 (18) 157
  C233—H233⋯Cg2iv 0.95 2.85 3.6466 (18) 142
(IVc) C8—H8⋯N1ii 0.95 2.63 3.551 (2) 163
  C425—H425⋯O23v 0.95 2.55 3.290 (2) 134
Symmetry codes: (i) −x, −y+, −z + 1; (ii) −x + 1, −y + 1, −z; (iii) −x + 1, −y + 2, −z + 2; (iv) x, y + 1, z + 1; (v) −x + 1, y − [{1\over 2}], −z + [{1\over 2}].

The linking of these dimeric units by C—H⋯N hydro­gen bonds gives rise to a ribbon running parallel to the [10[\overline{1}]] direction (Fig. 4[link]), in which R22(8) rings centred at (n, [1 \over 2], [1 \over 2] − n) alternate with R22(20) rings centred at ([1 \over 2] + n, [1 \over 2], −n), where n represents an integer in each case. The pyri­dine rings of the mol­ecules at (x, y, z) and (−x + 1, −y + 1, −z + 1) are strictly parallel with an inter­planar spacing of 3.2877 (5) Å and a ring-centroid separation of 3.5372 (7) Å, corresponding to a ring-centroid offset of 1.305 (2) Å. This inter­action links the R22(8) dimers to generate a second chain, this time running parallel to the [100] direction (Fig. 5[link]). In the final substructure, the carbocyclic ring of the quinoline unit at (x, y, z) and the styryl ring at (−x + 1, −y + 2, −z + 1) make an inter­planar angle of only 6.37 (7)°; the ring-centroid separation is 3.7818 (9) Å and the shortest perpendicular distance between the centroid of one ring and the plane of the other is 3.4535 (6) Å, corresponding to a ring-centroid offset of 1.541 (2) Å. This inter­action links the R22(8) dimers into a chain running parallel to the [110] direction (Fig. 6[link]), and the combination of chains along [100], [110] and [10[\overline{1}]] generates a three-dimensional structure.

[Figure 4]
Figure 4
Part of the crystal structure of com­pound (IVa)[link], showing the formation of a ribbon of alternating R22(8) and R22(20) rings running parallel to [10[\overline{1}]]. Hydro­gen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 5]
Figure 5
Part of the crystal structure of com­pound (IVa)[link], showing the linking of the R22(8) dimers by a π-stacking inter­action between pyri­dine rings, so forming a chain along [100]. Hydro­gen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 6]
Figure 6
Part of the crystal structure of com­pound (IVa)[link], showing the linking of the R22(8) dimers by a π-stacking inter­action between carbocyclic rings, so forming a chain along [110]. Hydro­gen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motif shown have been omitted.

The supra­molecular assembly in com­pound (IVb)[link] is also three-dimensional, built from a combination of C—H⋯O and C—H⋯π hydro­gen bonds, and two ππ stacking inter­actions; the short inter­molecular C—H⋯N contact in (IVb)[link] (Table 3[link]) is probably not structurally significant, as the H⋯N distance is only a little less than the sum, 2.70 Å, of the van der Waals radii (Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]). As in (IVa)[link], the formation of the three-dimensional structure in (IVb)[link] can be analysed in terms of three one-dimensional substructures, based on the linking of the R22(8) dimers formed by the C—H⋯O hydro­gen bonds (Table 3[link]). The linking of the R22(8) dimers by the C—H⋯π hydro­gen bonds gives rise to a chain of rings running parallel to the [011] direction (Fig. 7[link]) in which the R22(8) rings are centred at (0, [1 \over 2] + n, [1 \over 2] + n), and they alternate with the rings formed by C—H⋯π hydro­gen bonds which are centred at (0, n, n), where n represents an integer in each case.

[Figure 7]
Figure 7
Part of the crystal structure of com­pound (IVb)[link], showing the formation of a chain of centrosymmetric rings running parallel to the [011] direction. Hydro­gen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motif shown have been omitted.

The two substructures formed by the ππ stacking inter­actions are entirely analogous to those formed in (IVa)[link], such that they need no separate illustration. The pyri­dine rings at (x, y, z) and (−x + 1, −y + 1, −z + 1) in (IVb)[link] have a ring-centroid offset of 1.319 (2) Å, and the carbocyclic ring of the quinoline unit at (x, y, z) and the styryl ring at (−x + 1, −y, −z + 1), which make an inter­planar angle of only 2.38 (7)°, have a centroid offset of ca 1.576 (4) Å. These two inter­actions generate chains of π-stacked dimers running parallel to the [100] and [1[\overline{1}]0] directions, respectively. The combination of chains along [011], [100] and [1[\overline{1}]0] suffices to generate a three-dimensional assembly.

The direction-specific inter­molecular inter­actions in the structure of (IVc)[link] are all weak. There are C—H⋯N contacts between inversion-related pairs of mol­ecules (Table 3[link]); although these are almost linear, the H⋯N and C⋯N distances are long for hydro­gen bonds and, indeed, checkCIF (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]; https://checkcif.iucr.org/) raises a mild alert on these grounds. These contacts are perhaps best regarded as being close to the margin of structural significance, but they serve to link the mol­ecules into cyclic centrosymmetric R22(8) dimers (Fig. 8[link]). On the other hand, the short inter­molecular C—H⋯O contact (Table 3[link]) has a very small D—H⋯A angle, such that the associated inter­action is probably negligible (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]). In addition, mol­ecules of (IVc)[link] which are related by translation along [100] are stacked in register and for the ring containing atom C231 (Fig. 3[link]), the inter­planar spacing is 3.5843 (6) Å, associated with a ring-centroid separation of 3.9184 (9) Å and a ring-centroid offset of 1.584 (2) Å. This inter­action provides a weak link between adjacent mol­ecules, forming a chain running parallel to the [100] direction (Fig. 9[link]), leading overall to a stack of weakly hydro­gen-bonded dimers.

[Figure 8]
Figure 8
Part of the crystal structure of com­pound (IVc)[link], showing the formation of a cyclic centrosymmetric dimer. Hydro­gen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 9]
Figure 9
Part of the crystal structure of com­pound (IVc)[link], showing the formation of a π-stacked chain along [100]. For the sake of clarity, H atoms have all been omitted.

It is inter­esting to note the structural contrasts between com­pounds (IVa)[link] and (IVb)[link] on the one hand, and com­pound (IVc)[link] on the other, in terms of their space groups (Table 1[link]), their mol­ecular conformations (Table 2[link] and Figs. 1[link]–3[link][link]), the range of direction-specific inter­molecular inter­actions and their modes of supra­molecular assembly, as discussed above. All these points are associated with a change in the identity and location of a single monoatomic substituent in the styryl unit, but it is not easy to determine whether any one of these factors could be regarded as a possible cause of the effects observed in any, or all, of the others. Although the two triclinic compounds (IVa) and (IVb) have different inter-axial angles (Table 1[link]) and different modes of supramolecular assembly, in both, the assembly is based on a cyclic centrosymmetric R22(8) dimer built from C—H⋯O hydrogen bonds (Table 3[link]). It is thus striking that projections of the dimers in (IVa) and (IVb), viewed along [010], are extremely similar (Fig. 10[link]), despite the different locations of the origin and the different orientations of the axes.

[Figure 10]
Figure 10
Projections along [010] of the cyclic dimers in (a) compound (IVa) and (b) compound (IVb). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motifs shown have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (−x, −y + 1, −z + 1). Note the different locations of the origin and the different orientations of the axes.

We have recently reported (Vera et al., 2022[Vera, D. R., Mantilla, J. P., Palma, A., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 524-530.]) the structures of a number of 2-methyl-4-styryl­quinolines of type (II) (see Scheme 1[link]; all prepared using Friedländer cyclo­condensation reactions, as here). In each of (E)-4-(4-fluoro­styr­yl)-2-methyl­quinoline and (E)-2-methyl-4-[4-(tri­fluoro­meth­yl)styr­yl]quinoline, the mol­ecules are linked into cyclic centrosymmetric dimers by hydro­gen bonds, of the C—H⋯N and C—H⋯π types, respectively, and these dimers are further linked by ππ stacking inter­actions to form sheets in the fluoro com­pound and chains in the tri­fluoro­methyl analogue. By contrast, there are no significant inter­molecular inter­actions in the structure of (E)-4-(2,6-di­chloro­styr­yl)-2-methyl­quinoline. All of these type (II) com­pounds have mol­ecular skeletons in which the styryl and quinoline units are non-coplanar, as reported here for com­pounds (IVa)–(IVc). This appears to be the case for all of the 4-styryl­quinolines which have been structurally characterized so far, in contrast to the 2- and 8-styryl­quinolines, where the two ring systems appear always to be effectively coplanar (Vera et al., 2022[Vera, D. R., Mantilla, J. P., Palma, A., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 524-530.]; Ardila et al., 2022[Ardila, D. M., Rodríguez, D. F., Palma, A., Díaz Costa, I., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 671-680.]).

4. Summary

We have developed a highly versatile and efficient three-step synthesis of a novel class of styryl­quinoline–chalcone hybrids based on only very simple and readily available starting materials, such as simple aldehydes and ketones, and we have characterized by spectroscopic means (IR, 1H/13C NMR and HRMS) three products and all of the inter­mediates on the pathways leading to them, and we have determined the mol­ecular and supra­molecular structures of the three products.

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

((E)-1-(Naphthalen-1-yl)-3-{4-[(E)-2-phenylethenyl]quinolin-2-yl}-prop-2-en-1-one (IVa) top
Crystal data top
C30H21NOZ = 2
Mr = 411.48F(000) = 432
Triclinic, P1Dx = 1.281 Mg m3
a = 9.6151 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0235 (4) ÅCell parameters from 4719 reflections
c = 12.6299 (5) Åθ = 2.2–27.1°
α = 67.766 (1)°µ = 0.08 mm1
β = 71.191 (1)°T = 100 K
γ = 84.004 (2)°Block, yellow
V = 1066.34 (8) Å30.12 × 0.10 × 0.05 mm
Data collection top
Bruker D8 Venture
diffractometer
4719 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube3964 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.052
φ and ω scansθmax = 27.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1212
Tmin = 0.928, Tmax = 0.996k = 1212
34856 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.5277P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4719 reflectionsΔρmax = 0.28 e Å3
289 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.58182 (12)0.60098 (11)0.28402 (9)0.0169 (2)
C20.44193 (13)0.59239 (13)0.35167 (11)0.0161 (2)
C30.39095 (13)0.65025 (13)0.44327 (11)0.0164 (2)
H30.29050.63830.49060.020*
C40.48623 (14)0.72399 (13)0.46437 (11)0.0166 (3)
C4A0.63712 (14)0.73772 (13)0.39112 (11)0.0168 (3)
C50.74710 (14)0.81174 (15)0.40100 (12)0.0208 (3)
H50.72110.85920.45690.025*
C60.89017 (15)0.81614 (15)0.33148 (12)0.0237 (3)
H60.96200.86760.33870.028*
C70.93177 (15)0.74485 (15)0.24919 (12)0.0238 (3)
H71.03190.74590.20310.029*
C80.82877 (14)0.67416 (14)0.23534 (12)0.0213 (3)
H80.85760.62720.17910.026*
C8A0.67913 (14)0.67050 (13)0.30442 (11)0.0172 (3)
C210.34496 (14)0.51785 (13)0.32207 (11)0.0171 (3)
H210.39050.48090.26030.020*
C220.19959 (14)0.49592 (14)0.37212 (11)0.0188 (3)
H220.14860.53810.42940.023*
C230.11599 (14)0.40842 (13)0.34124 (11)0.0183 (3)
O230.00819 (10)0.36329 (11)0.40568 (9)0.0240 (2)
C2310.18810 (14)0.37312 (14)0.23051 (11)0.0181 (3)
C2320.22990 (16)0.48266 (15)0.11968 (12)0.0236 (3)
H2320.21620.57990.11450.028*
C2330.29276 (16)0.45308 (16)0.01363 (12)0.0269 (3)
H2330.31860.53000.06230.032*
C2340.31646 (15)0.31404 (16)0.01998 (12)0.0241 (3)
H2340.35970.29490.05170.029*
C2350.30219 (14)0.05256 (15)0.14063 (13)0.0227 (3)
H2350.34520.03240.06930.027*
C2360.26537 (15)0.05852 (15)0.24908 (13)0.0245 (3)
H2360.28350.15490.25280.029*
C2370.20025 (15)0.03071 (15)0.35601 (13)0.0228 (3)
H2370.17580.10850.43140.027*
C2380.17219 (14)0.10791 (14)0.35158 (12)0.0182 (3)
H2380.12660.12510.42400.022*
C2390.21049 (13)0.22633 (14)0.23990 (11)0.0170 (3)
C2400.27737 (13)0.19798 (14)0.13227 (12)0.0188 (3)
C410.43893 (14)0.78369 (14)0.55991 (11)0.0188 (3)
H410.50200.85350.55600.023*
C420.31501 (14)0.74817 (14)0.65168 (11)0.0190 (3)
H420.24970.68190.65340.023*
C4210.27082 (14)0.80271 (14)0.75031 (11)0.0177 (3)
C4220.12552 (14)0.78031 (14)0.82574 (12)0.0207 (3)
H4220.05890.72830.81340.025*
C4230.07723 (15)0.83292 (15)0.91825 (12)0.0231 (3)
H4230.02210.81770.96810.028*
C4240.17382 (15)0.90764 (15)0.93802 (12)0.0233 (3)
H4240.14080.94441.00090.028*
C4250.31920 (15)0.92837 (16)0.86518 (12)0.0237 (3)
H4250.38590.97870.87900.028*
C4260.36782 (14)0.87625 (15)0.77250 (12)0.0211 (3)
H4260.46770.89050.72370.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0182 (5)0.0170 (5)0.0148 (5)0.0001 (4)0.0041 (4)0.0057 (4)
C20.0176 (6)0.0142 (6)0.0158 (6)0.0001 (5)0.0056 (5)0.0043 (5)
C30.0150 (6)0.0165 (6)0.0164 (6)0.0006 (5)0.0038 (5)0.0056 (5)
C40.0186 (6)0.0154 (6)0.0156 (6)0.0012 (5)0.0063 (5)0.0048 (5)
C4A0.0175 (6)0.0170 (6)0.0151 (6)0.0003 (5)0.0058 (5)0.0042 (5)
C50.0202 (6)0.0254 (7)0.0182 (6)0.0023 (5)0.0065 (5)0.0083 (5)
C60.0187 (6)0.0291 (7)0.0235 (7)0.0047 (5)0.0078 (5)0.0076 (6)
C70.0154 (6)0.0297 (7)0.0218 (7)0.0018 (5)0.0024 (5)0.0067 (6)
C80.0197 (6)0.0235 (7)0.0180 (6)0.0005 (5)0.0024 (5)0.0076 (5)
C8A0.0185 (6)0.0163 (6)0.0148 (6)0.0001 (5)0.0055 (5)0.0033 (5)
C210.0205 (6)0.0156 (6)0.0166 (6)0.0013 (5)0.0065 (5)0.0071 (5)
C220.0205 (6)0.0191 (6)0.0192 (6)0.0006 (5)0.0057 (5)0.0100 (5)
C230.0178 (6)0.0171 (6)0.0210 (6)0.0015 (5)0.0070 (5)0.0075 (5)
O230.0173 (5)0.0283 (5)0.0287 (5)0.0028 (4)0.0030 (4)0.0153 (4)
C2310.0164 (6)0.0214 (6)0.0196 (6)0.0010 (5)0.0073 (5)0.0091 (5)
C2320.0278 (7)0.0203 (6)0.0235 (7)0.0006 (5)0.0094 (6)0.0074 (5)
C2330.0304 (7)0.0290 (7)0.0175 (6)0.0032 (6)0.0073 (6)0.0034 (5)
C2340.0231 (7)0.0345 (8)0.0174 (6)0.0002 (6)0.0062 (5)0.0121 (6)
C2350.0179 (6)0.0307 (7)0.0289 (7)0.0045 (5)0.0096 (5)0.0199 (6)
C2360.0227 (7)0.0221 (7)0.0364 (8)0.0045 (5)0.0141 (6)0.0157 (6)
C2370.0213 (6)0.0212 (6)0.0269 (7)0.0008 (5)0.0115 (5)0.0061 (5)
C2380.0151 (6)0.0234 (6)0.0196 (6)0.0005 (5)0.0073 (5)0.0097 (5)
C2390.0129 (6)0.0218 (6)0.0200 (6)0.0003 (5)0.0073 (5)0.0097 (5)
C2400.0146 (6)0.0260 (7)0.0212 (6)0.0004 (5)0.0080 (5)0.0122 (5)
C410.0184 (6)0.0198 (6)0.0215 (6)0.0006 (5)0.0070 (5)0.0103 (5)
C420.0187 (6)0.0209 (6)0.0210 (6)0.0001 (5)0.0074 (5)0.0105 (5)
C4210.0178 (6)0.0189 (6)0.0181 (6)0.0018 (5)0.0069 (5)0.0077 (5)
C4220.0179 (6)0.0240 (7)0.0222 (6)0.0016 (5)0.0062 (5)0.0102 (5)
C4230.0163 (6)0.0299 (7)0.0225 (7)0.0003 (5)0.0028 (5)0.0115 (6)
C4240.0240 (7)0.0296 (7)0.0204 (6)0.0032 (5)0.0061 (5)0.0149 (6)
C4250.0207 (6)0.0308 (7)0.0259 (7)0.0016 (5)0.0083 (5)0.0156 (6)
C4260.0160 (6)0.0273 (7)0.0217 (6)0.0005 (5)0.0044 (5)0.0118 (5)
Geometric parameters (Å, º) top
N1—C21.3320 (16)C233—H2330.9500
N1—C8A1.3619 (16)C234—C2401.4160 (19)
C2—C31.4134 (17)C234—H2340.9500
C2—C211.4660 (17)C235—C2361.363 (2)
C3—C41.3801 (17)C235—C2401.4212 (19)
C3—H30.9500C235—H2350.9500
C4—C4A1.4351 (17)C236—C2371.4131 (19)
C4—C411.4685 (17)C236—H2360.9500
C4A—C51.4154 (18)C237—C2381.3708 (19)
C4A—C8A1.4256 (17)C237—H2370.9500
C5—C61.3674 (18)C238—C2391.4225 (18)
C5—H50.9500C238—H2380.9500
C6—C71.409 (2)C239—C2401.4257 (17)
C6—H60.9500C41—C421.3325 (18)
C7—C81.3659 (19)C41—H410.9500
C7—H70.9500C42—C4211.4686 (17)
C8—C8A1.4178 (17)C42—H420.9500
C8—H80.9500C421—C4221.3983 (18)
C21—C221.3383 (18)C421—C4261.4001 (18)
C21—H210.9500C422—C4231.3871 (18)
C22—C231.4750 (17)C422—H4220.9500
C22—H220.9500C423—C4241.3865 (19)
C23—O231.2249 (16)C423—H4230.9500
C23—C2311.5032 (17)C424—C4251.3893 (19)
C231—C2321.3758 (18)C424—H4240.9500
C231—C2391.4295 (18)C425—C4261.3858 (18)
C232—C2331.4101 (19)C425—H4250.9500
C232—H2320.9500C426—H4260.9500
C233—C2341.364 (2)
C2—N1—C8A117.65 (10)C233—C234—C240120.75 (12)
N1—C2—C3123.31 (11)C233—C234—H234119.6
N1—C2—C21113.81 (11)C240—C234—H234119.6
C3—C2—C21122.88 (11)C236—C235—C240121.18 (12)
C4—C3—C2120.41 (11)C236—C235—H235119.4
C4—C3—H3119.8C240—C235—H235119.4
C2—C3—H3119.8C235—C236—C237120.20 (13)
C3—C4—C4A117.54 (11)C235—C236—H236119.9
C3—C4—C41122.35 (11)C237—C236—H236119.9
C4A—C4—C41120.08 (11)C238—C237—C236120.38 (13)
C5—C4A—C8A118.05 (11)C238—C237—H237119.8
C5—C4A—C4124.07 (11)C236—C237—H237119.8
C8A—C4A—C4117.87 (11)C237—C238—C239120.80 (12)
C6—C5—C4A121.14 (12)C237—C238—H238119.6
C6—C5—H5119.4C239—C238—H238119.6
C4A—C5—H5119.4C238—C239—C240118.67 (12)
C5—C6—C7120.44 (12)C238—C239—C231123.07 (11)
C5—C6—H6119.8C240—C239—C231118.25 (12)
C7—C6—H6119.8C234—C240—C235121.50 (12)
C8—C7—C6120.33 (12)C234—C240—C239119.74 (12)
C8—C7—H7119.8C235—C240—C239118.76 (12)
C6—C7—H7119.8C42—C41—C4125.49 (12)
C7—C8—C8A120.39 (12)C42—C41—H41117.3
C7—C8—H8119.8C4—C41—H41117.3
C8A—C8—H8119.8C41—C42—C421125.55 (12)
N1—C8A—C8117.28 (11)C41—C42—H42117.2
N1—C8A—C4A123.14 (11)C421—C42—H42117.2
C8—C8A—C4A119.58 (12)C422—C421—C426118.32 (11)
C22—C21—C2127.43 (11)C422—C421—C42118.74 (11)
C22—C21—H21116.3C426—C421—C42122.94 (11)
C2—C21—H21116.3C423—C422—C421121.01 (12)
C21—C22—C23122.17 (11)C423—C422—H422119.5
C21—C22—H22118.9C421—C422—H422119.5
C23—C22—H22118.9C424—C423—C422120.07 (12)
O23—C23—C22120.70 (11)C424—C423—H423120.0
O23—C23—C231120.84 (11)C422—C423—H423120.0
C22—C23—C231118.45 (11)C423—C424—C425119.54 (12)
C232—C231—C239120.06 (12)C423—C424—H424120.2
C232—C231—C23119.70 (12)C425—C424—H424120.2
C239—C231—C23120.23 (11)C426—C425—C424120.57 (12)
C231—C232—C233121.14 (13)C426—C425—H425119.7
C231—C232—H232119.4C424—C425—H425119.7
C233—C232—H232119.4C425—C426—C421120.47 (12)
C234—C233—C232120.04 (13)C425—C426—H426119.8
C234—C233—H233120.0C421—C426—H426119.8
C232—C233—H233120.0
C8A—N1—C2—C30.63 (18)C23—C231—C232—C233177.60 (12)
C8A—N1—C2—C21179.07 (11)C231—C232—C233—C2341.6 (2)
N1—C2—C3—C42.04 (19)C232—C233—C234—C2400.6 (2)
C21—C2—C3—C4177.63 (11)C240—C235—C236—C2370.5 (2)
C2—C3—C4—C4A0.60 (17)C235—C236—C237—C2380.7 (2)
C2—C3—C4—C41178.86 (11)C236—C237—C238—C2391.23 (19)
C3—C4—C4A—C5179.13 (12)C237—C238—C239—C2400.66 (18)
C41—C4—C4A—C52.57 (19)C237—C238—C239—C231177.90 (12)
C3—C4—C4A—C8A1.96 (17)C232—C231—C239—C238178.94 (12)
C41—C4—C4A—C8A176.34 (11)C23—C231—C239—C2382.34 (18)
C8A—C4A—C5—C61.44 (19)C232—C231—C239—C2400.38 (18)
C4—C4A—C5—C6177.46 (12)C23—C231—C239—C240179.10 (11)
C4A—C5—C6—C70.9 (2)C233—C234—C240—C235179.56 (13)
C5—C6—C7—C82.0 (2)C233—C234—C240—C2390.9 (2)
C6—C7—C8—C8A0.6 (2)C236—C235—C240—C234179.47 (12)
C2—N1—C8A—C8177.54 (11)C236—C235—C240—C2391.02 (19)
C2—N1—C8A—C4A2.19 (18)C238—C239—C240—C234179.98 (11)
C7—C8—C8A—N1178.51 (12)C231—C239—C240—C2341.40 (18)
C7—C8—C8A—C4A1.75 (19)C238—C239—C240—C2350.45 (17)
C5—C4A—C8A—N1177.52 (12)C231—C239—C240—C235179.07 (11)
C4—C4A—C8A—N13.50 (18)C3—C4—C41—C4216.1 (2)
C5—C4A—C8A—C82.75 (18)C4A—C4—C41—C42162.09 (13)
C4—C4A—C8A—C8176.22 (11)C4—C41—C42—C421176.97 (12)
N1—C2—C21—C22178.23 (12)C41—C42—C421—C422166.57 (13)
C3—C2—C21—C221.5 (2)C41—C42—C421—C42613.5 (2)
C2—C21—C22—C23174.78 (12)C426—C421—C422—C4231.8 (2)
C21—C22—C23—O23163.64 (13)C42—C421—C422—C423178.31 (12)
C21—C22—C23—C23114.95 (19)C421—C422—C423—C4240.7 (2)
O23—C23—C231—C232119.65 (15)C422—C423—C424—C4250.5 (2)
C22—C23—C231—C23261.76 (17)C423—C424—C425—C4260.6 (2)
O23—C23—C231—C23959.07 (17)C424—C425—C426—C4210.5 (2)
C22—C23—C231—C239119.52 (13)C422—C421—C426—C4251.6 (2)
C239—C231—C232—C2331.1 (2)C42—C421—C426—C425178.45 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O23i0.952.573.5183 (17)177
C234—H234···N1ii0.952.603.4207 (17)145
C422—H422···Cg1i0.952.933.7418 (16)144
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z.
(E)-3-{4-[(E)-2-(4-Fluorophenyl)ethenyl]quinolin-2-yl}-1-(naphthalen-1-yl)prop-2-en-1-one (IVb) top
Crystal data top
C30H20FNOZ = 2
Mr = 429.47F(000) = 448
Triclinic, P1Dx = 1.308 Mg m3
a = 9.6679 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1279 (12) ÅCell parameters from 5433 reflections
c = 12.6482 (13) Åθ = 2.2–28.3°
α = 111.420 (4)°µ = 0.09 mm1
β = 103.871 (4)°T = 100 K
γ = 96.632 (5)°Block, yellow
V = 1090.7 (2) Å30.17 × 0.14 × 0.10 mm
Data collection top
Bruker D8 Venture
diffractometer
5431 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube4465 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.057
φ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1212
Tmin = 0.953, Tmax = 0.992k = 1313
47863 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.043P)2 + 0.5365P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5431 reflectionsΔρmax = 0.35 e Å3
298 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.57874 (12)0.61019 (11)0.72136 (9)0.0178 (2)
C20.44028 (13)0.55330 (13)0.65293 (11)0.0168 (2)
C30.39125 (13)0.41037 (13)0.56278 (11)0.0172 (2)
H30.29130.37580.51600.021*
C40.48798 (13)0.32080 (13)0.54249 (11)0.0169 (2)
C4A0.63845 (14)0.37943 (14)0.61400 (11)0.0177 (2)
C50.75027 (14)0.30146 (15)0.60212 (12)0.0212 (3)
H50.72660.20360.54490.025*
C60.89199 (15)0.36494 (16)0.67187 (12)0.0248 (3)
H60.96540.31070.66260.030*
C70.93012 (15)0.50959 (16)0.75711 (12)0.0260 (3)
H71.02900.55250.80470.031*
C80.82567 (14)0.58873 (15)0.77192 (12)0.0230 (3)
H80.85230.68650.82960.028*
C8A0.67734 (14)0.52554 (13)0.70147 (11)0.0181 (2)
C210.34263 (14)0.65308 (13)0.67992 (11)0.0177 (2)
H210.38700.74760.74080.021*
C220.19812 (14)0.62633 (13)0.62864 (11)0.0186 (2)
H220.14780.53060.57280.022*
C230.11484 (14)0.74090 (13)0.65625 (11)0.0182 (2)
O230.00749 (10)0.72442 (10)0.59018 (8)0.0236 (2)
C2310.18471 (13)0.88029 (13)0.76569 (11)0.0183 (2)
C2320.22759 (15)0.87507 (15)0.87583 (12)0.0240 (3)
H2320.21640.78340.88100.029*
C2330.28772 (17)1.00315 (16)0.98101 (12)0.0279 (3)
H2330.31460.99751.05630.034*
C2340.30744 (15)1.13561 (15)0.97471 (12)0.0249 (3)
H2340.34831.22161.04590.030*
C2350.28856 (14)1.28262 (14)0.85484 (13)0.0237 (3)
H2350.32881.36920.92560.028*
C2360.25203 (15)1.29146 (15)0.74718 (14)0.0262 (3)
H2360.26741.38380.74340.031*
C2370.19122 (15)1.16382 (15)0.64095 (13)0.0238 (3)
H2370.16711.17080.56610.029*
C2380.16690 (13)1.03056 (14)0.64519 (11)0.0194 (3)
H2380.12450.94590.57320.023*
C2390.20428 (13)1.01680 (13)0.75622 (11)0.0169 (2)
C2400.26751 (13)1.14591 (14)0.86303 (11)0.0194 (3)
C410.44308 (14)0.17128 (13)0.45086 (11)0.0192 (2)
H410.50860.10930.45650.023*
C420.31942 (14)0.11400 (13)0.36062 (11)0.0191 (2)
H420.25110.17360.35630.023*
C4210.28077 (13)0.03456 (13)0.26718 (11)0.0172 (2)
C4220.13609 (14)0.09410 (14)0.19403 (11)0.0203 (3)
H4220.06500.03720.20510.024*
C4230.09382 (14)0.23474 (14)0.10539 (12)0.0221 (3)
H4230.00490.27500.05650.027*
C4240.19995 (14)0.31374 (14)0.09083 (11)0.0210 (3)
F4240.16163 (9)0.45148 (9)0.00460 (7)0.0307 (2)
C4250.34450 (14)0.25893 (14)0.15873 (12)0.0221 (3)
H4250.41510.31590.14530.027*
C4260.38478 (14)0.11893 (14)0.24702 (11)0.0195 (2)
H4260.48410.07950.29460.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0188 (5)0.0167 (5)0.0157 (5)0.0024 (4)0.0033 (4)0.0058 (4)
C20.0192 (6)0.0159 (6)0.0159 (5)0.0037 (5)0.0054 (5)0.0072 (5)
C30.0165 (6)0.0163 (6)0.0172 (6)0.0020 (4)0.0039 (4)0.0065 (5)
C40.0186 (6)0.0170 (6)0.0158 (5)0.0038 (5)0.0049 (5)0.0077 (5)
C4A0.0188 (6)0.0199 (6)0.0159 (5)0.0047 (5)0.0051 (5)0.0088 (5)
C50.0214 (6)0.0232 (6)0.0203 (6)0.0076 (5)0.0075 (5)0.0086 (5)
C60.0184 (6)0.0331 (7)0.0255 (7)0.0099 (5)0.0069 (5)0.0137 (6)
C70.0172 (6)0.0333 (7)0.0244 (7)0.0027 (5)0.0021 (5)0.0120 (6)
C80.0203 (6)0.0232 (6)0.0202 (6)0.0013 (5)0.0020 (5)0.0067 (5)
C8A0.0184 (6)0.0198 (6)0.0157 (6)0.0031 (5)0.0037 (5)0.0082 (5)
C210.0217 (6)0.0136 (5)0.0164 (6)0.0036 (5)0.0057 (5)0.0048 (4)
C220.0212 (6)0.0140 (5)0.0180 (6)0.0036 (5)0.0049 (5)0.0045 (5)
C230.0191 (6)0.0165 (6)0.0190 (6)0.0034 (5)0.0061 (5)0.0072 (5)
O230.0203 (5)0.0218 (5)0.0247 (5)0.0056 (4)0.0025 (4)0.0074 (4)
C2310.0174 (6)0.0189 (6)0.0180 (6)0.0056 (5)0.0059 (5)0.0058 (5)
C2320.0292 (7)0.0217 (6)0.0209 (6)0.0052 (5)0.0071 (5)0.0088 (5)
C2330.0339 (8)0.0318 (7)0.0163 (6)0.0075 (6)0.0071 (5)0.0080 (6)
C2340.0240 (7)0.0249 (7)0.0182 (6)0.0044 (5)0.0065 (5)0.0007 (5)
C2350.0174 (6)0.0177 (6)0.0318 (7)0.0044 (5)0.0093 (5)0.0042 (5)
C2360.0226 (7)0.0203 (6)0.0407 (8)0.0076 (5)0.0131 (6)0.0150 (6)
C2370.0212 (6)0.0278 (7)0.0287 (7)0.0095 (5)0.0100 (5)0.0158 (6)
C2380.0163 (6)0.0214 (6)0.0208 (6)0.0066 (5)0.0067 (5)0.0077 (5)
C2390.0138 (5)0.0174 (6)0.0193 (6)0.0058 (4)0.0070 (5)0.0054 (5)
C2400.0149 (6)0.0190 (6)0.0211 (6)0.0050 (5)0.0066 (5)0.0037 (5)
C410.0203 (6)0.0163 (6)0.0207 (6)0.0063 (5)0.0064 (5)0.0065 (5)
C420.0190 (6)0.0169 (6)0.0207 (6)0.0059 (5)0.0069 (5)0.0058 (5)
C4210.0179 (6)0.0163 (6)0.0167 (6)0.0037 (5)0.0064 (5)0.0053 (5)
C4220.0169 (6)0.0208 (6)0.0220 (6)0.0067 (5)0.0064 (5)0.0063 (5)
C4230.0159 (6)0.0231 (6)0.0207 (6)0.0026 (5)0.0031 (5)0.0037 (5)
C4240.0235 (6)0.0166 (6)0.0175 (6)0.0035 (5)0.0061 (5)0.0013 (5)
F4240.0293 (4)0.0210 (4)0.0262 (4)0.0050 (3)0.0037 (3)0.0044 (3)
C4250.0205 (6)0.0221 (6)0.0231 (6)0.0095 (5)0.0083 (5)0.0061 (5)
C4260.0158 (6)0.0208 (6)0.0198 (6)0.0046 (5)0.0044 (5)0.0062 (5)
Geometric parameters (Å, º) top
N1—C21.3323 (16)C233—H2330.9500
N1—C8A1.3613 (16)C234—C2401.4180 (19)
C2—C31.4132 (17)C234—H2340.9500
C2—C211.4670 (17)C235—C2361.361 (2)
C3—C41.3799 (17)C235—C2401.4209 (19)
C3—H30.9500C235—H2350.9500
C4—C4A1.4367 (17)C236—C2371.414 (2)
C4—C411.4662 (17)C236—H2360.9500
C4A—C51.4153 (17)C237—C2381.3658 (19)
C4A—C8A1.4253 (17)C237—H2370.9500
C5—C61.3680 (19)C238—C2391.4259 (17)
C5—H50.9500C238—H2380.9500
C6—C71.406 (2)C239—C2401.4275 (17)
C6—H60.9500C41—C421.3306 (18)
C7—C81.366 (2)C41—H410.9500
C7—H70.9500C42—C4211.4696 (16)
C8—C8A1.4209 (17)C42—H420.9500
C8—H80.9500C421—C4221.3976 (17)
C21—C221.3400 (18)C421—C4261.4031 (17)
C21—H210.9500C422—C4231.3901 (17)
C22—C231.4734 (17)C422—H4220.9500
C22—H220.9500C423—C4241.3782 (18)
C23—O231.2262 (16)C423—H4230.9500
C23—C2311.5065 (17)C424—F4241.3596 (14)
C231—C2321.3774 (18)C424—C4251.3769 (18)
C231—C2391.4258 (17)C425—C4261.3844 (18)
C232—C2331.4089 (19)C425—H4250.9500
C232—H2320.9500C426—H4260.9500
C233—C2341.367 (2)
C2—N1—C8A117.60 (11)C233—C234—C240120.66 (12)
N1—C2—C3123.47 (11)C233—C234—H234119.7
N1—C2—C21113.66 (11)C240—C234—H234119.7
C3—C2—C21122.87 (11)C236—C235—C240121.03 (12)
C4—C3—C2120.25 (11)C236—C235—H235119.5
C4—C3—H3119.9C240—C235—H235119.5
C2—C3—H3119.9C235—C236—C237120.27 (13)
C3—C4—C4A117.65 (11)C235—C236—H236119.9
C3—C4—C41122.61 (11)C237—C236—H236119.9
C4A—C4—C41119.74 (11)C238—C237—C236120.46 (13)
C5—C4A—C8A118.15 (11)C238—C237—H237119.8
C5—C4A—C4124.03 (12)C236—C237—H237119.8
C8A—C4A—C4117.82 (11)C237—C238—C239120.91 (12)
C6—C5—C4A120.96 (12)C237—C238—H238119.5
C6—C5—H5119.5C239—C238—H238119.5
C4A—C5—H5119.5C231—C239—C238123.28 (11)
C5—C6—C7120.69 (13)C231—C239—C240118.36 (11)
C5—C6—H6119.7C238—C239—C240118.34 (11)
C7—C6—H6119.7C234—C240—C235121.37 (12)
C8—C7—C6120.33 (12)C234—C240—C239119.67 (12)
C8—C7—H7119.8C235—C240—C239118.96 (12)
C6—C7—H7119.8C42—C41—C4126.28 (12)
C7—C8—C8A120.32 (12)C42—C41—H41116.9
C7—C8—H8119.8C4—C41—H41116.9
C8A—C8—H8119.8C41—C42—C421124.84 (12)
N1—C8A—C8117.27 (11)C41—C42—H42117.6
N1—C8A—C4A123.19 (11)C421—C42—H42117.6
C8—C8A—C4A119.54 (12)C422—C421—C426118.33 (11)
C22—C21—C2127.55 (11)C422—C421—C42119.35 (11)
C22—C21—H21116.2C426—C421—C42122.32 (11)
C2—C21—H21116.2C423—C422—C421121.48 (12)
C21—C22—C23122.03 (11)C423—C422—H422119.3
C21—C22—H22119.0C421—C422—H422119.3
C23—C22—H22119.0C424—C423—C422117.76 (12)
O23—C23—C22120.72 (11)C424—C423—H423121.1
O23—C23—C231120.67 (11)C422—C423—H423121.1
C22—C23—C231118.59 (11)F424—C424—C425118.03 (11)
C232—C231—C239120.05 (12)F424—C424—C423118.96 (11)
C232—C231—C23119.30 (11)C425—C424—C423123.00 (12)
C239—C231—C23120.63 (11)C424—C425—C426118.55 (12)
C231—C232—C233121.24 (13)C424—C425—H425120.7
C231—C232—H232119.4C426—C425—H425120.7
C233—C232—H232119.4C425—C426—C421120.85 (12)
C234—C233—C232119.99 (13)C425—C426—H426119.6
C234—C233—H233120.0C421—C426—H426119.6
C232—C233—H233120.0
C8A—N1—C2—C30.80 (18)C231—C232—C233—C2341.5 (2)
C8A—N1—C2—C21179.27 (10)C232—C233—C234—C2400.2 (2)
N1—C2—C3—C40.75 (19)C240—C235—C236—C2370.4 (2)
C21—C2—C3—C4179.17 (11)C235—C236—C237—C2380.8 (2)
C2—C3—C4—C4A1.32 (17)C236—C237—C238—C2391.03 (19)
C2—C3—C4—C41179.53 (11)C232—C231—C239—C238177.97 (12)
C3—C4—C4A—C5178.99 (12)C23—C231—C239—C2383.12 (18)
C41—C4—C4A—C50.18 (18)C232—C231—C239—C2400.56 (18)
C3—C4—C4A—C8A0.43 (17)C23—C231—C239—C240178.36 (11)
C41—C4—C4A—C8A179.61 (11)C237—C238—C239—C231178.38 (12)
C8A—C4A—C5—C60.59 (19)C237—C238—C239—C2400.15 (18)
C4—C4A—C5—C6178.83 (12)C233—C234—C240—C235179.40 (13)
C4A—C5—C6—C70.1 (2)C233—C234—C240—C2390.85 (19)
C5—C6—C7—C80.3 (2)C236—C235—C240—C234178.98 (13)
C6—C7—C8—C8A0.1 (2)C236—C235—C240—C2391.26 (19)
C2—N1—C8A—C8177.82 (11)C231—C239—C240—C2340.66 (17)
C2—N1—C8A—C4A1.75 (17)C238—C239—C240—C234179.26 (11)
C7—C8—C8A—N1179.59 (12)C231—C239—C240—C235179.58 (11)
C7—C8—C8A—C4A0.83 (19)C238—C239—C240—C2350.98 (17)
C5—C4A—C8A—N1179.40 (11)C3—C4—C41—C4216.2 (2)
C4—C4A—C8A—N11.14 (18)C4A—C4—C41—C42162.89 (13)
C5—C4A—C8A—C81.05 (18)C4—C41—C42—C421177.12 (12)
C4—C4A—C8A—C8178.41 (11)C41—C42—C421—C422165.01 (13)
N1—C2—C21—C22178.35 (12)C41—C42—C421—C42616.1 (2)
C3—C2—C21—C221.6 (2)C426—C421—C422—C4231.82 (19)
C2—C21—C22—C23174.07 (12)C42—C421—C422—C423179.21 (12)
C21—C22—C23—O23162.87 (12)C421—C422—C423—C4240.7 (2)
C21—C22—C23—C23115.59 (18)C422—C423—C424—F424179.86 (12)
O23—C23—C231—C232122.26 (14)C422—C423—C424—C4250.8 (2)
C22—C23—C231—C23259.28 (16)F424—C424—C425—C426179.83 (12)
O23—C23—C231—C23956.66 (17)C423—C424—C425—C4261.1 (2)
C22—C23—C231—C239121.80 (13)C424—C425—C426—C4210.1 (2)
C239—C231—C232—C2331.6 (2)C422—C421—C426—C4251.50 (19)
C23—C231—C232—C233177.30 (12)C42—C421—C426—C425179.56 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O23i0.952.593.5407 (17)176
C234—H234···N1ii0.952.673.5645 (18)157
C233—H233···Cg2iii0.952.853.6466 (18)142
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x, y+1, z+1.
(E)-3-{4-[(E)-2-(2-Chlorophenyl)ethenyl]quinolin-2-yl}-1-(naphthalen-1-yl)prop-2-en-1-one (IVc) top
Crystal data top
C30H20ClNOF(000) = 928
Mr = 445.92Dx = 1.401 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 3.9184 (1) ÅCell parameters from 5301 reflections
b = 24.6546 (8) Åθ = 2.0–28.4°
c = 21.8833 (6) ŵ = 0.21 mm1
β = 91.271 (1)°T = 100 K
V = 2113.55 (10) Å3Plate, colourless
Z = 40.22 × 0.19 × 0.04 mm
Data collection top
Bruker D8 Venture
diffractometer
5301 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube4855 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.049
φ and ω scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 55
Tmin = 0.912, Tmax = 0.992k = 3332
67339 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0338P)2 + 1.6563P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
5301 reflectionsΔρmax = 0.40 e Å3
298 parametersΔρmin = 0.30 e Å3
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3664 (3)0.47153 (5)0.08950 (6)0.0161 (2)
C20.4073 (4)0.46881 (6)0.14975 (7)0.0152 (3)
C30.2901 (4)0.42458 (6)0.18476 (6)0.0151 (3)
H30.32810.42450.22780.018*
C40.1224 (4)0.38171 (6)0.15751 (6)0.0143 (3)
C4A0.0820 (4)0.38275 (6)0.09235 (6)0.0145 (3)
C50.0797 (4)0.34106 (6)0.05789 (7)0.0176 (3)
H50.16790.31020.07820.021*
C60.1103 (4)0.34475 (6)0.00471 (7)0.0196 (3)
H60.21540.31610.02720.024*
C70.0128 (4)0.39062 (6)0.03577 (7)0.0205 (3)
H70.01290.39290.07900.025*
C80.1693 (4)0.43198 (6)0.00412 (7)0.0184 (3)
H80.25180.46270.02540.022*
C8A0.2082 (4)0.42890 (6)0.06053 (6)0.0148 (3)
C210.5826 (4)0.51511 (6)0.17876 (7)0.0178 (3)
H210.63120.54540.15350.021*
C220.6797 (4)0.51825 (6)0.23760 (7)0.0174 (3)
H220.64250.48810.26360.021*
C230.8443 (4)0.56778 (6)0.26335 (7)0.0175 (3)
O230.9052 (3)0.60714 (4)0.23118 (5)0.0233 (2)
C2310.9320 (4)0.56750 (6)0.33046 (7)0.0168 (3)
C2321.0670 (4)0.52088 (6)0.35632 (7)0.0189 (3)
H2321.08480.48910.33210.023*
C2331.1789 (4)0.51957 (7)0.41798 (7)0.0216 (3)
H2331.27650.48740.43470.026*
C2341.1465 (4)0.56478 (7)0.45382 (7)0.0215 (3)
H2341.22590.56390.49510.026*
C2350.9476 (4)0.65881 (7)0.46783 (7)0.0225 (3)
H2351.02340.65780.50930.027*
C2360.7928 (4)0.70462 (7)0.44520 (8)0.0243 (3)
H2360.76020.73510.47100.029*
C2370.6820 (4)0.70650 (6)0.38349 (8)0.0218 (3)
H2370.57320.73830.36820.026*
C2380.7287 (4)0.66318 (6)0.34518 (7)0.0191 (3)
H2380.65420.66540.30360.023*
C2390.8878 (4)0.61501 (6)0.36721 (7)0.0165 (3)
C2400.9962 (4)0.61276 (6)0.42998 (7)0.0185 (3)
C410.0132 (4)0.33695 (6)0.19433 (7)0.0161 (3)
H410.03550.30210.17620.019*
C420.1064 (4)0.34340 (6)0.25235 (7)0.0162 (3)
H420.07550.37850.26950.019*
C4210.2508 (4)0.30209 (6)0.29209 (6)0.0152 (3)
C4220.4071 (4)0.31632 (6)0.34698 (7)0.0178 (3)
Cl420.43548 (11)0.38464 (2)0.36900 (2)0.02615 (11)
C4230.5499 (4)0.27812 (7)0.38518 (7)0.0225 (3)
H4230.65260.28910.42210.027*
C4240.5418 (4)0.22379 (7)0.36909 (7)0.0237 (3)
H4240.64340.19740.39460.028*
C4250.3846 (4)0.20784 (7)0.31554 (7)0.0216 (3)
H4250.37540.17050.30480.026*
C4260.2418 (4)0.24645 (6)0.27795 (7)0.0179 (3)
H4260.13480.23510.24160.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0176 (6)0.0149 (6)0.0158 (6)0.0018 (5)0.0016 (5)0.0015 (5)
C20.0146 (6)0.0152 (7)0.0159 (7)0.0019 (5)0.0004 (5)0.0005 (5)
C30.0159 (6)0.0166 (7)0.0128 (6)0.0018 (5)0.0005 (5)0.0008 (5)
C40.0132 (6)0.0156 (6)0.0142 (6)0.0028 (5)0.0011 (5)0.0009 (5)
C4A0.0137 (6)0.0153 (6)0.0145 (6)0.0032 (5)0.0015 (5)0.0000 (5)
C50.0181 (7)0.0174 (7)0.0174 (7)0.0003 (5)0.0004 (5)0.0006 (5)
C60.0214 (7)0.0205 (7)0.0169 (7)0.0004 (6)0.0028 (6)0.0031 (6)
C70.0246 (7)0.0230 (8)0.0140 (7)0.0048 (6)0.0008 (6)0.0001 (6)
C80.0212 (7)0.0192 (7)0.0148 (7)0.0044 (6)0.0021 (5)0.0032 (5)
C8A0.0154 (6)0.0151 (6)0.0139 (6)0.0038 (5)0.0014 (5)0.0004 (5)
C210.0194 (7)0.0149 (7)0.0193 (7)0.0001 (5)0.0038 (5)0.0005 (5)
C220.0191 (7)0.0148 (7)0.0185 (7)0.0017 (5)0.0032 (5)0.0002 (5)
C230.0180 (7)0.0165 (7)0.0180 (7)0.0004 (5)0.0025 (5)0.0009 (5)
O230.0323 (6)0.0167 (5)0.0209 (6)0.0036 (4)0.0021 (5)0.0012 (4)
C2310.0153 (6)0.0171 (7)0.0180 (7)0.0021 (5)0.0015 (5)0.0002 (5)
C2320.0202 (7)0.0165 (7)0.0201 (7)0.0003 (5)0.0025 (6)0.0005 (6)
C2330.0210 (7)0.0208 (7)0.0231 (8)0.0017 (6)0.0003 (6)0.0057 (6)
C2340.0213 (7)0.0266 (8)0.0166 (7)0.0010 (6)0.0018 (6)0.0033 (6)
C2350.0261 (8)0.0250 (8)0.0164 (7)0.0043 (6)0.0030 (6)0.0031 (6)
C2360.0296 (8)0.0198 (7)0.0238 (8)0.0040 (6)0.0084 (6)0.0052 (6)
C2370.0246 (8)0.0166 (7)0.0246 (8)0.0001 (6)0.0055 (6)0.0008 (6)
C2380.0208 (7)0.0182 (7)0.0183 (7)0.0011 (6)0.0032 (6)0.0007 (6)
C2390.0153 (6)0.0164 (7)0.0178 (7)0.0030 (5)0.0024 (5)0.0007 (5)
C2400.0181 (7)0.0191 (7)0.0185 (7)0.0043 (5)0.0026 (5)0.0008 (6)
C410.0175 (7)0.0158 (7)0.0150 (7)0.0001 (5)0.0011 (5)0.0010 (5)
C420.0172 (6)0.0156 (7)0.0158 (7)0.0008 (5)0.0002 (5)0.0003 (5)
C4210.0136 (6)0.0199 (7)0.0122 (6)0.0016 (5)0.0018 (5)0.0026 (5)
C4220.0173 (7)0.0208 (7)0.0152 (7)0.0031 (5)0.0012 (5)0.0004 (5)
Cl420.0349 (2)0.0250 (2)0.01872 (18)0.00561 (16)0.00466 (15)0.00432 (14)
C4230.0197 (7)0.0333 (9)0.0146 (7)0.0022 (6)0.0019 (6)0.0041 (6)
C4240.0189 (7)0.0311 (9)0.0211 (8)0.0033 (6)0.0029 (6)0.0121 (6)
C4250.0216 (7)0.0204 (7)0.0224 (8)0.0017 (6)0.0053 (6)0.0041 (6)
C4260.0180 (7)0.0196 (7)0.0160 (7)0.0010 (5)0.0005 (5)0.0009 (5)
Geometric parameters (Å, º) top
N1—C21.3263 (19)C233—H2330.9500
N1—C8A1.3687 (19)C234—C2401.416 (2)
C2—C31.415 (2)C234—H2340.9500
C2—C211.469 (2)C235—C2361.369 (2)
C3—C41.374 (2)C235—C2401.421 (2)
C3—H30.9500C235—H2350.9500
C4—C4A1.4314 (19)C236—C2371.410 (2)
C4—C411.4726 (19)C236—H2360.9500
C4A—C51.416 (2)C237—C2381.373 (2)
C4A—C8A1.428 (2)C237—H2370.9500
C5—C61.375 (2)C238—C2391.421 (2)
C5—H50.9500C238—H2380.9500
C6—C71.410 (2)C239—C2401.430 (2)
C6—H60.9500C41—C421.338 (2)
C7—C81.370 (2)C41—H410.9500
C7—H70.9500C42—C4211.461 (2)
C8—C8A1.422 (2)C42—H420.9500
C8—H80.9500C421—C4221.405 (2)
C21—C221.337 (2)C421—C4261.407 (2)
C21—H210.9500C422—C4231.385 (2)
C22—C231.486 (2)C422—Cl421.7563 (16)
C22—H220.9500C423—C4241.386 (2)
C23—O231.2254 (18)C423—H4230.9500
C23—C2311.501 (2)C424—C4251.393 (2)
C231—C2321.381 (2)C424—H4240.9500
C231—C2391.434 (2)C425—C4261.384 (2)
C232—C2331.410 (2)C425—H4250.9500
C232—H2320.9500C426—H4260.9500
C233—C2341.370 (2)
C2—N1—C8A117.72 (12)C233—C234—C240120.78 (14)
N1—C2—C3122.93 (13)C233—C234—H234119.6
N1—C2—C21115.80 (13)C240—C234—H234119.6
C3—C2—C21121.27 (13)C236—C235—C240120.82 (15)
C4—C3—C2121.04 (13)C236—C235—H235119.6
C4—C3—H3119.5C240—C235—H235119.6
C2—C3—H3119.5C235—C236—C237119.87 (15)
C3—C4—C4A117.39 (13)C235—C236—H236120.1
C3—C4—C41120.93 (13)C237—C236—H236120.1
C4A—C4—C41121.68 (13)C238—C237—C236121.12 (15)
C5—C4A—C8A118.32 (13)C238—C237—H237119.4
C5—C4A—C4123.77 (13)C236—C237—H237119.4
C8A—C4A—C4117.91 (13)C237—C238—C239120.44 (15)
C6—C5—C4A120.69 (14)C237—C238—H238119.8
C6—C5—H5119.7C239—C238—H238119.8
C4A—C5—H5119.7C238—C239—C240118.51 (14)
C5—C6—C7120.66 (14)C238—C239—C231123.38 (14)
C5—C6—H6119.7C240—C239—C231118.05 (13)
C7—C6—H6119.7C234—C240—C235120.87 (14)
C8—C7—C6120.48 (14)C234—C240—C239119.91 (14)
C8—C7—H7119.8C235—C240—C239119.22 (14)
C6—C7—H7119.8C42—C41—C4122.64 (14)
C7—C8—C8A120.02 (14)C42—C41—H41118.7
C7—C8—H8120.0C4—C41—H41118.7
C8A—C8—H8120.0C41—C42—C421126.81 (14)
N1—C8A—C8117.21 (13)C41—C42—H42116.6
N1—C8A—C4A122.97 (13)C421—C42—H42116.6
C8—C8A—C4A119.82 (13)C422—C421—C426116.41 (13)
C22—C21—C2125.56 (14)C422—C421—C42121.12 (14)
C22—C21—H21117.2C426—C421—C42122.46 (13)
C2—C21—H21117.2C423—C422—C421122.40 (15)
C21—C22—C23121.64 (14)C423—C422—Cl42117.23 (12)
C21—C22—H22119.2C421—C422—Cl42120.36 (12)
C23—C22—H22119.2C422—C423—C424119.46 (15)
O23—C23—C22121.42 (14)C422—C423—H423120.3
O23—C23—C231121.50 (14)C424—C423—H423120.3
C22—C23—C231117.08 (13)C423—C424—C425120.01 (15)
C232—C231—C239120.00 (14)C423—C424—H424120.0
C232—C231—C23118.82 (13)C425—C424—H424120.0
C239—C231—C23121.16 (13)C426—C425—C424119.86 (15)
C231—C232—C233121.29 (14)C426—C425—H425120.1
C231—C232—H232119.4C424—C425—H425120.1
C233—C232—H232119.4C425—C426—C421121.84 (14)
C234—C233—C232119.89 (14)C425—C426—H426119.1
C234—C233—H233120.1C421—C426—H426119.1
C232—C233—H233120.1
C8A—N1—C2—C31.1 (2)C232—C233—C234—C2401.1 (2)
C8A—N1—C2—C21179.16 (12)C240—C235—C236—C2370.5 (2)
N1—C2—C3—C40.6 (2)C235—C236—C237—C2380.5 (2)
C21—C2—C3—C4179.15 (13)C236—C237—C238—C2390.6 (2)
C2—C3—C4—C4A2.1 (2)C237—C238—C239—C2400.2 (2)
C2—C3—C4—C41177.15 (13)C237—C238—C239—C231177.35 (14)
C3—C4—C4A—C5178.86 (13)C232—C231—C239—C238175.36 (14)
C41—C4—C4A—C51.9 (2)C23—C231—C239—C2386.6 (2)
C3—C4—C4A—C8A2.02 (19)C232—C231—C239—C2401.8 (2)
C41—C4—C4A—C8A177.26 (13)C23—C231—C239—C240176.23 (13)
C8A—C4A—C5—C60.8 (2)C233—C234—C240—C235176.98 (15)
C4—C4A—C5—C6179.89 (14)C233—C234—C240—C2392.3 (2)
C4A—C5—C6—C71.2 (2)C236—C235—C240—C234178.02 (15)
C5—C6—C7—C80.9 (2)C236—C235—C240—C2391.3 (2)
C6—C7—C8—C8A0.1 (2)C238—C239—C240—C234178.16 (14)
C2—N1—C8A—C8179.29 (13)C231—C239—C240—C2340.9 (2)
C2—N1—C8A—C4A1.1 (2)C238—C239—C240—C2351.2 (2)
C7—C8—C8A—N1179.95 (14)C231—C239—C240—C235178.45 (14)
C7—C8—C8A—C4A0.4 (2)C3—C4—C41—C4227.2 (2)
C5—C4A—C8A—N1179.58 (13)C4A—C4—C41—C42152.07 (14)
C4—C4A—C8A—N10.4 (2)C4—C41—C42—C421178.41 (13)
C5—C4A—C8A—C80.0 (2)C41—C42—C421—C422165.79 (15)
C4—C4A—C8A—C8179.14 (13)C41—C42—C421—C42614.2 (2)
N1—C2—C21—C22173.04 (14)C426—C421—C422—C4230.8 (2)
C3—C2—C21—C227.2 (2)C42—C421—C422—C423179.18 (14)
C2—C21—C22—C23177.62 (14)C426—C421—C422—Cl42179.56 (11)
C21—C22—C23—O231.9 (2)C42—C421—C422—Cl420.5 (2)
C21—C22—C23—C231177.99 (14)C421—C422—C423—C4240.4 (2)
O23—C23—C231—C232139.12 (16)Cl42—C422—C423—C424178.40 (12)
C22—C23—C231—C23241.01 (19)C422—C423—C424—C4251.4 (2)
O23—C23—C231—C23938.9 (2)C423—C424—C425—C4261.1 (2)
C22—C23—C231—C239140.95 (14)C424—C425—C426—C4210.2 (2)
C239—C231—C232—C2333.1 (2)C422—C421—C426—C4251.1 (2)
C23—C231—C232—C233174.98 (14)C42—C421—C426—C425178.92 (14)
C231—C232—C233—C2341.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N1i0.952.633.551 (2)163
C425—H425···O23ii0.952.553.290 (2)134
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y1/2, z+1/2.
Selected torsion angles (°) for compounds (IVa)–(IVc) top
Parameter(IVa)(IVb)(IVc)
N1—C2—C21—C22-178.23)12)-178.25 (12)-178.04 (14)
C21—C22—C23—O23163.64 (12)162.97 (12)-1.9 (2)
C21—C22—C23—C231-14.95 (19)-15.59 (18)169.99 (14)
C22—C23—C231—C232-61.76 (17)-59.28 (16)41.01 (19)
C3—C4—C41—C4216.1 (2)16.2 (2)27.2 (2)
C41—C42—C421—C422166.57 (13)165.01 (13)-165.79 (15)
Hydrogen bonds and short intermolecular contacts (Å, °) for compounds (IVa)–(IVc) top
CompoundD—H···AD—HH···AD···AD—H···A
(IVa)C22—H22···O23i0.952.573.5183 (17)177
C234—H234···N1ii0.952.603.4207 (17)145
C422—H422···Cg1i0.952.933.7418 (16)144
(IVb)C22—H22···O23i0.952.593.5407 (17)176
C234—H234···N1iii0.952.673.5645 (18)157
C233—H233···Cg2iv0.952.853.6466 (18)142
(IVc)C8—H8···N1ii0.952.633.551 (2)163
C425—H425···O23v0.952.553.290 (2)134
Cg1 and Cg2 represent the centroids of the C231–C234/C240/C239 and C421–C426 rings, respectively.

Symmetry codes: (i) -x, -y+, -z+1; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+2, -z+2; (iv) x, y+1, z+1; (v) -x+1, y-1/2, -z+1/2.
 

Acknowledgements

JC and ID thank the Centro de Instrumentación Científico-Técnica of the Universidad de Jaén (UJA) and its staff for the data collection. AP is grateful for support from Vicerrectoría de Investigación y Extensión of the Industrial University of Santander. JC thanks the Universidad de Jaén and the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucá, Spain) for financial support. ID also thanks Vicerrectoría de Investigación of Universidad de Jaén for a PhD Scholar fellowship.

Funding information

Funding for this research was provided by: Vicerrectoría de Investigación y Extensión of the Industrial University of Santander (grant No. 2680).

References

First citationAbbas Bukhari, S. N., Jasamal, M. & Jantan, I. (2012). Mini Rev. Med. Chem. 12, 394–1403.  Google Scholar
First citationAlacid, E. & Nájera, C. (2009). J. Org. Chem. 74, 8191–8195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAndrade, J. T., Santos, F. R. S., Lima, W. G., Sousa, C. D. F., Oliveira, L. S. F. M., Ribeiro, R. I. M. A., Gomes, A. J. P. S., Araújo, M. G. F., Villar, J. A. F. P. & Ferreira, J. M. S. (2018). J. Antibiot. 71, 702–712.  CrossRef CAS Google Scholar
First citationArdila, D. M., Rodríguez, D. F., Palma, A., Díaz Costa, I., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 671–680.  CSD CrossRef IUCr Journals Google Scholar
First citationAtukuri, D., Vijayalaxmi, S., Sanjeevamurthy, R., Vidya, L., Prasannakumar, R. & Raghavendra, M. M. (2020). Bioorg. Chem. 105, 104419.  CrossRef PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarvalho Tavares, L. de, Johann, S., Maria de Almeida Alves, T., Guerra, J. C., Maria de Souza-Fagundes, E., Cisalpino, P. S., Bortoluzzi, A. J., Caramori, G. F., de Mattos Piccoli, R., Braibante, H. T. S., Braibante, M. E. F. & Pizzolatti, M. G. (2011). Eur. J. Med. Chem. 46, 4448–4456.  PubMed Google Scholar
First citationChaudhari, C., Hakim Siddiki, S. M. A. & Shimizu, K. I. (2013). Tetrahedron Lett. 54, 6490–6493.  CrossRef CAS Google Scholar
First citationChabukswar, A. R., Kuchekar, B. S., Jagdale, S. C., Lokhande, P. D., Chabukswar, V. V., Shisodia, S. U., Mahabal, R. H., Londhe, A. M. & Ojha, N. S. (2016). Arabian Journal of Chemistry, 9, 704–712.  CrossRef CAS Google Scholar
First citationCieslik, W., Musiol, R., Nycz, J. E., Jampilek, J., Vejsova, M., Wolff, M., Machura, B. & Polanski, J. (2012). Bioorg. Med. Chem. 20, 6960–6968.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDabiri, M., Salehi, P., Baghbanzadeh, M. & Nikcheh, M. S. (2008). Tetrahedron Lett. 49, 5366–5368.  CrossRef CAS Google Scholar
First citationDave, S. S., Ghatole, A. M., Rahatgaonkar, A. M., Chorghade, M. S., Chauhan, P. & Srivastava, K. (2009). Indian J. Chem. Sect. B, 48, 1780–1793.  Google Scholar
First citationDomínguez, J. N., León, C., Rodrigues, J., Gamboa de Domínguez, N., Gut, J. & Rosenthal, P. J. (2005). J. Med. Chem. 48, 3654–3658.  Web of Science PubMed Google Scholar
First citationEddarir, S., Cotelle, N., Bakkour, Y. & Rolando, C. (2003). Tetrahedron Lett. 44, 5359–5363.  Web of Science CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, W., Li, Z., Xu, Q. & Li, Y. (2018). RSC Adv. 8, 38844–38849.  CrossRef CAS PubMed Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJamal, Z., Teo, Y.-C. & Lim, G. S. (2016). Tetrahedron, 72, 2132–2138.  Web of Science CrossRef CAS Google Scholar
First citationKim, W., Lee, H., Kim, S., Joo, S., Jeong, S., Yoo, J. W. & Jung, Y. (2019). Eur. J. Pharmacol. 865, 172722.  CrossRef PubMed Google Scholar
First citationKotra, V., Ganapaty, S. & Adapa, S. R. (2010). Indian J. Chem. Sect. B, 49, 1109–1116.  Google Scholar
First citationLuczywo, A., Sauter, I. P., Silva Ferreira, T. C., Cortez, M., Romanelli, G. P., Sathicq, G. & Asís, S. E. (2021). J. Heterocycl. Chem. 58, 822–832.  CrossRef CAS Google Scholar
First citationMeléndez, A., Plata, E., Rodríguez, D., Ardila, D., Guerrero, S., Acosta, L., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804–1822.  Google Scholar
First citationMirzaei, S., Hadizadeh, F., Eisvand, F., Mosaffa, F. & Ghodsi, R. (2020). J. Mol. Struct. 1202, 127310.  CrossRef Google Scholar
First citationMohamed, M. F. A. & Abuo-Rahma, G. E. A. (2020). RSC Adv. 10, 31139–31155.  CrossRef CAS PubMed Google Scholar
First citationMoss, G. P. (1996). Pure Appl. Chem. 68, 2193–2222.  CrossRef CAS Web of Science Google Scholar
First citationMouscadet, J. F. & Desmaële, D. (2010). Molecules, 15, 3048–3078.  CrossRef CAS PubMed Google Scholar
First citationMrozek-Wilczkiewicz, A., Kuczak, M., Malarz, K., Cieślik, W., Spaczyńska, E. & Musiol, R. (2019). Eur. J. Med. Chem. 177, 338–349.  Web of Science CAS PubMed Google Scholar
First citationMusiol, R. (2020). Med. Chem. 16, 141–154.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOuyang, Y., Li, J., Chen, X., Fu, X., Sun, S. & Wu, Q. (2021). Biomolecules, 11, 1–36.  CrossRef Google Scholar
First citationPowers, D. G., Casebier, D. S., Fokas, D., Ryan, W. J., Troth, J. R. & Coffen, D. L. (1998). Tetrahedron, 54, 4085–4096.  Web of Science CrossRef CAS Google Scholar
First citationRao, N. S., Shaik, A. B., Routhu, S. R., Hussaini, S. M. A., Sunkari, S., Rao, A. V. S., Reddy, A. M., Alarifi, A. & Kamal, A. (2017). ChemistrySelect, 2, 2989–2996.  CrossRef CAS Google Scholar
First citationReichwald, C., Shimony, O., Sacerdoti-Sierra, N., Jaffe, C. L. & Kunick, C. (2008). Bioorg. Med. Chem. Lett. 18, 1985–1989.  CrossRef PubMed CAS Google Scholar
First citationRodríguez, D., Guerrero, S. A., Palma, A., Cobo, J. & Glidewell, C. (2020). Acta Cryst. C76, 883–890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRosas-Sánchez, A., Toscano, R. A., López-Cortés, J. G. & Ortega-Alfaro, M. C. (2015). Dalton Trans. 44, 578–590.  PubMed Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationSashidhara, K. V., Kumar, A., Kumar, M., Sarkar, J. & Sinha, S. (2010). Bioorg. Med. Chem. Lett. 20, 7205–7211.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSatish, G., Ashok, P., Kota, L. & Ilangovan, A. (2019). ChemistrySelect, 4, 1346–1349.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVera, D. R., Mantilla, J. P., Palma, A., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 524–530.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVogel, S., Barbic, M., Jürgenliemk, G. & Heilmann, J. (2010). Eur. J. Med. Chem. 45, 2206–2213.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, K.-L., Yu, Y.-C. & Hsia, S.-M. (2021). Cancers, 13, 115.  CrossRef PubMed Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar
First citationXu, M., Wu, P., Shen, F., Ji, J. & Rakesh, K. P. (2019). Bioorg. Chem. 91, 103133.  CrossRef PubMed Google Scholar
First citationZheng, C. J., Jiang, S. M., Chen, Z. H., Ye, B. J. & Piao, H. R. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 689–695.  CrossRef CAS Google Scholar
First citationZhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762–7810.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds