research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Synthesis and crystal structures of two 1H-benzo[d]­imidazole derivatives: DFT and anti­corrosion studies, and Hirshfeld surface analysis

crossmark logo

aUnit of Research CHEMS, Chemistry Department, University of Mentouri Brothers, Constantine 1, Algeria, bLaboratory of Analytical Physicochemistry and Crystallochemistry of Organometallic and Biomolecular Materials, University of Constantine 1, 25000, Algeria, cSuperior Normal School of Constantine, University of Constantine 3, 25000, Algeria, dLaboratory of Electrochemistry, Molecular Engineering and Redox Catalysis (LEIMCR), Department of Basic Education in Technology, Faculty of Technology, University Ferhat Abbas, Setif-1, Algeria, eDepartment of Chemistry, Faculty of Sciences, University of Setif-1, Setif, Algeria, fFaculty of Technology, PO Box 166, University Mohamed Boudief M'sila, 28000, Algeria, gLaboratory of Electrochemistry and Materials (LEM), Department of Process Engineering, Faculty of Technology, Ferhat Abbas University, Setif-1, 19000, Algeria, hLaboratory of Electrochemistry of Molecular Materials and Complexes (LEMMC), Ferhat Abbas University, Setif-1, 19000, Algeria, and iInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
*Correspondence e-mail: nadirghichi@yahoo.com

Edited by W. Lewis, University of Sydney, Australia (Received 23 March 2023; accepted 23 June 2023; online 29 June 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The title benzimidazole com­pounds, namely, 2-(4-meth­oxy­naph­tha­len-1-yl)-1H-benzo[d]imidazole, C18H14N2O (I) and 2-(4-meth­oxy­naph­tha­len-1-yl)-1-[(4-meth­oxy­naph­tha­len-1-yl)meth­yl]-1H-benzo[d]imidazole ethanol monosolvate, C30H24N2O2·C2H6O (II), were synthesized by the condensation reaction of benzene-1,2-di­amine with 4-meth­oxy­naph­tha­lene-1-carbaldehyde in the ratios 1:1 and 1:2, respectively. In I, the mean plane of the naph­tha­lene ring system is inclined to that of the benz­imidazole ring by 39.22 (8)°, while in II, the corresponding dihedral angle is 64.76 (6)°. This difference is probably influenced by the position of the second naph­tha­lene ring system in II; it is inclined to the benzimidazole ring mean plane by 77.68 (6)°. The two naph­tha­lene ring systems in II are inclined to one another by 75.58 (6)°. In the crystal of I, mol­ecules are linked by N—H⋯N hydrogen bonds to form chains propagating along the a-axis direction. Inversion-related mol­ecules are also linked by a C—H⋯π inter­action linking the chains to form layers lying parallel to the ac plane. In the crystal of II, the disordered ethanol mol­ecule is linked to the mol­ecule of II by an O—H⋯N hydrogen bond. There are a number of C—H⋯π inter­actions present, both intra- and inter­molecular. Mol­ecules related by an inversion centre are linked by C—H⋯π inter­actions, forming a dimer. The dimers are linked by further C—H⋯π inter­actions, forming ribbons propagating along the b-axis direction. The inter­atomic contacts in the crystal structures of both com­pounds were explored using Hirshfeld surface analysis. The mol­ecular structures of I and II were determined by density functional theory (DFT) calculations at the M062X/6-311+g(d) level of theory and com­pared with the experimentally determined mol­ecular structures in the solid state. Local and global reactivity descriptors were com­puted to predict the reactivity of the title com­pounds. Both com­pounds were shown to exhibit significant anti­corrosion properties with respect to iron and copper.

1. Introduction

Benzimidazole is a naturally occurring bicyclic com­pound (Townsend et al., 1990[Townsend, L. B. & Wise, D. S. (1990). Parasitol. Today, 6, 107-112.]; Ahmed et al., 2020[Ahmed, R., Doğan, O. E., Ali, F., Ahmad, M., Ahmed, A., Dege, N. & Golenia, I. A. (2020). Acta Cryst. E76, 724-727.]) and consists of fused benzene and imidazole rings. Corrosion is a serious problem of great relevance in a wide range of industrial applications and products (Finšgar & Jackson, 2014[Finšgar, M. & Jackson, J. (2014). Corros. Sci. 86, 17-41.]; Gutiérrez et al., 2016[Gutiérrez, E., Rodríguez, J. A., Cruz-Borbolla, J., Alvarado-Rodríguez, J. G. & Thangarasu, P. (2016). Corros. Sci. 108, 23-35.]). Upgrading materials, process control, chemical inhibition and blending of production fluids are different ways of preventing corrosion damage. Corrosion inhibitors are synthetic or natural substances which, added in small amounts to a corrosive solution, decrease the rate of attack by the environment on metals (Hamadi et al., 2018[Hamadi, L., Mansouri, S., Oulmi, K. & Kareche, A. (2018). Egypt. J. Petrol. 27, 1157-1165.]; Chen et al., 2019[Chen, Y., Xing, W., Wang, L. & Chen, L. (2019). Materials, 12, 1821.]). The inhibitory action of organic com­pounds depends on the nature of the mol­ecular structure, inhibitor planarity, electron-donating functional groups, nonbonding elections on hetero­atoms, i.e. oxygen, nitogen and sulfur, and the presence of π-bonds in the aromatic ring (Yadav & Quraishi, 2012[Yadav, D. K. & Quraishi, M. A. (2012). Ind. Eng. Chem. Res. 51, 14966-14979.]). In recent years, corrosion scientists have been inter­ested in finding green and environmentaly friendly inhibitors (Sastri, 2012[Sastri, V. S. (2012). In Green Corrosion Inhibitors. Theory and Practice, 1st ed. Hoboken, NJ, USA: John Wiley & Sons.]). Several authors reported the effectiveness of organic inhibitors which generally protect the metal from corrosion by forming a film on the metal surface (Chen et al., 2019[Chen, Y., Xing, W., Wang, L. & Chen, L. (2019). Materials, 12, 1821.]).

[Scheme 1]

The use of benzimidazoles as anti­corrosion agents has been reviewed a number of times recently (Singh et al., 2020[Singh, A., Ansari, K. R., Chauhan, D. S., Quraishi, M. A., Kaya, S., Yu, H. & Lin, Y. (2020). Corrosion Mitigation by Planar Benzimidazole Derivatives, in Corrosion, edited by A. Singh. London: IntechOpen Ltd.]; Marinescu, 2019[Marinescu, M. (2019). BMC Chem. 13, 136.]). In view of this inter­est, we report herein on the syntheses of 2-(4-meth­oxy­naph­tha­len-1-yl)-1H-benzo[d]imidazole] (I) and 2-(4-meth­oxy­naph­tha­len-1-yl)-1-[(4-meth­oxy­naph­tha­len-1-yl)meth­yl]-1H-benzo[d]imidazole ethanol monosolvate (II). The structures of both com­pounds were fully characterized by spectroscopic techniques. The optimized geometries of both com­pounds and their mol­ecular properties have also been calculated in order to estimate their geometrical parameters and their reactivity indices.

2. Experimental

2.1. Measurements and materials

All reagents used for the syntheses of com­pounds I and II were purchased from Sigma–Aldrich and were used without further purification. The NMR spectra were recorded on a Bruker Avance DPX 250 MHz spectrometer. A PerkinElmer 1000-FT-IR instrument was used to record the FT–IR spectra using the KBr pellet technique in the range 500–4000 cm−1.

2.2. Preparation of the corrosive solution

The corrosion solution used was 0.5 M H2SO4, diluted from 98% concentrated acid, with different concentrations of the inhibitors.

2.2.1. Inhibitors

The mol­ecular structures of the studied inhibitors are shown in Scheme 1[link].

2.2.2. Mild steel specimen

The working electrode is made of steel (API 5L grade C) coated with ep­oxy resins and has an exposed area of 0.144 cm2. It was polished with abrasive papers of different grades (400, 800, 1500 and 2000 grid), rinsed and degreased with ethanol, rinsed several times with distilled water and finally dried.

A conventional three-electrode cylindrical glass cell was used for both potentiodynamic polarization analysis and electrochemical impedance spectroscopy. The electrodes used for electrochemical mea­sure­ments were a platinum electrode as the counter electrode and a saturated calomel electrode as the reference electrode. Polarization and impedance mea­sure­ments were performed using a potentiostat/galvanostat/ZRA `GAMRY-Reference 3000'. Potentiodynamic polarization experiments were performed in the potential range from −800 to −200 mV using a scan rate of 1 mV s−1. Inhibition efficiency (IE, %) values are obtained by this method using Equation (1)[link]:

[{\rm IE} \ \left( \% \right) = I_{\rm corr\left( 0 \right)} - I_{\rm corr\left( inh \right)}/I_{\rm corr\left( 0 \right)} \times 100 \eqno(1)]

Icorr and Icorr(0) are the current densities in the presence or absence of the investigated inhibitors, respectively.

Electrochemical impedance spectroscopy (EIS) was per­formed at an open circuit potential (Ecorr) over the frequency range from 100 kHz to 10 mHz, with a 10 mV peak-to-peak amplitude using the AC signal. Here the inhibition efficiency was calculated starting from the charge transfer resistance, as in Equation (2)[link]:

[{\rm IE} \ \left( \% \right) = R_{\rm ct\left( inh \right)} - R_{\rm ct\left( 0 \right)}/R_{\rm ct\left( inh \right)} \times 100 \eqno(2)]

2.3. Computational details

The geometries of the title com­pounds were fully optimized using the M062X density functional with the 6-311+g(d) basis set (Petersson & Al-Laham, 1991[Petersson, G. A. & Al-Laham, M. A. (1991). J. Chem. Phys. 94, 6081-6090.]; Petersson et al., 1988[Petersson, G. A., Bennett, A., Tensfeldt, T. G., Al-Laham, M. A., Shirley, W. A. & Mantzaris, J. (1988). J. Chem. Phys. 89, 2193-2218.]). M062X is a hybrid meta-GGA functional with 57% of the Hartree–Fock exchange to consider dispersion forces (Zhao & Truhlar, 2008[Zhao, Y. & Truhlar, D. G. (2008). Theor. Chem. Acc. 120, 215-241.]; Abbasi et al., 2018[Abbasi, M., Nemati-Kande, E. & Mohammadi, M. D. (2018). Comput. Theor. Chem. 1132, 1-11.]). The mol­ecular optimization was performed without imposing any symmetry constraints. The resulting mol­ecular geometry was then confirmed as a local minimum on the potential energy surface by performing harmonic frequency calculations at the same level of approximation. In this work, all quantum chemical calculations were carried out using GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Revision B.01. Gaussian Inc., Wallingford, CT, USA. https://gaussian.com/.]). The global chemical reactivity descriptors, such as chemical hardness (η), electronic chemical potential (μ), electronegativity (χ) and global electrophilicity index, can be evaluated from the frontier orbital energies HOMO (highest occupied mol­ecular orbital) and LUMO (lowest unoccupied mol­ecular orbital), denoted ɛH and ɛL, respectively (Chermette, 1999[Chermette, H. (1999). J. Comput. Chem. 20, 129-154.]; Parr et al., 1999[Parr, R. G., Szentpály, L., v & Liu, S. (1999). J. Am. Chem. Soc. 121, 1922-1924.]), according to Equations (3)[link]–(5)[link][link]:

[\mu = 1/2 \left( \varepsilon _{\rm H} + \varepsilon _{\rm L} \right) \eqno(3)]

[ \varepsilon _{\rm L} - \varepsilon _{\rm H} \eqno(4)]

[\omega = \mu ^2 /2 \eqno(5)]

The chemical potential (μ) characterizes the tendency of electrons to escape from the equilibrium system. The chemical hardness (η) measures the stability of a com­pound in terms of resistance to electron transfer. The global electrophilicity index (ω), introduced by Parr & Pearson (1983[Parr, R. G. & Pearson, R. G. (1983). J. Am. Chem. Soc. 105, 7512-7516.]), expresses the ability of a mol­ecule to accept electrons from the environment.

During the inter­action between two mol­ecular systems, the electrons flow from the lower electronegativity (nucleophile, Nu) to the higher electronegativity (electrophile, E) until the chemical potential becomes equalized. The fraction of the transferred electron, ΔN, was estimated according to Pearson (Parr & Pearson, 1983[Parr, R. G. & Pearson, R. G. (1983). J. Am. Chem. Soc. 105, 7512-7516.]; Hannachi et al., 2015[Hannachi, D., Ouddai, N., Arotçaréna, M. & Chermette, H. (2015). Mol. Phys. 113, 1541-1550.]; Fellahi et al., 2021[Fellahi, Z., Chenaf-Ait youcef, H., Hannachi, D., Djedouani, A., Ouksel, L., François, M., Fleutot, S. & Bourzami, R. (2021). J. Mol. Struct. 1244, 130955.]) using Equation (6)[link]:

[\Delta N = \mu _{\rm Nu} - \mu _{\rm E} /2 \left( \eta _{\rm Nu} + \eta _{\rm E} \right) \eqno(6)]

On the other hand, the Fukui function f(r) and dual descriptor Δf(r) are local reactivity descriptors and reflect the ability of a com­pound site to donate or accept electrons.

The Fukui function proposed by Parr (Parr & Pearson, 1983[Parr, R. G. & Pearson, R. G. (1983). J. Am. Chem. Soc. 105, 7512-7516.]; Parr & Yang, 1984[Parr, R. G. & Yang, W. (1984). J. Am. Chem. Soc. 106, 4049-4050.]) can be evaluated for nucleophilic attack ([f_{\rm k}^+]), electrophilic attack ([f_{\rm k}^-]) and radical (neutral) attack ([f_{\rm k}^0]) using Equations (7)[link]–(9)[link][link]:

[ f_{\rm k}^- = \rho_N \left( r \right) - \rho _{N-1} \left( r \right) \rightarrow {\rm for \ electrophilic \ attack} \eqno(7)]

[ f_{\rm k}^+ = \rho_{N+1} \left( r \right) - \rho _{N} \left( r \right) \rightarrow {\rm for \ nucleophilic \ attack} \eqno(8)]

[ f_{\rm k}^0 = 1/2\rho_{N+1} \left( r \right) - \rho _{N-1} \left( r \right) \rightarrow {\rm for \ radical \ attack} \eqno(9)]

where ρN(r), ρN–1(r) and ρN+1(r) represent the electron densities of a system at the N electron (neutral), N−1 electron (cationic) and N+1 electron (anionic), respectively. It is argued that the reactive site should possess a higher value of the Fukui function in com­parison to other sites.

The dual descriptor Δf(r) developed by Morell et al. (2005[Morell, C., Grand, A. & Toro-Labbé, A. (2005). J. Phys. Chem. A, 109, 205-212.]) and Roy et al. (1998[Roy, R. K., Krishnamurti, S., Geerlings, P. & Pal, S. (1998). J. Phys. Chem. A, 102, 3746-3755.]) is more convenient than the Fukui function (Chen et al., 2022[Chen, X. M., Li, H. R., Feng, X. L., Wang, H. T. & Sun, X. H. (2022). ACS Omega, 7, 24942-24950.]). It can be approximated by Equation (10)[link]:

[ \Delta f\left( r \right) \simeq \rho_{N+1} \left( r \right) + \rho _{N-1} \left( r \right) - 2 \rho_N \left( r \right) \eqno(10)]

The sign of dual descriptor Δf(r) is an important criterion of the reactivity site within a mol­ecule.

If Δf(r) > 0, then the site is favourable for a nucleophilic attack.

If Δf(r) < 0, then the site is favourable for an electrophile attack.

Furthermore, the local philicity index (ω[_{\rm k}^{\alpha}]) can be evaluated easily from Equation (11)[link] (Meneses et al., 2004[Meneses, L., Tiznado, W., Contreras, R. & Fuentealba, P. (2004). Chem. Phys. Lett. 383, 181-187.]; Chattaraj et al., 2003[Chattaraj, P. K., Maiti, B. & Sarkar, U. (2003). J. Phys. Chem. A, 107, 4973-4975.]):

[ \omega_{\rm k}^{\alpha}&nbsp;= \omega f_{\rm k}^{\alpha} \eqno(11)]

Where α = + or − refer to nucleophilic or electrophilic attack, respectively.

2.4. Synthesis, crystallization and spectroscopy

2.4.1. Preparation of I

A mixture of 1 equivalent of benzene-1,2-di­amine and 1 equivalent of 4-meth­oxy­naph­tha­lene-1-carbaldehyde in methanol was stirred for 1–2 h. At the end of the reaction, the solvent was evaporated in vacuo. The resulting residue was recrystallized from ethanol to give small yellow block-like crystals. 1H NMR (250 MHz, CDCl3, δ): the aromatic protons appear as multiple signals in the 7.7–6.5 range, 4.0 (s, 3H, O—CH3), 1.3 (s, 1H, NH).

2.4.2. Preparation of II

A mixture of 1 equivalent of ben­zene-1,2-di­amine and 2 equivalents of 4-meth­oxy­naph­tha­lene-1-carbaldehyde in ethanol was refluxed for 1–2 h. The mixture was then allowed to stand for several days, whereupon small yellow crystals were obtained. 1H NMR (250 MHz, CDCl3, δ): 2.1–2.4 (s, 2H, CH2—N), 6.5–8.4 (m, 16H, H-ar), 3.9–4.0 (s, 3H, O—CH3). 13C NMR: δ 70.22 (–CH2—O), 55.70–55.60 (–CH3—O), 120.10–128.78 (–C=C– aromatic).

2.4.3. FT–IR spectroscopic analysis of I and II

The solid-state FT–IR experimental spectra (KBr disc) of com­pounds I and II are com­pared in Table 1[link]. Many vibrational modes are similar due to the structural similarities of the two com­pounds. For I, the appearance of the band at 3376 cm−1 assigned to the N—H stretching mode confirms its structure.

Table 1
Selected IR frequencies (cm−1) for I and II and their assignments

Assigment I II
N—H 3376
ν(C—H)aromatic 3261 3251
ν(C—H)aliphatic 2935 2937
δ(C—H)(C=C)aromatic 1614 1677
C=N 1580 1587
δ(C—H) 1508 1507
ν(C—C)aromatic 1448 1490
ν(C aromatic)—O—C 1243 1242
C—N 1090 1089
Notes: ν is the elongation vibration and δ is the deformation vibration.

2.5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N—H H atom of I was located in a difference Fourier map and refined freely. In II, the ethyl­ene moiety of the ethanol solvent mol­ecule is disordered over two positons and was refined with an occupancy ratio of 0.85:0.15. In the final cycles of refinement, their C—O and C—C bond lengths were restrained to 1.40 (2) and 1.50 (2) Å, repectively. The O—H H atom of the ethanol solvent mol­ecule was positioned geometrically (O—H = 0.82 Å) and refined as riding, with Uiso(H) = 1.5Ueq(O). The C-bound H atoms in both com­pounds were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for methyl­ene and aromatic H atoms.

Table 2
Experimental details

Experiments were carried out at 293 K with Mo Kα radiation using a Bruker APEXII CCD diffractometer.

  I II
Crystal data
Chemical formula C18H14N2O C30H24N2O2·C2H6O
Mr 274.31 490.58
Crystal system, space group Orthorhombic, Pca21 Triclinic, P[\overline{1}]
a, b, c (Å) 9.1548 (5), 9.7791 (5), 15.6336 (9) 10.7065 (3), 10.9434 (3), 12.8256 (4)
α, β, γ (°) 90, 90, 90 69.029 (1), 82.871 (1), 67.515 (1)
V3) 1399.61 (13) 1296.37 (7)
Z 4 2
μ (mm−1) 0.08 0.08
Crystal size (mm) 0.03 × 0.02 × 0.01 0.03 × 0.02 × 0.01
 
Data collection
No. of measured, independent and observed [I > 2σ(I)] reflections 6139, 2442, 2235 20872, 4611, 3587
Rint 0.026 0.022
(sin θ/λ)max−1) 0.617 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 1.07 0.054, 0.162, 1.09
No. of reflections 2442 4611
No. of parameters 195 358
No. of restraints 1 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.15 0.31, −0.26
Computer programs: APEX2 (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

3. Results and discussion

3.1. Mol­ecular and crystal structures

The mol­ecular structure of 2-(4-meth­oxy­naph­tha­len-1-yl)-1H-benzo[d]imidazole (I) is illustrated in Fig. 1[link] and the mol­ecular structure of the ethanol solvate II, namely, [2-(4-meth­oxy­naph­tha­len-1-yl)-1-[(4-meth­oxy­naph­tha­len-1-yl)meth­yl]-1H-benzo[d]imidazole, is illustrated in Fig. 2[link]. A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated the presence of only one similar com­pound, viz. 2-(2-meth­oxy­naph­tha­len-1-yl)-1-[(2-meth­oxy­naph­tha­len-1-yl)meth­yl]-1H-benzo[d]imidazole (III) (CSD refcode PEYBEB; Eltayeb et al., 2007[Eltayeb, N. E., Teoh, S. G., Teh, J. B., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, o465-o467.]) (see Fig. 3[link]). This structure is included here in order to com­pare it to the structures of com­pounds I and II. The structural overlap of mol­ecules I and II is shown in Fig. 4[link](a), and that of mol­ecules II and III is shown in Fig. 4[link](b). In all three com­pounds, the naph­tha­lene ring systems are planar to within 0.019–0.058 Å and the benzimidazole ring systems are planar to within 0.007–0.016 Å.

[Figure 1]
Figure 1
A view of the mol­ecular structure of I, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
(a) A view of the mol­ecular structure of II, showing the major com­ponent of the disordered ethanol mol­ecule of crystallization and the atom labelling. The displacement ellipsoids are drawn at the 50% probability level. The inter­molecular O—H⋯N hydrogen bond (Table 4[link]) is shown as a dashed line. (b) A ball-and-stick view of the disordered ethanol solvent mol­ecule in com­pound II.
[Figure 3]
Figure 3
A view of the crystal structure of III (CSD refcode PEYBEB; Eltayeb et al., 2007[Eltayeb, N. E., Teoh, S. G., Teh, J. B., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, o465-o467.]).
[Figure 4]
Figure 4
The best structural overlap of the benzimidazole ring planes of (a) com­pounds I (green) and II (blue), with an r.m.s. deviation of ca 0.012 Å, and (b) com­pounds II (blue) and III (red), with an r.m.s. deviation of ca 0.017 Å. The O and N atoms are shown as balls.

In I, the mean plane of the naph­tha­lene system (C8–C17) is inclined to the benz­imidazole ring mean plane (N1/N2/C1–C7) by 39.22 (8)°. In II and III, the corresponding dihedral angles are 64.76 (6) and ca 68.19°. This difference is probably influenced by the position of the second naph­tha­lene ring system (C20–C28) in II and III; it is inclined to the benzimidazole ring mean plane (N1/N2/C1–C7) by 77.68 (6) and ca 78.44°, respectively. The two naph­tha­lene ring systems are inclined to each another by 75.58 (6) and ca 58.69°, respectively. The meth­oxy groups lie in the planes of the rings to which they are attached, with the dihedral angles of the CH3—O—Caromatic group in relation to the respective naph­tha­lene ring mean plane being 1.5 (3)° in I and 0.36 (18) (involving atom O1) and 1.79 (19)° (involving atom O2) in II. The corresponding dihedral angles in III are ca 3.42 and 7.15°.

In the crystal of I, mol­ecules are linked by N—H⋯N hydrogen bonds to form chains propagating along the a-axis direction (Table 3[link] and Fig. 5[link]). Inversion-related mol­ecules are also linked by a C—H⋯π inter­action, thus linking the chains to form layers lying parallel to the ac plane (Table 3[link] and Fig. 5[link])

Table 3
Hydrogen-bond geometry (Å, °) for I[link]

Cg2 is the centroid of ring N1/N2/C1/C6/C7.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2i 0.93 (3) 1.91 (3) 2.829 (3) 170 (2)
C14—H14⋯Cg2ii 0.93 2.82 3.647 (3) 148
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+2, z]; (ii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].
[Figure 5]
Figure 5
A view along the b axis of the crystal packing of I. Hydrogen bonds are shown as dashed lines and the C—H⋯π inter­actions as blue arrows (see Table 3[link]).

In the crystal of II, the disordreed ethanol solvent mol­ecule is linked to the mol­ecule of II by an O—H⋯N hydrogen bond (Table 4[link] and Figs. 2[link] and 6[link]). There are a number of C—H⋯π inter­actions present, both intra- and inter­molecular (Table 4[link]). Mol­ecules related by an inversion centre are linked by C—H⋯π inter­actions forming a dimer. The dimers are linked by further C—H⋯π inter­actions, forming ribbons propagating along the b-axis direction (Fig. 6[link] and Table 4[link]).

Table 4
Hydrogen-bond geometry (Å, °) for II[link]

Cg1, Cg2, Cg3 and Cg4 are the centroids of rings N1/N2/C1/C6/C7, C1–C6, C8–C11/C16/C17 and C12–C17, respecively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯N2 0.82 2.15 2.913 (3) 156
C21—H21⋯Cg1 0.93 2.95 3.575 (2) 126
C19—H19ACg2i 0.97 2.85 3.600 (2) 135
C26—H26⋯Cg3ii 0.93 2.82 3.626 (2) 146
C25—H25⋯Cg4ii 0.93 2.66 3.528 (2) 155
Symmetry codes: (i) [-x+1, -y, -z+2]; (ii) [-x+1, -y+1, -z+2].
[Figure 6]
Figure 6
A view along the a axis of the crystal packing of the ethanol solvent mol­ecule of com­pound II. Hydrogen bonds and C—H⋯π inter­actions are indicated by dashed lines (see Table 4[link]). For clarity, only the major com­ponent of the disordered ethanol mol­ecule of crystallization and the H atoms (grey balls) involved in these inter­actions have been included.

In the crystal of III, Eltayeb et al. (2007[Eltayeb, N. E., Teoh, S. G., Teh, J. B., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, o465-o467.]) indicated the presence of both ππ and a number of C—H⋯π inter­actions.

3.2. Hirshfeld surface (HS) analysis and two-dimensional (2D) fingerprint plots

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated 2D fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed and created with CrystalExplorer (Version 21; Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) following the protocol of Tiekink and collaborators (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The Hirshfeld surfaces are colour-mapped with the normalized contact distance, dnorm, varying from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii).

The Hirshfeld surfaces (HS) of I, II and III, mapped over dnorm are com­pared in Fig. 7[link]. There are important contacts present in the crystals; the stronger hydrogen bonds are indicated by the small and large red zones in Fig. 7[link].

[Figure 7]
Figure 7
The Hirshfeld surfaces of I, II and III mapped over dnorm in the colour ranges −0.6321 to 1.3019, −0.3792 to 1.5146 and −0.1488 to 1.5333 a.u., respectively.

The 2D fingerprint plots for I, II and III are com­pared in Figs. 8[link], 9[link] and 10[link], respectively. For com­pound I, they reveal that the principal contributions to the overall HS surface involve H⋯H contacts at 48.7% and C⋯H/H⋯C contacts at 33.0%. These are followed by the N⋯H/H⋯N contacts at 6.7%, with very sharp and long spikes at di + de ≃ 1.8 Å. These are of course related to the N—H⋯N hydrogen bonds present in the crystal (see Table 3[link] and Fig. 5[link]). The C⋯C contacts are at 5.4% and the O⋯H/H⋯O contacts at 4.9%. The C⋯N contacts amount to only 1.3%.

[Figure 8]
Figure 8
The 2D fingerprint plots for I and those delineated into H⋯H, C⋯H/H⋯C, N⋯H/H⋯N, C⋯C, O⋯H/H⋯O and C⋯N contacts.
[Figure 9]
Figure 9
The 2D fingerprint plots for II and those delineated into H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, C⋯C, N⋯H/H⋯N, C⋯O and C⋯N contacts.
[Figure 10]
Figure 10
The 2D fingerprint plots for III and those delineated into H⋯H, C⋯H/H⋯C, C⋯C, N⋯H/H⋯N, O⋯H/H⋯O and C⋯O contacts.

For com­pound II, the principal contributions to the overall HS surface involve H⋯H contacts at 61.9% and C⋯H/H⋯C contacts at 24.5%. These are followed by the O⋯H/H⋯O contacts at 8.4%. The C⋯C contacts are at 2.1% and the N⋯H/H⋯N contacts are at 1.8%. The C⋯O and C⋯N contacts amount to only 0.8 and 0.3%, respectively.

For com­pound III, the principal contributions to the overall HS surface involve H⋯H contacts at 55.7%. The C⋯H/H⋯C contacts at 28.7%, with sharp spikes at di + de ≃ 2.55 Å, and the C⋯C contacts at 6.7%, with a sharp spike di + de ≃ 3.4 Å, reflect the presence of both ππ and a number of C—H⋯π inter­actions in the crystal structure (Eltayeb et al., 2007[Eltayeb, N. E., Teoh, S. G., Teh, J. B., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, o465-o467.]). The N⋯H/H⋯N contacts are at 5.3% and the O⋯H/H⋯O contacts are at 3.4%. The C⋯O contacts amount to only 0.2%.

3.3. Anticorrosion studies

3.3.1. The open-circuit potentials tests

Determining the stability status by measuring the open circuit potential (OCP) change with working pole time is necessary before electrochemical mea­sure­ments of the corrosion rate. Fig. 11[link] shows an electric Cummins change of the corrosion process with a time function of steel in a solution of 0.5 M H2SO4 in the absence and presence of inhibitors. In the solution free of inhibitor, the OCP value was −475 mV. When the inhibitors were added the variance values for the open circuit voltage were observed to be −502 mV for inhibitor I and −465 mV for inhibitor II. From these values, I and II can be described as mixed-type inhibitors; the offset in the OCP values being less than ±85 mV com­pared to the reference value (Solomon & Umoren, 2016[Solomon, M. M. & Umoren, S. A. (2016). J. Colloid Interface Sci. 462, 29-41.]; Solomon et al., 2019[Solomon, M. M., Umoren, S. A., Quraishi, M. A. & Salman, M. (2019). J. Colloid Interface Sci. 551, 47-60.]). This result is in good agreement with other reports (Gerengi et al., 2016[Gerengi, H., Ugras, H. I., Solomon, M. M., Umoren, S. A., Kurtay, M. & Atar, N. (2016). J. Adhes. Sci. Technol. 30, 2383-2403.]).

[Figure 11]
Figure 11
(a) Open circuit potential, (b) potentiodynamic polarization curves and (c) Nyquist plot of steel API 5L grade C immersed in 0.5 M H2SO4 with and without inhibitors at 6 × 10−5 mole l−1.
3.3.2. Potentiodynamic polarization studies

Several studies have examined the kinetics and corrosion mechanism of steel in a medium of sulfuric acid on a large scale. One of the methods used is the dynamic polarization method and is generally used to obtain relevant information about the electrochemical corrosion parameters (Said et al., 2016[Said, M. E., Mezhoud, B., Bouraiou, A. & Chibani, A. (2016). Prot. Met. Phys. Chem. Surf. 52, 731-736.], 2023[Said, M. E., Bouchouit, M., Zaiter, A., Mezhoud, B., Bouacida, S., Chibani, A. & Bouraiou, A. (2023). Port. Electr. Acta, 41, 81-101.]). The Tafel curves of API 5L Class C steel in H2SO4 (0.5 M) medium without and with inhibitors are shown in Fig. 11[link](a). The electrochemical dissolution of iron can be expressed by the following mechanism (Khaled et al., 2011[Khaled, K. F., Hamed, K., Abdel-Azim, N. & Abdelshafi, J. (2011). J. Solid State Electrochem. 15, 663-673.]; Antonijević et al., 2009[Antonijević, M. M., Milić, S. M. & Petrović, M. B. (2009). Corros. Sci. 51, 1228-1237.]):

Fe → Fe2+ + 2e

2H+ + 2e → H2

Fig. 11[link](b) shows that when the inhibitors are added they have an effect on the corrosion mechanism, which is reflected on the anodic and cathodic curves, of reducing the current densities relative to the reference curve. Where this displacement is more pronounced in the cathodic region, this is what makes it a mixed-type inhibitor with a predominance of the cathodic side. In addition, the value of the almost constant Tafel slopes decreases for the branches according to the table without any change in the shapes of the curves. Which means that the corrosion mechanism occurs unchanged without or in the presence of the inhibitor, that is, the corrosion process is controlled by activation inhibition (Solomon et al., 2019[Solomon, M. M., Umoren, S. A., Quraishi, M. A. & Salman, M. (2019). J. Colloid Interface Sci. 551, 47-60.]; Kumari et al., 2016[Kumari, N., Kumari Paul, P., Gope, L. & Yadav, M. (2016). J. Adhes. Sci. Technol. 31, 1524-1544.]).

The polarization curves shift towards a negative value in the presence of the inhibitors. Since the offset of the Ecorr value is less than 85 mV, we can classify the studied com­pound as a mixed-type inhibitor with a low predominance of the cathodic side (Solomon & Umoren, 2016[Solomon, M. M. & Umoren, S. A. (2016). J. Colloid Interface Sci. 462, 29-41.]; Gerengi et al., 2016[Gerengi, H., Ugras, H. I., Solomon, M. M., Umoren, S. A., Kurtay, M. & Atar, N. (2016). J. Adhes. Sci. Technol. 30, 2383-2403.]).

The electrochemical corrosion parameters, corrosion current densities (Icorr), corrosion potentials (Ecorr) and anodic and cathodic Tafel slopes [Figs. 11[link](a) and 11(c)] were obtained by extrapolation of the polarization curves and the values obtained are listed in Table 5[link]. They show that the inhibition efficiency is 98.34% for I and 98.23% for II.

Table 5
Polarization mea­sure­ments for steel API 5L grade C corrosion in the absence and presence of inhibitors at 6 × 10−5 mole l−1 mM concentration

  Ecorr (mV/ECS) βa (mV/dec) βc (mV/dec) Icorr (µA cm−2) EI (%)
Blank −465 163.3 266.2 934
Inhibitor I −506 86.3 128.5 15.5 98.34
Inhibitor II −476 81.1 175.2 16.5 98.23
3.3.3. Impedance mea­sure­ments

To study the surface properties of steel and the mechanism of the processes on the electrode, we performed electrochemical impedance mea­sure­ments on API 5L grade B steel in 0.5 M H2SO4 solution with and without inhibitor. The results are shown in Fig. 11[link](c).

To obtain information about the double layer, we per­formed electrochemical impedance spectroscopy mea­sure­ments. As shown in Fig. 11[link](c), all high-frequency loops have the format of com­pressed half circles. This is the result of the scattering factors due to the inhomogeneity of the working electrode (Lebrini et al., 2007[Lebrini, M. M., Lagrenée, H., Vezin, H., Traisnel, M. & Bentiss, F. (2007). Corros. Sci. 49, 2254-2269.]). The diameters of these capacitive loops increase with in the presence of inhibitor, which means the increase of resistance (Rct), that is, of the charge transfer process (Abd El Rehim et al., 2004[Abd El Rehim, S. S., Hassan, H. H. & Amin, M. A. (2004). Corros. Sci. 46, 5-25.]; Kissi et al., 2006[Kissi, M. M., Bouklah, B., Hammouti, B. & Benkaddour, M. (2006). Appl. Surf. Sci. 252, 4190-4197.]).

The impedance data obtained above were analyzed using an electrochemical equivalent circuit shown in Fig. 12[link], where Rs, Rct and CPE are the resistance solution, charge transfer resistance and constant phase element, respectively. The term CPE was introducing to replace a double-layer capacitance (Cdl) for a more accurate fit. The impedance constant phase element (ZCPE) is represented by Sakki et al. (2021[Sakki, B., Said, M. E., Mezhoud, B., Allal, H., Larbah, Y., Kherrouba, A., Chibani, A. & Bouraiou, A. (2021). J. Adhes. Sci. Technol. 36, 2245-2268.]):

[Z_{\rm CPE}&nbsp;= Y_0 \left( J \omega \right)^n \eqno(12)]

where Y0 is a proportionality coefficient, J in an imaginary unit (j2 = −1), n is a CPE exponent with values between 0 and 1, and can be used to gauge the surface inhomogeneity, and ω is the angular frequency given by ω = 2πfmax. The CPE com­ponents Y0 and n were used in the calculation of the double-layer capacitance (Cdl) of the adsorbed film following Equation (13)[link] (Sakki et al., 2021[Sakki, B., Said, M. E., Mezhoud, B., Allal, H., Larbah, Y., Kherrouba, A., Chibani, A. & Bouraiou, A. (2021). J. Adhes. Sci. Technol. 36, 2245-2268.]):

[{\rm C}_{\rm dl}&nbsp;= \left( Y_0 \cdot R_{\rm ct} ^{1-n}\right)^{1/n} \eqno(13)]

[Figure 12]
Figure 12
Equivalent circuit diagrams used to fit impedance data.

The accuracy of the parabolic circuit fit was verified by plotting Nyquist curves with simulations. These data show us that as the inhibitor increases, the EPC values decrease and the Rct values increase. This decrease in capacitance results from a decrease in the dielectric constant and/or an increase in the thickness of the electrical double layer, and indicates that the mechanism of the studied damper is via adsorption at the metallic inter­face of steel and electrolyte (Chauhan et al., 2018[Chauhan, D. S., Ansari, K. R., Sorour, A. A., Quraishi, M. A., Lgaz, H. & Salghi, R. (2018). Int. J. Biol. Macromol. 107, 1747-1757.]; Singh et al., 2016[Singh, P., Ebenso, E. E., Olasunkanmi, L. O., Obot, I. & Quraishi, M. (2016). J. Phys. Chem. C, 120, 3408-3419.]). In this case, it can be assumed that the inhibitor displaces the water mol­ecules adsorbed on the surface of the steel. The inhibition efficiency is 96.08 and 95.61% (Table 6[link]) at 6 × 10−5 mole l−1 in the presence of inhibitors of I and II, respectively, confirming the results obtained by the polarization curve method.

Table 6
Impedance parameters for steel API 5L grade B in 0.5 M H2SO4 solution in the absence and presence of inhibitor

Cinh (mM) Rs (Ω cm2) Rct (Ω cm2) n Y0 × 10−6 (Sn cm2 Ω−1) Cdl (µF cm−2) IE (%)
Blank 5.162 51.28 0.8785 21.38 8.32
Inhibitor I 7.410 1310 0.6931 39.76 10.7 96.08
Inhibitor II 4.068 1169 0.7172 36.73 10.6 95.61

3.4. DFT calculations

3.4.1. DFT-optimized geometry

The geometries of com­pounds I and II were optimized using DFT and are illustrated in Fig. 13[link]. The calculated bond lengths and angles of the com­pounds are summarized in Table 7[link]. The optimized structures com­pare well with the experimental data. For I and II, it can be observed that the β and γ calculated bond lengths are smaller than the experimental values (∼0.017 and 0.008 Å, respectively), whereas the α bond is longer than the experimental value by ca 0.017 Å. On the other hand, the geometry parameters of I (α, β and γ) are slightly larger than those of II, which can be attributed to the R fragment. Furthermore, the superposition of the X-ray crystallographic structure and the optimized geometries of I and II are illustrated in Fig. 14[link]; the values of the r.m.s. errors are 0.229 and 0.381 Å for I and II, respectively. From this result, we can conclude that the calculated geometries (bond lengths and angles) are in ex­cel­lent agreement with the experimental data.

Table 7
Experimental (Exp.) and calculated (Calc.) bond lengths (Å) and angles (°) of I and II (the numbering scheme used is that shown in Figs. S1 and S2)

  I   II
  Exp. Calc.   Exp. Calc.
α: C10—N2 1.361 1.380 α: C23—N3 1.370 1.386
β: C10—N3 1.333 1.307 β: C23—N4 1.316 1.309
γ: C10—C11 1.467 1.471 γ: C10—C11 1.479 1.474
δ: C14—O1 1.360 1.352 δ: C27—O2 1.362 1.353
O1—C14—C20 114 115 O2—C27—C33 115 115
O1—C14—C13 125 124 O2—C27—C26 124 124
N2—C10—C11—C12 −37 −35 N4—C23—C24—C32 63 47
N3—C10—C11—C19 −37 −38 N3—C23—C24—C25 62 47
R.m.s. error (Å)   0.229 R.m.s. error (Å)   0.381
[Figure 13]
Figure 13
The optimized geometries of (a) I and (b) II.
[Figure 14]
Figure 14
Atom-by-atom superimposition of the X-ray structure (blue) on the calculated geometry (red) of (a) I and (b) II.
3.4.2. Inhibition mechanism

In order to study the reaction between the inhibitor mol­ecule and the bulk metal surface (Fe and Cu), the global and local reactivity indexes were calculated and are listed in Table 8[link] (see also Tables S1 and S2 in the supporting information).

Table 8
Global reactivity indexes of I and II

  μ η ω ΔNMi(I,II)/Cu ΔNMi(I,II)/Fe
I −3.800 6.157 1.172 −0.706 −0.877
II −3.730 6.200 1.122 −0.695 −0.865

The quantum chemical calculations show that II exhibits the highest values of chemical hardness, indicating greater stability com­pared to I, which has the smallest hardness value. Additionally, the potential chemistry value of II is larger, indicating that II has a greater tendency to donate electrons than I. Based on the global electrophilicity scale (Domingo et al., 2002[Domingo, L. R., Aurell, M. J., Pérez, P. & Contreras, R. (2002). Tetrahedron, 58, 4417-4423.]; Hannachi et al., 2021[Hannachi, D., El Houda Amrane, N., Merzoud, L. & Chermette, H. (2021). New J. Chem. 45, 13451-13462.]), inhibitor mol­ecules I and II can both be classified as moderate electrophiles (1.172 and 1.122 eV, respectively).

The electronegativity (χ) determines the direction of electron flow between the metal surface and the inhibitor com­pound until a balance in chemical potential is achieved. When an inhibitor mol­ecule is adsorbed onto a metal surface, such as iron or copper with electronegativities of 7 and 4.9 eV, respectively (Alaoui Mrani et al., 2021[Alaoui Mrani, S., Ech-chihbi, E., Arrousse, N., Rais, Z., El Hajjaji, F., El Abiad, C., Radi, S., Mabrouki, J., Taleb, M. & Jodeh, S. (2021). Arab. J. Sci. Eng. 46, 5691-5707.]; Michaelson, 1977[Michaelson, H. B. (1977). J. Appl. Phys. 48, 4729-4733.]; Lesar & Milošev, 2009[Lesar, A. & Milošev, I. (2009). Chem. Phys. Lett. 483, 198-203.]), electrons are expected to be transferred from the system with lower electronegativity to the system with higher electronegativity. This transfer of electrons is based on the difference in electronegativity between the metal surface and the inhibitor com­pound. The calculations indicate that I and II exhibit lower electronegativity (3.8 and 3.73 eV) com­pared to iron and copper, which implies that they are more prone to transferring electrons to the metal surface.

The number of transferred electrons [ΔNMi(I,II)/Metal] is an effective quantum chemical descriptor for studying metal-inhibitor inter­actions. The calculations reported in Table 8[link] indicate that the ΔNMi(I,II)/Metal value for M(I,II)/Fe is larger than for M(I,II)/Cu, which means there is an excellent inter­action between the corrosion inhibitor and the iron surface. Additionally, com­pound I displays a larger ΔNI/Metal value than II, indicating that I has a better potential for releasing electrons into the low-lying vacant d orbitals of the metal (Alaoui Mrani et al., 2021[Alaoui Mrani, S., Ech-chihbi, E., Arrousse, N., Rais, Z., El Hajjaji, F., El Abiad, C., Radi, S., Mabrouki, J., Taleb, M. & Jodeh, S. (2021). Arab. J. Sci. Eng. 46, 5691-5707.]) than II.

Tables S1 and S2 (see supporting information) display the Fukui function, dual descriptor and local philicity index values for com­pounds I and II following nucleophilic and electrophilic attacks.

Upon analyzing the results, it can be observed that the highest values of f+ are localized on atoms C11 and C14 for the mol­ecule of I, and on atoms C5 and C12 for the mol­ecule of II (Fig. S1). This suggests that these sites function as electron acceptors. On the other hand, high values of f are observed on atoms O1, N3, C4 and C6 for I, and on atoms O2, N4, C7 C24 and C29 for II (Fig. S2). This indicates that these sites are electron donors. The dual descriptor [Δf(r)] and the local philicity index show that the favourable nucleophilic site is C4 for I and C24 for II [Δf(r) = −0.050 and −0.155, respectively] (see Fig. 15[link]). It can be observed that II has a larger local reactivity descriptor value than I, which can be attributed to the R fragment present in II at atom N3. We conclude that the introduction of the R group (at the N3 atom) can effectively enhance the local reactivity descriptors.

[Figure 15]
Figure 15
Maps of the dual descriptor for (a) I and (b) II, plotted using 0.0054 a.u. isovalues.

Based on this research, it has been determined that I and II are able to form strong bonds with the surfaces of Fe and Cu, thereby providing effective protection against corrosion. The primary mode of inter­action between the corrosion inhibitors and the metal atoms is through atoms C13 and C24 of I and II, respectively.

4. Conclusions

In the present work, the new compounds 2-(4-meth­oxy­naphthalen-1-yl)-1H-benzo[d]imidazole (I) and 2-(4-meth­oxy­naphthalen-1-yl)-1-[(4-meth­oxy-naphthalen-1-yl)meth­yl]-1H-benzo[d]imidazole ethanol monosolvate (II) have been syn­thesized via condensation processes in good yield and characterized by IR, 1H and 13C NMR spectroscopy, and X-ray diffraction. The Hirshfeld surface analysis was carried out and indicated the dominance of the H⋯H (48.7 and 61.0%, respectively) in the both compounds, and C⋯H/H⋯C (33.0 and 25.2%, respectively). The results obtained by both methods show that compounds I and II could serve as an effective corrosion inhibitor of API 5L Class C steel in 0.5 M H2SO4. The geometric parameters calculated (bond lengths and angles) represent a good approximation to the experimental data. On the other hand, the corrosion inhibition potentials of both compounds were investigated using quan­tum chemical calculations with the M062X/6-311+g(d) basis set in the gas phase and in solvents. Furthermore, it was concluded that compound II has a larger local reactivity des­criptor value than I.

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: PLATON (Spek, 2020), SHELXL2018 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

2-(4-Methoxynaphthalen-1-yl)-1H-benzo[d]imidazole (I) top
Crystal data top
C18H14N2ODx = 1.302 Mg m3
Mr = 274.31Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 2195 reflections
a = 9.1548 (5) Åθ = 4.6–29.2°
b = 9.7791 (5) ŵ = 0.08 mm1
c = 15.6336 (9) ÅT = 293 K
V = 1399.61 (13) Å3Block, yellow
Z = 40.03 × 0.02 × 0.01 mm
F(000) = 576
Data collection top
Bruker APEXII CCD
diffractometer
2235 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Detector resolution: 18.4 pixels mm-1θmax = 26.0°, θmin = 4.6°
φ and ω scansh = 911
6139 measured reflectionsk = 1112
2442 independent reflectionsl = 1913
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0538P)2]
where P = (Fo2 + 2Fc2)/3
2442 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3131 (2)0.52301 (16)0.93251 (13)0.0412 (5)
N10.00899 (19)1.02574 (19)0.73581 (14)0.0263 (4)
H1N0.093 (3)0.973 (3)0.741 (2)0.050 (8)*
N20.21774 (19)1.10680 (18)0.75222 (15)0.0290 (5)
C10.0048 (2)1.1488 (2)0.69231 (17)0.0274 (5)
C20.1096 (3)1.2187 (3)0.64483 (18)0.0344 (6)
H20.2037211.1848130.6377850.041*
C30.0661 (3)1.3414 (3)0.60867 (18)0.0399 (7)
H30.1329101.3917820.5768590.048*
C40.0756 (3)1.3910 (3)0.6188 (2)0.0418 (7)
H40.1007241.4737680.5935330.050*
C50.1795 (3)1.3212 (3)0.66521 (19)0.0377 (6)
H50.2738291.3550790.6712480.045*
C60.1378 (3)1.1978 (2)0.70284 (17)0.0282 (5)
C70.1251 (2)1.0062 (2)0.77114 (15)0.0259 (5)
C80.1642 (2)0.8822 (2)0.81900 (17)0.0257 (5)
C90.1102 (3)0.7580 (2)0.79235 (17)0.0308 (6)
H90.0415590.7557250.7485420.037*
C100.1563 (3)0.6344 (2)0.82968 (19)0.0334 (6)
H100.1174880.5517450.8109300.040*
C110.2579 (3)0.6360 (2)0.89339 (18)0.0293 (5)
C120.4194 (3)0.7659 (2)0.99209 (17)0.0310 (6)
H120.4539900.6842941.0150050.037*
C130.4703 (3)0.8869 (2)1.02326 (18)0.0342 (6)
H130.5406530.8877811.0661640.041*
C140.4160 (3)1.0105 (2)0.99026 (17)0.0338 (6)
H140.4480951.0931531.0129010.041*
C150.3168 (2)1.0103 (2)0.92548 (17)0.0298 (5)
H150.2819601.0931910.9046600.036*
C160.2653 (2)0.8866 (2)0.88893 (16)0.0244 (5)
C170.3147 (2)0.7620 (2)0.92542 (18)0.0256 (5)
C180.2671 (4)0.3925 (2)0.9025 (2)0.0520 (8)
H18A0.3134640.3221920.9357240.078*
H18B0.2937680.3823760.8435020.078*
H18C0.1629840.3847950.9082140.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0609 (12)0.0211 (8)0.0418 (11)0.0018 (7)0.0097 (10)0.0030 (8)
N10.0226 (9)0.0279 (9)0.0285 (11)0.0011 (8)0.0020 (8)0.0001 (8)
N20.0263 (9)0.0268 (9)0.0340 (13)0.0002 (7)0.0044 (9)0.0052 (9)
C10.0277 (11)0.0296 (11)0.0248 (13)0.0061 (9)0.0022 (10)0.0036 (10)
C20.0301 (12)0.0432 (13)0.0300 (15)0.0089 (10)0.0019 (11)0.0009 (11)
C30.0453 (16)0.0432 (14)0.0311 (16)0.0166 (13)0.0039 (12)0.0072 (12)
C40.0537 (17)0.0349 (13)0.0369 (18)0.0055 (12)0.0015 (14)0.0140 (12)
C50.0376 (14)0.0342 (13)0.0413 (17)0.0012 (10)0.0025 (12)0.0084 (12)
C60.0298 (12)0.0285 (11)0.0263 (13)0.0041 (9)0.0009 (10)0.0020 (10)
C70.0260 (11)0.0255 (11)0.0262 (14)0.0018 (9)0.0026 (9)0.0014 (9)
C80.0237 (11)0.0255 (11)0.0279 (14)0.0003 (8)0.0018 (10)0.0024 (10)
C90.0273 (12)0.0304 (13)0.0346 (15)0.0025 (9)0.0044 (11)0.0006 (10)
C100.0380 (13)0.0240 (11)0.0383 (17)0.0052 (10)0.0004 (12)0.0014 (11)
C110.0374 (12)0.0226 (11)0.0280 (15)0.0001 (10)0.0031 (11)0.0047 (10)
C120.0347 (14)0.0308 (13)0.0276 (14)0.0031 (9)0.0004 (11)0.0059 (10)
C130.0376 (13)0.0395 (13)0.0256 (14)0.0037 (10)0.0064 (11)0.0025 (11)
C140.0439 (14)0.0285 (12)0.0288 (15)0.0078 (10)0.0038 (11)0.0024 (10)
C150.0359 (12)0.0232 (11)0.0302 (14)0.0008 (9)0.0010 (11)0.0037 (10)
C160.0246 (10)0.0239 (10)0.0247 (14)0.0007 (9)0.0020 (9)0.0021 (10)
C170.0277 (11)0.0244 (11)0.0248 (13)0.0015 (8)0.0056 (10)0.0018 (10)
C180.078 (2)0.0206 (12)0.058 (2)0.0041 (12)0.0144 (17)0.0026 (13)
Geometric parameters (Å, º) top
O1—C111.360 (3)C8—C161.433 (3)
O1—C181.424 (3)C9—C101.407 (3)
N1—C71.360 (3)C9—H90.9300
N1—C11.383 (3)C10—C111.363 (4)
N1—H1N0.93 (3)C10—H100.9300
N2—C71.332 (3)C11—C171.428 (3)
N2—C61.387 (3)C12—C131.363 (3)
C1—C21.393 (3)C12—C171.416 (4)
C1—C61.400 (3)C12—H120.9300
C2—C31.385 (4)C13—C141.405 (3)
C2—H20.9300C13—H130.9300
C3—C41.394 (4)C14—C151.360 (4)
C3—H30.9300C14—H140.9300
C4—C51.376 (4)C15—C161.419 (3)
C4—H40.9300C15—H150.9300
C5—C61.396 (3)C16—C171.419 (3)
C5—H50.9300C18—H18A0.9600
C7—C81.469 (3)C18—H18B0.9600
C8—C91.375 (3)C18—H18C0.9600
C11—O1—C18118.1 (2)C10—C9—H9119.2
C7—N1—C1107.27 (18)C11—C10—C9119.8 (2)
C7—N1—H1N129.1 (18)C11—C10—H10120.1
C1—N1—H1N123.5 (18)C9—C10—H10120.1
C7—N2—C6105.17 (18)O1—C11—C10124.9 (2)
N1—C1—C2132.1 (2)O1—C11—C17114.1 (2)
N1—C1—C6105.44 (19)C10—C11—C17121.0 (2)
C2—C1—C6122.5 (2)C13—C12—C17121.2 (2)
C3—C2—C1116.4 (2)C13—C12—H12119.4
C3—C2—H2121.8C17—C12—H12119.4
C1—C2—H2121.8C12—C13—C14119.7 (2)
C2—C3—C4121.5 (2)C12—C13—H13120.2
C2—C3—H3119.2C14—C13—H13120.2
C4—C3—H3119.2C15—C14—C13120.6 (2)
C5—C4—C3122.0 (2)C15—C14—H14119.7
C5—C4—H4119.0C13—C14—H14119.7
C3—C4—H4119.0C14—C15—C16121.5 (2)
C4—C5—C6117.5 (2)C14—C15—H15119.2
C4—C5—H5121.3C16—C15—H15119.2
C6—C5—H5121.3C17—C16—C15117.7 (2)
N2—C6—C5130.2 (2)C17—C16—C8119.1 (2)
N2—C6—C1109.7 (2)C15—C16—C8123.2 (2)
C5—C6—C1120.1 (2)C12—C17—C16119.2 (2)
N2—C7—N1112.37 (19)C12—C17—C11121.8 (2)
N2—C7—C8124.6 (2)C16—C17—C11118.9 (2)
N1—C7—C8122.87 (19)O1—C18—H18A109.5
C9—C8—C16119.3 (2)O1—C18—H18B109.5
C9—C8—C7119.1 (2)H18A—C18—H18B109.5
C16—C8—C7121.4 (2)O1—C18—H18C109.5
C8—C9—C10121.7 (2)H18A—C18—H18C109.5
C8—C9—H9119.2H18B—C18—H18C109.5
C7—N1—C1—C2179.9 (3)C8—C9—C10—C110.6 (4)
C7—N1—C1—C61.0 (2)C18—O1—C11—C103.1 (4)
N1—C1—C2—C3179.3 (2)C18—O1—C11—C17177.6 (2)
C6—C1—C2—C30.6 (4)C9—C10—C11—O1178.3 (2)
C1—C2—C3—C40.6 (4)C9—C10—C11—C172.5 (4)
C2—C3—C4—C50.1 (5)C17—C12—C13—C141.4 (4)
C3—C4—C5—C60.4 (4)C12—C13—C14—C152.3 (4)
C7—N2—C6—C5179.8 (3)C13—C14—C15—C160.2 (4)
C7—N2—C6—C10.3 (3)C14—C15—C16—C173.4 (3)
C4—C5—C6—N2179.9 (3)C14—C15—C16—C8178.1 (2)
C4—C5—C6—C10.4 (4)C9—C8—C16—C174.1 (3)
N1—C1—C6—N20.4 (3)C7—C8—C16—C17171.4 (2)
C2—C1—C6—N2179.5 (2)C9—C8—C16—C15174.4 (2)
N1—C1—C6—C5179.1 (2)C7—C8—C16—C1510.1 (3)
C2—C1—C6—C50.1 (4)C13—C12—C17—C161.8 (4)
C6—N2—C7—N11.0 (3)C13—C12—C17—C11178.6 (2)
C6—N2—C7—C8176.5 (2)C15—C16—C17—C124.1 (3)
C1—N1—C7—N21.3 (3)C8—C16—C17—C12177.3 (2)
C1—N1—C7—C8176.9 (2)C15—C16—C17—C11176.2 (2)
N2—C7—C8—C9138.3 (3)C8—C16—C17—C112.3 (3)
N1—C7—C8—C936.8 (3)O1—C11—C17—C120.1 (3)
N2—C7—C8—C1637.2 (4)C10—C11—C17—C12179.4 (3)
N1—C7—C8—C16147.7 (2)O1—C11—C17—C16179.7 (2)
C16—C8—C9—C102.7 (4)C10—C11—C17—C161.0 (4)
C7—C8—C9—C10172.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of ring N1/N2/C1/C6/C7.
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.93 (3)1.91 (3)2.829 (3)170 (2)
C14—H14···Cg2ii0.932.823.647 (3)148
Symmetry codes: (i) x1/2, y+2, z; (ii) x+1/2, y, z+1/2.
2-(4-Methoxynaphthalen-1-yl)-1-[(4-methoxynaphthalen-1-yl)methyl]-1H-benzo[d]imidazole ethanol monosolvate (II) top
Crystal data top
C30H24N2O2·C2H6OZ = 2
Mr = 490.58F(000) = 520
Triclinic, P1Dx = 1.257 Mg m3
a = 10.7065 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9434 (3) ÅCell parameters from 6273 reflections
c = 12.8256 (4) Åθ = 2.2–26.5°
α = 69.029 (1)°µ = 0.08 mm1
β = 82.871 (1)°T = 293 K
γ = 67.515 (1)°Block, yellow
V = 1296.37 (7) Å30.03 × 0.02 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.022
Radiation source: fine-focus sealed tubeθmax = 25.3°, θmin = 3.5°
φ and ω scansh = 1212
20872 measured reflectionsk = 1313
4611 independent reflectionsl = 1515
3587 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0966P)2 + 0.1721P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4611 reflectionsΔρmax = 0.31 e Å3
358 parametersΔρmin = 0.26 e Å3
5 restraintsExtinction correction: (SHELXL2018; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.79504 (13)0.57717 (13)0.55219 (12)0.0670 (4)
O20.09560 (13)0.72990 (14)0.82111 (14)0.0738 (4)
N10.44926 (13)0.19435 (13)0.84103 (11)0.0445 (3)
N20.54346 (14)0.08873 (15)0.71531 (12)0.0505 (4)
C10.40024 (15)0.08787 (16)0.86170 (14)0.0460 (4)
C20.31017 (18)0.0453 (2)0.94076 (16)0.0576 (5)
H20.2718520.0893170.9931960.069*
C30.2809 (2)0.0642 (2)0.93755 (18)0.0648 (5)
H30.2218220.0961760.9895670.078*
C40.33743 (19)0.1296 (2)0.85801 (19)0.0635 (5)
H40.3147030.2036000.8580440.076*
C50.42586 (18)0.08680 (19)0.77983 (18)0.0575 (5)
H50.4626980.1302450.7268290.069*
C60.45872 (15)0.02394 (16)0.78238 (14)0.0459 (4)
C70.53477 (15)0.18919 (16)0.75256 (14)0.0443 (4)
C80.60390 (16)0.29057 (17)0.70384 (14)0.0456 (4)
C90.52934 (17)0.43062 (18)0.65641 (16)0.0534 (4)
H90.4355370.4603800.6587140.064*
C100.58899 (18)0.53055 (18)0.60465 (16)0.0558 (5)
H100.5352600.6249560.5735060.067*
C110.72663 (18)0.48880 (18)0.60003 (15)0.0503 (4)
C120.95327 (18)0.2996 (2)0.65077 (16)0.0566 (5)
H120.9947300.3643120.6151930.068*
C131.03042 (18)0.1622 (2)0.70329 (17)0.0626 (5)
H131.1240850.1341500.7041580.075*
C140.96989 (18)0.0634 (2)0.75579 (17)0.0602 (5)
H141.0235580.0299670.7914740.072*
C150.83255 (17)0.10273 (18)0.75513 (15)0.0502 (4)
H150.7937200.0354930.7895120.060*
C160.74836 (16)0.24464 (17)0.70276 (13)0.0445 (4)
C170.81052 (16)0.34444 (17)0.65005 (14)0.0464 (4)
C180.7161 (2)0.7221 (2)0.4999 (2)0.0790 (6)
H18A0.6534870.7561510.5526230.118*
H18B0.6671310.7329540.4373660.118*
H18C0.7745560.7748470.4746090.118*
C190.41803 (17)0.28566 (18)0.90677 (15)0.0499 (4)
H19B0.4868050.3266470.8942560.060*
H19A0.4217980.2295130.9852590.060*
C200.28103 (16)0.40269 (16)0.88034 (14)0.0454 (4)
C210.19716 (18)0.42437 (18)0.79860 (15)0.0532 (4)
H210.2252530.3647420.7567520.064*
C220.06965 (18)0.53353 (19)0.77505 (17)0.0569 (5)
H220.0156270.5458880.7178850.068*
C230.02555 (17)0.62098 (17)0.83610 (16)0.0531 (5)
C240.0637 (2)0.6897 (2)0.99028 (17)0.0610 (5)
H240.0213230.7608200.9768740.073*
C250.1429 (2)0.6710 (2)1.07352 (18)0.0681 (6)
H250.1115300.7284561.1171650.082*
C260.2715 (2)0.5658 (2)1.09397 (17)0.0672 (6)
H260.3258910.5543751.1505150.081*
C270.3177 (2)0.4798 (2)1.03150 (15)0.0566 (5)
H270.4037200.4104971.0459270.068*
C280.23752 (17)0.49370 (16)0.94519 (14)0.0458 (4)
C290.10793 (17)0.60308 (16)0.92365 (14)0.0481 (4)
C300.1803 (2)0.7553 (2)0.7334 (2)0.0860 (7)
H30A0.2004920.6730260.7454160.129*
H30B0.1351120.7769470.6635450.129*
H30C0.2628030.8330160.7317970.129*
O30.6300 (2)0.1048 (3)0.48789 (18)0.1201 (7)
H3O0.6041690.1254040.5444260.180*
C31A0.7681 (4)0.0834 (5)0.4730 (3)0.1062 (11)0.85
H31A0.8102060.0114000.4389790.127*0.85
H31B0.8110800.0500810.5453580.127*0.85
C32A0.7892 (6)0.2084 (5)0.4047 (5)0.1359 (16)0.85
H32A0.7450660.2428970.3336050.204*0.85
H32B0.8843250.1886900.3940750.204*0.85
H32C0.7523450.2781950.4403480.204*0.85
C31B0.7211 (17)0.183 (2)0.450 (3)0.128 (10)0.15
H31C0.6977320.2498960.4885140.154*0.15
H31D0.7028790.2358190.3710340.154*0.15
C32B0.8732 (17)0.099 (3)0.465 (2)0.116 (8)0.15
H32D0.8890040.0077620.5197700.175*0.15
H32E0.9149820.1480180.4895950.175*0.15
H32F0.9110900.0898610.3951800.175*0.15
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0563 (8)0.0505 (7)0.0807 (9)0.0216 (6)0.0038 (7)0.0054 (6)
O20.0521 (8)0.0540 (8)0.1025 (11)0.0008 (6)0.0093 (8)0.0284 (7)
N10.0395 (7)0.0415 (7)0.0497 (8)0.0104 (6)0.0005 (6)0.0170 (6)
N20.0450 (8)0.0491 (8)0.0592 (9)0.0156 (6)0.0057 (6)0.0238 (7)
C10.0365 (8)0.0407 (8)0.0532 (9)0.0081 (7)0.0043 (7)0.0119 (7)
C20.0482 (10)0.0571 (11)0.0588 (11)0.0158 (8)0.0045 (8)0.0147 (9)
C30.0519 (10)0.0596 (11)0.0735 (13)0.0250 (9)0.0009 (9)0.0069 (10)
C40.0535 (10)0.0503 (10)0.0842 (14)0.0211 (8)0.0121 (10)0.0134 (10)
C50.0495 (10)0.0488 (10)0.0750 (12)0.0124 (8)0.0060 (9)0.0257 (9)
C60.0369 (8)0.0406 (8)0.0548 (10)0.0086 (6)0.0037 (7)0.0144 (7)
C70.0347 (8)0.0427 (8)0.0503 (9)0.0075 (6)0.0012 (7)0.0164 (7)
C80.0432 (8)0.0453 (9)0.0470 (9)0.0128 (7)0.0006 (7)0.0177 (7)
C90.0404 (9)0.0493 (10)0.0627 (11)0.0114 (7)0.0009 (8)0.0149 (8)
C100.0506 (10)0.0425 (9)0.0628 (11)0.0094 (7)0.0064 (8)0.0107 (8)
C110.0508 (10)0.0471 (9)0.0499 (10)0.0188 (8)0.0010 (8)0.0118 (8)
C120.0464 (9)0.0592 (11)0.0596 (11)0.0193 (8)0.0074 (8)0.0170 (9)
C130.0407 (9)0.0637 (12)0.0714 (13)0.0121 (8)0.0051 (9)0.0182 (10)
C140.0475 (10)0.0498 (10)0.0673 (12)0.0066 (8)0.0000 (9)0.0135 (9)
C150.0469 (9)0.0451 (9)0.0534 (10)0.0135 (7)0.0032 (8)0.0150 (8)
C160.0439 (9)0.0454 (9)0.0421 (9)0.0131 (7)0.0039 (7)0.0171 (7)
C170.0444 (9)0.0478 (9)0.0442 (9)0.0147 (7)0.0028 (7)0.0155 (7)
C180.0738 (14)0.0545 (12)0.0893 (16)0.0250 (10)0.0019 (12)0.0003 (11)
C190.0484 (9)0.0474 (9)0.0529 (10)0.0125 (7)0.0010 (8)0.0208 (8)
C200.0437 (9)0.0426 (8)0.0487 (9)0.0140 (7)0.0032 (7)0.0167 (7)
C210.0541 (10)0.0482 (9)0.0580 (10)0.0116 (8)0.0027 (8)0.0253 (8)
C220.0518 (10)0.0511 (10)0.0646 (11)0.0129 (8)0.0114 (9)0.0182 (9)
C230.0457 (9)0.0379 (8)0.0685 (11)0.0118 (7)0.0035 (8)0.0144 (8)
C240.0629 (11)0.0490 (10)0.0713 (13)0.0218 (9)0.0190 (10)0.0250 (9)
C250.0913 (16)0.0625 (12)0.0646 (12)0.0362 (12)0.0202 (11)0.0348 (10)
C260.0894 (15)0.0697 (13)0.0568 (11)0.0385 (12)0.0058 (10)0.0290 (10)
C270.0644 (11)0.0560 (10)0.0527 (10)0.0244 (9)0.0014 (9)0.0196 (8)
C280.0509 (9)0.0416 (8)0.0474 (9)0.0214 (7)0.0068 (7)0.0151 (7)
C290.0512 (9)0.0391 (8)0.0537 (10)0.0198 (7)0.0112 (8)0.0150 (7)
C300.0556 (12)0.0619 (13)0.120 (2)0.0045 (10)0.0196 (13)0.0195 (13)
O30.1062 (15)0.167 (2)0.0894 (14)0.0483 (15)0.0195 (11)0.0536 (14)
C31A0.103 (3)0.093 (3)0.104 (3)0.021 (2)0.028 (2)0.037 (2)
C32A0.147 (5)0.108 (3)0.139 (4)0.065 (3)0.018 (3)0.011 (3)
C31B0.105 (16)0.052 (11)0.22 (3)0.033 (11)0.069 (18)0.054 (15)
C32B0.054 (10)0.15 (2)0.121 (17)0.021 (12)0.029 (11)0.042 (15)
Geometric parameters (Å, º) top
O1—C111.362 (2)C18—H18C0.9600
O1—C181.426 (2)C19—C201.511 (2)
O2—C231.362 (2)C19—H19B0.9700
O2—C301.415 (3)C19—H19A0.9700
N1—C71.370 (2)C20—C211.362 (2)
N1—C11.384 (2)C20—C281.429 (2)
N1—C191.449 (2)C21—C221.407 (2)
N2—C71.316 (2)C21—H210.9300
N2—C61.388 (2)C22—C231.360 (3)
C1—C61.390 (2)C22—H220.9300
C1—C21.392 (3)C23—C291.426 (3)
C2—C31.364 (3)C24—C251.355 (3)
C2—H20.9300C24—C291.410 (3)
C3—C41.399 (3)C24—H240.9300
C3—H30.9300C25—C261.397 (3)
C4—C51.374 (3)C25—H250.9300
C4—H40.9300C26—C271.363 (3)
C5—C61.397 (2)C26—H260.9300
C5—H50.9300C27—C281.415 (2)
C7—C81.479 (2)C27—H270.9300
C8—C91.369 (2)C28—C291.422 (2)
C8—C161.432 (2)C30—H30A0.9600
C9—C101.398 (3)C30—H30B0.9600
C9—H90.9300C30—H30C0.9600
C10—C111.366 (3)O3—C31A1.405 (4)
C10—H100.9300O3—C31B1.460 (15)
C11—C171.431 (2)O3—H3O0.8200
C12—C131.364 (3)C31A—C32A1.421 (5)
C12—C171.415 (2)C31A—H31A0.9700
C12—H120.9300C31A—H31B0.9700
C13—C141.396 (3)C32A—H32A0.9600
C13—H130.9300C32A—H32B0.9600
C14—C151.365 (3)C32A—H32C0.9600
C14—H140.9300C31B—C32B1.528 (17)
C15—C161.417 (2)C31B—H31C0.9700
C15—H150.9300C31B—H31D0.9700
C16—C171.417 (2)C32B—H32D0.9600
C18—H18A0.9600C32B—H32E0.9600
C18—H18B0.9600C32B—H32F0.9600
C11—O1—C18116.99 (15)C20—C19—H19B108.8
C23—O2—C30117.04 (17)N1—C19—H19A108.8
C7—N1—C1106.56 (13)C20—C19—H19A108.8
C7—N1—C19128.74 (14)H19B—C19—H19A107.7
C1—N1—C19124.63 (14)C21—C20—C28118.77 (15)
C7—N2—C6105.45 (14)C21—C20—C19123.07 (15)
N1—C1—C6105.77 (14)C28—C20—C19118.15 (14)
N1—C1—C2131.48 (16)C20—C21—C22122.50 (16)
C6—C1—C2122.74 (16)C20—C21—H21118.7
C3—C2—C1116.72 (19)C22—C21—H21118.7
C3—C2—H2121.6C23—C22—C21119.84 (17)
C1—C2—H2121.6C23—C22—H22120.1
C2—C3—C4121.70 (19)C21—C22—H22120.1
C2—C3—H3119.1C22—C23—O2125.12 (18)
C4—C3—H3119.1C22—C23—C29120.45 (15)
C5—C4—C3121.35 (18)O2—C23—C29114.43 (16)
C5—C4—H4119.3C25—C24—C29121.13 (18)
C3—C4—H4119.3C25—C24—H24119.4
C4—C5—C6117.98 (19)C29—C24—H24119.4
C4—C5—H5121.0C24—C25—C26120.22 (18)
C6—C5—H5121.0C24—C25—H25119.9
N2—C6—C1109.68 (14)C26—C25—H25119.9
N2—C6—C5130.82 (16)C27—C26—C25120.4 (2)
C1—C6—C5119.50 (16)C27—C26—H26119.8
N2—C7—N1112.53 (14)C25—C26—H26119.8
N2—C7—C8125.10 (15)C26—C27—C28121.36 (18)
N1—C7—C8122.33 (14)C26—C27—H27119.3
C9—C8—C16119.00 (16)C28—C27—H27119.3
C9—C8—C7119.83 (15)C27—C28—C29117.73 (15)
C16—C8—C7121.16 (14)C27—C28—C20122.86 (16)
C8—C9—C10122.43 (16)C29—C28—C20119.41 (15)
C8—C9—H9118.8C24—C29—C28119.18 (17)
C10—C9—H9118.8C24—C29—C23121.80 (16)
C11—C10—C9119.65 (16)C28—C29—C23119.02 (15)
C11—C10—H10120.2O2—C30—H30A109.5
C9—C10—H10120.2O2—C30—H30B109.5
O1—C11—C10124.48 (16)H30A—C30—H30B109.5
O1—C11—C17114.74 (15)O2—C30—H30C109.5
C10—C11—C17120.76 (16)H30A—C30—H30C109.5
C13—C12—C17120.42 (17)H30B—C30—H30C109.5
C13—C12—H12119.8C31A—O3—H3O109.5
C17—C12—H12119.8O3—C31A—C32A112.0 (4)
C12—C13—C14120.54 (17)O3—C31A—H31A109.2
C12—C13—H13119.7C32A—C31A—H31A109.2
C14—C13—H13119.7O3—C31A—H31B109.2
C15—C14—C13120.51 (17)C32A—C31A—H31B109.2
C15—C14—H14119.7H31A—C31A—H31B107.9
C13—C14—H14119.7C31A—C32A—H32A109.5
C14—C15—C16120.89 (17)C31A—C32A—H32B109.5
C14—C15—H15119.6H32A—C32A—H32B109.5
C16—C15—H15119.6C31A—C32A—H32C109.5
C15—C16—C17118.26 (15)H32A—C32A—H32C109.5
C15—C16—C8122.42 (15)H32B—C32A—H32C109.5
C17—C16—C8119.30 (15)O3—C31B—C32B118.1 (18)
C12—C17—C16119.37 (15)O3—C31B—H31C107.8
C12—C17—C11121.78 (16)C32B—C31B—H31C107.8
C16—C17—C11118.83 (15)O3—C31B—H31D107.8
O1—C18—H18A109.5C32B—C31B—H31D107.8
O1—C18—H18B109.5H31C—C31B—H31D107.1
H18A—C18—H18B109.5C31B—C32B—H32D109.5
O1—C18—H18C109.5C31B—C32B—H32E109.5
H18A—C18—H18C109.5H32D—C32B—H32E109.5
H18B—C18—H18C109.5C31B—C32B—H32F109.5
N1—C19—C20113.88 (14)H32D—C32B—H32F109.5
N1—C19—H19B108.8H32E—C32B—H32F109.5
C7—N1—C1—C60.64 (16)C7—C8—C16—C17176.74 (15)
C19—N1—C1—C6177.79 (14)C13—C12—C17—C161.1 (3)
C7—N1—C1—C2179.66 (17)C13—C12—C17—C11177.17 (18)
C19—N1—C1—C23.2 (3)C15—C16—C17—C120.4 (2)
N1—C1—C2—C3178.97 (17)C8—C16—C17—C12178.80 (15)
C6—C1—C2—C30.1 (2)C15—C16—C17—C11177.99 (15)
C1—C2—C3—C40.6 (3)C8—C16—C17—C110.4 (2)
C2—C3—C4—C50.4 (3)O1—C11—C17—C121.2 (3)
C3—C4—C5—C60.4 (3)C10—C11—C17—C12177.09 (17)
C7—N2—C6—C10.65 (17)O1—C11—C17—C16179.51 (15)
C7—N2—C6—C5178.45 (18)C10—C11—C17—C161.2 (3)
N1—C1—C6—N20.80 (17)C7—N1—C19—C20104.57 (18)
C2—C1—C6—N2179.93 (15)C1—N1—C19—C2078.93 (19)
N1—C1—C6—C5178.41 (15)N1—C19—C20—C212.9 (2)
C2—C1—C6—C50.7 (2)N1—C19—C20—C28176.49 (14)
C4—C5—C6—N2179.98 (17)C28—C20—C21—C220.4 (3)
C4—C5—C6—C11.0 (2)C19—C20—C21—C22179.81 (17)
C6—N2—C7—N10.24 (17)C20—C21—C22—C230.9 (3)
C6—N2—C7—C8177.54 (15)C21—C22—C23—O2179.97 (17)
C1—N1—C7—N20.26 (17)C21—C22—C23—C290.2 (3)
C19—N1—C7—N2177.25 (15)C30—O2—C23—C221.5 (3)
C1—N1—C7—C8178.10 (14)C30—O2—C23—C29178.36 (17)
C19—N1—C7—C84.9 (2)C29—C24—C25—C260.8 (3)
N2—C7—C8—C9115.26 (19)C24—C25—C26—C270.9 (3)
N1—C7—C8—C962.3 (2)C25—C26—C27—C280.3 (3)
N2—C7—C8—C1663.2 (2)C26—C27—C28—C291.6 (3)
N1—C7—C8—C16119.24 (17)C26—C27—C28—C20178.04 (17)
C16—C8—C9—C101.4 (3)C21—C20—C28—C27179.76 (16)
C7—C8—C9—C10177.08 (16)C19—C20—C28—C270.8 (2)
C8—C9—C10—C110.3 (3)C21—C20—C28—C290.6 (2)
C18—O1—C11—C102.5 (3)C19—C20—C28—C29178.78 (14)
C18—O1—C11—C17179.27 (18)C25—C24—C29—C280.5 (3)
C9—C10—C11—O1179.70 (17)C25—C24—C29—C23179.72 (17)
C9—C10—C11—C171.6 (3)C27—C28—C29—C241.7 (2)
C17—C12—C13—C140.9 (3)C20—C28—C29—C24177.94 (15)
C12—C13—C14—C150.1 (3)C27—C28—C29—C23179.13 (15)
C13—C14—C15—C160.9 (3)C20—C28—C29—C231.2 (2)
C14—C15—C16—C170.6 (3)C22—C23—C29—C24178.34 (17)
C14—C15—C16—C8177.73 (17)O2—C23—C29—C241.8 (2)
C9—C8—C16—C15176.64 (16)C22—C23—C29—C280.8 (2)
C7—C8—C16—C154.9 (2)O2—C23—C29—C28179.01 (14)
C9—C8—C16—C171.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroid of rings N1/N2/C1/C6/C7, C1-C6, C8-C11/C16/C17 and C12-C17, respecively.
D—H···AD—HH···AD···AD—H···A
O3—H3O···N20.822.152.913 (3)156
C21—H21···Cg10.932.953.575 (2)126
C19—H19A···Cg2i0.972.853.600 (2)135
C26—H26···Cg3ii0.932.823.626 (2)146
C25—H25···Cg4ii0.932.663.528 (2)155
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+2.
Table 1. Selected IR frequencies (cm-1) for I and II and their assignments top
III
AssigmentFrequency (cm-1)Frequency (cm-1)
N—H3376
ν(C—H)aromatic32613251
(C—H)aliphatic29352937
δ(C—H)(CC)aromatic16141677
CN15801587
δ(C—H)15081507
ν(C—C)arolmatic14481490
ν(C aromatic)—O—C12431242
C—N10901089
Notes: ν islongation vibration and δ is deformation vibration.
Table 5. Polarization measurements for steel API5L grade C corrosion in the absence and presence of inhibitors at 6 × 10-5 mole/l mM concentration top
Ecorr(mV/ECS)βa(mV/dec)βc(mV/dec)Icorr(µA.cm-2)EI(%)
Blank-­465163.3266.2934-
Inhibitor I-50686.3128.515.598.34
Inhibitor II-47681.1175.216.598.23
Table 6. Impedance parameters for steel API5L grade B in 0.5 M H2SO4 solution in the absence and presence of inhibitor top
Cinh(mM)Rs (Ω.cm2)Rct (Ω.cm2)nY0.10-6 (Sn cm2 Ω-1)Cdl (µF cm-2)IE (%)
Blank5.16251.280.878521.388.32-
Inhibitor I7.41013100.693139.7610.796.08
Inhibitor II4.06811690.717236.7310.695.61
Experimental (Exp.) and calculated (Calc.) bond lengths (Å) and angles (°) of I and II. (The numbering scheme used is that shown in Figs. S1 and S2.) top
III
Exp.Calc.Exp.Calc.
α: C10-N2 (Å)1.3611.380α: C23-N3 (Å)1.3701.386
β: C10-N3 (Å)1.3331.307β: C23-N4 (Å)1.3161.309
γ: C10-C11 (Å)1.4671.471γ: C10-C11 (Å)1.4791.474
δ: C14-O1 (Å)1.3601.352δ: C27-O2 (Å)1.3621.353
O1-C14-C20 (°)114115O2-C27-C33 (°)115115
O1-C14-C13 (°)125124O2-C27-C26 (°)124124
N2-C10-C11-C12 (°)-37-35N4-C23-C24-C32 (°)6347
N3-C10-C11-C19 (°)-37-38N3-C23-C24-C25 (°)6247
RMS Error (Å)0.229RMS Error (Å)0.381
Global reactivity indexes of I and II top
µηωΔN Mi/CuΔN Mi/Fe
I-3.8006.1571.172-0.706-0.877
II-3.7306.2001.122-0.695-0.865
 

Acknowledgements

The authors acknowledge the University of Mentouri Bro­thers, Constantine 1, for constant support. HSE is grateful to the University of Neuchâtel for their support over the years. Funding for this research was provided by the Algerian Ministry of Higher Education and Scientific Research, and the Algerian Directorate for Scientific Research and Technological Development.

References

First citationAbbasi, M., Nemati-Kande, E. & Mohammadi, M. D. (2018). Comput. Theor. Chem. 1132, 1–11.  CrossRef CAS Google Scholar
First citationAbd El Rehim, S. S., Hassan, H. H. & Amin, M. A. (2004). Corros. Sci. 46, 5–25.  CrossRef CAS Google Scholar
First citationAhmed, R., Doğan, O. E., Ali, F., Ahmad, M., Ahmed, A., Dege, N. & Golenia, I. A. (2020). Acta Cryst. E76, 724–727.  CrossRef IUCr Journals Google Scholar
First citationAlaoui Mrani, S., Ech-chihbi, E., Arrousse, N., Rais, Z., El Hajjaji, F., El Abiad, C., Radi, S., Mabrouki, J., Taleb, M. & Jodeh, S. (2021). Arab. J. Sci. Eng. 46, 5691–5707.  Web of Science CrossRef CAS Google Scholar
First citationAntonijević, M. M., Milić, S. M. & Petrović, M. B. (2009). Corros. Sci. 51, 1228–1237.  Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChattaraj, P. K., Maiti, B. & Sarkar, U. (2003). J. Phys. Chem. A, 107, 4973–4975.  CrossRef CAS Google Scholar
First citationChauhan, D. S., Ansari, K. R., Sorour, A. A., Quraishi, M. A., Lgaz, H. & Salghi, R. (2018). Int. J. Biol. Macromol. 107, 1747–1757.  CrossRef CAS PubMed Google Scholar
First citationChen, X. M., Li, H. R., Feng, X. L., Wang, H. T. & Sun, X. H. (2022). ACS Omega, 7, 24942–24950.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChen, Y., Xing, W., Wang, L. & Chen, L. (2019). Materials, 12, 1821.  CrossRef PubMed Google Scholar
First citationChermette, H. (1999). J. Comput. Chem. 20, 129–154.  CrossRef CAS Google Scholar
First citationDomingo, L. R., Aurell, M. J., Pérez, P. & Contreras, R. (2002). Tetrahedron, 58, 4417–4423.  Web of Science CrossRef CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Teh, J. B., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, o465–o467.  CrossRef IUCr Journals Google Scholar
First citationFellahi, Z., Chenaf-Ait youcef, H., Hannachi, D., Djedouani, A., Ouksel, L., François, M., Fleutot, S. & Bourzami, R. (2021). J. Mol. Struct. 1244, 130955.  Web of Science CSD CrossRef Google Scholar
First citationFinšgar, M. & Jackson, J. (2014). Corros. Sci. 86, 17–41.  Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Revision B.01. Gaussian Inc., Wallingford, CT, USA. https://gaussian.com/Google Scholar
First citationGerengi, H., Ugras, H. I., Solomon, M. M., Umoren, S. A., Kurtay, M. & Atar, N. (2016). J. Adhes. Sci. Technol. 30, 2383–2403.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGutiérrez, E., Rodríguez, J. A., Cruz-Borbolla, J., Alvarado-Rodríguez, J. G. & Thangarasu, P. (2016). Corros. Sci. 108, 23–35.  Google Scholar
First citationHamadi, L., Mansouri, S., Oulmi, K. & Kareche, A. (2018). Egypt. J. Petrol. 27, 1157–1165.  CrossRef Google Scholar
First citationHannachi, D., El Houda Amrane, N., Merzoud, L. & Chermette, H. (2021). New J. Chem. 45, 13451–13462.  Web of Science CrossRef CAS Google Scholar
First citationHannachi, D., Ouddai, N., Arotçaréna, M. & Chermette, H. (2015). Mol. Phys. 113, 1541–1550.  Web of Science CrossRef CAS Google Scholar
First citationKhaled, K. F., Hamed, K., Abdel-Azim, N. & Abdelshafi, J. (2011). J. Solid State Electrochem. 15, 663–673.  CrossRef CAS Google Scholar
First citationKissi, M. M., Bouklah, B., Hammouti, B. & Benkaddour, M. (2006). Appl. Surf. Sci. 252, 4190–4197.  CrossRef CAS Google Scholar
First citationKumari, N., Kumari Paul, P., Gope, L. & Yadav, M. (2016). J. Adhes. Sci. Technol. 31, 1524–1544.  CrossRef Google Scholar
First citationLebrini, M. M., Lagrenée, H., Vezin, H., Traisnel, M. & Bentiss, F. (2007). Corros. Sci. 49, 2254–2269.  CrossRef CAS Google Scholar
First citationLesar, A. & Milošev, I. (2009). Chem. Phys. Lett. 483, 198–203.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarinescu, M. (2019). BMC Chem. 13, 136.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMeneses, L., Tiznado, W., Contreras, R. & Fuentealba, P. (2004). Chem. Phys. Lett. 383, 181–187.  CrossRef CAS Google Scholar
First citationMichaelson, H. B. (1977). J. Appl. Phys. 48, 4729–4733.  CrossRef CAS Web of Science Google Scholar
First citationMorell, C., Grand, A. & Toro-Labbé, A. (2005). J. Phys. Chem. A, 109, 205–212.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParr, R. G. & Pearson, R. G. (1983). J. Am. Chem. Soc. 105, 7512–7516.  CrossRef CAS Web of Science Google Scholar
First citationParr, R. G., Szentpály, L., v & Liu, S. (1999). J. Am. Chem. Soc. 121, 1922–1924.  Google Scholar
First citationParr, R. G. & Yang, W. (1984). J. Am. Chem. Soc. 106, 4049–4050.  CrossRef CAS Web of Science Google Scholar
First citationPetersson, G. A. & Al-Laham, M. A. (1991). J. Chem. Phys. 94, 6081–6090.  CrossRef CAS Web of Science Google Scholar
First citationPetersson, G. A., Bennett, A., Tensfeldt, T. G., Al-Laham, M. A., Shirley, W. A. & Mantzaris, J. (1988). J. Chem. Phys. 89, 2193–2218.  CrossRef CAS Web of Science Google Scholar
First citationRoy, R. K., Krishnamurti, S., Geerlings, P. & Pal, S. (1998). J. Phys. Chem. A, 102, 3746–3755.  Web of Science CrossRef CAS Google Scholar
First citationSaid, M. E., Bouchouit, M., Zaiter, A., Mezhoud, B., Bouacida, S., Chibani, A. & Bouraiou, A. (2023). Port. Electr. Acta, 41, 81–101.  CrossRef CAS Google Scholar
First citationSaid, M. E., Mezhoud, B., Bouraiou, A. & Chibani, A. (2016). Prot. Met. Phys. Chem. Surf. 52, 731–736.  Google Scholar
First citationSakki, B., Said, M. E., Mezhoud, B., Allal, H., Larbah, Y., Kherrouba, A., Chibani, A. & Bouraiou, A. (2021). J. Adhes. Sci. Technol. 36, 2245–2268.  CrossRef Google Scholar
First citationSastri, V. S. (2012). In Green Corrosion Inhibitors. Theory and Practice, 1st ed. Hoboken, NJ, USA: John Wiley & Sons.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, A., Ansari, K. R., Chauhan, D. S., Quraishi, M. A., Kaya, S., Yu, H. & Lin, Y. (2020). Corrosion Mitigation by Planar Benzimidazole Derivatives, in Corrosion, edited by A. Singh. London: IntechOpen Ltd.  Google Scholar
First citationSingh, P., Ebenso, E. E., Olasunkanmi, L. O., Obot, I. & Quraishi, M. (2016). J. Phys. Chem. C, 120, 3408–3419.  CrossRef CAS Google Scholar
First citationSolomon, M. M. & Umoren, S. A. (2016). J. Colloid Interface Sci. 462, 29–41.  CrossRef CAS PubMed Google Scholar
First citationSolomon, M. M., Umoren, S. A., Quraishi, M. A. & Salman, M. (2019). J. Colloid Interface Sci. 551, 47–60.  CrossRef CAS PubMed Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTownsend, L. B. & Wise, D. S. (1990). Parasitol. Today, 6, 107–112.  CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadav, D. K. & Quraishi, M. A. (2012). Ind. Eng. Chem. Res. 51, 14966–14979.  CrossRef CAS Google Scholar
First citationZhao, Y. & Truhlar, D. G. (2008). Theor. Chem. Acc. 120, 215–241.  Web of Science CrossRef CAS Google Scholar

This article is published by the International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds