research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Conversion of 2-methyl-4-styryl­quino­lines into 2,4-distyryl­quino­lines: synthesis, and spectroscopic and structural characterization of five examples

crossmark logo

aLaboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and cSchool of Chemistry, University of St Andrews, Fife, KY16 9ST, United Kingdom
*Correspondence e-mail: cg@st-andrews.ac.uk

Edited by A. G. Oliver, University of Notre Dame, USA (Received 3 January 2023; accepted 16 February 2023; online 22 February 2023)

Four new 2,4-distyryl­quino­lines and one 2-styryl-4-[2-(thio­phen-2-yl)vin­yl]quinoline have been synthesized using indium trichloride condensation reactions between aromatic aldehydes and the corresponding 2-methyl­quino­lines, which were themselves prepared using Friedländer annulation reactions between mono- or diketones and (2-amino­phen­yl)chalcones: the products have all been fully characterized by spectroscopic and crystallographic methods. 2,4-Bis[(E)-styr­yl]quino­line, C25H19N, (IIa), and its di­chloro analogue, 2-[(E)-2,4-di­chloro­styr­yl]-4-[(E)-styr­yl]quino­line, C25H17Cl2N, (IIb), exhibit different orientations of the 2-styryl unit relative to the quino­line nucleus. In each of the 3-benzoyl analogues {2-[(E)-4-bromo­styr­yl]-4-[(E)-styr­yl]quinolin-3-yl}(phen­yl)methanone, C32H22BrNO, (IIc), {2-[(E)-4-bromo­styr­yl]-4-[(E)-4-chloro­styr­yl]quinolin-3-yl}(phen­yl)methanone, C32H21BrClNO, (IId), and {2-[(E)-4-bromo­styr­yl]-4-[(E)-2-(thio­phen-2-yl)vin­yl]quinolin-3-yl}(phen­yl)methanone, C30H20BrNOS, (IIe), the orientation of the 2-styryl unit is similar to that in (IIa), but the orientation of the 4-aryl­vinyl units show considerable variation. The thio­phene unit in (IIe) is disordered over two sets of atomic sites having occupancies of 0.926 (3) and 0.074 (3). There are no hy­dro­gen bonds of any kind in the structure of (IIa), but in (IId), a single C—H⋯O hy­dro­gen bond links the mol­ecules into cyclic centrosymmetric R22(20) dimers. A combination of C—H⋯N and C—H⋯π hy­dro­gen bonds links the mol­ecules of (IIb) into a three-dimensional framework structure. A combination of three C—H⋯π hy­dro­gen bonds links the mol­ecules of (IIc) into sheets, and a combination of C—H⋯O and C—H⋯π hy­dro­gen bonds forms sheets in (IIe). Comparisons are made with the structures of some related compounds.

1. Introduction

The quino­line nucleus is considered to be one of the most privileged scaffolds and to be a crucial pharmacophore in drug discovery because of its occurrence in a wide variety of natural and synthetic biologically active mol­ecules (Solomon & Lee, 2011[Solomon, R. V. & Lee, H. (2011). Curr. Med. Chem. 18, 1488-1508.]; Musiol et al., 2017[Musiol, R. (2017). Exp. Opin. Drug. Discov. 12, 583-597.]; Matada et al., 2021[Matada, B. S., Pattanashettar, R. & Yernale, N. G. (2021). Bioorg. Med. Chem. 32, 115973.]). The outstanding therapeutic importance of quino­line derivatives is well known, particularly in the treatment of, for example, microbial (Lam et al., 2014[Lam, K.-H., Gambari, R., Lee, K. K.-H., Chen, Y.-X., Kok, S. H.-L., Wong, R. S.-M., Lau, F.-Y., Cheng, C.-H., Wong, W.-Y., Bian, Z.-X., Chan, A. S.-C., Tang, J. C.-O. & Chui, C.-H. (2014). Bioorg. Med. Chem. Lett. 24, 367-370.]; Zhang et al., 2018[Zhang, G.-F., Liu, X., Zhang, S., Pan, B. & Liu, M.-L. (2018). Eur. J. Med. Chem. 146, 599-612.]), malarial (Kaur et al., 2010[Kaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245-3264.]; Hu et al., 2017[Hu, Y.-Q., Gao, C., Zhang, S., Xu, L., Xu, Z., Feng, L.-S., Wu, X. & Zhao, F. (2017). Eur. J. Med. Chem. 139, 22-47.]; Okombo & Chibale, 2018[Okombo, J. & Chibale, K. (2018). MedChemComm, 9, 437-453.]; Orozco et al., 2020[Orozco, D., Kouznetsov, V. V., Bermúdez, A., Vargas Méndez, L. Y., Mendoza Salgado, A. R. & Meléndez Gómez, C. M. (2020). RSC Adv. 10, 4876-4898.]), fungal (Musiol et al., 2010[Musiol, R., Serda, M., Hensel-Bielowka, S. & Polanski, J. (2010). Curr. Med. Chem. 17, 1960-1973.]; Kumar et al., 2011[Kumar, S., Bawa, S., Drabu, S. & Panda, B. P. (2011). Med. Chem. Res. 20, 1340-1348.]), inflammatory (Chen et al., 2006[Chen, Y., Zhao, Y., Lu, C., Tzeng, C. & Wang, J. P. (2006). Bioorg. Med. Chem. 14, 4373-4378.]; Gilbert et al., 2008[Gilbert, A. M., Bursavich, M. G., Lombardi, S., Georgiadis, K. E., Reifenberg, E., Flannery, C. & Morris, E. A. (2008). Bioorg. Med. Chem. Lett. 18, 6454-6457.]), viral (Ghosh et al., 2008[Ghosh, J., Swarup, V., Saxena, A., Das, S., Hazra, A., Paira, P., Banerjee, S., Mondal, N. B. & Basu, A. (2008). Int. J. Antimicrob. Agents, 32, 349-354.]; Matada et al., 2021[Matada, B. S., Pattanashettar, R. & Yernale, N. G. (2021). Bioorg. Med. Chem. 32, 115973.]), protozoal (Fakhfakh et al., 2003[Fakhfakh, M. A., Fournet, A., Prina, E., Mouscadet, J.-F., Franck, X., Hocquemiller, R. & Figadère, B. (2003). Bioorg. Med. Chem. 11, 5013-5023.]; Franck et al., 2004[Franck, X., Fournet, A., Prina, E., Mahieux, R., Hocquemiller, R. & Figadère, B. (2004). Bioorg. Med. Chem. Lett. 14, 3635-3638.]; Kumar et al., 2009[Kumar, S., Bawa, S. & Gupta, H. (2009). Mini Rev. Med. Chem. 9, 1648-1654.]), cardiovascular (Cai et al., 2007[Cai, Z., Zhou, W. & Sun, L. (2007). Bioorg. Med. Chem. 15, 7809-7829.]; Bernotas et al., 2009[Bernotas, R. C., Singhaus, R. R., Kaufman, D. H., Ullrich, J., Fletcher, H., Quinet, E., Nambi, P., Unwalla, R., Wilhelmsson, A., Goos-Nilsson, A., Farnegardh, M. & Wrobel, J. (2009). Bioorg. Med. Chem. 17, 1663-1670.]) and neoplastic diseases (Afzal et al., 2015[Afzal, O., Kumar, S., Haider, R., Ali, R., Kumar, R., Jaggi, M. & Bawa, S. (2015). Eur. J. Med. Chem. 97, 871-910.]; Musiol, 2017[Musiol, R. (2017). Exp. Opin. Drug. Discov. 12, 583-597.]; Cortes et al., 2018[Cortes, J. E., Apperley, J. F., DeAngelo, D. J., Deininger, M. W., Kota, V. K., Rousselot, P. & Gambacorti-Passerini, C. (2018). J. Hematol. Oncol. 11, 143.]; Lauria et al., 2021[Lauria, A., La Monica, G., Bono, A. & Martorana, A. (2021). Eur. J. Med. Chem. 220, 113555.]; Yadav & Kamal, 2021[Yadav, P. & Shah, K. (2021). Bioorg. Chem. 109, 104639.]).

Among different classes of quino­line derivatives, styryl­quino­lines, especially 2-styryl­quino­lines and to a lesser extent 4-styryl­quino­lines, have been studied extensively, mainly because of their potential as inhibitors of HIV-1 integrase (Leonard & Roy, 2008[Leonard, J. T. & Roy, K. (2008). Eur. J. Med. Chem. 43, 81-92.]; Mahajan et al., 2018[Mahajan, S., Gupta, S., Jariwala, N., Bhadane, D., Bhutani, L., Kulkarni, S. & Singh, I. (2018). Lett. Drug. Des. Discov. 15, 937-944.]; Mousnier et al., 2004[Mousnier, A., Leh, H., Mouscadet, J.-F. & Dargemont, C. (2004). Mol. Pharmacol. 66, 783-788.]) and as anti­microbial (Kamal et al., 2015[Kamal, A., Rahim, A., Riyaz, S., Poornachandra, Y., Balakrishna, M., Kumar, C., Hussaini, S., Sridhar, B. & Machiraju, P. (2015). Org. Biomol. Chem. 13, 1347-1357.]), anti­fungal (Cieslik et al., 2012[Cieslik, W., Musiol, R., Nycz, J. E., Jampilek, J., Vejsova, M., Wolff, M., Machura, B. & Polanski, J. (2012). Bioorg. Med. Chem. 20, 6960-6968.]; Szczepaniak et al., 2017[Szczepaniak, J., Cieślik, W., Romanowicz, A., Musioł, R. & Krasowska, A. (2017). Int. J. Antimicrob. Agents, 50, 171-176.]), anti-asthma (Matada et al., 2021[Matada, B. S., Pattanashettar, R. & Yernale, N. G. (2021). Bioorg. Med. Chem. 32, 115973.]) and anti­cancer agents (Chang et al., 2010[Chang, F. S., Chen, W., Wang, C., Tzeng, C. C. & Chen, Y. L. (2010). Bioorg. Med. Chem. 18, 124-133.]; Mrozek-Wilczkiewicz et al., 2015[Mrozek-Wilczkiewicz, A., Spaczynska, E., Malarz, K., Cieślik, W., Rams-Baron, M., Kryštof, V. & Musiol, R. (2015). PLoS One, 10, e0142678.], 2019[Mrozek-Wilczkiewicz, A., Kuczak, M., Malarz, K., Cieślik, W., Spaczyńska, E. & Musiol, R. (2019). Eur. J. Med. Chem. 177, 338-349.]). The pharmacological

[Scheme 1]
relevance of these types of quino­line derivatives has prompted the development of different methodologies for the synthesis of drug-like compounds containing such styryl­quino­line scaffolds (Staderine et al., 2011[Staderini, M., Cabezas, N., Bolognesi, M. L. & Menéndez, J. C. (2011). Synlett, 2011, 2577-2579.]; Yaragorla et al., 2015[Yaragorla, S., Singh, G. & Dada, R. (2015). Tetrahedron Lett. 56, 5924-5929.]; Sharma et al., 2017[Sharma, R., Abdullaha, M. & Bharate, S. B. (2017). J. Org. Chem. 82, 9786-9793.]; Musiol, 2020[Musiol, R. (2020). Med. Chem. 16, 141-154.]; Hazra et al., 2020[Hazra, S., Tiwari, V., Verma, A., Dolui, P. & Elias, A. J. (2020). Org. Lett. 22, 5496-5501.]; Zhang et al., 2020[Zhang, C., Li, Z., Fang, Y., Jiang, S., Wang, M. & Zhang, G. (2020). Tetrahedron, 76, 130968.]; Li et al., 2021[Li, X., Huang, B., Wang, J. W., Zhang, Y. Y. & Liao, W. B. (2021). J. Chem. Res. 45, 903-910.]; Omar & Hormi, 2009[Omar, W. A. E. & Hormi, O. E. O. (2009). Tetrahedron, 65, 4422-4428.]; Lee et al., 2009[Lee, V. M., Gavrishova, T. N. & Budyka, M. F. (2009). Chem. Heterocycl. C, 45, 1279-1280.] Alacíd & Nájera, 2009[Alacíd, E. & Nájera, C. (2009). J. Org. Chem. 74, 8191-8195.]; Jamal & Teo, 2014[Jamal, Z. & Teo, Y. C. (2014). Synlett, 25, 2049-2053.]; Jamal et al., 2016[Jamal, Z., Teo, Y.-C. & Lim, G. S. (2016). Tetrahedron, 72, 2132-2138.]; Satish et al., 2019[Satish, G., Ashok, P., Kota, L. & Ilangovan, A. (2019). Chemistry­Select, 4, 1346-1349.]; Meléndez et al., 2020[Meléndez, A., Plata, E., Rodríguez, D., Ardila, D., Guerrero, S., Acosta, L., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804-1822.]).

Unlike 2-styryl- and 4-styryl­quino­lines, the closely-related 2,4-distyryl­quino­lines have been scarcely investigated, with very few publications related to their synthesis and biological evaluation, and this scarcity may be due, at least in part, to the lack of satisfactory methods for their synthesis. The few re­ported 2,4-distyryl­quino­lines have been prepared by methods such as one-pot successive Arbuzov/Horner–Wadsworth–Emmons reactions using ethyl 4-(bromo­meth­yl)-2-(chloro­meth­yl)quino­line-3-carboxyl­ate as the key precursor (Gao et al., 2018[Gao, W., Li, Z., Xu, Q. & Li, Y. (2018). RSC Adv. 8, 38844-38849.]), and the Knoevenagel-type condensation of 2-methyl-4-styryl­quino­line with aromatic aldehydes, catalysed by sodium acetate (Satish et al., 2019[Satish, G., Ashok, P., Kota, L. & Ilangovan, A. (2019). Chemistry­Select, 4, 1346-1349.]).

We have recently described an efficient and straightforward synthetic pathway, based on Friedländer annulation and starting from readily available 1-(2-amino­phen­yl)-3-aryl­prop-2-en-1-ones, to obtain several new series of polysubstituted 2-methyl-4-styryl­quino­lines (Meléndez et al., 2020[Meléndez, A., Plata, E., Rodríguez, D., Ardila, D., Guerrero, S., Acosta, L., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804-1822.]; Vera et al., 2022[Vera, D. R., Mantilla, J. P., Palma, A., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 524-530.]). In an expansion of the scope of this route, in respect of both utility and flexibility, we now describe the synthesis, spectroscopic characterization, and mol­ecular and supra­molecular structures of a matched set of five closely-related 2,4-distyryl­quino­lines, namely, 2,4-bis­[(E)-styr­yl]quino­line, (IIa)[link], 2-[(E)-2,4-di­chloro­styr­yl]-4-[(E)-styr­yl]quino­line, (IIb)[link], {2-[(E)-4-bromo­styr­yl]-4-[(E)-styr­yl]quinolin-3-yl}(phen­yl)methanone, (IIc)[link], {2-[(E)-4-bromo­styr­yl]-4-[(E)-4-chloro­styr­yl]quinolin-3-yl}(phen­yl)methanone, (IId)[link], and {2-[(E)-4-bromo­styr­yl]-4-[(E)-2-(thio­phen-2-yl)vin­yl]quinolin-3-yl}(phen­yl)methanone, (IIe)[link] (see Scheme 1), which differ only in the nature of the substituents at position C3 of the quino­line ring and the substituents in the 4-(aryl­vin­yl) fragments. To the best of our knowledge, these 2,4-distyryl­quino­lines have not been reported previously.

The work reported here can be regarded as a continuation of an earlier crystallographic study which reported the structures of 4-styryl­quino­lines having different substituents at the C2 and C3 positions (Rodríguez et al., 2020[Rodríguez, D., Guerrero, S. A., Palma, A., Cobo, J. & Glidewell, C. (2020). Acta Cryst. C76, 883-890.]; Vera et al., 2022[Vera, D. R., Mantilla, J. P., Palma, A., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 524-530.]; Ardila et al., 2022[Ardila, D. M., Rodríguez, D. F., Palma, A., Díaz Costa, I., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 671-680.]).

2. Experimental

2.1. Synthesis and crystallization

For the synthesis of compounds (IIa)–(IIe), a mixture of the appropriate 2-methyl-4-styryl­quino­line, (I) (see Scheme 1), prepared as described previously (Meléndez et al., 2020[Meléndez, A., Plata, E., Rodríguez, D., Ardila, D., Guerrero, S., Acosta, L., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804-1822.]; Vera et al., 2022[Vera, D. R., Mantilla, J. P., Palma, A., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 524-530.]) (1.0 mmol), the appropriate aromatic aldehyde (4.0 mmol) and indium trichloride (10 mmol%) in dry toluene (1.2 ml) was stirred magnetically and heated at 393 K until the reactions were complete, shown by the complete consumption of (I), as monitored by thin-layer chromatography (TLC). The reaction times for completion were 18 h for (IIa)[link], 16 h for (IIb)[link], 17 h for (IIc)[link] and 21 h for both (IId)[link] and (IIe)[link]. Each reaction mixture was then allowed to cool to ambient tem­pe­ra­ture, washed with chloro­form and the resulting suspension was removed by filtration before the filtrate was con­cen­trated under reduced pressure. In each case, the resulting crude product was purified by silica-gel column chromatography using hepta­ne–ethyl acetate mixtures as eluent (compositions ranged from 10:1 to 2:1 v/v) to give the required solid products (IIa)–(IIe). Crystallization from ethyl acetate–heptane, at ambient tem­pe­ra­ture and in the presence of air, gave crystals suitable for single-crystal X-ray diffraction.

In the NMR data listed below, unprimed ring atoms form part of the quino­line units; ring atoms carrying a single prime form part of the styryl units attached at position C2 of the quino­line system; ring atoms carrying double primes form part of the styryl units attached at position C4 for compounds (IIa)[link] and (IIb)[link], or part of the benzoyl units attached at position C3 for compounds (IIc)–(IIe); and ring atoms carrying triple primes form part of the styryl units attached at position C4 for compounds (IIc)–(IIe).

2,4-Bis[(E)-styr­yl]quino­line, (IIa)[link]. Yellow solid, yield 0.11 g (71%), m.p. 393–394 K, RF = 0.40 (21% ethyl acetate–hepta­ne). IR (ATR, cm−1): 3019 [C(sp2)H], 1723 (C=N), 1633 (C=Cvin­yl), 1581 (C=Carom), 1541 (C=Carom), 961 (=C—Htrans). NMR (CDCl3): δ(1H) (400 MHz) 8.15 (d, J = 8.3 Hz, 1H, H5), 8.12 (d, J = 8.4 Hz, 1H, H8), 7.84 (d, J = 1.3 Hz, 1H, H3), 7.81 (d, J = 16.1 Hz, 1H, HA′′C=), 7.76 (d, J = 16.0 Hz, 1H, =CHB′), 7.72–7.68 (m, 1H, H7), 7.68–7.65 (m, 4H, H2′, H6′, H2′′, H6′′), 7.53 (ddt, J = 8.2, 6.9, 1.3 Hz, 1H, H6), 7.47–7.43 (m, 1H, HA′C=), 7.46–7.41 (m, 4H, H3′, H5′, H3′′, H5′′), 7.40–7.32 (m, 2H, H4′, H4′′), 7.38–7.34 (m, 1H, =CHB′′); δ(13C) (100 MHz) 155.7 (C2), 148.8 (C8a), 143.3 (C4), 136.7 (C1′′), 136.6 (C1′), 135.0 (=CHB′′), 134.3 (=CHB′), 129.9 (C8), 129.6 (C7), 128.9 (C3′′, C5′′), 128.8 (C3′, C5′, C4′′, HA′C=), 128.6 (C4′), 127.3 (C2′′, C6′′), 127.2 (C2′, C6′), 126.2 (C6), 125.7 (C4a), 123.4 (C5, HA′—C=), 115.6 (C3). HRMS (ESI+) m/z found for [M + H]+ 334.1590, C25H19N requires 333.1589.

2-[(E)-2,4-Di­chloro­styr­yl]-4-[(E)-styr­yl]quino­line, (IIb)[link]. Yellow solid, yield 0.19 g (77%), m.p. 449–450 K, RF = 0.41 (21% ethyl acetate–hepta­ne). IR (ATR, cm−1): 3055 [C(sp2)H], 1639 (C=N), 1580 (C=Cvin­yl), 1541 (C=Carom), 1473 (C=Carom), 960 (=C—Htrans). NMR (CDCl3): δ(1H) (400 MHz) 8.17 (dd, J = 8.4, 1.5 Hz, 1H, 5H), 8.11 (dd, J = 8.6, 1.3 Hz, 1H, 8H), 8.03 (d, J = 16.3 Hz, 1H, =CHB′), 7.86 (s, 1H, 3H), 7.81 (d, J = 16.3 Hz, 1 H, HA′′C=), 7.75 (d, J = 8.4 Hz, 1H, H6′), 7.73 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H, H7), 7.67–7.64 (m, 2H, H2′′, H6′′), 7.56 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H, H6), 7.47–7.42 (m, 3H, H3′, H3′′, H5′′), 7.39 (d, J = 16.3 Hz, 1H, =CHB′′), 7.39–7.35 (m, 1H, H4′′), 7.38 (d, J = 16.3 Hz, 1H, HA′C=), 7.29 (dd, J = 8.2, 2.0 Hz, 1H, H5′); δ(13C) (100 MHz) 155.1 (C2), 148.8 (C8a), 143.5 (C4), 136.6 (C1′′), 135.3 (=CHB′′), 134.6 (C2′), 134.5 (C4′), 133.4 (C1′), 132.3 (HA′C=), 130.1 (C8), 129.8 (C7, C3′), 129.0 (C3′′, C5′′), 128.9 (=CHB′), 128.8 (C4′′), 127.7 (C6′), 127.5 (C5′), 127.2 (C2′′, C6′′), 126.5 (C6), 125.8 (C4a), 123.5 (C5), 123.2 (HA′′C=), 115.4 (C3). HRMS (ESI+) m/z found for [M + H]+ 402.0812, C25H1735Cl2N requires 402.0811.

{2-[(E)-4-Bromo­styr­yl]-4-[(E)-styr­yl]quinolin-3-yl}(phen­yl)methanone, (IIc)[link]. Orange solid. yield 0.20 g (86%), m.p. 471–472 K, RF = 0.38 (9.1% ethyl acetate–hepta­ne). IR (ATR, cm−1): 3025 [C(sp2)H], 1666 (C=O), 1627 (C=N), 1595 (C=Cvin­yl), 1535 (C=Carom), 1483 (C=Carom), 957 (=C—Htrans). NMR (CDCl3): δ(1H) (400 MHz) 8.20 (dd, J = 8.5, 1.2 Hz, 1H, H8), 8.12 (dd, J = 8.4, 1.4 Hz, 1H, H5), 8.00 (d, J = 15.5 Hz, 1H, =CHB′), 7.80 (ddd, J = 8.6, 6.9, 1.3 Hz 1H, H7), 7.78–7.76 (m, 2H, H2′′, H6′′), 7.57 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H, H6), 7.56–7.52 (m, 1H, H4′′), 7.44–7.42 (m, 2H, H3′, H5′), 7.39 (t, J = 7.8 Hz, 2H, H3′′, H5′′), 7.35–7.32 (m, 2H, H2′, H6′), 7.30–7.26 (m, 5H, H2′′′, H6′′′, H3′′′, H5′′′, H4′′′), 7.23 (dd, J = 16.4, 0.8 Hz, 1H, HA′′′C=), 7.09 (dd, J = 15.5, 0.8 Hz, 1H, Ha′C=), 6.87 (d, J = 16.4 Hz, 1H, =CHB′′′); δ(13C) (100 MHz) 198.4 (C=O), 151.4 (C2), 148.1 (C8a), 142.4 (C4), 139.5 (=CHB′′′), 137.9 (C1′′), 136.3 (C1′′′), 135.4 (C1′), 135.0 (=CHB′), 134.0 (C4′′), 131.8 (C3′, C5′), 131.1 (C3), 130.6 (C7), 130.0 (C8), 129.5 (C2′′, C6′′), 129.0 (C2′, C6′), 128.9 (C3′′, C5′′), 128.8 (C4′′′), 128.7 (C3′′′, C5′′′), 126.9 (C6), 126.8 (C2′′′, C6′′′), 125.4 (C4a), 125.2 (C5), 125.0 (HA′C=), 122.7 (C4′), 122.1 (HA′′C=). HRMS (ESI+) m/z found for [M + H]+ 516.09656, C32H2279BrNO requires 516.09575.

{2-[(E)-4-Bromo­styr­yl]-4-[(E)-4-chloro­styr­yl]quinolin-3-yl}(phen­yl)methanone, (IId)[link]. Orange solid, yield 0.19 g (80%), m.p. 476–477 K, RF = 0.35 (9.1% ethyl acetate–hepta­ne). IR (ATR, cm−1): 3046 [C(sp2)H], 1661 (C=O), 1630 (C=N), 1590, 1595 (C=Cvin­yl), 1540 (C=Carom), 1487 (C=Carom), 978 (=C—Htrans). NMR (CDCl3): δ(1H) 8.20 (400 MHz) (dd, J = 8.4, 1.4 Hz, 1H, H8), 8.08 (ddd, J = 8.4, 1.4, 0.7 Hz, 1H, H5), 8.00 (d, J = 15.5 Hz, 1H, =CHB′), 7.80 (ddd, J = 8.4, 6.8, 1.3 Hz, 1H, H7), 7.76–7.74 (m, 2H, H2′′, H6′′), 7.57 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H, H6), 7.56–7.52 (m, 1H, H4′′), 7.44–7.42 (m, 2H, H3′, H5′), 7.39 (t, J = 7.8 Hz, 2H, H3′′, H5′′), 7.34–7.31 (m, 2H, H2′, H6′), 7.27–7.25 (m, 2H, H3′′′, H5′′′), 7.22–7.18 (m, 2H, H2′′′, H6′′′), 7.20 (d, J = 16.4 Hz, 1H, HA′′′C=), 7.08 (d, J = 15.5 Hz, 1H, HA′C=), 6.81 (d, J = 16.4 Hz, 1H, =CHB′′′); δ(13C) (100 MHz) 198.4 (C=O), 151.4 (C2), 148.1 (C8a), 142.0 (C4), 138.1 (=CHB′′′), 137.9 (C1′′), 135.4 (C1′), 135.1 (=CHB′), 134.7 (C4′′′), 134.6 (C1′′′), 134.1 (C4′′), 131.8 (C3′, C5′), 131.1 (C3), 130.7 (C7), 130.0 (C8), 129.5 (C2′′, C6′′), 129.0 (C2′, C6′, C3′′′, C5′′′), 128.9 (C3′′, C5′′), 128.0 (C2′′′, C6′′′), 127.0 (C6), 125.2 (C4a), 125.1 (HHA′C=), 124.9 (C5), 122.7 (C4′, HA′′′C=). HRMS (ESI+) m/z found for [M + H]+ 550.05750, C32H2179Br35ClNO requires 550.05678.

{2-[(E)-4-Bromo­styr­yl]-4-[(E)-2-(thio­phen-2-yl)vin­yl]quino­lin-3-yl}(phen­yl)methanone, (IIe)[link]. Yellow solid, yield 0.24 g (93%), m.p. 472–473 K, RF = 0.38 (9.1% ethyl acetate–hep­ta­ne). IR (ATR, cm−1): 3026 [C(sp2)H], 1663 (C=O), 1627 (C=N), 1589 (C=Cvin­yl), 1537 (C=Carom), 1483 (C=Carom), 957 (=C—Htrans). NMR (CDCl3): δ(1H) (400 MHz) 8.18 (d, J = 8.3 Hz, 1H, H8), 8.11 (d, J = 8.3 Hz, 1H, H5), 7.99 (d, J = 15.5 Hz, 1H, =CHB′), 7.82–7.78 (m, 1H, H7), 7.77–7.75 (m, 2H, H2′′, H6′′), 7.58 (ddd, J = 8.3, 6.8, 1.2 Hz, 1H, H6), 7.56–7.52 (m, 1H, H4′′), 7.43 (d, J = 8.4 Hz, 2H, H3′, H5′), 7.38 (t, J = 7.8 Hz, 2H, H3′′, H5′′), 7.33 (d, J = 8.4 Hz, 2H, H2′, H6′), 7.21 (d, J = 4.9 Hz, 1H, H3′′′), 7.08 (d, J = 15.5 Hz, 1H, HA′C=), 7.08 (d, J = 16.2 Hz, 1H, Ha′′′C=), 6.99 (d, J = 16.2 Hz, 1H, =CHB′′′), 6.98–6.95 (m, 2H, H4′′′, H5′′′); δ(13C) (100 MHz) 198.5 (C=O), 151.4 (C2), 148.1 (C8a), 141.7 (C4), 141.3 (C2′′′), 137.8 (C1′′), 135.4 (C1′), 135.0 (=CHB′), 134.0 (C4′′), 132.3 (=CHB′′′), 131.8 (C3′, C5′), 130.9 (C3), 130.6 (C7), 130.0 (C8), 129.5 (C2′′, C6′′), 129.0 (C2′, C6′), 128.9 (C3′′, C5′′), 128.0 (C5′′′), 127.7 (C4′′′), 127.0 (C6), 126.1 (C3′′′), 125.2 (C4a), 125.1 (HA′C=), 124.9 (C5), 122.7 (C4′), 121.1 (HA′′′C=). HRMS (ESI+) m/z found for [M + H]+ 522.05249, C30H2079BrNOS = requires 522.05217.

2.2. Refinement

Crystal data, data collection and refinement details for compounds (IIa)–(IIe) are summarized in Table 1[link]. For compound (IId)[link], the reflection 100, which had been attenuated by the beam stop, was removed from the data set. In addition, a small number of bad outlier reflections [[\overline{1}]04 for (IIa)[link] and 141, 231, 241, 033 and [\overline{3}]03 for (IIc)] were also removed. Compound (IIc)[link] was handled as a nonmerohedral twin, with twin matrix (−0.053, 0.000, 0.947/0.000, −1.000, 0.000/1.053, 0.000, 0.053) and with refined twin fractions of 0.865 (2) and 0.135 (2). In compound (IIe)[link], the thienyl unit was disordered over two sets of atomic sites having unequal occupancies. For the minor-disorder component, the bonded distances and the 1,3 nonbonded distances were restrained to be the same as the corresponding distances in the major-disorder component, subject to s.u. values of 0.01 and 0.02 Å, respectively. In addition, the anisotropic displacement parameters for pairs of partial-occupancy atoms occupying essentially the same physical space were constrained to be identical. All H atoms, apart from those in the minor-disorder component of compound (IIe)[link], were located in difference maps and then treated as riding atoms in geometrically idealized positions, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C); the H atoms in the minor-disorder component of compound (IIe)[link] were included in the refinement in exactly the same manner. Subject to these conditions, the refined occupancy values for the disorder components of (IIe)[link] were 0.926 (3) and 0.074 (3). In the final difference map, the largest maximum of 1.65 e Å−3 was 0.86 Å from atom Br24, while the largest minimum of −1.18 e Å−3 was 0.66 Å from Br24. While these features might indicate some further minor disorder, the anisotropic displacement parameters provided no support for this possibility, which was therefore not pursued further.

Table 1
Experimental details

Experiments were carried out at 100 K with Mo Kα radiation using a Bruker D8 Venture diffractometer. Absorption was corrected for by multi-scan methods (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]). H-atom parameters were constrained.

  (IIa) (IIb) (IIc)
Crystal data
Chemical formula C25H19N C25H17Cl2N C32H22BrNO
Mr 333.41 402.29 516.41
Crystal system, space group Monoclinic, P21/c Monoclinic, C2/c Monoclinic, P21/n
a, b, c (Å) 12.6112 (6), 8.6352 (4), 17.3080 (8) 28.4950 (7), 9.5384 (3), 16.0520 (5) 12.287 (2), 15.528 (3), 12.844 (3)
α, β, γ (°) 90, 105.925 (2), 90 90, 118.581 (1), 90 90, 99.877 (6), 90
V3) 1812.51 (15) 3831.2 (2) 2414.2 (8)
Z 4 8 4
μ (mm−1) 0.07 0.35 1.73
Crystal size (mm) 0.19 × 0.14 × 0.08 0.21 × 0.10 × 0.09 0.15 × 0.12 × 0.08
 
Data collection
Tmin, Tmax 0.924, 0.994 0.901, 0.969 0.720, 0.871
No. of measured, independent and observed [I > 2σ(I)] reflections 38720, 4161, 3388 47555, 4414, 3914 5530, 5530, 4290
Rint 0.060 0.056
(sin θ/λ)max−1) 0.650 0.650 0.653
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.118, 1.09 0.032, 0.078, 1.09 0.064, 0.196, 1.05
No. of reflections 4161 4414 5530
No. of parameters 235 253 317
No. of restraints 0 0 0
Δρmax, Δρmin (e Å−3) 0.25, −0.24 0.35, −0.22 1.40, −0.70
  (IId) (IIe)
Crystal data
Chemical formula C32H21BrClNO C30H20BrNOS
Mr 550.86 522.44
Crystal system, space group Triclinic, P[\overline{1}] Orthorhombic, Pbca
a, b, c (Å) 9.9051 (12), 11.3936 (16), 11.8192 (16) 15.5785 (8), 16.4215 (7), 18.3126 (9)
α, β, γ (°) 77.727 (5), 76.116 (5), 86.448 (5) 90, 90, 90
V3) 1265.2 (3) 4684.8 (4)
Z 2 8
μ (mm−1) 1.76 1.87
Crystal size (mm) 0.19 × 0.12 × 0.10 0.20 × 0.12 × 0.08
 
Data collection
Tmin, Tmax 0.735, 0.836 0.768, 0.861
No. of measured, independent and observed [I > 2σ(I)] reflections 61838, 5807, 5014 63672, 5363, 4456
Rint 0.064 0.060
(sin θ/λ)max−1) 0.650 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.065, 1.03 0.040, 0.101, 1.02
No. of reflections 5807 5363
No. of parameters 325 320
No. of restraints 0 10
Δρmax, Δρmin (e Å−3) 0.33, −0.39 1.65, −1.18
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2017[Bruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

3. Results and discussion

The 2-methyl-4-styryl­quino­line precursors of type (I) (see Scheme 1) were prepared in high yields using Friedländer annulation reactions (Meléndez et al., 2020[Meléndez, A., Plata, E., Rodríguez, D., Ardila, D., Guerrero, S., Acosta, L., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804-1822.]; Vera et al., 2022[Vera, D. R., Mantilla, J. P., Palma, A., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 524-530.]) between (2-amino­phen­yl)chalcones and either acetone, for compounds (Ia) and (Ib), or 1-phenyl­butane-l-1,3-dione, for compounds (Ic)–(Ie). These precursors of type (I) were then converted successfully into the target 2,4-distyryl­quino­lines (IIa)–(IIe) in yields of 71–93% by means of indium tri­chloride-catalyzed Knoevenagel-type condensation reactions with the appropriate aromatic aldehydes (see Scheme 1). Compounds (IIa)–(IIe) were all fully characterized by standard spectroscopic means (FT–IR, 1H and 13C NMR spectroscopy, and high-resolution mass spectrometry) and full details of the spectroscopic characterization are provided in Section 2.1[link].

The formation of the second styryl fragment in products (IIa)–(IIe) was established by the disappearance from both the 1H and 13C NMR spectra of the signals from the methyl group at position C2, and their replacement by new sets of signals corresponding to the newly-introduced C and H atoms; thus, eight new C atoms in each case and seven new H atoms in (IIa)[link], five in (IIb)[link] and six in each of (IIc)–(IIe). In each case, the Knoevenagel-type condensation proceeded in a highly stereoselective manner giving exclusively the E stereoisomers, as indicated by the 1H NMR spectra. The E configuration of the newly-formed styryl fragment was deduced on the basis of the coupling constant values (3JHA′,HB′ ca 16.0 Hz) between HA′ and HB′. The constitutions of compounds (IIa)–(IIe), which were deduced from the spectroscopic data, were then fully confirmed by the results of single-crystal X-ray diffraction, which additionally provided information on the mol­ecular conformations and the inter­molecular inter­actions in the solid state.

The versatility of this synthetic route to 2,4-distyryl­quino­lines and their analogues is underpinned by the possibility of incorporating a wide variety of substituents into the initial chalcone precursor, into the ketone employed in the annulation step and into the aldehyde used in the final condensation step.

In compound (IIe)[link], the thio­phene unit is disordered over two sets of atomic sites having occupancies of 0.926 (3) and 0.074 (3), such that the two disorder forms are related by a rotation of approximately 180° around the exocyclic C—C bond; the dihedral angle between the mean planes of the two disorder components is only 4(2)°.

The mol­ecules of compounds (IIa)–(IIe) exhibit no inter­nal symmetry and hence these compounds are all conformationally chiral (Moss, 1996[Moss, G. P. (1996). Pure Appl. Chem. 68, 2193-2222.]; Flack & Bernardinelli, 1999[Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915.]), but the centrosymmetric space groups (Table 1[link]) confirm that equal numbers of the two conformational enanti­omers are present in each of (IIa)–(IIe).

For the 3-benzoyl products (IIc)–(IIe), the reference mol­ecules are all such that the torsion angle C2—C3—C31—C311 has a positive sign (Table 2[link]), while the value of the torsion angle C3—C4—C41—C42 in (IIc)[link] is markedly different from those in the other four compound reported here (Table 2[link] and Figs. 1[link]–5[link][link][link][link]). In each of (IIa)–(IIe), the 2-styryl unit is close to being coplanar with the quino­line unit, while the 4-substituent is twisted well out of the plane of the quino­line unit. These observations thus complement the general pattern in styryl­quino­lines that we have noted previously (Vera et al., 2022[Vera, D. R., Mantilla, J. P., Palma, A., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 524-530.]; Ardila et al., 2022[Ardila, D. M., Rodríguez, D. F., Palma, A., Díaz Costa, I., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 671-680.]). Amongst the styryl­quino­lines whose structures are recorded in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), 2-styryl- and 8-styryl­quino­lines all have mol­ecular skeletons which are effectively planar, while in 4-styryl­quino­lines, the styryl unit is always markedly twisted out of the plane of the quino­line unit by a rotation about the exocyclic bond corresponding to C4—C41 in the numbering system used here.

Table 2
Selected torsion angles (°) for compounds (IIa)–(IIe)

Parameter (IIa) (IIb) (IIc) (IId) (IIe)
C3—C2—C21—C22 −178.77 (14) −12.9 (2) −171.8 (4) 179.16 (16) 178.5 (2)
C21—C22—C221—C222 −173.99 (15) −161.58 (14) 171.4 (4) −171.95 (17) −174.5 (3)
C2—C3—C31—C311     87.2 (5) 109.43 (17) 85.9 (3)
C3—C31—C311—C312     −15.6 (6) −12.3 (2) −10.9 (3)
C3—C4—C41—C42 19.8 (2) 23.4 (2) −131.9 (4) −44.4 (2) 37.6 (4)
C41—C42—C421—C422 8.3 (2) −6.1 (2) −4.5 (6) −21.4 (3)  
C41—C42—C422—S421         0.8 (4)
C41—C42—C522—S521         −175.9 (7)
[Figure 1]
Figure 1
The mol­ecular structure of compound (IIa)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (IIb)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of compound (IIc)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4]
Figure 4
The mol­ecular structure of compound (IId)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 5]
Figure 5
The mol­ecular structure of compound (IIe)[link], showing the conformational disorder and the atom-labelling scheme. The major-disorder component is drawn with full lines and the minor-disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 50% probability level.

Despite this, there are some unexpected differences in the mol­ecular orientations of the two aryl­vinyl units (Figs. 1[link]–5[link][link][link][link] and Table 2[link]). Thus, the orientation of the 2-styryl substituent in (IIb)[link] differs from that in each of (IIa)[link] and (IIc)–(IIe) by a rotation about the C2—C21 bond of approximately 180°. In addition, the orientation of the 4-stryl unit in (IIc)[link] differs markedly from that in each of the other examples, but the torsion angle C3—C4—C41—C42 shows quite a wide range of variation (Table 2[link]). These differences in conformation cannot reasonably be explained in terms of the patterns of hy­dro­gen bonding discussed below (cf. Table 3[link]).

Table 3
Hydrogen bonds and short inter­molecular contacts (Å, °) for compounds (IIb)–(IIe)

Cg1–Cg4 represent the centroids of rings C421–C426, C4A/C5–C8/C8A, C311–C316 and C221–C216, respectively.

Compound D—H⋯A   D—H H⋯A DA D—H⋯A
(IIb) C225—H225⋯N1i   0.95 2.62 3.522 (2) 158
  C6—H6⋯Cg1ii   0.95 2.65 3.4152 (16) 138
  C422—H422⋯Cg2iii   0.95 2.88 3.5843 (17) 132
(IIc) C8—H8⋯O31iv   0.95 2.51 3.164 (6) 126
  C5—H5⋯Cg3v   0.95 2.96 3.728 (4) 138
  C42—H42⋯Cg4vi   0.95 2.88 3.766 (5) 155
  C223—H223⋯Cg2vii   0.95 2.84 3.429 (3) 122
(IId) C225—H225⋯O31v   0.95 2.37 3.266 (2) 156
(IIe) C8—H8⋯O31viii   0.95 2.58 3.122 (3) 116
  C425—H425⋯O31ix   0.95 2.45 3.361 (4) 161
  C5—H5⋯Cg3v   0.95 2.90 3.647 (3) 136
  C423—H423⋯Cg3v   0.95 2.76 3.449 (3) 130
Symmetry codes: (i) −x + [{1\over 2}], y − [{1\over 2}], −z + [{3\over 2}]; (ii) x, −y + 2, z + [{1\over 2}]; (iii) −x + 1, y, −z + [{3\over 2}]; (iv) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (v) −x + 1, −y + 1, −z + 1; (vi) x + [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (vii) x − [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (viii) −x + [{1\over 2}], y − [{1\over 2}], z; (ix) x, −y + 2, z − [{1\over 2}].

The patterns of supra­molecular assembly in compounds (IIa)–(IIe) show some wide variations. Despite the large numbers of aromatic rings and C—H bonds in the mol­ecules of (IIa)[link], the crystal structure contains no significant direction-specific inter­molecular inter­actions of any sort. By contrast, in the di­chloro analogue (IIb)[link], a combination of one C—H⋯N hy­dro­gen bond and two independent C—H⋯π(arene) hy­dro­gen bonds (Table 3[link]) links the mol­ecules into a three-dimensional framework structure, whose formation is readily analysed in terms of three simple substructures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). The C—H⋯N hy­dro­gen bonds link mol­ecules of (IIb)[link] which are related by the 21 screw axis along ([1 \over 4], y, [3 \over 4]) to form a C(8) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [010] direction (Fig. 6[link]). In the second substructure, the C—H⋯π(arene) hy­dro­gen bond having atom C6 as the donor links mol­ecules which are related by the c-glide plane at y = 1 to form a chain running parallel to the [001] direction (Fig. 7[link]). The combination of the chains along [010] and [001] generates a sheet lying parallel to (100) in the domain 0 < x < [1 \over 2]. A second sheet, related to the first by inversion, lies in the domain [1 \over 2] < x < 1.0, and adjacent sheets are linked by the third substructure which takes the form of a cyclic centrosymmetric dimer built from C—H⋯π(arene) hy­dro­gen bonds having atom C422 as the donor (Fig. 8[link]).

[Figure 6]
Figure 6
Part of the crystal structure of compound (IIb)[link], showing the formation of a C(8) chain parallel to [010], built from C—H⋯N hy­dro­gen bonds, which are drawn as dashed lines. For the sake of clarity, H atoms which are not involved in the motif shown have been omitted.
[Figure 7]
Figure 7
Part of the crystal structure of compound (IIb)[link], showing the formation of a chain parallel to [001], built from C—H⋯π(arene) hy­dro­gen bonds, which are drawn as dashed lines. For the sake of clarity, H atoms which are not involved in the motif shown have been omitted.
[Figure 8]
Figure 8
Part of the crystal structure of compound (IIb)[link], showing the formation of a centrosymmetric dimer built from C—H⋯π(arene) hy­dro­gen bonds, which are drawn as dashed lines. For the sake of clarity, H atoms which are not involved in the motif shown have been omitted.

The short inter­molecular C—H⋯O contact in compound (IIc)[link] has a very small C—H⋯O angle (Table 3[link]), and so cannot be regarded as structurally significant (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]). However, the co-operative action of two C—H⋯π(arene) hy­dro­gen bonds links mol­ecules which are related by the n-glide plane at y = [1 \over 4] into a chain of rings running parallel to the [10[\overline{1}]] direction (Fig. 9[link]). The structure also contains a third C—H⋯π(arene) contact, involving atom C5, but here the H⋯A distance is quite long; if this were regarded as structurally significant, its action would be to link the chains of rings into a sheet parallel to (101).

[Scheme 2]
[Figure 9]
Figure 9
Part of the crystal structure of compound (IIc)[link], showing the formation of a chain of rings running parallel to the [10[\overline{1}]] direction and built from two independent C—H⋯π(arene) hy­dro­gen bonds, which are drawn as dashed lines. For the sake of clarity, H atoms which are not involved in the motif shown have been omitted.

A single C—H⋯O hy­dro­gen bond links inversion-related mol­ecules of compound (IId)[link] into a cyclic centrosymmetric R22(20) dimer (Fig. 10[link]), but there are no direction-specific inter­actions between adjacent dimers.

[Figure 10]
Figure 10
Part of the crystal structure of compound (IId)[link], showing the formation of a cyclic R22(20) dimer built from C—H⋯O hy­dro­gen bonds, which are drawn as dashed lines. For the sake of clarity, H atoms which are not involved in the motif shown have been omitted.

In the crystal structure of compound (IIe)[link], the C—H⋯O contact involving atom C8 is not structurally significant (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]), but the combination of the C—H⋯O hy­dro­gen bond involving atom C425 with the two C—H⋯π(arene) hy­dro­gen bonds links the mol­ecules into a complex sheet lying parallel to (100) in the domain [1 \over 4] < x < [3 \over 4] (Fig. 11[link]). A second sheet, related to the first by the action of the 21 screw axes, lies in the domain [3 \over 4] < x < 1.35, but there are no direction-specific inter­actions between adjacent sheets.

[Figure 11]
Figure 11
Part of the crystal structure of compound (IIe)[link], showing the formation of a sheet lying parallel to {100} and built from a combination of C—H⋯O and C—H⋯π(arene) hy­dro­gen bonds, which are drawn as dashed lines. For the sake of clarity, the minor-disorder component and H atoms which are not involved in the motif shown have been omitted.

It is of inter­est briefly to compare the supra­molecular assembly in compounds (IIa)–(IIe) reported here with those of some simpler 2-methyl-4-styryl­quino­line analogues. Crystal structures have been reported (Vera et al., 2022[Vera, D. R., Mantilla, J. P., Palma, A., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 524-530.]) for compounds (IIIa)–(IIIc) (see Scheme 2), which have no sub­sti­tuent at position C3 of the quino­line unit, and are thus related to compounds (IIa)[link] and (IIb)[link] reported here. In the crystal structure of (IIIa), the mol­ecules are linked into sheets by a combination of C—H⋯N hy­dro­gen bonds and ππ stacking inter­actions, while a similar combination of inter­actions links the mol­ecules of (IIIb) into chains of rings. There are no hy­dro­gen bonds in the structure of (IIIc), but a ππ stacking inter­action links the mol­ecules into stacks.

Compounds of the type (IV) (see Scheme 2), carrying a 3-acetyl substituent, are thus analogous to compounds (IIc)–(IIe). Compounds (IVa)–(IVc) are isomorphous (Rod­ríguez et al., 2020[Rodríguez, D., Guerrero, S. A., Palma, A., Cobo, J. & Glidewell, C. (2020). Acta Cryst. C76, 883-890.]); in each, the mol­ecules are linked into chains by a C—H⋯O hy­dro­gen bond, but only in (IVa) is this augmented by a C—H⋯π hy­dro­gen bonds to form a chain of rings. Thus, although (IVa)–(IVc) are isomorphous, they are not strictly isostructural.

4. Summary

We have developed an efficient and highly versatile route to 2,4-distyryl­quino­lines and to their 2-aryl­vin­yl analogues, using only simple and readily accessible building blocks such as simple aldehydes and ketone. We have characterized by spectroscopic means (IR, 1H and 13C NMR spectroscopy, and HRMS) five representative examples and we have determined their mol­ecular and crystal structures, which fully confirm the mol­ecular constitutions deduced from the spectroscopic data, as well as providing further information on their mol­ecular conformations in the solid state, and on their supra­molecular assemblies.

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

2,4-Bis[(E)-2-phenylethenyl]quinoline (IIa) top
Crystal data top
C25H19NF(000) = 704
Mr = 333.41Dx = 1.222 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.6112 (6) ÅCell parameters from 4167 reflections
b = 8.6352 (4) Åθ = 2.5–27.5°
c = 17.3080 (8) ŵ = 0.07 mm1
β = 105.925 (2)°T = 100 K
V = 1812.51 (15) Å3Block, yellow
Z = 40.19 × 0.14 × 0.08 mm
Data collection top
Bruker D8 Venture
diffractometer
4161 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube3388 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.060
φ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1616
Tmin = 0.924, Tmax = 0.994k = 1011
38720 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.9448P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
4161 reflectionsΔρmax = 0.25 e Å3
235 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.30510 (10)0.54242 (14)0.21630 (7)0.0228 (3)
C20.39111 (12)0.48035 (16)0.26929 (8)0.0217 (3)
C30.49565 (12)0.46407 (16)0.25495 (9)0.0224 (3)
H30.55410.41690.29460.027*
C40.51400 (11)0.51553 (16)0.18435 (9)0.0212 (3)
C4A0.42226 (11)0.58233 (15)0.12564 (8)0.0203 (3)
C50.42744 (12)0.63945 (16)0.04991 (8)0.0227 (3)
H50.49430.63070.03500.027*
C60.33789 (12)0.70684 (17)0.00194 (9)0.0251 (3)
H60.34350.74590.05200.030*
C70.23722 (12)0.71894 (17)0.01804 (9)0.0264 (3)
H70.17540.76640.01840.032*
C80.22845 (12)0.66260 (17)0.08957 (9)0.0257 (3)
H80.16000.67010.10230.031*
C8A0.31991 (11)0.59285 (16)0.14540 (8)0.0207 (3)
C210.37736 (12)0.43385 (16)0.34781 (9)0.0241 (3)
H210.44030.39590.38700.029*
C220.28261 (12)0.44134 (16)0.36762 (9)0.0240 (3)
H220.21980.47540.32710.029*
C2210.26566 (13)0.40205 (16)0.44600 (9)0.0248 (3)
C2220.15863 (14)0.40227 (18)0.45468 (10)0.0310 (3)
H2220.09810.42650.40990.037*
C2230.13992 (15)0.3673 (2)0.52835 (11)0.0383 (4)
H2230.06690.36840.53350.046*
C2240.22673 (16)0.3313 (2)0.59377 (10)0.0401 (4)
H2240.21360.30830.64400.048*
C2250.33301 (15)0.32869 (19)0.58609 (10)0.0352 (4)
H2250.39270.30170.63090.042*
C2260.35281 (14)0.36517 (18)0.51339 (9)0.0288 (3)
H2260.42630.36520.50910.035*
C410.62282 (12)0.50961 (17)0.16929 (9)0.0238 (3)
H410.63400.57580.12840.029*
C420.70752 (12)0.42098 (17)0.20709 (9)0.0243 (3)
H420.69750.35420.24810.029*
C4210.81585 (11)0.41880 (17)0.19004 (9)0.0229 (3)
C4220.84436 (12)0.52532 (18)0.13856 (10)0.0273 (3)
H4220.79320.60330.11380.033*
C4230.94624 (12)0.51886 (18)0.12314 (10)0.0297 (3)
H4230.96430.59210.08780.036*
C4241.02212 (12)0.40646 (19)0.15887 (10)0.0318 (4)
H4241.09250.40330.14890.038*
C4250.99439 (13)0.2989 (2)0.20920 (11)0.0365 (4)
H4251.04570.22040.23330.044*
C4260.89210 (13)0.30456 (19)0.22480 (10)0.0304 (3)
H4260.87400.22990.25950.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0218 (6)0.0222 (6)0.0253 (6)0.0004 (5)0.0082 (5)0.0011 (5)
C20.0230 (7)0.0179 (6)0.0253 (7)0.0007 (5)0.0086 (6)0.0015 (5)
C30.0213 (7)0.0209 (7)0.0241 (7)0.0021 (5)0.0050 (5)0.0010 (6)
C40.0211 (7)0.0161 (6)0.0270 (7)0.0009 (5)0.0076 (6)0.0023 (5)
C4A0.0219 (7)0.0155 (6)0.0239 (7)0.0019 (5)0.0072 (5)0.0034 (5)
C50.0232 (7)0.0209 (7)0.0263 (7)0.0009 (6)0.0104 (6)0.0022 (6)
C60.0306 (8)0.0228 (7)0.0225 (7)0.0009 (6)0.0080 (6)0.0007 (6)
C70.0248 (7)0.0244 (7)0.0273 (7)0.0027 (6)0.0026 (6)0.0019 (6)
C80.0210 (7)0.0268 (7)0.0299 (8)0.0006 (6)0.0080 (6)0.0009 (6)
C8A0.0215 (7)0.0172 (6)0.0235 (7)0.0013 (5)0.0064 (5)0.0032 (5)
C210.0269 (7)0.0207 (7)0.0250 (7)0.0020 (6)0.0077 (6)0.0015 (6)
C220.0283 (7)0.0206 (7)0.0238 (7)0.0001 (6)0.0080 (6)0.0014 (6)
C2210.0334 (8)0.0171 (7)0.0267 (7)0.0015 (6)0.0132 (6)0.0031 (6)
C2220.0354 (8)0.0275 (8)0.0331 (8)0.0025 (7)0.0143 (7)0.0034 (7)
C2230.0458 (10)0.0361 (9)0.0418 (10)0.0111 (8)0.0270 (8)0.0055 (8)
C2240.0637 (12)0.0323 (9)0.0305 (9)0.0137 (8)0.0233 (8)0.0029 (7)
C2250.0529 (11)0.0247 (8)0.0275 (8)0.0045 (7)0.0102 (7)0.0005 (6)
C2260.0363 (8)0.0232 (7)0.0280 (8)0.0006 (6)0.0105 (6)0.0031 (6)
C410.0228 (7)0.0243 (7)0.0262 (7)0.0000 (6)0.0097 (6)0.0017 (6)
C420.0235 (7)0.0235 (7)0.0266 (7)0.0014 (6)0.0083 (6)0.0017 (6)
C4210.0194 (7)0.0231 (7)0.0256 (7)0.0002 (5)0.0050 (5)0.0029 (6)
C4220.0206 (7)0.0230 (7)0.0372 (8)0.0010 (6)0.0063 (6)0.0030 (6)
C4230.0251 (7)0.0265 (8)0.0387 (9)0.0036 (6)0.0109 (6)0.0021 (7)
C4240.0204 (7)0.0335 (8)0.0437 (9)0.0009 (6)0.0126 (6)0.0020 (7)
C4250.0260 (8)0.0373 (9)0.0472 (10)0.0109 (7)0.0115 (7)0.0118 (8)
C4260.0264 (8)0.0332 (8)0.0325 (8)0.0044 (6)0.0097 (6)0.0077 (7)
Geometric parameters (Å, º) top
N1—C21.3263 (18)C222—C2231.392 (2)
N1—C8A1.3624 (18)C222—H2220.9500
C2—C31.414 (2)C223—C2241.378 (3)
C2—C211.472 (2)C223—H2230.9500
C3—C41.378 (2)C224—C2251.383 (3)
C3—H30.9500C224—H2240.9500
C4—C4A1.4348 (19)C225—C2261.385 (2)
C4—C411.4663 (19)C225—H2250.9500
C4A—C51.4185 (19)C226—H2260.9500
C4A—C8A1.4261 (19)C41—C421.331 (2)
C5—C61.365 (2)C41—H410.9500
C5—H50.9500C42—C4211.475 (2)
C6—C71.408 (2)C42—H420.9500
C6—H60.9500C421—C4261.394 (2)
C7—C81.363 (2)C421—C4221.395 (2)
C7—H70.9500C422—C4231.383 (2)
C8—C8A1.4195 (19)C422—H4220.9500
C8—H80.9500C423—C4241.384 (2)
C21—C221.332 (2)C423—H4230.9500
C21—H210.9500C424—C4251.383 (2)
C22—C2211.470 (2)C424—H4240.9500
C22—H220.9500C425—C4261.389 (2)
C221—C2221.399 (2)C425—H4250.9500
C221—C2261.402 (2)C426—H4260.9500
C2—N1—C8A117.65 (12)C223—C222—H222119.7
N1—C2—C3122.94 (13)C221—C222—H222119.7
N1—C2—C21117.88 (13)C224—C223—C222120.38 (16)
C3—C2—C21119.12 (13)C224—C223—H223119.8
C4—C3—C2121.01 (13)C222—C223—H223119.8
C4—C3—H3119.5C223—C224—C225119.83 (15)
C2—C3—H3119.5C223—C224—H224120.1
C3—C4—C4A117.29 (13)C225—C224—H224120.1
C3—C4—C41122.64 (13)C224—C225—C226120.32 (16)
C4A—C4—C41120.02 (13)C224—C225—H225119.8
C5—C4A—C8A118.27 (13)C226—C225—H225119.8
C5—C4A—C4124.16 (13)C225—C226—C221120.80 (16)
C8A—C4A—C4117.57 (12)C225—C226—H226119.6
C6—C5—C4A121.08 (13)C221—C226—H226119.6
C6—C5—H5119.5C42—C41—C4126.64 (14)
C4A—C5—H5119.5C42—C41—H41116.7
C5—C6—C7120.60 (13)C4—C41—H41116.7
C5—C6—H6119.7C41—C42—C421124.87 (14)
C7—C6—H6119.7C41—C42—H42117.6
C8—C7—C6120.00 (13)C421—C42—H42117.6
C8—C7—H7120.0C426—C421—C422118.31 (13)
C6—C7—H7120.0C426—C421—C42119.34 (14)
C7—C8—C8A121.10 (13)C422—C421—C42122.33 (13)
C7—C8—H8119.4C423—C422—C421120.84 (14)
C8A—C8—H8119.5C423—C422—H422119.6
N1—C8A—C8117.53 (12)C421—C422—H422119.6
N1—C8A—C4A123.53 (13)C422—C423—C424120.47 (15)
C8—C8A—C4A118.93 (13)C422—C423—H423119.8
C22—C21—C2124.43 (14)C424—C423—H423119.8
C22—C21—H21117.8C425—C424—C423119.30 (14)
C2—C21—H21117.8C425—C424—H424120.3
C21—C22—C221126.46 (14)C423—C424—H424120.3
C21—C22—H22116.8C424—C425—C426120.49 (15)
C221—C22—H22116.8C424—C425—H425119.8
C222—C221—C226118.04 (14)C426—C425—H425119.8
C222—C221—C22119.21 (14)C425—C426—C421120.57 (15)
C226—C221—C22122.74 (14)C425—C426—H426119.7
C223—C222—C221120.62 (16)C421—C426—H426119.7
C8A—N1—C2—C30.4 (2)C2—C21—C22—C221177.49 (14)
C8A—N1—C2—C21176.56 (12)C21—C22—C221—C222173.99 (15)
N1—C2—C3—C41.2 (2)C21—C22—C221—C2266.5 (2)
C21—C2—C3—C4175.69 (13)C226—C221—C222—C2230.2 (2)
C2—C3—C4—C4A1.5 (2)C22—C221—C222—C223179.25 (15)
C2—C3—C4—C41176.08 (13)C221—C222—C223—C2240.3 (3)
C3—C4—C4A—C5179.49 (13)C222—C223—C224—C2250.5 (3)
C41—C4—C4A—C52.8 (2)C223—C224—C225—C2261.3 (3)
C3—C4—C4A—C8A1.10 (19)C224—C225—C226—C2211.4 (2)
C41—C4—C4A—C8A176.57 (12)C222—C221—C226—C2250.6 (2)
C8A—C4A—C5—C61.8 (2)C22—C221—C226—C225179.93 (14)
C4—C4A—C5—C6177.56 (13)C3—C4—C41—C4219.8 (2)
C4A—C5—C6—C71.1 (2)C4A—C4—C41—C42162.67 (14)
C5—C6—C7—C80.2 (2)C4—C41—C42—C421179.93 (14)
C6—C7—C8—C8A0.7 (2)C41—C42—C421—C426170.19 (15)
C2—N1—C8A—C8178.53 (13)C41—C42—C421—C4228.3 (2)
C2—N1—C8A—C4A0.0 (2)C426—C421—C422—C4230.7 (2)
C7—C8—C8A—N1178.61 (14)C42—C421—C422—C423179.23 (14)
C7—C8—C8A—C4A0.0 (2)C421—C422—C423—C4240.2 (2)
C5—C4A—C8A—N1179.79 (13)C422—C423—C424—C4251.1 (3)
C4—C4A—C8A—N10.3 (2)C423—C424—C425—C4260.9 (3)
C5—C4A—C8A—C81.31 (19)C424—C425—C426—C4210.0 (3)
C4—C4A—C8A—C8178.13 (12)C422—C421—C426—C4250.9 (2)
N1—C2—C21—C224.2 (2)C42—C421—C426—C425179.40 (15)
C3—C2—C21—C22178.77 (14)
2-[(E)-2-(2,4-Dichlorophenyl)ethenyl]-4-[(E)-2-phenylethenyl]quinoline (IIb) top
Crystal data top
C25H17Cl2NF(000) = 1664
Mr = 402.29Dx = 1.395 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 28.4950 (7) ÅCell parameters from 4414 reflections
b = 9.5384 (3) Åθ = 2.3–27.5°
c = 16.0520 (5) ŵ = 0.35 mm1
β = 118.581 (1)°T = 100 K
V = 3831.2 (2) Å3Needle, yellow
Z = 80.21 × 0.10 × 0.09 mm
Data collection top
Bruker D8 Venture
diffractometer
4414 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube3914 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.056
φ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 3636
Tmin = 0.901, Tmax = 0.969k = 1212
47555 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0269P)2 + 5.0618P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4414 reflectionsΔρmax = 0.35 e Å3
253 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.34810 (5)0.64678 (13)0.74277 (9)0.0163 (2)
C20.35420 (6)0.55453 (15)0.68669 (10)0.0156 (3)
C30.38455 (6)0.58355 (15)0.63990 (10)0.0154 (3)
H30.38770.51410.60050.018*
C40.40950 (5)0.71125 (15)0.65081 (10)0.0137 (3)
C4A0.40294 (5)0.81360 (14)0.71004 (10)0.0129 (3)
C50.42460 (5)0.95117 (15)0.72584 (10)0.0154 (3)
H50.44650.97810.69880.018*
C60.41446 (6)1.04583 (15)0.77956 (10)0.0169 (3)
H60.42921.13750.78900.020*
C70.38231 (6)1.00820 (16)0.82102 (10)0.0179 (3)
H70.37511.07480.85750.021*
C80.36151 (6)0.87583 (16)0.80862 (10)0.0169 (3)
H80.34030.85070.83740.020*
C8A0.37117 (5)0.77557 (15)0.75332 (10)0.0141 (3)
C210.32776 (6)0.41923 (16)0.67809 (11)0.0187 (3)
H210.31490.40240.72190.022*
C220.31970 (5)0.31729 (15)0.61607 (10)0.0146 (3)
H220.33350.32920.57310.018*
C2210.29064 (5)0.18744 (14)0.61034 (10)0.0133 (3)
C2220.29510 (5)0.06659 (15)0.56496 (10)0.0132 (3)
Cl220.33362 (2)0.06845 (4)0.50727 (2)0.01717 (9)
C2230.26987 (5)0.05849 (15)0.56351 (10)0.0147 (3)
H2230.27460.13960.53400.018*
C2240.23759 (5)0.06212 (15)0.60632 (10)0.0149 (3)
Cl240.20662 (2)0.21921 (4)0.60666 (3)0.01962 (9)
C2250.22975 (6)0.05596 (15)0.64870 (10)0.0158 (3)
H2250.20660.05300.67600.019*
C2260.25633 (5)0.17802 (15)0.65033 (10)0.0150 (3)
H2260.25120.25880.67970.018*
C410.44200 (6)0.74136 (15)0.60404 (10)0.0154 (3)
H410.46860.81200.63060.018*
C420.43613 (6)0.67480 (15)0.52616 (10)0.0153 (3)
H420.40820.60760.49930.018*
C4210.46824 (5)0.69448 (15)0.47787 (10)0.0145 (3)
C4220.50747 (6)0.79820 (16)0.50348 (11)0.0186 (3)
H4220.51370.86130.55350.022*
C4230.53739 (6)0.80969 (18)0.45648 (11)0.0223 (3)
H4230.56370.88110.47420.027*
C4240.52924 (6)0.71746 (17)0.38357 (11)0.0214 (3)
H4240.55010.72510.35200.026*
C4250.49045 (6)0.61427 (16)0.35741 (11)0.0207 (3)
H4250.48470.55090.30780.025*
C4260.45998 (6)0.60331 (15)0.40360 (10)0.0177 (3)
H4260.43320.53310.38460.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0176 (6)0.0181 (6)0.0158 (6)0.0030 (5)0.0101 (5)0.0026 (5)
C20.0170 (6)0.0156 (7)0.0154 (7)0.0022 (5)0.0087 (6)0.0009 (5)
C30.0180 (6)0.0152 (7)0.0151 (7)0.0009 (5)0.0096 (6)0.0016 (5)
C40.0137 (6)0.0147 (6)0.0137 (6)0.0005 (5)0.0073 (5)0.0004 (5)
C4A0.0114 (6)0.0142 (6)0.0122 (6)0.0004 (5)0.0048 (5)0.0001 (5)
C50.0143 (6)0.0163 (7)0.0149 (7)0.0014 (5)0.0065 (5)0.0012 (5)
C60.0176 (7)0.0137 (7)0.0175 (7)0.0014 (5)0.0069 (6)0.0011 (5)
C70.0191 (7)0.0185 (7)0.0162 (7)0.0021 (6)0.0085 (6)0.0032 (6)
C80.0162 (6)0.0206 (7)0.0160 (7)0.0005 (6)0.0093 (6)0.0017 (6)
C8A0.0135 (6)0.0158 (7)0.0129 (6)0.0005 (5)0.0061 (5)0.0004 (5)
C210.0236 (7)0.0186 (7)0.0198 (7)0.0048 (6)0.0150 (6)0.0011 (6)
C220.0143 (6)0.0159 (7)0.0152 (7)0.0007 (5)0.0083 (5)0.0017 (5)
C2210.0132 (6)0.0144 (6)0.0120 (6)0.0004 (5)0.0059 (5)0.0007 (5)
C2220.0123 (6)0.0173 (7)0.0123 (6)0.0001 (5)0.0077 (5)0.0013 (5)
Cl220.01978 (17)0.01936 (17)0.01910 (17)0.00169 (13)0.01472 (14)0.00115 (13)
C2230.0163 (6)0.0148 (6)0.0142 (6)0.0003 (5)0.0082 (5)0.0015 (5)
C2240.0147 (6)0.0146 (6)0.0151 (6)0.0027 (5)0.0070 (5)0.0021 (5)
Cl240.02385 (18)0.01647 (17)0.02334 (18)0.00653 (13)0.01515 (15)0.00166 (14)
C2250.0157 (6)0.0194 (7)0.0156 (7)0.0002 (5)0.0100 (6)0.0011 (6)
C2260.0165 (6)0.0154 (7)0.0150 (7)0.0002 (5)0.0090 (5)0.0016 (5)
C410.0157 (6)0.0139 (6)0.0187 (7)0.0020 (5)0.0101 (6)0.0000 (5)
C420.0149 (6)0.0154 (6)0.0168 (7)0.0008 (5)0.0086 (5)0.0010 (5)
C4210.0143 (6)0.0162 (7)0.0135 (6)0.0026 (5)0.0070 (5)0.0023 (5)
C4220.0177 (7)0.0239 (8)0.0157 (7)0.0028 (6)0.0092 (6)0.0024 (6)
C4230.0169 (7)0.0304 (8)0.0210 (8)0.0037 (6)0.0102 (6)0.0000 (6)
C4240.0204 (7)0.0300 (8)0.0198 (7)0.0067 (6)0.0145 (6)0.0052 (6)
C4250.0281 (8)0.0203 (7)0.0169 (7)0.0059 (6)0.0134 (6)0.0014 (6)
C4260.0220 (7)0.0155 (7)0.0161 (7)0.0015 (6)0.0096 (6)0.0014 (5)
Geometric parameters (Å, º) top
N1—C21.3285 (18)C222—C2231.3874 (19)
N1—C8A1.3650 (18)C222—Cl221.7421 (14)
C2—C31.4178 (19)C223—C2241.3872 (19)
C2—C211.4672 (19)C223—H2230.9500
C3—C41.3785 (19)C224—C2251.388 (2)
C3—H30.9500C224—Cl241.7403 (14)
C4—C4A1.4360 (19)C225—C2261.382 (2)
C4—C411.4728 (19)C225—H2250.9500
C4A—C51.4204 (19)C226—H2260.9500
C4A—C8A1.4268 (19)C41—C421.339 (2)
C5—C61.371 (2)C41—H410.9500
C5—H50.9500C42—C4211.4671 (19)
C6—C71.412 (2)C42—H420.9500
C6—H60.9500C421—C4221.399 (2)
C7—C81.368 (2)C421—C4261.401 (2)
C7—H70.9500C422—C4231.387 (2)
C8—C8A1.418 (2)C422—H4220.9500
C8—H80.9500C423—C4241.392 (2)
C21—C221.331 (2)C423—H4230.9500
C21—H210.9500C424—C4251.387 (2)
C22—C2211.4681 (19)C424—H4240.9500
C22—H220.9500C425—C4261.389 (2)
C221—C2221.4015 (19)C425—H4250.9500
C221—C2261.4061 (19)C426—H4260.9500
C2—N1—C8A117.96 (12)C223—C222—Cl22116.95 (11)
N1—C2—C3122.71 (13)C221—C222—Cl22120.32 (10)
N1—C2—C21114.75 (13)C224—C223—C222118.32 (13)
C3—C2—C21122.54 (13)C224—C223—H223120.8
C4—C3—C2120.89 (13)C222—C223—H223120.8
C4—C3—H3119.6C223—C224—C225121.52 (13)
C2—C3—H3119.6C223—C224—Cl24118.71 (11)
C3—C4—C4A117.53 (12)C225—C224—Cl24119.76 (11)
C3—C4—C41121.29 (13)C226—C225—C224118.53 (13)
C4A—C4—C41121.18 (12)C226—C225—H225120.7
C5—C4A—C8A118.08 (12)C224—C225—H225120.7
C5—C4A—C4124.28 (13)C225—C226—C221122.65 (13)
C8A—C4A—C4117.61 (12)C225—C226—H226118.7
C6—C5—C4A121.07 (13)C221—C226—H226118.7
C6—C5—H5119.5C42—C41—C4123.72 (13)
C4A—C5—H5119.5C42—C41—H41118.1
C5—C6—C7120.56 (13)C4—C41—H41118.1
C5—C6—H6119.7C41—C42—C421126.98 (13)
C7—C6—H6119.7C41—C42—H42116.5
C8—C7—C6119.97 (13)C421—C42—H42116.5
C8—C7—H7120.0C422—C421—C426118.31 (13)
C6—C7—H7120.0C422—C421—C42123.22 (13)
C7—C8—C8A120.86 (13)C426—C421—C42118.46 (13)
C7—C8—H8119.6C423—C422—C421120.57 (14)
C8A—C8—H8119.6C423—C422—H422119.7
N1—C8A—C8117.28 (12)C421—C422—H422119.7
N1—C8A—C4A123.26 (13)C422—C423—C424120.58 (15)
C8—C8A—C4A119.44 (13)C422—C423—H423119.7
C22—C21—C2127.60 (13)C424—C423—H423119.7
C22—C21—H21116.2C425—C424—C423119.43 (14)
C2—C21—H21116.2C425—C424—H424120.3
C21—C22—C221123.61 (13)C423—C424—H424120.3
C21—C22—H22118.2C424—C425—C426120.19 (14)
C221—C22—H22118.2C424—C425—H425119.9
C222—C221—C226116.14 (12)C426—C425—H425119.9
C222—C221—C22122.53 (12)C425—C426—C421120.91 (14)
C226—C221—C22121.33 (13)C425—C426—H426119.5
C223—C222—C221122.74 (12)C421—C426—H426119.5
C8A—N1—C2—C31.6 (2)C21—C22—C221—C22618.6 (2)
C8A—N1—C2—C21179.32 (12)C226—C221—C222—C2233.6 (2)
N1—C2—C3—C40.0 (2)C22—C221—C222—C223176.63 (13)
C21—C2—C3—C4179.02 (13)C226—C221—C222—Cl22176.57 (10)
C2—C3—C4—C4A0.8 (2)C22—C221—C222—Cl223.22 (19)
C2—C3—C4—C41178.76 (13)C221—C222—C223—C2242.1 (2)
C3—C4—C4A—C5177.89 (13)Cl22—C222—C223—C224178.06 (11)
C41—C4—C4A—C52.5 (2)C222—C223—C224—C2250.9 (2)
C3—C4—C4A—C8A0.08 (19)C222—C223—C224—Cl24178.95 (10)
C41—C4—C4A—C8A179.49 (12)C223—C224—C225—C2262.1 (2)
C8A—C4A—C5—C61.3 (2)Cl24—C224—C225—C226177.75 (11)
C4—C4A—C5—C6176.68 (14)C224—C225—C226—C2210.4 (2)
C4A—C5—C6—C70.3 (2)C222—C221—C226—C2252.3 (2)
C5—C6—C7—C80.8 (2)C22—C221—C226—C225177.90 (13)
C6—C7—C8—C8A0.9 (2)C3—C4—C41—C4223.4 (2)
C2—N1—C8A—C8176.15 (13)C4A—C4—C41—C42157.03 (14)
C2—N1—C8A—C4A2.4 (2)C4—C41—C42—C421177.25 (13)
C7—C8—C8A—N1178.68 (13)C41—C42—C421—C4226.1 (2)
C7—C8—C8A—C4A0.1 (2)C41—C42—C421—C426172.66 (14)
C5—C4A—C8A—N1179.65 (13)C426—C421—C422—C4230.2 (2)
C4—C4A—C8A—N11.6 (2)C42—C421—C422—C423178.56 (14)
C5—C4A—C8A—C81.14 (19)C421—C422—C423—C4240.6 (2)
C4—C4A—C8A—C8176.96 (13)C422—C423—C424—C4250.6 (2)
N1—C2—C21—C22168.07 (15)C423—C424—C425—C4260.1 (2)
C3—C2—C21—C2212.9 (2)C424—C425—C426—C4210.8 (2)
C2—C21—C22—C221177.26 (14)C422—C421—C426—C4250.9 (2)
C21—C22—C221—C222161.58 (14)C42—C421—C426—C425177.92 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C225—H225···N1i0.952.623.522 (2)158
C6—H6···Cg1ii0.952.653.4152 (16)138
C422—H422···Cg2iii0.952.883.5843 (17)132
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y+2, z+1/2; (iii) x+1, y, z+3/2.
{2-[(E)-2-(4-Bromophenyl)ethenyl]-4-[(E)-2-phenylethenyl]quinolin-3-yl}(phenyl)methanone (IIc) top
Crystal data top
C32H22BrNOF(000) = 1056
Mr = 516.41Dx = 1.421 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.287 (2) ÅCell parameters from 5610 reflections
b = 15.528 (3) Åθ = 2.1–27.6°
c = 12.844 (3) ŵ = 1.73 mm1
β = 99.877 (6)°T = 100 K
V = 2414.2 (8) Å3Block, orange
Z = 40.15 × 0.12 × 0.08 mm
Data collection top
Bruker D8 Venture
diffractometer
5530 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube4290 reflections with I > 2σ(I)
Multilayer mirror monochromatorθmax = 27.7°, θmin = 2.1°
φ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2020
Tmin = 0.720, Tmax = 0.871l = 1316
5530 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.196 w = 1/[σ2(Fo2) + (0.1201P)2 + 3.4939P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5530 reflectionsΔρmax = 1.40 e Å3
317 parametersΔρmin = 0.70 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4215 (3)0.3390 (2)0.8002 (3)0.0148 (7)
C20.3349 (3)0.3701 (2)0.7353 (3)0.0128 (8)
C30.3391 (3)0.3892 (2)0.6276 (3)0.0141 (8)
C40.4366 (3)0.3801 (2)0.5881 (3)0.0126 (7)
C4A0.5332 (3)0.3511 (3)0.6594 (3)0.0131 (7)
C50.6411 (3)0.3442 (3)0.6328 (3)0.0157 (8)
H50.65380.36310.56560.019*
C60.7264 (3)0.3106 (3)0.7039 (3)0.0190 (9)
H60.79770.30610.68520.023*
C70.7098 (3)0.2828 (3)0.8042 (3)0.0184 (8)
H70.76880.25720.85150.022*
C80.6083 (3)0.2925 (3)0.8338 (3)0.0182 (8)
H80.59810.27490.90230.022*
C8A0.5189 (3)0.3285 (3)0.7637 (3)0.0128 (8)
C210.2315 (3)0.3833 (3)0.7768 (3)0.0154 (8)
H210.16620.39710.72860.018*
C220.2255 (3)0.3765 (3)0.8796 (3)0.0157 (8)
H220.29300.36580.92610.019*
C2210.1265 (3)0.3837 (3)0.9281 (3)0.0164 (8)
C2220.1348 (4)0.3630 (3)1.0353 (3)0.0181 (8)
H2220.20500.34871.07500.022*
C2230.0431 (4)0.3628 (3)1.0853 (4)0.0209 (9)
H2230.05000.34771.15780.025*
C2240.0587 (4)0.3850 (3)1.0271 (4)0.0195 (9)
Br240.18670 (4)0.38279 (3)1.09166 (4)0.02932 (18)
C2250.0702 (3)0.4086 (3)0.9209 (4)0.0199 (9)
H2250.14030.42470.88240.024*
C2260.0224 (3)0.4081 (3)0.8724 (3)0.0178 (8)
H2260.01540.42450.80030.021*
C310.2347 (3)0.4121 (3)0.5521 (3)0.0138 (8)
O310.1835 (3)0.3554 (2)0.5000 (3)0.0226 (7)
C3110.1978 (3)0.5040 (3)0.5436 (3)0.0145 (8)
C3120.2408 (3)0.5642 (3)0.6201 (3)0.0161 (8)
H3120.29890.54840.67560.019*
C3130.1985 (4)0.6477 (3)0.6148 (3)0.0199 (9)
H3130.22560.68840.66820.024*
C3140.1159 (4)0.6713 (3)0.5308 (4)0.0200 (9)
H3140.08680.72800.52730.024*
C3150.0762 (4)0.6118 (3)0.4521 (4)0.0194 (9)
H3150.02230.62870.39350.023*
C3160.1154 (3)0.5281 (3)0.4594 (3)0.0164 (8)
H3160.08630.48700.40720.020*
C410.4372 (3)0.3989 (3)0.4752 (3)0.0143 (8)
H410.40390.45130.44780.017*
C420.4805 (3)0.3485 (3)0.4088 (3)0.0145 (8)
H420.51580.29720.43720.017*
C4210.4788 (3)0.3649 (3)0.2956 (3)0.0142 (8)
C4220.4231 (3)0.4349 (3)0.2418 (3)0.0195 (9)
H4220.38090.47240.27770.023*
C4230.4292 (4)0.4499 (3)0.1362 (3)0.0236 (9)
H4230.39140.49750.10030.028*
C4240.4910 (4)0.3950 (3)0.0828 (3)0.0222 (9)
H4240.49600.40590.01100.027*
C4250.5451 (3)0.3243 (3)0.1344 (3)0.0186 (9)
H4250.58670.28660.09810.022*
C4260.5376 (3)0.3094 (3)0.2400 (3)0.0162 (8)
H4260.57320.26050.27480.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0167 (16)0.0156 (17)0.0127 (16)0.0016 (13)0.0040 (13)0.0026 (13)
C20.0146 (18)0.0130 (18)0.0117 (18)0.0005 (14)0.0045 (14)0.0014 (14)
C30.0177 (18)0.0105 (18)0.0147 (19)0.0015 (14)0.0047 (15)0.0016 (15)
C40.0155 (18)0.0125 (18)0.0101 (18)0.0005 (14)0.0033 (14)0.0004 (14)
C4A0.0127 (17)0.0166 (19)0.0111 (18)0.0009 (14)0.0049 (14)0.0015 (15)
C50.0166 (19)0.021 (2)0.0105 (18)0.0027 (16)0.0037 (15)0.0021 (16)
C60.0134 (18)0.022 (2)0.021 (2)0.0005 (16)0.0031 (16)0.0010 (17)
C70.0149 (18)0.022 (2)0.017 (2)0.0010 (16)0.0009 (16)0.0023 (17)
C80.020 (2)0.022 (2)0.0131 (19)0.0001 (16)0.0031 (16)0.0040 (16)
C8A0.0143 (18)0.0128 (18)0.0113 (18)0.0001 (14)0.0023 (14)0.0006 (14)
C210.0137 (18)0.0181 (19)0.0147 (19)0.0006 (15)0.0037 (15)0.0013 (15)
C220.0152 (19)0.0143 (19)0.018 (2)0.0016 (14)0.0037 (16)0.0005 (15)
C2210.020 (2)0.0140 (19)0.017 (2)0.0008 (15)0.0080 (16)0.0010 (16)
C2220.022 (2)0.018 (2)0.015 (2)0.0004 (16)0.0044 (17)0.0004 (16)
C2230.029 (2)0.018 (2)0.018 (2)0.0036 (17)0.0112 (18)0.0006 (17)
C2240.023 (2)0.015 (2)0.026 (2)0.0047 (16)0.0182 (18)0.0063 (17)
Br240.0283 (3)0.0292 (3)0.0366 (3)0.00666 (19)0.0230 (2)0.0062 (2)
C2250.0143 (19)0.021 (2)0.025 (2)0.0026 (16)0.0063 (17)0.0024 (18)
C2260.021 (2)0.018 (2)0.016 (2)0.0017 (16)0.0075 (16)0.0026 (16)
C310.0116 (17)0.0198 (19)0.0109 (18)0.0023 (15)0.0043 (14)0.0007 (15)
O310.0221 (15)0.0184 (15)0.0245 (17)0.0016 (12)0.0035 (13)0.0064 (13)
C3110.0133 (18)0.017 (2)0.0148 (19)0.0010 (15)0.0073 (15)0.0015 (15)
C3120.0149 (18)0.019 (2)0.0132 (19)0.0003 (15)0.0004 (15)0.0003 (15)
C3130.023 (2)0.017 (2)0.019 (2)0.0012 (16)0.0021 (17)0.0027 (17)
C3140.021 (2)0.017 (2)0.023 (2)0.0033 (16)0.0041 (17)0.0006 (17)
C3150.0156 (19)0.022 (2)0.019 (2)0.0018 (16)0.0001 (16)0.0054 (17)
C3160.0140 (18)0.021 (2)0.015 (2)0.0023 (15)0.0032 (15)0.0009 (16)
C410.0135 (18)0.019 (2)0.0105 (18)0.0016 (14)0.0016 (14)0.0023 (15)
C420.0180 (19)0.0143 (18)0.0108 (18)0.0010 (15)0.0013 (15)0.0009 (15)
C4210.0151 (18)0.016 (2)0.0112 (19)0.0044 (14)0.0016 (15)0.0004 (15)
C4220.020 (2)0.021 (2)0.017 (2)0.0020 (16)0.0006 (16)0.0005 (17)
C4230.031 (2)0.025 (2)0.014 (2)0.0016 (19)0.0002 (17)0.0059 (17)
C4240.024 (2)0.033 (3)0.0100 (19)0.0086 (18)0.0036 (16)0.0005 (17)
C4250.021 (2)0.021 (2)0.014 (2)0.0068 (16)0.0069 (16)0.0052 (16)
C4260.0155 (18)0.017 (2)0.0158 (19)0.0034 (15)0.0022 (15)0.0011 (16)
Geometric parameters (Å, º) top
N1—C21.325 (5)C225—H2250.9500
N1—C8A1.368 (5)C226—H2260.9500
C2—C31.424 (6)C31—O311.214 (5)
C2—C211.474 (5)C31—C3111.496 (6)
C3—C41.387 (6)C311—C3121.393 (6)
C3—C311.512 (5)C311—C3161.399 (6)
C4—C4A1.441 (5)C312—C3131.395 (6)
C4—C411.480 (5)C312—H3120.9500
C4A—C8A1.425 (5)C313—C3141.397 (6)
C4A—C51.429 (5)C313—H3130.9500
C5—C61.370 (6)C314—C3151.395 (6)
C5—H50.9500C314—H3140.9500
C6—C71.406 (6)C315—C3161.382 (6)
C6—H60.9500C315—H3150.9500
C7—C81.374 (6)C316—H3160.9500
C7—H70.9500C41—C421.334 (6)
C8—C8A1.410 (6)C41—H410.9500
C8—H80.9500C42—C4211.474 (5)
C21—C221.338 (6)C42—H420.9500
C21—H210.9500C421—C4261.397 (6)
C22—C2211.463 (6)C421—C4221.401 (6)
C22—H220.9500C422—C4231.391 (6)
C221—C2221.400 (6)C422—H4220.9500
C221—C2261.406 (6)C423—C4241.396 (7)
C222—C2231.388 (6)C423—H4230.9500
C222—H2220.9500C424—C4251.391 (7)
C223—C2241.387 (7)C424—H4240.9500
C223—H2230.9500C425—C4261.394 (6)
C224—C2251.396 (6)C425—H4250.9500
C224—Br241.899 (4)C426—H4260.9500
C225—C2261.388 (6)
C2—N1—C8A118.9 (3)C225—C226—C221121.1 (4)
N1—C2—C3121.9 (4)C225—C226—H226119.4
N1—C2—C21118.1 (4)C221—C226—H226119.4
C3—C2—C21120.0 (4)O31—C31—C311122.0 (4)
C4—C3—C2120.8 (4)O31—C31—C3119.0 (4)
C4—C3—C31118.7 (4)C311—C31—C3119.0 (3)
C2—C3—C31120.3 (4)C312—C311—C316120.1 (4)
C3—C4—C4A117.9 (3)C312—C311—C31121.0 (4)
C3—C4—C41119.2 (3)C316—C311—C31118.8 (4)
C4A—C4—C41122.9 (3)C311—C312—C313119.8 (4)
C8A—C4A—C5118.4 (4)C311—C312—H312120.1
C8A—C4A—C4117.0 (3)C313—C312—H312120.1
C5—C4A—C4124.6 (4)C312—C313—C314119.7 (4)
C6—C5—C4A120.3 (4)C312—C313—H313120.1
C6—C5—H5119.8C314—C313—H313120.1
C4A—C5—H5119.8C315—C314—C313120.3 (4)
C5—C6—C7120.9 (4)C315—C314—H314119.9
C5—C6—H6119.6C313—C314—H314119.9
C7—C6—H6119.6C316—C315—C314119.9 (4)
C8—C7—C6120.1 (4)C316—C315—H315120.1
C8—C7—H7120.0C314—C315—H315120.1
C6—C7—H7120.0C315—C316—C311120.1 (4)
C7—C8—C8A120.8 (4)C315—C316—H316120.0
C7—C8—H8119.6C311—C316—H316120.0
C8A—C8—H8119.6C42—C41—C4125.4 (4)
N1—C8A—C8117.4 (4)C42—C41—H41117.3
N1—C8A—C4A123.3 (3)C4—C41—H41117.3
C8—C8A—C4A119.3 (4)C41—C42—C421126.1 (4)
C22—C21—C2122.8 (4)C41—C42—H42116.9
C22—C21—H21118.6C421—C42—H42116.9
C2—C21—H21118.6C426—C421—C422118.6 (4)
C21—C22—C221127.2 (4)C426—C421—C42118.4 (4)
C21—C22—H22116.4C422—C421—C42123.0 (4)
C221—C22—H22116.4C423—C422—C421120.4 (4)
C222—C221—C226117.9 (4)C423—C422—H422119.8
C222—C221—C22118.4 (4)C421—C422—H422119.8
C226—C221—C22123.6 (4)C422—C423—C424120.1 (4)
C223—C222—C221121.8 (4)C422—C423—H423120.0
C223—C222—H222119.1C424—C423—H423120.0
C221—C222—H222119.1C425—C424—C423120.3 (4)
C224—C223—C222118.7 (4)C425—C424—H424119.9
C224—C223—H223120.7C423—C424—H424119.9
C222—C223—H223120.7C424—C425—C426119.2 (4)
C223—C224—C225121.5 (4)C424—C425—H425120.4
C223—C224—Br24119.9 (3)C426—C425—H425120.4
C225—C224—Br24118.6 (3)C425—C426—C421121.4 (4)
C226—C225—C224119.0 (4)C425—C426—H426119.3
C226—C225—H225120.5C421—C426—H426119.3
C224—C225—H225120.5
C8A—N1—C2—C32.9 (6)C222—C223—C224—Br24178.5 (3)
C8A—N1—C2—C21178.4 (4)C223—C224—C225—C2261.2 (7)
N1—C2—C3—C43.6 (6)Br24—C224—C225—C226178.2 (3)
C21—C2—C3—C4177.7 (4)C224—C225—C226—C2210.5 (6)
N1—C2—C3—C31171.0 (4)C222—C221—C226—C2252.4 (6)
C21—C2—C3—C317.7 (6)C22—C221—C226—C225175.9 (4)
C2—C3—C4—C4A0.1 (6)C4—C3—C31—O3181.8 (5)
C31—C3—C4—C4A174.8 (4)C2—C3—C31—O3192.8 (5)
C2—C3—C4—C41178.8 (3)C4—C3—C31—C31198.1 (4)
C31—C3—C4—C414.2 (6)C2—C3—C31—C31187.2 (5)
C3—C4—C4A—C8A4.0 (5)O31—C31—C311—C312164.5 (4)
C41—C4—C4A—C8A174.9 (4)C3—C31—C311—C31215.6 (6)
C3—C4—C4A—C5175.5 (4)O31—C31—C311—C31612.9 (6)
C41—C4—C4A—C55.6 (6)C3—C31—C311—C316167.0 (4)
C8A—C4A—C5—C64.8 (6)C316—C311—C312—C3132.6 (6)
C4—C4A—C5—C6175.7 (4)C31—C311—C312—C313174.8 (4)
C4A—C5—C6—C70.4 (6)C311—C312—C313—C3142.4 (7)
C5—C6—C7—C82.9 (7)C312—C313—C314—C3150.2 (7)
C6—C7—C8—C8A1.5 (7)C313—C314—C315—C3162.6 (7)
C2—N1—C8A—C8178.0 (4)C314—C315—C316—C3112.4 (6)
C2—N1—C8A—C4A1.4 (6)C312—C311—C316—C3150.2 (6)
C7—C8—C8A—N1177.7 (4)C31—C311—C316—C315177.2 (4)
C7—C8—C8A—C4A2.9 (6)C3—C4—C41—C42131.9 (4)
C5—C4A—C8A—N1174.7 (4)C4A—C4—C41—C4246.9 (6)
C4—C4A—C8A—N14.9 (6)C4—C41—C42—C421178.0 (4)
C5—C4A—C8A—C86.0 (6)C41—C42—C421—C426173.9 (4)
C4—C4A—C8A—C8174.5 (4)C41—C42—C421—C4224.5 (6)
N1—C2—C21—C229.4 (6)C426—C421—C422—C4231.8 (6)
C3—C2—C21—C22171.8 (4)C42—C421—C422—C423176.5 (4)
C2—C21—C22—C221176.5 (4)C421—C422—C423—C4240.1 (7)
C21—C22—C221—C222171.4 (4)C422—C423—C424—C4251.1 (7)
C21—C22—C221—C2266.8 (7)C423—C424—C425—C4260.4 (6)
C226—C221—C222—C2232.6 (6)C424—C425—C426—C4211.4 (6)
C22—C221—C222—C223175.7 (4)C422—C421—C426—C4252.5 (6)
C221—C222—C223—C2241.0 (6)C42—C421—C426—C425175.9 (4)
C222—C223—C224—C2251.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O31i0.952.513.164 (6)126
C5—H5···Cg3ii0.952.963.728 (4)138
C42—H42···Cg4iii0.952.883.766 (5)155
C223—H223···Cg2iv0.952.843.429 (3)122
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z1/2; (iv) x1/2, y+1/2, z+1/2.
{2-[(E)-2-(4-Bromophenyl)ethenyl]-4-[(E)-2-(4-chlorophenyl)ethenyl]quinolin-3-yl}(phenyl)methanone (IId) top
Crystal data top
C32H21BrClNOZ = 2
Mr = 550.86F(000) = 560
Triclinic, P1Dx = 1.446 Mg m3
a = 9.9051 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.3936 (16) ÅCell parameters from 5808 reflections
c = 11.8192 (16) Åθ = 2.1–27.5°
α = 77.727 (5)°µ = 1.76 mm1
β = 76.116 (5)°T = 100 K
γ = 86.448 (5)°Needle, orange
V = 1265.2 (3) Å30.19 × 0.12 × 0.10 mm
Data collection top
Bruker D8 Venture
diffractometer
5807 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube5014 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.064
φ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1212
Tmin = 0.735, Tmax = 0.836k = 1414
61838 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0211P)2 + 0.9058P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
5807 reflectionsΔρmax = 0.33 e Å3
325 parametersΔρmin = 0.39 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.25739 (15)0.14281 (12)0.26486 (12)0.0186 (3)
C20.27568 (17)0.25070 (15)0.28341 (14)0.0177 (3)
C30.18801 (17)0.35119 (15)0.25316 (14)0.0174 (3)
C40.07281 (17)0.33605 (15)0.21049 (14)0.0178 (3)
C4A0.04978 (18)0.21906 (15)0.19294 (14)0.0186 (3)
C50.06396 (19)0.19160 (16)0.15045 (16)0.0229 (4)
H50.13080.25220.13380.027*
C60.0786 (2)0.07815 (17)0.13304 (17)0.0259 (4)
H60.15500.06120.10370.031*
C70.0187 (2)0.01340 (17)0.15836 (16)0.0268 (4)
H70.00770.09150.14580.032*
C80.1287 (2)0.00997 (16)0.20101 (16)0.0239 (4)
H80.19360.05230.21820.029*
C8A0.14692 (18)0.12607 (15)0.21983 (14)0.0189 (3)
C210.39417 (17)0.26536 (15)0.33401 (15)0.0189 (3)
H210.41070.34310.34460.023*
C220.47975 (17)0.17587 (15)0.36585 (14)0.0187 (3)
H220.46040.09810.35720.022*
C2210.60111 (17)0.18767 (15)0.41304 (14)0.0184 (3)
C2220.69215 (19)0.09039 (16)0.42888 (16)0.0222 (4)
H2220.67320.01690.41040.027*
C2230.81012 (19)0.09851 (17)0.47115 (16)0.0248 (4)
H2230.87150.03170.48120.030*
C2240.83589 (18)0.20575 (17)0.49815 (15)0.0217 (4)
Br240.99791 (2)0.22361 (2)0.55228 (2)0.02713 (6)
C2250.74666 (19)0.30359 (16)0.48620 (16)0.0231 (4)
H2250.76500.37600.50710.028*
C2260.63015 (18)0.29440 (16)0.44326 (16)0.0218 (4)
H2260.56890.36150.43410.026*
C310.22620 (17)0.47358 (15)0.26497 (15)0.0179 (3)
O310.22130 (14)0.49477 (11)0.36281 (11)0.0243 (3)
C3110.27711 (17)0.56428 (15)0.15343 (15)0.0177 (3)
C3120.31444 (17)0.53198 (15)0.04237 (15)0.0188 (3)
H3120.30430.45120.03660.023*
C3130.36616 (19)0.61701 (16)0.05946 (16)0.0228 (4)
H3130.39140.59440.13470.027*
C3140.38126 (19)0.73545 (16)0.05168 (16)0.0243 (4)
H3140.41700.79360.12150.029*
C3150.3439 (2)0.76857 (16)0.05844 (17)0.0264 (4)
H3150.35340.84960.06370.032*
C3160.29282 (19)0.68348 (16)0.16068 (16)0.0240 (4)
H3160.26840.70620.23590.029*
C410.02388 (17)0.43635 (15)0.18546 (15)0.0188 (3)
H410.05460.44780.11360.023*
C420.07061 (17)0.51205 (15)0.25875 (15)0.0191 (3)
H420.03990.49770.33080.023*
C4210.16475 (17)0.61522 (15)0.23908 (15)0.0176 (3)
C4220.18229 (19)0.67061 (16)0.12605 (16)0.0236 (4)
H4220.13200.64070.05870.028*
C4230.2715 (2)0.76825 (16)0.11010 (16)0.0252 (4)
H4230.28250.80520.03280.030*
C4240.34445 (18)0.81098 (15)0.20919 (16)0.0214 (4)
Cl440.45721 (5)0.93371 (4)0.19179 (5)0.03007 (11)
C4250.32830 (18)0.75949 (16)0.32232 (16)0.0215 (4)
H4250.37800.79050.38920.026*
C4260.23864 (18)0.66202 (16)0.33677 (15)0.0206 (3)
H4260.22710.62640.41420.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0214 (7)0.0165 (7)0.0177 (7)0.0009 (6)0.0040 (6)0.0039 (6)
C20.0202 (8)0.0173 (8)0.0143 (8)0.0006 (6)0.0016 (6)0.0031 (6)
C30.0218 (8)0.0157 (8)0.0133 (7)0.0001 (6)0.0017 (6)0.0029 (6)
C40.0208 (8)0.0170 (8)0.0140 (8)0.0015 (6)0.0014 (6)0.0033 (6)
C4A0.0227 (8)0.0176 (8)0.0145 (8)0.0008 (7)0.0022 (6)0.0032 (6)
C50.0240 (9)0.0220 (9)0.0228 (9)0.0000 (7)0.0066 (7)0.0036 (7)
C60.0290 (9)0.0249 (9)0.0255 (9)0.0060 (8)0.0088 (8)0.0048 (7)
C70.0381 (11)0.0198 (9)0.0244 (9)0.0043 (8)0.0081 (8)0.0067 (7)
C80.0316 (10)0.0178 (9)0.0225 (9)0.0001 (7)0.0058 (7)0.0052 (7)
C8A0.0230 (8)0.0178 (8)0.0151 (8)0.0004 (7)0.0023 (6)0.0038 (6)
C210.0217 (8)0.0178 (8)0.0173 (8)0.0012 (6)0.0029 (6)0.0052 (6)
C220.0212 (8)0.0183 (8)0.0164 (8)0.0009 (6)0.0014 (6)0.0065 (6)
C2210.0200 (8)0.0201 (8)0.0137 (8)0.0007 (6)0.0012 (6)0.0039 (6)
C2220.0259 (9)0.0179 (8)0.0234 (9)0.0003 (7)0.0055 (7)0.0060 (7)
C2230.0251 (9)0.0229 (9)0.0260 (9)0.0037 (7)0.0068 (7)0.0044 (7)
C2240.0187 (8)0.0288 (10)0.0167 (8)0.0023 (7)0.0039 (6)0.0028 (7)
Br240.02189 (9)0.03552 (11)0.02435 (10)0.00343 (7)0.00719 (7)0.00397 (7)
C2250.0263 (9)0.0215 (9)0.0229 (9)0.0026 (7)0.0046 (7)0.0082 (7)
C2260.0226 (8)0.0198 (9)0.0243 (9)0.0024 (7)0.0060 (7)0.0077 (7)
C310.0191 (8)0.0168 (8)0.0187 (8)0.0039 (6)0.0060 (6)0.0052 (6)
O310.0362 (7)0.0207 (6)0.0183 (6)0.0028 (5)0.0089 (5)0.0073 (5)
C3110.0173 (8)0.0180 (8)0.0187 (8)0.0016 (6)0.0054 (6)0.0049 (6)
C3120.0198 (8)0.0174 (8)0.0203 (8)0.0031 (6)0.0046 (7)0.0072 (7)
C3130.0247 (9)0.0238 (9)0.0192 (8)0.0017 (7)0.0021 (7)0.0065 (7)
C3140.0247 (9)0.0215 (9)0.0227 (9)0.0005 (7)0.0009 (7)0.0005 (7)
C3150.0333 (10)0.0164 (9)0.0288 (10)0.0027 (7)0.0048 (8)0.0051 (7)
C3160.0300 (9)0.0209 (9)0.0223 (9)0.0004 (7)0.0058 (7)0.0073 (7)
C410.0202 (8)0.0187 (8)0.0168 (8)0.0003 (6)0.0046 (6)0.0019 (6)
C420.0189 (8)0.0211 (9)0.0159 (8)0.0004 (7)0.0029 (6)0.0021 (7)
C4210.0183 (8)0.0178 (8)0.0171 (8)0.0009 (6)0.0029 (6)0.0055 (6)
C4220.0298 (9)0.0226 (9)0.0180 (8)0.0051 (7)0.0029 (7)0.0079 (7)
C4230.0341 (10)0.0220 (9)0.0206 (9)0.0048 (8)0.0093 (8)0.0046 (7)
C4240.0200 (8)0.0166 (8)0.0296 (9)0.0027 (7)0.0072 (7)0.0083 (7)
Cl440.0321 (2)0.0214 (2)0.0424 (3)0.01031 (18)0.0158 (2)0.0138 (2)
C4250.0217 (8)0.0220 (9)0.0220 (9)0.0002 (7)0.0014 (7)0.0110 (7)
C4260.0208 (8)0.0231 (9)0.0179 (8)0.0002 (7)0.0033 (7)0.0059 (7)
Geometric parameters (Å, º) top
N1—C21.324 (2)C225—H2250.9500
N1—C8A1.366 (2)C226—H2260.9500
C2—C31.430 (2)C31—O311.220 (2)
C2—C211.472 (2)C31—C3111.492 (2)
C3—C41.387 (2)C311—C3121.397 (2)
C3—C311.510 (2)C311—C3161.399 (2)
C4—C4A1.432 (2)C312—C3131.385 (2)
C4—C411.472 (2)C312—H3120.9500
C4A—C51.415 (2)C313—C3141.391 (3)
C4A—C8A1.424 (2)C313—H3130.9500
C5—C61.373 (3)C314—C3151.391 (3)
C5—H50.9500C314—H3140.9500
C6—C71.410 (3)C315—C3161.388 (3)
C6—H60.9500C315—H3150.9500
C7—C81.368 (3)C316—H3160.9500
C7—H70.9500C41—C421.336 (2)
C8—C8A1.416 (2)C41—H410.9500
C8—H80.9500C42—C4211.469 (2)
C21—C221.335 (2)C42—H420.9500
C21—H210.9500C421—C4221.397 (2)
C22—C2211.465 (2)C421—C4261.400 (2)
C22—H220.9500C422—C4231.387 (2)
C221—C2221.395 (2)C422—H4220.9500
C221—C2261.402 (2)C423—C4241.387 (3)
C222—C2231.392 (2)C423—H4230.9500
C222—H2220.9500C424—C4251.384 (3)
C223—C2241.380 (3)C424—Cl441.7434 (17)
C223—H2230.9500C425—C4261.386 (2)
C224—C2251.384 (3)C425—H4250.9500
C224—Br241.9012 (17)C426—H4260.9500
C225—C2261.385 (2)
C2—N1—C8A118.52 (14)C225—C226—C221121.07 (16)
N1—C2—C3122.50 (15)C225—C226—H226119.5
N1—C2—C21117.24 (15)C221—C226—H226119.5
C3—C2—C21120.24 (15)O31—C31—C311121.58 (15)
C4—C3—C2120.13 (15)O31—C31—C3120.48 (15)
C4—C3—C31121.16 (15)C311—C31—C3117.85 (14)
C2—C3—C31118.69 (14)C312—C311—C316119.22 (16)
C3—C4—C4A117.81 (15)C312—C311—C31121.46 (15)
C3—C4—C41121.26 (15)C316—C311—C31119.27 (15)
C4A—C4—C41120.93 (15)C313—C312—C311120.39 (16)
C5—C4A—C8A118.69 (15)C313—C312—H312119.8
C5—C4A—C4123.41 (16)C311—C312—H312119.8
C8A—C4A—C4117.90 (15)C312—C313—C314120.10 (16)
C6—C5—C4A120.61 (17)C312—C313—H313119.9
C6—C5—H5119.7C314—C313—H313119.9
C4A—C5—H5119.7C315—C314—C313119.93 (17)
C5—C6—C7120.58 (17)C315—C314—H314120.0
C5—C6—H6119.7C313—C314—H314120.0
C7—C6—H6119.7C316—C315—C314120.11 (17)
C8—C7—C6120.17 (17)C316—C315—H315119.9
C8—C7—H7119.9C314—C315—H315119.9
C6—C7—H7119.9C315—C316—C311120.24 (16)
C7—C8—C8A120.65 (17)C315—C316—H316119.9
C7—C8—H8119.7C311—C316—H316119.9
C8A—C8—H8119.7C42—C41—C4123.27 (15)
N1—C8A—C8117.71 (15)C42—C41—H41118.4
N1—C8A—C4A122.99 (15)C4—C41—H41118.4
C8—C8A—C4A119.29 (16)C41—C42—C421126.48 (16)
C22—C21—C2123.88 (16)C41—C42—H42116.8
C22—C21—H21118.1C421—C42—H42116.8
C2—C21—H21118.1C422—C421—C426118.16 (16)
C21—C22—C221125.45 (16)C422—C421—C42122.70 (15)
C21—C22—H22117.3C426—C421—C42119.14 (15)
C221—C22—H22117.3C423—C422—C421121.44 (16)
C222—C221—C226118.02 (16)C423—C422—H422119.3
C222—C221—C22119.70 (15)C421—C422—H422119.3
C226—C221—C22122.27 (15)C424—C423—C422118.73 (16)
C223—C222—C221121.57 (16)C424—C423—H423120.6
C223—C222—H222119.2C422—C423—H423120.6
C221—C222—H222119.2C425—C424—C423121.45 (16)
C224—C223—C222118.52 (17)C425—C424—Cl44118.81 (14)
C224—C223—H223120.7C423—C424—Cl44119.73 (14)
C222—C223—H223120.7C424—C425—C426119.11 (16)
C223—C224—C225121.76 (16)C424—C425—H425120.4
C223—C224—Br24120.44 (14)C426—C425—H425120.4
C225—C224—Br24117.80 (13)C425—C426—C421121.10 (16)
C224—C225—C226119.04 (16)C425—C426—H426119.5
C224—C225—H225120.5C421—C426—H426119.5
C226—C225—H225120.5
C8A—N1—C2—C32.9 (2)C223—C224—C225—C2261.6 (3)
C8A—N1—C2—C21178.93 (14)Br24—C224—C225—C226177.93 (13)
N1—C2—C3—C44.7 (2)C224—C225—C226—C2210.6 (3)
C21—C2—C3—C4177.11 (15)C222—C221—C226—C2250.8 (3)
N1—C2—C3—C31173.35 (15)C22—C221—C226—C225179.12 (16)
C21—C2—C3—C314.8 (2)C4—C3—C31—O31114.68 (19)
C2—C3—C4—C4A2.9 (2)C2—C3—C31—O3167.3 (2)
C31—C3—C4—C4A175.12 (15)C4—C3—C31—C31168.6 (2)
C2—C3—C4—C41176.29 (15)C2—C3—C31—C311109.43 (17)
C31—C3—C4—C415.7 (2)O31—C31—C311—C312164.36 (16)
C3—C4—C4A—C5179.71 (16)C3—C31—C311—C31212.3 (2)
C41—C4—C4A—C50.5 (3)O31—C31—C311—C31613.2 (2)
C3—C4—C4A—C8A0.3 (2)C3—C31—C311—C316170.18 (15)
C41—C4—C4A—C8A179.52 (15)C316—C311—C312—C3130.1 (2)
C8A—C4A—C5—C61.4 (3)C31—C311—C312—C313177.67 (15)
C4—C4A—C5—C6178.57 (16)C311—C312—C313—C3140.0 (3)
C4A—C5—C6—C70.7 (3)C312—C313—C314—C3150.2 (3)
C5—C6—C7—C80.2 (3)C313—C314—C315—C3160.6 (3)
C6—C7—C8—C8A0.3 (3)C314—C315—C316—C3110.7 (3)
C2—N1—C8A—C8179.77 (15)C312—C311—C316—C3150.5 (3)
C2—N1—C8A—C4A0.6 (2)C31—C311—C316—C315178.07 (16)
C7—C8—C8A—N1178.69 (16)C3—C4—C41—C4244.4 (2)
C7—C8—C8A—C4A0.5 (3)C4A—C4—C41—C42134.79 (18)
C5—C4A—C8A—N1177.83 (16)C4—C41—C42—C421178.76 (16)
C4—C4A—C8A—N12.2 (2)C41—C42—C421—C42221.4 (3)
C5—C4A—C8A—C81.3 (2)C41—C42—C421—C426159.74 (17)
C4—C4A—C8A—C8178.65 (15)C426—C421—C422—C4230.9 (3)
N1—C2—C21—C222.6 (2)C42—C421—C422—C423179.73 (17)
C3—C2—C21—C22179.16 (16)C421—C422—C423—C4240.1 (3)
C2—C21—C22—C221178.02 (15)C422—C423—C424—C4251.0 (3)
C21—C22—C221—C222171.95 (17)C422—C423—C424—Cl44179.93 (14)
C21—C22—C221—C2267.9 (3)C423—C424—C425—C4260.9 (3)
C226—C221—C222—C2231.2 (3)Cl44—C424—C425—C426179.89 (13)
C22—C221—C222—C223178.68 (16)C424—C425—C426—C4210.0 (3)
C221—C222—C223—C2240.3 (3)C422—C421—C426—C4250.9 (3)
C222—C223—C224—C2251.1 (3)C42—C421—C426—C425179.82 (16)
C222—C223—C224—Br24178.35 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C225—H225···O31i0.952.373.266 (2)156
Symmetry code: (i) x+1, y+1, z+1.
{2-[(E)-2-(4-Bromophenyl)ethenyl]-4-[(E)-2-(thiophen-2-yl)ethenyl]quinolin-3-yl}(phenyl)methanone (IIe) top
Crystal data top
C30H20BrNOSDx = 1.481 Mg m3
Mr = 522.44Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 5363 reflections
a = 15.5785 (8) Åθ = 2.1–27.5°
b = 16.4215 (7) ŵ = 1.87 mm1
c = 18.3126 (9) ÅT = 100 K
V = 4684.8 (4) Å3Needle, yellow
Z = 80.20 × 0.12 × 0.08 mm
F(000) = 2128
Data collection top
Bruker D8 Venture
diffractometer
5363 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube4456 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.060
φ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 2019
Tmin = 0.768, Tmax = 0.861k = 2119
63672 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0358P)2 + 11.0155P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
5363 reflectionsΔρmax = 1.65 e Å3
320 parametersΔρmin = 1.17 e Å3
10 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.32950 (13)0.39696 (13)0.69963 (11)0.0180 (4)
C20.36313 (14)0.47051 (14)0.70599 (13)0.0158 (5)
C30.38281 (14)0.52091 (14)0.64445 (13)0.0160 (5)
C40.36504 (15)0.49389 (14)0.57424 (13)0.0163 (5)
C4A0.33141 (15)0.41306 (14)0.56663 (13)0.0170 (5)
C50.31541 (16)0.37594 (16)0.49792 (14)0.0214 (5)
H50.32770.40500.45430.026*
C60.28259 (17)0.29886 (16)0.49372 (14)0.0236 (5)
H60.27300.27460.44730.028*
C70.26283 (17)0.25507 (16)0.55779 (14)0.0236 (5)
H70.23790.20240.55430.028*
C80.27928 (16)0.28802 (15)0.62478 (14)0.0210 (5)
H80.26710.25750.66760.025*
C8A0.31445 (15)0.36752 (15)0.63117 (13)0.0171 (5)
C210.37733 (15)0.50202 (15)0.78042 (13)0.0179 (5)
H210.40080.55520.78520.021*
C220.35954 (16)0.46108 (15)0.84131 (13)0.0194 (5)
H220.33660.40790.83560.023*
C2210.37195 (16)0.49021 (16)0.91640 (13)0.0204 (5)
C2220.35708 (19)0.43739 (17)0.97459 (15)0.0274 (6)
H2220.33910.38320.96500.033*
C2230.36818 (19)0.46261 (18)1.04677 (15)0.0299 (6)
H2230.35790.42611.08600.036*
C2240.39418 (16)0.54118 (17)1.06010 (14)0.0234 (5)
Br240.40941 (2)0.57825 (2)1.15760 (2)0.03048 (10)
C2250.40920 (19)0.59520 (18)1.00377 (15)0.0284 (6)
H2250.42730.64931.01370.034*
C2260.39754 (18)0.56930 (17)0.93253 (15)0.0269 (6)
H2260.40730.60650.89370.032*
C310.41532 (15)0.60611 (14)0.65844 (12)0.0159 (4)
O310.36482 (12)0.66263 (11)0.66219 (10)0.0226 (4)
C3110.50923 (15)0.61866 (14)0.67052 (12)0.0161 (5)
C3120.56445 (16)0.55250 (15)0.68127 (14)0.0186 (5)
H3120.54310.49850.67730.022*
C3130.65043 (17)0.56566 (17)0.69773 (15)0.0245 (5)
H3130.68770.52070.70540.029*
C3140.68187 (17)0.64456 (17)0.70291 (15)0.0266 (6)
H3140.74050.65340.71470.032*
C3150.62798 (18)0.71048 (16)0.69097 (15)0.0257 (6)
H3150.65000.76430.69410.031*
C3160.54200 (17)0.69794 (15)0.67447 (14)0.0213 (5)
H3160.50540.74320.66590.026*
C410.37274 (17)0.54578 (15)0.50877 (14)0.0220 (5)
H410.33020.53780.47230.026*
C420.43069 (17)0.60160 (17)0.49439 (14)0.0234 (5)
H420.47580.60810.52880.028*
S4210.35458 (5)0.65236 (4)0.36256 (4)0.0220 (2)0.926 (3)
C4220.43224 (18)0.65476 (17)0.43028 (15)0.0260 (6)0.926 (3)
C4230.4861 (3)0.7044 (3)0.4156 (3)0.0241 (8)0.926 (3)
H4230.53250.71400.44810.029*0.926 (3)
C4240.4798 (2)0.7505 (2)0.3465 (2)0.0254 (7)0.926 (3)
H4240.51940.79010.32940.031*0.926 (3)
C4250.4069 (2)0.72597 (18)0.31194 (17)0.0252 (7)0.926 (3)
H4250.38750.74650.26630.030*0.926 (3)
S5210.5097 (9)0.7195 (10)0.4125 (10)0.0241 (8)0.074 (3)
C5220.43224 (18)0.65476 (17)0.43028 (15)0.0260 (6)0.074 (3)
C5230.3793 (18)0.647 (2)0.3830 (13)0.0220 (2)0.074 (3)
H5230.33460.60790.38560.026*0.074 (3)
C5240.389 (2)0.704 (2)0.3200 (15)0.0252 (7)0.074 (3)
H5240.35510.70460.27700.030*0.074 (3)
C5250.456 (2)0.755 (3)0.336 (2)0.0254 (7)0.074 (3)
H5250.47070.80230.30870.031*0.074 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0142 (9)0.0210 (10)0.0189 (10)0.0000 (8)0.0003 (8)0.0015 (8)
C20.0106 (10)0.0179 (11)0.0189 (11)0.0024 (8)0.0007 (8)0.0014 (9)
C30.0114 (10)0.0162 (11)0.0203 (11)0.0018 (9)0.0007 (9)0.0005 (9)
C40.0133 (11)0.0166 (11)0.0191 (11)0.0030 (9)0.0012 (9)0.0029 (9)
C4A0.0147 (11)0.0185 (11)0.0177 (11)0.0005 (9)0.0006 (9)0.0005 (9)
C50.0230 (12)0.0235 (12)0.0177 (12)0.0020 (10)0.0007 (10)0.0010 (10)
C60.0263 (13)0.0243 (13)0.0202 (12)0.0045 (11)0.0012 (10)0.0044 (10)
C70.0239 (13)0.0200 (12)0.0271 (13)0.0064 (10)0.0039 (10)0.0033 (10)
C80.0184 (12)0.0207 (12)0.0240 (13)0.0037 (10)0.0040 (10)0.0022 (10)
C8A0.0136 (11)0.0190 (11)0.0187 (11)0.0004 (9)0.0012 (9)0.0004 (9)
C210.0148 (11)0.0185 (11)0.0203 (12)0.0002 (9)0.0007 (9)0.0005 (9)
C220.0192 (12)0.0188 (11)0.0202 (12)0.0002 (9)0.0008 (9)0.0004 (9)
C2210.0161 (11)0.0269 (13)0.0181 (12)0.0009 (10)0.0013 (9)0.0025 (10)
C2220.0331 (15)0.0254 (13)0.0237 (13)0.0021 (11)0.0009 (11)0.0039 (11)
C2230.0342 (15)0.0340 (15)0.0214 (13)0.0036 (12)0.0008 (11)0.0091 (11)
C2240.0185 (12)0.0344 (14)0.0174 (12)0.0052 (10)0.0011 (9)0.0009 (10)
Br240.02658 (15)0.04757 (19)0.01730 (14)0.00720 (12)0.00317 (10)0.00200 (11)
C2250.0321 (15)0.0297 (14)0.0234 (13)0.0051 (12)0.0009 (11)0.0013 (11)
C2260.0343 (15)0.0280 (14)0.0184 (12)0.0048 (11)0.0020 (11)0.0024 (10)
C310.0193 (11)0.0155 (11)0.0128 (10)0.0016 (9)0.0012 (9)0.0018 (8)
O310.0252 (9)0.0189 (9)0.0236 (9)0.0081 (7)0.0018 (7)0.0016 (7)
C3110.0181 (11)0.0170 (11)0.0131 (11)0.0015 (9)0.0019 (9)0.0004 (9)
C3120.0188 (11)0.0153 (11)0.0217 (12)0.0006 (9)0.0013 (9)0.0002 (9)
C3130.0187 (12)0.0285 (14)0.0263 (13)0.0007 (10)0.0022 (10)0.0001 (11)
C3140.0207 (13)0.0358 (15)0.0233 (13)0.0094 (11)0.0002 (10)0.0038 (11)
C3150.0313 (14)0.0232 (13)0.0227 (13)0.0119 (11)0.0036 (11)0.0042 (10)
C3160.0299 (13)0.0149 (11)0.0190 (12)0.0014 (10)0.0042 (10)0.0024 (9)
C410.0274 (13)0.0191 (12)0.0195 (12)0.0049 (10)0.0005 (10)0.0006 (10)
C420.0255 (13)0.0256 (13)0.0191 (12)0.0045 (10)0.0004 (10)0.0006 (10)
S4210.0248 (4)0.0210 (3)0.0200 (4)0.0039 (3)0.0026 (3)0.0021 (3)
C4220.0310 (15)0.0255 (13)0.0214 (13)0.0130 (12)0.0010 (11)0.0028 (11)
C4230.021 (2)0.031 (2)0.0194 (12)0.0092 (17)0.0008 (18)0.0012 (14)
C4240.0302 (18)0.0221 (13)0.0240 (16)0.0075 (14)0.0074 (13)0.0057 (11)
C4250.0382 (18)0.0166 (16)0.0209 (13)0.0095 (13)0.0112 (13)0.0099 (11)
S5210.021 (2)0.031 (2)0.0194 (12)0.0092 (17)0.0008 (18)0.0012 (14)
C5220.0310 (15)0.0255 (13)0.0214 (13)0.0130 (12)0.0010 (11)0.0028 (11)
C5230.0248 (4)0.0210 (3)0.0200 (4)0.0039 (3)0.0026 (3)0.0021 (3)
C5240.0382 (18)0.0166 (16)0.0209 (13)0.0095 (13)0.0112 (13)0.0099 (11)
C5250.0302 (18)0.0221 (13)0.0240 (16)0.0075 (14)0.0074 (13)0.0057 (11)
Geometric parameters (Å, º) top
N1—C21.322 (3)C226—H2260.9500
N1—C8A1.364 (3)C31—O311.219 (3)
C2—C31.431 (3)C31—C3111.494 (3)
C2—C211.475 (3)C311—C3121.400 (3)
C3—C41.388 (3)C311—C3161.400 (3)
C3—C311.510 (3)C312—C3131.390 (4)
C4—C4A1.434 (3)C312—H3120.9500
C4—C411.476 (3)C313—C3141.388 (4)
C4A—C51.420 (3)C313—H3130.9500
C4A—C8A1.423 (3)C314—C3151.387 (4)
C5—C61.367 (4)C314—H3140.9500
C5—H50.9500C315—C3161.388 (4)
C6—C71.410 (4)C315—H3150.9500
C6—H60.9500C316—H3160.9500
C7—C81.365 (4)C41—C421.313 (4)
C7—H70.9500C41—H410.9500
C8—C8A1.421 (3)C42—C4221.463 (4)
C8—H80.9500C42—H420.9500
C21—C221.331 (3)S421—C4251.728 (3)
C21—H210.9500S421—C4221.733 (3)
C22—C2211.469 (3)C422—C4231.201 (5)
C22—H220.9500C423—C4241.476 (5)
C221—C2261.390 (4)C423—H4230.9500
C221—C2221.393 (4)C424—C4251.361 (5)
C222—C2231.396 (4)C424—H4240.9500
C222—H2220.9500C425—H4250.9500
C223—C2241.374 (4)S521—C5251.738 (10)
C223—H2230.9500C523—C5241.492 (11)
C224—C2251.381 (4)C523—H5230.9500
C224—Br241.901 (3)C524—C5251.366 (11)
C225—C2261.384 (4)C524—H5240.9500
C225—H2250.9500C525—H5250.9500
C2—N1—C8A118.2 (2)C225—C226—H226119.2
N1—C2—C3122.9 (2)C221—C226—H226119.2
N1—C2—C21117.5 (2)O31—C31—C311121.3 (2)
C3—C2—C21119.5 (2)O31—C31—C3119.9 (2)
C4—C3—C2120.1 (2)C311—C31—C3118.8 (2)
C4—C3—C31121.4 (2)C312—C311—C316119.4 (2)
C2—C3—C31118.3 (2)C312—C311—C31121.0 (2)
C3—C4—C4A117.3 (2)C316—C311—C31119.5 (2)
C3—C4—C41123.5 (2)C313—C312—C311120.1 (2)
C4A—C4—C41119.0 (2)C313—C312—H312119.9
C5—C4A—C8A118.5 (2)C311—C312—H312119.9
C5—C4A—C4123.2 (2)C314—C313—C312120.0 (3)
C8A—C4A—C4118.3 (2)C314—C313—H313120.0
C6—C5—C4A120.9 (2)C312—C313—H313120.0
C6—C5—H5119.6C315—C314—C313120.3 (2)
C4A—C5—H5119.6C315—C314—H314119.9
C5—C6—C7120.4 (2)C313—C314—H314119.9
C5—C6—H6119.8C314—C315—C316120.2 (2)
C7—C6—H6119.8C314—C315—H315119.9
C8—C7—C6120.3 (2)C316—C315—H315119.9
C8—C7—H7119.8C315—C316—C311120.1 (2)
C6—C7—H7119.8C315—C316—H316120.0
C7—C8—C8A120.7 (2)C311—C316—H316120.0
C7—C8—H8119.6C42—C41—C4128.5 (2)
C8A—C8—H8119.6C42—C41—H41115.8
N1—C8A—C8117.9 (2)C4—C41—H41115.8
N1—C8A—C4A123.0 (2)C41—C42—C422126.1 (3)
C8—C8A—C4A119.1 (2)C41—C42—H42117.0
C22—C21—C2124.5 (2)C422—C42—H42117.0
C22—C21—H21117.8C425—S421—C42292.22 (15)
C2—C21—H21117.8C423—C422—C42126.6 (3)
C21—C22—C221126.3 (2)C423—C422—S421110.1 (3)
C21—C22—H22116.8C42—C422—S421123.3 (2)
C221—C22—H22116.8C422—C423—C424119.5 (4)
C226—C221—C222117.8 (2)C422—C423—H423120.2
C226—C221—C22122.7 (2)C424—C423—H423120.2
C222—C221—C22119.4 (2)C425—C424—C423107.7 (3)
C221—C222—C223121.3 (3)C425—C424—H424126.2
C221—C222—H222119.4C423—C424—H424126.2
C223—C222—H222119.4C424—C425—S421110.5 (2)
C224—C223—C222118.9 (3)C424—C425—H425124.7
C224—C223—H223120.6S421—C425—H425124.7
C222—C223—H223120.6C524—C523—H523122.5
C223—C224—C225121.4 (3)C525—C524—C523107.4 (11)
C223—C224—Br24120.3 (2)C525—C524—H524126.3
C225—C224—Br24118.3 (2)C523—C524—H524126.3
C224—C225—C226119.0 (3)C524—C525—S521109.4 (10)
C224—C225—H225120.5C524—C525—H525125.3
C226—C225—H225120.5S521—C525—H525125.3
C225—C226—C221121.7 (3)
C8A—N1—C2—C31.2 (3)C222—C223—C224—Br24179.6 (2)
C8A—N1—C2—C21178.8 (2)C223—C224—C225—C2260.1 (4)
N1—C2—C3—C41.3 (3)Br24—C224—C225—C226179.4 (2)
C21—C2—C3—C4176.2 (2)C224—C225—C226—C2210.6 (4)
N1—C2—C3—C31175.8 (2)C222—C221—C226—C2250.8 (4)
C21—C2—C3—C311.7 (3)C22—C221—C226—C225179.7 (3)
C2—C3—C4—C4A3.4 (3)C4—C3—C31—O3182.8 (3)
C31—C3—C4—C4A177.7 (2)C2—C3—C31—O3191.6 (3)
C2—C3—C4—C41171.8 (2)C4—C3—C31—C31199.7 (3)
C31—C3—C4—C412.5 (4)C2—C3—C31—C31185.9 (3)
C3—C4—C4A—C5176.0 (2)O31—C31—C311—C312166.6 (2)
C41—C4—C4A—C58.6 (4)C3—C31—C311—C31210.9 (3)
C3—C4—C4A—C8A3.1 (3)O31—C31—C311—C31610.5 (3)
C41—C4—C4A—C8A172.3 (2)C3—C31—C311—C316172.1 (2)
C8A—C4A—C5—C61.5 (4)C316—C311—C312—C3131.8 (4)
C4—C4A—C5—C6179.5 (2)C31—C311—C312—C313175.3 (2)
C4A—C5—C6—C70.9 (4)C311—C312—C313—C3140.6 (4)
C5—C6—C7—C82.5 (4)C312—C313—C314—C3150.7 (4)
C6—C7—C8—C8A1.6 (4)C313—C314—C315—C3160.6 (4)
C2—N1—C8A—C8179.2 (2)C314—C315—C316—C3110.6 (4)
C2—N1—C8A—C4A1.5 (3)C312—C311—C316—C3151.8 (4)
C7—C8—C8A—N1179.9 (2)C31—C311—C316—C315175.3 (2)
C7—C8—C8A—C4A0.8 (4)C3—C4—C41—C4237.6 (4)
C5—C4A—C8A—N1178.5 (2)C4A—C4—C41—C42147.3 (3)
C4—C4A—C8A—N10.7 (3)C4—C41—C42—C422176.1 (2)
C5—C4A—C8A—C82.3 (3)C41—C42—C422—C423177.8 (4)
C4—C4A—C8A—C8178.6 (2)C41—C42—C422—S4210.8 (4)
N1—C2—C21—C220.8 (4)C425—S421—C422—C4231.1 (3)
C3—C2—C21—C22178.5 (2)C425—S421—C422—C42177.7 (2)
C2—C21—C22—C221179.5 (2)C42—C422—C423—C424177.2 (3)
C21—C22—C221—C2266.0 (4)S421—C422—C423—C4241.6 (5)
C21—C22—C221—C222174.5 (3)C422—C423—C424—C4251.4 (6)
C226—C221—C222—C2230.5 (4)C423—C424—C425—S4210.4 (4)
C22—C221—C222—C223180.0 (3)C422—S421—C425—C4240.3 (3)
C221—C222—C223—C2240.1 (4)C523—C524—C525—S52110 (6)
C222—C223—C224—C2250.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O31i0.952.583.122 (3)116
C425—H425···O31ii0.952.453.361 (4)161
C5—H5···Cg3iii0.952.903.647 (3)136
C423—H423···Cg2iv0.952.763.449 (3)130
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+3/2, z1/2; (iii) x+1, y+3/2, z+3/2; (iv) x+1, y+1, z+1.
Selected torsion angles (°) for compounds (IIa)–(IIe) top
Parameter(IIa)(IIb)(IIc)(IId)(IIe)
C3—C2—C21—C22-178.77 (14)-12.9 (2)-171.8 (4)179.16 (16)178.5 (2)
C21—C22—C221—C222-173.99 (15)-161.58 (14)171.4 (4)-171.95 (17)-174.5 (3)
C2—C3—C31—C31187.2 (5)109.43 (17)85.9 (3)
C3—C31—C311—C312-15.6 (6)-12.3 (2)-10.9 (3)
C3—C4—C41—C4219.8 (2)23.4 (2)-131.9 (4)-44.4 (2)37.6 (4)
C41—C42—C421—C4228.3 (2)-6.1 (2)-4.5 (6)-21.4 (3)
C41—C42—C422—S4210.8 (4)
C41—C42—C522—S521-175.9 (7)
Hydrogen bonds and short intermolecular contacts (Å, °) for compounds (IIb)–(IIe) top
CompoundD—H···AD—HH···AD···AD—H···A
(IIb)C225—H225···N1i0.952.623.522 (2)158
C6—H6···Cg1ii0.952.653.4152 (16)138
C422—H422···Cg2iii0.952.883.5843 (17)132
(IIc)C8—H8···O31iv0.952.513.164 (6)126
C5—H5···Cg3v0.952.96.728 (4)138
C42—H42···Cg4vi0.952.883.766 (5)155
C223—H223···Cg2vii0.952.843.429 (3)122
(IId)C225—H225···O31v0.952.373.266 (2)156
(IIe)C8—H8···O31viii0.952.583.122 (3)116
C425—H425···O31ix0.952.453.361 (4)161
C5—H5···Cg3v0.952.903.647 (3)136
C423—H423···Cg3v0.952.763.449 (3)130
Cg1–Cg4 represent the centroids of rings C421–C426, C4A/C5–C8/C8A, C311–C316 and C221–C216, respectively.

Symmetry codes: (i) -x+1/2, y-1/2, -z+3/2; (ii) x, -y+2, z+1/2; (iii) -x+1, y, -z+3/2; (iv) x+1/2, -y+1/2, z+1/2; (v) -x+1, -y+1, -z+1; (vi) x+1/2, -y+1/2, z-1/2; (vii) x-1/2, -y+1/2, z+1/2; (viii) -x+1/2, y-1/2, z; (ix) x, -y+2, z-1/2.
 

Acknowledgements

JC thanks the Centro de Instrumentación Científico-Técnica of the Universidad de Jaén (UJA) and its staff for the data collection. AP thanks the Vicerrectoría de Investigación y Extensión of the Industrial University of Santander for support. JC thanks the Universidad de Jaén and the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucá, Spain) for financial support.

Funding information

Funding for this research was provided by: Vicerrectoría de Investigación y Extensión of the Industrial University of Santander (grant No. 2680).

References

First citationAfzal, O., Kumar, S., Haider, R., Ali, R., Kumar, R., Jaggi, M. & Bawa, S. (2015). Eur. J. Med. Chem. 97, 871–910.  CrossRef CAS PubMed Google Scholar
First citationAlacíd, E. & Nájera, C. (2009). J. Org. Chem. 74, 8191–8195.  PubMed Google Scholar
First citationArdila, D. M., Rodríguez, D. F., Palma, A., Díaz Costa, I., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 671–680.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernotas, R. C., Singhaus, R. R., Kaufman, D. H., Ullrich, J., Fletcher, H., Quinet, E., Nambi, P., Unwalla, R., Wilhelmsson, A., Goos-Nilsson, A., Farnegardh, M. & Wrobel, J. (2009). Bioorg. Med. Chem. 17, 1663–1670.  CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, Z., Zhou, W. & Sun, L. (2007). Bioorg. Med. Chem. 15, 7809–7829.  CrossRef PubMed CAS Google Scholar
First citationChang, F. S., Chen, W., Wang, C., Tzeng, C. C. & Chen, Y. L. (2010). Bioorg. Med. Chem. 18, 124–133.  CrossRef PubMed CAS Google Scholar
First citationChen, Y., Zhao, Y., Lu, C., Tzeng, C. & Wang, J. P. (2006). Bioorg. Med. Chem. 14, 4373–4378.  CrossRef PubMed CAS Google Scholar
First citationCieslik, W., Musiol, R., Nycz, J. E., Jampilek, J., Vejsova, M., Wolff, M., Machura, B. & Polanski, J. (2012). Bioorg. Med. Chem. 20, 6960–6968.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCortes, J. E., Apperley, J. F., DeAngelo, D. J., Deininger, M. W., Kota, V. K., Rousselot, P. & Gambacorti-Passerini, C. (2018). J. Hematol. Oncol. 11, 143.  CrossRef PubMed Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFakhfakh, M. A., Fournet, A., Prina, E., Mouscadet, J.-F., Franck, X., Hocquemiller, R. & Figadère, B. (2003). Bioorg. Med. Chem. 11, 5013–5023.  CrossRef PubMed CAS Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFranck, X., Fournet, A., Prina, E., Mahieux, R., Hocquemiller, R. & Figadère, B. (2004). Bioorg. Med. Chem. Lett. 14, 3635–3638.  CrossRef PubMed CAS Google Scholar
First citationGao, W., Li, Z., Xu, Q. & Li, Y. (2018). RSC Adv. 8, 38844–38849.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGhosh, J., Swarup, V., Saxena, A., Das, S., Hazra, A., Paira, P., Banerjee, S., Mondal, N. B. & Basu, A. (2008). Int. J. Antimicrob. Agents, 32, 349–354.  CrossRef CAS Google Scholar
First citationGilbert, A. M., Bursavich, M. G., Lombardi, S., Georgiadis, K. E., Reifenberg, E., Flannery, C. & Morris, E. A. (2008). Bioorg. Med. Chem. Lett. 18, 6454–6457.  CrossRef PubMed CAS Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHazra, S., Tiwari, V., Verma, A., Dolui, P. & Elias, A. J. (2020). Org. Lett. 22, 5496–5501.  CSD CrossRef CAS PubMed Google Scholar
First citationHu, Y.-Q., Gao, C., Zhang, S., Xu, L., Xu, Z., Feng, L.-S., Wu, X. & Zhao, F. (2017). Eur. J. Med. Chem. 139, 22–47.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJamal, Z. & Teo, Y. C. (2014). Synlett, 25, 2049–2053.  CAS Google Scholar
First citationJamal, Z., Teo, Y.-C. & Lim, G. S. (2016). Tetrahedron, 72, 2132–2138.  Web of Science CrossRef CAS Google Scholar
First citationKamal, A., Rahim, A., Riyaz, S., Poornachandra, Y., Balakrishna, M., Kumar, C., Hussaini, S., Sridhar, B. & Machiraju, P. (2015). Org. Biomol. Chem. 13, 1347–1357.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245–3264.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKumar, S., Bawa, S., Drabu, S. & Panda, B. P. (2011). Med. Chem. Res. 20, 1340–1348.  CrossRef CAS Google Scholar
First citationKumar, S., Bawa, S. & Gupta, H. (2009). Mini Rev. Med. Chem. 9, 1648–1654.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLam, K.-H., Gambari, R., Lee, K. K.-H., Chen, Y.-X., Kok, S. H.-L., Wong, R. S.-M., Lau, F.-Y., Cheng, C.-H., Wong, W.-Y., Bian, Z.-X., Chan, A. S.-C., Tang, J. C.-O. & Chui, C.-H. (2014). Bioorg. Med. Chem. Lett. 24, 367–370.  CrossRef CAS PubMed Google Scholar
First citationLauria, A., La Monica, G., Bono, A. & Martorana, A. (2021). Eur. J. Med. Chem. 220, 113555.  Web of Science CrossRef PubMed Google Scholar
First citationLee, V. M., Gavrishova, T. N. & Budyka, M. F. (2009). Chem. Heterocycl. C, 45, 1279–1280.  Web of Science CrossRef CAS Google Scholar
First citationLeonard, J. T. & Roy, K. (2008). Eur. J. Med. Chem. 43, 81–92.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, X., Huang, B., Wang, J. W., Zhang, Y. Y. & Liao, W. B. (2021). J. Chem. Res. 45, 903–910.  CrossRef CAS Google Scholar
First citationMahajan, S., Gupta, S., Jariwala, N., Bhadane, D., Bhutani, L., Kulkarni, S. & Singh, I. (2018). Lett. Drug. Des. Discov. 15, 937–944.  Web of Science CrossRef CAS Google Scholar
First citationMatada, B. S., Pattanashettar, R. & Yernale, N. G. (2021). Bioorg. Med. Chem. 32, 115973.  Web of Science CrossRef PubMed Google Scholar
First citationMeléndez, A., Plata, E., Rodríguez, D., Ardila, D., Guerrero, S., Acosta, L., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804–1822.  Google Scholar
First citationMoss, G. P. (1996). Pure Appl. Chem. 68, 2193–2222.  CrossRef CAS Web of Science Google Scholar
First citationMousnier, A., Leh, H., Mouscadet, J.-F. & Dargemont, C. (2004). Mol. Pharmacol. 66, 783–788.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMrozek-Wilczkiewicz, A., Kuczak, M., Malarz, K., Cieślik, W., Spaczyńska, E. & Musiol, R. (2019). Eur. J. Med. Chem. 177, 338–349.  Web of Science CAS PubMed Google Scholar
First citationMrozek-Wilczkiewicz, A., Spaczynska, E., Malarz, K., Cieślik, W., Rams-Baron, M., Kryštof, V. & Musiol, R. (2015). PLoS One, 10, e0142678.  PubMed Google Scholar
First citationMusiol, R. (2017). Exp. Opin. Drug. Discov. 12, 583–597.  Web of Science CrossRef CAS Google Scholar
First citationMusiol, R. (2020). Med. Chem. 16, 141–154.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMusiol, R., Serda, M., Hensel-Bielowka, S. & Polanski, J. (2010). Curr. Med. Chem. 17, 1960–1973.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOkombo, J. & Chibale, K. (2018). MedChemComm, 9, 437–453.  CrossRef CAS PubMed Google Scholar
First citationOmar, W. A. E. & Hormi, O. E. O. (2009). Tetrahedron, 65, 4422–4428.  Web of Science CrossRef CAS Google Scholar
First citationOrozco, D., Kouznetsov, V. V., Bermúdez, A., Vargas Méndez, L. Y., Mendoza Salgado, A. R. & Meléndez Gómez, C. M. (2020). RSC Adv. 10, 4876–4898.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRodríguez, D., Guerrero, S. A., Palma, A., Cobo, J. & Glidewell, C. (2020). Acta Cryst. C76, 883–890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSatish, G., Ashok, P., Kota, L. & Ilangovan, A. (2019). Chemistry­Select, 4, 1346–1349.  Web of Science CrossRef CAS Google Scholar
First citationSharma, R., Abdullaha, M. & Bharate, S. B. (2017). J. Org. Chem. 82, 9786–9793.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSolomon, R. V. & Lee, H. (2011). Curr. Med. Chem. 18, 1488–1508.  CAS PubMed Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStaderini, M., Cabezas, N., Bolognesi, M. L. & Menéndez, J. C. (2011). Synlett, 2011, 2577–2579.  Google Scholar
First citationSzczepaniak, J., Cieślik, W., Romanowicz, A., Musioł, R. & Krasowska, A. (2017). Int. J. Antimicrob. Agents, 50, 171–176.  CrossRef CAS PubMed Google Scholar
First citationVera, D. R., Mantilla, J. P., Palma, A., Cobo, J. & Glidewell, C. (2022). Acta Cryst. C78, 524–530.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar
First citationYadav, P. & Shah, K. (2021). Bioorg. Chem. 109, 104639.  Web of Science CrossRef PubMed Google Scholar
First citationYaragorla, S., Singh, G. & Dada, R. (2015). Tetrahedron Lett. 56, 5924–5929.  CrossRef CAS Google Scholar
First citationZhang, G.-F., Liu, X., Zhang, S., Pan, B. & Liu, M.-L. (2018). Eur. J. Med. Chem. 146, 599–612.  CrossRef CAS PubMed Google Scholar
First citationZhang, C., Li, Z., Fang, Y., Jiang, S., Wang, M. & Zhang, G. (2020). Tetrahedron, 76, 130968.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds