research papers
A three-step pathway from (2-aminophenyl)chalcones to novel styrylquinoline–chalcone hybrids: synthesis and spectroscopic and structural characterization of three examples
aLaboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, United Kingdom
*Correspondence e-mail: cg@st-andrews.ac.uk
Three new styrylquinoline–chalcone hybrids have been synthesized using a three-step pathway starting with Friedländer cyclocondensation between (2-aminophenyl)chalcones and acetone to give 2-methyl-4-styrylquinolines, followed by selective oxidation to the 2-formyl analogues, and finally Claisen–Schmidt condensation between the formyl intermediates and 1-acetylnaphthalene. All intermediates and the final products have been fully characterized by IR and 1H/13C NMR spectroscopy, and by high-resolution and the three products have been characterized by single-crystal X-ray diffraction. The molecular conformations of (E)-3-{4-[(E)-2-phenylethenyl]quinolin-2-yl}-1-(naphthalen-1-yl)prop-2-en-1-one, C30H21NO, (IVa), and (E)-3-{4-[(E)-2-(4-fluorophenyl)ethenyl]quinolin-2-yl}-1-(naphthalen-1-yl)prop-2-en-1-one, C30H20FNO, (IVb), are very similar. In each compound, the molecules are linked into a three-dimensional array by hydrogen bonds, of the C—H⋯O and C—H⋯N types in (IVa), and of the C—H⋯O and C—H⋯π types in (IVb), and by two independent π–π stacking interactions. By contrast, the conformation of the chalcone unit in (E)-3-{4-[(E)-2-(2-chlorophenyl)ethenyl]quinolin-2-yl}-1-(naphthalen-1-yl)prop-2-en-1-one, C30H20ClNO, (IVc), differs from those in (IVa) and (IVb). There are only weak hydrogen bonds in the structure of (IVc), but a single rather weak π–π stacking interaction links the molecules into chains. Comparisons are made with some related structures.
1. Introduction
Styrylquinolines constitute an important group of quinoline derivatives with high medicinal value due to their broad spectrum of bioactivities (Musiol, 2020), finding therapeutic applications as potential anticancer (Gao et al., 2018; Mrozek-Wilczkiewicz et al., 2019), antifungal (Cieslik et al., 2012), antileishmanial (Luczywo et al., 2021) and antiretroviral (Mouscadet & Desmaële, 2010) agents.
Their syntheses have presented a challenge because of the need for harsh reaction conditions and/or expensive catalysts normally required to couple the styryl fragment to the quinoline nucleus (Alacid & Nájera, 2009; Chaudhari et al., 2013; Dabiri et al., 2008; Jamal et al., 2016), although some alternative and versatile methodologies have been also described to overcome such obstacles (Satish et al., 2019; Meléndez et al., 2020).
Chalcones also represent an outstanding class of compounds occurring in diverse natural and synthetic products. Apart from their natural occurrence and synthetic usage, they also show a wide range of biological activities (Zhuang et al., 2017; Mohamed & Abuo-Rahma, 2020), in particular, their antibacterial (Xu et al., 2019), anticolitic (Kim et al., 2019), antifungal (Andrade et al., 2018), antimalarial (Domínguez et al., 2005), antioxidant (Vogel et al., 2010) and antitumour (Sashidhara et al., 2010; Ouyang et al., 2021; Wang et al., 2021) properties. Although several methods have been reported for the construction of the chalcone scaffold (Eddarir et al., 2003; Reichwald et al., 2008; Abbas Bukhari et al., 2012), the base-catalyzed Claisen–Schmidt condensation is still the most convenient in terms of its simplicity and chemical versatility (Powers et al., 1998).
In addition, it is well documented that the combination of the quinoline ring and the chalcone moiety into a single molecular entity results in promising molecular hybrids which are useful intermediates in the design and development of new potential multitarget drugs (Atukuri et al., 2020; Mohamed & Abuo-Rahma, 2020). This class of conjugated compounds are known to possess remarkable antibacterial (Zheng et al., 2011; Rao et al., 2017), antifungal (Rao et al., 2017), antimalarial (Domínguez et al., 2005; Dave et al., 2009), analgesic (Chabukswar et al., 2016), anti-VIH (Chabukswar et al., 2016) and anticancer (Kotra et al., 2010; Mohamed & Abuo-Rahma, 2020) activities. The potential therapeutic properties of such compounds have prompted us to develop different methodologies to access this kind of molecular hybrid (de Carvalho Tavares et al., 2011; Rosas-Sánchez et al., 2015; Meléndez et al., 2020; Mirzaei et al., 2020).
We have recently used Friedländer E)-1-(2-aminophenyl)-3-arylprop-2-en-1-ones of type (I) (see Scheme 1) (Meléndez et al., 2020; Rodríguez et al., 2020). In this work, we describe the application of the same methodology to the preparation of substituted 2-methyl-4-styrylquinolines (IIa)–(IIc) for use as precursors for the synthesis of the novel 4-styrylquinolinyl-2-chalcone molecular hybrids (IVa)–(IVc) in two further steps, involving first the selective oxidation of the 2-methyl group to give the 2-formyl intermediates (III), followed by Claisen–Schmidt condensation to give the target products (IV). We report here the synthesis, spectroscopic characterization and molecular and supramolecular structures of a matched set of three closely-related 4-styrylquinolinyl-2-chalcone hybrids, namely, (E)-1-(naphthalen-1-yl)-3-{4-[(E)-2-phenylethenyl]quinolin-2-yl}prop-2-en-1-one, (IVa), (E)-3-{4-[(E)-2-(4-fluorophenyl)ethenyl]quinolin-2-yl}-1-(naphthalen-1-yl)prop-2-en-1-one, (IVb), and (E)-3-{4-[(E)-2-(2-chlorophenyl)ethenyl]quinolin-2-yl}-1-(naphthalen-1-yl)prop-2-en-1-one, (IVc) (Scheme 1 and Figs. 1–3), which differ only in the nature of the substituents at positions C2 and C4 in the styryl fragment.
reactions to develop facile alternative routes for building novel compounds containing the 4-styrylquinoline framework, including some 4-styrylquinolinyl-3-chalcone hybrids, starting from (2. Experimental
2.1. Synthesis and crystallization
Compounds (IIa) and (IIc) were prepared using the procedure recently described by Vera et al. (2022) for the synthesis of compound (IIb).
Compound (IIa): reaction time 15 h, yield 0.19 g (86%), yellow solid, m.p. 367–369 K, RF = 0.20 (12.5% ethyl acetate–hexane). Compound (IIc): reaction time 14 h, yield 0.21 g (73%), yellow solid, m.p. 388–390 K, RF = 0.22 (12.5% ethyl acetate–hexane).
For the synthesis of compounds (III), a suspension of the appropriate 2-methyl-4-styrylquinoline (II) (1.0 mmol) and selenium dioxide (2.0 mmol) in 1,4-dioxane (5 ml) was stirred and heated at 373 K for the appropriate time. After the complete consumption of (II) [as monitored by v/v) to give the required formyl intermediates (IIIa)–(IIIc) as solid compounds.
(TLC)], dichloromethane (15 ml) was added and the residual solid was removed by filtration. The solvent was removed under reduced pressure and the resulting crude products were purified by flash on silica gel using hexane–ethyl acetate mixtures as (compositions ranged from 7:1 to 2:1Compound (IIIa): reaction time, 1 h, yield 0.23 g (96%), yellow solid, m.p. 421–423 K, RF = 0.31 (9.1% ethyl acetate–hexane). Compound (IIIb): reaction time, 1 h, yield 0.14 g (89%), yellow solid, m.p. 417–419 K, RF = 0.20 (9.1% ethyl acetate–hexane). Compound (IIIc): reaction time, 2 h, yield 0.21 g (92%), pale orange solid, m.p. 431–433 K, RF = 0.28 (9.1% ethyl acetate–hexane).
For the synthesis of compounds (IV), a mixture of the appropriate 2-formyl intermediate (III) (1.0 mmol), 1-acetonaphthone (1.0 mmol) and potassium hydroxide (1.1 mmol) in ethanol (3 ml) was stirred at 298 K for the appropriate time. After complete consumption of (III) (monitored by TLC), the resulting precipitate was collected by filtration, washed with water (15 ml) and ethanol (10 ml), and then recrystallized from chloroform–ethanol to afford the target molecular hybrids (IV).
Compound (IVa): reaction time, 3 h, yield 0.13 g (82%), yellow solid, m.p. 450–452 K, RF = 0.22 (13% ethyl acetate–hexane). Compound (IVb): reaction time, 2 h, yield 0.13 g (81%), yellow solid, m.p. 451–453 K, RF = 0.31 (13% ethyl acetate–hexane). Compound (IVc): reaction time, 1 h, yield 0.14 g (95%), yellow solid, m.p. 441–443 K, RF = 0.20 (9% ethyl acetate–hexane).
Full details of the spectroscopic characterization are included in the supporting information.
2.2. Refinement
Crystal data, data collection and . Two bad outlier reflections (4 and ,,12) were omitted from the data set for compound (IVb). All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions, with C—H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C).
details for compounds (IVa)–(IVc) are summarized in Table 13. Results and discussion
We have recently reported (Vera et al., 2022) a high-yield synthesis of the 2-methyl-4-styrylquinoline (IIb) using the Friedländer cyclocondensation between the chalcone (Ib) (see Scheme 1) and acetone, along with its spectroscopic and crystallographic characterization. Using the same methodology, we have now prepared the corresponding styrylquinolines (IIa) and (IIc) in yields of 86 and 73%, respectively. All of the precursors (IIa)–(IIc) underwent selective oxidation with selenium dioxide to give the corresponding 2-formyl intermediates (IIIa)–(IIIc) with yields in the range 89–96% (see Section 2.1). Finally, Claisen–Schmidt condensation in the intermediates (III) with 1-acetonaphthone (1-acetylnaphthalene) gave the target hybrid products (IV) with yields in the range 81–95%. Compounds (IIa), (IIc), (IIIa)–(IIIc) and (IVa)–(IVc) were all fully characterized by FT–IR and 1H/13C NMR spectroscopy, and by high-resolution (HRMS); full details of the spectroscopic characterization are provided in the supporting information.
The main spectroscopic features for the precursors (IIa) and (IIc) matched perfectly those of previously reported analogues (Vera et al., 2022). The IR spectra of the formyl intermediates (III) showed the characteristic absorption band for the C=O group at 1699–1708 cm−1, and their 1H and 13C NMR spectra contained the corresponding signals for the formyl group in the ranges δ 10.24–10.25 and 194.1–194.2, respectively.
The presence of stretching vibration bands in the range 1727–1731 cm−1, attributed to a conjugated carbonyl group, are the salient features in the IR spectra of compounds (IVa)–(IVc). The formation of molecular hybrids (IV) was established by disappearance of the formyl signals from both the 1H and 13C NMR spectra, and by the appearance of signals from the newly formed 3-arylpropen-1-one fragment. As far as the Claisen–Schmidt condensation is concerned, it proceeded in a highly stereoselective manner, giving exclusively the E-stereoisomers, as indicated by the 1H NMR spectra. The trans configuration of the arylpropen-1-one fragment was deduced on the basis of the coupling constant values (3JHA,HB = 15.9 Hz) between HA and HB (α,β-enonic H atoms), whose signals in the 1H NMR spectra appear at δ 7.91–7.93 and 7.78–7.79, respectively.
We also report here the molecular and supramolecular structures of the hybrid products (IVa)–(IVc) which fully confirm the molecular structures deduced from the spectroscopic data, in particular, the E-configuration of both the styryl and the chalcone moieties (Figs. 1–3). This synthetic pathway (see Scheme 1) is extremely versatile, in that it permits the introduction of substituents in both rings of the quinoline portion (cf. Rodríguez et al., 2020), as well as in the styryl component (Vera et al., 2022), while the Claisen–Schmidt reaction step introduces a very wide range of synthetic options. In addition, the presence of the chalcone unit in the compounds of type (IV) provides scope for an extensive variety of further synthetic elaborations utilizing this fragment (Powers et al., 1998; Mohamed & Abuo-Rahma, 2020).
For each of (IVa)–(IVc), the atom labelling (Figs. 1–3) follows that employed in recent reports on styrylquinoline derivatives (Vera et al., 2022; Ardila et al., 2022). Compounds (IVa) and (IVb) are both triclinic (Table 1), and their corresponding unit-cell repeat distances are fairly similar; however, these compounds are not isomorphous, as the inter-axial angles in (IVa) are all less than 90°, whereas those in (IVb) are all greater than 90°. Moreover, the correponding pairs of angles are not supplementary, especially the β angle. By contrast, the crystals of (IVc) are monoclinic. None of the molecules in the products (IV) exhibits any internal symmetry, so that they are all conformationally chiral (Moss, 1996; Flack & Bernardinelli, 1999); the centrosymmetric space groups (Table 1) confirm that equal numbers of the two conformational enantiomers are present in each case. For each of (IVa)–(IVc), the reference molecule was selected as one having a positive sign for the torsion angle C3—C4—C41—C42 (Table 2). Overall the molecular conformations of (IVa) and (IVb) are quite similar, but that for (IVc) shows a marked difference in the orientation of the acyl fragment relative to the rest of the molecule, corresponding to a rotation of ca 180° around the C22—C23 bond (Table 2 and Figs. 1–3).
|
The supramolecular assembly in compound (IVa) is three-dimensional and it dependes upon a combination of C—H⋯O and C—H⋯N hydrogen bonds (Table 3), and two different π–π stacking interactions. The formation of the three-dimensional framework structure is readily analysed in terms of three one-dimensional substructures (Ferguson et al., 1998a,b; Gregson et al., 2000), which, in the interests of clarity and simplicity, are illustrated separately. Inversion-related pairs of molecules are linked by almost linear C—H⋯O hydrogen bonds to form cyclic centrosymmetric dimers containing an R22(8) (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995) ring, and this dimeric unit can be regarded as the basic building block in the overall structure.
|
The linking of these dimeric units by C—H⋯N hydrogen bonds gives rise to a ribbon running parallel to the [10] direction (Fig. 4), in which R22(8) rings centred at (n, , − n) alternate with R22(20) rings centred at ( + n, , −n), where n represents an integer in each case. The pyridine rings of the molecules at (x, y, z) and (−x + 1, −y + 1, −z + 1) are strictly parallel with an interplanar spacing of 3.2877 (5) Å and a ring-centroid separation of 3.5372 (7) Å, corresponding to a ring-centroid offset of 1.305 (2) Å. This interaction links the R22(8) dimers to generate a second chain, this time running parallel to the [100] direction (Fig. 5). In the final the carbocyclic ring of the quinoline unit at (x, y, z) and the styryl ring at (−x + 1, −y + 2, −z + 1) make an interplanar angle of only 6.37 (7)°; the ring-centroid separation is 3.7818 (9) Å and the shortest perpendicular distance between the centroid of one ring and the plane of the other is 3.4535 (6) Å, corresponding to a ring-centroid offset of 1.541 (2) Å. This interaction links the R22(8) dimers into a chain running parallel to the [110] direction (Fig. 6), and the combination of chains along [100], [110] and [10] generates a three-dimensional structure.
The supramolecular assembly in compound (IVb) is also three-dimensional, built from a combination of C—H⋯O and C—H⋯π hydrogen bonds, and two π–π stacking interactions; the short intermolecular C—H⋯N contact in (IVb) (Table 3) is probably not structurally significant, as the H⋯N distance is only a little less than the sum, 2.70 Å, of the van der Waals radii (Rowland & Taylor, 1996). As in (IVa), the formation of the three-dimensional structure in (IVb) can be analysed in terms of three one-dimensional substructures, based on the linking of the R22(8) dimers formed by the C—H⋯O hydrogen bonds (Table 3). The linking of the R22(8) dimers by the C—H⋯π hydrogen bonds gives rise to a chain of rings running parallel to the [011] direction (Fig. 7) in which the R22(8) rings are centred at (0, + n, + n), and they alternate with the rings formed by C—H⋯π hydrogen bonds which are centred at (0, n, n), where n represents an integer in each case.
The two substructures formed by the π–π stacking interactions are entirely analogous to those formed in (IVa), such that they need no separate illustration. The pyridine rings at (x, y, z) and (−x + 1, −y + 1, −z + 1) in (IVb) have a ring-centroid offset of 1.319 (2) Å, and the carbocyclic ring of the quinoline unit at (x, y, z) and the styryl ring at (−x + 1, −y, −z + 1), which make an interplanar angle of only 2.38 (7)°, have a centroid offset of ca 1.576 (4) Å. These two interactions generate chains of π-stacked dimers running parallel to the [100] and [10] directions, respectively. The combination of chains along [011], [100] and [10] suffices to generate a three-dimensional assembly.
The direction-specific intermolecular interactions in the structure of (IVc) are all weak. There are C—H⋯N contacts between inversion-related pairs of molecules (Table 3); although these are almost linear, the H⋯N and C⋯N distances are long for hydrogen bonds and, indeed, checkCIF (Spek, 2020; https://checkcif.iucr.org/) raises a mild alert on these grounds. These contacts are perhaps best regarded as being close to the margin of structural significance, but they serve to link the molecules into cyclic centrosymmetric R22(8) dimers (Fig. 8). On the other hand, the short intermolecular C—H⋯O contact (Table 3) has a very small D—H⋯A angle, such that the associated interaction is probably negligible (Wood et al., 2009). In addition, molecules of (IVc) which are related by translation along [100] are stacked in register and for the ring containing atom C231 (Fig. 3), the interplanar spacing is 3.5843 (6) Å, associated with a ring-centroid separation of 3.9184 (9) Å and a ring-centroid offset of 1.584 (2) Å. This interaction provides a weak link between adjacent molecules, forming a chain running parallel to the [100] direction (Fig. 9), leading overall to a stack of weakly hydrogen-bonded dimers.
It is interesting to note the structural contrasts between compounds (IVa) and (IVb) on the one hand, and compound (IVc) on the other, in terms of their space groups (Table 1), their molecular conformations (Table 2 and Figs. 1–3), the range of direction-specific intermolecular interactions and their modes of supramolecular assembly, as discussed above. All these points are associated with a change in the identity and location of a single monoatomic substituent in the styryl unit, but it is not easy to determine whether any one of these factors could be regarded as a possible cause of the effects observed in any, or all, of the others. Although the two triclinic compounds (IVa) and (IVb) have different inter-axial angles (Table 1) and different modes of supramolecular assembly, in both, the assembly is based on a cyclic centrosymmetric R22(8) dimer built from C—H⋯O hydrogen bonds (Table 3). It is thus striking that projections of the dimers in (IVa) and (IVb), viewed along [010], are extremely similar (Fig. 10), despite the different locations of the origin and the different orientations of the axes.
We have recently reported (Vera et al., 2022) the structures of a number of 2-methyl-4-styrylquinolines of type (II) (see Scheme 1; all prepared using Friedländer cyclocondensation reactions, as here). In each of (E)-4-(4-fluorostyryl)-2-methylquinoline and (E)-2-methyl-4-[4-(trifluoromethyl)styryl]quinoline, the molecules are linked into cyclic centrosymmetric dimers by hydrogen bonds, of the C—H⋯N and C—H⋯π types, respectively, and these dimers are further linked by π–π stacking interactions to form sheets in the fluoro compound and chains in the trifluoromethyl analogue. By contrast, there are no significant intermolecular interactions in the structure of (E)-4-(2,6-dichlorostyryl)-2-methylquinoline. All of these type (II) compounds have molecular skeletons in which the styryl and quinoline units are non-coplanar, as reported here for compounds (IVa)–(IVc). This appears to be the case for all of the 4-styrylquinolines which have been structurally characterized so far, in contrast to the 2- and 8-styrylquinolines, where the two ring systems appear always to be effectively coplanar (Vera et al., 2022; Ardila et al., 2022).
4. Summary
We have developed a highly versatile and efficient three-step synthesis of a novel class of styrylquinoline–chalcone hybrids based on only very simple and readily available starting materials, such as simple 1H/13C NMR and HRMS) three products and all of the intermediates on the pathways leading to them, and we have determined the molecular and supramolecular structures of the three products.
and and we have characterized by spectroscopic means (IR,Supporting information
https://doi.org/10.1107/S2053229622011263/ov3164sup1.cif
contains datablocks global, IVa, IVb, IVc. DOI:Structure factors: contains datablock IVa. DOI: https://doi.org/10.1107/S2053229622011263/ov3164IVasup2.hkl
Structure factors: contains datablock IVb. DOI: https://doi.org/10.1107/S2053229622011263/ov3164IVbsup3.hkl
Structure factors: contains datablock IVc. DOI: https://doi.org/10.1107/S2053229622011263/ov3164IVcsup4.hkl
Spectroscopic data. DOI: https://doi.org/10.1107/S2053229622011263/ov3164sup5.txt
For all structures, data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).C30H21NO | Z = 2 |
Mr = 411.48 | F(000) = 432 |
Triclinic, P1 | Dx = 1.281 Mg m−3 |
a = 9.6151 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.0235 (4) Å | Cell parameters from 4719 reflections |
c = 12.6299 (5) Å | θ = 2.2–27.1° |
α = 67.766 (1)° | µ = 0.08 mm−1 |
β = 71.191 (1)° | T = 100 K |
γ = 84.004 (2)° | Block, yellow |
V = 1066.34 (8) Å3 | 0.12 × 0.10 × 0.05 mm |
Bruker D8 Venture diffractometer | 4719 independent reflections |
Radiation source: INCOATEC high brilliance microfocus sealed tube | 3964 reflections with I > 2σ(I) |
Multilayer mirror monochromator | Rint = 0.052 |
φ and ω scans | θmax = 27.1°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −12→12 |
Tmin = 0.928, Tmax = 0.996 | k = −12→12 |
34856 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.107 | w = 1/[σ2(Fo2) + (0.0422P)2 + 0.5277P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
4719 reflections | Δρmax = 0.28 e Å−3 |
289 parameters | Δρmin = −0.23 e Å−3 |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.58182 (12) | 0.60098 (11) | 0.28402 (9) | 0.0169 (2) | |
C2 | 0.44193 (13) | 0.59239 (13) | 0.35167 (11) | 0.0161 (2) | |
C3 | 0.39095 (13) | 0.65025 (13) | 0.44327 (11) | 0.0164 (2) | |
H3 | 0.2905 | 0.6383 | 0.4906 | 0.020* | |
C4 | 0.48623 (14) | 0.72399 (13) | 0.46437 (11) | 0.0166 (3) | |
C4A | 0.63712 (14) | 0.73772 (13) | 0.39112 (11) | 0.0168 (3) | |
C5 | 0.74710 (14) | 0.81174 (15) | 0.40100 (12) | 0.0208 (3) | |
H5 | 0.7211 | 0.8592 | 0.4569 | 0.025* | |
C6 | 0.89017 (15) | 0.81614 (15) | 0.33148 (12) | 0.0237 (3) | |
H6 | 0.9620 | 0.8676 | 0.3387 | 0.028* | |
C7 | 0.93177 (15) | 0.74485 (15) | 0.24919 (12) | 0.0238 (3) | |
H7 | 1.0319 | 0.7459 | 0.2031 | 0.029* | |
C8 | 0.82877 (14) | 0.67416 (14) | 0.23534 (12) | 0.0213 (3) | |
H8 | 0.8576 | 0.6272 | 0.1791 | 0.026* | |
C8A | 0.67913 (14) | 0.67050 (13) | 0.30442 (11) | 0.0172 (3) | |
C21 | 0.34496 (14) | 0.51785 (13) | 0.32207 (11) | 0.0171 (3) | |
H21 | 0.3905 | 0.4809 | 0.2603 | 0.020* | |
C22 | 0.19959 (14) | 0.49592 (14) | 0.37212 (11) | 0.0188 (3) | |
H22 | 0.1486 | 0.5381 | 0.4294 | 0.023* | |
C23 | 0.11599 (14) | 0.40842 (13) | 0.34124 (11) | 0.0183 (3) | |
O23 | −0.00819 (10) | 0.36329 (11) | 0.40568 (9) | 0.0240 (2) | |
C231 | 0.18810 (14) | 0.37312 (14) | 0.23051 (11) | 0.0181 (3) | |
C232 | 0.22990 (16) | 0.48266 (15) | 0.11968 (12) | 0.0236 (3) | |
H232 | 0.2162 | 0.5799 | 0.1145 | 0.028* | |
C233 | 0.29276 (16) | 0.45308 (16) | 0.01363 (12) | 0.0269 (3) | |
H233 | 0.3186 | 0.5300 | −0.0623 | 0.032* | |
C234 | 0.31646 (15) | 0.31404 (16) | 0.01998 (12) | 0.0241 (3) | |
H234 | 0.3597 | 0.2949 | −0.0517 | 0.029* | |
C235 | 0.30219 (14) | 0.05256 (15) | 0.14063 (13) | 0.0227 (3) | |
H235 | 0.3452 | 0.0324 | 0.0693 | 0.027* | |
C236 | 0.26537 (15) | −0.05852 (15) | 0.24908 (13) | 0.0245 (3) | |
H236 | 0.2835 | −0.1549 | 0.2528 | 0.029* | |
C237 | 0.20025 (15) | −0.03071 (15) | 0.35601 (13) | 0.0228 (3) | |
H237 | 0.1758 | −0.1085 | 0.4314 | 0.027* | |
C238 | 0.17219 (14) | 0.10791 (14) | 0.35158 (12) | 0.0182 (3) | |
H238 | 0.1266 | 0.1251 | 0.4240 | 0.022* | |
C239 | 0.21049 (13) | 0.22633 (14) | 0.23990 (11) | 0.0170 (3) | |
C240 | 0.27737 (13) | 0.19798 (14) | 0.13227 (12) | 0.0188 (3) | |
C41 | 0.43893 (14) | 0.78369 (14) | 0.55991 (11) | 0.0188 (3) | |
H41 | 0.5020 | 0.8535 | 0.5560 | 0.023* | |
C42 | 0.31501 (14) | 0.74817 (14) | 0.65168 (11) | 0.0190 (3) | |
H42 | 0.2497 | 0.6819 | 0.6534 | 0.023* | |
C421 | 0.27082 (14) | 0.80271 (14) | 0.75031 (11) | 0.0177 (3) | |
C422 | 0.12552 (14) | 0.78031 (14) | 0.82574 (12) | 0.0207 (3) | |
H422 | 0.0589 | 0.7283 | 0.8134 | 0.025* | |
C423 | 0.07723 (15) | 0.83292 (15) | 0.91825 (12) | 0.0231 (3) | |
H423 | −0.0221 | 0.8177 | 0.9681 | 0.028* | |
C424 | 0.17382 (15) | 0.90764 (15) | 0.93802 (12) | 0.0233 (3) | |
H424 | 0.1408 | 0.9444 | 1.0009 | 0.028* | |
C425 | 0.31920 (15) | 0.92837 (16) | 0.86518 (12) | 0.0237 (3) | |
H425 | 0.3859 | 0.9787 | 0.8790 | 0.028* | |
C426 | 0.36782 (14) | 0.87625 (15) | 0.77250 (12) | 0.0211 (3) | |
H426 | 0.4677 | 0.8905 | 0.7237 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0182 (5) | 0.0170 (5) | 0.0148 (5) | 0.0001 (4) | −0.0041 (4) | −0.0057 (4) |
C2 | 0.0176 (6) | 0.0142 (6) | 0.0158 (6) | 0.0001 (5) | −0.0056 (5) | −0.0043 (5) |
C3 | 0.0150 (6) | 0.0165 (6) | 0.0164 (6) | 0.0006 (5) | −0.0038 (5) | −0.0056 (5) |
C4 | 0.0186 (6) | 0.0154 (6) | 0.0156 (6) | 0.0012 (5) | −0.0063 (5) | −0.0048 (5) |
C4A | 0.0175 (6) | 0.0170 (6) | 0.0151 (6) | −0.0003 (5) | −0.0058 (5) | −0.0042 (5) |
C5 | 0.0202 (6) | 0.0254 (7) | 0.0182 (6) | −0.0023 (5) | −0.0065 (5) | −0.0083 (5) |
C6 | 0.0187 (6) | 0.0291 (7) | 0.0235 (7) | −0.0047 (5) | −0.0078 (5) | −0.0076 (6) |
C7 | 0.0154 (6) | 0.0297 (7) | 0.0218 (7) | −0.0018 (5) | −0.0024 (5) | −0.0067 (6) |
C8 | 0.0197 (6) | 0.0235 (7) | 0.0180 (6) | 0.0005 (5) | −0.0024 (5) | −0.0076 (5) |
C8A | 0.0185 (6) | 0.0163 (6) | 0.0148 (6) | −0.0001 (5) | −0.0055 (5) | −0.0033 (5) |
C21 | 0.0205 (6) | 0.0156 (6) | 0.0166 (6) | 0.0013 (5) | −0.0065 (5) | −0.0071 (5) |
C22 | 0.0205 (6) | 0.0191 (6) | 0.0192 (6) | 0.0006 (5) | −0.0057 (5) | −0.0100 (5) |
C23 | 0.0178 (6) | 0.0171 (6) | 0.0210 (6) | 0.0015 (5) | −0.0070 (5) | −0.0075 (5) |
O23 | 0.0173 (5) | 0.0283 (5) | 0.0287 (5) | −0.0028 (4) | −0.0030 (4) | −0.0153 (4) |
C231 | 0.0164 (6) | 0.0214 (6) | 0.0196 (6) | −0.0010 (5) | −0.0073 (5) | −0.0091 (5) |
C232 | 0.0278 (7) | 0.0203 (6) | 0.0235 (7) | −0.0006 (5) | −0.0094 (6) | −0.0074 (5) |
C233 | 0.0304 (7) | 0.0290 (7) | 0.0175 (6) | −0.0032 (6) | −0.0073 (6) | −0.0034 (5) |
C234 | 0.0231 (7) | 0.0345 (8) | 0.0174 (6) | −0.0002 (6) | −0.0062 (5) | −0.0121 (6) |
C235 | 0.0179 (6) | 0.0307 (7) | 0.0289 (7) | 0.0045 (5) | −0.0096 (5) | −0.0199 (6) |
C236 | 0.0227 (7) | 0.0221 (7) | 0.0364 (8) | 0.0045 (5) | −0.0141 (6) | −0.0157 (6) |
C237 | 0.0213 (6) | 0.0212 (6) | 0.0269 (7) | −0.0008 (5) | −0.0115 (5) | −0.0061 (5) |
C238 | 0.0151 (6) | 0.0234 (6) | 0.0196 (6) | −0.0005 (5) | −0.0073 (5) | −0.0097 (5) |
C239 | 0.0129 (6) | 0.0218 (6) | 0.0200 (6) | −0.0003 (5) | −0.0073 (5) | −0.0097 (5) |
C240 | 0.0146 (6) | 0.0260 (7) | 0.0212 (6) | 0.0004 (5) | −0.0080 (5) | −0.0122 (5) |
C41 | 0.0184 (6) | 0.0198 (6) | 0.0215 (6) | −0.0006 (5) | −0.0070 (5) | −0.0103 (5) |
C42 | 0.0187 (6) | 0.0209 (6) | 0.0210 (6) | −0.0001 (5) | −0.0074 (5) | −0.0105 (5) |
C421 | 0.0178 (6) | 0.0189 (6) | 0.0181 (6) | 0.0018 (5) | −0.0069 (5) | −0.0077 (5) |
C422 | 0.0179 (6) | 0.0240 (7) | 0.0222 (6) | −0.0016 (5) | −0.0062 (5) | −0.0102 (5) |
C423 | 0.0163 (6) | 0.0299 (7) | 0.0225 (7) | 0.0003 (5) | −0.0028 (5) | −0.0115 (6) |
C424 | 0.0240 (7) | 0.0296 (7) | 0.0204 (6) | 0.0032 (5) | −0.0061 (5) | −0.0149 (6) |
C425 | 0.0207 (6) | 0.0308 (7) | 0.0259 (7) | −0.0016 (5) | −0.0083 (5) | −0.0156 (6) |
C426 | 0.0160 (6) | 0.0273 (7) | 0.0217 (6) | −0.0005 (5) | −0.0044 (5) | −0.0118 (5) |
N1—C2 | 1.3320 (16) | C233—H233 | 0.9500 |
N1—C8A | 1.3619 (16) | C234—C240 | 1.4160 (19) |
C2—C3 | 1.4134 (17) | C234—H234 | 0.9500 |
C2—C21 | 1.4660 (17) | C235—C236 | 1.363 (2) |
C3—C4 | 1.3801 (17) | C235—C240 | 1.4212 (19) |
C3—H3 | 0.9500 | C235—H235 | 0.9500 |
C4—C4A | 1.4351 (17) | C236—C237 | 1.4131 (19) |
C4—C41 | 1.4685 (17) | C236—H236 | 0.9500 |
C4A—C5 | 1.4154 (18) | C237—C238 | 1.3708 (19) |
C4A—C8A | 1.4256 (17) | C237—H237 | 0.9500 |
C5—C6 | 1.3674 (18) | C238—C239 | 1.4225 (18) |
C5—H5 | 0.9500 | C238—H238 | 0.9500 |
C6—C7 | 1.409 (2) | C239—C240 | 1.4257 (17) |
C6—H6 | 0.9500 | C41—C42 | 1.3325 (18) |
C7—C8 | 1.3659 (19) | C41—H41 | 0.9500 |
C7—H7 | 0.9500 | C42—C421 | 1.4686 (17) |
C8—C8A | 1.4178 (17) | C42—H42 | 0.9500 |
C8—H8 | 0.9500 | C421—C422 | 1.3983 (18) |
C21—C22 | 1.3383 (18) | C421—C426 | 1.4001 (18) |
C21—H21 | 0.9500 | C422—C423 | 1.3871 (18) |
C22—C23 | 1.4750 (17) | C422—H422 | 0.9500 |
C22—H22 | 0.9500 | C423—C424 | 1.3865 (19) |
C23—O23 | 1.2249 (16) | C423—H423 | 0.9500 |
C23—C231 | 1.5032 (17) | C424—C425 | 1.3893 (19) |
C231—C232 | 1.3758 (18) | C424—H424 | 0.9500 |
C231—C239 | 1.4295 (18) | C425—C426 | 1.3858 (18) |
C232—C233 | 1.4101 (19) | C425—H425 | 0.9500 |
C232—H232 | 0.9500 | C426—H426 | 0.9500 |
C233—C234 | 1.364 (2) | ||
C2—N1—C8A | 117.65 (10) | C233—C234—C240 | 120.75 (12) |
N1—C2—C3 | 123.31 (11) | C233—C234—H234 | 119.6 |
N1—C2—C21 | 113.81 (11) | C240—C234—H234 | 119.6 |
C3—C2—C21 | 122.88 (11) | C236—C235—C240 | 121.18 (12) |
C4—C3—C2 | 120.41 (11) | C236—C235—H235 | 119.4 |
C4—C3—H3 | 119.8 | C240—C235—H235 | 119.4 |
C2—C3—H3 | 119.8 | C235—C236—C237 | 120.20 (13) |
C3—C4—C4A | 117.54 (11) | C235—C236—H236 | 119.9 |
C3—C4—C41 | 122.35 (11) | C237—C236—H236 | 119.9 |
C4A—C4—C41 | 120.08 (11) | C238—C237—C236 | 120.38 (13) |
C5—C4A—C8A | 118.05 (11) | C238—C237—H237 | 119.8 |
C5—C4A—C4 | 124.07 (11) | C236—C237—H237 | 119.8 |
C8A—C4A—C4 | 117.87 (11) | C237—C238—C239 | 120.80 (12) |
C6—C5—C4A | 121.14 (12) | C237—C238—H238 | 119.6 |
C6—C5—H5 | 119.4 | C239—C238—H238 | 119.6 |
C4A—C5—H5 | 119.4 | C238—C239—C240 | 118.67 (12) |
C5—C6—C7 | 120.44 (12) | C238—C239—C231 | 123.07 (11) |
C5—C6—H6 | 119.8 | C240—C239—C231 | 118.25 (12) |
C7—C6—H6 | 119.8 | C234—C240—C235 | 121.50 (12) |
C8—C7—C6 | 120.33 (12) | C234—C240—C239 | 119.74 (12) |
C8—C7—H7 | 119.8 | C235—C240—C239 | 118.76 (12) |
C6—C7—H7 | 119.8 | C42—C41—C4 | 125.49 (12) |
C7—C8—C8A | 120.39 (12) | C42—C41—H41 | 117.3 |
C7—C8—H8 | 119.8 | C4—C41—H41 | 117.3 |
C8A—C8—H8 | 119.8 | C41—C42—C421 | 125.55 (12) |
N1—C8A—C8 | 117.28 (11) | C41—C42—H42 | 117.2 |
N1—C8A—C4A | 123.14 (11) | C421—C42—H42 | 117.2 |
C8—C8A—C4A | 119.58 (12) | C422—C421—C426 | 118.32 (11) |
C22—C21—C2 | 127.43 (11) | C422—C421—C42 | 118.74 (11) |
C22—C21—H21 | 116.3 | C426—C421—C42 | 122.94 (11) |
C2—C21—H21 | 116.3 | C423—C422—C421 | 121.01 (12) |
C21—C22—C23 | 122.17 (11) | C423—C422—H422 | 119.5 |
C21—C22—H22 | 118.9 | C421—C422—H422 | 119.5 |
C23—C22—H22 | 118.9 | C424—C423—C422 | 120.07 (12) |
O23—C23—C22 | 120.70 (11) | C424—C423—H423 | 120.0 |
O23—C23—C231 | 120.84 (11) | C422—C423—H423 | 120.0 |
C22—C23—C231 | 118.45 (11) | C423—C424—C425 | 119.54 (12) |
C232—C231—C239 | 120.06 (12) | C423—C424—H424 | 120.2 |
C232—C231—C23 | 119.70 (12) | C425—C424—H424 | 120.2 |
C239—C231—C23 | 120.23 (11) | C426—C425—C424 | 120.57 (12) |
C231—C232—C233 | 121.14 (13) | C426—C425—H425 | 119.7 |
C231—C232—H232 | 119.4 | C424—C425—H425 | 119.7 |
C233—C232—H232 | 119.4 | C425—C426—C421 | 120.47 (12) |
C234—C233—C232 | 120.04 (13) | C425—C426—H426 | 119.8 |
C234—C233—H233 | 120.0 | C421—C426—H426 | 119.8 |
C232—C233—H233 | 120.0 | ||
C8A—N1—C2—C3 | −0.63 (18) | C23—C231—C232—C233 | −177.60 (12) |
C8A—N1—C2—C21 | 179.07 (11) | C231—C232—C233—C234 | −1.6 (2) |
N1—C2—C3—C4 | 2.04 (19) | C232—C233—C234—C240 | 0.6 (2) |
C21—C2—C3—C4 | −177.63 (11) | C240—C235—C236—C237 | 0.5 (2) |
C2—C3—C4—C4A | −0.60 (17) | C235—C236—C237—C238 | 0.7 (2) |
C2—C3—C4—C41 | −178.86 (11) | C236—C237—C238—C239 | −1.23 (19) |
C3—C4—C4A—C5 | 179.13 (12) | C237—C238—C239—C240 | 0.66 (18) |
C41—C4—C4A—C5 | −2.57 (19) | C237—C238—C239—C231 | −177.90 (12) |
C3—C4—C4A—C8A | −1.96 (17) | C232—C231—C239—C238 | 178.94 (12) |
C41—C4—C4A—C8A | 176.34 (11) | C23—C231—C239—C238 | −2.34 (18) |
C8A—C4A—C5—C6 | −1.44 (19) | C232—C231—C239—C240 | 0.38 (18) |
C4—C4A—C5—C6 | 177.46 (12) | C23—C231—C239—C240 | 179.10 (11) |
C4A—C5—C6—C7 | −0.9 (2) | C233—C234—C240—C235 | −179.56 (13) |
C5—C6—C7—C8 | 2.0 (2) | C233—C234—C240—C239 | 0.9 (2) |
C6—C7—C8—C8A | −0.6 (2) | C236—C235—C240—C234 | 179.47 (12) |
C2—N1—C8A—C8 | 177.54 (11) | C236—C235—C240—C239 | −1.02 (19) |
C2—N1—C8A—C4A | −2.19 (18) | C238—C239—C240—C234 | 179.98 (11) |
C7—C8—C8A—N1 | 178.51 (12) | C231—C239—C240—C234 | −1.40 (18) |
C7—C8—C8A—C4A | −1.75 (19) | C238—C239—C240—C235 | 0.45 (17) |
C5—C4A—C8A—N1 | −177.52 (12) | C231—C239—C240—C235 | 179.07 (11) |
C4—C4A—C8A—N1 | 3.50 (18) | C3—C4—C41—C42 | 16.1 (2) |
C5—C4A—C8A—C8 | 2.75 (18) | C4A—C4—C41—C42 | −162.09 (13) |
C4—C4A—C8A—C8 | −176.22 (11) | C4—C41—C42—C421 | 176.97 (12) |
N1—C2—C21—C22 | −178.23 (12) | C41—C42—C421—C422 | 166.57 (13) |
C3—C2—C21—C22 | 1.5 (2) | C41—C42—C421—C426 | −13.5 (2) |
C2—C21—C22—C23 | −174.78 (12) | C426—C421—C422—C423 | 1.8 (2) |
C21—C22—C23—O23 | 163.64 (13) | C42—C421—C422—C423 | −178.31 (12) |
C21—C22—C23—C231 | −14.95 (19) | C421—C422—C423—C424 | −0.7 (2) |
O23—C23—C231—C232 | 119.65 (15) | C422—C423—C424—C425 | −0.5 (2) |
C22—C23—C231—C232 | −61.76 (17) | C423—C424—C425—C426 | 0.6 (2) |
O23—C23—C231—C239 | −59.07 (17) | C424—C425—C426—C421 | 0.5 (2) |
C22—C23—C231—C239 | 119.52 (13) | C422—C421—C426—C425 | −1.6 (2) |
C239—C231—C232—C233 | 1.1 (2) | C42—C421—C426—C425 | 178.45 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C22—H22···O23i | 0.95 | 2.57 | 3.5183 (17) | 177 |
C234—H234···N1ii | 0.95 | 2.60 | 3.4207 (17) | 145 |
C422—H422···Cg1i | 0.95 | 2.93 | 3.7418 (16) | 144 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z. |
C30H20FNO | Z = 2 |
Mr = 429.47 | F(000) = 448 |
Triclinic, P1 | Dx = 1.308 Mg m−3 |
a = 9.6679 (12) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.1279 (12) Å | Cell parameters from 5433 reflections |
c = 12.6482 (13) Å | θ = 2.2–28.3° |
α = 111.420 (4)° | µ = 0.09 mm−1 |
β = 103.871 (4)° | T = 100 K |
γ = 96.632 (5)° | Block, yellow |
V = 1090.7 (2) Å3 | 0.17 × 0.14 × 0.10 mm |
Bruker D8 Venture diffractometer | 5431 independent reflections |
Radiation source: INCOATEC high brilliance microfocus sealed tube | 4465 reflections with I > 2σ(I) |
Multilayer mirror monochromator | Rint = 0.057 |
φ and ω scans | θmax = 28.3°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −12→12 |
Tmin = 0.953, Tmax = 0.992 | k = −13→13 |
47863 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.043P)2 + 0.5365P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
5431 reflections | Δρmax = 0.35 e Å−3 |
298 parameters | Δρmin = −0.25 e Å−3 |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.57874 (12) | 0.61019 (11) | 0.72136 (9) | 0.0178 (2) | |
C2 | 0.44028 (13) | 0.55330 (13) | 0.65293 (11) | 0.0168 (2) | |
C3 | 0.39125 (13) | 0.41037 (13) | 0.56278 (11) | 0.0172 (2) | |
H3 | 0.2913 | 0.3758 | 0.5160 | 0.021* | |
C4 | 0.48798 (13) | 0.32080 (13) | 0.54249 (11) | 0.0169 (2) | |
C4A | 0.63845 (14) | 0.37943 (14) | 0.61400 (11) | 0.0177 (2) | |
C5 | 0.75027 (14) | 0.30146 (15) | 0.60212 (12) | 0.0212 (3) | |
H5 | 0.7266 | 0.2036 | 0.5449 | 0.025* | |
C6 | 0.89199 (15) | 0.36494 (16) | 0.67187 (12) | 0.0248 (3) | |
H6 | 0.9654 | 0.3107 | 0.6626 | 0.030* | |
C7 | 0.93012 (15) | 0.50959 (16) | 0.75711 (12) | 0.0260 (3) | |
H7 | 1.0290 | 0.5525 | 0.8047 | 0.031* | |
C8 | 0.82567 (14) | 0.58873 (15) | 0.77192 (12) | 0.0230 (3) | |
H8 | 0.8523 | 0.6865 | 0.8296 | 0.028* | |
C8A | 0.67734 (14) | 0.52554 (13) | 0.70147 (11) | 0.0181 (2) | |
C21 | 0.34263 (14) | 0.65308 (13) | 0.67992 (11) | 0.0177 (2) | |
H21 | 0.3870 | 0.7476 | 0.7408 | 0.021* | |
C22 | 0.19812 (14) | 0.62633 (13) | 0.62864 (11) | 0.0186 (2) | |
H22 | 0.1478 | 0.5306 | 0.5728 | 0.022* | |
C23 | 0.11484 (14) | 0.74090 (13) | 0.65625 (11) | 0.0182 (2) | |
O23 | −0.00749 (10) | 0.72442 (10) | 0.59018 (8) | 0.0236 (2) | |
C231 | 0.18471 (13) | 0.88029 (13) | 0.76569 (11) | 0.0183 (2) | |
C232 | 0.22759 (15) | 0.87507 (15) | 0.87583 (12) | 0.0240 (3) | |
H232 | 0.2164 | 0.7834 | 0.8810 | 0.029* | |
C233 | 0.28772 (17) | 1.00315 (16) | 0.98101 (12) | 0.0279 (3) | |
H233 | 0.3146 | 0.9975 | 1.0563 | 0.034* | |
C234 | 0.30744 (15) | 1.13561 (15) | 0.97471 (12) | 0.0249 (3) | |
H234 | 0.3483 | 1.2216 | 1.0459 | 0.030* | |
C235 | 0.28856 (14) | 1.28262 (14) | 0.85484 (13) | 0.0237 (3) | |
H235 | 0.3288 | 1.3692 | 0.9256 | 0.028* | |
C236 | 0.25203 (15) | 1.29146 (15) | 0.74718 (14) | 0.0262 (3) | |
H236 | 0.2674 | 1.3838 | 0.7434 | 0.031* | |
C237 | 0.19122 (15) | 1.16382 (15) | 0.64095 (13) | 0.0238 (3) | |
H237 | 0.1671 | 1.1708 | 0.5661 | 0.029* | |
C238 | 0.16690 (13) | 1.03056 (14) | 0.64519 (11) | 0.0194 (3) | |
H238 | 0.1245 | 0.9459 | 0.5732 | 0.023* | |
C239 | 0.20428 (13) | 1.01680 (13) | 0.75622 (11) | 0.0169 (2) | |
C240 | 0.26751 (13) | 1.14591 (14) | 0.86303 (11) | 0.0194 (3) | |
C41 | 0.44308 (14) | 0.17128 (13) | 0.45086 (11) | 0.0192 (2) | |
H41 | 0.5086 | 0.1093 | 0.4565 | 0.023* | |
C42 | 0.31942 (14) | 0.11400 (13) | 0.36062 (11) | 0.0191 (2) | |
H42 | 0.2511 | 0.1736 | 0.3563 | 0.023* | |
C421 | 0.28077 (13) | −0.03456 (13) | 0.26718 (11) | 0.0172 (2) | |
C422 | 0.13609 (14) | −0.09410 (14) | 0.19403 (11) | 0.0203 (3) | |
H422 | 0.0650 | −0.0372 | 0.2051 | 0.024* | |
C423 | 0.09382 (14) | −0.23474 (14) | 0.10539 (12) | 0.0221 (3) | |
H423 | −0.0049 | −0.2750 | 0.0565 | 0.027* | |
C424 | 0.19995 (14) | −0.31374 (14) | 0.09083 (11) | 0.0210 (3) | |
F424 | 0.16163 (9) | −0.45148 (9) | 0.00460 (7) | 0.0307 (2) | |
C425 | 0.34450 (14) | −0.25893 (14) | 0.15873 (12) | 0.0221 (3) | |
H425 | 0.4151 | −0.3159 | 0.1453 | 0.027* | |
C426 | 0.38478 (14) | −0.11893 (14) | 0.24702 (11) | 0.0195 (2) | |
H426 | 0.4841 | −0.0795 | 0.2946 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0188 (5) | 0.0167 (5) | 0.0157 (5) | 0.0024 (4) | 0.0033 (4) | 0.0058 (4) |
C2 | 0.0192 (6) | 0.0159 (6) | 0.0159 (5) | 0.0037 (5) | 0.0054 (5) | 0.0072 (5) |
C3 | 0.0165 (6) | 0.0163 (6) | 0.0172 (6) | 0.0020 (4) | 0.0039 (4) | 0.0065 (5) |
C4 | 0.0186 (6) | 0.0170 (6) | 0.0158 (5) | 0.0038 (5) | 0.0049 (5) | 0.0077 (5) |
C4A | 0.0188 (6) | 0.0199 (6) | 0.0159 (5) | 0.0047 (5) | 0.0051 (5) | 0.0088 (5) |
C5 | 0.0214 (6) | 0.0232 (6) | 0.0203 (6) | 0.0076 (5) | 0.0075 (5) | 0.0086 (5) |
C6 | 0.0184 (6) | 0.0331 (7) | 0.0255 (7) | 0.0099 (5) | 0.0069 (5) | 0.0137 (6) |
C7 | 0.0172 (6) | 0.0333 (7) | 0.0244 (7) | 0.0027 (5) | 0.0021 (5) | 0.0120 (6) |
C8 | 0.0203 (6) | 0.0232 (6) | 0.0202 (6) | 0.0013 (5) | 0.0020 (5) | 0.0067 (5) |
C8A | 0.0184 (6) | 0.0198 (6) | 0.0157 (6) | 0.0031 (5) | 0.0037 (5) | 0.0082 (5) |
C21 | 0.0217 (6) | 0.0136 (5) | 0.0164 (6) | 0.0036 (5) | 0.0057 (5) | 0.0048 (4) |
C22 | 0.0212 (6) | 0.0140 (5) | 0.0180 (6) | 0.0036 (5) | 0.0049 (5) | 0.0045 (5) |
C23 | 0.0191 (6) | 0.0165 (6) | 0.0190 (6) | 0.0034 (5) | 0.0061 (5) | 0.0072 (5) |
O23 | 0.0203 (5) | 0.0218 (5) | 0.0247 (5) | 0.0056 (4) | 0.0025 (4) | 0.0074 (4) |
C231 | 0.0174 (6) | 0.0189 (6) | 0.0180 (6) | 0.0056 (5) | 0.0059 (5) | 0.0058 (5) |
C232 | 0.0292 (7) | 0.0217 (6) | 0.0209 (6) | 0.0052 (5) | 0.0071 (5) | 0.0088 (5) |
C233 | 0.0339 (8) | 0.0318 (7) | 0.0163 (6) | 0.0075 (6) | 0.0071 (5) | 0.0080 (6) |
C234 | 0.0240 (7) | 0.0249 (7) | 0.0182 (6) | 0.0044 (5) | 0.0065 (5) | 0.0007 (5) |
C235 | 0.0174 (6) | 0.0177 (6) | 0.0318 (7) | 0.0044 (5) | 0.0093 (5) | 0.0042 (5) |
C236 | 0.0226 (7) | 0.0203 (6) | 0.0407 (8) | 0.0076 (5) | 0.0131 (6) | 0.0150 (6) |
C237 | 0.0212 (6) | 0.0278 (7) | 0.0287 (7) | 0.0095 (5) | 0.0100 (5) | 0.0158 (6) |
C238 | 0.0163 (6) | 0.0214 (6) | 0.0208 (6) | 0.0066 (5) | 0.0067 (5) | 0.0077 (5) |
C239 | 0.0138 (5) | 0.0174 (6) | 0.0193 (6) | 0.0058 (4) | 0.0070 (5) | 0.0054 (5) |
C240 | 0.0149 (6) | 0.0190 (6) | 0.0211 (6) | 0.0050 (5) | 0.0066 (5) | 0.0037 (5) |
C41 | 0.0203 (6) | 0.0163 (6) | 0.0207 (6) | 0.0063 (5) | 0.0064 (5) | 0.0065 (5) |
C42 | 0.0190 (6) | 0.0169 (6) | 0.0207 (6) | 0.0059 (5) | 0.0069 (5) | 0.0058 (5) |
C421 | 0.0179 (6) | 0.0163 (6) | 0.0167 (6) | 0.0037 (5) | 0.0064 (5) | 0.0053 (5) |
C422 | 0.0169 (6) | 0.0208 (6) | 0.0220 (6) | 0.0067 (5) | 0.0064 (5) | 0.0063 (5) |
C423 | 0.0159 (6) | 0.0231 (6) | 0.0207 (6) | 0.0026 (5) | 0.0031 (5) | 0.0037 (5) |
C424 | 0.0235 (6) | 0.0166 (6) | 0.0175 (6) | 0.0035 (5) | 0.0061 (5) | 0.0013 (5) |
F424 | 0.0293 (4) | 0.0210 (4) | 0.0262 (4) | 0.0050 (3) | 0.0037 (3) | −0.0044 (3) |
C425 | 0.0205 (6) | 0.0221 (6) | 0.0231 (6) | 0.0095 (5) | 0.0083 (5) | 0.0061 (5) |
C426 | 0.0158 (6) | 0.0208 (6) | 0.0198 (6) | 0.0046 (5) | 0.0044 (5) | 0.0062 (5) |
N1—C2 | 1.3323 (16) | C233—H233 | 0.9500 |
N1—C8A | 1.3613 (16) | C234—C240 | 1.4180 (19) |
C2—C3 | 1.4132 (17) | C234—H234 | 0.9500 |
C2—C21 | 1.4670 (17) | C235—C236 | 1.361 (2) |
C3—C4 | 1.3799 (17) | C235—C240 | 1.4209 (19) |
C3—H3 | 0.9500 | C235—H235 | 0.9500 |
C4—C4A | 1.4367 (17) | C236—C237 | 1.414 (2) |
C4—C41 | 1.4662 (17) | C236—H236 | 0.9500 |
C4A—C5 | 1.4153 (17) | C237—C238 | 1.3658 (19) |
C4A—C8A | 1.4253 (17) | C237—H237 | 0.9500 |
C5—C6 | 1.3680 (19) | C238—C239 | 1.4259 (17) |
C5—H5 | 0.9500 | C238—H238 | 0.9500 |
C6—C7 | 1.406 (2) | C239—C240 | 1.4275 (17) |
C6—H6 | 0.9500 | C41—C42 | 1.3306 (18) |
C7—C8 | 1.366 (2) | C41—H41 | 0.9500 |
C7—H7 | 0.9500 | C42—C421 | 1.4696 (16) |
C8—C8A | 1.4209 (17) | C42—H42 | 0.9500 |
C8—H8 | 0.9500 | C421—C422 | 1.3976 (17) |
C21—C22 | 1.3400 (18) | C421—C426 | 1.4031 (17) |
C21—H21 | 0.9500 | C422—C423 | 1.3901 (17) |
C22—C23 | 1.4734 (17) | C422—H422 | 0.9500 |
C22—H22 | 0.9500 | C423—C424 | 1.3782 (18) |
C23—O23 | 1.2262 (16) | C423—H423 | 0.9500 |
C23—C231 | 1.5065 (17) | C424—F424 | 1.3596 (14) |
C231—C232 | 1.3774 (18) | C424—C425 | 1.3769 (18) |
C231—C239 | 1.4258 (17) | C425—C426 | 1.3844 (18) |
C232—C233 | 1.4089 (19) | C425—H425 | 0.9500 |
C232—H232 | 0.9500 | C426—H426 | 0.9500 |
C233—C234 | 1.367 (2) | ||
C2—N1—C8A | 117.60 (11) | C233—C234—C240 | 120.66 (12) |
N1—C2—C3 | 123.47 (11) | C233—C234—H234 | 119.7 |
N1—C2—C21 | 113.66 (11) | C240—C234—H234 | 119.7 |
C3—C2—C21 | 122.87 (11) | C236—C235—C240 | 121.03 (12) |
C4—C3—C2 | 120.25 (11) | C236—C235—H235 | 119.5 |
C4—C3—H3 | 119.9 | C240—C235—H235 | 119.5 |
C2—C3—H3 | 119.9 | C235—C236—C237 | 120.27 (13) |
C3—C4—C4A | 117.65 (11) | C235—C236—H236 | 119.9 |
C3—C4—C41 | 122.61 (11) | C237—C236—H236 | 119.9 |
C4A—C4—C41 | 119.74 (11) | C238—C237—C236 | 120.46 (13) |
C5—C4A—C8A | 118.15 (11) | C238—C237—H237 | 119.8 |
C5—C4A—C4 | 124.03 (12) | C236—C237—H237 | 119.8 |
C8A—C4A—C4 | 117.82 (11) | C237—C238—C239 | 120.91 (12) |
C6—C5—C4A | 120.96 (12) | C237—C238—H238 | 119.5 |
C6—C5—H5 | 119.5 | C239—C238—H238 | 119.5 |
C4A—C5—H5 | 119.5 | C231—C239—C238 | 123.28 (11) |
C5—C6—C7 | 120.69 (13) | C231—C239—C240 | 118.36 (11) |
C5—C6—H6 | 119.7 | C238—C239—C240 | 118.34 (11) |
C7—C6—H6 | 119.7 | C234—C240—C235 | 121.37 (12) |
C8—C7—C6 | 120.33 (12) | C234—C240—C239 | 119.67 (12) |
C8—C7—H7 | 119.8 | C235—C240—C239 | 118.96 (12) |
C6—C7—H7 | 119.8 | C42—C41—C4 | 126.28 (12) |
C7—C8—C8A | 120.32 (12) | C42—C41—H41 | 116.9 |
C7—C8—H8 | 119.8 | C4—C41—H41 | 116.9 |
C8A—C8—H8 | 119.8 | C41—C42—C421 | 124.84 (12) |
N1—C8A—C8 | 117.27 (11) | C41—C42—H42 | 117.6 |
N1—C8A—C4A | 123.19 (11) | C421—C42—H42 | 117.6 |
C8—C8A—C4A | 119.54 (12) | C422—C421—C426 | 118.33 (11) |
C22—C21—C2 | 127.55 (11) | C422—C421—C42 | 119.35 (11) |
C22—C21—H21 | 116.2 | C426—C421—C42 | 122.32 (11) |
C2—C21—H21 | 116.2 | C423—C422—C421 | 121.48 (12) |
C21—C22—C23 | 122.03 (11) | C423—C422—H422 | 119.3 |
C21—C22—H22 | 119.0 | C421—C422—H422 | 119.3 |
C23—C22—H22 | 119.0 | C424—C423—C422 | 117.76 (12) |
O23—C23—C22 | 120.72 (11) | C424—C423—H423 | 121.1 |
O23—C23—C231 | 120.67 (11) | C422—C423—H423 | 121.1 |
C22—C23—C231 | 118.59 (11) | F424—C424—C425 | 118.03 (11) |
C232—C231—C239 | 120.05 (12) | F424—C424—C423 | 118.96 (11) |
C232—C231—C23 | 119.30 (11) | C425—C424—C423 | 123.00 (12) |
C239—C231—C23 | 120.63 (11) | C424—C425—C426 | 118.55 (12) |
C231—C232—C233 | 121.24 (13) | C424—C425—H425 | 120.7 |
C231—C232—H232 | 119.4 | C426—C425—H425 | 120.7 |
C233—C232—H232 | 119.4 | C425—C426—C421 | 120.85 (12) |
C234—C233—C232 | 119.99 (13) | C425—C426—H426 | 119.6 |
C234—C233—H233 | 120.0 | C421—C426—H426 | 119.6 |
C232—C233—H233 | 120.0 | ||
C8A—N1—C2—C3 | 0.80 (18) | C231—C232—C233—C234 | −1.5 (2) |
C8A—N1—C2—C21 | −179.27 (10) | C232—C233—C234—C240 | 0.2 (2) |
N1—C2—C3—C4 | 0.75 (19) | C240—C235—C236—C237 | 0.4 (2) |
C21—C2—C3—C4 | −179.17 (11) | C235—C236—C237—C238 | 0.8 (2) |
C2—C3—C4—C4A | −1.32 (17) | C236—C237—C238—C239 | −1.03 (19) |
C2—C3—C4—C41 | 179.53 (11) | C232—C231—C239—C238 | 177.97 (12) |
C3—C4—C4A—C5 | −178.99 (12) | C23—C231—C239—C238 | −3.12 (18) |
C41—C4—C4A—C5 | 0.18 (18) | C232—C231—C239—C240 | −0.56 (18) |
C3—C4—C4A—C8A | 0.43 (17) | C23—C231—C239—C240 | 178.36 (11) |
C41—C4—C4A—C8A | 179.61 (11) | C237—C238—C239—C231 | −178.38 (12) |
C8A—C4A—C5—C6 | −0.59 (19) | C237—C238—C239—C240 | 0.15 (18) |
C4—C4A—C5—C6 | 178.83 (12) | C233—C234—C240—C235 | −179.40 (13) |
C4A—C5—C6—C7 | −0.1 (2) | C233—C234—C240—C239 | 0.85 (19) |
C5—C6—C7—C8 | 0.3 (2) | C236—C235—C240—C234 | 178.98 (13) |
C6—C7—C8—C8A | 0.1 (2) | C236—C235—C240—C239 | −1.26 (19) |
C2—N1—C8A—C8 | 177.82 (11) | C231—C239—C240—C234 | −0.66 (17) |
C2—N1—C8A—C4A | −1.75 (17) | C238—C239—C240—C234 | −179.26 (11) |
C7—C8—C8A—N1 | 179.59 (12) | C231—C239—C240—C235 | 179.58 (11) |
C7—C8—C8A—C4A | −0.83 (19) | C238—C239—C240—C235 | 0.98 (17) |
C5—C4A—C8A—N1 | −179.40 (11) | C3—C4—C41—C42 | 16.2 (2) |
C4—C4A—C8A—N1 | 1.14 (18) | C4A—C4—C41—C42 | −162.89 (13) |
C5—C4A—C8A—C8 | 1.05 (18) | C4—C41—C42—C421 | 177.12 (12) |
C4—C4A—C8A—C8 | −178.41 (11) | C41—C42—C421—C422 | 165.01 (13) |
N1—C2—C21—C22 | −178.35 (12) | C41—C42—C421—C426 | −16.1 (2) |
C3—C2—C21—C22 | 1.6 (2) | C426—C421—C422—C423 | 1.82 (19) |
C2—C21—C22—C23 | −174.07 (12) | C42—C421—C422—C423 | −179.21 (12) |
C21—C22—C23—O23 | 162.87 (12) | C421—C422—C423—C424 | −0.7 (2) |
C21—C22—C23—C231 | −15.59 (18) | C422—C423—C424—F424 | −179.86 (12) |
O23—C23—C231—C232 | 122.26 (14) | C422—C423—C424—C425 | −0.8 (2) |
C22—C23—C231—C232 | −59.28 (16) | F424—C424—C425—C426 | −179.83 (12) |
O23—C23—C231—C239 | −56.66 (17) | C423—C424—C425—C426 | 1.1 (2) |
C22—C23—C231—C239 | 121.80 (13) | C424—C425—C426—C421 | 0.1 (2) |
C239—C231—C232—C233 | 1.6 (2) | C422—C421—C426—C425 | −1.50 (19) |
C23—C231—C232—C233 | −177.30 (12) | C42—C421—C426—C425 | 179.56 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C22—H22···O23i | 0.95 | 2.59 | 3.5407 (17) | 176 |
C234—H234···N1ii | 0.95 | 2.67 | 3.5645 (18) | 157 |
C233—H233···Cg2iii | 0.95 | 2.85 | 3.6466 (18) | 142 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+2, −z+2; (iii) x, y+1, z+1. |
C30H20ClNO | F(000) = 928 |
Mr = 445.92 | Dx = 1.401 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 3.9184 (1) Å | Cell parameters from 5301 reflections |
b = 24.6546 (8) Å | θ = 2.0–28.4° |
c = 21.8833 (6) Å | µ = 0.21 mm−1 |
β = 91.271 (1)° | T = 100 K |
V = 2113.55 (10) Å3 | Plate, colourless |
Z = 4 | 0.22 × 0.19 × 0.04 mm |
Bruker D8 Venture diffractometer | 5301 independent reflections |
Radiation source: INCOATEC high brilliance microfocus sealed tube | 4855 reflections with I > 2σ(I) |
Multilayer mirror monochromator | Rint = 0.049 |
φ and ω scans | θmax = 28.4°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −5→5 |
Tmin = 0.912, Tmax = 0.992 | k = −33→32 |
67339 measured reflections | l = −29→29 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.0338P)2 + 1.6563P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max < 0.001 |
5301 reflections | Δρmax = 0.40 e Å−3 |
298 parameters | Δρmin = −0.30 e Å−3 |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.3664 (3) | 0.47153 (5) | 0.08950 (6) | 0.0161 (2) | |
C2 | 0.4073 (4) | 0.46881 (6) | 0.14975 (7) | 0.0152 (3) | |
C3 | 0.2901 (4) | 0.42458 (6) | 0.18476 (6) | 0.0151 (3) | |
H3 | 0.3281 | 0.4245 | 0.2278 | 0.018* | |
C4 | 0.1224 (4) | 0.38171 (6) | 0.15751 (6) | 0.0143 (3) | |
C4A | 0.0820 (4) | 0.38275 (6) | 0.09235 (6) | 0.0145 (3) | |
C5 | −0.0797 (4) | 0.34106 (6) | 0.05789 (7) | 0.0176 (3) | |
H5 | −0.1679 | 0.3102 | 0.0782 | 0.021* | |
C6 | −0.1103 (4) | 0.34475 (6) | −0.00471 (7) | 0.0196 (3) | |
H6 | −0.2154 | 0.3161 | −0.0272 | 0.024* | |
C7 | 0.0128 (4) | 0.39062 (6) | −0.03577 (7) | 0.0205 (3) | |
H7 | −0.0129 | 0.3929 | −0.0790 | 0.025* | |
C8 | 0.1693 (4) | 0.43198 (6) | −0.00412 (7) | 0.0184 (3) | |
H8 | 0.2518 | 0.4627 | −0.0254 | 0.022* | |
C8A | 0.2082 (4) | 0.42890 (6) | 0.06053 (6) | 0.0148 (3) | |
C21 | 0.5826 (4) | 0.51511 (6) | 0.17876 (7) | 0.0178 (3) | |
H21 | 0.6312 | 0.5454 | 0.1535 | 0.021* | |
C22 | 0.6797 (4) | 0.51825 (6) | 0.23760 (7) | 0.0174 (3) | |
H22 | 0.6425 | 0.4881 | 0.2636 | 0.021* | |
C23 | 0.8443 (4) | 0.56778 (6) | 0.26335 (7) | 0.0175 (3) | |
O23 | 0.9052 (3) | 0.60714 (4) | 0.23118 (5) | 0.0233 (2) | |
C231 | 0.9320 (4) | 0.56750 (6) | 0.33046 (7) | 0.0168 (3) | |
C232 | 1.0670 (4) | 0.52088 (6) | 0.35632 (7) | 0.0189 (3) | |
H232 | 1.0848 | 0.4891 | 0.3321 | 0.023* | |
C233 | 1.1789 (4) | 0.51957 (7) | 0.41798 (7) | 0.0216 (3) | |
H233 | 1.2765 | 0.4874 | 0.4347 | 0.026* | |
C234 | 1.1465 (4) | 0.56478 (7) | 0.45382 (7) | 0.0215 (3) | |
H234 | 1.2259 | 0.5639 | 0.4951 | 0.026* | |
C235 | 0.9476 (4) | 0.65881 (7) | 0.46783 (7) | 0.0225 (3) | |
H235 | 1.0234 | 0.6578 | 0.5093 | 0.027* | |
C236 | 0.7928 (4) | 0.70462 (7) | 0.44520 (8) | 0.0243 (3) | |
H236 | 0.7602 | 0.7351 | 0.4710 | 0.029* | |
C237 | 0.6820 (4) | 0.70650 (6) | 0.38349 (8) | 0.0218 (3) | |
H237 | 0.5732 | 0.7383 | 0.3682 | 0.026* | |
C238 | 0.7287 (4) | 0.66318 (6) | 0.34518 (7) | 0.0191 (3) | |
H238 | 0.6542 | 0.6654 | 0.3036 | 0.023* | |
C239 | 0.8878 (4) | 0.61501 (6) | 0.36721 (7) | 0.0165 (3) | |
C240 | 0.9962 (4) | 0.61276 (6) | 0.42998 (7) | 0.0185 (3) | |
C41 | −0.0132 (4) | 0.33695 (6) | 0.19433 (7) | 0.0161 (3) | |
H41 | −0.0355 | 0.3021 | 0.1762 | 0.019* | |
C42 | −0.1064 (4) | 0.34340 (6) | 0.25235 (7) | 0.0162 (3) | |
H42 | −0.0755 | 0.3785 | 0.2695 | 0.019* | |
C421 | −0.2508 (4) | 0.30209 (6) | 0.29209 (6) | 0.0152 (3) | |
C422 | −0.4071 (4) | 0.31632 (6) | 0.34698 (7) | 0.0178 (3) | |
Cl42 | −0.43548 (11) | 0.38464 (2) | 0.36900 (2) | 0.02615 (11) | |
C423 | −0.5499 (4) | 0.27812 (7) | 0.38518 (7) | 0.0225 (3) | |
H423 | −0.6526 | 0.2891 | 0.4221 | 0.027* | |
C424 | −0.5418 (4) | 0.22379 (7) | 0.36909 (7) | 0.0237 (3) | |
H424 | −0.6434 | 0.1974 | 0.3946 | 0.028* | |
C425 | −0.3846 (4) | 0.20784 (7) | 0.31554 (7) | 0.0216 (3) | |
H425 | −0.3754 | 0.1705 | 0.3048 | 0.026* | |
C426 | −0.2418 (4) | 0.24645 (6) | 0.27795 (7) | 0.0179 (3) | |
H426 | −0.1348 | 0.2351 | 0.2416 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0176 (6) | 0.0149 (6) | 0.0158 (6) | 0.0018 (5) | 0.0016 (5) | 0.0015 (5) |
C2 | 0.0146 (6) | 0.0152 (7) | 0.0159 (7) | 0.0019 (5) | 0.0004 (5) | −0.0005 (5) |
C3 | 0.0159 (6) | 0.0166 (7) | 0.0128 (6) | 0.0018 (5) | 0.0005 (5) | 0.0008 (5) |
C4 | 0.0132 (6) | 0.0156 (6) | 0.0142 (6) | 0.0028 (5) | 0.0011 (5) | 0.0009 (5) |
C4A | 0.0137 (6) | 0.0153 (6) | 0.0145 (6) | 0.0032 (5) | 0.0015 (5) | 0.0000 (5) |
C5 | 0.0181 (7) | 0.0174 (7) | 0.0174 (7) | 0.0003 (5) | 0.0004 (5) | 0.0006 (5) |
C6 | 0.0214 (7) | 0.0205 (7) | 0.0169 (7) | 0.0004 (6) | −0.0028 (6) | −0.0031 (6) |
C7 | 0.0246 (7) | 0.0230 (8) | 0.0140 (7) | 0.0048 (6) | 0.0008 (6) | −0.0001 (6) |
C8 | 0.0212 (7) | 0.0192 (7) | 0.0148 (7) | 0.0044 (6) | 0.0021 (5) | 0.0032 (5) |
C8A | 0.0154 (6) | 0.0151 (6) | 0.0139 (6) | 0.0038 (5) | 0.0014 (5) | 0.0004 (5) |
C21 | 0.0194 (7) | 0.0149 (7) | 0.0193 (7) | 0.0001 (5) | 0.0038 (5) | 0.0005 (5) |
C22 | 0.0191 (7) | 0.0148 (7) | 0.0185 (7) | −0.0017 (5) | 0.0032 (5) | −0.0002 (5) |
C23 | 0.0180 (7) | 0.0165 (7) | 0.0180 (7) | 0.0004 (5) | 0.0025 (5) | −0.0009 (5) |
O23 | 0.0323 (6) | 0.0167 (5) | 0.0209 (6) | −0.0036 (4) | 0.0021 (5) | 0.0012 (4) |
C231 | 0.0153 (6) | 0.0171 (7) | 0.0180 (7) | −0.0021 (5) | 0.0015 (5) | 0.0002 (5) |
C232 | 0.0202 (7) | 0.0165 (7) | 0.0201 (7) | 0.0003 (5) | 0.0025 (6) | −0.0005 (6) |
C233 | 0.0210 (7) | 0.0208 (7) | 0.0231 (8) | 0.0017 (6) | −0.0003 (6) | 0.0057 (6) |
C234 | 0.0213 (7) | 0.0266 (8) | 0.0166 (7) | −0.0010 (6) | −0.0018 (6) | 0.0033 (6) |
C235 | 0.0261 (8) | 0.0250 (8) | 0.0164 (7) | −0.0043 (6) | 0.0030 (6) | −0.0031 (6) |
C236 | 0.0296 (8) | 0.0198 (7) | 0.0238 (8) | −0.0040 (6) | 0.0084 (6) | −0.0052 (6) |
C237 | 0.0246 (8) | 0.0166 (7) | 0.0246 (8) | 0.0001 (6) | 0.0055 (6) | 0.0008 (6) |
C238 | 0.0208 (7) | 0.0182 (7) | 0.0183 (7) | −0.0011 (6) | 0.0032 (6) | 0.0007 (6) |
C239 | 0.0153 (6) | 0.0164 (7) | 0.0178 (7) | −0.0030 (5) | 0.0024 (5) | 0.0007 (5) |
C240 | 0.0181 (7) | 0.0191 (7) | 0.0185 (7) | −0.0043 (5) | 0.0026 (5) | −0.0008 (6) |
C41 | 0.0175 (7) | 0.0158 (7) | 0.0150 (7) | −0.0001 (5) | −0.0011 (5) | 0.0010 (5) |
C42 | 0.0172 (6) | 0.0156 (7) | 0.0158 (7) | 0.0008 (5) | 0.0002 (5) | 0.0003 (5) |
C421 | 0.0136 (6) | 0.0199 (7) | 0.0122 (6) | 0.0016 (5) | −0.0018 (5) | 0.0026 (5) |
C422 | 0.0173 (7) | 0.0208 (7) | 0.0152 (7) | 0.0031 (5) | −0.0012 (5) | 0.0004 (5) |
Cl42 | 0.0349 (2) | 0.0250 (2) | 0.01872 (18) | 0.00561 (16) | 0.00466 (15) | −0.00432 (14) |
C423 | 0.0197 (7) | 0.0333 (9) | 0.0146 (7) | 0.0022 (6) | 0.0019 (6) | 0.0041 (6) |
C424 | 0.0189 (7) | 0.0311 (9) | 0.0211 (8) | −0.0033 (6) | −0.0029 (6) | 0.0121 (6) |
C425 | 0.0216 (7) | 0.0204 (7) | 0.0224 (8) | −0.0017 (6) | −0.0053 (6) | 0.0041 (6) |
C426 | 0.0180 (7) | 0.0196 (7) | 0.0160 (7) | 0.0010 (5) | −0.0005 (5) | 0.0009 (5) |
N1—C2 | 1.3263 (19) | C233—H233 | 0.9500 |
N1—C8A | 1.3687 (19) | C234—C240 | 1.416 (2) |
C2—C3 | 1.415 (2) | C234—H234 | 0.9500 |
C2—C21 | 1.469 (2) | C235—C236 | 1.369 (2) |
C3—C4 | 1.374 (2) | C235—C240 | 1.421 (2) |
C3—H3 | 0.9500 | C235—H235 | 0.9500 |
C4—C4A | 1.4314 (19) | C236—C237 | 1.410 (2) |
C4—C41 | 1.4726 (19) | C236—H236 | 0.9500 |
C4A—C5 | 1.416 (2) | C237—C238 | 1.373 (2) |
C4A—C8A | 1.428 (2) | C237—H237 | 0.9500 |
C5—C6 | 1.375 (2) | C238—C239 | 1.421 (2) |
C5—H5 | 0.9500 | C238—H238 | 0.9500 |
C6—C7 | 1.410 (2) | C239—C240 | 1.430 (2) |
C6—H6 | 0.9500 | C41—C42 | 1.338 (2) |
C7—C8 | 1.370 (2) | C41—H41 | 0.9500 |
C7—H7 | 0.9500 | C42—C421 | 1.461 (2) |
C8—C8A | 1.422 (2) | C42—H42 | 0.9500 |
C8—H8 | 0.9500 | C421—C422 | 1.405 (2) |
C21—C22 | 1.337 (2) | C421—C426 | 1.407 (2) |
C21—H21 | 0.9500 | C422—C423 | 1.385 (2) |
C22—C23 | 1.486 (2) | C422—Cl42 | 1.7563 (16) |
C22—H22 | 0.9500 | C423—C424 | 1.386 (2) |
C23—O23 | 1.2254 (18) | C423—H423 | 0.9500 |
C23—C231 | 1.501 (2) | C424—C425 | 1.393 (2) |
C231—C232 | 1.381 (2) | C424—H424 | 0.9500 |
C231—C239 | 1.434 (2) | C425—C426 | 1.384 (2) |
C232—C233 | 1.410 (2) | C425—H425 | 0.9500 |
C232—H232 | 0.9500 | C426—H426 | 0.9500 |
C233—C234 | 1.370 (2) | ||
C2—N1—C8A | 117.72 (12) | C233—C234—C240 | 120.78 (14) |
N1—C2—C3 | 122.93 (13) | C233—C234—H234 | 119.6 |
N1—C2—C21 | 115.80 (13) | C240—C234—H234 | 119.6 |
C3—C2—C21 | 121.27 (13) | C236—C235—C240 | 120.82 (15) |
C4—C3—C2 | 121.04 (13) | C236—C235—H235 | 119.6 |
C4—C3—H3 | 119.5 | C240—C235—H235 | 119.6 |
C2—C3—H3 | 119.5 | C235—C236—C237 | 119.87 (15) |
C3—C4—C4A | 117.39 (13) | C235—C236—H236 | 120.1 |
C3—C4—C41 | 120.93 (13) | C237—C236—H236 | 120.1 |
C4A—C4—C41 | 121.68 (13) | C238—C237—C236 | 121.12 (15) |
C5—C4A—C8A | 118.32 (13) | C238—C237—H237 | 119.4 |
C5—C4A—C4 | 123.77 (13) | C236—C237—H237 | 119.4 |
C8A—C4A—C4 | 117.91 (13) | C237—C238—C239 | 120.44 (15) |
C6—C5—C4A | 120.69 (14) | C237—C238—H238 | 119.8 |
C6—C5—H5 | 119.7 | C239—C238—H238 | 119.8 |
C4A—C5—H5 | 119.7 | C238—C239—C240 | 118.51 (14) |
C5—C6—C7 | 120.66 (14) | C238—C239—C231 | 123.38 (14) |
C5—C6—H6 | 119.7 | C240—C239—C231 | 118.05 (13) |
C7—C6—H6 | 119.7 | C234—C240—C235 | 120.87 (14) |
C8—C7—C6 | 120.48 (14) | C234—C240—C239 | 119.91 (14) |
C8—C7—H7 | 119.8 | C235—C240—C239 | 119.22 (14) |
C6—C7—H7 | 119.8 | C42—C41—C4 | 122.64 (14) |
C7—C8—C8A | 120.02 (14) | C42—C41—H41 | 118.7 |
C7—C8—H8 | 120.0 | C4—C41—H41 | 118.7 |
C8A—C8—H8 | 120.0 | C41—C42—C421 | 126.81 (14) |
N1—C8A—C8 | 117.21 (13) | C41—C42—H42 | 116.6 |
N1—C8A—C4A | 122.97 (13) | C421—C42—H42 | 116.6 |
C8—C8A—C4A | 119.82 (13) | C422—C421—C426 | 116.41 (13) |
C22—C21—C2 | 125.56 (14) | C422—C421—C42 | 121.12 (14) |
C22—C21—H21 | 117.2 | C426—C421—C42 | 122.46 (13) |
C2—C21—H21 | 117.2 | C423—C422—C421 | 122.40 (15) |
C21—C22—C23 | 121.64 (14) | C423—C422—Cl42 | 117.23 (12) |
C21—C22—H22 | 119.2 | C421—C422—Cl42 | 120.36 (12) |
C23—C22—H22 | 119.2 | C422—C423—C424 | 119.46 (15) |
O23—C23—C22 | 121.42 (14) | C422—C423—H423 | 120.3 |
O23—C23—C231 | 121.50 (14) | C424—C423—H423 | 120.3 |
C22—C23—C231 | 117.08 (13) | C423—C424—C425 | 120.01 (15) |
C232—C231—C239 | 120.00 (14) | C423—C424—H424 | 120.0 |
C232—C231—C23 | 118.82 (13) | C425—C424—H424 | 120.0 |
C239—C231—C23 | 121.16 (13) | C426—C425—C424 | 119.86 (15) |
C231—C232—C233 | 121.29 (14) | C426—C425—H425 | 120.1 |
C231—C232—H232 | 119.4 | C424—C425—H425 | 120.1 |
C233—C232—H232 | 119.4 | C425—C426—C421 | 121.84 (14) |
C234—C233—C232 | 119.89 (14) | C425—C426—H426 | 119.1 |
C234—C233—H233 | 120.1 | C421—C426—H426 | 119.1 |
C232—C233—H233 | 120.1 | ||
C8A—N1—C2—C3 | −1.1 (2) | C232—C233—C234—C240 | 1.1 (2) |
C8A—N1—C2—C21 | 179.16 (12) | C240—C235—C236—C237 | −0.5 (2) |
N1—C2—C3—C4 | −0.6 (2) | C235—C236—C237—C238 | −0.5 (2) |
C21—C2—C3—C4 | 179.15 (13) | C236—C237—C238—C239 | 0.6 (2) |
C2—C3—C4—C4A | 2.1 (2) | C237—C238—C239—C240 | 0.2 (2) |
C2—C3—C4—C41 | −177.15 (13) | C237—C238—C239—C231 | 177.35 (14) |
C3—C4—C4A—C5 | 178.86 (13) | C232—C231—C239—C238 | −175.36 (14) |
C41—C4—C4A—C5 | −1.9 (2) | C23—C231—C239—C238 | 6.6 (2) |
C3—C4—C4A—C8A | −2.02 (19) | C232—C231—C239—C240 | 1.8 (2) |
C41—C4—C4A—C8A | 177.26 (13) | C23—C231—C239—C240 | −176.23 (13) |
C8A—C4A—C5—C6 | 0.8 (2) | C233—C234—C240—C235 | 176.98 (15) |
C4—C4A—C5—C6 | 179.89 (14) | C233—C234—C240—C239 | −2.3 (2) |
C4A—C5—C6—C7 | −1.2 (2) | C236—C235—C240—C234 | −178.02 (15) |
C5—C6—C7—C8 | 0.9 (2) | C236—C235—C240—C239 | 1.3 (2) |
C6—C7—C8—C8A | −0.1 (2) | C238—C239—C240—C234 | 178.16 (14) |
C2—N1—C8A—C8 | −179.29 (13) | C231—C239—C240—C234 | 0.9 (2) |
C2—N1—C8A—C4A | 1.1 (2) | C238—C239—C240—C235 | −1.2 (2) |
C7—C8—C8A—N1 | −179.95 (14) | C231—C239—C240—C235 | −178.45 (14) |
C7—C8—C8A—C4A | −0.4 (2) | C3—C4—C41—C42 | 27.2 (2) |
C5—C4A—C8A—N1 | 179.58 (13) | C4A—C4—C41—C42 | −152.07 (14) |
C4—C4A—C8A—N1 | 0.4 (2) | C4—C41—C42—C421 | 178.41 (13) |
C5—C4A—C8A—C8 | 0.0 (2) | C41—C42—C421—C422 | −165.79 (15) |
C4—C4A—C8A—C8 | −179.14 (13) | C41—C42—C421—C426 | 14.2 (2) |
N1—C2—C21—C22 | −173.04 (14) | C426—C421—C422—C423 | −0.8 (2) |
C3—C2—C21—C22 | 7.2 (2) | C42—C421—C422—C423 | 179.18 (14) |
C2—C21—C22—C23 | −177.62 (14) | C426—C421—C422—Cl42 | −179.56 (11) |
C21—C22—C23—O23 | −1.9 (2) | C42—C421—C422—Cl42 | 0.5 (2) |
C21—C22—C23—C231 | 177.99 (14) | C421—C422—C423—C424 | −0.4 (2) |
O23—C23—C231—C232 | −139.12 (16) | Cl42—C422—C423—C424 | 178.40 (12) |
C22—C23—C231—C232 | 41.01 (19) | C422—C423—C424—C425 | 1.4 (2) |
O23—C23—C231—C239 | 38.9 (2) | C423—C424—C425—C426 | −1.1 (2) |
C22—C23—C231—C239 | −140.95 (14) | C424—C425—C426—C421 | −0.2 (2) |
C239—C231—C232—C233 | −3.1 (2) | C422—C421—C426—C425 | 1.1 (2) |
C23—C231—C232—C233 | 174.98 (14) | C42—C421—C426—C425 | −178.92 (14) |
C231—C232—C233—C234 | 1.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···N1i | 0.95 | 2.63 | 3.551 (2) | 163 |
C425—H425···O23ii | 0.95 | 2.55 | 3.290 (2) | 134 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, y−1/2, −z+1/2. |
Parameter | (IVa) | (IVb) | (IVc) |
N1—C2—C21—C22 | -178.23)12) | -178.25 (12) | -178.04 (14) |
C21—C22—C23—O23 | 163.64 (12) | 162.97 (12) | -1.9 (2) |
C21—C22—C23—C231 | -14.95 (19) | -15.59 (18) | 169.99 (14) |
C22—C23—C231—C232 | -61.76 (17) | -59.28 (16) | 41.01 (19) |
C3—C4—C41—C42 | 16.1 (2) | 16.2 (2) | 27.2 (2) |
C41—C42—C421—C422 | 166.57 (13) | 165.01 (13) | -165.79 (15) |
Compound | D—H···A | D—H | H···A | D···A | D—H···A |
(IVa) | C22—H22···O23i | 0.95 | 2.57 | 3.5183 (17) | 177 |
C234—H234···N1ii | 0.95 | 2.60 | 3.4207 (17) | 145 | |
C422—H422···Cg1i | 0.95 | 2.93 | 3.7418 (16) | 144 | |
(IVb) | C22—H22···O23i | 0.95 | 2.59 | 3.5407 (17) | 176 |
C234—H234···N1iii | 0.95 | 2.67 | 3.5645 (18) | 157 | |
C233—H233···Cg2iv | 0.95 | 2.85 | 3.6466 (18) | 142 | |
(IVc) | C8—H8···N1ii | 0.95 | 2.63 | 3.551 (2) | 163 |
C425—H425···O23v | 0.95 | 2.55 | 3.290 (2) | 134 |
Cg1 and Cg2 represent the centroids of the C231–C234/C240/C239 and C421–C426 rings, respectively. Symmetry codes: (i) -x, -y+, -z+1; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+2, -z+2; (iv) x, y+1, z+1; (v) -x+1, y-1/2, -z+1/2. |
Acknowledgements
JC and ID thank the Centro de Instrumentación Científico-Técnica of the Universidad de Jaén (UJA) and its staff for the data collection. AP is grateful for support from Vicerrectoría de Investigación y Extensión of the Industrial University of Santander. JC thanks the Universidad de Jaén and the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucá, Spain) for financial support. ID also thanks Vicerrectoría de Investigación of Universidad de Jaén for a PhD Scholar fellowship.
Funding information
Funding for this research was provided by: Vicerrectoría de Investigación y Extensión of the Industrial University of Santander (grant No. 2680).
References
Abbas Bukhari, S. N., Jasamal, M. & Jantan, I. (2012). Mini Rev. Med. Chem. 12, 394–1403. Google Scholar
Alacid, E. & Nájera, C. (2009). J. Org. Chem. 74, 8191–8195. Web of Science CrossRef PubMed CAS Google Scholar
Andrade, J. T., Santos, F. R. S., Lima, W. G., Sousa, C. D. F., Oliveira, L. S. F. M., Ribeiro, R. I. M. A., Gomes, A. J. P. S., Araújo, M. G. F., Villar, J. A. F. P. & Ferreira, J. M. S. (2018). J. Antibiot. 71, 702–712. CrossRef CAS Google Scholar
Ardila, D. M., Rodríguez, D. F., Palma, A., Díaz Costa, I., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 671–680. CSD CrossRef IUCr Journals Google Scholar
Atukuri, D., Vijayalaxmi, S., Sanjeevamurthy, R., Vidya, L., Prasannakumar, R. & Raghavendra, M. M. (2020). Bioorg. Chem. 105, 104419. CrossRef PubMed Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carvalho Tavares, L. de, Johann, S., Maria de Almeida Alves, T., Guerra, J. C., Maria de Souza-Fagundes, E., Cisalpino, P. S., Bortoluzzi, A. J., Caramori, G. F., de Mattos Piccoli, R., Braibante, H. T. S., Braibante, M. E. F. & Pizzolatti, M. G. (2011). Eur. J. Med. Chem. 46, 4448–4456. PubMed Google Scholar
Chaudhari, C., Hakim Siddiki, S. M. A. & Shimizu, K. I. (2013). Tetrahedron Lett. 54, 6490–6493. CrossRef CAS Google Scholar
Chabukswar, A. R., Kuchekar, B. S., Jagdale, S. C., Lokhande, P. D., Chabukswar, V. V., Shisodia, S. U., Mahabal, R. H., Londhe, A. M. & Ojha, N. S. (2016). Arabian Journal of Chemistry, 9, 704–712. CrossRef CAS Google Scholar
Cieslik, W., Musiol, R., Nycz, J. E., Jampilek, J., Vejsova, M., Wolff, M., Machura, B. & Polanski, J. (2012). Bioorg. Med. Chem. 20, 6960–6968. Web of Science CrossRef CAS PubMed Google Scholar
Dabiri, M., Salehi, P., Baghbanzadeh, M. & Nikcheh, M. S. (2008). Tetrahedron Lett. 49, 5366–5368. CrossRef CAS Google Scholar
Dave, S. S., Ghatole, A. M., Rahatgaonkar, A. M., Chorghade, M. S., Chauhan, P. & Srivastava, K. (2009). Indian J. Chem. Sect. B, 48, 1780–1793. Google Scholar
Domínguez, J. N., León, C., Rodrigues, J., Gamboa de Domínguez, N., Gut, J. & Rosenthal, P. J. (2005). J. Med. Chem. 48, 3654–3658. Web of Science PubMed Google Scholar
Eddarir, S., Cotelle, N., Bakkour, Y. & Rolando, C. (2003). Tetrahedron Lett. 44, 5359–5363. Web of Science CrossRef CAS Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gao, W., Li, Z., Xu, Q. & Li, Y. (2018). RSC Adv. 8, 38844–38849. CrossRef CAS PubMed Google Scholar
Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Jamal, Z., Teo, Y.-C. & Lim, G. S. (2016). Tetrahedron, 72, 2132–2138. Web of Science CrossRef CAS Google Scholar
Kim, W., Lee, H., Kim, S., Joo, S., Jeong, S., Yoo, J. W. & Jung, Y. (2019). Eur. J. Pharmacol. 865, 172722. CrossRef PubMed Google Scholar
Kotra, V., Ganapaty, S. & Adapa, S. R. (2010). Indian J. Chem. Sect. B, 49, 1109–1116. Google Scholar
Luczywo, A., Sauter, I. P., Silva Ferreira, T. C., Cortez, M., Romanelli, G. P., Sathicq, G. & Asís, S. E. (2021). J. Heterocycl. Chem. 58, 822–832. CrossRef CAS Google Scholar
Meléndez, A., Plata, E., Rodríguez, D., Ardila, D., Guerrero, S., Acosta, L., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804–1822. Google Scholar
Mirzaei, S., Hadizadeh, F., Eisvand, F., Mosaffa, F. & Ghodsi, R. (2020). J. Mol. Struct. 1202, 127310. CrossRef Google Scholar
Mohamed, M. F. A. & Abuo-Rahma, G. E. A. (2020). RSC Adv. 10, 31139–31155. CrossRef CAS PubMed Google Scholar
Moss, G. P. (1996). Pure Appl. Chem. 68, 2193–2222. CrossRef CAS Web of Science Google Scholar
Mouscadet, J. F. & Desmaële, D. (2010). Molecules, 15, 3048–3078. CrossRef CAS PubMed Google Scholar
Mrozek-Wilczkiewicz, A., Kuczak, M., Malarz, K., Cieślik, W., Spaczyńska, E. & Musiol, R. (2019). Eur. J. Med. Chem. 177, 338–349. Web of Science CAS PubMed Google Scholar
Musiol, R. (2020). Med. Chem. 16, 141–154. Web of Science CrossRef CAS PubMed Google Scholar
Ouyang, Y., Li, J., Chen, X., Fu, X., Sun, S. & Wu, Q. (2021). Biomolecules, 11, 1–36. CrossRef Google Scholar
Powers, D. G., Casebier, D. S., Fokas, D., Ryan, W. J., Troth, J. R. & Coffen, D. L. (1998). Tetrahedron, 54, 4085–4096. Web of Science CrossRef CAS Google Scholar
Rao, N. S., Shaik, A. B., Routhu, S. R., Hussaini, S. M. A., Sunkari, S., Rao, A. V. S., Reddy, A. M., Alarifi, A. & Kamal, A. (2017). ChemistrySelect, 2, 2989–2996. CrossRef CAS Google Scholar
Reichwald, C., Shimony, O., Sacerdoti-Sierra, N., Jaffe, C. L. & Kunick, C. (2008). Bioorg. Med. Chem. Lett. 18, 1985–1989. CrossRef PubMed CAS Google Scholar
Rodríguez, D., Guerrero, S. A., Palma, A., Cobo, J. & Glidewell, C. (2020). Acta Cryst. C76, 883–890. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rosas-Sánchez, A., Toscano, R. A., López-Cortés, J. G. & Ortega-Alfaro, M. C. (2015). Dalton Trans. 44, 578–590. PubMed Google Scholar
Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391. CrossRef CAS Web of Science Google Scholar
Sashidhara, K. V., Kumar, A., Kumar, M., Sarkar, J. & Sinha, S. (2010). Bioorg. Med. Chem. Lett. 20, 7205–7211. Web of Science CrossRef CAS PubMed Google Scholar
Satish, G., Ashok, P., Kota, L. & Ilangovan, A. (2019). ChemistrySelect, 4, 1346–1349. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Vera, D. R., Mantilla, J. P., Palma, A., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 524–530. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vogel, S., Barbic, M., Jürgenliemk, G. & Heilmann, J. (2010). Eur. J. Med. Chem. 45, 2206–2213. Web of Science CrossRef CAS PubMed Google Scholar
Wang, K.-L., Yu, Y.-C. & Hsia, S.-M. (2021). Cancers, 13, 115. CrossRef PubMed Google Scholar
Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571. Web of Science CrossRef CAS Google Scholar
Xu, M., Wu, P., Shen, F., Ji, J. & Rakesh, K. P. (2019). Bioorg. Chem. 91, 103133. CrossRef PubMed Google Scholar
Zheng, C. J., Jiang, S. M., Chen, Z. H., Ye, B. J. & Piao, H. R. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 689–695. CrossRef CAS Google Scholar
Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762–7810. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.