research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Supra­molecular hy­dro­gen-bonded networks formed from copper(II) car­box­yl­ate dimers

crossmark logo

aUniversity of Melbourne, School of Chemistry, Grattan St, Parkville, 3052, Australia
*Correspondence e-mail: bfa@unimelb.edu.au, christopher.commons@unimelb.edu.au

Edited by D. R. Turner, University of Monash, Australia (Received 12 April 2024; accepted 15 May 2024; online 22 May 2024)

The well-known copper car­box­yl­ate dimer, with four car­box­yl­ate ligands ex­ten­ding outwards towards the corners of a square, has been employed to generate a series of crystalline com­pounds. In particular, this work centres on the use of the 4-hy­droxy­benzoate anion (Hhba) and its deprotonated phe­nol­ate form 4-oxidobenzoate (hba2−) to obtain complexes with the general formula [Cu2(Hhba)4–x(hba)xL2–y]x, where L is an axial coligand (including solvent mol­ecules), x = 0, 1 or 2, and y = 0 or 1. In some cases, short hy­dro­gen bonds result in complexes which may be represented as [Cu2(Hhba)2(H0.5hba)2L2]. The main focus of the investigation is on the formation of a variety of extended networks through hy­dro­gen bonding and, in some crystals, coordinate bonds when bridging coligands (L) are employed. Crystals of [Cu2(Hhba)4(di­ox­ane)2]·4(di­ox­ane) consist of the expected Cu dimer with the Hhba anions forming hy­dro­gen bonds to 1,4-di­ox­ane mol­ecules which block network formation. In the case of crystals of com­position [Et4N][Cu2(Hhba)2(H0.5hba)2(CH3OH)(H2O)]·2(di­ox­ane), Li[Cu2(Hhba)2(H0.5hba)2(H2O)2]·3(di­ox­ane)·4H2O and [Cu2(Hhba)2(H0.5hba)2(H0.5DABCO)2]·3CH3OH (DABCO is 1,4-di­aza­bicyclo­[2.2.2]octa­ne), square-grid hy­dro­gen-bonded networks are generated in which the complex serves as one type of 4-con­necting node, whilst a second 4-con­necting node is a hy­dro­gen-bonding motif assembled from four phenol/phenolate groups. Another two-dimensional (2D) network based upon a related square-grid structure is formed in the case of [Et4N]2[Cu2(Hhba)2(hba)2(di­ox­ane)2][Cu2(Hhba)4(di­ox­ane)(H2O)]·CH3OH. In [Cu2(Hhba)4(H2O)2]·2(Et4NNO3), a square-grid structure is again apparent, but, in this case, a pair of nitrate anions, along with four phenolic groups and a pair of water mol­ecules, combine to form a second type of 4-con­necting node. When 1,8-bis­(di­methyl­amino)­naphthalene (bdn, `proton sponge') is used as a base, another square-grid network is generated, i.e. [Hbdn]2[Cu2(Hhba)2(hba)2(H2O)2]·3(di­ox­ane)·H2O, but with only the copper dimer complex serving as a 4-con­necting node. Complex three-dimensional networks are formed in [Cu2(Hhba)4(O-bipy)]·H2O and [Cu2(Hhba)4(O-bipy)2]·2(di­ox­ane), where the potentially bridging 4,4′-bi­pyridine N,N′-dioxide (O-bipy) ligand is employed. Rare cases of mixed car­box­yl­ate copper dimer complexes were obtained in the cases of [Cu2(Hhba)3(OAc)(di­ox­ane)]·3.5(di­ox­ane) and [Cu2(Hhba)2(OAc)2(DABCO)2]·10(di­ox­ane), with each structure possessing a 2D network structure. The final com­pound re­por­ted is a simple hy­dro­gen-bonded chain of com­position (H0.5DABCO)(H1.5hba), formed from the reaction of H2hba and DABCO.

1. Introduction

In 1953, the structure of the copper(II) acetate tetra-μ-acetato-bis­[aqua­copper(II)], [Cu2(OAc)4(H2O)2], was re­por­ted and shown to consist of a pair of CuII centres bridged by four car­box­yl­ate groups (van Niekerk & Schoening, 1953[Niekerk, J. N. van & Schoening, F. R. L. (1953). Acta Cryst. 6, 227-232.]). This remarkable com­pound, possessing a beautiful blue colour and an elegant structure, is one of the classic coordination complexes and, as a result, is a common synthetic target in undergraduate chemistry laboratory programs. The four car­box­yl­ate ligands extend outwards towards the vertices of an approximate square, and thus the binuclear unit has been employed as a square-planar con­nector in both discrete and polymeric supra­molecular systems formed from bridging ligands possessing two or more car­box­yl­ate groups (Eddaoudi et al., 2001[Eddaoudi, M., Kim, J., Wachter, J. B., Chae, H. K., O'Keeffe, M. & Yaghi, O. M. (2001). J. Am. Chem. Soc. 123, 4368-4369.]; Chui et al., 1999[Chui, S. S. Y., Lo, S. M. F., Charmant, J. P., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148-1150.]; Lee et al., 2021[Lee, S., Jeong, H., Nam, D., Lah, M. S. & Choe, W. (2021). Chem. Soc. Rev. 50, 528-555.]). The binuclear tetra­car­box­yl­ate moiety has been commonly referred to as a `paddle wheel unit', with the Cu⋯Cu direction colinear with the `wheel axle' and the car­box­yl­ate groups serving as `paddles'.

Over the last decade our group has been inter­ested in coordination polymers formed from the combination of metal ions with the anions of 4-hy­droxy­benzoic acid (H2hba; Scheme 1[link]), resulting in a variety of polymeric networks with com­positions such as Zn(hba) and Co(hba) (White et al., 2015[White, K. F., Abrahams, B. F., Babarao, R., Dharma, A. D., Hudson, T. A., Maynard-Casely, H. E. & Robson, R. (2015). Chem. A Eur. J. 21, 18057-18061.]), and Cu3(hba)2(OH)2 (Abrahams et al., 2022[Abrahams, B. F., Commons, C. J., Dharma, A. D., Hudson, T. A., Robson, R., Sanchez Arlt, R. W., Stewart, T. C. & White, K. F. (2022). CrystEngComm, 24, 1924-1933.]), which formed as solvates. Whilst these networks contain the hba2− ligand in the presence of transition-metal ions, the reactions with Group 1 and 2 metal ions often failed to remove the phenolic proton of H2hba, even when the metal hydroxide was employed. These reactions commonly resulted in only the Hhba monoanion being formed (Abrahams et al., 2021[Abrahams, B. F., Commons, C. J., Hudson, T. A., Sanchez Arlt, R., White, K. F., Chang, M., Jackowski, J. J., Lee, M., Lee, S. X., Liu, H. D., Mei, B. M., Meng, J. E., Poon, L., Xu, X. & Yu, Z. (2021). Acta Cryst. C77, 340-353.]). In some instances, the ligand formed a strong hy­dro­gen bond with an adjacent ligand to create a dimeric unit with a 1− charge, i.e. (H1.5hba)2. In this unit, the O atoms involved are closely separated (approximately 2.45 Å), with the H atom between the two halves of the dimer either at the mid-point of the two O atoms or disordered over two closely separated positions.

[Scheme 1]

The observation that the phenolic protons were retained in the generation of hy­dro­gen-bonded networks prompted an investigation into whether the binuclear CuII dimer unit, combined with 4-hy­droxy­benzoic acid in either its monoanionic or dianionic form, was able to serve as a square-planar hy­dro­gen-bonding unit in extended structures. Within such structures, negatively charged phenolate groups could serve as hy­dro­gen-bond acceptors, whilst phenolic groups could serve as both acceptors and donors. This current work describes a series of 11 com­pounds (111) involving Hhba/hba2− ligands in which the geometry of the Cu dimer leads to the generation of a variety of hy­dro­gen-bonded complexes and networks. The structure of a 1:1 cocrystal (12) formed from the combination of H2hba and DABCO (DABCO is 1,4-di­aza­bicyclo­[2.2.2]octa­ne) is also re­por­ted. Compound 12 serves as a convenient starting material for the generation of com­pound 4.

2. Experimental

2.1. Synthesis and crystallization

111 are com­pounds of copper. Compound 12 is a cocrystal of H2hba and DABCO, denoted (H0.5DABCO)(H1.5hba), which was used in the synthesis of 4.

2.1.1. [Cu2(Hhba)4(di­ox­ane)2]·4(di­ox­ane), 1

Cu(OAc)2·H2O (0.40 g, 2.0 mmol) and H2hba (0.55 g, 4.0 mmol) were dissolved in 1,4-di­ox­ane (40 ml). The solution was heated, with stirring, for 2.5 h at approximately 80 °C. The solvent was allowed to evaporate slowly and blue crystals separated from the solution after several days.

2.1.2. [NEt4][Cu2(Hhba)2(H0.5hba)2(CH3OH)(H2O)]·2(di­ox­ane), 2

Cu(OAc)2·H2O (0.10 g, 0.50 mmol) and H2hba (0.28 g, 2.0 mmol) were dissolved in 1,4-di­ox­ane (10 ml). The solution was heated, with stirring, for 1.5 h at approximately 80 °C. Methanol (10 ml) and water (1 ml) were added, fol­lowed by the dropwise addition, with stirring, of a 25 wt% solution of Et4NOH in water (1.3 ml). The solvent was allowed to evaporate slowly and blue crystals separated from solution after several days.

2.1.3. Li[Cu2(Hhba)2(H0.5hba)2(H2O)2]·3(di­ox­ane)·4H2O, 3

Cu(OAc)2·H2O (0.40 g, 2.0 mmol) and H2hba (0.55 g, 4.0 mmol) were dissolved in 1,4-di­ox­ane (30 ml). The solution was heated, with stirring, for 2.5 h at approximately 80 °C.

To a 2 ml sample of this solution was added LiOH·H2O (0.011 g, 0.27 mmol) and me­tha­nol (1 ml). The solvent was allowed to evaporate slowly and a mixture of dark-green crystals of 3 and pale-green crystals separated from the solution after several days. The pale-green crystals were shown by X-ray diffraction to be the mononuclear mol­ecular complex [Cu(Hhba)2(H2O)3]·H2O. The structure of this complex has been re­­por­ted previously [Cambridge Structural Database (CSD) refcodes BAPHEF (Shnulin et al., 1981[Shnulin, A. N., Nadzhafov, G. N. & Mamedov, Kh. S. (1981). Koord. Khim., 7, 1544.]) and ICUJUN (Liu & Li, 2007[Liu, X. & Li, C. (2007). Yingyong Huaxue, 24, 973.]); CSD Version 5.45, March 2024 release; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]].

2.1.4. [Cu2(Hhba)2(H0.5hba)2(H0.5DABCO)2]·3CH3OH, 4

Cu(OAc)2·H2O (0.016 g, 0.080 mmol) and (H0.5DABCO)(H1.5hba) (0.46 g, 1.3 mmol) were dissolved in CH3OH (12 ml). The solvent was allowed to evaporate slowly and dark-green crystals formed after one day. [The synthesis of (H0.5DABCO)(H1.5hba), 12, is described below.]

2.1.5. [Et4N]2[Cu2(Hhba)2(hba)2(di­ox­ane)2][Cu2(Hhba)4(di­ox­ane)(H2O)]·CH3OH, 5

Cu(OAc)2·H2O (0.040 g, 0.20 mmol) and H2hba (0.055 g, 0.040 mmol) were dissolved in 1,4-di­ox­ane (10 ml). The solution was heated, with stirring, for 4 h at approximately 80 °C and me­tha­nol (10 ml) was added. A few drops of a 25 wt% solution of Et4NOH in water were added slowly with stirring until the precipitate that formed upon addition of each drop only just dissolved. Solvent was allowed to evaporate slowly and dark-blue crystals separated from solution after several days.

2.1.6. [Cu2(Hhba)4(H2O)2]·2Et4N(NO3), 6

H2hba (0.55 g, 4.0 mmol) was added to a 25 wt% solution of Et4NOH in water (8.0 ml) and heated, with stirring, at approximately 80 °C for 30 min. Water was evaporated from the solution and the resulting white solid dried by vacuum sublimation. A solution of the white solid (0.10 g) in me­tha­nol (2 ml) was added to a solution of Cu(NO3)2·3H2O (0.10 g, 0.41 mmol) in me­tha­nol (2 ml). A yellow–green precipitate formed immediately which redissolved with stirring. The solvent was allowed to evaporate slowly and blue crystals separated from the solution after several days.

2.1.7. [Hbdn]2[Cu2(Hhba)2(hba)2(H2O)2]·3(di­ox­ane)·H2O, 7

Cu(OAc)2·H2O (0.10 g, 0.50 mmol) and H2hba (0.14 g, 1.0 mmol) were added to 1,4-di­ox­ane (10 ml). The solution was heated, with stirring, at approximately 70 °C for 10 min. 1,8-Bis(di­methyl­amino)­naphthalene (bdn, `proton sponge'; 0.070 g, 0.33 mmol) and aceto­nitrile (2 ml) were added, and the mixture heated for a further 30 min. The solvent was allowed to evaporate slowly and green crystals separated from solution after several days.

2.1.8. [Cu2(Hhba)4(O-bipy)]·H2O, 8

Cu(OAc)2·H2O (0.20 g, 1.0 mmol), 4,4′-bi­pyridine N,N′-dioxide (O-bipy; 0.10 g, 0.53 mmol) and H2hba (0.20 g, 1.4 mmol) were added to water (10 ml) and xylene (1 ml). The mixture was heated at 110 °C in a Teflon-lined autoclave for 5 h to yield dark-green crystals.

2.1.9. [Cu2(Hhba)4(O-bipy)2]·2(di­ox­ane), 9

Cu(OAc)2·H2O (0.10 g, 0.50 mmol), O-bipy (0.050 g, 0.27 mmol) and H2hba (0.050 g, 0.36 mmol) were added to 1,4-di­ox­ane (10 ml). The mixture was heated at 110 °C in a Teflon-lined auto­clave for 1 d to yield dark-green crystals.

2.1.10. [Cu2(Hhba)3(OAc)(di­ox­ane)]·3.5di­ox­ane, 10

Cu(OAc)2·H2O (0.40 g, 2.0 mmol) and H2hba (0.55 g, 4.0 mmol) were dissolved in 1,4-di­ox­ane (40 ml). The solution was heated, with stirring, for 4 h at approximately 80 °C. The sol­vent was allowed to evaporate slowly and dark-blue crystals separated from solution after several days.

2.1.11. [Cu2(Hhba)2(OAc)2(DABCO)2]·10(di­ox­ane), 11

Cu(OAc)2·H2O (0.10 g, 0.50 mmol), H2hba (0.069 g, 0.50 mmol) and 1,4-di­aza­bicyclo­[2.2.2]octane (DABCO; 0.061 g, 0.54 mmol) were added to 1,4-di­ox­ane (50 ml). A 0.01 M NaOH solution (50 µl) was then added. The mixture was heated at 115 °C in a Teflon-lined autoclave for 2 d to yield small green crystals.

2.1.12. (H0.5DABCO)(H1.5hba), 12

Separate 5 ml me­tha­nol solutions of H2hba (1.34 g, 10 mmol) and DABCO (2.75 g, 25 mmol) were prepared. The two solutions were heated to approximately 40 °C, mixed and then heated for a further 15 min. Acetone (20 ml) was added and the solution allowed to evaporate. Colourless crystals formed after approximately 1 h.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The H atoms of water mol­ecules, phenolic groups and carb­oxy­lic acid groups were commonly located in difference Fourier maps and were generally refined with O—H distances restrained to 0.85 Å and Uiso(H) values of 1.5Ueq(O).

Table 1
Experimental details

Data for com­pounds 4 and 5 were collected at the Australian Synchrotron (beamlines MX1 and MX2, respectively). An Oxford Diffraction Supernova diffractometer was used for com­pounds 8 and 12. Other diffraction data were measured using a Rigaku XtalLAB Synergy S (Dualflex, HyPix) diffractometer. Cu Kα1 radiation was employed on the laboratory-based diffractometers. Absorption corrections on the synchrotron data employed the multi-scan method using XDS (Kabsch, 2010[Kabsch, W. (2010). Acta Cryst. D66, 125-132.]). The multi-scan method was also used for diffractometer data employing CrysAlis PRO (Rigaku OD, 2018[Palmer, D. (2020). CrystalMaker. CrystalMaker Software, Bicester, England. http://crystalmaker.com/.]). Data were collected at 100 K, except for 8 and 12 (130 K). H atoms were treated by a mixture of independent and constrained refinement.

  1 2 3 4
Crystal data
Chemical formula [Cu2(C7H5O3)4(C4H8O2)2]·4C4H8O2 (C8H20N)[Cu2(C7H5O3)2(C7H4.5O3)2(CH4O)(H2O)]·2C4H8O2 [Li(C4H8O2)(H2O)3][Cu2(C7H5O3)2(C7H4.5O3)2(H2O)2]·2C4H8O2·H2O [Cu2(C7H5O3)2(C7H4.5O3)2(C6H12.5N2)2]·3CH4O
Mr 1204.14 1031.02 1047.81 995.99
Crystal system, space group Orthorhombic, Pccn Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
a, b, c (Å) 27.7701 (8), 21.2278 (4), 9.3888 (1) 10.1659 (4), 10.7383 (6), 12.9878 (4) 9.7711 (8), 10.1924 (6), 12.5863 (7) 8.8860 (18), 10.702 (2), 12.360 (3)
α, β, γ (°) 90, 90, 90 76.132 (4), 69.646 (3), 75.304 (4) 73.615 (5), 79.528 (6), 83.412 (6) 73.13 (3), 73.07 (3), 81.68 (3)
V3) 5534.7 (2) 1267.74 (10) 1179.86 (15) 1073.8 (4)
Z 4 1 1 1
μ (mm−1) 1.66 1.63 1.85 1.07
Crystal size (mm) 0.14 × 0.13 × 0.05 0.17 × 0.12 × 0.05 0.14 × 0.07 × 0.03 0.18 × 0.11 × 0.07
 
Data collection
Tmin, Tmax 0.567, 1.000 0.885, 1.000 0.610, 1.000 0.321, 0.432
No. of measured, independent and observed [I > 2σ(I)] reflections 18728, 5586, 4112 17988, 5262, 4672 10093, 4145, 3048 15021, 3849, 2994
Rint 0.049 0.047 0.070 0.061
(sin θ/λ)max−1) 0.634 0.634 0.602 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.187, 1.04 0.068, 0.200, 1.06 0.089, 0.261, 1.09 0.089, 0.263, 1.05
No. of reflections 5586 5262 4145 3849
No. of parameters 354 459 338 325
No. of restraints 2 419 42 364
Δρmax, Δρmin (e Å−3) 0.47, −0.48 0.73, −1.00 1.21, −1.32 1.14, −0.76
  5 6 7 8
Crystal data
Chemical formula (C8H20N)[Cu2(C7H4O3)2(C7H5O3)2(C4H8O2)2][Cu2(C7H5O3)4(C4H8O2)(H2O)]·CH4O (C8H20N)2[Cu2(C7H5O3)4(H2O)2](NO3)2 (C14H19N2)2[Cu2(C7H5O3)2(C7H4O3)2(H2O)2]·3(C4H8O2)·H2O [Cu2(C7H5O3)4(C10H8N2O2)]·H2O
Mr 1923.89 1096.07 1420.47 881.72
Crystal system, space group Orthorhombic, Pnma Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, C2/c
a, b, c (Å) 12.833 (3), 54.548 (11), 12.119 (2) 10.4964 (3), 10.6595 (2), 12.3226 (3) 10.2155 (2), 12.0897 (3), 15.7111 (4) 11.9851 (8), 17.7472 (11), 17.1294 (10)
α, β, γ (°) 90, 90, 90 97.271 (2), 101.042 (2), 108.130 (2) 69.581 (3), 75.988 (2), 79.651 (2) 90, 92.637 (5), 90
V3) 8483 (3) 1260.15 (6) 1754.64 (8) 3639.6 (4)
Z 4 1 1 4
μ (mm−1) 1.08 1.72 1.38 2.12
Crystal size (mm) 0.13 × 0.09 × 0.06 0.16 × 0.13 × 0.09 0.19 × 0.16 × 0.12 0.32 × 0.06 × 0.05
 
Data collection
Tmin, Tmax 0.321, 0.432 0.720, 1.000 0.890, 1.000 0.898, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 151309, 13753, 11493 14549, 5136, 4648 21601, 6618, 5772 6868, 3663, 3386
Rint 0.054 0.048 0.036 0.024
(sin θ/λ)max−1) 0.753 0.634 0.610 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.148, 1.02 0.038, 0.101, 1.08 0.064, 0.189, 1.05 0.034, 0.098, 1.05
No. of reflections 13753 5136 6618 3663
No. of parameters 585 408 361 263
No. of restraints 67 263 3 2
Δρmax, Δρmin (e Å−3) 1.42, −0.84 0.47, −0.54 1.05, −0.62 0.36, −0.57
  9 10 11 12
Crystal data
Chemical formula [Cu2(C7H5O3)4(C10H8N2O2)2]·2C4H8O2 [Cu2(C7H5O3)3(C2H3O2)(C4H8O2)]·3.5C4H8O2 [Cu2(C7H5O3)2(C2H3O2)2(C6H12N2)2]·10C4H8O2 C6H13N2+·C7H5O3
Mr 1228.09 993.92 1624.77 250.29
Crystal system, space group Orthorhombic, Pbca Monoclinic, I2/a Monoclinic, Pc Monoclinic, P21/n
a, b, c (Å) 17.5993 (3), 16.4583 (2), 19.7389 (2) 19.4801 (2), 13.0774 (2), 34.5443 (5) 9.7404 (3), 20.3001 (4), 22.9088 (7) 15.3994 (5), 10.6592 (3), 16.9261 (6)
α, β, γ (°) 90, 90, 90 90, 97.702 (1), 90 90, 118.494 (4), 90 90, 110.424 (4), 90
V3) 5717.46 (13) 8720.7 (2) 3981.1 (2) 2603.67 (15)
Z 4 8 2 8
μ (mm−1) 1.59 1.90 1.36 0.75
Crystal size (mm) 0.09 × 0.07 × 0.05 0.26 × 0.09 × 0.06 0.34 × 0.25 × 0.14 0.22 × 0.16 × 0.13
 
Data collection
Tmin, Tmax 0.344, 1.000 0.764, 1.000 0.533, 1.000 0.952, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23256, 5876, 4731 37963, 9032, 6906 27595, 12037, 9752 11079, 5386, 3805
Rint 0.056 0.071 0.040 0.039
(sin θ/λ)max−1) 0.634 0.635 0.635 0.632
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.129, 1.06 0.065, 0.191, 1.09 0.098, 0.287, 1.21 0.044, 0.120, 1.01
No. of reflections 5876 9032 12037 5386
Δρmax, Δρmin (e Å−3) 0.59, −0.68 1.12, −1.24 1.38, −0.70 0.19, −0.24
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.46 (6)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015, 2018, 2021, 2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.], 2018[Rigaku OD (2015, 2018, 2021, 2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.], 2021[Rigaku OD (2015, 2018, 2021, 2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.], 2023[Rigaku OD (2015, 2018, 2021, 2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), XDS (Kabsch, 2010[Kabsch, W. (2010). Acta Cryst. D66, 125-132.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

In 2, H atoms were involved in short hy­dro­gen bonds (O⋯O distances less than 2.45 Å) between the symmetry-related O atoms of phenolate groups, and single peaks were observed in difference Fourier maps midway between the atoms. These peaks were assigned as H atoms and refined independently. Short hy­dro­gen bonds were also present in 3 and 4 between the symmetry-related O atoms of phenol groups; however, single peaks midway between the O atoms were not observed. In these cases, H atoms were located on both O atoms with 0.5 occupancies and O—H distances restrained to 0.85 Å.

The H2hba and DABCO mol­ecules are closely aligned in 12 (N⋯O distances of approximately 2.52 Å) and single peaks were observed in difference Fourier maps almost midway between the N and O atoms. These peaks were assigned as H atoms and refined independently.

Other H atoms were placed in calculated positions and refined as riding atoms, with Uiso(H) = 1.2Ueq(C) for methyl­ene and aromatic C atoms, Uiso(H) = 1.5Ueq(C) for methyl C atoms, and with C—H = 0.95 Å for aromatic groups, 0.99 Å for methyl­ene group and 0.98 Å for methyl groups. The H atoms of two disordered water mol­ecules (containing O11 and O13) were not modelled in 3. Details of the refinements can be found in the embedded CIF files.

The mask process within OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) was employed in the structure refinements for 4, 7 and 10, which represent structures for which not all solvent mol­ecules could be satisfactorily modelled.

3. Results and discussion

Labelled structures of com­pounds 112 showing displacement ellipsoids for non-H atoms are presented in Figs. 1[link] and 2[link].

[Figure 1]
Figure 1
The structures of com­pounds 16, showing the copper dimer units and the atom-labelling schemes. For clarity, the labels of the C and H atoms are not shown. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary size. The red dotted lines represent hy­dro­gen-bonding inter­actions. In 2, only one configuration of the disordered di­ox­ane mol­ecules is shown, and in 4, only one configuration of the DABCO mol­ecules is shown.
[Figure 2]
Figure 2
The structures of com­pounds 711, showing the copper dimer units and the atom-labelling schemes. The structure of the cocrystal formed from the combination of H2hba and DABCO (12) is also shown. For clarity, the labels of the C and H atoms are not shown. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary size. The red dotted lines represent hy­dro­gen-bonding inter­actions. In 9, only one configuration of the disordered di­ox­ane mol­ecules is shown, and in 11, only one configuration of the DABCO mol­ecules is shown.

Our general strategy towards the synthesis of hy­dro­gen-bonded copper(II) complexes incorporating Hhba anions involves the addition of H2hba to Cu2(OAc)4·2H2O. In this reaction, the acetate anion can serve as the base for H2hba. The combination of Cu2(OAc)4·2H2O with H2hba in a 1:4 ratio in 1,4-di­ox­ane (di­ox­ane) yields a com­pound of com­position [Cu2(Hhba)4(di­ox­ane)2]·4(di­ox­ane) (1). As anti­ci­pated, the dimeric copper car­box­yl­ate complex is formed, as indicated in Fig. 3[link], with the Hhba units ex­ten­ding towards the vertices of an approximate square. Each phenolic group of the coordinated Hhba serves as a proton donor to a di­ox­ane mol­ecule. In addition, a di­ox­ane mol­ecule is coordinated to opposing axial sites on each of the symmetry-related CuII centres.

[Figure 3]
Figure 3
The structure of [Cu2(Hhba)4(di­ox­ane)2]·4(di­ox­ane) (1), showing the links to two coordinated di­ox­ane mol­ecules and hy­dro­gen-bond inter­actions with four non-coordinated di­ox­ane mol­ecules. Colour code for this and later figures, as applicable: Cu dark blue, C black, O red, N and Li pale blue, and H pale pink. Hydrogen bonds are indicated by black and white striped con­nections. For clarity, H atoms not involved in hy­dro­gen bonding have been omitted in this and most of the following figures.

The com­pound [NEt4][Cu2(Hhba)2(H0.5hba)2(CH3OH)(H2O)]·2(di­ox­ane) (2) is formed by the combination of Cu2(OAc)4(H2O)2 and H2hba in di­ox­ane, followed by the addition of NEt4OH in an aqueous me­tha­nol solution. It was anti­cipated that the addition of the base (NEt4OH) would serve to generate at least some hba2− anions. The Cu dimeric complex present in 1 is also evident in 2, however, with disordered water and me­tha­nol mol­ecules occupying the axial sites in place of the di­ox­ane mol­ecules. A centre of inversion lies between the two CuII centres. The complex has formally lost one phenolic H atom, resulting in the formation of the anionic complex [Cu2(Hhba)2(H0.5hba)2(CH3OH)(H2O)]. The four organic groups extend outwards towards the vertices of an approximate square and thus the complex may be con­sidered as a 4-con­necting node. Hydrogen bonding be­tween phenolic and phenolate groups results in the generation of a second 4-con­necting node within a two-dimensional (2D) network. As indicated in Fig. 4[link](a), the second type of 4-con­necting node consists of three H atoms that bind four O atoms in a zigzag arrangement. The two central O atoms are separated by a H atom, which was refined to a position midway between the two symmetry-related O atoms. The O⋯H⋯O separation of 2.446 (5) Å is indicative of a strong inter­action, and the dimer unit formed by this inter­action may be represented as (H0.5hba)23−. Inter­estingly, the O⋯O separation between O atoms is similar to that seen in (H1.5hba)2 (Abrahams et al., 2021[Abrahams, B. F., Commons, C. J., Hudson, T. A., Sanchez Arlt, R., White, K. F., Chang, M., Jackowski, J. J., Lee, M., Lee, S. X., Liu, H. D., Mei, B. M., Meng, J. E., Poon, L., Xu, X. & Yu, Z. (2021). Acta Cryst. C77, 340-353.]). Phenolic groups above and below the central pair of O atoms form additional hy­dro­gen bonds which are a little longer [O—H⋯O = 2.601 (4) Å], resulting in a short hy­dro­gen-bonded planar zigzag chain (O—H⋯O⋯H⋯O⋯H—O).

[Figure 4]
Figure 4
The structure of [NEt4][Cu2(Hhba)2(H0.5hba)2(CH3OH)(H2O)]·2(di­ox­ane) (2), showing (a) the hy­dro­gen-bonded 4-con­nected node, (b) the 4,4-network with the di­ox­ane mol­ecules and NEt4+ ions in the square cavities (only one of the two orientations of each tetra­ethyl­ammonium ion is shown), and (c) the inter­sheet hy­dro­gen-bond inter­actions involving the coordinated water/me­tha­nol mol­ecules which extend into sheets above and below.

An anionic 2D 4,4-network (square-grid network) is generated by linking the [Cu2(Hhba)2(H0.5hba)2(CH3OH)(H2O)] complexes through hy­dro­gen bonds involving the phenolic/phenolate groups [Fig. 4[link](b)]. Two types of square-shaped cavities are formed within the network, with orientationally disordered tetra­ethyl­ammonium counter-ions occupying the larger cavities. Disordered di­ox­ane mol­ecules, which were crystallographically modelled with partial occupancies, occupy the slightly smaller square cavities and space between networks.

The 2D square-grid layers described above form hy­dro­gen bonds with adjacent parallel layers through the coordinated water/me­tha­nol mol­ecules. The coordinated mol­ecules serve as hy­dro­gen-bond donors, bonding to a terminus of the hy­dro­gen-bonded O—H⋯O⋯H⋯O⋯H—O chain. In the case of the coordinated water mol­ecule, a hy­dro­gen bond extends to a di­ox­ane mol­ecule located in one of the small square cavities of an adjacent sheet, as indicated in Fig. 4[link](c).

Crystals of Li[Cu2(Hhba)2(H0.5hba)2(H2O)2]·3(di­ox­ane)·4H2O (3) are generated using LiOH as a base. A similar 4,4-network [Fig. 5[link](a)] to that found in 2 is formed. The binuclear unit is once again located on a centre of inversion and thus the asymmetric unit within the anionic network is very similar to that of com­pound 2. As with 2, there are two types of cavities in the sheet, one slightly larger than the other. The larger cavities, which are all crystallographically identical, are occupied by di­ox­ane mol­ecules, each of which is bound to a Li centre through one of the O atoms. Three water mol­ecules complete the coordination sphere of the Li centre. The other O atom of the di­ox­ane serves as a hy­dro­gen-bond acceptor to a water mol­ecule. A centre of inversion lies at the centre of the di­ox­ane and thus the Li+ centre is disordered across a pair of symmetry-related sites. These com­ponents are part of an infinite chain consisting of water mol­ecules, Li+ ions and bridging and branching di­ox­ane mol­ecules [Fig. 5[link](b)]. The chains pass through the larger square cavities of adjacent 4,4-networks, as indicated in Fig. 5[link](a). Branching di­ox­ane mol­ecules occupy the smaller square cavities.

[Figure 5]
Figure 5
The structure of Li[Cu2(Hhba)2(H0.5hba)2(H2O)2]·3(di­ox­ane)·4H2O (3), showing (a) the square-grid structure with the Li+ cation coordinated by water and di­ox­ane mol­ecules located in the larger of the two types of square cavities, and (b) part of the infinite Li+–solvent chain.

The com­pound [Cu2(Hhba)2(H0.5hba)2(H0.5DABCO)2]·3CH3OH (4) is formed from the reaction of Cu2(OAc)4·2H2O and (H0.5DABCO)(H1.5hba) (12) in me­tha­nol. DABCO mol­ecules occupy the axial sites on the Cu dimer complex and are rotationally disordered around the axis which passes through the two N centres. A similar [Cu2(Hhba)2(H0.5hba)2] hy­dro­gen-bonded 2D network to that present in com­pounds 2 and 3 is apparent in 4, but rather than cations occupying square cavities, the charge on the anionic complex is balanced by a proton located between a pair of coordinated DABCO ligands ([DABCO⋯H⋯DABCO]+), which forms a linear link between anionic sheets, as indicated in Fig. 6[link](a). The binuclear Cu complex now serves as a 6-con­necting node, with the DABCO ligands ex­ten­ding in a direction perpendicular to the familiar 2D network which was a feature of com­pounds 2 and 3 [Fig. 6[link](b)]. The result is a three-dimensional (3D) hy­dro­gen-bonded network with relatively large intra­framework voids that are large enough to accommodate a second equivalent network, as depicted in Fig. 6[link](c).

[Figure 6]
Figure 6
The structure of [Cu2(Hhba)2(H0.5hba)2(H0.5DABCO)2]·3CH3OH (4), showing (a) [DABCO⋯H⋯DABCO]+ links between [Cu2(Hhba)2(H0.5hba)2] hy­dro­gen-bonded sheets, (b) a single network with [Cu2(H0.5hba)2(Hhba)2] hy­dro­gen-bonded sheets linked by [DABCO⋯H⋯DABCO]+ con­nections and (c) a pair of inter­penetrating networks. Only a single orientation of each of the rotationally disordered DABCO units is represented in each figure.

An anionic 2D hy­dro­gen-bonded network is also a feature of the com­pound [Et4N]2[Cu2(Hhba)2(hba)2(di­ox­ane)2][Cu2(Hhba)4(di­ox­ane)(H2O)]·CH3OH (5), but there are clear dif­ferences in the 4-con­necting nodes that are formed by the aggregation of phenolic and phenolate groups. In each of the com­pounds 14, there is only one crystallographically unique bi­nuclear complex, each possessing a centre of symmetry between the two CuII centres. In 5, however, two crystallographically distinct binuclear CuII complexes are present. The first of these consists of four Hhba anions bound to a pair of centrosymmetrically-related CuII centres which are re­presented by dark-blue spheres in Fig. 7[link](a). The second com­plex is comprised of two crystallographically distinct CuII centres (the larger light-blue spheres) which are bound to two Hhba anions and two hba2− anions. The hba2− anions are cis to each other in the binuclear complex. The phenolate O atoms of the hba2− anions serve as hy­dro­gen-bond acceptors from three phenolic groups, resulting in a 4-con­­necting hy­dro­gen-bonding node. The O⋯O separations in the [O⋯(H—O)3] node are in the range 2.571 (2)–2.616 (2) Å. Charge balance for the anionic network is achieved with tetra­ethyl­ammonium ions that occupy every second square cavity of the 2D network, which extends in the bc plane. The 2D sheets stack in an ABAB… fashion [Fig. 7[link](b)], with tetra­ethyl­ammonium ions sandwiched be­tween [O⋯(H—O)3] nodes of adjacent sheets. Dioxane and water mol­ecules, which are bound to the axial positions of the binuclear complexes, exhibit varying degrees of disorder and protrude into the vacant square cavities of adjacent sheets.

[Figure 7]
Figure 7
The structure of [Et4N]2[Cu2(Hhba)2(hba)2(di­ox­ane)2][Cu2(Hhba)4(di­ox­ane)(H2O)]·CH3OH (5), showing (a) the anionic 2D structure and (b) a pair of sheets indicating the ABAB… stacking.

The com­pound [Cu2(Hhba)4(H2O)2]·2Et4N(NO3) (6) is formed when Cu(NO3)2·3H2O is used as the source of CuII and the reaction mixture includes H2hba and Et4NOH. The expected binuclear complex, with water mol­ecules occupying the axial positions, is formed with a centre of symmetry between the metal centres. Each of the car­box­yl­ate ligands retains the phenolic proton to give the neutral [Cu2(Hhba)4(H2O)2] complex. Four phenolic groups combine with a pair of nitrate anions and a pair of coordinated water mol­ecules, from adjacent metal complexes, to form an unusual hy­dro­gen-bonded motif, as shown in Fig. 8[link](a). An inter­esting feature of this motif is the association of nitrate anion pairs, which make relatively close face-to-face contacts, with N⋯O separations of 2.883 (2) Å. Inspection of the Cambridge Structural Database (CSD, Version 5.45, March 2024 release; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals numerous examples of similar face-to-face inter­actions of nitrate anions. The aggregation of the phenolic groups, the two nitrate anions and a pair of coordinated water mol­ecules leads once again to the generation of a 2D network, as depicted in Fig. 8[link](b). If the link from the coordinated water mol­ecule to adjacent parallel layers is considered, then the overall structure is that of a 3D network. To balance the charge of the nitrate anion pairs, a tetra­ethyl­ammonium cation is required for every square cavity. There are two crystallographically distinct tetra­ethyl­ammonium ions, each of which is disordered over a pair of sites in each square cavity.

[Figure 8]
Figure 8
The structure of [Cu2(Hhba)4(H2O)2]·2(Et4NNO3) (6), showing (a) the hy­dro­gen bonding from four phenolic groups to a pair of nitrate anions, and from water mol­ecules to pairs of phenolic groups, and (b) the 2D network. Hydrogen bonds are indicated by black and white striped con­nections, whilst close inter­ionic contacts between nitrate anions are indicated by pink and white striped con­nections. Only a single orientation of each of the disordered Et4N+ units is represented in part (b).

The employment of the organic base 1,8-bis­(di­methyl­amino)­naphthalene (bdn), more commonly known as a proton sponge, leads to the formation of crystals of com­position [Hbdn]2[Cu2(Hhba)2(hba)2(H2O)2]·3(di­ox­ane)·H2O (7). In this com­pound, the binuclear complex carries an overall 2− charge, with two hba2− ligands trans to each other and ex­ten­ding along the a-axis direction. The trans-phenolate groups act as hy­dro­gen-bond acceptors from coordinated water mol­ecules belonging to complexes on either side along the direction of the a axis. In addition to acting as a proton acceptor via the trans hba2− anions, the complex also serves as a proton donor to the complexes on either side through the coordinated water mol­ecules. Thus, each complex forms a pair of double hba2− bridges, as indicated in Fig. 9[link](a). In addition to the centre of symmetry between the CuII centres, there is a centre of symmetry between the pair of hba2− anions. Similarly, along the b axis, there are Hhba double bridges be­tween complexes with a non-coordinated water mol­ecule inter­spersed between the phenolic group and the coordinated water mol­ecule [Fig. 9[link](b)]. The presence of these two types of double bridges results in the generation of a 4,4-network in which the binuclear complex serves as the sole 4-con­necting node. Pairs of Hbdn+ cations, in a face-to-face arrangement, occupy the approximately square cavities [Figs. 9[link](c) and 9(d)]. The 2D layers that are generated are separated by disordered solvent mol­ecules.

[Figure 9]
Figure 9
The structure of [Hbdn]2[Cu2(Hhba)2(hba)2(H2O)2]·3(di­ox­ane)·H2O (7), showing (a) the double hba2− bridges between CuII pairs along the a axis, (b) the double Hhba bridges between CuII pairs along the b axis, with an additional water mol­ecule between the phenolic group and the coordinated water mol­ecule, (c) a pair of face-to-face Hbdn+ cations and (d) the 2D network ex­ten­ding in the ab plane, with the cations located in the cavities.

The addition of 4,4′-bi­pyridine N,N′-dioxide (O-bipy) to Cu(OAc)2·2H2O and H2hba under solvothermal conditions yields a one-dimensional (1D) coordination polymer of com­position [Cu2(Hhba)4(O-bipy)]·H2O (8). The O atoms of O-bipy coordinate to the axial positions of a binuclear Cu2(Hhba)4 complex, resulting in a coordination polymer chain that extends in the [201] direction [Fig. 10[link](a)]. Hydrogen-bonding inter­actions involving trans-Hhba anions lead to the generation of chains, as indicated in Fig. 10[link](b). Within the crystal structure, these hy­dro­gen-bonded chains extend in both the [110] and the [1[\overline{1}]0] directions. If the links between Cu2(Hhba)4 units, shown in Figs. 10[link](a) and 10(b), are taken into account, the binuclear unit may be considered as a 4-con­nected node within a network which has the same topology as the CdSO4 net, i.e. Schlafli (point) symbol 65·81. Whilst the CdSO4 network is not as common as some of the better-known networks based on 4-con­necting nodes, there are examples re­por­ted in the literature including one based upon a CuII–tetra­car­box­yl­ate dimer (Moulton et al., 2003[Moulton, B., Abourahma, H., Bradner, M. W., Lu, J., McManus, G. J. & Zaworotko, M. J. (2003). Chem. Commun. pp. 1342-1343.]). The remaining two Hhba arms of the complex participate in hy­dro­gen-bonding inter­actions with non-coordinated water mol­ecules, which, in turn, form hy­dro­gen-bonded links to the coordinated O atoms of the O-bipy ligands. The result is a complex 3D hy­dro­gen-bonded network structure.

[Figure 10]
Figure 10
The structure of [Cu2(Hhba)4(O-bipy)]·H2O (8), showing (a) the 1D chains formed by the bridging O-bipy ligands and (b) the hy­dro­gen-bonded chains linking Cu2(Hhba)4 units together. The chains depicted in part (b) extend in both the [110] and the [1[\overline{1}]0] directions.

Under solvothermal conditions using di­ox­ane as solvent, O-bipy reacts with Cu(OAc)2·2H2O and H2hba to form crystals of com­position [Cu2(Hhba)4(O-bipy)2]·2(di­ox­ane) (9), in which only one O atom of each O-bipy is coordinated to the neutral binuclear complex. Within this structure, a square-grid hy­dro­gen-bonded network lying parallel to the ab plane is generated, with links between phenolic groups and the coordinated O-bipy O atom, as indicated in Fig. 11[link](a). Additional con­nections from each binuclear unit extend along the c axis. These con­nections are double bridges and consist of a hy­dro­gen-bonding link between the non-coordinated O atom of O-bipy and a phenolic group of a Hhba ligand [Fig. 11[link](b)]. The double Hhba⋯O-bipy bridges ex­ten­ding from the bi­nuclear units to symmetry-related parallel units result in a 3D network that has the topology of the simple (primitive) cubic net, which is also known as the α-polonium net [Fig. 11[link](c)]. The intra­framework space is occupied by a symmetry-related second network.

[Figure 11]
Figure 11
The structure of [Cu2(Hhba)4(O-bipy)2]·2(di­ox­ane) (9), showing (a) part of the hy­dro­gen-bonding 2D network that extends parallel to the ab plane, (b) double hy­dro­gen-bonded bridges that link the sheets depicted in part (a), and (c) part of the resulting 3D network.

In the preparation of the copper com­pounds described above, except for 6, the binuclear copper acetate complex served as the source of CuII. In the following two examples (10 and 11), only partial replacement of the acetate by the Hhba ligands has occurred. In [Cu2(Hhba)3(OAc)(di­ox­ane)]·3.5(di­ox­ane) (10), the binuclear unit is again present, but with the CuII ions coordinated by three Hhba anions and one acetate anion. In this case, the binuclear units are bridged by di­ox­ane mol­ecules to form a chain that extends along the a axis, as indicated in Fig. 12[link](a). Hydrogen-bonding inter­actions involving the phenolic groups and acetate O atoms result in linked parallel chains [Fig. 12[link](b)]. The remaining phenolic groups inter­act with disordered di­ox­ane solvent mol­ecules.

[Figure 12]
Figure 12
The linear chain structure of [Cu2(Hhba)3(OAc)(di­ox­ane)]·3.5(di­ox­ane) (10), showing (a) the chain formed by bridging di­ox­ane ligands that extends along the a axis and (b) the hy­dro­gen-bonded corrugated sheet network. Non-coordinated di­ox­ane mol­ecules have been omitted.

In [Cu2(Hhba)2(OAc)2(DABCO)2]·10(di­ox­ane) (11), two trans-acetate anions remain coordinated, with coordinated DABCO mol­ecules occupying the axial positions in the complex. The [Cu2(Hhba)2(OAc)2(DABCO)2] unit serves as a 4-con­necting node within a 2D 4,4-network, as depicted in Fig. 13[link](a), with hy­dro­gen bonds formed between the phenolic groups and the non-coordinated DABCO N atom. Not sur­prisingly, there is a pronounced bend in the con­nection between the complexes associated with the C—O—H bond angle. The 2D layers stack on top of each other, with the methyl groups of the acetate ion ex­ten­ding above and below the mean plane of the 2D network [Fig. 13[link](b)]. Dioxane solvent mol­ecules occupy the voids between neighbouring sheets.

[Figure 13]
Figure 13
The structure of [Cu2(Hhba)2(OAc)2(DABCO)2]·10(di­ox­ane) (11), show­ing (a) the 2D hy­dro­gen-bonded network and (b) the crystal packing of the sheets.

The final com­pound described in this article is the 1:1 cocrystal formed from the combination of DABCO and H2hba, which was used as a reactant in the formation of com­pound 4.

The crystal structure determination indicates two DABCO and two 4-hy­droxy­benzoic acid mol­ecules in the asymmetric unit. Hydrogen-bonded chains that extend in the [10[\overline{1}]] direction are generated as indicated in Fig. 14[link]. Each chain contains only one type of DABCO and 4-hy­droxy­benzoic acid mol­ecule. The orientations of the 4-hy­droxy­benzoic acid in the two crystallographically distinct chains, as represented in Fig. 14[link], are opposite to each other and thus the two chains are anti­parallel. The cocrystal adopts the centrosymmetric space group P21/n and thus each chain depicted in Fig. 14[link] also has a symmetry-related counterpart which is anti­parallel.

[Figure 14]
Figure 14
The crystal structure of (H0.5DABCO)(H1.5hba) (12), showing the formation of hydrogen-bonded chains that extend in the [10[\overline 1]] direction.

In the structure refinement, peaks of electron density near C atoms were consistent with the expected positions for H atoms. Similarly, electron-density peaks corresponding to the phenolic H atom appeared at a distance consistent with an O—H covalent bond. For each of the two carb­oxy­lic acid groups, peaks of electron density are located at positions further from the O atom than expected based upon normal O—H covalent bonds. These peaks were assigned as H atoms and the position of each was refined, leading to O⋯H separations of 1.28 (3) Å. The assigned H atoms are 1.25 (3) and 1.24 (3) Å from the N atoms of the neighbouring DABCO mol­ecules. The two N⋯O separations of 2.518 (2) and 2.515 (2) Å are remarkably short for N⋯O hy­dro­gen bonds. The N⋯O separations between the phenolic O atom and the neighbouring N atom of the DABCO are significantly longer [2.640 (2) and 2.619 (2) Å], but still relatively short for an N⋯O hy­dro­gen bond.

4. General structural comments

For the Cu dimer com­pounds considered, com­pound 1 is the only one not to form a network-based material involving coordinate and/or hy­dro­gen-bond inter­actions. The failure of 1 to form a network may be attributed to the di­ox­ane mol­ecules which bind to the phenolic groups of the neutral Cu2(Hhba)4 units and block any prospect of network formation. In com­pounds 711, the Cu dimer unit serves as a single node within a 2D (7, 10 and 11) or 3D (8 and 9) network, whilst in 26, there are two types of nodes.

In com­pounds 26, the Cu dimer serves as a node, with a second node formed from either the aggregation of phenolic and phenolate groups (25) or, alternatively, from the involvement of nitrate anions (6). In the networks involving two types of nodes (26), cations are present in the structure. In the structures of 2, 3, 5 and 6, the cations occupy square-shaped cavities, whereas in 4, a proton shared between the non-coordinated N atoms of DABCO ligands serves as a link between Cu dimer nodes.

An average charge of 1− per Cu dimer unit appears to favour the formation of a second type of node in the hy­dro­gen-bonded networks that are generated. In each of 25, four O atoms are held together by three H atoms. Whilst the hy­dro­gen-bonded nodes formed in 24 are similar, consisting of a planar zigzag arrangement of O atoms with a short hy­dro­gen bond between the central two O atoms, the corresponding node in 5 consists of a clearly defined phenolate O atom serving as a hy­dro­gen-bond acceptor from three phenol groups. In the remaining structures (711), the phenol groups only serve to provide links between Cu dimer nodes.

In com­pounds 811, the Cu dimer unit is neutral, with all hba ligands present as Hhba. These circumstances appear to favour single node (Cu dimer) networks with phenolic groups facilitating links between nodes rather than forming nodes based upon the aggregation of phenolic groups. Although four phenolic groups are involved in a second type of node in 6, the nitrate ion pairs play a key role in the generation of the second type of node.

Compound 7 represents a special case in which the Cu dimer has a 2− charge, i.e. [Cu2(Hhba)2(hba)2]2−. This di­anion is also present in 5, but the presence of equal numbers of neutral [Cu2(Hhba)4] means that the average charge on a Cu dimer in 5 is 1−. On the basis of the other structures, it might be expected that the presence of phenolic and phenolate groups in 7 would promote the formation of a second type of node, but instead, only one type of node is apparent with double ligand bridges between the Cu dimer nodes. A possible explanation for the adoption of the network, which is depicted in Fig. 9[link](b), is the complementary inter­action between pairs of face-to-face Hbdn+ cations and the anionic network con­taining appropriately sized cavities.

Compounds 10 and 11 represent rare examples of mixed car­box­yl­ate systems for binuclear copper(II) dimers. According to Hassanein et al. (2015[Hassanein, K., Castillo, O., Gómez-García, C., Zamora, F. & Amo-Ochoa, P. (2015). Cryst. Growth Des. 15, 5485-5494.]), of the 1300 Cu car­box­yl­ate dimers re­por­ted, only nine were heteroleptic. In the specific case of acetate-containing dimers, the CSD contains just one com­pound (refcode HIQQEE02; Luo et al., 2010[Luo, J.-H., Huang, C.-C., Huang, X.-H. & Wang, J.-G. (2010). Acta Cryst. C66, e11-e12.]) with one acetate ligand in combination with three other ferrocene­car­box­yl­ate ligands.

In the structures described in this investigation, there are examples of H atoms refining to a position halfway or nearly halfway between a pair of atoms which form a hy­dro­gen bond. The limitations of X-ray diffraction data in accurately determining the positions of H atoms make it difficult to distinguish between disordered asymmetric hy­dro­gen bonds and truly symmetric hy­dro­gen bonds. In the cases where we have refined the structure with a symmetric (or close to symmetric) hy­dro­gen bond, we wish to stress that the assignments of the H-atom positions are only tentative.

5. Conclusion

The network structures described in this work demonstrate that Cu dimer units involving the hba2−/Hhba ligands can form a variety of networks. Clearly, hy­dro­gen bonding has played a major role in the formation of the networks. Of particular importance has been the network nodes formed from multiple hy­dro­gen bonds. In com­pounds 24, the planar zigzag motif has shown itself to be an effective 4-con­necting node with the ligands ex­ten­ding outwards to the corners of an approximate square. A different type of hy­dro­gen-bonding motif involving three phenol groups serving as donors to a single phenolate group can also produce a 4-con­necting node, as seen in 5.

An unusual and beautiful example of a hy­dro­gen-bonding node is apparent in 6, where a pair of nitrate anions, four phenol groups and a pair of coordinated water mol­ecules combine to generate a network which accommodates tetra­ethyl­ammonium cations in square windows. In the remaining structures involving copper dimer complexes, hy­dro­gen bonding plays a key structural role in the arrangement of the mol­ecular com­ponents although they do not contain hy­dro­gen-bonded nodes within networks.

Clearly there are numerous opportunities for exploiting the ability of the phenolic/phenolate groups within CuII tetra­car­box­yl­ate dimers to create a wide variety of extended structures. Furthermore, the work has demonstrated, using co­lig­ands such as DABCO/HDABCO+ and O-bipy, that additional con­nectivity of the Cu dimer can be achieved by utilizing the axial positions on the Cu centres. The use of different countercations provides further opportunities for crystal engineering. For these reasons, and given the diversity of structures described in this current work, there would appear to be plenty of scope for ex­ten­ding this family of com­pounds.

Supporting information


Computing details top

Tetrakis(µ-4-hydroxybenzoato)bis[(dioxane)copper(II)] dioxane tetrasolvate (compound_1) top
Crystal data top
[Cu2(C7H5O3)4(C4H8O2)2]·4C4H8O2Dx = 1.445 Mg m3
Mr = 1204.14Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PccnCell parameters from 4835 reflections
a = 27.7701 (8) Åθ = 5.2–74.7°
b = 21.2278 (4) ŵ = 1.66 mm1
c = 9.3888 (1) ÅT = 100 K
V = 5534.7 (2) Å3Irregular, clear blue
Z = 40.14 × 0.13 × 0.05 mm
F(000) = 2520
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
5586 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source4112 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.049
ω scansθmax = 77.9°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 3528
Tmin = 0.567, Tmax = 1.000k = 2619
18728 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.0975P)2 + 4.3605P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5586 reflectionsΔρmax = 0.47 e Å3
354 parametersΔρmin = 0.48 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50401 (2)0.45526 (2)0.59237 (5)0.0458 (2)
O70.50598 (10)0.37930 (11)0.7532 (2)0.0490 (6)
O40.54939 (10)0.41558 (10)0.4607 (2)0.0505 (6)
O50.54229 (10)0.49330 (10)0.2997 (2)0.0518 (6)
O60.66319 (11)0.29296 (12)0.0478 (3)0.0599 (7)
H60.6684640.3120640.1245350.090*
O20.54782 (10)0.58260 (11)0.5194 (2)0.0529 (6)
O80.47914 (12)0.27813 (11)0.9315 (3)0.0571 (7)
O30.67261 (11)0.71553 (12)0.9950 (3)0.0608 (7)
H30.6735370.7526190.9638830.091*
O90.68611 (11)0.83420 (12)0.8980 (3)0.0612 (7)
O10.55547 (11)0.50408 (11)0.6795 (2)0.0543 (7)
O110.69134 (11)0.34846 (14)0.2826 (3)0.0616 (7)
O120.72613 (16)0.43718 (16)0.4748 (4)0.0933 (12)
C90.58665 (14)0.40313 (15)0.2377 (3)0.0441 (8)
C100.60184 (14)0.34260 (15)0.2709 (3)0.0446 (8)
H100.5943930.3255370.3618530.054*
C20.59535 (15)0.59955 (16)0.7219 (3)0.0507 (9)
C10.56448 (15)0.55920 (16)0.6338 (4)0.0496 (9)
C160.48813 (16)0.33951 (16)0.9880 (3)0.0515 (9)
H16A0.5220700.3422741.0196220.062*
H16B0.4672730.3465841.0720040.062*
C140.59734 (15)0.42700 (16)0.1026 (3)0.0499 (9)
H140.5870220.4681900.0774530.060*
C30.61863 (15)0.57564 (17)0.8414 (4)0.0535 (9)
H3A0.6162460.5319810.8625400.064*
C80.55766 (14)0.44018 (16)0.3394 (3)0.0464 (8)
C130.62292 (15)0.39108 (17)0.0049 (4)0.0547 (9)
H130.6301850.4077120.0865650.066*
C120.63782 (14)0.33080 (16)0.0413 (4)0.0474 (8)
C40.64526 (16)0.61450 (17)0.9303 (4)0.0548 (9)
H40.6618170.5972621.0098430.066*
C110.62742 (14)0.30678 (16)0.1752 (3)0.0477 (8)
H110.6379370.2657160.2006810.057*
C70.59887 (17)0.66394 (17)0.6935 (4)0.0581 (10)
H70.5833790.6808930.6118050.070*
O100.7010 (2)0.9435 (2)0.7379 (7)0.144 (3)
C180.49903 (16)0.31738 (16)0.6977 (4)0.0525 (9)
H18A0.5214330.3102580.6172820.063*
H18B0.4657200.3132320.6613580.063*
C150.47853 (16)0.38964 (16)0.8791 (3)0.0517 (9)
H15A0.4438260.3898380.8549020.062*
H15B0.4867740.4313500.9194530.062*
C50.64764 (16)0.67873 (17)0.9027 (4)0.0548 (9)
C170.50779 (16)0.26872 (17)0.8114 (4)0.0568 (10)
H17A0.5011400.2263710.7717920.068*
H17B0.5421080.2700350.8397610.068*
C60.62463 (17)0.70335 (17)0.7826 (4)0.0600 (11)
H6A0.6266890.7470990.7622270.072*
C190.64733 (17)0.8696 (2)0.8392 (4)0.0654 (11)
H19A0.6190300.8669250.9030220.078*
H19B0.6381750.8516940.7456670.078*
C220.72803 (17)0.8409 (3)0.8115 (6)0.0833 (15)
H22A0.7219900.8227560.7160700.100*
H22B0.7552680.8178830.8552910.100*
C230.74174 (18)0.3544 (2)0.3066 (6)0.0742 (12)
H23A0.7518840.3253770.3834620.089*
H23B0.7596050.3431880.2189270.089*
C260.6644 (2)0.3658 (2)0.4058 (5)0.0791 (14)
H26A0.6295030.3619670.3854410.095*
H26B0.6722620.3369570.4853390.095*
C240.7528 (2)0.4210 (2)0.3480 (6)0.0830 (14)
H24A0.7438850.4498170.2694210.100*
H24B0.7877740.4255630.3660550.100*
C250.6757 (2)0.4309 (3)0.4466 (7)0.0988 (19)
H25A0.6571380.4425230.5326730.119*
H25B0.6663710.4598760.3687430.119*
C200.6614 (3)0.9360 (2)0.8214 (8)0.129 (3)
H20A0.6342250.9594290.7786260.155*
H20B0.6679340.9544000.9162820.155*
C210.7406 (2)0.9099 (3)0.7976 (9)0.138 (3)
H21A0.7484710.9273860.8925230.166*
H21B0.7692170.9147220.7357160.166*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0770 (4)0.0316 (3)0.0288 (3)0.0038 (2)0.0171 (2)0.00427 (18)
O70.0881 (19)0.0312 (11)0.0277 (11)0.0018 (11)0.0178 (11)0.0022 (9)
O40.0803 (18)0.0385 (12)0.0327 (11)0.0105 (11)0.0152 (11)0.0054 (9)
O50.0864 (18)0.0348 (12)0.0343 (11)0.0113 (11)0.0193 (12)0.0066 (9)
O60.086 (2)0.0487 (14)0.0447 (13)0.0097 (13)0.0227 (14)0.0031 (11)
O20.0821 (18)0.0397 (12)0.0368 (12)0.0028 (11)0.0169 (12)0.0059 (10)
O80.098 (2)0.0358 (12)0.0373 (12)0.0020 (12)0.0150 (13)0.0033 (10)
O30.091 (2)0.0485 (15)0.0430 (13)0.0062 (14)0.0130 (13)0.0039 (11)
O90.0794 (19)0.0479 (14)0.0564 (15)0.0014 (13)0.0054 (14)0.0073 (12)
O10.0881 (19)0.0365 (12)0.0382 (11)0.0033 (12)0.0110 (12)0.0067 (9)
O110.0657 (17)0.0747 (18)0.0443 (13)0.0046 (14)0.0104 (13)0.0094 (12)
O120.133 (3)0.075 (2)0.072 (2)0.037 (2)0.010 (2)0.0163 (17)
C90.066 (2)0.0341 (16)0.0323 (15)0.0000 (14)0.0100 (15)0.0006 (12)
C100.065 (2)0.0381 (17)0.0310 (14)0.0016 (15)0.0073 (15)0.0004 (12)
C20.081 (3)0.0379 (17)0.0330 (15)0.0011 (16)0.0170 (17)0.0005 (13)
C10.077 (2)0.0359 (16)0.0363 (16)0.0016 (15)0.0221 (17)0.0010 (13)
C160.085 (3)0.0401 (18)0.0296 (15)0.0044 (16)0.0098 (16)0.0025 (13)
C140.072 (2)0.0388 (17)0.0385 (16)0.0045 (16)0.0157 (17)0.0024 (14)
C30.076 (3)0.0411 (18)0.0440 (18)0.0019 (17)0.0187 (18)0.0001 (15)
C80.069 (2)0.0379 (17)0.0322 (15)0.0028 (15)0.0098 (15)0.0022 (13)
C130.078 (3)0.0478 (19)0.0379 (17)0.0017 (18)0.0205 (17)0.0021 (15)
C120.064 (2)0.0386 (17)0.0399 (16)0.0029 (15)0.0118 (16)0.0042 (13)
C40.075 (3)0.049 (2)0.0405 (18)0.0026 (18)0.0159 (17)0.0002 (15)
C110.066 (2)0.0392 (17)0.0378 (16)0.0035 (15)0.0065 (16)0.0017 (13)
C70.096 (3)0.045 (2)0.0341 (16)0.0017 (19)0.0130 (18)0.0027 (14)
O100.150 (4)0.088 (3)0.196 (6)0.060 (3)0.110 (4)0.082 (3)
C180.093 (3)0.0305 (16)0.0337 (16)0.0031 (16)0.0123 (17)0.0009 (13)
C150.086 (3)0.0406 (18)0.0290 (15)0.0057 (17)0.0151 (17)0.0009 (13)
C50.079 (3)0.0469 (19)0.0391 (17)0.0038 (18)0.0196 (17)0.0061 (15)
C170.099 (3)0.0354 (17)0.0365 (17)0.0028 (17)0.0112 (18)0.0011 (14)
C60.103 (3)0.0396 (18)0.0372 (17)0.0054 (19)0.0167 (19)0.0006 (14)
C190.074 (3)0.072 (3)0.051 (2)0.014 (2)0.001 (2)0.0067 (19)
C220.058 (3)0.094 (4)0.099 (4)0.003 (2)0.002 (3)0.043 (3)
C230.070 (3)0.075 (3)0.078 (3)0.002 (2)0.008 (2)0.006 (2)
C260.093 (4)0.073 (3)0.072 (3)0.017 (3)0.023 (3)0.019 (2)
C240.081 (3)0.076 (3)0.092 (4)0.018 (3)0.001 (3)0.006 (3)
C250.123 (5)0.073 (3)0.101 (4)0.019 (3)0.039 (4)0.030 (3)
C200.217 (9)0.040 (3)0.131 (6)0.019 (4)0.102 (6)0.020 (3)
C210.106 (5)0.129 (5)0.180 (7)0.052 (4)0.078 (5)0.099 (5)
Geometric parameters (Å, º) top
Cu1—Cu1i2.5818 (9)C13—H130.9500
Cu1—O72.210 (2)C13—C121.388 (5)
Cu1—O41.956 (2)C12—C111.387 (5)
Cu1—O5i1.968 (2)C4—H40.9500
Cu1—O2i1.954 (3)C4—C51.389 (5)
Cu1—O11.946 (3)C11—H110.9500
O7—C181.427 (4)C7—H70.9500
O7—C151.423 (4)C7—C61.383 (6)
O4—C81.273 (4)O10—C201.359 (10)
O5—C81.262 (4)O10—C211.424 (7)
O6—H60.8400C18—H18A0.9900
O6—C121.357 (4)C18—H18B0.9900
O2—C11.270 (4)C18—C171.505 (5)
O8—C161.429 (4)C15—H15A0.9900
O8—C171.395 (4)C15—H15B0.9900
O3—H30.8400C5—C61.397 (6)
O3—C51.357 (5)C17—H17A0.9900
O9—C191.425 (5)C17—H17B0.9900
O9—C221.426 (5)C6—H6A0.9500
O1—C11.271 (4)C19—H19A0.9900
O11—C231.423 (5)C19—H19B0.9900
O11—C261.426 (5)C19—C201.471 (8)
O12—C241.445 (6)C22—H22A0.9900
O12—C251.431 (7)C22—H22B0.9900
C9—C101.388 (5)C22—C211.511 (8)
C9—C141.397 (4)C23—H23A0.9900
C9—C81.476 (5)C23—H23B0.9900
C10—H100.9500C23—C241.498 (7)
C10—C111.375 (5)C26—H26A0.9900
C2—C11.467 (5)C26—H26B0.9900
C2—C31.391 (5)C26—C251.469 (7)
C2—C71.396 (5)C24—H24A0.9900
C16—H16A0.9900C24—H24B0.9900
C16—H16B0.9900C25—H25A0.9900
C16—C151.500 (5)C25—H25B0.9900
C14—H140.9500C20—H20A0.9900
C14—C131.389 (5)C20—H20B0.9900
C3—H3A0.9500C21—H21A0.9900
C3—C41.387 (6)C21—H21B0.9900
O7—Cu1—Cu1i176.39 (8)O7—C18—H18B109.5
O4—Cu1—Cu1i87.01 (7)O7—C18—C17110.6 (3)
O4—Cu1—O795.85 (9)H18A—C18—H18B108.1
O4—Cu1—O5i170.18 (9)C17—C18—H18A109.5
O5i—Cu1—Cu1i83.17 (7)C17—C18—H18B109.5
O5i—Cu1—O793.97 (9)O7—C15—C16111.2 (3)
O2i—Cu1—Cu1i83.00 (7)O7—C15—H15A109.4
O2i—Cu1—O794.89 (10)O7—C15—H15B109.4
O2i—Cu1—O487.58 (11)C16—C15—H15A109.4
O2i—Cu1—O5i91.34 (12)C16—C15—H15B109.4
O1—Cu1—Cu1i87.37 (7)H15A—C15—H15B108.0
O1—Cu1—O794.76 (10)O3—C5—C4118.0 (4)
O1—Cu1—O491.26 (12)O3—C5—C6122.2 (3)
O1—Cu1—O5i88.16 (12)C4—C5—C6119.7 (4)
O1—Cu1—O2i170.35 (10)O8—C17—C18112.5 (3)
C18—O7—Cu1114.77 (19)O8—C17—H17A109.1
C15—O7—Cu1116.20 (19)O8—C17—H17B109.1
C15—O7—C18111.9 (3)C18—C17—H17A109.1
C8—O4—Cu1120.3 (2)C18—C17—H17B109.1
C8—O5—Cu1i124.4 (2)H17A—C17—H17B107.8
C12—O6—H6109.5C7—C6—C5119.9 (3)
C1—O2—Cu1i124.2 (2)C7—C6—H6A120.0
C17—O8—C16109.3 (3)C5—C6—H6A120.0
C5—O3—H3109.5O9—C19—H19A109.6
C19—O9—C22110.1 (3)O9—C19—H19B109.6
C1—O1—Cu1119.5 (3)O9—C19—C20110.4 (5)
C23—O11—C26111.4 (3)H19A—C19—H19B108.1
C25—O12—C24109.1 (4)C20—C19—H19A109.6
C10—C9—C14118.4 (3)C20—C19—H19B109.6
C10—C9—C8120.9 (3)O9—C22—H22A109.8
C14—C9—C8120.7 (3)O9—C22—H22B109.8
C9—C10—H10119.3O9—C22—C21109.6 (5)
C11—C10—C9121.4 (3)H22A—C22—H22B108.2
C11—C10—H10119.3C21—C22—H22A109.8
C3—C2—C1120.9 (3)C21—C22—H22B109.8
C3—C2—C7118.6 (4)O11—C23—H23A109.9
C7—C2—C1120.3 (3)O11—C23—H23B109.9
O2—C1—O1125.0 (4)O11—C23—C24109.1 (4)
O2—C1—C2117.5 (3)H23A—C23—H23B108.3
O1—C1—C2117.5 (3)C24—C23—H23A109.9
O8—C16—H16A109.4C24—C23—H23B109.9
O8—C16—H16B109.4O11—C26—H26A109.7
O8—C16—C15111.3 (3)O11—C26—H26B109.7
H16A—C16—H16B108.0O11—C26—C25110.0 (4)
C15—C16—H16A109.4H26A—C26—H26B108.2
C15—C16—H16B109.4C25—C26—H26A109.7
C9—C14—H14119.7C25—C26—H26B109.7
C13—C14—C9120.6 (3)O12—C24—C23109.5 (4)
C13—C14—H14119.7O12—C24—H24A109.8
C2—C3—H3A119.5O12—C24—H24B109.8
C4—C3—C2121.1 (3)C23—C24—H24A109.8
C4—C3—H3A119.5C23—C24—H24B109.8
O4—C8—C9117.3 (3)H24A—C24—H24B108.2
O5—C8—O4124.7 (3)O12—C25—C26110.2 (5)
O5—C8—C9118.0 (3)O12—C25—H25A109.6
C14—C13—H13120.1O12—C25—H25B109.6
C12—C13—C14119.8 (3)C26—C25—H25A109.6
C12—C13—H13120.1C26—C25—H25B109.6
O6—C12—C13123.3 (3)H25A—C25—H25B108.1
O6—C12—C11116.7 (3)O10—C20—C19113.1 (6)
C11—C12—C13120.0 (3)O10—C20—H20A109.0
C3—C4—H4120.1O10—C20—H20B109.0
C3—C4—C5119.8 (4)C19—C20—H20A109.0
C5—C4—H4120.1C19—C20—H20B109.0
C10—C11—C12119.8 (3)H20A—C20—H20B107.8
C10—C11—H11120.1O10—C21—C22109.9 (4)
C12—C11—H11120.1O10—C21—H21A109.7
C2—C7—H7119.6O10—C21—H21B109.7
C6—C7—C2120.8 (4)C22—C21—H21A109.7
C6—C7—H7119.6C22—C21—H21B109.7
C20—O10—C21109.8 (5)H21A—C21—H21B108.2
O7—C18—H18A109.5
Cu1—O7—C18—C17172.2 (3)C14—C9—C10—C110.9 (6)
Cu1—O7—C15—C16172.0 (3)C14—C9—C8—O4179.8 (4)
Cu1—O4—C8—O57.6 (5)C14—C9—C8—O51.2 (6)
Cu1—O4—C8—C9171.3 (3)C14—C13—C12—O6179.5 (4)
Cu1i—O5—C8—O47.7 (6)C14—C13—C12—C110.4 (6)
Cu1i—O5—C8—C9171.2 (2)C3—C2—C1—O2173.9 (3)
Cu1i—O2—C1—O111.5 (5)C3—C2—C1—O17.9 (5)
Cu1i—O2—C1—C2166.6 (2)C3—C2—C7—C60.5 (6)
Cu1—O1—C1—O211.9 (5)C3—C4—C5—O3177.7 (3)
Cu1—O1—C1—C2166.2 (2)C3—C4—C5—C62.3 (6)
O7—C18—C17—O855.9 (5)C8—C9—C10—C11177.7 (4)
O6—C12—C11—C10180.0 (4)C8—C9—C14—C13177.3 (4)
O8—C16—C15—O756.0 (5)C13—C12—C11—C100.8 (6)
O3—C5—C6—C7178.8 (4)C4—C5—C6—C71.3 (6)
O9—C19—C20—O1057.5 (6)C7—C2—C1—O211.1 (5)
O9—C22—C21—O1058.0 (8)C7—C2—C1—O1167.1 (3)
O11—C23—C24—O1258.8 (6)C7—C2—C3—C40.6 (6)
O11—C26—C25—O1258.7 (6)C18—O7—C15—C1653.5 (4)
C9—C10—C11—C121.1 (6)C15—O7—C18—C1752.7 (4)
C9—C14—C13—C120.3 (6)C17—O8—C16—C1557.8 (4)
C10—C9—C14—C130.6 (6)C19—O9—C22—C2156.7 (5)
C10—C9—C8—O43.5 (6)C22—O9—C19—C2055.6 (6)
C10—C9—C8—O5175.5 (4)C23—O11—C26—C2558.2 (6)
C2—C3—C4—C52.0 (6)C26—O11—C23—C2458.1 (5)
C2—C7—C6—C50.2 (6)C24—O12—C25—C2660.1 (6)
C1—C2—C3—C4175.7 (3)C25—O12—C24—C2360.0 (6)
C1—C2—C7—C6174.6 (4)C20—O10—C21—C2258.2 (8)
C16—O8—C17—C1858.0 (4)C21—O10—C20—C1958.5 (7)
Symmetry code: (i) x+1, y+1, z+1.
Tetraethylammonium aquatris(µ-4-hydroxybenzoato)methanol(µ-4-oxidobenzoato)dicopper(II) dioxane disolvate (compound_2) top
Crystal data top
(C8H20N)[Cu2(C7H5O3)2(C7H4.5O3)2(CH4O)(H2O)]·2C4H8O2Z = 1
Mr = 1031.02F(000) = 540
Triclinic, P1Dx = 1.350 Mg m3
a = 10.1659 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.7383 (6) ÅCell parameters from 7244 reflections
c = 12.9878 (4) Åθ = 3.7–77.8°
α = 76.132 (4)°µ = 1.63 mm1
β = 69.646 (3)°T = 100 K
γ = 75.304 (4)°Irregular, clear blue
V = 1267.74 (10) Å30.17 × 0.12 × 0.05 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
4672 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.047
ω scansθmax = 78.0°, θmin = 5.8°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 1212
Tmin = 0.885, Tmax = 1.000k = 1313
17988 measured reflectionsl = 1316
5262 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.200 w = 1/[σ2(Fo2) + (0.1206P)2 + 1.2732P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5262 reflectionsΔρmax = 0.73 e Å3
459 parametersΔρmin = 1.00 e Å3
419 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Occupancies of the axial sites of the complex are shared almost equally by H2O and CH3OH molecules. The NEt4 group is disordered across a scentre of inversion and is in PART -1. Both 1,4-dioxane molecules are disordered and their disordered components have been placed in parts.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.55520 (4)0.10317 (4)0.44807 (3)0.03624 (19)
O60.1090 (2)0.2374 (3)0.18088 (19)0.0451 (5)
H60.0832530.2898970.1215680.068*
O30.0352 (3)0.4006 (2)0.99674 (18)0.0455 (5)
O50.3102 (3)0.0326 (2)0.46488 (19)0.0430 (5)
O80.6421 (3)0.2782 (2)0.3614 (2)0.0450 (5)0.5
H8A0.7186100.2585910.3067400.067*
H8B0.6935100.2935400.3972000.067*0.5
O20.3211 (2)0.0083 (2)0.66128 (18)0.0424 (5)
O10.4181 (3)0.1857 (2)0.5731 (2)0.0520 (6)
O40.4064 (3)0.1441 (3)0.3743 (2)0.0514 (6)
C120.0038 (3)0.2006 (3)0.2307 (3)0.0405 (7)
C10.3299 (3)0.1261 (3)0.6517 (3)0.0390 (7)
C130.0043 (4)0.0848 (4)0.3072 (3)0.0440 (7)
H130.0752540.0341200.3226760.053*
C20.2303 (3)0.2005 (3)0.7402 (3)0.0405 (7)
C80.3148 (3)0.0736 (3)0.3971 (3)0.0401 (7)
C90.2033 (3)0.1182 (3)0.3399 (3)0.0397 (7)
C50.0506 (4)0.3380 (3)0.9122 (3)0.0424 (7)
C140.0996 (4)0.0446 (3)0.3603 (3)0.0423 (7)
H140.1002620.0349530.4117190.051*
C30.2446 (4)0.3258 (3)0.7414 (3)0.0478 (8)
H3A0.3162440.3651690.6829440.057*
C60.0339 (4)0.2132 (4)0.9099 (3)0.0494 (8)
H6A0.0393050.1746160.9672660.059*
C110.0988 (4)0.2758 (4)0.2101 (3)0.0468 (8)
H110.0981960.3556150.1589660.056*
C100.2006 (4)0.2342 (4)0.2640 (3)0.0479 (8)
H100.2706470.2856120.2492530.057*
C70.1223 (4)0.1456 (4)0.8255 (3)0.0468 (8)
H70.1096730.0609980.8254130.056*
C40.1565 (4)0.3940 (3)0.8260 (3)0.0480 (8)
H40.1681380.4792030.8252430.058*
N10.5009 (17)0.0024 (14)1.0087 (13)0.0599 (19)0.5
C280.4884 (15)0.1146 (13)1.0638 (9)0.098 (4)0.5
H28A0.4739030.1963961.0109750.117*0.5
H28B0.4013010.1161721.1290780.117*0.5
C290.601 (2)0.1155 (18)1.0992 (11)0.110 (5)0.5
H29A0.6616890.0284771.1020140.166*0.5
H29B0.5645920.1396821.1736250.166*0.5
H29C0.6577280.1791491.0471890.166*0.5
C300.5447 (9)0.1286 (9)1.0730 (7)0.061 (2)0.5
H30A0.5536350.1963111.0296850.073*0.5
H30B0.6406390.1327631.0781630.073*0.5
C310.4511 (16)0.162 (2)1.1841 (15)0.065 (4)0.5
H31A0.4425410.0966121.2288730.097*0.5
H31B0.4906970.2480961.2182770.097*0.5
H31C0.3566210.1621821.1804360.097*0.5
C240.3558 (15)0.0152 (14)0.9974 (18)0.141 (7)0.5
H24A0.2857810.0407501.0674290.169*0.5
H24B0.3457760.0908110.9377860.169*0.5
C250.3076 (19)0.0882 (17)0.9745 (17)0.137 (8)0.5
H25A0.3024770.1611891.0368690.206*0.5
H25B0.3748060.1182810.9062300.206*0.5
H25C0.2127230.0552010.9647800.206*0.5
C260.6057 (15)0.0192 (11)0.8945 (7)0.090 (4)0.5
H26A0.7018560.0017520.9035450.107*0.5
H26B0.6039840.0502030.8569950.107*0.5
C270.592 (2)0.142 (2)0.8181 (16)0.090 (7)0.5
H27A0.6705040.1370260.7482390.135*0.5
H27B0.5957850.2133820.8518220.135*0.5
H27C0.5006500.1597040.8027660.135*0.5
H30.0000000.5000001.0000000.09 (2)*
O140.5243 (8)0.4043 (7)0.9358 (6)0.0728 (17)0.5
C340.398 (2)0.4956 (17)0.9555 (18)0.077 (4)0.5
H34A0.3199040.4564900.9553590.093*0.5
H34B0.4084270.5715310.8944320.093*0.5
C320.3596 (13)0.5413 (12)1.0644 (11)0.080 (3)0.5
H32A0.2710560.6083221.0745510.096*0.5
H32B0.3428070.4671561.1265930.096*0.5
O130.4625 (11)0.3789 (10)1.0541 (10)0.128 (4)0.5
C350.438 (2)0.563 (2)0.9224 (19)0.154 (10)0.5
H35A0.3636890.6355230.9024200.184*0.5
H35B0.4908190.5221070.8554380.184*0.5
C330.371 (4)0.475 (3)1.001 (3)0.172 (18)0.5
H33A0.3261230.4306740.9675180.206*0.5
H33B0.2944050.5204421.0585620.206*0.5
C150.6890 (17)0.3335 (11)0.4300 (10)0.098 (4)0.5
H15A0.6071340.3611060.4925730.148*0.5
H15B0.7315810.4091970.3856580.148*0.5
H15C0.7602190.2679670.4585860.148*0.5
O70.6421 (3)0.2782 (2)0.3614 (2)0.0450 (5)0.5
O100.8206 (14)0.4688 (14)0.6446 (14)0.071 (3)0.25
O90.748 (3)0.385 (3)0.489 (3)0.070 (3)0.25
C170.6706 (18)0.496 (2)0.6509 (17)0.071 (3)0.25
H17A0.6209510.4268730.7026920.085*0.25
H17B0.6219690.5812390.6757760.085*0.25
C160.674 (3)0.500 (3)0.5373 (18)0.073 (3)0.25
H16A0.5745870.5186620.5355160.088*0.25
H16B0.7191920.5745210.4895950.088*0.25
C190.886 (2)0.347 (2)0.5048 (18)0.074 (3)0.25
H19A0.9496760.3976240.4419850.089*0.25
H19B0.9195690.2544490.4944650.089*0.25
C180.914 (2)0.355 (2)0.6033 (19)0.079 (3)0.25
H18A0.8962720.2763150.6598270.095*0.25
H18B1.0149920.3630340.5856530.095*0.25
O110.741 (4)0.403 (3)0.480 (3)0.071 (3)0.25
C200.637 (2)0.480 (3)0.5570 (19)0.072 (3)0.25
H20A0.5642770.4287060.6073190.087*0.25
H20B0.5883770.5575610.5159250.087*0.25
C230.825 (2)0.306 (2)0.5402 (18)0.073 (3)0.25
H23A0.9149740.2724110.4845470.088*0.25
H23B0.7733440.2322000.5742250.088*0.25
C220.866 (2)0.336 (2)0.6286 (18)0.075 (3)0.25
H22A0.8878190.2530770.6782980.090*0.25
H22B0.9557530.3710030.5933130.090*0.25
C210.702 (3)0.523 (2)0.6224 (19)0.075 (3)0.25
H21A0.7772560.5709310.5700940.090*0.25
H21B0.6283100.5863570.6663570.090*0.25
O120.7639 (17)0.4268 (14)0.6966 (14)0.078 (3)0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0303 (3)0.0357 (3)0.0339 (3)0.00316 (18)0.00424 (19)0.00778 (18)
O60.0370 (11)0.0558 (14)0.0363 (11)0.0026 (10)0.0081 (9)0.0072 (10)
O30.0450 (12)0.0474 (13)0.0348 (11)0.0027 (10)0.0036 (9)0.0149 (9)
O50.0455 (12)0.0401 (11)0.0414 (12)0.0041 (9)0.0159 (10)0.0030 (9)
O80.0398 (12)0.0388 (11)0.0436 (12)0.0010 (9)0.0011 (9)0.0074 (9)
O20.0391 (11)0.0456 (12)0.0363 (11)0.0056 (9)0.0014 (9)0.0134 (9)
O10.0507 (14)0.0361 (12)0.0460 (13)0.0018 (10)0.0092 (11)0.0110 (10)
O40.0393 (12)0.0496 (14)0.0600 (15)0.0088 (10)0.0218 (11)0.0112 (11)
C120.0330 (14)0.0474 (17)0.0339 (14)0.0029 (12)0.0055 (12)0.0119 (12)
C10.0352 (15)0.0411 (16)0.0336 (14)0.0043 (12)0.0074 (12)0.0097 (12)
C130.0429 (17)0.0484 (18)0.0375 (16)0.0086 (14)0.0078 (13)0.0079 (13)
C20.0367 (15)0.0423 (16)0.0353 (15)0.0028 (12)0.0072 (12)0.0097 (12)
C80.0323 (14)0.0415 (16)0.0369 (15)0.0039 (12)0.0040 (12)0.0102 (12)
C90.0342 (15)0.0407 (16)0.0362 (15)0.0015 (12)0.0047 (12)0.0097 (12)
C50.0394 (16)0.0486 (17)0.0323 (14)0.0023 (13)0.0054 (12)0.0134 (13)
C140.0441 (17)0.0410 (16)0.0362 (15)0.0037 (13)0.0082 (13)0.0066 (12)
C30.0461 (18)0.0410 (17)0.0401 (17)0.0031 (14)0.0020 (14)0.0119 (13)
C60.0462 (18)0.056 (2)0.0393 (17)0.0112 (15)0.0013 (14)0.0161 (15)
C110.0387 (17)0.0439 (17)0.0497 (18)0.0009 (13)0.0119 (14)0.0026 (14)
C100.0391 (17)0.0446 (18)0.0539 (19)0.0048 (14)0.0144 (15)0.0001 (15)
C70.0453 (18)0.0514 (19)0.0405 (17)0.0049 (15)0.0052 (14)0.0179 (14)
C40.0484 (19)0.0392 (16)0.0440 (17)0.0002 (14)0.0020 (14)0.0112 (13)
N10.051 (3)0.066 (3)0.056 (5)0.016 (2)0.020 (3)0.020 (3)
C280.140 (11)0.088 (7)0.049 (5)0.015 (7)0.002 (6)0.029 (5)
C290.165 (16)0.118 (11)0.070 (7)0.035 (11)0.068 (9)0.000 (7)
C300.055 (4)0.070 (5)0.051 (4)0.016 (4)0.021 (3)0.023 (4)
C310.055 (7)0.067 (8)0.065 (6)0.010 (6)0.022 (5)0.016 (5)
C240.077 (7)0.098 (9)0.241 (18)0.020 (7)0.092 (10)0.052 (10)
C250.118 (12)0.147 (14)0.168 (16)0.070 (12)0.100 (12)0.069 (13)
C260.115 (9)0.076 (6)0.047 (4)0.031 (6)0.010 (5)0.028 (4)
C270.105 (16)0.080 (10)0.061 (7)0.025 (10)0.024 (8)0.018 (6)
O140.070 (4)0.068 (4)0.080 (4)0.004 (3)0.021 (3)0.023 (3)
C340.072 (8)0.053 (8)0.122 (12)0.013 (6)0.045 (9)0.019 (9)
C320.059 (6)0.065 (6)0.099 (8)0.011 (5)0.004 (5)0.014 (6)
O130.104 (7)0.107 (7)0.166 (11)0.052 (6)0.056 (8)0.047 (7)
C350.17 (2)0.138 (15)0.19 (2)0.065 (15)0.140 (18)0.055 (15)
C330.105 (17)0.096 (15)0.32 (5)0.043 (13)0.12 (2)0.07 (2)
C150.136 (11)0.069 (7)0.088 (8)0.049 (7)0.002 (7)0.029 (6)
O70.0398 (12)0.0388 (11)0.0436 (12)0.0010 (9)0.0011 (9)0.0074 (9)
O100.064 (5)0.063 (5)0.087 (6)0.014 (4)0.028 (4)0.033 (5)
O90.067 (5)0.063 (6)0.074 (5)0.006 (4)0.011 (4)0.036 (5)
C170.069 (5)0.063 (6)0.076 (6)0.010 (5)0.021 (5)0.029 (5)
C160.070 (6)0.065 (6)0.078 (5)0.010 (5)0.018 (5)0.030 (5)
C190.068 (5)0.059 (6)0.079 (6)0.013 (5)0.006 (5)0.031 (5)
C180.069 (6)0.065 (6)0.092 (6)0.013 (5)0.021 (5)0.026 (5)
O110.069 (5)0.060 (6)0.073 (5)0.008 (4)0.009 (4)0.030 (5)
C200.067 (6)0.066 (6)0.076 (5)0.011 (5)0.018 (5)0.029 (5)
C230.068 (6)0.060 (6)0.080 (6)0.009 (5)0.010 (5)0.030 (5)
C220.064 (6)0.063 (6)0.088 (6)0.013 (5)0.017 (5)0.030 (5)
C210.073 (5)0.067 (6)0.084 (6)0.016 (5)0.027 (5)0.032 (5)
O120.069 (5)0.068 (6)0.091 (6)0.017 (4)0.028 (5)0.030 (5)
Geometric parameters (Å, º) top
Cu1—Cu1i2.6010 (9)C24—C251.449 (15)
Cu1—O5i1.965 (2)C25—H25A0.9800
Cu1—O82.172 (2)C25—H25B0.9800
Cu1—O2i1.960 (2)C25—H25C0.9800
Cu1—O11.963 (2)C26—H26A0.9900
Cu1—O41.967 (2)C26—H26B0.9900
Cu1—O72.172 (2)C26—C271.459 (15)
O6—H60.8400C27—H27A0.9800
O6—C121.365 (4)C27—H27B0.9800
O3—C51.344 (4)C27—H27C0.9800
O3—H31.223 (3)O14—C341.39 (2)
O5—C81.263 (4)O14—C32ii1.442 (15)
O8—H8A0.8704C34—H34A0.9900
O8—H8B0.8746C34—H34B0.9900
O2—C11.264 (4)C34—C321.50 (2)
O1—C11.264 (4)C32—H32A0.9900
O4—C81.259 (4)C32—H32B0.9900
C12—C131.393 (5)O13—C35ii1.46 (2)
C12—C111.393 (5)O13—C331.42 (3)
C1—C21.484 (4)C35—H35A0.9900
C13—H130.9500C35—H35B0.9900
C13—C141.382 (5)C35—C331.34 (3)
C2—C31.394 (5)C33—H33A0.9900
C2—C71.396 (5)C33—H33B0.9900
C8—C91.486 (5)C15—H15A0.9800
C9—C141.391 (5)C15—H15B0.9800
C9—C101.391 (5)C15—H15C0.9800
C5—C61.401 (5)C15—O71.437 (13)
C5—C41.394 (5)O7—H8A0.8704
C14—H140.9500O10—C171.454 (14)
C3—H3A0.9500O10—C181.430 (14)
C3—C41.383 (5)O9—C161.434 (15)
C6—H6A0.9500O9—C191.431 (16)
C6—C71.379 (5)C17—H17A0.9900
C11—H110.9500C17—H17B0.9900
C11—C101.371 (5)C17—C161.453 (17)
C10—H100.9500C16—H16A0.9900
C7—H70.9500C16—H16B0.9900
C4—H40.9500C19—H19A0.9900
N1—C281.501 (14)C19—H19B0.9900
N1—C301.500 (13)C19—C181.433 (17)
N1—C241.501 (14)C18—H18A0.9900
N1—C261.496 (14)C18—H18B0.9900
C28—H28A0.9900O11—C201.426 (16)
C28—H28B0.9900O11—C231.436 (16)
C28—C291.380 (15)C20—H20A0.9900
C29—H29A0.9800C20—H20B0.9900
C29—H29B0.9800C20—C211.449 (17)
C29—H29C0.9800C23—H23A0.9900
C30—H30A0.9900C23—H23B0.9900
C30—H30B0.9900C23—C221.476 (17)
C30—C311.443 (14)C22—H22A0.9900
C31—H31A0.9800C22—H22B0.9900
C31—H31B0.9800C22—O121.439 (14)
C31—H31C0.9800C21—H21A0.9900
C24—H24A0.9900C21—H21B0.9900
C24—H24B0.9900C21—O121.417 (15)
O5i—Cu1—Cu1i84.72 (7)C25—C24—H24B106.3
O5i—Cu1—O896.44 (10)C24—C25—H25A109.5
O5i—Cu1—O4169.41 (10)C24—C25—H25B109.5
O5i—Cu1—O796.44 (10)C24—C25—H25C109.5
O8—Cu1—Cu1i178.59 (7)H25A—C25—H25B109.5
O2i—Cu1—Cu1i84.69 (7)H25A—C25—H25C109.5
O2i—Cu1—O5i88.27 (10)H25B—C25—H25C109.5
O2i—Cu1—O896.14 (9)N1—C26—H26A107.2
O2i—Cu1—O1169.50 (10)N1—C26—H26B107.2
O2i—Cu1—O490.21 (11)H26A—C26—H26B106.9
O2i—Cu1—O796.14 (9)C27—C26—N1120.4 (12)
O1—Cu1—Cu1i84.85 (8)C27—C26—H26A107.2
O1—Cu1—O5i89.95 (11)C27—C26—H26B107.2
O1—Cu1—O894.34 (10)C26—C27—H27A109.5
O1—Cu1—O489.64 (12)C26—C27—H27B109.5
O1—Cu1—O794.34 (10)C26—C27—H27C109.5
O4—Cu1—Cu1i84.70 (8)H27A—C27—H27B109.5
O4—Cu1—O894.14 (10)H27A—C27—H27C109.5
O4—Cu1—O794.14 (10)H27B—C27—H27C109.5
C12—O6—H6109.5C34—O14—C32ii110.4 (10)
C5—O3—H3114.8 (2)O14—C34—H34A109.2
C8—O5—Cu1i122.7 (2)O14—C34—H34B109.2
Cu1—O8—H8A109.4O14—C34—C32112.2 (14)
Cu1—O8—H8B109.6H34A—C34—H34B107.9
H8A—O8—H8B90.7C32—C34—H34A109.2
C1—O2—Cu1i122.8 (2)C32—C34—H34B109.2
C1—O1—Cu1122.5 (2)O14ii—C32—C34108.5 (11)
C8—O4—Cu1122.7 (2)O14ii—C32—H32A110.0
O6—C12—C13117.3 (3)O14ii—C32—H32B110.0
O6—C12—C11122.6 (3)C34—C32—H32A110.0
C11—C12—C13120.1 (3)C34—C32—H32B110.0
O2—C1—C2117.8 (3)H32A—C32—H32B108.4
O1—C1—O2125.1 (3)C33—O13—C35ii111.5 (16)
O1—C1—C2117.1 (3)O13ii—C35—H35A107.6
C12—C13—H13120.4O13ii—C35—H35B107.6
C14—C13—C12119.2 (3)H35A—C35—H35B107.0
C14—C13—H13120.4C33—C35—H35A107.6
C3—C2—C1120.6 (3)C33—C35—H35B107.6
C3—C2—C7118.4 (3)O13—C33—H33A108.8
C7—C2—C1120.9 (3)O13—C33—H33B108.8
O5—C8—C9117.2 (3)C35—C33—O13114 (2)
O4—C8—O5125.1 (3)C35—C33—H33A108.8
O4—C8—C9117.7 (3)C35—C33—H33B108.8
C14—C9—C8120.8 (3)H33A—C33—H33B107.7
C14—C9—C10118.4 (3)H15A—C15—H15B109.5
C10—C9—C8120.8 (3)H15A—C15—H15C109.5
O3—C5—C6119.6 (3)H15B—C15—H15C109.5
O3—C5—C4121.7 (3)O7—C15—H15A109.5
C4—C5—C6118.7 (3)O7—C15—H15B109.5
C13—C14—C9121.3 (3)O7—C15—H15C109.5
C13—C14—H14119.3Cu1—O7—H8A109.4
C9—C14—H14119.3C15—O7—Cu1113.1 (5)
C2—C3—H3A119.4C15—O7—H8A104.8
C4—C3—C2121.2 (3)C18—O10—C17120.7 (17)
C4—C3—H3A119.4C19—O9—C16109 (2)
C5—C6—H6A119.6O10—C17—H17A111.0
C7—C6—C5120.8 (3)O10—C17—H17B111.0
C7—C6—H6A119.6H17A—C17—H17B109.0
C12—C11—H11120.1C16—C17—O10103.7 (17)
C10—C11—C12119.7 (3)C16—C17—H17A111.0
C10—C11—H11120.1C16—C17—H17B111.0
C9—C10—H10119.3O9—C16—C17117 (3)
C11—C10—C9121.3 (3)O9—C16—H16A108.1
C11—C10—H10119.3O9—C16—H16B108.1
C2—C7—H7119.7C17—C16—H16A108.1
C6—C7—C2120.6 (3)C17—C16—H16B108.1
C6—C7—H7119.7H16A—C16—H16B107.3
C5—C4—H4119.9O9—C19—H19A106.2
C3—C4—C5120.2 (3)O9—C19—H19B106.2
C3—C4—H4119.9O9—C19—C18124.3 (19)
C28—N1—C24105.1 (13)H19A—C19—H19B106.4
C30—N1—C28113.5 (12)C18—C19—H19A106.2
C30—N1—C24110.9 (12)C18—C19—H19B106.2
C26—N1—C28108.9 (11)O10—C18—C19107.2 (16)
C26—N1—C30109.8 (11)O10—C18—H18A110.3
C26—N1—C24108.4 (14)O10—C18—H18B110.3
N1—C28—H28A108.0C19—C18—H18A110.3
N1—C28—H28B108.0C19—C18—H18B110.3
H28A—C28—H28B107.2H18A—C18—H18B108.5
C29—C28—N1117.2 (13)C20—O11—C23107 (2)
C29—C28—H28A108.0O11—C20—H20A109.4
C29—C28—H28B108.0O11—C20—H20B109.4
C28—C29—H29A109.5O11—C20—C21111 (2)
C28—C29—H29B109.5H20A—C20—H20B108.0
C28—C29—H29C109.5C21—C20—H20A109.4
H29A—C29—H29B109.5C21—C20—H20B109.4
H29A—C29—H29C109.5O11—C23—H23A106.9
H29B—C29—H29C109.5O11—C23—H23B106.9
N1—C30—H30A108.2O11—C23—C22121.6 (19)
N1—C30—H30B108.2H23A—C23—H23B106.7
H30A—C30—H30B107.3C22—C23—H23A106.9
C31—C30—N1116.6 (10)C22—C23—H23B106.9
C31—C30—H30A108.2C23—C22—H22A108.1
C31—C30—H30B108.2C23—C22—H22B108.1
C30—C31—H31A109.5H22A—C22—H22B107.3
C30—C31—H31B109.5O12—C22—C23117.0 (16)
C30—C31—H31C109.5O12—C22—H22A108.1
H31A—C31—H31B109.5O12—C22—H22B108.1
H31A—C31—H31C109.5C20—C21—H21A107.8
H31B—C31—H31C109.5C20—C21—H21B107.8
N1—C24—H24A106.3H21A—C21—H21B107.2
N1—C24—H24B106.3O12—C21—C20118 (2)
H24A—C24—H24B106.4O12—C21—H21A107.8
C25—C24—N1124.1 (13)O12—C21—H21B107.8
C25—C24—H24A106.3C21—O12—C22105.2 (17)
Cu1i—O5—C8—O42.4 (5)C11—C12—C13—C141.3 (5)
Cu1i—O5—C8—C9177.73 (19)C10—C9—C14—C130.2 (5)
Cu1i—O2—C1—O10.7 (5)C7—C2—C3—C41.4 (6)
Cu1i—O2—C1—C2179.9 (2)C4—C5—C6—C71.5 (6)
Cu1—O1—C1—O21.9 (5)C28—N1—C30—C3159.9 (19)
Cu1—O1—C1—C2179.0 (2)C28—N1—C24—C25164.0 (17)
Cu1—O4—C8—O53.2 (5)C28—N1—C26—C2751 (2)
Cu1—O4—C8—C9177.0 (2)C30—N1—C28—C2949.3 (17)
O6—C12—C13—C14179.4 (3)C30—N1—C24—C2541 (2)
O6—C12—C11—C10179.1 (3)C30—N1—C26—C27175.9 (17)
O3—C5—C6—C7178.6 (3)C24—N1—C28—C29170.7 (13)
O3—C5—C4—C3178.8 (3)C24—N1—C30—C3158.1 (19)
O5—C8—C9—C140.5 (4)C24—N1—C26—C2763 (2)
O5—C8—C9—C10180.0 (3)C26—N1—C28—C2973.3 (16)
O2—C1—C2—C3172.9 (3)C26—N1—C30—C31177.9 (15)
O2—C1—C2—C75.7 (5)C26—N1—C24—C2580 (2)
O1—C1—C2—C36.4 (5)O14—C34—C32—O14ii57.8 (17)
O1—C1—C2—C7175.0 (3)C32ii—O14—C34—C3258.8 (18)
O4—C8—C9—C14179.4 (3)O13ii—C35—C33—O1346 (5)
O4—C8—C9—C100.2 (5)C35ii—O13—C33—C3542 (5)
C12—C13—C14—C90.8 (5)O10—C17—C16—O958 (4)
C12—C11—C10—C90.4 (6)O9—C19—C18—O1034 (3)
C1—C2—C3—C4177.2 (3)C17—O10—C18—C1945 (3)
C1—C2—C7—C6177.4 (3)C16—O9—C19—C1838 (4)
C13—C12—C11—C101.1 (5)C19—O9—C16—C1750 (4)
C2—C3—C4—C50.1 (6)C18—O10—C17—C1657 (3)
C8—C9—C14—C13179.7 (3)O11—C20—C21—O1266 (4)
C8—C9—C10—C11179.5 (3)O11—C23—C22—O1235 (4)
C5—C6—C7—C20.2 (6)C20—O11—C23—C2238 (4)
C14—C9—C10—C110.0 (5)C20—C21—O12—C2256 (3)
C3—C2—C7—C61.2 (5)C23—O11—C20—C2149 (4)
C6—C5—C4—C31.3 (6)C23—C22—O12—C2139 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+2.
Triaqua(dioxane)lithium tris(µ-4-hydroxybenzoato)(µ-4-oxidobenzoato)bis[aquacopper(II)] dioxane disolvate monohydrate (compound_3) top
Crystal data top
[Li(C4H8O2)(H2O)3][Cu2(C7H5O3)2(C7H4.5O3)2(H2O)2]·2C4H8O2·H2OZ = 1
Mr = 1047.81F(000) = 542
Triclinic, P1Dx = 1.475 Mg m3
a = 9.7711 (8) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.1924 (6) ÅCell parameters from 3510 reflections
c = 12.5863 (7) Åθ = 4.6–75.1°
α = 73.615 (5)°µ = 1.85 mm1
β = 79.528 (6)°T = 100 K
γ = 83.412 (6)°Irregular, clear blue
V = 1179.86 (15) Å30.14 × 0.07 × 0.03 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
4145 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3048 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.070
Detector resolution: 10.0000 pixels mm-1θmax = 68.2°, θmin = 4.6°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2023)
k = 1212
Tmin = 0.610, Tmax = 1.000l = 1515
10093 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.089H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.261 w = 1/[σ2(Fo2) + (0.1435P)2 + 2.3152P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
4145 reflectionsΔρmax = 1.21 e Å3
338 parametersΔρmin = 1.32 e Å3
42 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms on the disordered water molecules containing O11 and O13 were not modelled. A Li atom and 3 coordinated H2O molecules are disordered across a centre of inversion and placed in Part -1. A water molecule (containing O13) is present when this Li group is absent.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.38413 (8)0.44096 (8)1.04454 (7)0.0407 (3)
O40.3050 (4)0.5680 (4)0.9199 (3)0.0399 (9)
O30.7321 (5)0.1046 (4)0.6841 (3)0.0462 (10)
O20.6606 (5)0.4217 (4)0.8704 (3)0.0477 (10)
O60.1137 (4)1.0334 (5)0.5107 (3)0.0481 (11)
O50.5051 (4)0.6668 (5)0.8416 (4)0.0609 (14)
O10.4633 (5)0.3197 (4)0.9507 (5)0.0602 (13)
O70.2001 (5)0.3273 (5)1.1236 (5)0.0673 (15)
H7A0.1737630.2835591.0770230.101*
H7B0.2172030.2553461.1836950.101*
C90.3070 (6)0.7543 (5)0.7571 (4)0.0366 (12)
C50.6987 (6)0.0029 (6)0.7287 (5)0.0439 (14)
C80.3781 (6)0.6559 (5)0.8459 (4)0.0392 (13)
C20.6203 (7)0.2170 (6)0.8296 (5)0.0464 (14)
C10.5794 (6)0.3279 (6)0.8863 (5)0.0473 (15)
C100.1669 (7)0.7495 (7)0.7551 (5)0.0482 (15)
H100.1148140.6817780.8105250.058*
C70.7338 (7)0.2261 (7)0.7429 (5)0.0525 (16)
H70.7855530.3055010.7189470.063*
C120.1768 (6)0.9412 (6)0.5911 (4)0.0410 (13)
C140.3812 (6)0.8539 (6)0.6753 (5)0.0453 (14)
H140.4775830.8585470.6758170.054*
C60.7714 (7)0.1217 (7)0.6921 (5)0.0515 (16)
H6A0.8471650.1303580.6319250.062*
C40.5883 (8)0.0078 (6)0.8167 (6)0.0578 (18)
H40.5392420.0888960.8435120.069*
C130.3165 (6)0.9466 (6)0.5929 (4)0.0429 (14)
H130.3686941.0142120.5374290.051*
C30.5500 (8)0.0985 (6)0.8652 (6)0.0590 (18)
H3A0.4733220.0903640.9245950.071*
O80.0820 (8)0.2064 (10)0.9889 (8)0.125 (3)
C110.1015 (7)0.8421 (8)0.6732 (5)0.0572 (18)
H110.0048930.8380420.6729810.069*
O100.6328 (9)0.5374 (9)0.4925 (8)0.116 (3)
O90.0984 (11)0.2964 (12)0.7549 (9)0.146 (3)
C200.6142 (13)0.4296 (12)0.4539 (10)0.104 (4)
H20A0.6962530.3628930.4614040.125*
H20B0.6043750.4622370.3735470.125*
C170.0420 (14)0.3807 (15)0.8225 (11)0.121 (3)
H17A0.0311990.4450810.7875300.145*
H17B0.1156370.4353310.8298640.145*
C180.0188 (13)0.2999 (15)0.9347 (10)0.119 (3)
H18A0.0591530.3627620.9812880.143*
H18B0.0951510.2486100.9273840.143*
C190.5160 (16)0.6390 (12)0.4789 (13)0.118 (4)
H19A0.5058490.6737320.3987120.142*
H19B0.5312820.7172400.5063690.142*
C150.1383 (18)0.1230 (17)0.9084 (15)0.150 (4)
H15A0.2099010.0533510.9400440.180*
H15B0.0620270.0743830.8974540.180*
C160.1989 (19)0.2079 (18)0.8021 (16)0.163 (4)
H160.2945020.2028280.7699550.195*
H30.78 (2)0.08 (2)0.619 (8)0.244*
H60.029 (14)1.02 (3)0.51 (3)0.244*0.5
O110.9549 (12)0.4163 (10)0.5358 (8)0.064 (3)0.5
O120.8884 (13)0.7314 (10)0.4357 (7)0.065 (3)0.5
H12A0.9255990.7462130.3655010.097*0.5
H12B0.8958160.8073500.4522420.097*0.5
Li10.819 (3)0.567 (3)0.5324 (18)0.058 (6)0.5
O140.7460 (14)0.6145 (10)0.6690 (9)0.065 (3)0.5
H14A0.7336660.5598700.7364240.098*0.5
H14B0.7210000.6958290.6782210.098*0.5
O130.8171 (17)0.5735 (14)0.6329 (10)0.085 (4)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0322 (5)0.0349 (5)0.0401 (5)0.0003 (3)0.0017 (3)0.0102 (3)
O40.036 (2)0.041 (2)0.0295 (18)0.0003 (16)0.0006 (15)0.0068 (15)
O30.047 (2)0.048 (2)0.0320 (19)0.0004 (18)0.0031 (17)0.0015 (17)
O20.048 (2)0.052 (2)0.034 (2)0.0111 (19)0.0020 (17)0.0018 (17)
O60.042 (2)0.060 (2)0.0263 (18)0.0031 (19)0.0058 (16)0.0132 (17)
O50.035 (2)0.054 (3)0.063 (3)0.0014 (18)0.009 (2)0.033 (2)
O10.042 (3)0.041 (2)0.086 (3)0.0046 (18)0.015 (2)0.013 (2)
O70.034 (2)0.054 (3)0.083 (3)0.0033 (19)0.002 (2)0.027 (2)
C90.043 (3)0.034 (3)0.024 (2)0.006 (2)0.002 (2)0.001 (2)
C50.042 (3)0.047 (3)0.032 (3)0.001 (2)0.002 (2)0.004 (2)
C80.037 (3)0.038 (3)0.033 (3)0.007 (2)0.003 (2)0.002 (2)
C20.045 (3)0.040 (3)0.041 (3)0.001 (2)0.000 (2)0.007 (2)
C10.044 (3)0.040 (3)0.043 (3)0.000 (3)0.009 (3)0.014 (2)
C100.043 (3)0.056 (3)0.031 (3)0.005 (3)0.002 (2)0.011 (2)
C70.056 (4)0.051 (4)0.040 (3)0.014 (3)0.001 (3)0.004 (3)
C120.045 (3)0.047 (3)0.022 (2)0.000 (2)0.004 (2)0.002 (2)
C140.036 (3)0.048 (3)0.041 (3)0.000 (2)0.003 (2)0.004 (3)
C60.051 (4)0.062 (4)0.032 (3)0.014 (3)0.005 (3)0.000 (3)
C40.060 (4)0.041 (3)0.055 (4)0.008 (3)0.018 (3)0.000 (3)
C130.041 (3)0.045 (3)0.030 (3)0.003 (2)0.003 (2)0.008 (2)
C30.057 (4)0.042 (3)0.061 (4)0.006 (3)0.019 (3)0.003 (3)
O80.069 (4)0.161 (6)0.140 (6)0.012 (4)0.011 (4)0.045 (5)
C110.037 (3)0.079 (5)0.037 (3)0.010 (3)0.005 (2)0.017 (3)
O100.095 (5)0.108 (6)0.159 (8)0.001 (4)0.029 (5)0.056 (5)
O90.117 (6)0.190 (7)0.144 (6)0.016 (5)0.038 (5)0.101 (6)
C200.116 (9)0.103 (8)0.089 (7)0.030 (7)0.002 (6)0.045 (6)
C170.097 (6)0.166 (8)0.119 (6)0.009 (6)0.005 (5)0.083 (6)
C180.076 (5)0.181 (7)0.111 (6)0.030 (5)0.012 (5)0.075 (6)
C190.139 (11)0.087 (7)0.135 (11)0.001 (7)0.009 (9)0.050 (7)
C150.111 (7)0.142 (8)0.184 (8)0.004 (6)0.031 (6)0.057 (7)
C160.129 (8)0.169 (8)0.179 (8)0.002 (6)0.056 (7)0.083 (7)
O110.078 (7)0.052 (5)0.051 (5)0.006 (5)0.005 (5)0.003 (4)
O120.095 (8)0.057 (6)0.034 (4)0.014 (5)0.007 (5)0.008 (4)
Li10.072 (16)0.068 (14)0.034 (10)0.007 (11)0.000 (10)0.018 (10)
O140.097 (9)0.046 (5)0.041 (5)0.015 (6)0.006 (6)0.001 (4)
O130.112 (11)0.079 (8)0.054 (7)0.003 (7)0.022 (7)0.022 (6)
Geometric parameters (Å, º) top
Cu1—O41.949 (4)C13—H130.9500
Cu1—O2i1.958 (5)C3—H3A0.9500
Cu1—O5i1.959 (4)O8—C181.415 (15)
Cu1—O11.948 (5)O8—C151.492 (16)
Cu1—O72.178 (4)C11—H110.9500
O4—C81.271 (7)O10—C201.363 (13)
O3—C51.349 (8)O10—C191.451 (15)
O3—H30.850 (15)O10—Li12.05 (3)
O2—C11.263 (8)O9—C171.379 (13)
O6—C121.358 (7)O9—C161.36 (2)
O6—H60.85 (2)C20—H20A0.9900
O5—C81.248 (7)C20—H20B0.9900
O1—C11.265 (8)C20—C19ii1.517 (18)
O7—H7A0.9149C17—H17A0.9900
O7—H7B0.9178C17—H17B0.9900
C9—C81.491 (7)C17—C181.476 (18)
C9—C101.381 (9)C18—H18A0.9900
C9—C141.387 (8)C18—H18B0.9900
C5—C61.395 (9)C19—H19A0.9900
C5—C41.389 (9)C19—H19B0.9900
C2—C11.481 (9)C15—H15A0.9900
C2—C71.398 (9)C15—H15B0.9900
C2—C31.380 (9)C15—C161.44 (2)
C10—H100.9500C16—H160.9500
C10—C111.384 (8)O11—Li11.91 (3)
C7—H70.9500O12—H12A0.8696
C7—C61.373 (10)O12—H12B0.8703
C12—C131.377 (9)O12—Li11.89 (3)
C12—C111.390 (8)Li1—O141.91 (2)
C14—H140.9500Li1—O131.28 (3)
C14—C131.384 (8)O14—H14A0.8699
C6—H6A0.9500O14—H14B0.8705
C4—H40.9500O14—O130.889 (14)
C4—C31.372 (10)
O4—Cu1—O2i89.60 (17)C10—C11—H11119.9
O4—Cu1—O5i169.14 (17)C12—C11—H11119.9
O4—Cu1—O797.95 (18)C20—O10—C19110.9 (10)
O2i—Cu1—O5i88.7 (2)C20—O10—Li1123.0 (10)
O2i—Cu1—O795.2 (2)C19—O10—Li1124.9 (10)
O5i—Cu1—O792.89 (18)C16—O9—C17109.9 (12)
O1—Cu1—O490.9 (2)O10—C20—H20A109.8
O1—Cu1—O2i168.96 (18)O10—C20—H20B109.8
O1—Cu1—O5i88.7 (2)O10—C20—C19ii109.2 (9)
O1—Cu1—O795.7 (2)H20A—C20—H20B108.3
C8—O4—Cu1121.3 (4)C19ii—C20—H20A109.8
C5—O3—H3112 (10)C19ii—C20—H20B109.8
C1—O2—Cu1i120.0 (4)O9—C17—H17A109.5
C12—O6—H6115 (5)O9—C17—H17B109.5
C8—O5—Cu1i124.2 (3)O9—C17—C18110.9 (12)
C1—O1—Cu1126.8 (5)H17A—C17—H17B108.0
Cu1—O7—H7A111.6C18—C17—H17A109.5
Cu1—O7—H7B112.4C18—C17—H17B109.5
H7A—O7—H7B101.9O8—C18—C17111.8 (10)
C10—C9—C8121.2 (5)O8—C18—H18A109.3
C10—C9—C14118.6 (5)O8—C18—H18B109.3
C14—C9—C8120.2 (5)C17—C18—H18A109.3
O3—C5—C6123.2 (5)C17—C18—H18B109.3
O3—C5—C4117.8 (6)H18A—C18—H18B107.9
C4—C5—C6119.0 (6)O10—C19—C20ii107.7 (10)
O4—C8—C9117.7 (5)O10—C19—H19A110.2
O5—C8—O4125.1 (5)O10—C19—H19B110.2
O5—C8—C9117.2 (5)C20ii—C19—H19A110.2
C7—C2—C1121.5 (6)C20ii—C19—H19B110.2
C3—C2—C1120.1 (5)H19A—C19—H19B108.5
C3—C2—C7118.3 (6)O8—C15—H15A109.4
O2—C1—O1124.0 (6)O8—C15—H15B109.4
O2—C1—C2119.7 (5)H15A—C15—H15B108.0
O1—C1—C2116.3 (6)C16—C15—O8111.1 (13)
C9—C10—H10119.6C16—C15—H15A109.4
C9—C10—C11120.8 (5)C16—C15—H15B109.4
C11—C10—H10119.6O9—C16—C15109.4 (14)
C2—C7—H7119.6O9—C16—H16125.3
C6—C7—C2120.8 (6)C15—C16—H16125.3
C6—C7—H7119.6H12A—O12—H12B104.5
O6—C12—C13119.9 (5)Li1—O12—H12A127.5
O6—C12—C11120.8 (6)Li1—O12—H12B127.9
C13—C12—C11119.3 (5)O11—Li1—O10114.4 (12)
C9—C14—H14119.6O12—Li1—O10109.6 (13)
C13—C14—C9120.9 (6)O12—Li1—O11111.6 (13)
C13—C14—H14119.6O12—Li1—O14103.7 (12)
C5—C6—H6A119.9O14—Li1—O1097.5 (12)
C7—C6—C5120.1 (6)O14—Li1—O11118.6 (13)
C7—C6—H6A119.9O13—Li1—O10116.5 (17)
C5—C4—H4119.9O13—Li1—O1197.0 (17)
C3—C4—C5120.2 (6)O13—Li1—O12107.0 (16)
C3—C4—H4119.9O13—Li1—O1423.3 (9)
C12—C13—C14120.2 (5)Li1—O14—H14A127.6
C12—C13—H13119.9Li1—O14—H14B127.8
C14—C13—H13119.9H14A—O14—H14B104.5
C2—C3—H3A119.3O13—O14—Li134.7 (14)
C4—C3—C2121.4 (6)O13—O14—H14A104.0
C4—C3—H3A119.3O13—O14—H14B138.1
C18—O8—C15103.7 (11)O14—O13—Li1122 (2)
C10—C11—C12120.2 (6)
Cu1—O4—C8—O53.3 (8)C7—C2—C3—C40.7 (11)
Cu1—O4—C8—C9176.6 (4)C14—C9—C8—O4178.9 (5)
Cu1i—O2—C1—O14.2 (8)C14—C9—C8—O50.9 (8)
Cu1i—O2—C1—C2174.3 (4)C14—C9—C10—C110.0 (10)
Cu1i—O5—C8—O45.0 (9)C6—C5—C4—C31.4 (11)
Cu1i—O5—C8—C9174.9 (4)C4—C5—C6—C70.0 (10)
Cu1—O1—C1—O22.6 (9)C13—C12—C11—C100.5 (11)
Cu1—O1—C1—C2175.9 (4)C3—C2—C1—O2164.9 (6)
O3—C5—C6—C7178.5 (6)C3—C2—C1—O113.7 (9)
O3—C5—C4—C3180.0 (6)C3—C2—C7—C62.1 (10)
O6—C12—C13—C14179.3 (6)O8—C15—C16—O964 (2)
O6—C12—C11—C10179.5 (6)C11—C12—C13—C140.3 (10)
C9—C10—C11—C120.4 (11)O10—Li1—O13—O1438 (3)
C9—C14—C13—C120.0 (10)O9—C17—C18—O859.4 (16)
C5—C4—C3—C21.0 (12)C20—O10—C19—C20ii60.5 (14)
C8—C9—C10—C11179.2 (6)C17—O9—C16—C1561.7 (18)
C8—C9—C14—C13179.5 (5)C18—O8—C15—C1659.6 (18)
C2—C7—C6—C51.8 (10)C19—O10—C20—C19ii61.4 (15)
C1—C2—C7—C6179.2 (6)C15—O8—C18—C1756.5 (14)
C1—C2—C3—C4177.9 (7)C16—O9—C17—C1859.2 (16)
C10—C9—C8—O40.3 (8)O11—Li1—O13—O14159.6 (17)
C10—C9—C8—O5179.8 (6)O12—Li1—O13—O1485 (2)
C10—C9—C14—C130.2 (9)Li1—O10—C20—C19ii130.4 (12)
C7—C2—C1—O212.2 (9)Li1—O10—C19—C20ii131.6 (12)
C7—C2—C1—O1169.3 (6)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1.
(1-Aza-4-azoniabicyclo[2.2.2]octane)(1,4-diazabicyclo[2.2.2]octane)tris(µ-4-hydroxybenzoato)(µ-4-oxidobenzoato)dicopper(II) methanol trisolvate (compound_4) top
Crystal data top
[Cu2(C7H5O3)2(C7H4.5O3)2(C6H12.5N2)2]·3CH4OZ = 2
Mr = 995.99F(000) = 520
Triclinic, P1Dx = 1.540 Mg m3
a = 8.8860 (18) ÅSynchrotron radiation, λ = 0.7108 Å
b = 10.702 (2) ÅCell parameters from 1048 reflections
c = 12.360 (3) ŵ = 1.07 mm1
α = 73.13 (3)°T = 100 K
β = 73.07 (3)°Irregular, dark green
γ = 81.68 (3)°0.18 × 0.11 × 0.07 mm
V = 1073.8 (4) Å3
Data collection top
MX1 beamline, Australian Synchrotron
diffractometer
3849 independent reflections
Radiation source: MX1 Beamline Australian Synchrotron2994 reflections with I > 2σ(I)
Silicon Double Crystal monochromatorRint = 0.061
Detector resolution: 13.3 pixels mm-1θmax = 26.0°, θmin = 2.0°
ω Scan scansh = 1010
Absorption correction: multi-scan
(XDS; Kabsch, 2010)
k = 1313
Tmin = 0.321, Tmax = 0.432l = 1515
15021 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.089 w = 1/[σ2(Fo2) + (0.171P)2 + 2.1393P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.263(Δ/σ)max = 0.001
S = 1.05Δρmax = 1.14 e Å3
3849 reflectionsΔρmin = 0.76 e Å3
325 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
364 restraintsExtinction coefficient: 0.042 (8)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.91525 (8)0.40962 (7)0.50033 (6)0.0423 (4)
O10.8428 (6)0.5494 (4)0.3804 (4)0.0574 (12)
C20.8255 (8)0.7566 (6)0.2492 (5)0.0477 (14)
O20.9863 (7)0.7028 (5)0.3797 (5)0.0665 (15)
C30.7122 (9)0.7192 (7)0.2095 (6)0.0607 (18)
H30.6789430.6324760.2404300.073*
O30.6426 (8)1.0210 (6)0.0079 (5)0.0847 (19)
H3A0.543 (5)1.010 (9)0.008 (8)0.127*0.5
C40.6478 (11)0.8062 (8)0.1261 (7)0.074 (2)
H40.5682570.7798650.1016100.089*
O40.7604 (5)0.4726 (4)0.6205 (3)0.0450 (10)
C50.6990 (11)0.9344 (8)0.0764 (7)0.072 (2)
O50.9074 (6)0.6316 (5)0.6200 (4)0.0545 (11)
C60.8155 (11)0.9693 (8)0.1147 (7)0.069 (2)
H60.8546031.0538880.0806150.083*
O60.2991 (10)0.7280 (8)1.0103 (6)0.101 (2)
C70.8749 (9)0.8828 (7)0.2012 (6)0.0603 (18)
H70.9510050.9098940.2284490.072*
C10.8900 (7)0.6624 (6)0.3432 (5)0.0444 (13)
C90.6517 (9)0.6047 (7)0.7562 (6)0.0547 (16)
C100.5215 (9)0.5350 (9)0.8104 (7)0.067 (2)
H100.5114310.4580530.7902620.081*
C110.4014 (11)0.5794 (11)0.8975 (8)0.085 (3)
H110.3101260.5315980.9372590.102*
C120.4177 (13)0.6931 (10)0.9244 (7)0.080 (3)
C130.5484 (13)0.7608 (9)0.8695 (8)0.079 (3)
H130.5590520.8374380.8898750.095*
C140.6642 (11)0.7198 (8)0.7853 (7)0.068 (2)
H140.7542700.7691910.7459230.081*
C80.7799 (8)0.5664 (6)0.6607 (5)0.0481 (15)
N10.7671 (6)0.2586 (5)0.4988 (4)0.0461 (11)0.555 (7)
C170.731 (2)0.1618 (13)0.6134 (10)0.081 (3)0.555 (7)
H17A0.6780590.2071250.6751850.097*0.555 (7)
H17B0.8304280.1170300.6302550.097*0.555 (7)
C150.8402 (17)0.1984 (14)0.4014 (12)0.086 (3)0.555 (7)
H15A0.9468280.1597610.4068070.104*0.555 (7)
H15B0.8512510.2661930.3260170.104*0.555 (7)
C160.6165 (13)0.3210 (11)0.4750 (15)0.074 (3)0.555 (7)
H16A0.6377010.3854950.3973650.089*0.555 (7)
H16B0.5609830.3682170.5349290.089*0.555 (7)
C200.625 (2)0.0609 (15)0.6157 (10)0.082 (3)0.555 (7)
H20A0.6769060.0278650.6359810.098*0.555 (7)
H20B0.5244600.0647540.6762970.098*0.555 (7)
C180.7403 (14)0.0925 (15)0.4052 (13)0.089 (3)0.555 (7)
H18A0.7146100.1108360.3291270.107*0.555 (7)
H18B0.8010050.0067580.4178890.107*0.555 (7)
C190.5127 (14)0.2189 (8)0.4768 (14)0.071 (3)0.555 (7)
H19A0.4126880.2206630.5384070.085*0.555 (7)
H19B0.4871870.2397890.4004190.085*0.555 (7)
N20.5933 (6)0.0867 (5)0.4999 (5)0.0559 (14)0.555 (7)
N30.7671 (6)0.2586 (5)0.4988 (4)0.0461 (11)0.445 (7)
C220.659 (2)0.2161 (17)0.6165 (10)0.079 (3)0.445 (7)
H22A0.5874740.2911900.6360860.095*0.445 (7)
H22B0.7193550.1825410.6758060.095*0.445 (7)
C230.8617 (16)0.1350 (11)0.4899 (17)0.071 (3)0.445 (7)
H23A0.9092910.1020470.5568910.085*0.445 (7)
H23B0.9480730.1508150.4167660.085*0.445 (7)
C210.721 (2)0.2961 (15)0.3879 (12)0.078 (3)0.445 (7)
H21A0.8160110.3044540.3207910.094*0.445 (7)
H21B0.6590430.3813860.3798010.094*0.445 (7)
C250.562 (2)0.1089 (17)0.6177 (10)0.080 (3)0.445 (7)
H25A0.5876370.0265340.6730750.096*0.445 (7)
H25B0.4485200.1335830.6457790.096*0.445 (7)
C260.7583 (12)0.0335 (14)0.4900 (18)0.079 (3)0.445 (7)
H26A0.7995940.0053500.4166650.095*0.445 (7)
H26B0.7620380.0442030.5565860.095*0.445 (7)
C240.622 (2)0.1906 (14)0.3892 (12)0.087 (3)0.445 (7)
H24A0.5199770.2316500.3756720.104*0.445 (7)
H24B0.6770700.1508510.3238910.104*0.445 (7)
N40.5933 (6)0.0867 (5)0.4999 (5)0.0559 (14)0.445 (7)
H20.5000000.0000000.5000000.11 (5)*
H6A0.276 (19)0.807 (5)1.015 (13)0.160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0498 (5)0.0343 (5)0.0516 (5)0.0111 (3)0.0270 (3)0.0070 (3)
O10.075 (3)0.039 (2)0.071 (3)0.018 (2)0.049 (3)0.003 (2)
C20.054 (3)0.043 (3)0.050 (3)0.001 (3)0.022 (3)0.011 (3)
O20.088 (4)0.042 (3)0.084 (3)0.018 (2)0.061 (3)0.006 (2)
C30.076 (5)0.050 (4)0.066 (4)0.001 (4)0.041 (4)0.010 (3)
O30.127 (5)0.063 (3)0.070 (3)0.021 (4)0.057 (4)0.010 (3)
C40.100 (6)0.061 (5)0.075 (5)0.002 (4)0.056 (5)0.011 (4)
O40.056 (2)0.041 (2)0.043 (2)0.0215 (19)0.0165 (18)0.0070 (17)
C50.094 (6)0.064 (5)0.057 (4)0.029 (4)0.039 (4)0.015 (3)
O50.057 (3)0.056 (3)0.062 (3)0.011 (2)0.013 (2)0.031 (2)
C60.085 (5)0.053 (4)0.067 (4)0.008 (4)0.028 (4)0.002 (3)
O60.116 (5)0.098 (5)0.070 (4)0.034 (5)0.023 (4)0.012 (4)
C70.070 (4)0.050 (4)0.061 (4)0.007 (3)0.026 (3)0.003 (3)
C10.047 (3)0.042 (3)0.051 (3)0.006 (3)0.024 (3)0.010 (3)
C90.065 (4)0.049 (4)0.060 (4)0.002 (3)0.035 (3)0.013 (3)
C100.063 (4)0.068 (5)0.068 (5)0.002 (4)0.025 (4)0.007 (4)
C110.073 (5)0.095 (7)0.068 (5)0.000 (5)0.018 (4)0.002 (5)
C120.105 (7)0.073 (6)0.057 (4)0.019 (5)0.037 (5)0.005 (4)
C130.106 (7)0.067 (5)0.071 (5)0.017 (5)0.042 (5)0.022 (4)
C140.091 (6)0.058 (4)0.065 (4)0.006 (4)0.041 (4)0.018 (3)
C80.052 (3)0.047 (4)0.050 (3)0.005 (3)0.029 (3)0.004 (3)
N10.052 (3)0.045 (3)0.048 (3)0.017 (2)0.023 (2)0.005 (2)
C170.094 (6)0.054 (5)0.105 (6)0.028 (5)0.051 (5)0.001 (5)
C150.092 (5)0.063 (5)0.123 (6)0.025 (5)0.038 (5)0.034 (5)
C160.076 (5)0.044 (5)0.124 (6)0.025 (4)0.063 (5)0.009 (5)
C200.092 (6)0.057 (6)0.110 (6)0.031 (5)0.058 (5)0.001 (5)
C180.089 (6)0.066 (5)0.129 (6)0.025 (5)0.034 (5)0.035 (5)
C190.071 (5)0.037 (5)0.124 (7)0.019 (4)0.060 (5)0.010 (5)
N20.057 (3)0.045 (3)0.076 (4)0.017 (3)0.026 (3)0.016 (3)
N30.052 (3)0.045 (3)0.048 (3)0.017 (2)0.023 (2)0.005 (2)
C220.091 (6)0.051 (6)0.108 (6)0.026 (5)0.045 (5)0.012 (5)
C230.078 (5)0.038 (4)0.118 (6)0.019 (3)0.046 (5)0.027 (5)
C210.092 (6)0.055 (6)0.114 (7)0.027 (6)0.065 (5)0.013 (6)
C250.091 (7)0.053 (6)0.111 (6)0.026 (5)0.043 (6)0.016 (5)
C260.077 (5)0.056 (4)0.127 (7)0.030 (4)0.047 (5)0.025 (5)
C240.094 (6)0.060 (5)0.127 (6)0.030 (5)0.061 (5)0.012 (5)
N40.057 (3)0.045 (3)0.076 (4)0.017 (3)0.026 (3)0.016 (3)
Geometric parameters (Å, º) top
Cu1—O11.959 (4)C17—H17B0.9900
Cu1—O2i1.957 (4)C17—C201.521 (12)
Cu1—O41.917 (4)C15—H15A0.9900
Cu1—O5i1.925 (5)C15—H15B0.9900
Cu1—N12.235 (5)C15—C181.520 (12)
Cu1—N32.235 (5)C16—H16A0.9900
O1—C11.250 (7)C16—H16B0.9900
C2—C31.390 (10)C16—C191.521 (12)
C2—C71.387 (10)C20—H20A0.9900
C2—C11.495 (8)C20—H20B0.9900
O2—C11.252 (7)C20—N21.479 (8)
C3—H30.9500C18—H18A0.9900
C3—C41.375 (9)C18—H18B0.9900
O3—H3A0.87 (2)C18—N21.473 (8)
O3—C51.344 (8)C19—H19A0.9900
C4—H40.9500C19—H19B0.9900
C4—C51.413 (12)C19—N21.479 (8)
O4—C81.294 (8)N2—H21.330 (5)
C5—C61.390 (12)N3—C221.477 (8)
O5—C81.310 (8)N3—C231.474 (8)
C6—H60.9500N3—C211.472 (8)
C6—C71.375 (10)C22—H22A0.9900
O6—C121.357 (11)C22—H22B0.9900
O6—H6A0.86 (2)C22—C251.523 (12)
C7—H70.9500C23—H23A0.9900
C9—C101.361 (11)C23—H23B0.9900
C9—C141.408 (11)C23—C261.521 (12)
C9—C81.490 (10)C21—H21A0.9900
C10—H100.9500C21—H21B0.9900
C10—C111.415 (12)C21—C241.519 (12)
C11—H110.9500C25—H25A0.9900
C11—C121.389 (15)C25—H25B0.9900
C12—C131.354 (14)C25—N41.483 (8)
C13—H130.9500C26—H26A0.9900
C13—C141.358 (12)C26—H26B0.9900
C14—H140.9500C26—N41.478 (8)
N1—C171.470 (8)C24—H24A0.9900
N1—C151.469 (8)C24—H24B0.9900
N1—C161.476 (8)C24—N41.473 (8)
C17—H17A0.9900N4—H21.330 (5)
O1—Cu1—N195.47 (18)C18—C15—H15B109.6
O1—Cu1—N395.47 (18)N1—C16—H16A109.5
O2i—Cu1—O1168.33 (19)N1—C16—H16B109.5
O2i—Cu1—N196.20 (19)N1—C16—C19110.5 (8)
O2i—Cu1—N396.20 (19)H16A—C16—H16B108.1
O4—Cu1—O190.0 (2)C19—C16—H16A109.5
O4—Cu1—O2i89.0 (2)C19—C16—H16B109.5
O4—Cu1—O5i170.21 (18)C17—C20—H20A109.6
O4—Cu1—N195.04 (19)C17—C20—H20B109.6
O4—Cu1—N395.04 (19)H20A—C20—H20B108.1
O5i—Cu1—O189.2 (2)N2—C20—C17110.1 (9)
O5i—Cu1—O2i89.9 (2)N2—C20—H20A109.6
O5i—Cu1—N194.8 (2)N2—C20—H20B109.6
O5i—Cu1—N394.8 (2)C15—C18—H18A109.4
C1—O1—Cu1124.4 (4)C15—C18—H18B109.4
C3—C2—C1120.1 (6)H18A—C18—H18B108.0
C7—C2—C3118.7 (6)N2—C18—C15111.0 (10)
C7—C2—C1121.2 (6)N2—C18—H18A109.4
C1—O2—Cu1i122.5 (4)N2—C18—H18B109.4
C2—C3—H3119.6C16—C19—H19A109.5
C4—C3—C2120.8 (7)C16—C19—H19B109.5
C4—C3—H3119.6H19A—C19—H19B108.1
C5—O3—H3A107 (2)N2—C19—C16110.7 (8)
C3—C4—H4119.7N2—C19—H19A109.5
C3—C4—C5120.5 (8)N2—C19—H19B109.5
C5—C4—H4119.7C20—N2—H2111.2 (6)
C8—O4—Cu1124.4 (4)C18—N2—C20111.7 (10)
O3—C5—C4122.4 (8)C18—N2—C19106.1 (9)
O3—C5—C6119.6 (8)C18—N2—H2111.8 (6)
C6—C5—C4118.0 (7)C19—N2—C20106.6 (10)
C8—O5—Cu1i122.5 (4)C19—N2—H2109.2 (5)
C5—C6—H6119.6C22—N3—Cu1108.7 (7)
C7—C6—C5120.8 (7)C23—N3—Cu1111.1 (6)
C7—C6—H6119.6C23—N3—C22100.5 (11)
C12—O6—H6A123 (10)C21—N3—Cu1109.6 (6)
C2—C7—H7119.4C21—N3—C22125.0 (11)
C6—C7—C2121.1 (7)C21—N3—C23100.8 (11)
C6—C7—H7119.4N3—C22—H22A109.9
O1—C1—C2117.7 (5)N3—C22—H22B109.9
O1—C1—O2124.8 (5)N3—C22—C25109.0 (11)
O2—C1—C2117.6 (6)H22A—C22—H22B108.3
C10—C9—C14120.1 (8)C25—C22—H22A109.9
C10—C9—C8121.6 (7)C25—C22—H22B109.9
C14—C9—C8118.2 (7)N3—C23—H23A109.6
C9—C10—H10120.6N3—C23—H23B109.6
C9—C10—C11118.8 (8)N3—C23—C26110.1 (10)
C11—C10—H10120.6H23A—C23—H23B108.1
C10—C11—H11120.2C26—C23—H23A109.6
C12—C11—C10119.6 (9)C26—C23—H23B109.6
C12—C11—H11120.2N3—C21—H21A110.1
O6—C12—C11116.1 (10)N3—C21—H21B110.1
C13—C12—O6123.2 (10)N3—C21—C24108.2 (10)
C13—C12—C11120.6 (9)H21A—C21—H21B108.4
C12—C13—H13119.8C24—C21—H21A110.1
C12—C13—C14120.5 (9)C24—C21—H21B110.1
C14—C13—H13119.8C22—C25—H25A109.2
C9—C14—H14119.8C22—C25—H25B109.2
C13—C14—C9120.4 (9)H25A—C25—H25B107.9
C13—C14—H14119.8N4—C25—C22112.0 (11)
O4—C8—O5122.9 (6)N4—C25—H25A109.2
O4—C8—C9119.3 (6)N4—C25—H25B109.2
O5—C8—C9117.8 (6)C23—C26—H26A109.4
C17—N1—Cu1110.3 (6)C23—C26—H26B109.4
C17—N1—C16108.0 (9)H26A—C26—H26B108.0
C15—N1—Cu1111.5 (6)N4—C26—C23111.2 (10)
C15—N1—C17112.8 (10)N4—C26—H26A109.4
C15—N1—C16104.0 (9)N4—C26—H26B109.4
C16—N1—Cu1110.0 (5)C21—C24—H24A108.9
N1—C17—H17A109.4C21—C24—H24B108.9
N1—C17—H17B109.4H24A—C24—H24B107.7
N1—C17—C20111.2 (9)N4—C24—C21113.3 (11)
H17A—C17—H17B108.0N4—C24—H24A108.9
C20—C17—H17A109.4N4—C24—H24B108.9
C20—C17—H17B109.4C25—N4—H2111.5 (7)
N1—C15—H15A109.6C26—N4—C2596.9 (11)
N1—C15—H15B109.6C26—N4—H2112.5 (6)
N1—C15—C18110.4 (10)C24—N4—C25124.6 (11)
H15A—C15—H15B108.1C24—N4—C2697.4 (11)
C18—C15—H15A109.6C24—N4—H2111.5 (7)
Cu1—O1—C1—C2178.5 (4)C12—C13—C14—C91.5 (11)
Cu1—O1—C1—O22.2 (10)C14—C9—C10—C111.1 (11)
Cu1i—O2—C1—O12.2 (10)C14—C9—C8—O4169.9 (6)
Cu1i—O2—C1—C2178.6 (4)C14—C9—C8—O59.2 (8)
Cu1—O4—C8—O52.3 (8)C8—C9—C10—C11177.7 (6)
Cu1—O4—C8—C9178.7 (4)C8—C9—C14—C13178.1 (6)
Cu1i—O5—C8—O42.6 (8)N1—C17—C20—N22.0 (14)
Cu1i—O5—C8—C9178.3 (4)N1—C15—C18—N24.1 (15)
Cu1—N1—C17—C20177.9 (9)N1—C16—C19—N20.9 (14)
Cu1—N1—C15—C18177.8 (9)C17—N1—C15—C1853.0 (14)
Cu1—N1—C16—C19178.5 (8)C17—N1—C16—C1958.1 (13)
Cu1—N3—C22—C25177.6 (9)C17—C20—N2—C1854.7 (13)
Cu1—N3—C23—C26179.5 (9)C17—C20—N2—C1960.7 (12)
Cu1—N3—C21—C24179.3 (9)C15—N1—C17—C2056.7 (14)
C2—C3—C4—C51.9 (13)C15—N1—C16—C1961.9 (12)
C3—C2—C7—C61.0 (12)C15—C18—N2—C2058.5 (14)
C3—C2—C1—O12.6 (10)C15—C18—N2—C1957.3 (13)
C3—C2—C1—O2176.7 (7)C16—N1—C17—C2057.6 (13)
C3—C4—C5—O3177.9 (7)C16—N1—C15—C1863.7 (12)
C3—C4—C5—C60.1 (13)C16—C19—N2—C2060.2 (12)
O3—C5—C6—C7179.7 (7)C16—C19—N2—C1858.9 (12)
C4—C5—C6—C72.2 (13)N3—C22—C25—N45.2 (15)
C5—C6—C7—C22.8 (13)N3—C23—C26—N40.5 (16)
O6—C12—C13—C14179.0 (7)N3—C21—C24—N43.1 (16)
C7—C2—C3—C41.4 (12)C22—N3—C23—C2664.7 (13)
C7—C2—C1—O1178.4 (6)C22—N3—C21—C2449.0 (17)
C7—C2—C1—O22.4 (10)C22—C25—N4—C2667.1 (13)
C1—C2—C3—C4177.7 (7)C22—C25—N4—C2436.8 (18)
C1—C2—C7—C6179.9 (7)C23—N3—C22—C2560.9 (13)
C9—C10—C11—C120.9 (11)C23—N3—C21—C2462.1 (13)
C10—C9—C14—C131.4 (11)C23—C26—N4—C2563.4 (13)
C10—C9—C8—O46.8 (9)C23—C26—N4—C2462.9 (14)
C10—C9—C8—O5174.1 (6)C21—N3—C22—C2550.4 (16)
C10—C11—C12—O6178.8 (7)C21—N3—C23—C2664.4 (13)
C10—C11—C12—C131.0 (12)C21—C24—N4—C2538.2 (19)
C11—C12—C13—C141.3 (12)C21—C24—N4—C2665.5 (14)
Symmetry code: (i) x+2, y+1, z+1.
Bis(tetraethylammonium) bis(µ-4-hydroxybenzoato)bis(µ-4-oxidobenzoato)bis[(dioxane)copper(II)] aqua(dioxane)tetrakis(µ-4-hydroxybenzoato)dicopper(II) methanol monosolvate (compound_5) top
Crystal data top
(C8H20N)[Cu2(C7H4O3)2(C7H5O3)2(C4H8O2)2] [Cu2(C7H5O3)4(C4H8O2)(H2O)]·CH4OF(000) = 4016
Mr = 1923.89Dx = 1.506 Mg m3
Orthorhombic, PnmaSynchrotron radiation, λ = 0.7108 Å
a = 12.833 (3) ÅCell parameters from 2355 reflections
b = 54.548 (11) ŵ = 1.08 mm1
c = 12.119 (2) ÅT = 100 K
V = 8483 (3) Å3Irregular, clear blue
Z = 40.13 × 0.09 × 0.06 mm
Data collection top
MX2 beamline, Australian Synchrotron
diffractometer
13753 independent reflections
Radiation source: MX2 Beamline Australian Synchrotron11493 reflections with I > 2σ(I)
Silicon Double Crystal monochromatorRint = 0.054
Detector resolution: 13.3 pixels mm-1θmax = 32.4°, θmin = 0.8°
ω Scan scansh = 1919
Absorption correction: multi-scan
(XDS; Kabsch, 2010)
k = 7575
Tmin = 0.321, Tmax = 0.432l = 1616
151309 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0883P)2 + 6.6788P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.005
13753 reflectionsΔρmax = 1.42 e Å3
585 parametersΔρmin = 0.84 e Å3
67 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The methanol molecule is disordered across a mirror plane and modelled in Part -1.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu11.09438 (2)0.50228 (2)0.46389 (2)0.02254 (7)
Cu30.77549 (3)0.7500000.39070 (3)0.02583 (8)
Cu20.97413 (3)0.7500000.42875 (3)0.02737 (9)
O110.93206 (12)0.63271 (2)0.00021 (12)0.0286 (3)
O60.79458 (13)0.59894 (3)0.04796 (13)0.0305 (3)
O50.87919 (12)0.51933 (3)0.40980 (14)0.0344 (3)
O11.10134 (12)0.53053 (3)0.56100 (13)0.0310 (3)
O41.04170 (12)0.52395 (3)0.34824 (13)0.0327 (3)
O71.25994 (13)0.50399 (3)0.41904 (15)0.0351 (3)
O20.93938 (13)0.52620 (3)0.62668 (14)0.0351 (3)
O170.6112 (2)0.7500000.3665 (2)0.0372 (5)
H17C0.567 (2)0.7500000.424 (3)0.056*
H170.583 (3)0.7564 (10)0.310 (3)0.056*0.5
O31.09462 (14)0.61876 (3)0.89328 (14)0.0369 (4)
H31.0475670.6226460.9369810.077 (13)*
O90.98162 (14)0.72462 (3)0.31540 (16)0.0443 (4)
O100.81086 (14)0.72439 (3)0.28582 (16)0.0451 (4)
O130.77289 (15)0.72506 (4)0.50558 (17)0.0460 (4)
O140.79843 (16)0.63828 (3)0.84125 (15)0.0458 (4)
O180.5112 (6)0.73992 (18)0.5562 (5)0.139 (4)0.5
H180.4517630.7441390.5721410.208*0.5
H14A0.8401230.6370490.8967110.208*
O120.94340 (16)0.72509 (4)0.53854 (17)0.0498 (5)
O151.1407 (2)0.7500000.4589 (3)0.0510 (7)
N10.94177 (16)0.62350 (4)0.45490 (16)0.0340 (4)
C120.83421 (17)0.58163 (3)0.11586 (15)0.0267 (4)
C70.96608 (16)0.56600 (3)0.76684 (16)0.0274 (4)
H70.9027920.5570280.7716310.033*
O81.41723 (18)0.47818 (4)0.5330 (2)0.0576 (5)
C21.04197 (16)0.55867 (3)0.69232 (16)0.0261 (3)
C190.91121 (17)0.69439 (3)0.19854 (16)0.0283 (4)
C130.94089 (17)0.57883 (3)0.13287 (16)0.0272 (4)
H130.9889650.5890860.0951330.033*
C80.94606 (16)0.52843 (3)0.34574 (16)0.0258 (3)
C11.02630 (16)0.53685 (3)0.62135 (15)0.0253 (3)
C110.76460 (17)0.56603 (4)0.16858 (18)0.0298 (4)
H110.6921230.5671790.1534690.036*
C250.85244 (19)0.71771 (4)0.55474 (16)0.0317 (4)
C220.92602 (17)0.65267 (3)0.06385 (16)0.0270 (4)
C60.98102 (17)0.58615 (4)0.83431 (16)0.0283 (4)
H6A0.9282360.5909390.8848630.034*
C140.97644 (16)0.56107 (3)0.20488 (16)0.0270 (4)
H141.0492770.5589110.2150070.032*
C231.01435 (17)0.66676 (4)0.08873 (18)0.0313 (4)
H231.0800460.6622570.0588020.038*
C260.83724 (19)0.69794 (4)0.63736 (17)0.0318 (4)
C640.90060 (17)0.71611 (4)0.27185 (16)0.0288 (4)
C90.90715 (16)0.54634 (3)0.26264 (16)0.0257 (3)
C51.07344 (17)0.59938 (4)0.82799 (17)0.0297 (4)
C41.14971 (18)0.59259 (4)0.75125 (18)0.0316 (4)
H41.2121930.6018280.7450300.038*
C270.7452 (2)0.68484 (4)0.63751 (19)0.0365 (5)
H270.6897100.6896140.5902600.044*
C241.00705 (17)0.68709 (4)0.15624 (18)0.0318 (4)
H241.0679930.6961640.1739070.038*
C31.13368 (17)0.57242 (4)0.68471 (17)0.0292 (4)
H3A1.1857050.5677940.6329660.035*
C100.80083 (16)0.54885 (3)0.24297 (17)0.0285 (4)
H100.7527750.5386500.2810320.034*
C310.9161 (2)0.69161 (4)0.71040 (18)0.0354 (4)
H310.9791260.7007320.7112400.043*
C200.82288 (18)0.68093 (4)0.17132 (19)0.0336 (4)
H200.7566990.6860070.1980060.040*
C390.8940 (2)0.60932 (4)0.54997 (18)0.0358 (5)
H39A0.9500630.6049510.6024650.043*
H39B0.8446820.6202290.5892150.043*
C210.83027 (18)0.66027 (4)0.10592 (18)0.0332 (4)
H210.7692600.6511130.0893960.040*
C421.08702 (19)0.62009 (5)0.3124 (2)0.0374 (5)
H42A1.0398070.6215690.2492160.056*
H42B1.1469880.6099440.2918580.056*
H42C1.1112120.6364110.3344080.056*
C290.8131 (2)0.65835 (4)0.77841 (18)0.0363 (5)
C300.9032 (2)0.67202 (4)0.78223 (19)0.0356 (4)
H300.9563500.6680710.8338150.043*
C151.30881 (19)0.48317 (4)0.3692 (2)0.0382 (4)
H15A1.3687110.4884980.3236640.046*
H15B1.2586220.4745170.3209260.046*
C370.8636 (2)0.62802 (5)0.3634 (2)0.0405 (5)
H37A0.8975730.6377810.3046730.049*
H37B0.8433340.6120560.3309320.049*
C280.7336 (2)0.66485 (4)0.7061 (2)0.0397 (5)
H280.6711230.6555050.7039820.048*
C400.8368 (2)0.58612 (5)0.5178 (2)0.0445 (5)
H40A0.7780750.5902660.4696060.067*
H40B0.8107470.5779620.5843820.067*
H40C0.8845400.5751240.4787000.067*
C411.0304 (2)0.60833 (5)0.4071 (2)0.0428 (5)
H41A1.0812020.6049060.4666360.051*
H41B1.0018990.5924120.3820520.051*
C380.7663 (2)0.64124 (5)0.4007 (2)0.0425 (5)
H38A0.7188270.6431800.3379580.064*
H38B0.7851640.6574310.4295480.064*
H38C0.7319110.6317050.4586980.064*
O161.2961 (4)0.7500000.6153 (4)0.1116 (19)
C171.3722 (2)0.49978 (5)0.5839 (3)0.0483 (6)
H17A1.4250490.5081910.6298040.058*
H17B1.3131660.4950250.6319610.058*
C350.9795 (2)0.64795 (5)0.4959 (3)0.0449 (6)
H35A0.9986230.6581680.4315080.054*
H35B0.9213430.6562470.5344480.054*
C361.0698 (2)0.64683 (6)0.5715 (3)0.0537 (7)
H36A1.1281350.6386510.5344720.081*
H36B1.0507040.6375980.6378750.081*
H36C1.0905260.6634940.5923380.081*
C181.3345 (2)0.51679 (5)0.4933 (2)0.0424 (5)
H18A1.2999810.5312280.5266780.051*
H18B1.3948380.5226590.4498310.051*
C161.3456 (2)0.46624 (5)0.4601 (3)0.0496 (6)
H16A1.2847090.4604320.5028760.060*
H16B1.3798740.4517500.4269020.060*
C321.1999 (3)0.77128 (6)0.4784 (3)0.0574 (8)
H32A1.1570070.7860060.4637350.069*
H32B1.2607630.7716270.4282120.069*
C331.2354 (4)0.77148 (9)0.5931 (4)0.0939 (15)
H33A1.2780580.7863050.6066520.113*
H33B1.1745120.7719840.6431190.113*
H60.8425 (19)0.6083 (5)0.035 (3)0.045 (9)*
C340.5581 (9)0.7512 (7)0.6500 (7)0.139 (4)0.5
H34A0.5172420.7472110.7158560.208*0.5
H34B0.5606020.7690510.6405660.208*0.5
H34C0.6290920.7448510.6584560.208*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02841 (12)0.01829 (11)0.02092 (12)0.00083 (8)0.00086 (8)0.00034 (7)
Cu30.03776 (18)0.02005 (15)0.01968 (15)0.0000.00168 (12)0.000
Cu20.03862 (19)0.02342 (16)0.02007 (16)0.0000.00258 (13)0.000
O110.0424 (8)0.0189 (6)0.0245 (6)0.0004 (5)0.0009 (6)0.0010 (5)
O60.0390 (8)0.0234 (6)0.0292 (7)0.0006 (6)0.0010 (6)0.0070 (5)
O50.0333 (7)0.0335 (8)0.0363 (8)0.0025 (6)0.0024 (6)0.0154 (6)
O10.0359 (7)0.0271 (7)0.0300 (7)0.0028 (6)0.0039 (6)0.0079 (6)
O40.0343 (7)0.0360 (8)0.0278 (7)0.0021 (6)0.0004 (6)0.0096 (6)
O70.0341 (7)0.0300 (7)0.0413 (9)0.0029 (6)0.0075 (6)0.0015 (6)
O20.0367 (8)0.0287 (7)0.0400 (8)0.0035 (6)0.0072 (7)0.0123 (6)
O170.0408 (12)0.0398 (12)0.0309 (11)0.0000.0041 (9)0.000
O30.0459 (9)0.0305 (8)0.0344 (8)0.0079 (6)0.0056 (7)0.0129 (6)
O90.0422 (9)0.0406 (9)0.0500 (10)0.0037 (7)0.0060 (8)0.0229 (8)
O100.0415 (9)0.0454 (10)0.0485 (10)0.0043 (7)0.0033 (8)0.0257 (8)
O130.0462 (10)0.0459 (10)0.0460 (10)0.0038 (8)0.0065 (8)0.0242 (8)
O140.0663 (12)0.0305 (8)0.0405 (9)0.0143 (8)0.0184 (8)0.0139 (7)
O180.120 (4)0.231 (10)0.066 (3)0.083 (6)0.004 (3)0.009 (4)
O120.0462 (10)0.0558 (11)0.0473 (11)0.0053 (9)0.0065 (8)0.0273 (9)
O150.0454 (14)0.0340 (13)0.074 (2)0.0000.0177 (13)0.000
N10.0405 (10)0.0309 (9)0.0306 (9)0.0044 (7)0.0032 (7)0.0021 (7)
C120.0376 (10)0.0210 (8)0.0214 (8)0.0005 (7)0.0006 (7)0.0010 (6)
C70.0349 (9)0.0221 (8)0.0252 (9)0.0010 (7)0.0008 (7)0.0011 (6)
O80.0559 (12)0.0470 (11)0.0698 (15)0.0062 (9)0.0079 (10)0.0070 (10)
C20.0357 (9)0.0210 (8)0.0217 (8)0.0006 (7)0.0000 (7)0.0004 (6)
C190.0393 (10)0.0220 (8)0.0238 (8)0.0009 (7)0.0017 (7)0.0012 (6)
C130.0364 (10)0.0240 (8)0.0213 (8)0.0036 (7)0.0008 (7)0.0028 (6)
C80.0367 (9)0.0193 (7)0.0216 (8)0.0003 (7)0.0002 (7)0.0002 (6)
C10.0363 (9)0.0195 (7)0.0201 (8)0.0023 (7)0.0009 (7)0.0007 (6)
C110.0330 (9)0.0260 (9)0.0304 (10)0.0020 (7)0.0006 (8)0.0049 (7)
C250.0491 (12)0.0243 (9)0.0218 (8)0.0014 (8)0.0014 (8)0.0012 (6)
C220.0389 (10)0.0194 (8)0.0226 (8)0.0006 (7)0.0014 (7)0.0012 (6)
C60.0372 (10)0.0239 (8)0.0239 (8)0.0002 (7)0.0023 (7)0.0016 (6)
C140.0332 (9)0.0255 (8)0.0222 (8)0.0016 (7)0.0027 (7)0.0008 (6)
C230.0355 (10)0.0263 (9)0.0322 (10)0.0015 (7)0.0008 (8)0.0025 (7)
C260.0495 (12)0.0236 (8)0.0223 (8)0.0011 (8)0.0027 (8)0.0024 (7)
C640.0419 (10)0.0221 (8)0.0225 (9)0.0006 (7)0.0001 (7)0.0004 (6)
C90.0359 (9)0.0195 (7)0.0215 (8)0.0012 (7)0.0008 (7)0.0003 (6)
C50.0406 (10)0.0229 (8)0.0256 (9)0.0021 (7)0.0005 (8)0.0034 (7)
C40.0376 (10)0.0274 (9)0.0299 (9)0.0042 (8)0.0036 (8)0.0043 (7)
C270.0506 (13)0.0309 (10)0.0282 (10)0.0039 (9)0.0083 (9)0.0057 (8)
C240.0359 (10)0.0277 (9)0.0316 (10)0.0006 (7)0.0031 (8)0.0041 (7)
C30.0352 (9)0.0264 (9)0.0258 (9)0.0008 (7)0.0030 (7)0.0017 (7)
C100.0339 (9)0.0230 (8)0.0286 (9)0.0005 (7)0.0023 (7)0.0050 (7)
C310.0470 (12)0.0314 (10)0.0279 (10)0.0020 (8)0.0029 (9)0.0057 (8)
C200.0384 (10)0.0276 (9)0.0348 (10)0.0006 (8)0.0033 (8)0.0064 (8)
C390.0469 (12)0.0340 (11)0.0265 (10)0.0021 (9)0.0022 (9)0.0010 (8)
C210.0371 (10)0.0275 (9)0.0351 (10)0.0045 (8)0.0024 (8)0.0065 (8)
C420.0397 (11)0.0383 (11)0.0344 (11)0.0037 (9)0.0036 (9)0.0004 (9)
C290.0548 (13)0.0254 (9)0.0287 (10)0.0035 (9)0.0072 (9)0.0050 (7)
C300.0477 (12)0.0301 (10)0.0289 (10)0.0003 (8)0.0060 (9)0.0056 (8)
C150.0371 (11)0.0376 (10)0.0401 (11)0.0061 (8)0.0095 (9)0.0016 (8)
C370.0478 (13)0.0444 (13)0.0292 (10)0.0116 (10)0.0002 (9)0.0002 (9)
C280.0533 (13)0.0322 (10)0.0337 (11)0.0098 (9)0.0105 (10)0.0076 (8)
C400.0530 (14)0.0351 (11)0.0453 (13)0.0051 (10)0.0007 (11)0.0007 (10)
C410.0488 (13)0.0379 (12)0.0418 (12)0.0134 (10)0.0086 (10)0.0067 (10)
C380.0420 (12)0.0501 (14)0.0354 (11)0.0096 (10)0.0012 (10)0.0005 (10)
O160.112 (4)0.126 (4)0.097 (4)0.0000.067 (3)0.000
C170.0447 (13)0.0476 (14)0.0527 (16)0.0032 (11)0.0027 (12)0.0163 (12)
C350.0463 (13)0.0326 (11)0.0559 (16)0.0007 (10)0.0008 (12)0.0038 (10)
C360.0523 (15)0.0597 (18)0.0490 (16)0.0058 (13)0.0063 (13)0.0062 (13)
C180.0481 (13)0.0353 (11)0.0439 (12)0.0003 (9)0.0038 (9)0.0016 (8)
C160.0515 (15)0.0384 (13)0.0590 (17)0.0033 (11)0.0050 (13)0.0024 (11)
C320.0497 (15)0.0453 (15)0.077 (2)0.0108 (12)0.0080 (15)0.0045 (14)
C330.102 (3)0.092 (3)0.087 (3)0.002 (3)0.031 (3)0.040 (3)
C340.119 (4)0.230 (10)0.067 (3)0.085 (6)0.004 (3)0.009 (5)
Geometric parameters (Å, º) top
Cu1—O5i1.9618 (15)C23—H230.9500
Cu1—O11.9408 (15)C23—C241.382 (3)
Cu1—O41.9542 (15)C26—C271.381 (3)
Cu1—O72.1950 (17)C26—C311.388 (3)
Cu1—O2i1.9508 (15)C9—C101.392 (3)
Cu3—Cu3ii0.0000 (10)C5—C41.400 (3)
Cu3—O172.128 (3)C4—H40.9500
Cu3—O101.9425 (16)C4—C31.380 (3)
Cu3—O10ii1.9426 (16)C27—H270.9500
Cu3—O131.9469 (17)C27—C281.379 (3)
Cu3—O13ii1.9469 (17)C24—H240.9500
Cu2—O9ii1.9527 (16)C3—H3A0.9500
Cu2—O91.9526 (16)C10—H100.9500
Cu2—O121.9422 (18)C31—H310.9500
Cu2—O12ii1.9422 (18)C31—C301.388 (3)
Cu2—O152.168 (3)C20—H200.9500
O11—C221.336 (2)C20—C211.381 (3)
O6—C121.352 (2)C39—H39A0.9900
O6—H60.815 (18)C39—H39B0.9900
O5—C81.259 (2)C39—C401.514 (3)
O1—C11.257 (2)C21—H210.9500
O4—C81.252 (3)C42—H42A0.9800
O7—C151.431 (3)C42—H42B0.9800
O7—C181.487 (3)C42—H42C0.9800
O2—C11.259 (3)C42—C411.502 (3)
O17—H17C0.899 (19)C29—C301.376 (3)
O17—H170.847 (19)C29—C281.392 (3)
O3—H30.8307C30—H300.9500
O3—C51.348 (2)C15—H15A0.9900
O9—C641.255 (3)C15—H15B0.9900
O10—C641.248 (3)C15—C161.513 (4)
O13—C251.248 (3)C37—H37A0.9900
O14—H14A0.8617C37—H37B0.9900
O14—C291.347 (3)C37—C381.511 (3)
O18—H180.8199C28—H280.9500
O18—C341.427 (16)C40—H40A0.9800
O12—C251.250 (3)C40—H40B0.9800
O15—C32ii1.408 (3)C40—H40C0.9800
O15—C321.408 (3)C41—H41A0.9900
N1—C391.517 (3)C41—H41B0.9900
N1—C371.516 (3)C38—H38A0.9800
N1—C411.521 (3)C38—H38B0.9800
N1—C351.504 (3)C38—H38C0.9800
C12—C131.393 (3)O16—C33ii1.432 (6)
C12—C111.389 (3)O16—C331.432 (6)
C7—H70.9500C17—H17A0.9900
C7—C21.387 (3)C17—H17B0.9900
C7—C61.383 (3)C17—C181.517 (4)
O8—C171.450 (4)C35—H35A0.9900
O8—C161.431 (4)C35—H35B0.9900
C2—C11.482 (3)C35—C361.478 (4)
C2—C31.398 (3)C36—H36A0.9800
C19—C641.487 (3)C36—H36B0.9800
C19—C241.391 (3)C36—H36C0.9800
C19—C201.390 (3)C18—H18A0.9900
C13—H130.9500C18—H18B0.9900
C13—C141.382 (3)C16—H16A0.9900
C8—C91.489 (3)C16—H16B0.9900
C11—H110.9500C32—H32A0.9900
C11—C101.381 (3)C32—H32B0.9900
C25—C261.484 (3)C32—C331.462 (6)
C22—C231.402 (3)C33—H33A0.9900
C22—C211.393 (3)C33—H33B0.9900
C6—H6A0.9500C34—H34A0.9795
C6—C51.390 (3)C34—H34B0.9804
C14—H140.9500C34—H34C0.9799
C14—C91.388 (3)
O5i—Cu1—O792.94 (7)C3—C4—H4120.2
O1—Cu1—O5i89.78 (7)C26—C27—H27119.9
O1—Cu1—O488.31 (7)C28—C27—C26120.2 (2)
O1—Cu1—O794.12 (6)C28—C27—H27119.9
O1—Cu1—O2i169.60 (7)C19—C24—H24119.7
O4—Cu1—O5i169.44 (7)C23—C24—C19120.5 (2)
O4—Cu1—O797.56 (7)C23—C24—H24119.7
O2i—Cu1—O5i89.93 (8)C2—C3—H3A119.5
O2i—Cu1—O490.08 (7)C4—C3—C2120.96 (19)
O2i—Cu1—O796.28 (7)C4—C3—H3A119.5
Cu3ii—Cu3—O170 (10)C11—C10—C9120.57 (18)
Cu3ii—Cu3—O100 (10)C11—C10—H10119.7
Cu3ii—Cu3—O10ii0 (10)C9—C10—H10119.7
Cu3ii—Cu3—O130 (10)C26—C31—H31119.8
Cu3ii—Cu3—O13ii0 (10)C26—C31—C30120.3 (2)
O10—Cu3—O1798.13 (7)C30—C31—H31119.8
O10ii—Cu3—O1798.12 (7)C19—C20—H20119.6
O10—Cu3—O10ii91.98 (13)C21—C20—C19120.7 (2)
O10ii—Cu3—O13167.03 (8)C21—C20—H20119.6
O10—Cu3—O1388.24 (9)N1—C39—H39A108.5
O10—Cu3—O13ii167.04 (8)N1—C39—H39B108.5
O10ii—Cu3—O13ii88.24 (9)H39A—C39—H39B107.5
O13—Cu3—O1794.67 (8)C40—C39—N1115.3 (2)
O13ii—Cu3—O1794.67 (8)C40—C39—H39A108.5
O13ii—Cu3—O1388.66 (13)C40—C39—H39B108.5
O9—Cu2—O9ii90.31 (13)C22—C21—H21119.6
O9—Cu2—O1594.01 (8)C20—C21—C22120.9 (2)
O9ii—Cu2—O1594.01 (8)C20—C21—H21119.6
O12—Cu2—O989.77 (10)H42A—C42—H42B109.5
O12—Cu2—O9ii171.10 (8)H42A—C42—H42C109.5
O12ii—Cu2—O9ii89.77 (10)H42B—C42—H42C109.5
O12ii—Cu2—O9171.10 (8)C41—C42—H42A109.5
O12—Cu2—O12ii88.79 (15)C41—C42—H42B109.5
O12ii—Cu2—O1594.86 (9)C41—C42—H42C109.5
O12—Cu2—O1594.86 (9)O14—C29—C30122.6 (2)
C12—O6—H6106 (2)O14—C29—C28117.4 (2)
C8—O5—Cu1i126.88 (14)C30—C29—C28120.0 (2)
C1—O1—Cu1122.35 (13)C31—C30—H30120.1
C8—O4—Cu1118.33 (13)C29—C30—C31119.7 (2)
C15—O7—Cu1119.67 (14)C29—C30—H30120.1
C15—O7—C18110.24 (19)O7—C15—H15A110.0
C18—O7—Cu1119.51 (14)O7—C15—H15B110.0
C1—O2—Cu1i122.35 (13)O7—C15—C16108.3 (2)
Cu3ii—O17—Cu30.000 (17)H15A—C15—H15B108.4
Cu3ii—O17—H17C121 (3)C16—C15—H15A110.0
Cu3—O17—H17C121 (3)C16—C15—H15B110.0
Cu3ii—O17—H17123 (3)N1—C37—H37A108.8
Cu3—O17—H17123 (3)N1—C37—H37B108.8
H17C—O17—H17110 (5)H37A—C37—H37B107.7
C5—O3—H3115.3C38—C37—N1113.9 (2)
C64—O9—Cu2121.15 (15)C38—C37—H37A108.8
Cu3ii—O10—Cu30.00 (2)C38—C37—H37B108.8
C64—O10—Cu3ii124.35 (15)C27—C28—C29120.1 (2)
C64—O10—Cu3124.35 (15)C27—C28—H28119.9
Cu3ii—O13—Cu30.000 (13)C29—C28—H28119.9
C25—O13—Cu3ii123.49 (16)C39—C40—H40A109.5
C25—O13—Cu3123.49 (16)C39—C40—H40B109.5
C29—O14—H14A114.7C39—C40—H40C109.5
C34—O18—H1894.8H40A—C40—H40B109.5
C25—O12—Cu2121.49 (16)H40A—C40—H40C109.5
C32—O15—Cu2124.11 (17)H40B—C40—H40C109.5
C32ii—O15—Cu2124.11 (17)N1—C41—H41A108.6
C32ii—O15—C32111.1 (3)N1—C41—H41B108.6
C39—N1—C41108.29 (18)C42—C41—N1114.85 (19)
C37—N1—C39111.8 (2)C42—C41—H41A108.6
C37—N1—C41107.75 (19)C42—C41—H41B108.6
C35—N1—C39109.36 (19)H41A—C41—H41B107.5
C35—N1—C37108.14 (19)C37—C38—H38A109.5
C35—N1—C41111.6 (2)C37—C38—H38B109.5
O6—C12—C13122.43 (18)C37—C38—H38C109.5
O6—C12—C11117.77 (19)H38A—C38—H38B109.5
C11—C12—C13119.79 (18)H38A—C38—H38C109.5
C2—C7—H7119.5H38B—C38—H38C109.5
C6—C7—H7119.5C33ii—O16—C33109.8 (5)
C6—C7—C2121.10 (19)O8—C17—H17A110.0
C16—O8—C17112.1 (2)O8—C17—H17B110.0
C7—C2—C1120.92 (18)O8—C17—C18108.4 (2)
C7—C2—C3118.65 (17)H17A—C17—H17B108.4
C3—C2—C1120.43 (18)C18—C17—H17A110.0
C24—C19—C64121.95 (19)C18—C17—H17B110.0
C20—C19—C64119.20 (19)N1—C35—H35A108.5
C20—C19—C24118.85 (18)N1—C35—H35B108.5
C12—C13—H13120.2H35A—C35—H35B107.5
C14—C13—C12119.66 (18)C36—C35—N1114.9 (2)
C14—C13—H13120.2C36—C35—H35A108.5
O5—C8—C9116.55 (18)C36—C35—H35B108.5
O4—C8—O5125.20 (18)C35—C36—H36A109.5
O4—C8—C9118.23 (18)C35—C36—H36B109.5
O1—C1—O2125.57 (18)C35—C36—H36C109.5
O1—C1—C2116.98 (18)H36A—C36—H36B109.5
O2—C1—C2117.44 (18)H36A—C36—H36C109.5
C12—C11—H11120.0H36B—C36—H36C109.5
C10—C11—C12119.95 (19)O7—C18—C17110.9 (2)
C10—C11—H11120.0O7—C18—H18A109.5
O13—C25—O12125.8 (2)O7—C18—H18B109.5
O13—C25—C26116.6 (2)C17—C18—H18A109.5
O12—C25—C26117.6 (2)C17—C18—H18B109.5
O11—C22—C23121.57 (19)H18A—C18—H18B108.1
O11—C22—C21120.30 (19)O8—C16—C15111.9 (2)
C21—C22—C23118.12 (18)O8—C16—H16A109.2
C7—C6—H6A120.1O8—C16—H16B109.2
C7—C6—C5119.88 (19)C15—C16—H16A109.2
C5—C6—H6A120.1C15—C16—H16B109.2
C13—C14—H14119.6H16A—C16—H16B107.9
C13—C14—C9120.87 (19)O15—C32—H32A109.8
C9—C14—H14119.6O15—C32—H32B109.8
C22—C23—H23119.6O15—C32—C33109.5 (3)
C24—C23—C22120.8 (2)H32A—C32—H32B108.2
C24—C23—H23119.6C33—C32—H32A109.8
C27—C26—C25119.3 (2)C33—C32—H32B109.8
C27—C26—C31119.6 (2)O16—C33—C32110.0 (4)
C31—C26—C25121.0 (2)O16—C33—H33A109.7
O9—C64—C19118.04 (19)O16—C33—H33B109.7
O10—C64—O9124.99 (19)C32—C33—H33A109.7
O10—C64—C19116.97 (19)C32—C33—H33B109.7
C14—C9—C8120.40 (18)H33A—C33—H33B108.2
C14—C9—C10119.00 (17)O18—C34—H34A109.1
C10—C9—C8120.60 (18)O18—C34—H34B110.4
O3—C5—C6123.14 (19)O18—C34—H34C108.8
O3—C5—C4117.15 (19)H34A—C34—H34B109.5
C6—C5—C4119.71 (18)H34A—C34—H34C109.5
C5—C4—H4120.2H34B—C34—H34C109.5
C3—C4—C5119.7 (2)
Cu1i—O5—C8—O44.5 (3)C13—C12—C11—C104.1 (3)
Cu1i—O5—C8—C9174.02 (13)C13—C14—C9—C8175.80 (17)
Cu1—O1—C1—O20.3 (3)C13—C14—C9—C103.2 (3)
Cu1—O1—C1—C2179.56 (13)C8—C9—C10—C11177.83 (18)
Cu1—O4—C8—O52.8 (3)C1—C2—C3—C4179.21 (19)
Cu1—O4—C8—C9175.68 (13)C11—C12—C13—C142.1 (3)
Cu1—O7—C15—C1685.9 (2)C25—C26—C27—C28173.5 (2)
Cu1—O7—C18—C1784.9 (2)C25—C26—C31—C30175.7 (2)
Cu1i—O2—C1—O11.6 (3)C22—C23—C24—C191.7 (3)
Cu1i—O2—C1—C2178.56 (13)C6—C7—C2—C1179.08 (18)
Cu3ii—O10—C64—O97.1 (3)C6—C7—C2—C31.4 (3)
Cu3—O10—C64—O97.1 (3)C6—C5—C4—C31.8 (3)
Cu3—O10—C64—C19172.42 (14)C14—C9—C10—C111.2 (3)
Cu3ii—O10—C64—C19172.42 (14)C23—C22—C21—C200.7 (3)
Cu3—O13—C25—O120.3 (4)C26—C27—C28—C292.4 (4)
Cu3ii—O13—C25—O120.3 (4)C26—C31—C30—C292.1 (4)
Cu3ii—O13—C25—C26177.86 (15)C64—C19—C24—C23179.71 (19)
Cu3—O13—C25—C26177.86 (15)C64—C19—C20—C21178.2 (2)
Cu2—O9—C64—O108.3 (3)C5—C4—C3—C20.3 (3)
Cu2—O9—C64—C19171.20 (14)C27—C26—C31—C300.9 (3)
Cu2—O12—C25—O130.4 (4)C24—C19—C64—O915.8 (3)
Cu2—O12—C25—C26177.69 (15)C24—C19—C64—O10164.7 (2)
Cu2—O15—C32—C33111.0 (3)C24—C19—C20—C211.8 (3)
O11—C22—C23—C24178.86 (19)C3—C2—C1—O14.8 (3)
O11—C22—C21—C20179.7 (2)C3—C2—C1—O2175.35 (19)
O6—C12—C13—C14178.82 (18)C31—C26—C27—C283.1 (4)
O6—C12—C11—C10176.77 (18)C20—C19—C64—O9164.2 (2)
O5—C8—C9—C14166.29 (19)C20—C19—C64—O1015.4 (3)
O5—C8—C9—C1012.7 (3)C20—C19—C24—C230.3 (3)
O4—C8—C9—C1412.3 (3)C39—N1—C37—C3856.5 (3)
O4—C8—C9—C10168.72 (19)C39—N1—C41—C42179.3 (2)
O7—C15—C16—O858.8 (3)C39—N1—C35—C3668.5 (3)
O3—C5—C4—C3177.9 (2)C21—C22—C23—C242.2 (3)
O13—C25—C26—C2715.3 (3)C30—C29—C28—C270.6 (4)
O13—C25—C26—C31168.1 (2)C15—O7—C18—C1759.7 (3)
O14—C29—C30—C31176.0 (2)C37—N1—C39—C4050.7 (3)
O14—C29—C28—C27178.3 (2)C37—N1—C41—C4259.7 (3)
O12—C25—C26—C27163.0 (2)C37—N1—C35—C36169.6 (2)
O12—C25—C26—C3113.6 (3)C28—C29—C30—C312.8 (4)
O15—C32—C33—O1658.4 (5)C41—N1—C39—C4067.8 (3)
C12—C13—C14—C91.6 (3)C41—N1—C37—C38175.4 (2)
C12—C11—C10—C92.5 (3)C41—N1—C35—C3651.3 (3)
C7—C2—C1—O1175.67 (18)C17—O8—C16—C1558.4 (3)
C7—C2—C1—O24.2 (3)C35—N1—C39—C40170.4 (2)
C7—C2—C3—C41.3 (3)C35—N1—C37—C3863.9 (3)
C7—C6—C5—O3178.0 (2)C35—N1—C41—C4258.9 (3)
C7—C6—C5—C41.7 (3)C18—O7—C15—C1658.6 (3)
O8—C17—C18—O756.1 (3)C16—O8—C17—C1855.9 (3)
C2—C7—C6—C50.1 (3)C32ii—O15—C32—C3359.8 (5)
C19—C20—C21—C221.3 (3)C33ii—O16—C33—C3257.9 (8)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+3/2, z.
Bis(tetraethylammonium) tetrakis(µ-4-hydroxybenzoato)bis[aquacopper(II)] dinitrate (compound_6) top
Crystal data top
(C8H20N)2[Cu2(C7H5O3)4(H2O)2](NO3)2Z = 1
Mr = 1096.07F(000) = 574
Triclinic, P1Dx = 1.444 Mg m3
a = 10.4964 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.6595 (2) ÅCell parameters from 9558 reflections
c = 12.3226 (3) Åθ = 3.7–77.1°
α = 97.271 (2)°µ = 1.72 mm1
β = 101.042 (2)°T = 100 K
γ = 108.130 (2)°Irregular, clear blue
V = 1260.15 (6) Å30.16 × 0.13 × 0.09 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
5136 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source4648 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.048
ω scansθmax = 77.8°, θmin = 3.7°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 1312
Tmin = 0.720, Tmax = 1.000k = 1113
14549 measured reflectionsl = 1515
Refinement top
Refinement on F2263 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.6073P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
5136 reflectionsΔρmax = 0.47 e Å3
408 parametersΔρmin = 0.54 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.60492 (3)1.09668 (2)0.06898 (2)0.01545 (10)
O50.63242 (14)0.95587 (13)0.15033 (12)0.0240 (3)
O10.28109 (14)0.94966 (13)0.02841 (12)0.0228 (3)
O30.02189 (14)1.21562 (14)0.33643 (12)0.0263 (3)
H30.0199171.2909250.3798900.039*
O60.68959 (15)0.43690 (13)0.32703 (11)0.0242 (3)
H60.7531570.4712500.3862460.036*
O40.45124 (14)0.79086 (13)0.03219 (12)0.0234 (3)
O70.76600 (14)1.25985 (13)0.18582 (11)0.0215 (3)
H7A0.8182861.2302650.2326930.032*
H7B0.7318071.3038660.2304010.032*
O20.46250 (14)1.11502 (13)0.14613 (12)0.0239 (3)
O80.12980 (15)0.45992 (14)0.47304 (12)0.0266 (3)
O90.01650 (19)0.51873 (19)0.33412 (15)0.0435 (4)
O100.15453 (18)0.66988 (16)0.47954 (19)0.0466 (5)
N10.09987 (18)0.55237 (17)0.42740 (16)0.0283 (4)
C10.33495 (19)1.04871 (18)0.11060 (15)0.0188 (4)
C80.55712 (19)0.83394 (18)0.11426 (15)0.0190 (4)
C90.59538 (19)0.73170 (18)0.17232 (16)0.0201 (4)
C120.6636 (2)0.53624 (18)0.27773 (16)0.0206 (4)
C110.5531 (2)0.49787 (19)0.18333 (17)0.0240 (4)
H110.5010730.4051780.1542040.029*
C100.5193 (2)0.59497 (19)0.13213 (17)0.0228 (4)
H100.4427700.5682960.0683630.027*
C20.24107 (19)1.09348 (18)0.17038 (16)0.0202 (4)
C30.0989 (2)1.02301 (19)0.14088 (17)0.0230 (4)
H3A0.0614450.9451470.0821880.028*
C50.0671 (2)1.17952 (19)0.28262 (16)0.0222 (4)
C60.2083 (2)1.25261 (19)0.31114 (17)0.0231 (4)
H6A0.2454561.3316880.3685960.028*
C140.7095 (2)0.76897 (18)0.26457 (16)0.0214 (4)
H140.7639670.8614600.2913990.026*
C130.7441 (2)0.67266 (19)0.31743 (16)0.0221 (4)
H130.8218830.6989150.3800940.027*
C40.0116 (2)1.0653 (2)0.19626 (18)0.0256 (4)
H40.0850821.0169520.1755320.031*
C70.29421 (19)1.20914 (19)0.25506 (16)0.0215 (4)
H70.3905661.2588450.2746100.026*
N20.0028 (12)0.4959 (11)0.0084 (9)0.0192 (11)0.5
C170.1172 (4)0.5224 (4)0.0560 (3)0.0236 (8)0.5
H17A0.1991330.4387360.0339480.028*0.5
H17B0.0863430.5427620.1393610.028*0.5
C180.1611 (6)0.6357 (5)0.0190 (5)0.0298 (12)0.5
H18A0.1922150.6170670.0634480.045*0.5
H18B0.0825450.7205140.0444330.045*0.5
H18C0.2368700.6430290.0521210.045*0.5
C150.0459 (4)0.4598 (4)0.1200 (3)0.0242 (8)0.5
H15A0.0635480.5371320.1484260.029*0.5
H15B0.0325650.4468040.1477050.029*0.5
C160.1721 (17)0.3355 (16)0.1701 (11)0.031 (3)0.5
H16A0.1855960.3150550.2521650.047*0.5
H16B0.2534640.3515790.1522840.047*0.5
H16C0.1591140.2593200.1383640.047*0.5
C190.0264 (4)0.3808 (4)0.0570 (3)0.0241 (8)0.5
H19A0.0545080.4079580.1402850.029*0.5
H19B0.0604190.3021420.0369490.029*0.5
C200.1372 (6)0.3374 (6)0.0175 (5)0.0286 (11)0.5
H20A0.1119140.3122140.0650710.043*0.5
H20B0.1455990.2599520.0495590.043*0.5
H20C0.2258110.4120780.0424080.043*0.5
C210.1260 (4)0.6212 (4)0.0365 (3)0.0235 (8)0.5
H21A0.1954130.6001060.0004200.028*0.5
H21B0.1015730.6925010.0023200.028*0.5
C220.1922 (17)0.6771 (15)0.1607 (11)0.027 (2)0.5
H22A0.2729700.7580690.1699560.041*0.5
H22B0.2211720.6092570.1951690.041*0.5
H22C0.1252450.7000180.1975580.041*0.5
N30.5007 (12)1.0017 (12)0.5000 (11)0.0263 (5)0.5
C230.4801 (5)0.8872 (4)0.4042 (4)0.0298 (9)0.5
H23A0.5569810.9147920.3667380.036*0.5
H23B0.3933630.8735250.3479570.036*0.5
C240.4731 (16)0.7527 (9)0.4381 (9)0.032 (2)0.5
H24A0.4537750.6841510.3704080.048*0.5
H24B0.3992250.7253350.4774940.048*0.5
H24C0.5616410.7624510.4882000.048*0.5
C250.3769 (5)0.9742 (4)0.5518 (4)0.0314 (9)0.5
H25A0.3993751.0456570.6193430.038*0.5
H25B0.3614140.8874840.5773780.038*0.5
C260.2426 (10)0.9682 (13)0.4729 (9)0.035 (2)0.5
H26A0.2204160.8995180.4046640.052*0.5
H26B0.2539381.0561060.4522030.052*0.5
H26C0.1673100.9450440.5113190.052*0.5
C270.5254 (4)1.1278 (4)0.4499 (4)0.0276 (8)0.5
H27A0.4490161.1104120.3825790.033*0.5
H27B0.6120951.1453720.4243740.033*0.5
C280.5359 (17)1.2542 (9)0.5301 (9)0.032 (2)0.5
H28A0.5547041.3309110.4919720.047*0.5
H28B0.6112451.2726530.5973090.047*0.5
H28C0.4486361.2402230.5524990.047*0.5
C290.6233 (5)1.0155 (5)0.5948 (4)0.0352 (10)0.5
H29A0.5971520.9384120.6331240.042*0.5
H29B0.6429911.0986120.6507260.042*0.5
C300.7557 (9)1.0208 (15)0.5584 (10)0.043 (3)0.5
H30A0.7421870.9334820.5123990.064*0.5
H30B0.8317791.0410440.6253970.064*0.5
H30C0.7781931.0911530.5140520.064*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01445 (14)0.01505 (14)0.01602 (15)0.00494 (10)0.00401 (10)0.00005 (10)
O50.0258 (7)0.0177 (6)0.0233 (7)0.0051 (5)0.0000 (5)0.0016 (5)
O10.0188 (6)0.0231 (6)0.0242 (7)0.0067 (5)0.0073 (5)0.0049 (5)
O30.0211 (7)0.0299 (7)0.0261 (7)0.0108 (6)0.0061 (6)0.0064 (6)
O60.0290 (7)0.0208 (6)0.0209 (7)0.0102 (5)0.0000 (5)0.0027 (5)
O40.0222 (7)0.0186 (6)0.0263 (7)0.0061 (5)0.0007 (5)0.0041 (5)
O70.0195 (6)0.0191 (6)0.0200 (6)0.0046 (5)0.0006 (5)0.0045 (5)
O20.0170 (6)0.0275 (7)0.0233 (7)0.0059 (5)0.0056 (5)0.0054 (5)
O80.0292 (7)0.0251 (7)0.0248 (7)0.0126 (6)0.0030 (6)0.0001 (6)
O90.0403 (9)0.0550 (10)0.0333 (9)0.0140 (8)0.0031 (7)0.0173 (8)
O100.0317 (9)0.0224 (8)0.0789 (14)0.0040 (6)0.0090 (9)0.0062 (8)
N10.0229 (8)0.0283 (9)0.0337 (10)0.0067 (7)0.0100 (7)0.0074 (7)
C10.0190 (8)0.0198 (8)0.0186 (9)0.0082 (7)0.0047 (7)0.0029 (7)
C80.0181 (8)0.0213 (8)0.0186 (9)0.0074 (7)0.0069 (7)0.0025 (7)
C90.0200 (9)0.0196 (8)0.0211 (9)0.0069 (7)0.0065 (7)0.0025 (7)
C120.0235 (9)0.0202 (8)0.0202 (9)0.0105 (7)0.0063 (7)0.0027 (7)
C110.0260 (10)0.0182 (8)0.0249 (10)0.0061 (7)0.0028 (8)0.0025 (7)
C100.0218 (9)0.0215 (9)0.0218 (9)0.0060 (7)0.0015 (7)0.0024 (7)
C20.0203 (9)0.0203 (8)0.0210 (9)0.0086 (7)0.0060 (7)0.0016 (7)
C30.0195 (9)0.0239 (9)0.0240 (10)0.0081 (7)0.0057 (7)0.0031 (7)
C50.0226 (9)0.0267 (9)0.0204 (9)0.0132 (8)0.0064 (7)0.0016 (7)
C60.0236 (9)0.0222 (9)0.0224 (9)0.0095 (7)0.0044 (7)0.0025 (7)
C140.0219 (9)0.0183 (8)0.0221 (9)0.0060 (7)0.0044 (7)0.0010 (7)
C130.0217 (9)0.0223 (9)0.0200 (9)0.0080 (7)0.0013 (7)0.0007 (7)
C40.0180 (9)0.0271 (9)0.0281 (10)0.0067 (7)0.0050 (8)0.0033 (8)
C70.0185 (9)0.0232 (9)0.0215 (9)0.0069 (7)0.0040 (7)0.0018 (7)
N20.0192 (13)0.0211 (15)0.016 (3)0.0034 (11)0.0052 (15)0.0045 (16)
C170.0194 (18)0.0242 (18)0.0229 (19)0.0016 (14)0.0069 (15)0.0015 (15)
C180.032 (3)0.027 (3)0.031 (3)0.009 (2)0.010 (2)0.007 (2)
C150.0253 (19)0.0273 (19)0.0151 (17)0.0035 (15)0.0042 (14)0.0027 (14)
C160.025 (5)0.032 (4)0.021 (3)0.008 (3)0.005 (3)0.000 (3)
C190.0227 (18)0.0224 (17)0.0217 (18)0.0010 (14)0.0024 (15)0.0067 (15)
C200.027 (3)0.028 (3)0.033 (3)0.011 (2)0.008 (2)0.008 (2)
C210.0219 (18)0.0233 (18)0.0197 (18)0.0003 (15)0.0057 (15)0.0031 (14)
C220.023 (5)0.029 (4)0.021 (3)0.002 (3)0.005 (3)0.000 (3)
N30.0286 (12)0.0245 (12)0.0235 (12)0.0114 (10)0.0013 (10)0.0012 (10)
C230.031 (2)0.0286 (19)0.025 (2)0.0119 (17)0.0014 (17)0.0070 (16)
C240.026 (3)0.027 (3)0.044 (6)0.006 (2)0.018 (5)0.002 (3)
C250.039 (2)0.029 (2)0.027 (2)0.0119 (18)0.0108 (18)0.0028 (16)
C260.033 (3)0.019 (3)0.056 (6)0.010 (2)0.014 (3)0.015 (4)
C270.028 (2)0.0283 (19)0.025 (2)0.0102 (16)0.0019 (16)0.0030 (16)
C280.031 (3)0.022 (3)0.041 (5)0.005 (2)0.017 (4)0.001 (3)
C290.042 (2)0.029 (2)0.028 (2)0.0161 (19)0.0076 (19)0.0029 (17)
C300.024 (3)0.034 (4)0.061 (6)0.002 (2)0.005 (3)0.024 (4)
Geometric parameters (Å, º) top
Cu1—O51.9700 (13)C18—H18B0.9800
Cu1—O1i1.9707 (13)C18—H18C0.9800
Cu1—O4i1.9686 (13)C15—H15A0.9900
Cu1—O72.1355 (13)C15—H15B0.9900
Cu1—O21.9636 (13)C15—C161.509 (11)
O5—C81.261 (2)C16—H16A0.9800
O1—C11.264 (2)C16—H16B0.9800
O3—H30.8400C16—H16C0.9800
O3—C51.362 (2)C19—H19A0.9900
O6—H60.8400C19—H19B0.9900
O6—C121.358 (2)C19—C201.516 (6)
O4—C81.266 (2)C20—H20A0.9800
O7—H7A0.8756C20—H20B0.9800
O7—H7B0.8750C20—H20C0.9800
O2—C11.262 (2)C21—H21A0.9900
O8—N11.285 (2)C21—H21B0.9900
O9—N11.237 (3)C21—C221.512 (11)
O10—N11.232 (2)C22—H22A0.9800
C1—C21.491 (2)C22—H22B0.9800
C8—C91.490 (3)C22—H22C0.9800
C9—C101.396 (3)N3—C231.518 (12)
C9—C141.397 (3)N3—C251.519 (12)
C12—C111.391 (3)N3—C271.520 (12)
C12—C131.402 (3)N3—C291.518 (12)
C11—H110.9500C23—H23A0.9900
C11—C101.380 (3)C23—H23B0.9900
C10—H100.9500C23—C241.527 (9)
C2—C31.396 (3)C24—H24A0.9800
C2—C71.394 (3)C24—H24B0.9800
C3—H3A0.9500C24—H24C0.9800
C3—C41.389 (3)C25—H25A0.9900
C5—C61.393 (3)C25—H25B0.9900
C5—C41.395 (3)C25—C261.530 (9)
C6—H6A0.9500C26—H26A0.9800
C6—C71.387 (3)C26—H26B0.9800
C14—H140.9500C26—H26C0.9800
C14—C131.386 (3)C27—H27A0.9900
C13—H130.9500C27—H27B0.9900
C4—H40.9500C27—C281.528 (9)
C7—H70.9500C28—H28A0.9800
N2—C171.518 (11)C28—H28B0.9800
N2—C151.523 (11)C28—H28C0.9800
N2—C191.519 (11)C29—H29A0.9900
N2—C211.520 (11)C29—H29B0.9900
C17—H17A0.9900C29—C301.527 (10)
C17—H17B0.9900C30—H30A0.9800
C17—C181.511 (6)C30—H30B0.9800
C18—H18A0.9800C30—H30C0.9800
O5—Cu1—O1i87.67 (6)C16—C15—H15A108.4
O5—Cu1—O795.42 (5)C16—C15—H15B108.4
O1i—Cu1—O797.36 (5)C15—C16—H16A109.5
O4i—Cu1—O5169.17 (5)C15—C16—H16B109.5
O4i—Cu1—O1i91.24 (6)C15—C16—H16C109.5
O4i—Cu1—O795.40 (5)H16A—C16—H16B109.5
O2—Cu1—O591.45 (6)H16A—C16—H16C109.5
O2—Cu1—O1i169.18 (5)H16B—C16—H16C109.5
O2—Cu1—O4i87.61 (6)N2—C19—H19A108.5
O2—Cu1—O793.46 (5)N2—C19—H19B108.5
C8—O5—Cu1121.04 (12)H19A—C19—H19B107.5
C1—O1—Cu1i119.98 (12)C20—C19—N2115.0 (5)
C5—O3—H3109.5C20—C19—H19A108.5
C12—O6—H6109.5C20—C19—H19B108.5
C8—O4—Cu1i124.09 (12)C19—C20—H20A109.5
Cu1—O7—H7A111.1C19—C20—H20B109.5
Cu1—O7—H7B110.8C19—C20—H20C109.5
H7A—O7—H7B103.1H20A—C20—H20B109.5
C1—O2—Cu1124.80 (12)H20A—C20—H20C109.5
O9—N1—O8118.39 (17)H20B—C20—H20C109.5
O10—N1—O8118.21 (18)N2—C21—H21A108.4
O10—N1—O9123.40 (19)N2—C21—H21B108.4
O1—C1—C2117.98 (16)H21A—C21—H21B107.4
O2—C1—O1125.49 (17)C22—C21—N2115.7 (7)
O2—C1—C2116.52 (16)C22—C21—H21A108.4
O5—C8—O4125.28 (17)C22—C21—H21B108.4
O5—C8—C9117.71 (16)C21—C22—H22A109.5
O4—C8—C9117.00 (16)C21—C22—H22B109.5
C10—C9—C8119.85 (17)C21—C22—H22C109.5
C10—C9—C14118.64 (17)H22A—C22—H22B109.5
C14—C9—C8121.47 (16)H22A—C22—H22C109.5
O6—C12—C11117.31 (17)H22B—C22—H22C109.5
O6—C12—C13122.66 (17)C23—N3—C25111.4 (8)
C11—C12—C13120.03 (17)C23—N3—C27106.1 (8)
C12—C11—H11120.1C23—N3—C29110.2 (7)
C10—C11—C12119.73 (17)C25—N3—C27112.3 (8)
C10—C11—H11120.1C29—N3—C25105.8 (8)
C9—C10—H10119.4C29—N3—C27111.1 (8)
C11—C10—C9121.20 (18)N3—C23—H23A108.4
C11—C10—H10119.4N3—C23—H23B108.4
C3—C2—C1120.91 (16)N3—C23—C24115.5 (6)
C7—C2—C1120.11 (17)H23A—C23—H23B107.5
C7—C2—C3118.96 (17)C24—C23—H23A108.4
C2—C3—H3A119.6C24—C23—H23B108.4
C4—C3—C2120.81 (17)C23—C24—H24A109.5
C4—C3—H3A119.6C23—C24—H24B109.5
O3—C5—C6122.17 (17)C23—C24—H24C109.5
O3—C5—C4117.46 (17)H24A—C24—H24B109.5
C6—C5—C4120.37 (17)H24A—C24—H24C109.5
C5—C6—H6A120.2H24B—C24—H24C109.5
C7—C6—C5119.54 (17)N3—C25—H25A108.6
C7—C6—H6A120.2N3—C25—H25B108.6
C9—C14—H14119.6N3—C25—C26114.8 (6)
C13—C14—C9120.81 (17)H25A—C25—H25B107.5
C13—C14—H14119.6C26—C25—H25A108.6
C12—C13—H13120.2C26—C25—H25B108.6
C14—C13—C12119.52 (18)C25—C26—H26A109.5
C14—C13—H13120.2C25—C26—H26B109.5
C3—C4—C5119.42 (18)C25—C26—H26C109.5
C3—C4—H4120.3H26A—C26—H26B109.5
C5—C4—H4120.3H26A—C26—H26C109.5
C2—C7—H7119.6H26B—C26—H26C109.5
C6—C7—C2120.87 (18)N3—C27—H27A108.6
C6—C7—H7119.6N3—C27—H27B108.6
C17—N2—C15110.9 (7)N3—C27—C28114.9 (6)
C17—N2—C19107.0 (7)H27A—C27—H27B107.5
C17—N2—C21111.5 (7)C28—C27—H27A108.6
C19—N2—C15110.8 (7)C28—C27—H27B108.6
C19—N2—C21111.7 (7)C27—C28—H28A109.5
C21—N2—C15105.0 (7)C27—C28—H28B109.5
N2—C17—H17A108.4C27—C28—H28C109.5
N2—C17—H17B108.4H28A—C28—H28B109.5
H17A—C17—H17B107.4H28A—C28—H28C109.5
C18—C17—N2115.6 (5)H28B—C28—H28C109.5
C18—C17—H17A108.4N3—C29—H29A108.5
C18—C17—H17B108.4N3—C29—H29B108.5
C17—C18—H18A109.5N3—C29—C30115.2 (7)
C17—C18—H18B109.5H29A—C29—H29B107.5
C17—C18—H18C109.5C30—C29—H29A108.5
H18A—C18—H18B109.5C30—C29—H29B108.5
H18A—C18—H18C109.5C29—C30—H30A109.5
H18B—C18—H18C109.5C29—C30—H30B109.5
N2—C15—H15A108.4C29—C30—H30C109.5
N2—C15—H15B108.4H30A—C30—H30B109.5
H15A—C15—H15B107.5H30A—C30—H30C109.5
C16—C15—N2115.5 (7)H30B—C30—H30C109.5
Cu1—O5—C8—O47.3 (3)C5—C6—C7—C20.2 (3)
Cu1—O5—C8—C9172.57 (12)C6—C5—C4—C31.7 (3)
Cu1i—O1—C1—O28.7 (3)C14—C9—C10—C111.5 (3)
Cu1i—O1—C1—C2170.35 (12)C13—C12—C11—C102.9 (3)
Cu1i—O4—C8—O58.1 (3)C4—C5—C6—C71.7 (3)
Cu1i—O4—C8—C9171.75 (12)C7—C2—C3—C41.3 (3)
Cu1—O2—C1—O19.2 (3)C17—N2—C15—C1660.3 (13)
Cu1—O2—C1—C2169.79 (12)C17—N2—C19—C20179.0 (5)
O5—C8—C9—C10176.90 (18)C17—N2—C21—C2261.0 (12)
O5—C8—C9—C140.9 (3)C15—N2—C17—C1859.8 (8)
O1—C1—C2—C33.9 (3)C15—N2—C19—C2058.0 (8)
O1—C1—C2—C7174.45 (17)C15—N2—C21—C22178.8 (10)
O3—C5—C6—C7178.53 (18)C19—N2—C17—C18179.2 (5)
O3—C5—C4—C3178.51 (18)C19—N2—C15—C1658.4 (13)
O6—C12—C11—C10177.89 (17)C19—N2—C21—C2258.7 (12)
O6—C12—C13—C14178.41 (17)C21—N2—C17—C1856.8 (8)
O4—C8—C9—C103.0 (3)C21—N2—C15—C16179.1 (11)
O4—C8—C9—C14179.28 (17)C21—N2—C19—C2058.7 (8)
O2—C1—C2—C3177.03 (18)C23—N3—C25—C2665.0 (10)
O2—C1—C2—C74.7 (3)C23—N3—C27—C28174.7 (8)
C1—C2—C3—C4179.64 (18)C23—N3—C29—C3049.9 (11)
C1—C2—C7—C6179.67 (18)C25—N3—C23—C2465.6 (11)
C8—C9—C10—C11179.29 (18)C25—N3—C27—C2852.8 (11)
C8—C9—C14—C13179.73 (17)C25—N3—C29—C30170.5 (8)
C9—C14—C13—C120.0 (3)C27—N3—C23—C24171.9 (8)
C12—C11—C10—C91.0 (3)C27—N3—C25—C2653.8 (10)
C11—C12—C13—C142.5 (3)C27—N3—C29—C3067.4 (10)
C10—C9—C14—C131.9 (3)C29—N3—C23—C2451.5 (11)
C2—C3—C4—C50.2 (3)C29—N3—C25—C26175.2 (7)
C3—C2—C7—C61.3 (3)C29—N3—C27—C2865.5 (11)
Symmetry code: (i) x+1, y+2, z.
Bis[8-(dimethylamino)-N,N-dimethylnaphthalen-1-aminium] bis(µ-4-hydroxybenzoato)bis(µ-4-oxidobenzoato)bis[aquacopper(II)] dioxane trisolvate monohydrate (compound_7) top
Crystal data top
(C14H19N2)2[Cu2(C7H5O3)2(C7H4O3)2(H2O)2]·3(C4H8O2)·H2OZ = 1
Mr = 1420.47F(000) = 746
Triclinic, P1Dx = 1.344 Mg m3
a = 10.2155 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 12.0897 (3) ÅCell parameters from 13870 reflections
c = 15.7111 (4) Åθ = 3.9–76.4°
α = 69.581 (3)°µ = 1.38 mm1
β = 75.988 (2)°T = 100 K
γ = 79.651 (2)°Irregular, dark green
V = 1754.64 (8) Å30.19 × 0.16 × 0.12 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
6618 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source5772 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.0000 pixels mm-1θmax = 70.1°, θmin = 3.9°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2021)
k = 1414
Tmin = 0.890, Tmax = 1.000l = 1919
21601 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.189 w = 1/[σ2(Fo2) + (0.104P)2 + 1.3001P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6618 reflectionsΔρmax = 1.05 e Å3
361 parametersΔρmin = 0.62 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms on the non-coordinated water molecule have not been modelled.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.41243 (3)1.03328 (4)0.56430 (3)0.05295 (19)
O20.28374 (18)1.0623 (2)0.48196 (14)0.0533 (5)
O50.53049 (19)0.8085 (2)0.50342 (15)0.0606 (6)
O10.43470 (19)1.0072 (2)0.37024 (15)0.0642 (6)
O40.3805 (2)0.8663 (2)0.61457 (15)0.0624 (6)
O70.2650 (2)1.0729 (3)0.67983 (15)0.0729 (7)
H7A0.2436521.0063770.7248470.109*
H7B0.2945191.1141150.7072900.109*
N10.1882 (2)0.4847 (3)0.26458 (17)0.0543 (6)
O30.0933 (2)1.1176 (3)0.20193 (17)0.0803 (8)
N20.1811 (3)0.7077 (3)0.23467 (18)0.0642 (7)
C190.1764 (2)0.5416 (3)0.48681 (19)0.0466 (6)
C70.2451 (3)1.0837 (3)0.2541 (2)0.0472 (6)
H70.3378671.0765270.2251150.057*
C20.2116 (2)1.0756 (2)0.34692 (19)0.0437 (6)
C10.3175 (3)1.0479 (3)0.4042 (2)0.0488 (7)
C180.1704 (3)0.4236 (3)0.5491 (2)0.0506 (7)
H180.1679080.4091670.6128280.061*
C160.1727 (3)0.3519 (3)0.4252 (2)0.0517 (7)
H160.1724790.2871610.4041970.062*
C60.1453 (3)1.1021 (3)0.2031 (2)0.0518 (7)
H60.1692951.1104130.1389810.062*
C200.1786 (3)0.5633 (3)0.39178 (19)0.0466 (6)
C30.0745 (3)1.0892 (3)0.38825 (19)0.0473 (6)
H30.0501801.0885840.4507260.057*
C90.4164 (3)0.6634 (3)0.6303 (2)0.0582 (8)
C210.1819 (3)0.6831 (3)0.3323 (2)0.0538 (7)
C150.1778 (3)0.4643 (3)0.3627 (2)0.0490 (7)
C80.4452 (3)0.7875 (3)0.5789 (2)0.0578 (8)
C170.1680 (3)0.3309 (3)0.5196 (2)0.0519 (7)
H170.1631600.2528300.5622840.062*
C240.1809 (3)0.6368 (3)0.5184 (2)0.0518 (7)
H240.1801920.6218310.5820380.062*
O60.3297 (4)0.3177 (3)0.7702 (3)0.1148 (13)
H6A0.3713480.2463400.7644380.172*
C40.0256 (3)1.1036 (3)0.3387 (2)0.0560 (8)
H40.1183841.1103210.3677570.067*
C220.1854 (3)0.7737 (3)0.3652 (2)0.0585 (8)
H220.1874580.8528880.3242970.070*
C50.0092 (3)1.1083 (3)0.2468 (2)0.0578 (8)
C230.1861 (3)0.7495 (3)0.4588 (2)0.0577 (7)
H230.1901410.8123510.4809050.069*
C100.4835 (3)0.5708 (4)0.5974 (3)0.0669 (10)
H100.5490540.5878900.5413710.080*
C140.3211 (3)0.6365 (4)0.7131 (2)0.0663 (10)
H140.2760470.6982480.7373150.080*
C120.3582 (4)0.4321 (4)0.7257 (3)0.0813 (12)
C130.2922 (3)0.5228 (4)0.7595 (3)0.0752 (11)
H130.2263830.5056900.8153250.090*
C110.4570 (3)0.4568 (4)0.6437 (3)0.0734 (10)
H110.5045930.3944170.6210630.088*
C250.3216 (4)0.4303 (4)0.2238 (3)0.0750 (11)
H25A0.3957460.4626060.2340190.113*
H25B0.3275820.4487140.1571790.113*
H25C0.3287330.3440440.2535740.113*
C260.0748 (4)0.4427 (4)0.2452 (3)0.0825 (12)
H26A0.0812510.3558730.2696910.124*
H26B0.0794070.4686100.1781990.124*
H26C0.0115340.4758560.2749470.124*
C280.0512 (5)0.7777 (4)0.2101 (3)0.0926 (14)
H28A0.0257590.7380630.2534880.139*
H28B0.0474330.7833420.1469750.139*
H28C0.0468780.8576230.2137790.139*
C270.3000 (5)0.7669 (5)0.1724 (3)0.0955 (14)
H27A0.2990740.8437440.1806190.143*
H27B0.2959900.7791930.1079590.143*
H27C0.3834740.7169500.1872730.143*
H10.211 (5)0.598 (5)0.228 (4)0.114 (17)*
O80.5441 (8)0.8767 (9)0.2438 (7)0.132 (3)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0186 (2)0.0960 (4)0.0415 (3)0.00493 (19)0.00648 (16)0.0234 (2)
O20.0224 (8)0.0920 (15)0.0451 (11)0.0053 (9)0.0099 (7)0.0247 (10)
O50.0272 (9)0.1013 (17)0.0495 (12)0.0037 (10)0.0006 (8)0.0257 (11)
O10.0225 (9)0.120 (2)0.0487 (11)0.0102 (10)0.0099 (8)0.0325 (12)
O40.0299 (10)0.0950 (17)0.0505 (12)0.0046 (10)0.0019 (8)0.0180 (11)
O70.0354 (11)0.131 (2)0.0458 (12)0.0177 (12)0.0058 (9)0.0338 (13)
N10.0398 (13)0.0727 (16)0.0472 (13)0.0024 (11)0.0078 (10)0.0196 (12)
O30.0341 (11)0.146 (3)0.0556 (14)0.0047 (13)0.0214 (10)0.0195 (14)
N20.0664 (18)0.0680 (17)0.0434 (14)0.0039 (13)0.0080 (12)0.0068 (12)
C190.0216 (11)0.0658 (17)0.0450 (14)0.0058 (11)0.0058 (10)0.0142 (12)
C70.0256 (12)0.0633 (17)0.0459 (15)0.0017 (11)0.0062 (10)0.0113 (12)
C20.0241 (12)0.0573 (15)0.0449 (14)0.0002 (10)0.0088 (10)0.0111 (11)
C10.0221 (12)0.0710 (18)0.0481 (15)0.0000 (11)0.0072 (11)0.0149 (13)
C180.0249 (12)0.0723 (19)0.0436 (15)0.0066 (12)0.0073 (10)0.0103 (13)
C160.0313 (13)0.0606 (17)0.0581 (17)0.0025 (12)0.0051 (12)0.0187 (14)
C60.0346 (14)0.0733 (19)0.0403 (14)0.0025 (12)0.0089 (11)0.0097 (13)
C200.0265 (12)0.0584 (16)0.0468 (15)0.0060 (11)0.0055 (10)0.0129 (12)
C30.0262 (12)0.0704 (18)0.0411 (14)0.0011 (11)0.0069 (10)0.0143 (12)
C90.0220 (12)0.096 (2)0.0504 (16)0.0020 (13)0.0126 (11)0.0159 (16)
C210.0378 (14)0.0630 (18)0.0478 (16)0.0057 (12)0.0059 (12)0.0090 (13)
C150.0285 (12)0.0656 (17)0.0463 (15)0.0045 (11)0.0061 (11)0.0152 (13)
C80.0215 (12)0.102 (2)0.0467 (16)0.0049 (13)0.0125 (11)0.0212 (16)
C170.0279 (13)0.0606 (17)0.0529 (16)0.0043 (11)0.0045 (11)0.0073 (13)
C240.0279 (13)0.0738 (19)0.0514 (16)0.0046 (12)0.0078 (11)0.0219 (14)
O60.083 (2)0.109 (3)0.124 (3)0.0259 (19)0.030 (2)0.010 (2)
C40.0252 (13)0.083 (2)0.0523 (17)0.0019 (13)0.0088 (11)0.0155 (15)
C220.0465 (16)0.0547 (17)0.0626 (19)0.0037 (13)0.0057 (14)0.0119 (14)
C50.0289 (13)0.091 (2)0.0475 (16)0.0019 (13)0.0143 (11)0.0123 (15)
C230.0366 (15)0.0676 (19)0.0652 (19)0.0024 (13)0.0060 (13)0.0231 (15)
C100.0266 (14)0.101 (3)0.063 (2)0.0046 (15)0.0135 (13)0.0154 (18)
C140.0295 (14)0.113 (3)0.0489 (17)0.0024 (16)0.0140 (12)0.0146 (18)
C120.053 (2)0.099 (3)0.080 (3)0.011 (2)0.0307 (19)0.001 (2)
C130.0372 (16)0.112 (3)0.060 (2)0.0057 (18)0.0115 (14)0.007 (2)
C110.0379 (17)0.093 (3)0.080 (3)0.0020 (16)0.0188 (16)0.016 (2)
C250.060 (2)0.101 (3)0.056 (2)0.0127 (19)0.0041 (16)0.0306 (19)
C260.066 (2)0.119 (3)0.064 (2)0.014 (2)0.0213 (18)0.025 (2)
C280.099 (3)0.100 (3)0.063 (2)0.027 (3)0.034 (2)0.013 (2)
C270.100 (3)0.107 (3)0.055 (2)0.020 (3)0.012 (2)0.010 (2)
O80.084 (5)0.199 (9)0.164 (7)0.039 (5)0.057 (5)0.126 (7)
Geometric parameters (Å, º) top
Cu1—O21.9661 (19)C3—H30.9500
Cu1—O5i1.952 (3)C3—C41.381 (4)
Cu1—O1i1.972 (2)C9—C81.480 (5)
Cu1—O41.951 (3)C9—C101.396 (5)
Cu1—O72.195 (2)C9—C141.397 (4)
O2—C11.251 (4)C21—C221.373 (5)
O5—C81.265 (4)C17—H170.9500
O1—C11.273 (3)C24—H240.9500
O4—C81.274 (4)C24—C231.360 (5)
O7—H7A0.8868O6—H6A0.9151
O7—H7B0.8899O6—C121.363 (6)
N1—C151.454 (4)C4—H40.9500
N1—C251.500 (4)C4—C51.384 (4)
N1—C261.477 (5)C22—H220.9500
N1—H11.33 (5)C22—C231.396 (5)
O3—C51.366 (4)C23—H230.9500
N2—C211.458 (4)C10—H100.9500
N2—C281.498 (5)C10—C111.357 (6)
N2—C271.481 (5)C14—H140.9500
N2—H11.34 (5)C14—C131.361 (6)
C19—C181.423 (4)C12—C131.381 (7)
C19—C201.418 (4)C12—C111.406 (6)
C19—C241.415 (4)C13—H130.9500
C7—H70.9500C11—H110.9500
C7—C21.387 (4)C25—H25A0.9800
C7—C61.387 (4)C25—H25B0.9800
C2—C11.491 (4)C25—H25C0.9800
C2—C31.400 (4)C26—H26A0.9800
C18—H180.9500C26—H26B0.9800
C18—C171.360 (5)C26—H26C0.9800
C16—H160.9500C28—H28A0.9800
C16—C151.372 (4)C28—H28B0.9800
C16—C171.405 (4)C28—H28C0.9800
C6—H60.9500C27—H27A0.9800
C6—C51.395 (4)C27—H27B0.9800
C20—C211.425 (4)C27—H27C0.9800
C20—C151.425 (4)
O2—Cu1—O1i169.41 (8)C16—C15—C20120.9 (3)
O2—Cu1—O796.76 (8)C20—C15—N1118.3 (3)
O5i—Cu1—O289.56 (9)O5—C8—O4124.6 (3)
O5i—Cu1—O1i90.35 (10)O5—C8—C9118.6 (3)
O5i—Cu1—O799.17 (11)O4—C8—C9116.8 (3)
O1i—Cu1—O793.70 (8)C18—C17—C16119.2 (3)
O4—Cu1—O289.80 (10)C18—C17—H17120.4
O4—Cu1—O5i169.45 (9)C16—C17—H17120.4
O4—Cu1—O1i88.35 (11)C19—C24—H24119.6
O4—Cu1—O791.37 (11)C23—C24—C19120.7 (3)
C1—O2—Cu1122.97 (16)C23—C24—H24119.6
C8—O5—Cu1i121.9 (2)C12—O6—H6A133.4
C1—O1—Cu1i121.97 (19)C3—C4—H4119.9
C8—O4—Cu1123.8 (2)C3—C4—C5120.1 (3)
Cu1—O7—H7A110.5C5—C4—H4119.9
Cu1—O7—H7B114.9C21—C22—H22119.9
H7A—O7—H7B104.2C21—C22—C23120.2 (3)
C15—N1—C25111.3 (2)C23—C22—H22119.9
C15—N1—C26112.7 (3)O3—C5—C6122.0 (3)
C15—N1—H1102 (2)O3—C5—C4117.9 (3)
C25—N1—H199 (2)C4—C5—C6120.2 (3)
C26—N1—C25110.5 (3)C24—C23—C22120.5 (3)
C26—N1—H1120 (2)C24—C23—H23119.7
C21—N2—C28111.0 (3)C22—C23—H23119.7
C21—N2—C27112.7 (3)C9—C10—H10119.3
C21—N2—H1101 (2)C11—C10—C9121.3 (3)
C28—N2—H1119 (2)C11—C10—H10119.3
C27—N2—C28111.1 (3)C9—C14—H14119.7
C27—N2—H1102 (2)C13—C14—C9120.6 (4)
C20—C19—C18119.2 (3)C13—C14—H14119.7
C24—C19—C18120.9 (3)O6—C12—C13121.3 (4)
C24—C19—C20119.9 (3)O6—C12—C11118.6 (5)
C2—C7—H7119.5C13—C12—C11120.1 (4)
C2—C7—C6121.0 (2)C14—C13—C12120.3 (4)
C6—C7—H7119.5C14—C13—H13119.9
C7—C2—C1121.5 (2)C12—C13—H13119.9
C7—C2—C3118.9 (2)C10—C11—C12119.1 (4)
C3—C2—C1119.5 (2)C10—C11—H11120.4
O2—C1—O1125.5 (2)C12—C11—H11120.4
O2—C1—C2118.1 (2)N1—C25—H25A109.5
O1—C1—C2116.3 (3)N1—C25—H25B109.5
C19—C18—H18119.2N1—C25—H25C109.5
C17—C18—C19121.7 (3)H25A—C25—H25B109.5
C17—C18—H18119.2H25A—C25—H25C109.5
C15—C16—H16119.4H25B—C25—H25C109.5
C15—C16—C17121.2 (3)N1—C26—H26A109.5
C17—C16—H16119.4N1—C26—H26B109.5
C7—C6—H6120.4N1—C26—H26C109.5
C7—C6—C5119.3 (3)H26A—C26—H26B109.5
C5—C6—H6120.4H26A—C26—H26C109.5
C19—C20—C21117.3 (3)H26B—C26—H26C109.5
C19—C20—C15117.9 (3)N2—C28—H28A109.5
C15—C20—C21124.8 (3)N2—C28—H28B109.5
C2—C3—H3119.8N2—C28—H28C109.5
C4—C3—C2120.4 (3)H28A—C28—H28B109.5
C4—C3—H3119.8H28A—C28—H28C109.5
C10—C9—C8120.9 (3)H28B—C28—H28C109.5
C10—C9—C14118.6 (4)N2—C27—H27A109.5
C14—C9—C8120.5 (3)N2—C27—H27B109.5
C20—C21—N2118.2 (3)N2—C27—H27C109.5
C22—C21—N2120.4 (3)H27A—C27—H27B109.5
C22—C21—C20121.4 (3)H27A—C27—H27C109.5
C16—C15—N1120.8 (3)H27B—C27—H27C109.5
Cu1—O2—C1—O14.0 (5)C3—C4—C5—C61.9 (5)
Cu1—O2—C1—C2178.53 (19)C9—C10—C11—C121.1 (5)
Cu1i—O5—C8—O45.8 (4)C9—C14—C13—C120.8 (5)
Cu1i—O5—C8—C9174.54 (18)C21—C20—C15—N13.4 (4)
Cu1i—O1—C1—O23.0 (5)C21—C20—C15—C16179.1 (3)
Cu1i—O1—C1—C2179.5 (2)C21—C22—C23—C241.1 (5)
Cu1—O4—C8—O55.4 (4)C15—C16—C17—C180.9 (4)
Cu1—O4—C8—C9174.92 (18)C15—C20—C21—N21.5 (4)
N2—C21—C22—C23179.9 (3)C15—C20—C21—C22178.6 (3)
C19—C18—C17—C160.5 (4)C8—C9—C10—C11179.5 (3)
C19—C20—C21—N2178.6 (2)C8—C9—C14—C13178.5 (3)
C19—C20—C21—C221.2 (4)C17—C16—C15—N1177.5 (2)
C19—C20—C15—N1176.4 (2)C17—C16—C15—C200.1 (4)
C19—C20—C15—C161.0 (4)C24—C19—C18—C17179.1 (2)
C19—C24—C23—C220.8 (4)C24—C19—C20—C211.5 (4)
C7—C2—C1—O2167.6 (3)C24—C19—C20—C15178.3 (2)
C7—C2—C1—O114.7 (4)O6—C12—C13—C14179.1 (3)
C7—C2—C3—C43.7 (5)O6—C12—C11—C10178.2 (3)
C7—C6—C5—O3175.1 (3)C10—C9—C8—O51.1 (4)
C7—C6—C5—C44.1 (5)C10—C9—C8—O4179.2 (3)
C2—C7—C6—C52.3 (5)C10—C9—C14—C131.5 (5)
C2—C3—C4—C52.0 (5)C14—C9—C8—O5178.9 (3)
C1—C2—C3—C4173.8 (3)C14—C9—C8—O40.9 (4)
C18—C19—C20—C21178.7 (2)C14—C9—C10—C110.5 (5)
C18—C19—C20—C151.4 (4)C13—C12—C11—C101.8 (6)
C18—C19—C24—C23179.7 (2)C11—C12—C13—C140.8 (6)
C6—C7—C2—C1175.9 (3)C25—N1—C15—C1666.3 (4)
C6—C7—C2—C31.5 (5)C25—N1—C15—C20111.1 (3)
C20—C19—C18—C170.7 (4)C26—N1—C15—C1658.5 (4)
C20—C19—C24—C230.6 (4)C26—N1—C15—C20124.1 (3)
C20—C21—C22—C230.1 (5)C28—N2—C21—C20112.3 (4)
C3—C2—C1—O215.0 (4)C28—N2—C21—C2267.5 (4)
C3—C2—C1—O1162.7 (3)C27—N2—C21—C20122.3 (3)
C3—C4—C5—O3177.3 (3)C27—N2—C21—C2257.8 (4)
Symmetry code: (i) x+1, y+2, z+1.
catena-Poly[[tetrakis(µ-4-hydroxybenzoato)dicopper(II)]-µ-(4,4-bipyridine N,N'-dioxide)] (compound_8) top
Crystal data top
[Cu2(C7H5O3)4(C10H8N2O2)]·H2OF(000) = 1800
Mr = 881.72Dx = 1.609 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 11.9851 (8) ÅCell parameters from 3614 reflections
b = 17.7472 (11) Åθ = 4.5–75.7°
c = 17.1294 (10) ŵ = 2.12 mm1
β = 92.637 (5)°T = 130 K
V = 3639.6 (4) Å3Block, dark green
Z = 40.32 × 0.06 × 0.05 mm
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an Atlas detector
3663 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source3386 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.2273 pixels mm-1θmax = 75.9°, θmin = 4.5°
ω scansh = 1314
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 2219
Tmin = 0.898, Tmax = 1.000l = 1421
6868 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0627P)2 + 1.6515P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
3663 reflectionsΔρmax = 0.36 e Å3
263 parametersΔρmin = 0.57 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.54139 (2)0.54327 (2)0.55445 (2)0.01706 (11)
O10.40892 (10)0.39073 (7)0.53016 (7)0.0225 (3)
O20.47249 (11)0.47017 (7)0.62379 (8)0.0237 (3)
O30.32641 (10)0.52033 (8)0.45993 (8)0.0243 (3)
O40.39850 (10)0.59718 (7)0.55335 (8)0.0241 (3)
O50.5000000.68052 (11)0.7500000.0259 (4)
H50.4670940.6535980.7829000.039*
O60.61601 (10)0.60211 (8)0.65226 (8)0.0252 (3)
O70.08298 (11)0.73890 (8)0.49096 (9)0.0279 (3)
H70.0737150.7820100.5104440.042*
O80.14206 (12)0.27908 (9)0.81889 (8)0.0315 (3)
H80.0987820.2471910.7975360.047*
N10.72175 (12)0.59467 (8)0.67856 (9)0.0217 (3)
C10.41454 (14)0.41455 (10)0.60065 (10)0.0197 (3)
C20.34645 (14)0.37614 (10)0.65823 (10)0.0209 (3)
C120.01382 (14)0.69945 (10)0.49891 (11)0.0223 (3)
C80.31973 (14)0.57449 (10)0.50733 (10)0.0209 (3)
C90.21109 (14)0.61541 (10)0.50826 (10)0.0206 (3)
C70.26800 (15)0.32172 (10)0.63378 (10)0.0225 (3)
H7A0.2623650.3072330.5803510.027*
C60.19869 (15)0.28877 (10)0.68605 (11)0.0249 (4)
H60.1453260.2522190.6684950.030*
C110.10430 (15)0.72402 (10)0.54651 (11)0.0235 (3)
H110.0988500.7692210.5758020.028*
C170.94118 (15)0.58594 (10)0.73482 (11)0.0236 (4)
C30.35321 (15)0.39701 (11)0.73707 (11)0.0248 (4)
H30.4052880.4344770.7543740.030*
C130.01999 (15)0.63124 (11)0.45921 (11)0.0254 (4)
H130.0430560.6129770.4293220.030*
C100.20231 (14)0.68216 (10)0.55087 (10)0.0227 (3)
H100.2639240.6990330.5831120.027*
C50.20708 (15)0.30921 (11)0.76486 (11)0.0246 (4)
C180.85292 (15)0.57140 (11)0.78293 (11)0.0269 (4)
H180.8679970.5583390.8361520.032*
C160.91425 (15)0.60349 (11)0.65689 (11)0.0269 (4)
H160.9723540.6123540.6221200.032*
C140.11820 (15)0.59009 (10)0.46338 (11)0.0245 (4)
H140.1225200.5440450.4353890.029*
C150.80470 (16)0.60814 (11)0.62966 (11)0.0269 (4)
H150.7874260.6207980.5765810.032*
C190.74381 (15)0.57585 (11)0.75379 (11)0.0263 (4)
H190.6841990.5656020.7869020.032*
C40.28504 (16)0.36375 (11)0.79002 (11)0.0275 (4)
H40.2910540.3778900.8435400.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01606 (16)0.01854 (16)0.01641 (16)0.00039 (8)0.00081 (10)0.00009 (8)
O10.0262 (6)0.0211 (6)0.0203 (6)0.0031 (5)0.0032 (5)0.0003 (5)
O20.0245 (6)0.0263 (6)0.0201 (6)0.0066 (5)0.0015 (5)0.0028 (5)
O30.0196 (6)0.0263 (6)0.0266 (7)0.0057 (5)0.0016 (5)0.0041 (5)
O40.0190 (6)0.0270 (6)0.0260 (6)0.0040 (5)0.0015 (5)0.0034 (5)
O50.0234 (9)0.0268 (9)0.0281 (10)0.0000.0077 (7)0.000
O60.0160 (6)0.0326 (7)0.0266 (7)0.0023 (5)0.0046 (5)0.0098 (5)
O70.0205 (6)0.0258 (6)0.0372 (8)0.0041 (5)0.0025 (5)0.0067 (5)
O80.0331 (7)0.0392 (8)0.0226 (7)0.0107 (6)0.0046 (5)0.0008 (6)
N10.0182 (7)0.0230 (7)0.0235 (7)0.0011 (5)0.0031 (5)0.0039 (6)
C10.0170 (7)0.0219 (8)0.0199 (8)0.0027 (6)0.0008 (6)0.0016 (6)
C20.0184 (8)0.0238 (8)0.0203 (8)0.0009 (6)0.0003 (6)0.0003 (6)
C120.0182 (8)0.0240 (8)0.0248 (9)0.0015 (6)0.0023 (6)0.0025 (6)
C80.0189 (8)0.0225 (8)0.0213 (8)0.0016 (6)0.0018 (6)0.0051 (6)
C90.0187 (8)0.0223 (8)0.0208 (8)0.0012 (6)0.0014 (6)0.0027 (6)
C70.0228 (8)0.0250 (8)0.0199 (8)0.0006 (7)0.0011 (6)0.0016 (6)
C60.0243 (8)0.0262 (8)0.0241 (9)0.0031 (7)0.0001 (7)0.0003 (7)
C110.0225 (8)0.0217 (8)0.0263 (9)0.0004 (6)0.0021 (7)0.0025 (7)
C170.0202 (9)0.0267 (8)0.0239 (9)0.0012 (6)0.0009 (7)0.0011 (7)
C30.0230 (8)0.0268 (8)0.0243 (9)0.0044 (7)0.0017 (7)0.0014 (7)
C130.0189 (8)0.0290 (9)0.0280 (9)0.0004 (7)0.0023 (6)0.0027 (7)
C100.0188 (8)0.0266 (8)0.0225 (8)0.0000 (6)0.0007 (6)0.0002 (7)
C50.0238 (8)0.0280 (9)0.0222 (9)0.0009 (7)0.0025 (7)0.0021 (7)
C180.0235 (9)0.0364 (10)0.0208 (9)0.0019 (7)0.0005 (7)0.0033 (7)
C160.0216 (8)0.0368 (10)0.0221 (9)0.0047 (7)0.0002 (7)0.0018 (7)
C140.0224 (8)0.0245 (8)0.0264 (9)0.0016 (6)0.0007 (7)0.0029 (7)
C150.0231 (8)0.0353 (10)0.0220 (9)0.0022 (7)0.0007 (7)0.0017 (7)
C190.0228 (8)0.0312 (9)0.0250 (9)0.0003 (7)0.0030 (7)0.0000 (7)
C40.0305 (9)0.0336 (10)0.0182 (8)0.0041 (8)0.0000 (7)0.0025 (7)
Geometric parameters (Å, º) top
Cu1—O1i1.9765 (12)C9—C141.398 (3)
Cu1—O21.9663 (13)C7—H7A0.9500
Cu1—O3i1.9701 (12)C7—C61.379 (2)
Cu1—O41.9610 (12)C6—H60.9500
Cu1—O62.1352 (13)C6—C51.397 (3)
O1—C11.278 (2)C11—H110.9500
O2—C11.260 (2)C11—C101.389 (3)
O3—C81.263 (2)C17—C17iii1.480 (4)
O4—C81.267 (2)C17—C181.395 (3)
O5—H5ii0.85 (3)C17—C161.394 (3)
O5—H50.8497C3—H30.9500
O6—N11.3320 (19)C3—C41.381 (3)
O7—H70.8400C13—H130.9500
O7—C121.357 (2)C13—C141.384 (3)
O8—H80.8400C10—H100.9500
O8—C51.348 (2)C5—C41.399 (3)
N1—C151.350 (2)C18—H180.9500
N1—C191.346 (3)C18—C191.380 (3)
C1—C21.476 (2)C16—H160.9500
C2—C71.399 (2)C16—C151.376 (3)
C2—C31.399 (3)C14—H140.9500
C12—C111.396 (3)C15—H150.9500
C12—C131.392 (3)C19—H190.9500
C8—C91.492 (2)C4—H40.9500
C9—C101.398 (2)
O1i—Cu1—O698.98 (5)C7—C6—H6120.1
O2—Cu1—O1i169.44 (5)C7—C6—C5119.90 (17)
O2—Cu1—O3i93.44 (6)C5—C6—H6120.1
O2—Cu1—O691.21 (5)C12—C11—H11120.1
O3i—Cu1—O1i88.66 (6)C10—C11—C12119.77 (17)
O3i—Cu1—O693.91 (5)C10—C11—H11120.1
O4—Cu1—O1i89.79 (5)C18—C17—C17iii121.9 (2)
O4—Cu1—O286.38 (6)C16—C17—C17iii120.7 (2)
O4—Cu1—O3i170.18 (5)C16—C17—C18117.30 (17)
O4—Cu1—O695.91 (5)C2—C3—H3119.6
C1—O1—Cu1i119.48 (11)C4—C3—C2120.74 (17)
C1—O2—Cu1124.57 (12)C4—C3—H3119.6
C8—O3—Cu1i126.26 (12)C12—C13—H13120.1
C8—O4—Cu1118.44 (11)C14—C13—C12119.85 (17)
H5—O5—H5ii111.6C14—C13—H13120.1
N1—O6—Cu1125.07 (10)C9—C10—H10119.7
C12—O7—H7109.5C11—C10—C9120.59 (17)
C5—O8—H8109.5C11—C10—H10119.7
O6—N1—C15119.26 (16)O8—C5—C6122.84 (17)
O6—N1—C19119.37 (15)O8—C5—C4117.51 (17)
C19—N1—C15121.34 (16)C6—C5—C4119.64 (17)
O1—C1—C2118.16 (15)C17—C18—H18119.7
O2—C1—O1124.09 (16)C19—C18—C17120.50 (18)
O2—C1—C2117.73 (16)C19—C18—H18119.7
C7—C2—C1120.24 (16)C17—C16—H16119.6
C7—C2—C3118.70 (16)C15—C16—C17120.89 (17)
C3—C2—C1120.91 (16)C15—C16—H16119.6
O7—C12—C11122.35 (16)C9—C14—H14119.6
O7—C12—C13117.66 (16)C13—C14—C9120.83 (17)
C13—C12—C11119.97 (16)C13—C14—H14119.6
O3—C8—O4125.04 (16)N1—C15—C16119.83 (18)
O3—C8—C9117.29 (16)N1—C15—H15120.1
O4—C8—C9117.67 (16)C16—C15—H15120.1
C10—C9—C8120.32 (16)N1—C19—C18120.10 (17)
C14—C9—C8120.74 (16)N1—C19—H19119.9
C14—C9—C10118.85 (16)C18—C19—H19119.9
C2—C7—H7A119.5C3—C4—C5120.01 (17)
C6—C7—C2121.00 (17)C3—C4—H4120.0
C6—C7—H7A119.5C5—C4—H4120.0
Cu1i—O1—C1—O217.0 (2)C1—C2—C3—C4176.48 (17)
Cu1i—O1—C1—C2161.12 (12)C2—C7—C6—C50.6 (3)
Cu1—O2—C1—O112.8 (2)C2—C3—C4—C50.8 (3)
Cu1—O2—C1—C2165.33 (11)C12—C11—C10—C90.3 (3)
Cu1i—O3—C8—O40.6 (3)C12—C13—C14—C91.2 (3)
Cu1i—O3—C8—C9179.74 (11)C8—C9—C10—C11174.30 (16)
Cu1—O4—C8—O31.9 (2)C8—C9—C14—C13174.76 (17)
Cu1—O4—C8—C9179.02 (11)C7—C2—C3—C41.0 (3)
Cu1—O6—N1—C1557.1 (2)C7—C6—C5—O8179.88 (17)
Cu1—O6—N1—C19124.59 (15)C7—C6—C5—C40.8 (3)
O1—C1—C2—C77.9 (2)C6—C5—C4—C30.0 (3)
O1—C1—C2—C3176.70 (16)C11—C12—C13—C143.8 (3)
O2—C1—C2—C7170.33 (16)C17iii—C17—C18—C19176.46 (14)
O2—C1—C2—C35.1 (2)C17iii—C17—C16—C15175.92 (15)
O3—C8—C9—C10170.92 (16)C17—C18—C19—N10.3 (3)
O3—C8—C9—C145.6 (2)C17—C16—C15—N10.8 (3)
O4—C8—C9—C108.3 (2)C3—C2—C7—C60.3 (3)
O4—C8—C9—C14175.21 (16)C13—C12—C11—C103.3 (3)
O6—N1—C15—C16177.51 (17)C10—C9—C14—C131.8 (3)
O6—N1—C19—C18176.93 (17)C18—C17—C16—C151.7 (3)
O7—C12—C11—C10178.44 (16)C16—C17—C18—C191.1 (3)
O7—C12—C13—C14177.89 (17)C14—C9—C10—C112.3 (3)
O8—C5—C4—C3179.45 (18)C15—N1—C19—C181.3 (3)
C1—C2—C7—C6175.80 (16)C19—N1—C15—C160.7 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+3/2; (iii) x+2, y, z+3/2.
Tetrakis(µ-4-hydroxybenzoato)bis[(4,4'-bipyridine N,N'-dioxide)copper(II)] dioxane disolvate (compound_9) top
Crystal data top
[Cu2(C7H5O3)4(C10H8N2O2)2]·2C4H8O2Dx = 1.427 Mg m3
Mr = 1228.09Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 10015 reflections
a = 17.5993 (3) Åθ = 4.3–76.7°
b = 16.4583 (2) ŵ = 1.59 mm1
c = 19.7389 (2) ÅT = 100 K
V = 5717.46 (13) Å3Irregular, dark green
Z = 40.09 × 0.07 × 0.05 mm
F(000) = 2536
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
5876 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source4731 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.056
ω scansθmax = 77.9°, θmin = 4.3°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 2118
Tmin = 0.344, Tmax = 1.000k = 2016
23256 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0724P)2 + 2.8715P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
5876 reflectionsΔρmax = 0.59 e Å3
427 parametersΔρmin = 0.68 e Å3
110 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.55547 (2)0.53111 (2)0.53308 (2)0.01823 (12)
O50.50248 (10)0.36700 (10)0.46401 (8)0.0252 (4)
O70.65573 (9)0.57946 (10)0.57670 (7)0.0241 (3)
O10.59137 (11)0.56075 (11)0.44259 (8)0.0291 (4)
O80.61763 (11)0.68383 (10)1.05831 (8)0.0273 (4)
O20.49637 (11)0.50447 (11)0.38364 (8)0.0280 (4)
O40.59873 (10)0.42265 (10)0.52209 (9)0.0298 (4)
O30.71353 (11)0.63150 (11)0.14972 (8)0.0321 (4)
H30.6832250.6407150.1177600.048*
O60.72255 (11)0.06580 (10)0.49628 (10)0.0354 (4)
H60.7610580.0687720.5213000.053*
N10.65256 (11)0.59407 (11)0.64321 (9)0.0206 (4)
N20.62549 (12)0.67097 (11)0.99246 (9)0.0230 (4)
O110.3089 (3)0.7105 (2)0.7347 (2)0.0404 (8)0.810 (7)
C80.56697 (13)0.36401 (13)0.49230 (11)0.0211 (4)
C90.60821 (14)0.28525 (14)0.49182 (11)0.0226 (5)
C20.59825 (14)0.56527 (13)0.32415 (11)0.0234 (5)
C10.55878 (14)0.54118 (13)0.38817 (11)0.0220 (5)
C150.63041 (15)0.66824 (14)0.66426 (11)0.0252 (5)
H150.6178420.7090790.6321460.030*
C170.64367 (14)0.62556 (13)0.78060 (11)0.0227 (5)
C100.68067 (14)0.28099 (14)0.52013 (12)0.0244 (5)
H100.7031370.3284690.5387730.029*
C160.62607 (15)0.68455 (14)0.73252 (11)0.0251 (5)
H160.6107820.7370660.7471340.030*
C210.60508 (14)0.71260 (14)0.87942 (11)0.0245 (5)
H210.5853710.7516880.8486750.029*
C200.63854 (14)0.64219 (13)0.85414 (11)0.0226 (5)
C50.67379 (15)0.60924 (14)0.20579 (11)0.0258 (5)
C30.67212 (14)0.59578 (14)0.32695 (11)0.0237 (5)
H3A0.6966480.6017260.3695320.028*
C120.68680 (15)0.13871 (14)0.49508 (13)0.0266 (5)
C230.65919 (16)0.60197 (15)0.97036 (12)0.0281 (5)
H230.6776470.5634501.0022050.034*
O90.45652 (16)0.6662 (2)0.77770 (13)0.0493 (10)0.810 (7)
C110.72015 (14)0.20845 (14)0.52137 (11)0.0245 (5)
H110.7698300.2062590.5400940.029*
C40.71015 (14)0.61755 (14)0.26802 (12)0.0255 (5)
H40.7605830.6379480.2701750.031*
C220.59993 (14)0.72685 (14)0.94821 (11)0.0241 (5)
H220.5783360.7761030.9643000.029*
C70.56233 (15)0.55780 (16)0.26172 (12)0.0297 (5)
H70.5118310.5375840.2595210.036*
C190.66950 (17)0.53507 (14)0.68720 (12)0.0294 (5)
H190.6843020.4830130.6711340.035*
C240.66691 (16)0.58720 (14)0.90203 (12)0.0278 (5)
H240.6917760.5391470.8872040.033*
C140.57563 (15)0.21559 (15)0.46452 (12)0.0265 (5)
H140.5266300.2182440.4444650.032*
C180.66551 (17)0.54966 (15)0.75576 (12)0.0311 (6)
H180.6778090.5074150.7866630.037*
C60.59989 (16)0.57974 (16)0.20242 (12)0.0313 (5)
H6A0.5751410.5745750.1598650.038*
C130.61441 (16)0.14216 (15)0.46646 (14)0.0321 (6)
H130.5917470.0944790.4483630.039*
C250.3282 (2)0.7026 (3)0.80400 (19)0.0388 (9)0.810 (7)
H25A0.3158190.6468170.8192540.047*0.810 (7)
H25B0.2970750.7409110.8308510.047*0.810 (7)
C260.4093 (3)0.7187 (3)0.8173 (2)0.0438 (11)0.810 (7)
H26A0.4210750.7759790.8062070.053*0.810 (7)
H26B0.4201660.7101480.8660160.053*0.810 (7)
C280.3552 (2)0.6565 (3)0.6955 (2)0.0434 (10)0.810 (7)
H28A0.3433130.6631500.6467800.052*0.810 (7)
H28B0.3439610.5995720.7082890.052*0.810 (7)
C270.4373 (2)0.6736 (3)0.7071 (2)0.0509 (12)0.810 (7)
H27A0.4684000.6351530.6803570.061*0.810 (7)
H27B0.4491680.7293540.6914640.061*0.810 (7)
O100.4610 (8)0.7313 (12)0.7713 (7)0.064 (4)0.190 (7)
C290.405 (2)0.753 (2)0.8167 (18)0.071 (5)0.190 (7)
H29A0.3802850.8047340.8039850.085*0.190 (7)
H29B0.4248710.7569190.8635030.085*0.190 (7)
C320.4311 (12)0.7477 (15)0.7046 (9)0.059 (4)0.190 (7)
H32A0.4085610.8027720.7030740.071*0.190 (7)
H32B0.4722220.7447820.6704680.071*0.190 (7)
C300.341 (2)0.666 (2)0.8067 (17)0.085 (5)0.190 (7)
H30A0.3677410.6138270.8089900.101*0.190 (7)
H30B0.2988570.6672750.8402900.101*0.190 (7)
C310.3752 (19)0.689 (2)0.6905 (16)0.076 (5)0.190 (7)
H31A0.3998710.6348670.6902150.091*0.190 (7)
H31B0.3554710.6989590.6442930.091*0.190 (7)
O120.313 (2)0.6859 (18)0.7354 (18)0.087 (6)0.190 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02456 (19)0.01616 (18)0.01396 (18)0.00172 (12)0.00016 (12)0.00019 (11)
O50.0280 (9)0.0203 (8)0.0273 (8)0.0012 (7)0.0046 (7)0.0030 (6)
O70.0285 (8)0.0306 (8)0.0131 (7)0.0072 (7)0.0008 (6)0.0039 (6)
O10.0347 (10)0.0364 (9)0.0161 (8)0.0099 (8)0.0034 (7)0.0002 (7)
O80.0405 (10)0.0279 (8)0.0137 (7)0.0021 (7)0.0000 (7)0.0025 (6)
O20.0354 (10)0.0334 (9)0.0151 (7)0.0093 (8)0.0011 (7)0.0020 (6)
O40.0308 (9)0.0206 (8)0.0380 (10)0.0002 (7)0.0082 (8)0.0057 (7)
O30.0359 (10)0.0420 (10)0.0183 (8)0.0017 (8)0.0057 (7)0.0073 (7)
O60.0327 (10)0.0212 (8)0.0524 (12)0.0044 (7)0.0152 (9)0.0072 (8)
N10.0252 (9)0.0233 (9)0.0132 (8)0.0024 (8)0.0019 (7)0.0024 (7)
N20.0334 (11)0.0211 (9)0.0146 (9)0.0000 (8)0.0009 (8)0.0029 (7)
O110.0389 (15)0.049 (2)0.0337 (14)0.0094 (15)0.0003 (11)0.0053 (15)
C80.0264 (11)0.0194 (10)0.0175 (10)0.0011 (9)0.0010 (8)0.0016 (8)
C90.0260 (11)0.0232 (11)0.0187 (10)0.0007 (9)0.0005 (9)0.0002 (8)
C20.0336 (13)0.0187 (10)0.0180 (10)0.0003 (9)0.0032 (9)0.0016 (8)
C10.0299 (12)0.0197 (10)0.0165 (10)0.0009 (9)0.0010 (9)0.0006 (8)
C150.0343 (13)0.0218 (11)0.0195 (11)0.0008 (10)0.0017 (9)0.0029 (9)
C170.0299 (12)0.0197 (10)0.0184 (10)0.0005 (9)0.0021 (9)0.0009 (8)
C100.0302 (12)0.0180 (10)0.0251 (11)0.0000 (9)0.0019 (9)0.0003 (9)
C160.0366 (13)0.0192 (10)0.0196 (11)0.0026 (9)0.0009 (9)0.0014 (8)
C210.0348 (13)0.0203 (10)0.0184 (10)0.0047 (9)0.0035 (9)0.0014 (8)
C200.0317 (12)0.0195 (10)0.0165 (10)0.0004 (9)0.0020 (9)0.0012 (8)
C50.0338 (12)0.0257 (11)0.0180 (11)0.0022 (10)0.0073 (9)0.0036 (9)
C30.0315 (12)0.0224 (11)0.0172 (10)0.0026 (10)0.0020 (9)0.0015 (8)
C120.0294 (12)0.0198 (11)0.0305 (12)0.0025 (9)0.0037 (10)0.0025 (9)
C230.0440 (15)0.0215 (11)0.0186 (11)0.0065 (11)0.0039 (10)0.0010 (9)
O90.0365 (15)0.077 (2)0.0349 (14)0.0123 (14)0.0016 (11)0.0141 (14)
C110.0272 (12)0.0227 (11)0.0236 (11)0.0014 (9)0.0032 (9)0.0003 (9)
C40.0276 (12)0.0262 (11)0.0225 (11)0.0026 (10)0.0023 (9)0.0031 (9)
C220.0325 (13)0.0184 (10)0.0214 (10)0.0054 (9)0.0004 (9)0.0004 (9)
C70.0336 (13)0.0351 (13)0.0205 (12)0.0066 (11)0.0006 (10)0.0024 (10)
C190.0449 (15)0.0229 (11)0.0203 (11)0.0068 (11)0.0021 (10)0.0033 (9)
C240.0430 (14)0.0194 (11)0.0211 (11)0.0070 (10)0.0027 (10)0.0025 (9)
C140.0277 (12)0.0227 (12)0.0292 (12)0.0019 (10)0.0045 (9)0.0036 (9)
C180.0490 (16)0.0240 (11)0.0204 (11)0.0091 (11)0.0052 (11)0.0018 (9)
C60.0396 (14)0.0370 (13)0.0172 (11)0.0034 (11)0.0007 (10)0.0032 (10)
C130.0336 (14)0.0231 (12)0.0396 (14)0.0009 (10)0.0079 (11)0.0062 (10)
C250.039 (2)0.050 (2)0.0271 (17)0.0065 (18)0.0047 (14)0.0004 (17)
C260.043 (2)0.057 (3)0.0308 (19)0.001 (2)0.0031 (16)0.011 (2)
C280.035 (2)0.058 (3)0.037 (2)0.0044 (19)0.0039 (17)0.013 (2)
C270.041 (2)0.076 (3)0.035 (2)0.001 (2)0.0008 (16)0.021 (2)
O100.053 (5)0.092 (7)0.046 (5)0.003 (5)0.001 (4)0.003 (5)
C290.063 (7)0.094 (8)0.057 (7)0.002 (6)0.001 (6)0.001 (6)
C320.050 (6)0.086 (7)0.041 (6)0.003 (6)0.002 (5)0.006 (5)
C300.079 (8)0.096 (8)0.078 (7)0.004 (6)0.001 (6)0.000 (6)
C310.072 (7)0.092 (8)0.064 (7)0.003 (6)0.006 (6)0.001 (6)
O120.082 (8)0.096 (8)0.081 (7)0.005 (6)0.001 (6)0.003 (6)
Geometric parameters (Å, º) top
Cu1—O5i1.9637 (17)C12—C111.390 (3)
Cu1—O72.1185 (16)C12—C131.395 (4)
Cu1—O11.9564 (16)C23—H230.9500
Cu1—O2i1.9692 (16)C23—C241.377 (3)
Cu1—O41.9527 (17)O9—C261.431 (5)
O5—C81.266 (3)O9—C271.439 (5)
O7—N11.336 (2)C11—H110.9500
O1—C11.260 (3)C4—H40.9500
O8—N21.324 (2)C22—H220.9500
O2—C11.257 (3)C7—H70.9500
O4—C81.261 (3)C7—C61.392 (3)
O3—H30.8400C19—H190.9500
O3—C51.360 (3)C19—C181.376 (3)
O6—H60.8400C24—H240.9500
O6—C121.355 (3)C14—H140.9500
N1—C151.347 (3)C14—C131.388 (4)
N1—C191.336 (3)C18—H180.9500
N2—C231.353 (3)C6—H6A0.9500
N2—C221.346 (3)C13—H130.9500
O11—C251.416 (6)C25—H25A0.9900
O11—C281.433 (6)C25—H25B0.9900
C8—C91.486 (3)C25—C261.475 (7)
C9—C101.394 (3)C26—H26A0.9900
C9—C141.390 (3)C26—H26B0.9900
C2—C11.496 (3)C28—H28A0.9900
C2—C31.395 (4)C28—H28B0.9900
C2—C71.390 (3)C28—C271.489 (6)
C15—H150.9500C27—H27A0.9900
C15—C161.376 (3)C27—H27B0.9900
C17—C161.392 (3)O10—C291.38 (4)
C17—C201.480 (3)O10—C321.44 (2)
C17—C181.396 (3)C29—H29A0.9900
C10—H100.9500C29—H29B0.9900
C10—C111.381 (3)C29—C301.83 (5)
C16—H160.9500C32—H32A0.9900
C21—H210.9500C32—H32B0.9900
C21—C201.392 (3)C32—C311.41 (4)
C21—C221.381 (3)C30—H30A0.9900
C20—C241.401 (3)C30—H30B0.9900
C5—C41.392 (3)C30—O121.52 (4)
C5—C61.390 (4)C31—H31A0.9900
C3—H3A0.9500C31—H31B0.9900
C3—C41.389 (3)C31—O121.41 (5)
O5i—Cu1—O795.73 (7)N2—C22—H22120.0
O5i—Cu1—O2i89.36 (7)C21—C22—H22120.0
O1—Cu1—O5i88.94 (7)C2—C7—H7119.8
O1—Cu1—O790.49 (7)C2—C7—C6120.4 (2)
O1—Cu1—O2i170.38 (7)C6—C7—H7119.8
O2i—Cu1—O799.10 (7)N1—C19—H19120.0
O4—Cu1—O5i170.56 (7)N1—C19—C18120.1 (2)
O4—Cu1—O793.66 (7)C18—C19—H19120.0
O4—Cu1—O190.04 (8)C20—C24—H24119.6
O4—Cu1—O2i90.09 (8)C23—C24—C20120.8 (2)
C8—O5—Cu1i119.08 (15)C23—C24—H24119.6
N1—O7—Cu1115.61 (13)C9—C14—H14119.9
C1—O1—Cu1124.60 (16)C13—C14—C9120.3 (2)
C1—O2—Cu1i119.24 (15)C13—C14—H14119.9
C8—O4—Cu1125.36 (16)C17—C18—H18119.5
C5—O3—H3109.5C19—C18—C17121.0 (2)
C12—O6—H6109.5C19—C18—H18119.5
O7—N1—C15118.58 (18)C5—C6—C7119.7 (2)
O7—N1—C19119.90 (19)C5—C6—H6A120.2
C19—N1—C15121.50 (19)C7—C6—H6A120.2
O8—N2—C23119.76 (19)C12—C13—H13120.1
O8—N2—C22119.54 (19)C14—C13—C12119.7 (2)
C22—N2—C23120.71 (19)C14—C13—H13120.1
C25—O11—C28109.2 (4)O11—C25—H25A109.0
O5—C8—C9118.0 (2)O11—C25—H25B109.0
O4—C8—O5125.0 (2)O11—C25—C26112.8 (4)
O4—C8—C9117.0 (2)H25A—C25—H25B107.8
C10—C9—C8119.2 (2)C26—C25—H25A109.0
C14—C9—C8121.4 (2)C26—C25—H25B109.0
C14—C9—C10119.4 (2)O9—C26—C25110.8 (4)
C3—C2—C1119.7 (2)O9—C26—H26A109.5
C7—C2—C1120.9 (2)O9—C26—H26B109.5
C7—C2—C3119.4 (2)C25—C26—H26A109.5
O1—C1—C2116.2 (2)C25—C26—H26B109.5
O2—C1—O1125.6 (2)H26A—C26—H26B108.1
O2—C1—C2118.2 (2)O11—C28—H28A109.5
N1—C15—H15120.2O11—C28—H28B109.5
N1—C15—C16119.7 (2)O11—C28—C27110.5 (4)
C16—C15—H15120.2H28A—C28—H28B108.1
C16—C17—C20121.7 (2)C27—C28—H28A109.5
C16—C17—C18116.5 (2)C27—C28—H28B109.5
C18—C17—C20121.8 (2)O9—C27—C28111.2 (4)
C9—C10—H10119.6O9—C27—H27A109.4
C11—C10—C9120.7 (2)O9—C27—H27B109.4
C11—C10—H10119.6C28—C27—H27A109.4
C15—C16—C17121.3 (2)C28—C27—H27B109.4
C15—C16—H16119.4H27A—C27—H27B108.0
C17—C16—H16119.4C29—O10—C32106 (2)
C20—C21—H21119.3O10—C29—H29A111.8
C22—C21—H21119.3O10—C29—H29B111.8
C22—C21—C20121.4 (2)O10—C29—C30100 (2)
C21—C20—C17122.1 (2)H29A—C29—H29B109.5
C21—C20—C24116.5 (2)C30—C29—H29A111.8
C24—C20—C17121.4 (2)C30—C29—H29B111.8
O3—C5—C4117.1 (2)O10—C32—H32A110.1
O3—C5—C6122.5 (2)O10—C32—H32B110.1
C6—C5—C4120.5 (2)H32A—C32—H32B108.4
C2—C3—H3A119.7C31—C32—O10108 (2)
C4—C3—C2120.6 (2)C31—C32—H32A110.1
C4—C3—H3A119.7C31—C32—H32B110.1
O6—C12—C11121.9 (2)C29—C30—H30A112.2
O6—C12—C13117.9 (2)C29—C30—H30B112.2
C11—C12—C13120.2 (2)H30A—C30—H30B109.8
N2—C23—H23119.8O12—C30—C2998 (2)
N2—C23—C24120.5 (2)O12—C30—H30A112.2
C24—C23—H23119.8O12—C30—H30B112.2
C26—O9—C27109.9 (3)C32—C31—H31A108.2
C10—C11—C12119.7 (2)C32—C31—H31B108.2
C10—C11—H11120.2C32—C31—O12116 (3)
C12—C11—H11120.2H31A—C31—H31B107.4
C5—C4—H4120.3O12—C31—H31A108.2
C3—C4—C5119.5 (2)O12—C31—H31B108.2
C3—C4—H4120.3C31—O12—C30110 (3)
N2—C22—C21120.0 (2)
Cu1i—O5—C8—O41.2 (3)C10—C9—C14—C131.1 (4)
Cu1i—O5—C8—C9177.52 (15)C16—C17—C20—C2110.1 (4)
Cu1—O7—N1—C1591.3 (2)C16—C17—C20—C24170.3 (2)
Cu1—O7—N1—C1987.2 (2)C16—C17—C18—C190.3 (4)
Cu1—O1—C1—O24.7 (3)C21—C20—C24—C232.1 (4)
Cu1—O1—C1—C2176.11 (15)C20—C17—C16—C15179.4 (2)
Cu1i—O2—C1—O12.8 (3)C20—C17—C18—C19179.6 (3)
Cu1i—O2—C1—C2178.11 (15)C20—C21—C22—N22.0 (4)
Cu1—O4—C8—O51.2 (3)C3—C2—C1—O19.7 (3)
Cu1—O4—C8—C9177.61 (15)C3—C2—C1—O2171.1 (2)
O5—C8—C9—C10177.4 (2)C3—C2—C7—C60.6 (4)
O5—C8—C9—C143.5 (3)C23—N2—C22—C212.7 (4)
O7—N1—C15—C16179.5 (2)C11—C12—C13—C140.2 (4)
O7—N1—C19—C18179.3 (2)C4—C5—C6—C70.5 (4)
O8—N2—C23—C24179.2 (2)C22—N2—C23—C241.0 (4)
O8—N2—C22—C21177.4 (2)C22—C21—C20—C17179.2 (2)
O4—C8—C9—C103.8 (3)C22—C21—C20—C240.4 (4)
O4—C8—C9—C14175.4 (2)C7—C2—C1—O1170.3 (2)
O3—C5—C4—C3179.9 (2)C7—C2—C1—O28.9 (3)
O3—C5—C6—C7179.8 (2)C7—C2—C3—C40.9 (3)
O6—C12—C11—C10178.7 (2)C19—N1—C15—C161.0 (4)
O6—C12—C13—C14179.7 (2)C14—C9—C10—C110.1 (4)
N1—C15—C16—C170.5 (4)C18—C17—C16—C150.2 (4)
N1—C19—C18—C170.2 (4)C18—C17—C20—C21169.2 (3)
N2—C23—C24—C201.5 (4)C18—C17—C20—C2410.4 (4)
O11—C25—C26—O956.8 (5)C6—C5—C4—C30.3 (4)
O11—C28—C27—O958.0 (6)C13—C12—C11—C101.2 (4)
C8—C9—C10—C11179.1 (2)C25—O11—C28—C2757.2 (5)
C8—C9—C14—C13178.1 (2)C26—O9—C27—C2856.3 (5)
C9—C10—C11—C121.0 (4)C28—O11—C25—C2657.3 (5)
C9—C14—C13—C120.9 (4)C27—O9—C26—C2554.9 (5)
C2—C3—C4—C50.4 (3)O10—C29—C30—O1269 (3)
C2—C7—C6—C50.0 (4)O10—C32—C31—O1260 (4)
C1—C2—C3—C4179.2 (2)C29—O10—C32—C3172 (3)
C1—C2—C7—C6179.4 (2)C29—C30—O12—C3159 (3)
C15—N1—C19—C180.9 (4)C32—O10—C29—C3076 (2)
C17—C20—C24—C23177.5 (2)C32—C31—O12—C3061 (4)
Symmetry code: (i) x+1, y+1, z+1.
(µ-Acetato)(dioxane)tris(µ-4-hydroxybenzoato)dicopper(II) dioxane 3.5-solvate (compound_10) top
Crystal data top
[Cu2(C7H5O3)3(C2H3O2)(C4H8O2)]·3.5C4H8O2F(000) = 4144
Mr = 993.92Dx = 1.514 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 19.4801 (2) ÅCell parameters from 12029 reflections
b = 13.0774 (2) Åθ = 2.6–77.0°
c = 34.5443 (5) ŵ = 1.90 mm1
β = 97.702 (1)°T = 100 K
V = 8720.7 (2) Å3Irregular, clear light blue
Z = 80.26 × 0.09 × 0.06 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
9032 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source6906 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.071
ω scansθmax = 78.1°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 2424
Tmin = 0.764, Tmax = 1.000k = 1616
37963 measured reflectionsl = 2843
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.191 w = 1/[σ2(Fo2) + (0.0941P)2 + 18.8122P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
9032 reflectionsΔρmax = 1.12 e Å3
436 parametersΔρmin = 1.24 e Å3
16 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu20.44041 (2)0.51623 (4)0.35763 (2)0.02947 (15)
Cu10.30843 (2)0.50941 (4)0.35715 (2)0.02987 (15)
O130.05315 (11)0.4778 (2)0.35721 (7)0.0337 (5)
O20.30466 (11)0.5698 (2)0.30561 (7)0.0392 (6)
O80.44644 (12)0.4646 (2)0.41110 (7)0.0407 (6)
O10.41904 (11)0.5676 (2)0.30416 (7)0.0391 (6)
O100.43263 (12)0.6561 (2)0.37857 (8)0.0404 (6)
O120.19732 (11)0.5053 (2)0.35894 (7)0.0369 (6)
O50.31312 (12)0.3742 (2)0.33394 (7)0.0393 (6)
O40.42855 (12)0.3756 (2)0.33901 (8)0.0414 (6)
O70.33150 (11)0.4503 (2)0.40920 (7)0.0406 (6)
O110.31846 (12)0.6492 (2)0.37953 (8)0.0431 (6)
O60.37646 (14)0.0615 (2)0.26699 (9)0.0566 (8)
H60.4115330.0952160.2736520.085*
O140.49812 (14)0.3538 (2)0.21595 (10)0.0573 (8)
O30.30985 (16)0.7474 (3)0.13673 (9)0.0608 (9)
H30.2699050.7724370.1318400.091*
C90.37065 (16)0.2276 (3)0.31508 (10)0.0347 (7)
C10.35749 (16)0.5857 (3)0.28908 (10)0.0334 (7)
C80.37070 (16)0.3329 (3)0.33044 (9)0.0334 (7)
C20.34527 (17)0.6291 (3)0.24884 (10)0.0366 (7)
C150.39327 (16)0.4382 (3)0.42566 (10)0.0336 (7)
C220.37622 (19)0.6950 (3)0.38545 (11)0.0398 (8)
C160.40368 (19)0.3911 (3)0.46479 (11)0.0411 (8)
O150.3630 (2)0.3028 (4)0.18432 (12)0.0898 (13)
C30.27752 (19)0.6499 (3)0.23152 (11)0.0427 (9)
H3A0.2399460.6365830.2457070.051*
C70.3989 (2)0.6463 (4)0.22722 (13)0.0539 (11)
H70.4451390.6313330.2382420.065*
C120.37601 (19)0.0322 (3)0.28385 (12)0.0445 (9)
C140.43073 (18)0.1694 (3)0.32141 (12)0.0449 (9)
H140.4708130.1971990.3364370.054*
C100.3124 (2)0.1862 (4)0.29364 (13)0.0512 (10)
H100.2704030.2239550.2899090.061*
C40.2644 (2)0.6894 (3)0.19413 (12)0.0473 (9)
H40.2181180.7035030.1829260.057*
C260.08145 (18)0.5156 (4)0.32423 (12)0.0515 (11)
H26A0.0816980.5912690.3248550.062*
H26B0.0519770.4936120.3000780.062*
C270.15447 (18)0.4770 (4)0.32362 (12)0.0534 (12)
H27A0.1539670.4016800.3208730.064*
H27B0.1735910.5065010.3009200.064*
C130.43340 (18)0.0727 (3)0.30644 (12)0.0444 (9)
H130.4746950.0335610.3116050.053*
C110.3151 (2)0.0892 (4)0.27750 (14)0.0577 (12)
H110.2753760.0617570.2620810.069*
O90.4332 (3)0.2645 (6)0.57554 (15)0.158 (3)
H90.4754530.2652610.5845750.237*
C50.3185 (2)0.7083 (4)0.17307 (12)0.0493 (10)
C170.3487 (2)0.3545 (4)0.48191 (13)0.0581 (12)
H170.3029170.3594200.4684790.070*
C250.09698 (19)0.5089 (5)0.39178 (12)0.0679 (16)
H25A0.0777230.4837340.4151220.081*
H25B0.0989100.5845020.3930760.081*
C60.3860 (2)0.6851 (4)0.18967 (13)0.0611 (13)
H6A0.4233840.6959830.1750930.073*
C240.16922 (19)0.4665 (5)0.39156 (12)0.0666 (15)
H24A0.1989720.4863360.4159110.080*
H24B0.1674090.3909140.3902700.080*
C280.4463 (3)0.3372 (6)0.23929 (15)0.0812 (18)
H28A0.4548400.3817430.2625970.097*
H28B0.4488570.2653150.2484060.097*
C180.3600 (3)0.3100 (5)0.51906 (16)0.0782 (17)
H180.3220040.2832950.5304270.094*
C210.4693 (3)0.3848 (5)0.48548 (13)0.0758 (17)
H210.5075380.4109860.4742070.091*
C230.3785 (3)0.8010 (4)0.40150 (16)0.0635 (12)
H23A0.4267230.8205610.4099910.095*
H23B0.3523660.8036860.4238330.095*
H23C0.3578710.8483950.3812350.095*
C290.3787 (3)0.3565 (5)0.21985 (17)0.0744 (15)
H29A0.3445150.3375190.2374070.089*
H29B0.3737700.4307470.2145390.089*
C190.4246 (4)0.3046 (7)0.53894 (17)0.116 (3)
C200.4805 (4)0.3411 (8)0.52241 (17)0.124 (4)
H200.5260120.3363260.5361210.149*
C300.4107 (5)0.3217 (7)0.16096 (17)0.116 (3)
H30A0.4086300.3948010.1534270.140*
H30B0.4005320.2804730.1368380.140*
C310.4837 (4)0.2964 (6)0.1809 (2)0.111 (2)
H31A0.4870820.2223950.1868890.133*
H31B0.5180250.3130500.1631610.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu20.0139 (2)0.0439 (3)0.0306 (3)0.00001 (17)0.00304 (18)0.00413 (19)
Cu10.0141 (2)0.0458 (3)0.0299 (3)0.00123 (17)0.00361 (18)0.00215 (19)
O130.0140 (10)0.0547 (15)0.0323 (12)0.0001 (9)0.0024 (9)0.0018 (10)
O20.0174 (10)0.0651 (17)0.0350 (13)0.0040 (10)0.0032 (9)0.0106 (11)
O80.0192 (11)0.0681 (17)0.0344 (13)0.0011 (11)0.0019 (9)0.0134 (12)
O10.0179 (10)0.0665 (17)0.0333 (12)0.0046 (10)0.0044 (9)0.0117 (11)
O100.0242 (11)0.0463 (14)0.0505 (15)0.0023 (10)0.0043 (10)0.0021 (11)
O120.0115 (10)0.0643 (17)0.0348 (13)0.0018 (9)0.0026 (9)0.0039 (11)
O50.0208 (11)0.0492 (15)0.0481 (14)0.0002 (10)0.0055 (10)0.0067 (11)
O40.0197 (11)0.0505 (15)0.0542 (16)0.0018 (10)0.0058 (10)0.0065 (12)
O70.0195 (11)0.0685 (17)0.0341 (13)0.0011 (11)0.0049 (9)0.0095 (12)
O110.0251 (12)0.0549 (16)0.0491 (15)0.0043 (11)0.0045 (10)0.0068 (12)
O60.0317 (13)0.0620 (19)0.074 (2)0.0072 (12)0.0001 (13)0.0295 (15)
O140.0350 (15)0.0607 (19)0.078 (2)0.0055 (13)0.0151 (14)0.0013 (15)
O30.0489 (17)0.088 (2)0.0479 (16)0.0206 (16)0.0153 (13)0.0219 (16)
C90.0215 (14)0.050 (2)0.0336 (17)0.0012 (13)0.0068 (13)0.0020 (15)
C10.0244 (15)0.0438 (19)0.0319 (17)0.0028 (13)0.0035 (13)0.0018 (14)
C80.0191 (14)0.051 (2)0.0298 (17)0.0008 (13)0.0029 (12)0.0024 (14)
C20.0286 (16)0.046 (2)0.0368 (18)0.0066 (14)0.0082 (14)0.0028 (15)
C150.0218 (14)0.048 (2)0.0305 (17)0.0002 (13)0.0024 (12)0.0007 (14)
C220.0325 (17)0.050 (2)0.0359 (19)0.0023 (15)0.0022 (14)0.0023 (15)
C160.0352 (18)0.054 (2)0.0364 (19)0.0087 (16)0.0139 (15)0.0085 (16)
O150.073 (3)0.113 (3)0.078 (3)0.029 (2)0.010 (2)0.027 (2)
C30.0306 (17)0.059 (2)0.040 (2)0.0040 (16)0.0095 (15)0.0056 (17)
C70.034 (2)0.079 (3)0.050 (2)0.0111 (19)0.0100 (17)0.020 (2)
C120.0282 (17)0.058 (2)0.046 (2)0.0032 (16)0.0027 (15)0.0163 (18)
C140.0229 (16)0.054 (2)0.057 (2)0.0002 (15)0.0006 (15)0.0024 (18)
C100.0293 (18)0.062 (3)0.060 (3)0.0056 (17)0.0023 (17)0.016 (2)
C40.0341 (19)0.063 (3)0.046 (2)0.0114 (17)0.0087 (16)0.0089 (18)
C260.0169 (16)0.091 (3)0.047 (2)0.0021 (17)0.0028 (15)0.021 (2)
C270.0153 (16)0.109 (4)0.036 (2)0.0032 (18)0.0046 (14)0.004 (2)
C130.0215 (16)0.053 (2)0.058 (2)0.0058 (14)0.0001 (15)0.0053 (18)
C110.0289 (18)0.068 (3)0.072 (3)0.0014 (18)0.0059 (18)0.030 (2)
O90.147 (4)0.254 (7)0.091 (3)0.129 (5)0.079 (3)0.122 (4)
C50.042 (2)0.062 (3)0.045 (2)0.0126 (18)0.0121 (17)0.0139 (19)
C170.050 (2)0.078 (3)0.051 (2)0.006 (2)0.025 (2)0.017 (2)
C250.0136 (16)0.153 (5)0.038 (2)0.001 (2)0.0074 (15)0.019 (3)
C60.039 (2)0.094 (4)0.054 (3)0.017 (2)0.0193 (19)0.029 (2)
C240.0168 (17)0.143 (5)0.040 (2)0.008 (2)0.0041 (15)0.020 (3)
C280.056 (3)0.134 (5)0.057 (3)0.042 (3)0.021 (2)0.011 (3)
C180.100 (4)0.080 (4)0.066 (3)0.015 (3)0.054 (3)0.028 (3)
C210.047 (3)0.139 (5)0.041 (2)0.026 (3)0.004 (2)0.032 (3)
C230.052 (3)0.055 (3)0.084 (3)0.002 (2)0.010 (2)0.016 (2)
C290.046 (3)0.098 (4)0.081 (4)0.006 (3)0.015 (2)0.024 (3)
C190.132 (6)0.166 (7)0.061 (3)0.103 (5)0.049 (4)0.063 (4)
C200.091 (5)0.234 (10)0.051 (3)0.072 (6)0.024 (3)0.061 (5)
C300.172 (6)0.132 (5)0.046 (3)0.072 (5)0.020 (4)0.036 (3)
C310.117 (5)0.095 (4)0.139 (5)0.027 (4)0.090 (4)0.061 (4)
Geometric parameters (Å, º) top
Cu2—O13i2.199 (2)C12—C111.393 (5)
Cu2—O81.955 (2)C14—H140.9500
Cu2—O11.957 (2)C14—C131.370 (6)
Cu2—O101.981 (3)C10—H100.9500
Cu2—O41.951 (3)C10—C111.388 (6)
Cu1—O21.940 (2)C4—H40.9500
Cu1—O122.174 (2)C4—C51.382 (5)
Cu1—O51.948 (3)C26—H26A0.9900
Cu1—O71.953 (2)C26—H26B0.9900
Cu1—O111.984 (3)C26—C271.512 (5)
O13—C261.419 (4)C27—H27A0.9900
O13—C251.431 (5)C27—H27B0.9900
O2—C11.259 (4)C13—H130.9500
O8—C151.259 (4)C11—H110.9500
O1—C11.264 (4)O9—H90.8400
O10—C221.261 (4)O9—C191.358 (6)
O12—C271.432 (4)C5—C61.395 (6)
O12—C241.412 (5)C17—H170.9500
O5—C81.266 (4)C17—C181.399 (7)
O4—C81.257 (4)C25—H25A0.9900
O7—C151.270 (4)C25—H25B0.9900
O11—C221.267 (4)C25—C241.514 (5)
O6—H60.8199C6—H6A0.9500
O6—C121.356 (5)C24—H24A0.9900
O14—C281.391 (5)C24—H24B0.9900
O14—C311.421 (7)C28—H28A0.9900
O3—H30.8400C28—H28B0.9900
O3—C51.345 (5)C28—C291.419 (8)
C9—C81.475 (5)C18—H180.9500
C9—C141.389 (5)C18—C191.352 (10)
C9—C101.380 (5)C21—H210.9500
C1—C21.491 (5)C21—C201.389 (7)
C2—C31.401 (5)C23—H23A0.9800
C2—C71.382 (5)C23—H23B0.9800
C15—C161.474 (5)C23—H23C0.9800
C22—C231.492 (6)C29—H29A0.9900
C16—C171.378 (5)C29—H29B0.9900
C16—C211.380 (6)C19—C201.380 (11)
O15—C291.412 (6)C20—H200.9500
O15—C301.334 (8)C30—H30A0.9900
C3—H3A0.9500C30—H30B0.9900
C3—C41.383 (5)C30—C311.530 (12)
C7—H70.9500C31—H31A0.9900
C7—C61.384 (6)C31—H31B0.9900
C12—C131.381 (5)
O8—Cu2—O13i94.87 (9)H26A—C26—H26B108.0
O8—Cu2—O1171.23 (9)C27—C26—H26A109.4
O8—Cu2—O1088.38 (12)C27—C26—H26B109.4
O1—Cu2—O13i93.90 (9)O12—C27—C26110.1 (3)
O1—Cu2—O1090.61 (12)O12—C27—H27A109.6
O10—Cu2—O13i95.46 (10)O12—C27—H27B109.6
O4—Cu2—O13i96.05 (10)C26—C27—H27A109.6
O4—Cu2—O888.61 (12)C26—C27—H27B109.6
O4—Cu2—O190.65 (12)H27A—C27—H27B108.2
O4—Cu2—O10168.31 (10)C12—C13—H13120.0
O2—Cu1—O1296.93 (9)C14—C13—C12119.9 (3)
O2—Cu1—O589.40 (11)C14—C13—H13120.0
O2—Cu1—O7168.97 (9)C12—C11—H11119.9
O2—Cu1—O1188.41 (12)C10—C11—C12120.2 (4)
O5—Cu1—O1295.24 (10)C10—C11—H11119.9
O5—Cu1—O790.13 (12)C19—O9—H9109.5
O5—Cu1—O11171.36 (10)O3—C5—C4123.4 (4)
O7—Cu1—O1294.09 (9)O3—C5—C6117.4 (4)
O7—Cu1—O1190.42 (12)C4—C5—C6119.2 (4)
O11—Cu1—O1293.33 (10)C16—C17—H17119.9
C26—O13—Cu2ii119.2 (2)C16—C17—C18120.1 (5)
C26—O13—C25108.6 (3)C18—C17—H17119.9
C25—O13—Cu2ii118.0 (2)O13—C25—H25A109.7
C1—O2—Cu1123.4 (2)O13—C25—H25B109.7
C15—O8—Cu2121.6 (2)O13—C25—C24110.0 (4)
C1—O1—Cu2121.6 (2)H25A—C25—H25B108.2
C22—O10—Cu2123.5 (2)C24—C25—H25A109.7
C27—O12—Cu1116.8 (2)C24—C25—H25B109.7
C24—O12—Cu1121.7 (2)C7—C6—C5120.5 (4)
C24—O12—C27110.1 (3)C7—C6—H6A119.7
C8—O5—Cu1121.2 (2)C5—C6—H6A119.7
C8—O4—Cu2124.0 (2)O12—C24—C25109.4 (4)
C15—O7—Cu1123.3 (2)O12—C24—H24A109.8
C22—O11—Cu1122.5 (2)O12—C24—H24B109.8
C12—O6—H6114.7C25—C24—H24A109.8
C28—O14—C31109.6 (4)C25—C24—H24B109.8
C5—O3—H3109.5H24A—C24—H24B108.2
C14—C9—C8119.7 (3)O14—C28—H28A108.9
C10—C9—C8121.4 (3)O14—C28—H28B108.9
C10—C9—C14118.9 (4)O14—C28—C29113.4 (5)
O2—C1—O1124.8 (3)H28A—C28—H28B107.7
O2—C1—C2116.6 (3)C29—C28—H28A108.9
O1—C1—C2118.7 (3)C29—C28—H28B108.9
O5—C8—C9118.4 (3)C17—C18—H18119.7
O4—C8—O5124.4 (3)C19—C18—C17120.6 (5)
O4—C8—C9117.2 (3)C19—C18—H18119.7
C3—C2—C1119.7 (3)C16—C21—H21119.3
C7—C2—C1121.9 (3)C16—C21—C20121.4 (5)
C7—C2—C3118.4 (3)C20—C21—H21119.3
O8—C15—O7124.6 (3)C22—C23—H23A109.5
O8—C15—C16117.5 (3)C22—C23—H23B109.5
O7—C15—C16117.9 (3)C22—C23—H23C109.5
O10—C22—O11123.8 (4)H23A—C23—H23B109.5
O10—C22—C23117.4 (4)H23A—C23—H23C109.5
O11—C22—C23118.7 (4)H23B—C23—H23C109.5
C17—C16—C15121.3 (4)O15—C29—C28113.7 (5)
C17—C16—C21118.4 (4)O15—C29—H29A108.8
C21—C16—C15120.2 (3)O15—C29—H29B108.8
C30—O15—C29110.3 (4)C28—C29—H29A108.8
C2—C3—H3A119.4C28—C29—H29B108.8
C4—C3—C2121.2 (3)H29A—C29—H29B107.7
C4—C3—H3A119.4O9—C19—C20120.9 (7)
C2—C7—H7119.6C18—C19—O9118.9 (7)
C2—C7—C6120.7 (4)C18—C19—C20120.2 (5)
C6—C7—H7119.6C21—C20—H20120.4
O6—C12—C13122.5 (3)C19—C20—C21119.1 (6)
O6—C12—C11118.1 (3)C19—C20—H20120.4
C13—C12—C11119.4 (4)O15—C30—H30A109.3
C9—C14—H14119.3O15—C30—H30B109.3
C13—C14—C9121.4 (3)O15—C30—C31111.6 (6)
C13—C14—H14119.3H30A—C30—H30B108.0
C9—C10—H10120.0C31—C30—H30A109.3
C9—C10—C11120.1 (4)C31—C30—H30B109.3
C11—C10—H10120.0O14—C31—C30109.6 (5)
C3—C4—H4120.0O14—C31—H31A109.8
C5—C4—C3120.0 (4)O14—C31—H31B109.8
C5—C4—H4120.0C30—C31—H31A109.8
O13—C26—H26A109.4C30—C31—H31B109.8
O13—C26—H26B109.4H31A—C31—H31B108.2
O13—C26—C27111.3 (3)
Cu2ii—O13—C26—C27162.8 (3)C1—C2—C7—C6178.9 (4)
Cu2ii—O13—C25—C24160.5 (3)C8—C9—C14—C13177.7 (4)
Cu2—O8—C15—O76.6 (5)C8—C9—C10—C11176.0 (4)
Cu2—O8—C15—C16174.3 (3)C2—C3—C4—C50.5 (7)
Cu2—O1—C1—O22.6 (5)C2—C7—C6—C50.5 (8)
Cu2—O1—C1—C2177.3 (2)C15—C16—C17—C18179.9 (5)
Cu2—O10—C22—O110.4 (5)C15—C16—C21—C20179.9 (6)
Cu2—O10—C22—C23179.5 (3)C16—C17—C18—C191.6 (9)
Cu2—O4—C8—O52.3 (5)C16—C21—C20—C191.0 (12)
Cu2—O4—C8—C9177.3 (2)O15—C30—C31—O1457.8 (8)
Cu1—O2—C1—O12.3 (5)C3—C2—C7—C61.3 (7)
Cu1—O2—C1—C2177.8 (2)C3—C4—C5—O3179.4 (4)
Cu1—O12—C27—C26158.4 (3)C3—C4—C5—C61.3 (7)
Cu1—O12—C24—C25158.4 (3)C7—C2—C3—C41.8 (7)
Cu1—O5—C8—O44.5 (5)C14—C9—C8—O5161.0 (3)
Cu1—O5—C8—C9175.9 (2)C14—C9—C8—O419.3 (5)
Cu1—O7—C15—O81.9 (5)C14—C9—C10—C112.5 (6)
Cu1—O7—C15—C16179.1 (3)C10—C9—C8—O520.5 (5)
Cu1—O11—C22—O101.5 (5)C10—C9—C8—O4159.1 (4)
Cu1—O11—C22—C23178.5 (3)C10—C9—C14—C130.8 (6)
O13—C26—C27—O1257.2 (5)C4—C5—C6—C71.8 (8)
O13—C25—C24—O1261.2 (6)C26—O13—C25—C2459.8 (5)
O2—C1—C2—C30.1 (5)C27—O12—C24—C2559.4 (5)
O2—C1—C2—C7177.6 (4)C13—C12—C11—C100.3 (7)
O8—C15—C16—C17176.1 (4)C11—C12—C13—C141.9 (7)
O8—C15—C16—C215.2 (6)O9—C19—C20—C21177.8 (8)
O1—C1—C2—C3180.0 (4)C17—C16—C21—C201.2 (9)
O1—C1—C2—C72.5 (6)C17—C18—C19—O9177.5 (7)
O7—C15—C16—C174.7 (6)C17—C18—C19—C201.4 (12)
O7—C15—C16—C21174.0 (4)C25—O13—C26—C2758.1 (5)
O6—C12—C13—C14177.3 (4)C24—O12—C27—C2657.4 (5)
O6—C12—C11—C10179.0 (4)C28—O14—C31—C3054.1 (8)
O14—C28—C29—O1553.8 (8)C18—C19—C20—C211.1 (13)
O3—C5—C6—C7178.8 (5)C21—C16—C17—C181.4 (8)
C9—C14—C13—C121.4 (6)C29—O15—C30—C3155.7 (8)
C9—C10—C11—C121.9 (7)C30—O15—C29—C2854.5 (9)
C1—C2—C3—C4179.4 (4)C31—O14—C28—C2954.0 (8)
Symmetry codes: (i) x+1/2, y+1, z; (ii) x1/2, y+1, z.
Bis(µ-acetato)bis(µ-4-hydroxybenzoato)bis[(1,4-diazabicyclo[2.2.2]octane)\ copper(II)] dioxane decasolvate (compound_11) top
Crystal data top
[Cu2(C7H5O3)2(C2H3O2)2(C6H12N2)2]·10C4H8O2F(000) = 1732
Mr = 1624.77Dx = 1.355 Mg m3
Monoclinic, PcCu Kα radiation, λ = 1.54184 Å
a = 9.7404 (3) ÅCell parameters from 12586 reflections
b = 20.3001 (4) Åθ = 4.4–76.2°
c = 22.9088 (7) ŵ = 1.36 mm1
β = 118.494 (4)°T = 100 K
V = 3981.1 (2) Å3Irregular, clear green
Z = 20.34 × 0.25 × 0.14 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
12037 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source9752 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.0000 pixels mm-1θmax = 78.3°, θmin = 3.1°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2023)
k = 2521
Tmin = 0.533, Tmax = 1.000l = 2829
27595 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.098 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.287(Δ/σ)max = 0.001
S = 1.21Δρmax = 1.38 e Å3
12037 reflectionsΔρmin = 0.69 e Å3
985 parametersAbsolute structure: Refined as an inversion twin.
352 restraintsAbsolute structure parameter: 0.46 (6)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Twin: Twin law (-1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0), BASF [0.46 (6)]. One of the 1,4-diazabicyclo[2.2.2]octane (DABCO) ligands clearly showed disorder. This ligand was modelled in two components, in Parts 1 and 2. Atoms in component 2 have the lower occupancy and were allowed to remain isotropic. There was evidence ofor some disorder in the second DABCO. Attempts to model the second DABCO ligand over two sites were unsuccessful.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.85466 (11)0.73020 (5)0.69458 (5)0.0479 (3)
Cu21.09154 (12)0.77234 (5)0.80581 (5)0.0510 (4)
O10.7337 (8)0.7533 (3)0.7410 (3)0.0545 (14)
O20.9351 (9)0.7849 (4)0.8363 (4)0.0649 (19)
O31.0129 (8)0.7148 (4)0.6664 (3)0.0566 (15)
O41.2119 (8)0.7550 (4)0.7585 (4)0.0627 (18)
O50.8421 (9)0.8227 (3)0.6666 (3)0.068 (2)
O61.0355 (8)0.8600 (3)0.7626 (3)0.0628 (18)
O70.8164 (8)1.1244 (3)0.5991 (4)0.0627 (18)
H70.7357971.1251040.5618290.094*
O80.9025 (8)0.6434 (3)0.7376 (3)0.0556 (16)
O91.1103 (9)0.6788 (3)0.8302 (3)0.066 (2)
O101.1514 (8)0.3737 (3)0.8890 (3)0.0580 (16)
H101.2426430.3702060.9206030.087*
N10.6535 (9)0.6937 (3)0.6026 (3)0.0513 (18)
N20.4233 (9)0.6476 (3)0.4961 (4)0.0501 (17)
N31.2970 (9)0.8068 (3)0.8954 (4)0.0494 (17)
N41.5416 (9)0.8509 (3)0.9987 (4)0.0504 (17)
C10.7935 (13)0.7739 (4)0.7989 (5)0.055 (2)
C20.6851 (14)0.7869 (5)0.8273 (5)0.065 (3)
H2A0.5779990.7914680.7909990.098*
H2B0.7164450.8276480.8533700.098*
H2C0.6902630.7500960.8559140.098*
C31.1553 (12)0.7302 (3)0.7004 (5)0.050 (2)
C41.2659 (13)0.7193 (5)0.6735 (5)0.061 (2)
H4A1.3291100.6800810.6941970.092*
H4B1.3344020.7577430.6834380.092*
H4C1.2068380.7130270.6253500.092*
C230.9304 (11)0.8674 (4)0.7040 (5)0.053 (2)
C240.9011 (10)0.9353 (4)0.6761 (4)0.0465 (18)
C250.9800 (11)0.9889 (4)0.7165 (5)0.057 (2)
H251.0524720.9827610.7621340.068*
C260.9494 (12)1.0524 (4)0.6878 (5)0.061 (3)
H261.0049591.0889330.7145580.074*
C270.8426 (10)1.0628 (4)0.6229 (5)0.0482 (18)
C280.7625 (11)1.0083 (4)0.5820 (5)0.055 (2)
H280.6909831.0144530.5363060.066*
C290.7902 (11)0.9457 (4)0.6100 (4)0.055 (2)
H290.7326140.9093200.5835700.066*
C301.0211 (10)0.6345 (4)0.7946 (4)0.0476 (18)
C311.0515 (10)0.5660 (4)0.8206 (4)0.0482 (19)
C321.1735 (11)0.5534 (4)0.8840 (4)0.0524 (19)
H321.2319370.5891700.9113290.063*
C331.2111 (10)0.4893 (4)0.9079 (4)0.0514 (19)
H331.2954300.4814190.9510500.062*
C341.1242 (10)0.4367 (4)0.8682 (4)0.0489 (19)
C350.9965 (10)0.4496 (4)0.8065 (4)0.0441 (17)
H350.9322000.4144250.7804730.053*
C360.9632 (10)0.5127 (4)0.7831 (4)0.0489 (19)
H360.8777250.5204750.7402140.059*
C50.5817 (13)0.7470 (4)0.5539 (4)0.071 (2)
H5A0.6617910.7680110.5451010.086*
H5B0.5392140.7808940.5719250.086*
C60.4459 (14)0.7184 (4)0.4869 (5)0.071 (2)
H6A0.3480080.7429480.4745810.085*
H6B0.4731480.7236140.4507130.085*
C70.5318 (11)0.6656 (5)0.6174 (5)0.0652 (18)
H7A0.4972020.6996410.6385200.078*
H7B0.5764830.6283750.6488950.078*
C80.3893 (12)0.6411 (6)0.5523 (5)0.0649 (18)
H8A0.3673280.5944320.5572680.078*
H8B0.2957760.6674460.5432980.078*
C90.7044 (12)0.6412 (5)0.5746 (5)0.067 (2)
H9A0.7580000.6068830.6087650.081*
H9B0.7804300.6589600.5614940.081*
C100.5667 (12)0.6099 (5)0.5137 (5)0.067 (2)
H10A0.5887240.6097720.4757050.081*
H10B0.5526320.5637420.5236700.081*
C111.3898 (15)0.7540 (6)0.9385 (7)0.0551 (16)0.718 (10)
H11A1.4325780.7267170.9151590.066*0.718 (10)
H11B1.3228730.7255930.9495790.066*0.718 (10)
C121.5237 (16)0.7814 (6)1.0023 (6)0.060 (4)0.718 (10)
H12A1.5039520.7715931.0399740.072*0.718 (10)
H12B1.6220800.7592051.0108950.072*0.718 (10)
C151.2510 (15)0.8512 (6)0.9375 (6)0.0545 (16)0.718 (10)
H15A1.1943100.8250700.9557460.065*0.718 (10)
H15B1.1810690.8867810.9095770.065*0.718 (10)
C161.4002 (14)0.8813 (6)0.9950 (6)0.056 (3)0.718 (10)
H16A1.4020120.9293610.9880130.067*0.718 (10)
H16B1.3989410.8743461.0375370.067*0.718 (10)
C191.3896 (15)0.8494 (6)0.8764 (6)0.0548 (16)0.718 (10)
H19A1.3318430.8906770.8568140.066*0.718 (10)
H19B1.4088780.8270230.8425400.066*0.718 (10)
C201.5472 (15)0.8653 (7)0.9384 (6)0.058 (3)0.718 (10)
H20A1.6312720.8389980.9370810.070*0.718 (10)
H20B1.5721440.9124700.9378050.070*0.718 (10)
C131.271 (3)0.8015 (14)0.9559 (13)0.0545 (16)*0.282 (10)
H13A1.2350870.7567410.9589490.065*0.282 (10)
H13B1.1919940.8337930.9527280.065*0.282 (10)
C141.432 (3)0.816 (2)1.0179 (11)0.080 (10)*0.282 (10)
H14A1.4154670.8441301.0493890.096*0.282 (10)
H14B1.4802520.7743961.0405580.096*0.282 (10)
C171.327 (3)0.8756 (10)0.8885 (11)0.0543 (16)*0.282 (10)
H17A1.2331850.9019350.8797020.065*0.282 (10)
H17B1.3461340.8807390.8501360.065*0.282 (10)
C181.469 (3)0.9017 (10)0.9517 (11)0.048 (6)*0.282 (10)
H18A1.5448680.9211480.9396130.058*0.282 (10)
H18B1.4339580.9368970.9716710.058*0.282 (10)
C211.428 (2)0.7627 (12)0.9128 (14)0.0545 (16)*0.282 (10)
H21A1.4422210.7545620.8733000.065*0.282 (10)
H21B1.4083430.7200030.9281450.065*0.282 (10)
C221.578 (2)0.7947 (14)0.9686 (14)0.062 (8)*0.282 (10)
H22A1.6360520.7613431.0032740.074*0.282 (10)
H22B1.6458860.8093990.9499750.074*0.282 (10)
O110.6469 (17)1.2339 (5)0.6830 (6)0.116 (4)
O120.9058 (11)1.1719 (4)0.7875 (5)0.088 (2)
C370.805 (3)1.2511 (7)0.7007 (9)0.108 (5)
H37A0.8106761.2984160.6914620.130*
H37B0.8397091.2253120.6733010.130*
C380.914 (2)1.2374 (6)0.7737 (8)0.093 (4)
H38A1.0226091.2486610.7846630.112*
H38B0.8840261.2652410.8012900.112*
C390.7412 (18)1.1545 (9)0.7692 (9)0.098 (4)
H39A0.7038831.1817470.7946020.118*
H39B0.7338601.1074830.7789860.118*
C400.6454 (17)1.1674 (9)0.6963 (9)0.100 (4)
H40A0.6877811.1418400.6717550.120*
H40B0.5364961.1529350.6810970.120*
O131.355 (2)1.1690 (8)0.8567 (11)0.165 (5)
O141.445 (3)1.0405 (9)0.9130 (13)0.180 (6)
C411.275 (3)1.1275 (10)0.8797 (15)0.149 (5)
H41A1.2007591.1003760.8419170.179*
H41B1.2134761.1553890.8939870.179*
C421.372 (4)1.0832 (12)0.9345 (16)0.170 (6)
H42A1.4500831.1089380.9726120.204*
H42B1.3059141.0587610.9491080.204*
C431.536 (4)1.0739 (11)0.8949 (17)0.162 (6)
H43A1.5747821.0428480.8727790.194*
H43B1.6276661.0899200.9355850.194*
C441.465 (4)1.1308 (12)0.8501 (17)0.171 (6)
H44A1.5511541.1604200.8555050.206*
H44B1.4156571.1141200.8039470.206*
O161.4098 (13)0.8818 (4)0.6857 (5)0.094 (3)
O151.4720 (14)1.0174 (5)0.7067 (8)0.113 (4)
C451.3353 (18)0.9927 (8)0.7042 (10)0.099 (4)
H45A1.2472860.9972650.6585920.119*
H45B1.3097551.0180770.7346640.119*
C461.359 (2)0.9209 (7)0.7242 (7)0.090 (4)
H46A1.4368350.9175400.7717570.108*
H46B1.2588600.9027530.7188920.108*
C471.5375 (19)0.9108 (6)0.6829 (10)0.088 (4)
H47A1.5578160.8864580.6503030.105*
H47B1.6313430.9066280.7268720.105*
C481.511 (2)0.9830 (6)0.6634 (9)0.094 (4)
H48A1.6074341.0019370.6656510.113*
H48B1.4259690.9873240.6171410.113*
O170.7898 (13)0.9441 (4)0.9096 (5)0.096 (3)
O181.0942 (14)0.9954 (5)0.9541 (6)0.106 (3)
C490.9221 (18)0.9168 (7)0.9667 (8)0.094 (4)
H49A0.9640450.8789680.9528380.113*
H49B0.8888390.9004850.9987620.113*
C501.046 (2)0.9674 (10)0.9992 (10)0.111 (5)
H50A1.0068101.0030121.0168420.133*
H50B1.1377500.9471851.0370820.133*
C510.955 (3)1.0224 (8)0.8978 (10)0.112 (5)
H51A0.9086011.0569360.9134640.135*
H51B0.9838771.0426200.8658790.135*
C520.843 (3)0.9707 (8)0.8657 (8)0.115 (6)
H52A0.8919240.9352460.8521270.139*
H52B0.7532560.9882560.8252930.139*
O191.1865 (17)0.7493 (9)1.0421 (7)0.141 (6)
O200.9620 (16)0.7060 (7)1.0781 (10)0.130 (5)
C531.226 (2)0.7344 (13)1.1086 (10)0.127 (7)
H53A1.3109600.7641891.1384060.153*
H53B1.2662620.6888001.1184430.153*
C541.093 (2)0.7405 (13)1.1245 (12)0.132 (8)
H54A1.1263360.7228391.1694970.159*
H54B1.0663900.7875691.1241470.159*
C550.918 (2)0.7239 (8)1.0126 (11)0.112 (6)
H55A0.8863600.7708701.0057770.135*
H55B0.8265900.6972060.9818390.135*
C561.055 (2)0.7129 (11)0.9976 (11)0.114 (5)
H56A1.0813140.6654381.0017400.137*
H56B1.0231190.7266980.9515080.137*
O211.5083 (12)0.5874 (10)1.0261 (5)0.144 (6)
O221.6773 (10)0.5843 (4)1.1660 (4)0.083 (2)
C571.6700 (16)0.6025 (7)1.0601 (7)0.084 (3)
H57A1.6848260.6507691.0659230.101*
H57B1.7203350.5869781.0339360.101*
C581.7448 (15)0.5686 (5)1.1280 (6)0.086 (4)
H58A1.7386700.5203471.1212720.104*
H58B1.8567140.5808211.1523270.104*
C591.5175 (17)0.5698 (9)1.1285 (8)0.096 (4)
H59A1.4649380.5817421.1548180.115*
H59B1.5053380.5217451.1204720.115*
C601.4398 (14)0.6033 (10)1.0653 (6)0.096 (5)
H60A1.3281340.5906221.0419810.116*
H60B1.4457870.6515351.0727030.116*
O231.3926 (18)0.3381 (8)0.7451 (7)0.137 (4)
O241.5903 (12)0.3973 (7)0.8647 (5)0.104 (3)
C611.555 (3)0.3247 (13)0.7834 (12)0.138 (5)
H61A1.5966620.3108420.7533290.165*
H61B1.5706810.2878090.8141820.165*
C621.643 (2)0.3825 (11)0.8219 (9)0.112 (4)
H62A1.7564230.3723540.8463000.134*
H62B1.6273090.4201820.7918770.134*
C631.424 (2)0.4104 (11)0.8305 (10)0.113 (4)
H63A1.4022520.4500660.8023380.136*
H63B1.3871640.4188470.8633350.136*
C641.340 (2)0.3539 (11)0.7892 (10)0.112 (4)
H64A1.3538960.3154610.8180360.134*
H64B1.2272790.3641760.7643800.134*
O250.9100 (12)0.5321 (9)0.5691 (7)0.127 (5)
O261.1814 (14)0.4963 (16)0.5693 (7)0.207 (12)
C650.9256 (19)0.5368 (10)0.5116 (10)0.117 (6)
H65A0.9728280.5796440.5105570.140*
H65B0.8218680.5335940.4717010.140*
C661.028 (2)0.4819 (14)0.5123 (9)0.147 (10)
H66A0.9873500.4389820.5181210.176*
H66B1.0339830.4808810.4704680.176*
C671.166 (2)0.4967 (10)0.6256 (9)0.122 (7)
H67A1.2698890.5045090.6645040.146*
H67B1.1290610.4529630.6312010.146*
C681.060 (2)0.5458 (9)0.6241 (11)0.114 (6)
H68A1.0963920.5899570.6190020.137*
H68B1.0545270.5450990.6661030.137*
O270.8625 (18)0.8288 (6)0.4919 (7)0.124 (4)
O281.1376 (14)0.7734 (5)0.5050 (5)0.097 (3)
C690.865 (3)0.7660 (8)0.4695 (11)0.139 (10)
H69A0.7626950.7557370.4310050.167*
H69B0.8852790.7337580.5050570.167*
C700.996 (3)0.7604 (11)0.4486 (9)0.127 (7)
H70A0.9963430.7155330.4317400.153*
H70B0.9769810.7925250.4131110.153*
C711.143 (2)0.8375 (7)0.5315 (8)0.103 (5)
H71A1.1342900.8716210.4989890.123*
H71B1.2432930.8439480.5726680.123*
C721.002 (2)0.8431 (7)0.5469 (8)0.100 (4)
H72A1.0187360.8123570.5832150.120*
H72B0.9979800.8884060.5620960.120*
O291.4761 (9)0.5705 (4)0.7695 (4)0.0687 (17)
O301.6818 (10)0.6123 (5)0.9001 (4)0.085 (2)
C731.6225 (15)0.5983 (6)0.7883 (6)0.074 (3)
H73A1.6089430.6461660.7790510.088*
H73B1.6643760.5791680.7602090.088*
C741.7380 (16)0.5888 (8)0.8580 (6)0.081 (3)
H74A1.7628690.5413370.8665950.097*
H74B1.8354080.6124060.8674880.097*
C751.5335 (15)0.5819 (7)0.8839 (6)0.077 (3)
H75A1.4903280.6012910.9113640.093*
H75B1.5476280.5340280.8929540.093*
C761.4250 (14)0.5935 (6)0.8125 (5)0.068 (3)
H76A1.3238590.5723010.8011780.082*
H76B1.4060490.6415110.8054250.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0440 (7)0.0355 (6)0.0306 (6)0.0017 (5)0.0095 (5)0.0007 (4)
Cu20.0467 (7)0.0319 (5)0.0319 (6)0.0010 (4)0.0156 (5)0.0007 (4)
O10.047 (3)0.057 (3)0.033 (3)0.001 (3)0.004 (3)0.010 (3)
O20.055 (4)0.059 (3)0.040 (4)0.000 (3)0.009 (3)0.007 (3)
O30.046 (4)0.067 (3)0.032 (3)0.006 (3)0.002 (3)0.008 (3)
O40.048 (3)0.055 (3)0.047 (4)0.000 (3)0.008 (3)0.014 (3)
O50.070 (4)0.034 (3)0.042 (3)0.002 (3)0.020 (3)0.006 (2)
O60.060 (4)0.035 (3)0.040 (3)0.006 (3)0.019 (3)0.006 (2)
O70.053 (3)0.043 (3)0.048 (4)0.000 (2)0.012 (3)0.004 (2)
O80.048 (3)0.037 (3)0.035 (3)0.003 (2)0.017 (3)0.000 (2)
O90.062 (4)0.035 (3)0.039 (3)0.001 (3)0.026 (3)0.004 (2)
O100.051 (3)0.037 (3)0.047 (3)0.000 (2)0.009 (3)0.012 (2)
N10.046 (4)0.037 (3)0.033 (4)0.005 (3)0.012 (3)0.002 (3)
N20.050 (4)0.035 (3)0.036 (3)0.001 (3)0.004 (3)0.002 (3)
N30.044 (4)0.038 (3)0.033 (4)0.002 (3)0.007 (3)0.001 (3)
N40.043 (4)0.045 (3)0.034 (3)0.002 (3)0.005 (3)0.007 (3)
C10.055 (6)0.042 (4)0.045 (5)0.005 (3)0.005 (5)0.001 (3)
C20.064 (6)0.048 (4)0.048 (5)0.004 (4)0.002 (5)0.008 (4)
C30.048 (5)0.036 (4)0.033 (4)0.002 (3)0.008 (4)0.001 (3)
C40.051 (5)0.061 (5)0.043 (5)0.000 (4)0.001 (4)0.005 (4)
C230.045 (4)0.040 (4)0.039 (4)0.003 (3)0.010 (4)0.006 (3)
C240.037 (4)0.041 (4)0.031 (3)0.007 (3)0.008 (3)0.005 (3)
C250.045 (5)0.038 (4)0.045 (5)0.001 (3)0.013 (4)0.001 (3)
C260.051 (5)0.036 (4)0.055 (5)0.002 (4)0.008 (4)0.007 (4)
C270.041 (4)0.038 (3)0.046 (4)0.001 (3)0.005 (4)0.003 (3)
C280.052 (5)0.037 (3)0.038 (4)0.008 (3)0.010 (4)0.007 (2)
C290.049 (4)0.033 (3)0.035 (3)0.001 (3)0.019 (3)0.004 (3)
C300.040 (4)0.040 (4)0.036 (4)0.001 (3)0.003 (3)0.003 (3)
C310.040 (4)0.041 (4)0.036 (4)0.000 (3)0.005 (3)0.002 (3)
C320.046 (4)0.049 (4)0.036 (4)0.001 (3)0.002 (4)0.000 (3)
C330.044 (4)0.045 (4)0.032 (4)0.004 (3)0.009 (3)0.003 (3)
C340.040 (4)0.038 (3)0.038 (4)0.003 (3)0.006 (3)0.007 (3)
C350.037 (4)0.039 (3)0.031 (4)0.003 (3)0.004 (3)0.003 (3)
C360.041 (4)0.043 (4)0.030 (4)0.000 (3)0.010 (3)0.005 (3)
C50.070 (4)0.041 (3)0.034 (3)0.006 (3)0.031 (3)0.000 (2)
C60.071 (4)0.041 (3)0.034 (3)0.007 (3)0.030 (3)0.000 (2)
C70.053 (4)0.066 (4)0.042 (3)0.009 (3)0.006 (3)0.014 (3)
C80.053 (4)0.066 (4)0.042 (3)0.008 (3)0.006 (3)0.014 (3)
C90.050 (3)0.054 (3)0.050 (4)0.003 (3)0.016 (3)0.021 (3)
C100.050 (3)0.054 (3)0.050 (4)0.004 (3)0.015 (3)0.021 (3)
C110.0548 (18)0.0544 (18)0.0547 (18)0.0000 (9)0.0251 (12)0.0001 (9)
C120.048 (6)0.050 (6)0.041 (6)0.005 (5)0.013 (5)0.001 (5)
C150.0545 (17)0.0544 (17)0.0542 (17)0.0001 (9)0.0255 (12)0.0003 (9)
C160.048 (6)0.053 (6)0.040 (6)0.007 (5)0.002 (5)0.008 (5)
C190.0546 (17)0.0548 (17)0.0543 (17)0.0002 (9)0.0255 (12)0.0003 (9)
C200.056 (7)0.060 (6)0.038 (6)0.000 (5)0.007 (5)0.000 (5)
O110.117 (9)0.095 (7)0.091 (8)0.037 (6)0.013 (7)0.009 (5)
O120.083 (5)0.072 (4)0.075 (5)0.012 (4)0.011 (5)0.015 (4)
C370.150 (17)0.075 (8)0.086 (10)0.009 (9)0.046 (11)0.017 (7)
C380.106 (11)0.073 (6)0.088 (9)0.005 (7)0.036 (9)0.000 (6)
C390.077 (8)0.115 (10)0.105 (11)0.012 (7)0.044 (8)0.029 (8)
C400.065 (7)0.122 (11)0.103 (11)0.005 (7)0.033 (8)0.002 (9)
O130.190 (12)0.116 (8)0.222 (13)0.017 (7)0.127 (11)0.027 (8)
O140.192 (12)0.119 (8)0.242 (14)0.021 (8)0.114 (12)0.005 (8)
C410.163 (12)0.106 (8)0.221 (14)0.026 (8)0.126 (11)0.030 (9)
C420.188 (13)0.116 (9)0.227 (14)0.029 (9)0.115 (12)0.017 (9)
C430.185 (13)0.110 (9)0.227 (14)0.026 (9)0.127 (12)0.010 (9)
C440.197 (13)0.129 (9)0.222 (14)0.015 (9)0.127 (12)0.014 (9)
O160.098 (6)0.072 (5)0.089 (6)0.012 (5)0.027 (6)0.007 (4)
O150.105 (8)0.086 (6)0.163 (11)0.012 (5)0.076 (8)0.030 (6)
C450.075 (8)0.105 (9)0.134 (13)0.008 (7)0.064 (9)0.016 (9)
C460.100 (10)0.088 (8)0.067 (7)0.004 (7)0.028 (8)0.012 (6)
C470.081 (8)0.067 (6)0.119 (12)0.005 (6)0.050 (9)0.002 (7)
C480.102 (10)0.077 (7)0.121 (12)0.000 (7)0.067 (10)0.008 (7)
O170.089 (6)0.062 (4)0.095 (7)0.006 (4)0.009 (5)0.013 (4)
O180.094 (7)0.092 (6)0.106 (8)0.026 (5)0.028 (7)0.010 (6)
C490.084 (8)0.087 (8)0.079 (8)0.011 (7)0.013 (7)0.014 (6)
C500.109 (12)0.118 (12)0.089 (11)0.032 (10)0.034 (10)0.038 (9)
C510.124 (14)0.088 (8)0.103 (11)0.017 (9)0.036 (11)0.006 (8)
C520.162 (18)0.079 (8)0.060 (7)0.014 (9)0.016 (9)0.003 (6)
O190.097 (8)0.190 (13)0.073 (7)0.043 (9)0.011 (6)0.041 (8)
O200.087 (7)0.130 (9)0.174 (14)0.019 (7)0.063 (9)0.021 (10)
C530.086 (11)0.18 (2)0.076 (11)0.012 (11)0.009 (9)0.008 (11)
C540.075 (9)0.173 (19)0.114 (15)0.007 (11)0.016 (10)0.057 (14)
C550.082 (10)0.085 (9)0.109 (13)0.001 (7)0.004 (9)0.044 (8)
C560.080 (10)0.130 (13)0.104 (13)0.011 (9)0.021 (10)0.013 (11)
O210.062 (5)0.283 (19)0.042 (4)0.030 (8)0.013 (4)0.001 (7)
O220.062 (4)0.085 (5)0.057 (4)0.004 (4)0.009 (4)0.006 (4)
C570.068 (7)0.097 (8)0.068 (7)0.000 (6)0.017 (6)0.004 (6)
C580.073 (7)0.059 (5)0.064 (6)0.008 (5)0.018 (6)0.002 (5)
C590.065 (7)0.111 (10)0.080 (8)0.001 (7)0.009 (7)0.009 (7)
C600.048 (5)0.161 (14)0.056 (6)0.027 (7)0.005 (5)0.001 (7)
O230.111 (7)0.151 (8)0.105 (7)0.010 (7)0.016 (6)0.027 (6)
O240.076 (5)0.156 (8)0.070 (5)0.020 (5)0.027 (4)0.017 (5)
C610.108 (8)0.157 (10)0.105 (8)0.008 (8)0.015 (7)0.027 (8)
C620.087 (7)0.163 (9)0.079 (6)0.012 (7)0.035 (6)0.028 (7)
C630.087 (7)0.150 (9)0.090 (7)0.003 (7)0.032 (6)0.012 (7)
C640.092 (7)0.137 (9)0.096 (7)0.005 (7)0.036 (6)0.022 (7)
O250.055 (5)0.205 (14)0.096 (8)0.004 (6)0.015 (5)0.045 (9)
O260.059 (6)0.46 (4)0.079 (8)0.035 (12)0.014 (6)0.010 (14)
C650.064 (8)0.146 (15)0.098 (12)0.014 (9)0.004 (8)0.046 (11)
C660.072 (9)0.25 (3)0.071 (9)0.012 (13)0.004 (8)0.025 (13)
C670.104 (11)0.120 (12)0.077 (9)0.042 (10)0.008 (8)0.020 (8)
C680.097 (11)0.105 (11)0.106 (12)0.000 (8)0.020 (9)0.041 (9)
O270.126 (9)0.111 (8)0.113 (9)0.049 (7)0.039 (8)0.035 (7)
O280.097 (7)0.098 (6)0.065 (5)0.032 (5)0.014 (5)0.008 (4)
C690.152 (19)0.075 (9)0.093 (12)0.007 (9)0.021 (13)0.001 (7)
C700.138 (17)0.134 (15)0.065 (9)0.025 (13)0.012 (10)0.031 (9)
C710.107 (11)0.076 (7)0.089 (9)0.020 (7)0.017 (9)0.003 (6)
C720.118 (12)0.079 (7)0.086 (9)0.034 (8)0.035 (10)0.024 (7)
O290.065 (4)0.075 (4)0.049 (4)0.010 (3)0.014 (3)0.002 (3)
O300.070 (5)0.118 (6)0.050 (4)0.000 (5)0.016 (4)0.003 (4)
C730.066 (6)0.083 (7)0.060 (6)0.011 (5)0.020 (5)0.002 (5)
C740.067 (6)0.113 (9)0.055 (6)0.022 (6)0.022 (5)0.019 (6)
C750.065 (6)0.091 (7)0.061 (6)0.012 (5)0.017 (5)0.021 (5)
C760.060 (6)0.083 (7)0.047 (5)0.006 (5)0.014 (5)0.006 (5)
Geometric parameters (Å, º) top
Cu1—O11.984 (7)C40—H40B0.9900
Cu1—O31.959 (7)O13—C411.405 (19)
Cu1—O51.970 (6)O13—C441.389 (19)
Cu1—O81.963 (6)O14—C421.355 (19)
Cu1—N12.211 (7)O14—C431.33 (2)
Cu2—O21.973 (9)C41—H41A0.9900
Cu2—O41.971 (8)C41—H41B0.9900
Cu2—O61.982 (6)C41—C421.46 (2)
Cu2—O91.963 (6)C42—H42A0.9900
Cu2—N32.189 (7)C42—H42B0.9900
O1—C11.240 (12)C43—H43A0.9900
O2—C11.248 (13)C43—H43B0.9900
O3—C31.264 (12)C43—C441.48 (2)
O4—C31.277 (12)C44—H44A0.9900
O5—C231.262 (11)C44—H44B0.9900
O6—C231.250 (10)O16—C461.442 (19)
O7—H70.8400O16—C471.404 (18)
O7—C271.341 (10)O15—C451.398 (18)
O8—C301.279 (10)O15—C481.409 (19)
O9—C301.245 (10)C45—H45A0.9900
O10—H100.8400C45—H45B0.9900
O10—C341.346 (10)C45—C461.51 (2)
N1—C51.470 (11)C46—H46A0.9900
N1—C71.493 (14)C46—H46B0.9900
N1—C91.448 (12)C47—H47A0.9900
N2—C61.485 (11)C47—H47B0.9900
N2—C81.478 (15)C47—C481.518 (19)
N2—C101.471 (13)C48—H48A0.9900
N3—C111.444 (15)C48—H48B0.9900
N3—C151.535 (15)O17—C491.439 (19)
N3—C191.458 (14)O17—C521.44 (2)
N3—C131.52 (3)O18—C501.44 (2)
N3—C171.45 (2)O18—C511.46 (2)
N3—C211.45 (2)C49—H49A0.9900
N4—C121.429 (15)C49—H49B0.9900
N4—C161.474 (15)C49—C501.49 (2)
N4—C201.439 (15)C50—H50A0.9900
N4—C141.51 (3)C50—H50B0.9900
N4—C181.41 (2)C51—H51A0.9900
N4—C221.46 (2)C51—H51B0.9900
C1—C21.503 (17)C51—C521.43 (2)
C2—H2A0.9800C52—H52A0.9900
C2—H2B0.9800C52—H52B0.9900
C2—H2C0.9800O19—C531.41 (2)
C3—C41.489 (17)O19—C561.41 (2)
C4—H4A0.9800O20—C541.40 (2)
C4—H4B0.9800O20—C551.40 (3)
C4—H4C0.9800C53—H53A0.9900
C23—C241.489 (11)C53—H53B0.9900
C24—C251.396 (12)C53—C541.50 (3)
C24—C291.394 (10)C54—H54A0.9900
C25—H250.9500C54—H54B0.9900
C25—C261.412 (12)C55—H55A0.9900
C26—H260.9500C55—H55B0.9900
C26—C271.365 (13)C55—C561.55 (3)
C27—C281.419 (12)C56—H56A0.9900
C28—H280.9500C56—H56B0.9900
C28—C291.390 (11)O21—C571.419 (18)
C29—H290.9500O21—C601.388 (18)
C30—C311.485 (12)O22—C581.355 (19)
C31—C321.393 (12)O22—C591.404 (16)
C31—C361.394 (12)C57—H57A0.9900
C32—H320.9500C57—H57B0.9900
C32—C331.391 (13)C57—C581.530 (18)
C33—H330.9500C58—H58A0.9900
C33—C341.398 (12)C58—H58B0.9900
C34—C351.391 (11)C59—H59A0.9900
C35—H350.9500C59—H59B0.9900
C35—C361.367 (12)C59—C601.44 (2)
C36—H360.9500C60—H60A0.9900
C5—H5A0.9900C60—H60B0.9900
C5—H5B0.9900O23—C611.42 (3)
C5—C61.582 (11)O23—C641.37 (2)
C6—H6A0.9900O24—C621.343 (19)
C6—H6B0.9900O24—C631.45 (2)
C7—H7A0.9900C61—H61A0.9900
C7—H7B0.9900C61—H61B0.9900
C7—C81.557 (12)C61—C621.47 (3)
C8—H8A0.9900C62—H62A0.9900
C8—H8B0.9900C62—H62B0.9900
C9—H9A0.9900C63—H63A0.9900
C9—H9B0.9900C63—H63B0.9900
C9—C101.538 (11)C63—C641.46 (3)
C10—H10A0.9900C64—H64A0.9900
C10—H10B0.9900C64—H64B0.9900
C11—H11A0.9900O25—C651.40 (2)
C11—H11B0.9900O25—C681.43 (2)
C11—C121.526 (15)O26—C661.47 (2)
C12—H12A0.9900O26—C671.37 (2)
C12—H12B0.9900C65—H65A0.9900
C15—H15A0.9900C65—H65B0.9900
C15—H15B0.9900C65—C661.49 (2)
C15—C161.547 (15)C66—H66A0.9900
C16—H16A0.9900C66—H66B0.9900
C16—H16B0.9900C67—H67A0.9900
C19—H19A0.9900C67—H67B0.9900
C19—H19B0.9900C67—C681.422 (17)
C19—C201.549 (15)C68—H68A0.9900
C20—H20A0.9900C68—H68B0.9900
C20—H20B0.9900O27—C691.38 (2)
C13—H13A0.9900O27—C721.37 (2)
C13—H13B0.9900O28—C701.40 (2)
C13—C141.56 (2)O28—C711.426 (18)
C14—H14A0.9900C69—H69A0.9900
C14—H14B0.9900C69—H69B0.9900
C17—H17A0.9900C69—C701.56 (4)
C17—H17B0.9900C70—H70A0.9900
C17—C181.54 (2)C70—H70B0.9900
C18—H18A0.9900C71—H71A0.9900
C18—H18B0.9900C71—H71B0.9900
C21—H21A0.9900C71—C721.58 (3)
C21—H21B0.9900C72—H72A0.9900
C21—C221.55 (2)C72—H72B0.9900
C22—H22A0.9900O29—C731.397 (16)
C22—H22B0.9900O29—C761.382 (14)
O11—C371.44 (3)O30—C741.401 (15)
O11—C401.38 (2)O30—C751.446 (16)
O12—C381.379 (16)C73—H73A0.9900
O12—C391.493 (18)C73—H73B0.9900
C37—H37A0.9900C73—C741.463 (17)
C37—H37B0.9900C74—H74A0.9900
C37—C381.52 (2)C74—H74B0.9900
C38—H38A0.9900C75—H75A0.9900
C38—H38B0.9900C75—H75B0.9900
C39—H39A0.9900C75—C761.482 (15)
C39—H39B0.9900C76—H76A0.9900
C39—C401.50 (2)C76—H76B0.9900
C40—H40A0.9900
O1—Cu1—N196.1 (3)C40—C39—H39A110.4
O3—Cu1—O1167.5 (3)C40—C39—H39B110.4
O3—Cu1—O588.9 (3)O11—C40—C39110.6 (15)
O3—Cu1—O889.2 (3)O11—C40—H40A109.5
O3—Cu1—N196.4 (3)O11—C40—H40B109.5
O5—Cu1—O189.4 (3)C39—C40—H40A109.5
O5—Cu1—N196.9 (3)C39—C40—H40B109.5
O8—Cu1—O190.1 (3)H40A—C40—H40B108.1
O8—Cu1—O5169.2 (3)C44—O13—C41107.4 (18)
O8—Cu1—N193.9 (2)C43—O14—C42109 (2)
O2—Cu2—O689.2 (3)O13—C41—H41A108.2
O2—Cu2—N398.2 (3)O13—C41—H41B108.2
O4—Cu2—O2168.6 (3)O13—C41—C42116 (2)
O4—Cu2—O688.8 (3)H41A—C41—H41B107.3
O4—Cu2—N393.2 (3)C42—C41—H41A108.2
O6—Cu2—N395.3 (3)C42—C41—H41B108.2
O9—Cu2—O290.4 (4)O14—C42—C41108 (2)
O9—Cu2—O489.1 (4)O14—C42—H42A110.0
O9—Cu2—O6167.6 (3)O14—C42—H42B110.0
O9—Cu2—N397.1 (3)C41—C42—H42A110.0
C1—O1—Cu1123.9 (7)C41—C42—H42B110.0
C1—O2—Cu2121.4 (7)H42A—C42—H42B108.4
C3—O3—Cu1124.2 (6)O14—C43—H43A108.0
C3—O4—Cu2124.8 (7)O14—C43—H43B108.0
C23—O5—Cu1123.2 (5)O14—C43—C44117 (2)
C23—O6—Cu2122.3 (5)H43A—C43—H43B107.2
C27—O7—H7109.5C44—C43—H43A108.0
C30—O8—Cu1121.5 (5)C44—C43—H43B108.0
C30—O9—Cu2124.8 (5)O13—C44—C43119 (2)
C34—O10—H10109.5O13—C44—H44A107.5
C5—N1—Cu1111.2 (5)O13—C44—H44B107.5
C5—N1—C7108.2 (8)C43—C44—H44A107.5
C7—N1—Cu1110.5 (5)C43—C44—H44B107.5
C9—N1—Cu1109.5 (5)H44A—C44—H44B107.0
C9—N1—C5110.1 (8)C47—O16—C46111.7 (11)
C9—N1—C7107.3 (8)C45—O15—C48111.5 (12)
C8—N2—C6108.7 (8)O15—C45—H45A109.8
C10—N2—C6110.9 (9)O15—C45—H45B109.8
C10—N2—C8107.1 (8)O15—C45—C46109.4 (13)
C11—N3—Cu2113.5 (6)H45A—C45—H45B108.2
C11—N3—C15106.3 (9)C46—C45—H45A109.8
C11—N3—C19111.7 (9)C46—C45—H45B109.8
C15—N3—Cu2111.5 (6)O16—C46—C45113.0 (12)
C19—N3—Cu2109.1 (6)O16—C46—H46A109.0
C19—N3—C15104.4 (8)O16—C46—H46B109.0
C13—N3—Cu2110.9 (10)C45—C46—H46A109.0
C17—N3—Cu2110.2 (10)C45—C46—H46B109.0
C17—N3—C13107.1 (15)H46A—C46—H46B107.8
C17—N3—C21115.3 (16)O16—C47—H47A109.0
C21—N3—Cu2110.6 (10)O16—C47—H47B109.0
C21—N3—C13102.3 (16)O16—C47—C48112.9 (12)
C12—N4—C16106.3 (10)H47A—C47—H47B107.8
C12—N4—C20108.4 (9)C48—C47—H47A109.0
C20—N4—C16108.8 (9)C48—C47—H47B109.0
C18—N4—C14113.2 (19)O15—C48—C47109.6 (13)
C18—N4—C22110.9 (18)O15—C48—H48A109.7
C22—N4—C1498 (2)O15—C48—H48B109.7
O1—C1—O2126.5 (11)C47—C48—H48A109.7
O1—C1—C2117.0 (9)C47—C48—H48B109.7
O2—C1—C2116.5 (9)H48A—C48—H48B108.2
C1—C2—H2A109.5C49—O17—C52108.3 (14)
C1—C2—H2B109.5C50—O18—C51107.4 (15)
C1—C2—H2C109.5O17—C49—H49A109.6
H2A—C2—H2B109.5O17—C49—H49B109.6
H2A—C2—H2C109.5O17—C49—C50110.4 (14)
H2B—C2—H2C109.5H49A—C49—H49B108.1
O3—C3—O4122.7 (10)C50—C49—H49A109.6
O3—C3—C4120.4 (8)C50—C49—H49B109.6
O4—C3—C4116.9 (9)O18—C50—C49112.3 (14)
C3—C4—H4A109.5O18—C50—H50A109.2
C3—C4—H4B109.5O18—C50—H50B109.2
C3—C4—H4C109.5C49—C50—H50A109.2
H4A—C4—H4B109.5C49—C50—H50B109.2
H4A—C4—H4C109.5H50A—C50—H50B107.9
H4B—C4—H4C109.5O18—C51—H51A109.8
O5—C23—C24116.4 (7)O18—C51—H51B109.8
O6—C23—O5125.9 (8)H51A—C51—H51B108.2
O6—C23—C24117.6 (7)C52—C51—O18109.6 (14)
C25—C24—C23120.3 (7)C52—C51—H51A109.8
C29—C24—C23119.8 (7)C52—C51—H51B109.8
C29—C24—C25119.9 (7)O17—C52—H52A109.5
C24—C25—H25120.8O17—C52—H52B109.5
C24—C25—C26118.4 (8)C51—C52—O17110.8 (14)
C26—C25—H25120.8C51—C52—H52A109.5
C25—C26—H26119.0C51—C52—H52B109.5
C27—C26—C25122.0 (8)H52A—C52—H52B108.1
C27—C26—H26119.0C56—O19—C53110.6 (16)
O7—C27—C26119.1 (8)C55—O20—C54112.8 (17)
O7—C27—C28121.4 (8)O19—C53—H53A108.5
C26—C27—C28119.5 (7)O19—C53—H53B108.5
C27—C28—H28120.5O19—C53—C54114.9 (18)
C29—C28—C27118.9 (8)H53A—C53—H53B107.5
C29—C28—H28120.5C54—C53—H53A108.5
C24—C29—H29119.4C54—C53—H53B108.5
C28—C29—C24121.2 (7)O20—C54—C53110.8 (17)
C28—C29—H29119.4O20—C54—H54A109.5
O8—C30—C31116.8 (7)O20—C54—H54B109.5
O9—C30—O8125.1 (7)C53—C54—H54A109.5
O9—C30—C31118.0 (7)C53—C54—H54B109.5
C32—C31—C30119.8 (7)H54A—C54—H54B108.1
C32—C31—C36118.0 (7)O20—C55—H55A109.7
C36—C31—C30122.2 (7)O20—C55—H55B109.7
C31—C32—H32119.5O20—C55—C56110.0 (14)
C33—C32—C31121.0 (8)H55A—C55—H55B108.2
C33—C32—H32119.5C56—C55—H55A109.7
C32—C33—H33120.2C56—C55—H55B109.7
C32—C33—C34119.7 (7)O19—C56—C55110.4 (19)
C34—C33—H33120.2O19—C56—H56A109.6
O10—C34—C33122.7 (7)O19—C56—H56B109.6
O10—C34—C35118.0 (7)C55—C56—H56A109.6
C35—C34—C33119.1 (7)C55—C56—H56B109.6
C34—C35—H35119.8H56A—C56—H56B108.1
C36—C35—C34120.4 (7)C60—O21—C57110.2 (11)
C36—C35—H35119.8C58—O22—C59107.0 (10)
C31—C36—H36119.2O21—C57—H57A109.9
C35—C36—C31121.6 (7)O21—C57—H57B109.9
C35—C36—H36119.2O21—C57—C58109.1 (13)
N1—C5—H5A109.7H57A—C57—H57B108.3
N1—C5—H5B109.7C58—C57—H57A109.9
N1—C5—C6110.0 (7)C58—C57—H57B109.9
H5A—C5—H5B108.2O22—C58—C57113.9 (10)
C6—C5—H5A109.7O22—C58—H58A108.8
C6—C5—H5B109.7O22—C58—H58B108.8
N2—C6—C5109.2 (7)C57—C58—H58A108.8
N2—C6—H6A109.8C57—C58—H58B108.8
N2—C6—H6B109.8H58A—C58—H58B107.7
C5—C6—H6A109.8O22—C59—H59A108.7
C5—C6—H6B109.8O22—C59—H59B108.7
H6A—C6—H6B108.3O22—C59—C60114.4 (14)
N1—C7—H7A109.6H59A—C59—H59B107.6
N1—C7—H7B109.6C60—C59—H59A108.7
N1—C7—C8110.2 (8)C60—C59—H59B108.7
H7A—C7—H7B108.1O21—C60—C59110.8 (12)
C8—C7—H7A109.6O21—C60—H60A109.5
C8—C7—H7B109.6O21—C60—H60B109.5
N2—C8—C7109.8 (9)C59—C60—H60A109.5
N2—C8—H8A109.7C59—C60—H60B109.5
N2—C8—H8B109.7H60A—C60—H60B108.1
C7—C8—H8A109.7C64—O23—C61106.7 (17)
C7—C8—H8B109.7C62—O24—C63111.5 (13)
H8A—C8—H8B108.2O23—C61—H61A109.2
N1—C9—H9A109.3O23—C61—H61B109.2
N1—C9—H9B109.3O23—C61—C62112.0 (19)
N1—C9—C10111.8 (8)H61A—C61—H61B107.9
H9A—C9—H9B107.9C62—C61—H61A109.2
C10—C9—H9A109.3C62—C61—H61B109.2
C10—C9—H9B109.3O24—C62—C61107.4 (18)
N2—C10—C9109.7 (8)O24—C62—H62A110.2
N2—C10—H10A109.7O24—C62—H62B110.2
N2—C10—H10B109.7C61—C62—H62A110.2
C9—C10—H10A109.7C61—C62—H62B110.2
C9—C10—H10B109.7H62A—C62—H62B108.5
H10A—C10—H10B108.2O24—C63—H63A109.7
N3—C11—H11A109.5O24—C63—H63B109.7
N3—C11—H11B109.5O24—C63—C64109.9 (16)
N3—C11—C12110.8 (10)H63A—C63—H63B108.2
H11A—C11—H11B108.1C64—C63—H63A109.7
C12—C11—H11A109.5C64—C63—H63B109.7
C12—C11—H11B109.5O23—C64—C63111.9 (17)
N4—C12—C11112.1 (10)O23—C64—H64A109.2
N4—C12—H12A109.2O23—C64—H64B109.2
N4—C12—H12B109.2C63—C64—H64A109.2
C11—C12—H12A109.2C63—C64—H64B109.2
C11—C12—H12B109.2H64A—C64—H64B107.9
H12A—C12—H12B107.9C65—O25—C68106.9 (14)
N3—C15—H15A109.8C67—O26—C66108.4 (17)
N3—C15—H15B109.8O25—C65—H65A110.1
N3—C15—C16109.3 (10)O25—C65—H65B110.1
H15A—C15—H15B108.3O25—C65—C66108.1 (16)
C16—C15—H15A109.8H65A—C65—H65B108.4
C16—C15—H15B109.8C66—C65—H65A110.1
N4—C16—C15110.8 (9)C66—C65—H65B110.1
N4—C16—H16A109.5O26—C66—C65104.6 (17)
N4—C16—H16B109.5O26—C66—H66A110.8
C15—C16—H16A109.5O26—C66—H66B110.8
C15—C16—H16B109.5C65—C66—H66A110.8
H16A—C16—H16B108.1C65—C66—H66B110.8
N3—C19—H19A109.8H66A—C66—H66B108.9
N3—C19—H19B109.8O26—C67—H67A109.1
N3—C19—C20109.4 (9)O26—C67—H67B109.1
H19A—C19—H19B108.2O26—C67—C68113 (2)
C20—C19—H19A109.8H67A—C67—H67B107.8
C20—C19—H19B109.8C68—C67—H67A109.1
N4—C20—C19111.3 (10)C68—C67—H67B109.1
N4—C20—H20A109.4O25—C68—H68A110.1
N4—C20—H20B109.4O25—C68—H68B110.1
C19—C20—H20A109.4C67—C68—O25108.1 (14)
C19—C20—H20B109.4C67—C68—H68A110.1
H20A—C20—H20B108.0C67—C68—H68B110.1
N3—C13—H13A110.4H68A—C68—H68B108.4
N3—C13—H13B110.4C72—O27—C69110.5 (13)
N3—C13—C14106.6 (17)C70—O28—C71112.7 (12)
H13A—C13—H13B108.6O27—C69—H69A109.6
C14—C13—H13A110.4O27—C69—H69B109.6
C14—C13—H13B110.4O27—C69—C70110.3 (18)
N4—C14—C13111.5 (17)H69A—C69—H69B108.1
N4—C14—H14A109.3C70—C69—H69A109.6
N4—C14—H14B109.3C70—C69—H69B109.6
C13—C14—H14A109.3O28—C70—C69107.1 (14)
C13—C14—H14B109.3O28—C70—H70A110.3
H14A—C14—H14B108.0O28—C70—H70B110.3
N3—C17—H17A109.3C69—C70—H70A110.3
N3—C17—H17B109.3C69—C70—H70B110.3
N3—C17—C18111.4 (16)H70A—C70—H70B108.5
H17A—C17—H17B108.0O28—C71—H71A110.2
C18—C17—H17A109.3O28—C71—H71B110.2
C18—C17—H17B109.3O28—C71—C72107.5 (14)
N4—C18—C17111.3 (15)H71A—C71—H71B108.5
N4—C18—H18A109.4C72—C71—H71A110.2
N4—C18—H18B109.4C72—C71—H71B110.2
C17—C18—H18A109.4O27—C72—C71111.5 (13)
C17—C18—H18B109.4O27—C72—H72A109.3
H18A—C18—H18B108.0O27—C72—H72B109.3
N3—C21—H21A109.9C71—C72—H72A109.3
N3—C21—H21B109.9C71—C72—H72B109.3
N3—C21—C22109.1 (16)H72A—C72—H72B108.0
H21A—C21—H21B108.3C76—O29—C73107.8 (9)
C22—C21—H21A109.9C74—O30—C75110.4 (10)
C22—C21—H21B109.9O29—C73—H73A108.5
N4—C22—C21111.9 (16)O29—C73—H73B108.5
N4—C22—H22A109.2O29—C73—C74115.1 (11)
N4—C22—H22B109.2H73A—C73—H73B107.5
C21—C22—H22A109.2C74—C73—H73A108.5
C21—C22—H22B109.2C74—C73—H73B108.5
H22A—C22—H22B107.9O30—C74—C73111.0 (10)
C40—O11—C37107.3 (11)O30—C74—H74A109.4
C38—O12—C39109.7 (12)O30—C74—H74B109.4
O11—C37—H37A109.5C73—C74—H74A109.4
O11—C37—H37B109.5C73—C74—H74B109.4
O11—C37—C38110.9 (14)H74A—C74—H74B108.0
H37A—C37—H37B108.1O30—C75—H75A110.0
C38—C37—H37A109.5O30—C75—H75B110.0
C38—C37—H37B109.5O30—C75—C76108.4 (9)
O12—C38—C37110.1 (13)H75A—C75—H75B108.4
O12—C38—H38A109.6C76—C75—H75A110.0
O12—C38—H38B109.6C76—C75—H75B110.0
C37—C38—H38A109.6O29—C76—C75115.1 (10)
C37—C38—H38B109.6O29—C76—H76A108.5
H38A—C38—H38B108.2O29—C76—H76B108.5
O12—C39—H39A110.4C75—C76—H76A108.5
O12—C39—H39B110.4C75—C76—H76B108.5
O12—C39—C40106.7 (11)H76A—C76—H76B107.5
H39A—C39—H39B108.6
Cu1—O1—C1—O21.7 (13)C15—N3—C19—C2069.3 (11)
Cu1—O1—C1—C2178.0 (6)C16—N4—C12—C1166.3 (14)
Cu1—O3—C3—O43.4 (12)C16—N4—C20—C1949.5 (12)
Cu1—O3—C3—C4177.2 (6)C19—N3—C11—C1260.5 (14)
Cu1—O5—C23—O60.1 (17)C19—N3—C15—C1655.0 (12)
Cu1—O5—C23—C24177.5 (7)C20—N4—C12—C1150.5 (15)
Cu1—O8—C30—O95.1 (14)C20—N4—C16—C1563.0 (13)
Cu1—O8—C30—C31176.4 (6)C13—N3—C17—C1858 (2)
Cu1—N1—C5—C6176.1 (8)C13—N3—C21—C2271 (3)
Cu1—N1—C7—C8179.0 (7)C14—N4—C18—C1756 (3)
Cu1—N1—C9—C10175.2 (8)C14—N4—C22—C2155 (3)
Cu2—O2—C1—O11.7 (13)C17—N3—C13—C1469 (3)
Cu2—O2—C1—C2178.5 (6)C17—N3—C21—C2244 (3)
Cu2—O4—C3—O30.9 (12)C18—N4—C14—C1344 (3)
Cu2—O4—C3—C4178.5 (6)C18—N4—C22—C2163 (3)
Cu2—O6—C23—O54.2 (17)C21—N3—C13—C1453 (3)
Cu2—O6—C23—C24178.5 (7)C21—N3—C17—C1855 (3)
Cu2—O9—C30—O81.4 (15)C22—N4—C14—C1373 (3)
Cu2—O9—C30—C31179.9 (7)C22—N4—C18—C1752 (3)
Cu2—N3—C11—C12175.7 (9)O11—C37—C38—O1258.1 (18)
Cu2—N3—C15—C16172.7 (8)O12—C39—C40—O1164.1 (16)
Cu2—N3—C19—C20171.4 (8)C37—O11—C40—C3964.1 (17)
Cu2—N3—C13—C14171 (2)C38—O12—C39—C4060.2 (16)
Cu2—N3—C17—C18178.6 (17)C39—O12—C38—C3757.7 (18)
Cu2—N3—C21—C22170.3 (19)C40—O11—C37—C3859.5 (17)
O5—C23—C24—C25172.2 (10)O13—C41—C42—O1464 (3)
O5—C23—C24—C295.5 (15)O14—C43—C44—O1335 (5)
O6—C23—C24—C255.4 (15)C41—O13—C44—C4331 (4)
O6—C23—C24—C29176.9 (10)C42—O14—C43—C4449 (4)
O7—C27—C28—C29177.7 (10)C43—O14—C42—C4161 (3)
O8—C30—C31—C32176.3 (9)C44—O13—C41—C4246 (3)
O8—C30—C31—C364.8 (14)O16—C47—C48—O1554.8 (19)
O9—C30—C31—C322.3 (14)O15—C45—C46—O1654 (2)
O9—C30—C31—C36176.6 (10)C45—O15—C48—C4760.3 (19)
O10—C34—C35—C36179.8 (9)C46—O16—C47—C4849.6 (18)
N1—C5—C6—N25.1 (15)C47—O16—C46—C4549.6 (18)
N1—C7—C8—N25.0 (11)C48—O15—C45—C4660.1 (19)
N1—C9—C10—N26.7 (14)O17—C49—C50—O1856 (2)
N3—C11—C12—N410.6 (17)O18—C51—C52—O1764 (2)
N3—C15—C16—N48.9 (14)C49—O17—C52—C5161.3 (19)
N3—C19—C20—N416.8 (14)C50—O18—C51—C5260 (2)
N3—C13—C14—N418 (4)C51—O18—C50—C4957 (2)
N3—C17—C18—N44 (3)C52—O17—C49—C5056.0 (16)
N3—C21—C22—N413 (3)O19—C53—C54—O2051 (3)
C23—C24—C25—C26179.5 (10)O20—C55—C56—O1957.9 (19)
C23—C24—C29—C28178.6 (10)C53—O19—C56—C5554 (2)
C24—C25—C26—C271.9 (17)C54—O20—C55—C5658 (2)
C25—C24—C29—C283.7 (16)C55—O20—C54—C5353 (3)
C25—C26—C27—O7178.5 (10)C56—O19—C53—C5452 (3)
C25—C26—C27—C281.9 (17)O21—C57—C58—O2256.1 (15)
C26—C27—C28—C292.7 (16)O22—C59—C60—O2159 (2)
C27—C28—C29—C243.6 (16)C57—O21—C60—C5956 (2)
C29—C24—C25—C262.8 (16)C58—O22—C59—C6057.3 (16)
C30—C31—C32—C33175.8 (9)C59—O22—C58—C5755.2 (14)
C30—C31—C36—C35177.2 (9)C60—O21—C57—C5853.9 (19)
C31—C32—C33—C340.8 (15)O23—C61—C62—O2463 (3)
C32—C31—C36—C351.7 (15)O24—C63—C64—O2356 (2)
C32—C33—C34—O10178.1 (10)C61—O23—C64—C6358 (2)
C32—C33—C34—C353.1 (15)C62—O24—C63—C6456 (2)
C33—C34—C35—C364.5 (15)C63—O24—C62—C6158 (2)
C34—C35—C36—C312.1 (15)C64—O23—C61—C6262 (3)
C36—C31—C32—C333.2 (15)O25—C65—C66—O2666 (2)
C5—N1—C7—C857.1 (10)O26—C67—C68—O2561 (3)
C5—N1—C9—C1062.2 (12)C65—O25—C68—C6762 (2)
C6—N2—C8—C762.9 (11)C66—O26—C67—C6861 (3)
C6—N2—C10—C954.2 (12)C67—O26—C66—C6561 (3)
C7—N1—C5—C662.4 (12)C68—O25—C65—C6667 (2)
C7—N1—C9—C1055.3 (11)O27—C69—C70—O2861 (2)
C8—N2—C6—C557.2 (13)O28—C71—C72—O2754.6 (15)
C8—N2—C10—C964.3 (11)C69—O27—C72—C7159 (2)
C9—N1—C5—C654.6 (13)C70—O28—C71—C7256.9 (19)
C9—N1—C7—C861.7 (10)C71—O28—C70—C6960 (2)
C10—N2—C6—C560.3 (13)C72—O27—C69—C7061.5 (19)
C10—N2—C8—C756.9 (10)O29—C73—C74—O3055.5 (15)
C11—N3—C15—C1663.2 (12)O30—C75—C76—O2957.5 (14)
C11—N3—C19—C2045.2 (13)C73—O29—C76—C7555.2 (13)
C12—N4—C16—C1553.6 (13)C74—O30—C75—C7655.2 (13)
C12—N4—C20—C1965.7 (13)C75—O30—C74—C7354.9 (14)
C15—N3—C11—C1252.8 (13)C76—O29—C73—C7453.4 (12)
1-Aza-4-azoniabicyclo[2.2.2]octane 4-hydroxybenzoate (compound_12) top
Crystal data top
C6H13N2+·C7H5O3F(000) = 1072
Mr = 250.29Dx = 1.277 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 15.3994 (5) ÅCell parameters from 3137 reflections
b = 10.6592 (3) Åθ = 4.8–76.7°
c = 16.9261 (6) ŵ = 0.75 mm1
β = 110.424 (4)°T = 130 K
V = 2603.67 (15) Å3Irregular, clear colourless
Z = 80.22 × 0.16 × 0.13 mm
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an Atlas detector
5386 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source3805 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.2273 pixels mm-1θmax = 76.9°, θmin = 4.8°
ω scansh = 1915
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2023)
k = 1311
Tmin = 0.952, Tmax = 1.000l = 2119
11079 measured reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0552P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
5386 reflectionsΔρmax = 0.19 e Å3
337 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Peaks of electron density approximately midway between O1 and N1 and between O4 and N3 were assigned as H atoms and allowed to refine independently.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O31.07534 (9)0.92832 (11)0.26476 (8)0.0325 (3)
O60.39246 (9)0.06837 (12)0.72789 (8)0.0344 (3)
H6A0.3772420.1230740.7563480.052*
O10.85260 (9)0.81944 (13)0.50408 (8)0.0396 (3)
O40.65348 (9)0.17927 (12)0.52275 (9)0.0387 (3)
O50.64976 (10)0.37381 (13)0.56921 (9)0.0433 (3)
O20.83541 (10)0.63012 (13)0.44495 (9)0.0449 (4)
N20.65699 (9)0.69665 (13)0.67705 (8)0.0235 (3)
N40.82538 (9)0.31541 (13)0.33188 (8)0.0243 (3)
N30.74510 (9)0.25762 (13)0.43525 (8)0.0255 (3)
N10.75472 (9)0.75015 (14)0.58792 (8)0.0271 (3)
C180.44712 (10)0.12068 (16)0.68975 (10)0.0244 (3)
C160.53758 (10)0.08932 (15)0.60035 (10)0.0246 (3)
H160.5595840.0349810.5669960.030*
C51.02615 (10)0.87741 (16)0.30869 (10)0.0239 (3)
C61.00103 (11)0.95660 (16)0.36279 (10)0.0257 (3)
H61.0198231.0420100.3684110.031*
C150.56429 (10)0.21443 (15)0.60853 (9)0.0228 (3)
C70.94857 (10)0.91040 (16)0.40832 (10)0.0242 (3)
H70.9312890.9650320.4446540.029*
C30.94708 (10)0.70619 (15)0.34851 (9)0.0245 (3)
H3A0.9290340.6204880.3437310.029*
C40.99942 (10)0.75138 (15)0.30237 (9)0.0242 (3)
H41.0170930.6964780.2664210.029*
C170.47946 (11)0.04216 (16)0.63987 (10)0.0263 (3)
H170.4615640.0435930.6330790.032*
C20.92081 (10)0.78541 (16)0.40172 (9)0.0233 (3)
C200.53078 (11)0.29304 (16)0.65709 (10)0.0252 (3)
H200.5478770.3791100.6627690.030*
C260.89072 (10)0.32690 (18)0.41950 (10)0.0295 (4)
H26A0.9138770.4141850.4300270.035*
H26B0.9444500.2708620.4277880.035*
C220.74505 (11)0.39917 (16)0.32048 (10)0.0263 (3)
H22A0.7000860.3904490.2623720.032*
H22B0.7662310.4874740.3287290.032*
C140.62704 (11)0.26345 (16)0.56480 (10)0.0262 (3)
C110.73355 (11)0.60533 (16)0.69291 (10)0.0269 (3)
H11A0.7077250.5203560.6761950.032*
H11B0.7707480.6037570.7538530.032*
C130.69696 (11)0.82297 (15)0.69902 (10)0.0265 (3)
H13A0.7390740.8241940.7585530.032*
H13B0.6467960.8844980.6926050.032*
C190.47265 (11)0.24713 (16)0.69734 (10)0.0263 (3)
H190.4501860.3018990.7301230.032*
C90.59948 (10)0.69311 (17)0.58667 (10)0.0276 (4)
H9A0.5504050.7577660.5745700.033*
H9B0.5691880.6100870.5725220.033*
C10.86523 (11)0.73765 (17)0.45246 (10)0.0278 (4)
C80.65960 (11)0.71719 (19)0.53215 (10)0.0314 (4)
H8A0.6611870.6411060.4991400.038*
H8B0.6328920.7866790.4922480.038*
C240.79187 (12)0.18504 (16)0.31742 (11)0.0296 (4)
H24A0.8448590.1277380.3254550.035*
H24B0.7485380.1758010.2586910.035*
C100.79599 (11)0.64116 (17)0.64256 (11)0.0321 (4)
H10A0.8587640.6628740.6817040.039*
H10B0.8014880.5693200.6075310.039*
C210.69766 (11)0.36560 (18)0.38415 (11)0.0317 (4)
H21A0.7002070.4383590.4212500.038*
H21B0.6317540.3446970.3537190.038*
C250.84260 (11)0.29168 (19)0.48231 (10)0.0334 (4)
H25A0.8750590.2199600.5174180.040*
H25B0.8449250.3635480.5200400.040*
C120.75124 (12)0.85972 (16)0.64089 (11)0.0311 (4)
H12A0.7202650.9310790.6045160.037*
H12B0.8149150.8858150.6753670.037*
C230.74232 (14)0.14950 (18)0.37884 (13)0.0389 (4)
H23A0.6771670.1266470.3468430.047*
H23B0.7731840.0760510.4129060.047*
H4A0.7006 (19)0.227 (3)0.4812 (18)0.090 (9)*
H10.8039 (18)0.777 (2)0.5461 (17)0.082 (9)*
H31.101 (2)0.875 (2)0.240 (2)0.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0442 (7)0.0266 (7)0.0378 (7)0.0010 (6)0.0286 (6)0.0001 (5)
O60.0462 (7)0.0299 (7)0.0401 (7)0.0063 (6)0.0313 (6)0.0061 (6)
O10.0475 (7)0.0408 (8)0.0442 (7)0.0145 (6)0.0335 (7)0.0141 (6)
O40.0478 (7)0.0321 (7)0.0522 (8)0.0038 (6)0.0378 (7)0.0018 (6)
O50.0606 (8)0.0353 (8)0.0462 (8)0.0216 (7)0.0342 (7)0.0131 (6)
O20.0585 (8)0.0354 (8)0.0555 (9)0.0181 (7)0.0383 (7)0.0120 (7)
N20.0254 (6)0.0237 (7)0.0229 (6)0.0003 (5)0.0102 (5)0.0004 (5)
N40.0255 (6)0.0264 (7)0.0233 (6)0.0017 (5)0.0114 (6)0.0011 (5)
N30.0250 (6)0.0271 (7)0.0281 (7)0.0004 (6)0.0139 (6)0.0011 (6)
N10.0256 (6)0.0324 (8)0.0271 (7)0.0027 (6)0.0139 (6)0.0014 (6)
C180.0251 (7)0.0279 (9)0.0231 (7)0.0011 (6)0.0118 (6)0.0015 (6)
C160.0259 (7)0.0261 (8)0.0252 (7)0.0018 (6)0.0132 (6)0.0006 (6)
C50.0265 (7)0.0256 (8)0.0222 (7)0.0031 (6)0.0116 (6)0.0029 (6)
C60.0299 (8)0.0214 (8)0.0276 (8)0.0001 (7)0.0122 (7)0.0013 (6)
C150.0208 (7)0.0290 (9)0.0183 (7)0.0011 (6)0.0065 (6)0.0008 (6)
C70.0241 (7)0.0273 (9)0.0217 (7)0.0023 (6)0.0085 (6)0.0022 (6)
C30.0261 (7)0.0229 (8)0.0242 (7)0.0029 (6)0.0086 (6)0.0036 (6)
C40.0279 (7)0.0233 (8)0.0232 (7)0.0017 (7)0.0114 (6)0.0037 (6)
C170.0314 (8)0.0205 (8)0.0311 (8)0.0004 (7)0.0162 (7)0.0001 (7)
C20.0206 (6)0.0286 (9)0.0209 (7)0.0014 (6)0.0076 (6)0.0020 (6)
C200.0297 (8)0.0232 (8)0.0232 (7)0.0035 (7)0.0097 (7)0.0022 (6)
C260.0211 (7)0.0408 (10)0.0260 (8)0.0030 (7)0.0073 (7)0.0013 (7)
C220.0287 (7)0.0255 (9)0.0252 (7)0.0050 (7)0.0100 (7)0.0022 (7)
C140.0258 (7)0.0298 (9)0.0231 (7)0.0051 (7)0.0088 (6)0.0017 (7)
C110.0302 (8)0.0223 (8)0.0264 (8)0.0027 (7)0.0075 (7)0.0003 (6)
C130.0307 (8)0.0217 (8)0.0291 (8)0.0018 (7)0.0129 (7)0.0006 (6)
C190.0298 (8)0.0285 (9)0.0232 (7)0.0010 (7)0.0126 (7)0.0048 (7)
C90.0222 (7)0.0358 (10)0.0239 (8)0.0023 (7)0.0069 (6)0.0002 (7)
C10.0264 (7)0.0316 (9)0.0274 (8)0.0042 (7)0.0118 (7)0.0026 (7)
C80.0269 (8)0.0446 (11)0.0233 (8)0.0009 (8)0.0094 (7)0.0004 (7)
C240.0323 (8)0.0277 (9)0.0320 (8)0.0028 (7)0.0155 (7)0.0034 (7)
C100.0244 (7)0.0343 (10)0.0376 (9)0.0054 (7)0.0109 (7)0.0003 (8)
C210.0271 (7)0.0394 (10)0.0298 (8)0.0100 (7)0.0113 (7)0.0036 (8)
C250.0255 (8)0.0498 (12)0.0236 (8)0.0012 (8)0.0069 (7)0.0055 (8)
C120.0358 (8)0.0258 (9)0.0363 (9)0.0038 (7)0.0184 (8)0.0013 (7)
C230.0476 (10)0.0276 (10)0.0532 (12)0.0090 (8)0.0325 (10)0.0091 (9)
Geometric parameters (Å, º) top
O3—C51.3470 (18)C3—C41.390 (2)
O3—H30.875 (17)C3—C21.394 (2)
O6—H6A0.8400C4—H40.9500
O6—C181.3474 (18)C17—H170.9500
O1—C11.296 (2)C2—C11.497 (2)
O1—H11.28 (3)C20—H200.9500
O4—C141.296 (2)C20—C191.389 (2)
O4—H4A1.28 (3)C26—H26A0.9900
O5—C141.222 (2)C26—H26B0.9900
O2—C11.225 (2)C26—C251.540 (2)
N2—C111.479 (2)C22—H22A0.9900
N2—C131.473 (2)C22—H22B0.9900
N2—C91.4766 (19)C22—C211.540 (2)
N4—C261.478 (2)C11—H11A0.9900
N4—C221.4824 (19)C11—H11B0.9900
N4—C241.473 (2)C11—C101.539 (2)
N3—C211.472 (2)C13—H13A0.9900
N3—C251.478 (2)C13—H13B0.9900
N3—C231.488 (2)C13—C121.547 (2)
N3—H4A1.25 (3)C19—H190.9500
N1—C81.482 (2)C9—H9A0.9900
N1—C101.483 (2)C9—H9B0.9900
N1—C121.485 (2)C9—C81.540 (2)
N1—H11.24 (3)C8—H8A0.9900
C18—C171.398 (2)C8—H8B0.9900
C18—C191.397 (2)C24—H24A0.9900
C16—H160.9500C24—H24B0.9900
C16—C151.388 (2)C24—C231.536 (2)
C16—C171.385 (2)C10—H10A0.9900
C5—C61.396 (2)C10—H10B0.9900
C5—C41.398 (2)C21—H21A0.9900
C6—H60.9500C21—H21B0.9900
C6—C71.387 (2)C25—H25A0.9900
C15—C201.393 (2)C25—H25B0.9900
C15—C141.501 (2)C12—H12A0.9900
C7—H70.9500C12—H12B0.9900
C7—C21.392 (2)C23—H23A0.9900
C3—H3A0.9500C23—H23B0.9900
C5—O3—H3116 (2)O5—C14—O4124.17 (15)
C18—O6—H6A109.5O5—C14—C15121.66 (15)
C1—O1—H1112.8 (12)N2—C11—H11A109.6
C14—O4—H4A111.8 (12)N2—C11—H11B109.6
C13—N2—C11108.62 (12)N2—C11—C10110.40 (13)
C13—N2—C9109.36 (13)H11A—C11—H11B108.1
C9—N2—C11108.85 (12)C10—C11—H11A109.6
C26—N4—C22109.01 (13)C10—C11—H11B109.6
C24—N4—C26108.75 (13)N2—C13—H13A109.7
C24—N4—C22108.58 (13)N2—C13—H13B109.7
C21—N3—C25109.09 (14)N2—C13—C12109.98 (13)
C21—N3—C23109.36 (14)H13A—C13—H13B108.2
C21—N3—H4A107.5 (13)C12—C13—H13A109.7
C25—N3—C23109.41 (14)C12—C13—H13B109.7
C25—N3—H4A113.8 (13)C18—C19—H19119.9
C23—N3—H4A107.5 (12)C20—C19—C18120.24 (15)
C8—N1—C10108.96 (14)C20—C19—H19119.9
C8—N1—C12109.59 (13)N2—C9—H9A109.6
C8—N1—H1110.9 (12)N2—C9—H9B109.6
C10—N1—C12109.74 (13)N2—C9—C8110.36 (12)
C10—N1—H1108.7 (12)H9A—C9—H9B108.1
C12—N1—H1109.0 (12)C8—C9—H9A109.6
O6—C18—C17117.09 (15)C8—C9—H9B109.6
O6—C18—C19123.92 (15)O1—C1—C2114.09 (15)
C19—C18—C17119.00 (14)O2—C1—O1124.09 (15)
C15—C16—H16119.4O2—C1—C2121.82 (15)
C17—C16—H16119.4N1—C8—C9108.98 (13)
C17—C16—C15121.29 (15)N1—C8—H8A109.9
O3—C5—C6117.17 (15)N1—C8—H8B109.9
O3—C5—C4123.51 (14)C9—C8—H8A109.9
C6—C5—C4119.31 (14)C9—C8—H8B109.9
C5—C6—H6120.1H8A—C8—H8B108.3
C7—C6—C5119.90 (15)N4—C24—H24A109.6
C7—C6—H6120.1N4—C24—H24B109.6
C16—C15—C20118.61 (14)N4—C24—C23110.37 (13)
C16—C15—C14120.30 (14)H24A—C24—H24B108.1
C20—C15—C14121.09 (15)C23—C24—H24A109.6
C6—C7—H7119.4C23—C24—H24B109.6
C6—C7—C2121.17 (15)N1—C10—C11108.97 (12)
C2—C7—H7119.4N1—C10—H10A109.9
C4—C3—H3A119.7N1—C10—H10B109.9
C4—C3—C2120.61 (15)C11—C10—H10A109.9
C2—C3—H3A119.7C11—C10—H10B109.9
C5—C4—H4119.9H10A—C10—H10B108.3
C3—C4—C5120.21 (14)N3—C21—C22109.50 (13)
C3—C4—H4119.9N3—C21—H21A109.8
C18—C17—H17120.0N3—C21—H21B109.8
C16—C17—C18120.05 (15)C22—C21—H21A109.8
C16—C17—H17120.0C22—C21—H21B109.8
C7—C2—C3118.79 (14)H21A—C21—H21B108.2
C7—C2—C1120.03 (14)N3—C25—C26109.32 (13)
C3—C2—C1121.17 (15)N3—C25—H25A109.8
C15—C20—H20119.6N3—C25—H25B109.8
C19—C20—C15120.81 (15)C26—C25—H25A109.8
C19—C20—H20119.6C26—C25—H25B109.8
N4—C26—H26A109.6H25A—C25—H25B108.3
N4—C26—H26B109.6N1—C12—C13109.03 (13)
N4—C26—C25110.44 (13)N1—C12—H12A109.9
H26A—C26—H26B108.1N1—C12—H12B109.9
C25—C26—H26A109.6C13—C12—H12A109.9
C25—C26—H26B109.6C13—C12—H12B109.9
N4—C22—H22A109.6H12A—C12—H12B108.3
N4—C22—H22B109.6N3—C23—C24109.48 (14)
N4—C22—C21110.28 (13)N3—C23—H23A109.8
H22A—C22—H22B108.1N3—C23—H23B109.8
C21—C22—H22A109.6C24—C23—H23A109.8
C21—C22—H22B109.6C24—C23—H23B109.8
O4—C14—C15114.17 (15)H23A—C23—H23B108.2
O3—C5—C6—C7178.56 (14)C2—C3—C4—C50.2 (2)
O3—C5—C4—C3178.71 (14)C20—C15—C14—O4179.26 (15)
O6—C18—C17—C16178.61 (14)C20—C15—C14—O51.1 (2)
O6—C18—C19—C20178.79 (15)C26—N4—C22—C2157.79 (17)
N2—C11—C10—N14.97 (19)C26—N4—C24—C2359.89 (17)
N2—C13—C12—N16.37 (18)C22—N4—C26—C2558.89 (18)
N2—C9—C8—N16.1 (2)C22—N4—C24—C2358.59 (18)
N4—C26—C25—N30.3 (2)C14—C15—C20—C19179.93 (14)
N4—C22—C21—N31.77 (19)C11—N2—C13—C1263.29 (16)
N4—C24—C23—N31.0 (2)C11—N2—C9—C855.57 (18)
C16—C15—C20—C190.7 (2)C13—N2—C11—C1056.90 (16)
C16—C15—C14—O41.5 (2)C13—N2—C9—C862.96 (17)
C16—C15—C14—O5178.14 (16)C19—C18—C17—C161.4 (2)
C5—C6—C7—C20.5 (2)C9—N2—C11—C1062.09 (17)
C6—C5—C4—C31.0 (2)C9—N2—C13—C1255.37 (16)
C6—C7—C2—C30.3 (2)C8—N1—C10—C1157.43 (17)
C6—C7—C2—C1179.22 (14)C8—N1—C12—C1363.48 (17)
C15—C16—C17—C180.5 (2)C24—N4—C26—C2559.32 (18)
C15—C20—C19—C180.2 (2)C24—N4—C22—C2160.53 (17)
C7—C2—C1—O14.3 (2)C10—N1—C8—C963.89 (18)
C7—C2—C1—O2176.04 (16)C10—N1—C12—C1356.12 (17)
C3—C2—C1—O1174.60 (15)C21—N3—C25—C2660.07 (19)
C3—C2—C1—O25.1 (3)C21—N3—C23—C2460.41 (18)
C4—C5—C6—C71.2 (2)C25—N3—C21—C2261.18 (17)
C4—C3—C2—C70.5 (2)C25—N3—C23—C2459.03 (19)
C4—C3—C2—C1179.37 (14)C12—N1—C8—C956.19 (18)
C17—C18—C19—C201.2 (2)C12—N1—C10—C1162.56 (17)
C17—C16—C15—C200.5 (2)C23—N3—C21—C2258.45 (17)
C17—C16—C15—C14179.76 (14)C23—N3—C25—C2659.53 (19)
 

Acknowledgements

This research was undertaken in part using the MX1 and MX2 beamlines at the Australian Synchrotron (Aragão et al., 2018[Aragão, D., Aishima, J., Cherukuvada, H., Clarken, R., Clift, M., Cowieson, N. P., Ericsson, D. J., Gee, C. L., Macedo, S., Mudie, N., Panjikar, S., Price, J. R., Riboldi-Tunnicliffe, A., Rostan, R., Williamson, R. & Caradoc-Davies, T. T. (2018). J. Synchrotron Rad. 25, 885-891.]; Cowieson et al., 2015[Cowieson, N. P., Aragao, D., Clift, M., Ericsson, D. J., Gee, C., Harrop, S. J., Mudie, N., Panjikar, S., Price, J. R., Riboldi-Tunnicliffe, A., Williamson, R. & Caradoc-Davies, T. (2015). J. Synchrotron Rad. 22, 187-190.]; McPhillips et al., 2002[McPhillips, T. M., McPhillips, S. E., Chiu, H.-J., Cohen, A. E., Deacon, A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, R. P., Soltis, S. M. & Kuhn, P. (2002). J. Synchrotron Rad. 9, 401-406.]), part of ANSTO, and made use of the Australian Cancer Research Foundation (ACRF) detector. Open access publishing facilitated by The University of Melbourne, as part of the Wiley–The University of Melbourne agreement via the Council of Australian University Librarians.

References

First citationAbrahams, B. F., Commons, C. J., Dharma, A. D., Hudson, T. A., Robson, R., Sanchez Arlt, R. W., Stewart, T. C. & White, K. F. (2022). CrystEngComm, 24, 1924–1933.  Web of Science CSD CrossRef CAS Google Scholar
First citationAbrahams, B. F., Commons, C. J., Hudson, T. A., Sanchez Arlt, R., White, K. F., Chang, M., Jackowski, J. J., Lee, M., Lee, S. X., Liu, H. D., Mei, B. M., Meng, J. E., Poon, L., Xu, X. & Yu, Z. (2021). Acta Cryst. C77, 340–353.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAragão, D., Aishima, J., Cherukuvada, H., Clarken, R., Clift, M., Cowieson, N. P., Ericsson, D. J., Gee, C. L., Macedo, S., Mudie, N., Panjikar, S., Price, J. R., Riboldi-Tunnicliffe, A., Rostan, R., Williamson, R. & Caradoc-Davies, T. T. (2018). J. Synchrotron Rad. 25, 885–891.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChui, S. S. Y., Lo, S. M. F., Charmant, J. P., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148–1150.  CSD CrossRef PubMed CAS Google Scholar
First citationCowieson, N. P., Aragao, D., Clift, M., Ericsson, D. J., Gee, C., Harrop, S. J., Mudie, N., Panjikar, S., Price, J. R., Riboldi-Tunnicliffe, A., Williamson, R. & Caradoc-Davies, T. (2015). J. Synchrotron Rad. 22, 187–190.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEddaoudi, M., Kim, J., Wachter, J. B., Chae, H. K., O'Keeffe, M. & Yaghi, O. M. (2001). J. Am. Chem. Soc. 123, 4368–4369.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHassanein, K., Castillo, O., Gómez-García, C., Zamora, F. & Amo-Ochoa, P. (2015). Cryst. Growth Des. 15, 5485–5494.  CSD CrossRef CAS Google Scholar
First citationKabsch, W. (2010). Acta Cryst. D66, 125–132.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLee, S., Jeong, H., Nam, D., Lah, M. S. & Choe, W. (2021). Chem. Soc. Rev. 50, 528–555.  CrossRef CAS PubMed Google Scholar
First citationLiu, X. & Li, C. (2007). Yingyong Huaxue, 24, 973.  Google Scholar
First citationLuo, J.-H., Huang, C.-C., Huang, X.-H. & Wang, J.-G. (2010). Acta Cryst. C66, e11–e12.  CSD CrossRef IUCr Journals Google Scholar
First citationMcPhillips, T. M., McPhillips, S. E., Chiu, H.-J., Cohen, A. E., Deacon, A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, R. P., Soltis, S. M. & Kuhn, P. (2002). J. Synchrotron Rad. 9, 401–406.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoulton, B., Abourahma, H., Bradner, M. W., Lu, J., McManus, G. J. & Zaworotko, M. J. (2003). Chem. Commun. pp. 1342–1343.  Web of Science CSD CrossRef Google Scholar
First citationNiekerk, J. N. van & Schoening, F. R. L. (1953). Acta Cryst. 6, 227–232.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationPalmer, D. (2020). CrystalMaker. CrystalMaker Software, Bicester, England. http://crystalmaker.com/Google Scholar
First citationRigaku OD (2015, 2018, 2021, 2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N. & Mamedov, Kh. S. (1981). Koord. Khim., 7, 1544.  Google Scholar
First citationWhite, K. F., Abrahams, B. F., Babarao, R., Dharma, A. D., Hudson, T. A., Maynard–Casely, H. E. & Robson, R. (2015). Chem. A Eur. J. 21, 18057–18061.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds