research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Formation of extended polyiodides at large cation templates

crossmark logo

aSchool of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom, bDipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milano, 20133, Italy, cDipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, Monserrato (CA), 09042, Italy, dCentre for Research University Services (CeSAR), Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, Monserrato (CA), 09042, Italy, and eDepartment of Chemistry, The University of Manchester, Manchester, M139PL, United Kingdom
*Correspondence e-mail: alexanderjohnblake@outlook.com

Edited by I. Oswald, University of Strathclyde, United Kingdom (Received 9 April 2024; accepted 7 May 2024; online 13 May 2024)

By studying the structures of (μ-1,4,10,13-tetra­thia-7,16-di­aza­cyclo­octa­deca­ne)bis[iodidopalladium(II)] diiodide penta­(diiodine), [Pd2I2(C12H26N2S4)](I)2·5I2 or [Pd2I2([18]aneN2S4)](I)2·(I2)5, and 4,7,13,16,21,24-hexa­oxa-1,10-diazo­niabi­cyclo­[8.8.8]hexa­cosane triiodide iodide hemi­penta­(diiodine) di­chloro­methane mono­solvate, C18H38N2O62+·I3·I·2.5I2·CH2Cl2 or [H2([2.2.2]cryptand)](I3)(I)(I2)2.5·CH2Cl2, we confirm the structural variety of extended polyiodides achievable upon changing the shape, charge and dimensions of the cation template, by altering the synthetic strategy adopted and/or the experimental conditions. Although it is still often difficult to characterize discrete [I2m+n]n polyiodides higher than I3 on the basis of structural parameters, such as I—I bond distances, FT–Raman spectroscopy appears to identify them as aggregates of I2, I and (symmetric or slightly asymmetric) I3 building blocks linked by I⋯I inter­actions of varying strengths. However, because FT–Raman spectroscopy carries no information about the topological features of extended polyiodides, the two techniques should therefore be applied in combination to enhance the analysis of this kind of compounds.

1. Introduction

Among extended anionic inorganic frameworks, the formation of polyhalides (Sonnenberg et al., 2020[Sonnenberg, K., Mann, L., Redeker, F. A., Schmidt, B. & Riedel, S. (2020). Angew. Chem. Int. Ed. 59, 5464-5493.]; Aragoni et al., 2003[Aragoni, M. C., Arca, M., Devillanova, F. A., Isaia, F., Lippolis, V., Mancini, A., Pala, L., Slawin, M. Z. & Woollins, J. D. (2003). Chem. Commun. pp. 2226-2227.], 2022[Aragoni, M. C., Podda, E., Arca, M., Pintus, A., Lippolis, V., Caltagirone, C., Bartz, R. H., Lenardão, E. J., Perin, G., Schumacher, R. F., Coles, S. J. & Orton, J. B. (2022). New J. Chem. 46, 21921-21929.]) and, in particular, polyiodides represents a remarkable example of supra­molecular self-assembly (Blake et al., 1998c[Blake, A. J., Li, W., Lippolis, V., Schröder, M., Devillanova, F. O., Gould, R., Parsons, S. & Radek, C. (1998c). Chem. Soc. Rev. 27, 195-205.]; Svensson et al., 2003[Svensson, H. & Kloo, L. (2003). Chem. Rev. 103, 1649-1684.]), and it continues to capture the inter­est of many researchers in the field (Savastano, 2021[Savastano, M. (2021). Dalton Trans. 50, 7022-7025.]; Savastano et al., 2022[Savastano, M., Bazzicalupi, C. & Bianchi, A. (2022). Dalton Trans. 51, 10728-10739.]; Horn et al., 2003a[Horn, C. J., Blake, A. J., Champness, N. R., Garau, A., Lippolis, V., Wilson, C. & Schröder, M. (2003a). Chem. Commun. pp. 312-313.],b[Horn, C. J., Blake, A. J., Champness, N. R., Lippolis, V. & Schröder, M. (2003b). Chem. Commun. pp. 1488-1489.]; Aragoni et al., 2004[Aragoni, M. C., Arca, M., Devillanova, V., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V. & Mancini, A. (2004). CrystEngComm, 6, 540-542.], 2023a[Aragoni, M. C., Arca, M., Demartin, F., Garau, A., Isaia, F., Lippolis, V. & Pivetta, T. (2023a). New J. Chem. 47, 8122-8130.]) due to the richness of its unpredictable and puzzling structural chemistry, and inter­esting applicative possibilities (Paulsson et al., 2004[Paulsson, H., Berggrund, M., Svantesson, E., Hagfeldt, A. & Kloo, L. (2004). Solar Energy Mater. Solar Cells, 82, 345-360.]; Yin et al., 2012[Yin, Z., Wang, Q.-X. & Zeng, M.-H. (2012). J. Am. Chem. Soc. 134, 4857-4863.]; Fei et al., 2015[Fei, Z., Bobbink, F. D., Păunescu, E., Scopelliti, R. & Dyson, P. J. (2015). Inorg. Chem. 54, 10504-10512.]). Iodine and iodides together tend to catenate (Arca et al., 1999[Arca, M., Demartin, F., Devillanova, F. A., Garau, A., Isaia, F., Lippolis, V. & Verani, G. (1999). J. Chem. Soc. Dalton Trans. pp. 3069-3073.]; Garau et al., 2022[Garau, A., Aragoni, M. C., Arca, M., Caltagirone, C., Demartin, F., Isaia, F., Lippolis, V. & Pivetta, T. (2022). New J. Chem. 46, 6870-6877.]) via the combination of (Lewis acidic) I2 with (Lewis basic) I/I3 building blocks (Ciancaleoni et al., 2016[Ciancaleoni, G., Arca, M., Caramori, G. F., Frenking, G., Schneider, F. S. S. & Lippolis, V. (2016). Eur. J. Inorg. Chem. 2016, 3804-3812.]). This affords extended arrays exhibiting a range of topologies, and these are highly dependent on the size, shape and charge of the countercation acting as a template. Some polyiodides are present in the crystal structure as discrete aggregates, but frequently they form extended networks in which the identification of the basic repeat unit of general formula [In(I2)m]n or [I2m+n]n (n, m > 0) can become arbitrary. Consequently, they are better described as aggregates of I2, I and I3, held together by I⋯I inter­actions of varying strengths, from rather strong (ca 3.3 Å) to fairly weak, up to the van der Waals contact distance (ca 4 Å). Our inter­est in this field has been mainly focused on the use of metal complexes of macrocyclic ligands (mainly thio­ether crowns) as templating cations for controlling the self-assembly of extended polyiodide arrays (Blake et al., 1996[Blake, A. J., Lippolis, V., Parsons, S. & Schröder, M. (1996). Chem. Commun. pp. 2207-2208.], 1998a[Blake, A. J., Gould, R. O., Li, W.-S., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998a). Angew. Chem. Int. Ed. Engl. 37, 293-296.],b[Blake, A. J., Gould, R. O., Li, W.-S., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998b). Inorg. Chem. 37, 5070-5077.]). These complex cations are relatively chemically inert and their shape, size and charge can be changed readily, thus providing cationic templates for different targeted polyiodide topologies. Furthermore, we have also been inter­ested in the reactivity of macrocyclic ligands with I2 and inter-halogens IX (X = Br and Cl) to better understand the structural nature of the resulting products (Blake et al., 1997[Blake, A. J., Cristiani, F., Devillanova, F. A., Garau, A., Gilby, L., Gould, R. O., Isaia, F., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1337-1346.]). The formation of polyiodide networks featuring spirals, belts, ribbons, sheets and cages as their structural motifs has been achieved either by reacting the PF6 or BF4 salts of the complex cation

[Scheme 1]
templates with an excess of I2 in a single phase, or by addition of an NaI/I2 mixture in a single phase, the preferred polyiodide being formed via self-assembly. As a further example of the versatility of this synthetic approach to the formation of multidimensional polyiodide networks, we report here the use of the metal complex [Pd2Cl2([18]aneN2S4)](PF6)2 ([18]aneN2S4 is 1,4,10,13-tetra­thia-7,16-di­aza­cyclo­octa­decane; see Scheme 1[link]) and the neutral [2.2.2]cryptand (4,7,13,16,21,24-hexa­oxa-1,10-di­aza­bicyclo­[8.8.8]hexa­cosa­ne) (Scheme 1[link]) as templates in the reaction with I2.

2. Experimental

2.1. Materials and methods

All starting materials, including [18]aneN2S4 and [2.2.2]cryptand, and solvents, were obtained from Aldrich or Merck and were used without further purification. [Pd2Cl2([18]aneN2S4)](PF6)2 was prepared according to the literature (Blake et al., 1990[Blake, A. J., Reid, G. & Schröder, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3363-3373.]). Microanalytical data were obtained on a Fisons EA 1108 CHNS-O instrument operating at 1000 °C. FT–Raman spectra (resolution 4 cm−1) were recorded on a Bruker RF100FTR spectrometer fitted with an indium–gal­lium–arsenide detector operating at room temperature with an excitation wavelength of 1064 nm (Nd:YAG laser). No sample decomposition was observed during the experiments at the power level of the laser source used between 20 and 40 mW. The values in parentheses next to the values represent the intensities of the peaks relative to the strongest, which is taken to be equal to 10.

2.2. Synthesis and crystallization

2.2.1. Synthesis of (I)

To a solution of [Pd2Cl2([18]aneN2S4)](PF6)2 (17.1 mg, 0.019 mmol) in MeCN (4 ml) was added a solution of I2 (17.7 mg, 0.070 mmol) in MeCN (4 ml). No precipitate formed upon mixing, but dark-brown prismatic crystals of title compound (I) (Scheme 2[link]) formed after several days by slow evaporation of the solvent from the reaction mixture. These were isolated from the mother liquor and washed with diethyl ether (8.4 mg, 36.3% yield). Elemental analysis found [calculated (%) for C6H13I7NPdS2]: C 6.28 (6.22), H 1.15 (1.13), N 1.24 (1.21), S 5.52 (5.54). FT–Raman (range 500–50 cm−1): ν(I–I) 169.7 (10).

[Scheme 2]
2.2.2. Synthesis of (II)

To a solution of [2.2.2]cryptand (20 mg, 0.053 mmol) in CH2Cl2 (4 ml) was added a solution of I2 (53.8 mg, 0.212 mmol) in CH2Cl2 (4 ml). A dark-brown microcrystalline precipitate corresponding to the formulation of title compound (II) (Scheme 2[link]) formed immediately. This was isolated by filtration and washed with diethyl ether (58.5 mg, 77.3% yield). Elemental analysis found [calculated (%) for C19H40Cl2I9N2O6]: C 14.25 (14.21), H 2.47 (2.51), N 1.80 (1.75). FT–Raman (range 500–50 cm−1): ν(I–I) 167.40 (10), 149.8 (6), 106.1 (5). Dark-brown prismatic single crystals suitable for X-ray diffraction analysis were grown from a solution of the obtained solid in MeCN by slow evaporation of the solvent.

2.3. Refinement of X-ray crystal structures

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were placed geometrically and refined isotropically riding on their parent C atoms, with Uiso(H) = 1.2Ueq(C). For (II)[link], H atoms bonded to quaternary N atoms could be located from the difference Fourier map and their positions were refined freely. OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) was used both as the graphical inter­face for the structural investigation and for the preparation of the figures.

Table 1
Experimental details

For both structures: Z = 4. Experiments were carried out with Mo Kα radiation.

  (I) (II)
Crystal data
Chemical formula [Pd2I2(C12H26N2S4)](I)2·5I2 C18H38N2O62+·I3·I·2.5I2·CH2Cl2
Mr 2315.99 1605.53
Crystal system, space group Monoclinic, C2/c Monoclinic, P21/n
Temperature (K) 220 293
a, b, c (Å) 21.609 (4), 8.198 (3), 24.151 (3) 13.831 (2), 14.820 (2), 20.266 (3)
β (°) 100.170 (13) 96.70 (1)
V3) 4211.1 (18) 4125.6 (10)
μ (mm−1) 11.33 6.92
Crystal size (mm) 0.26 × 0.14 × 0.13 0.2 × 0.15 × 0.11
 
Data collection
Diffractometer STOE STADI4 4-circle Bruker APEXII CCD
Absorption correction Integration (REDU4; Stoe & Cie, 1996[Stoe & Cie (1996). STADI4 and REDU4. Stoe & Cie, Darmstadt, Germany.]) Empirical (using intensity measurements) (SADABS; Bruker, 2001[Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.222, 0.306 0.569, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4584, 3715, 3059 30347, 8100, 5518
Rint 0.029 0.047
(sin θ/λ)max−1) 0.595 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.136, 1.08 0.033, 0.088, 1.00
No. of reflections 3715 8100
No. of parameters 163 349
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.35, −1.62 1.37, −1.20
Computer programs: STADI4 (Stoe & Cie, 1996[Stoe & Cie (1996). STADI4 and REDU4. Stoe & Cie, Darmstadt, Germany.]), SAINT (Bruker, 2001[Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), REDU4 (Stoe & Cie, 1996[Stoe & Cie (1996). STADI4 and REDU4. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

3. Results and discussion

3.1. Synthesis and crystal structures

Previously, we have reported the crystal structures of [Pd2Cl2([18]aneN2S4)](I3)2 (Blake at al., 1998c[Blake, A. J., Li, W., Lippolis, V., Schröder, M., Devillanova, F. O., Gould, R., Parsons, S. & Radek, C. (1998c). Chem. Soc. Rev. 27, 195-205.],d[Blake, A. J., Li, W.-S., Lippolis, V., Parsons, S. & Schröder, M. (1998d). Acta Cryst. C54, 1408-1410.]) and [Pd2Cl2([18]aneN2S4)]1.5(I5)(I3)2 (Blake et al., 1998a[Blake, A. J., Gould, R. O., Li, W.-S., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998a). Angew. Chem. Int. Ed. Engl. 37, 293-296.],c[Blake, A. J., Li, W., Lippolis, V., Schröder, M., Devillanova, F. O., Gould, R., Parsons, S. & Radek, C. (1998c). Chem. Soc. Rev. 27, 195-205.]) obtained from the reaction in MeCN of [Pd2Cl2([18]aneN2S4)](PF6)2 with nBu4NI and I2 in 1:2:2 and 1:2:4 molar ratios, respectively. In the former compound, dinuclear palladium(II) complexes are linked via Pd⋯I con­tacts into ⋯I3⋯I3⋯I3⋯ sinusoidal chains. In [Pd2Cl2([18]aneN2S4)]1.5(I5)(I3)2, [Pd2Cl2([18]aneN2S4)]2+ cat­ions are held together by N—H⋯Cl hydrogen bonds and occupy channels formed within the self-assembled three-dimensional (3D) polyiodide network. This network is made up of offset layers of stacked poly-I3 moieties (in­cluding those I3 belonging to the I5 units), featuring fused 14- and 24-membered rings inter­woven by I82− units (I5⋯I3). We sought to attempt also the direct reaction of [Pd2Cl2([18]aneN2S4)](PF6)2 with I2 in the absence of pre­formed I (see §2.2.1[link]) and, surprisingly, this afforded a dif­ferent compound corresponding to the formulation [Pd2I2([18]aneN2S4)]I12, as deep-red column-shaped crystals. A single-crystal X-ray structure determination (see Table 1[link] for crystal data) showed an asymmetric unit consisting of half a [Pd2I2([18]aneN2S4)]2+ dication, one iodide anion inter­acting with two crystallographically-independent I2 mol­ecules, and an additional half-occupied I2 mol­ecule disordered across a twofold axis parallel to the b axis. One of the two I atoms is located on a glide plane, thus defining an overall stoichiometry of [Pd2I2([18]aneN2S4)](I)2·(I2)5, (I)[link], for the obtained salt. The complete dication is generated through an inversion centre and features the hexa­dentate macrocycle binding to the two metal centres via NS2 coordination. A distorted square-planar coordination geometry at each PdII metal ion is completed by coordinated iodide anions that have replaced the chloride ions (Fig. 1[link]) in the starting material upon reaction with I2 (see Table 2[link] for selected geometric parameters).

Table 2
Selected geometric parameters (Å, °)

[Pd2I2([18]aneN2S4)](I)2·(I2)5, (I)
Pd—I 2.5722 (14) S7—C8 1.816 (12)
Pd—N1 2.076 (9) C8—C9 1.511 (16)
Pd—S4 2.314 (3) I—Iii 3.545 (2)
Pd—S7i 2.313 (3) I1—I2 2.7899 (15)
N1—C2 1.459 (15) I2—I3 3.1214 (16)
N1—C9i 1.489 (16) I3—I4 3.205 (2)
C2—C3 1.514 (17) I4—I5 2.7644 (16)
C3—S4 1.809 (11) I3—I6 3.351 (3)
S4—C5 1.838 (10) I6—I7 2.771 (4)
C5—C6 1.507 (15) I7—I3iii 3.432 (3)
C6—S7 1.796 (10)    
       
N1—Pd—S4 86.8 (3) S7i—Pd—I 92.20 (8)
N1—Pd—S7i 87.7 (3) S7i—Pd—S4 173.88 (11)
S4—Pd—I 93.57 (8)    
       
[H2([2.2.2]cryptand)](I3)(I)(I2)2.5·CH2Cl2, (II)
I3—I2 2.9799 (8) O1—C2 1.402 (8)
I3—I4 2.8629 (8) O1—C3 1.422 (8)
I6—I5 2.8015 (8) O2—C4 1.426 (8)
I6—I7 3.0952 (8) O2—C5 1.430 (8)
I8—I9 2.8001 (8) O3—C9 1.415 (8)
I8—I7 3.0940 (9) O3—C8 1.431 (8)
I1—I1iv 2.7595 (11) O4—C11 1.421 (8)
N1—C1 1.495 (9) O4—C10 1.428 (8)
N1—C12 1.493 (8) O5—C17 1.421 (8)
N1—C13 1.507 (8) O5—C16 1.403 (8)
N2—C6 1.500 (8) O6—C15 1.408 (8)
N2—C7 1.495 (8) O6—C14 1.429 (8)
N2—C18 1.506 (8)    
       
I4—I3—I2 176.54 (2) I9—I8—I7 175.52 (2)
I5—I6—I7 173.63 (2) I8—I7—I6 89.70 (2)
Symmetry codes: (i) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1; (ii) −x + [{3\over 2}], −y − [{1\over 2}], −z + 1; (iii) −x + 1, y + 1, −z + [{1\over 2}]; (iv) −x + 2, −y + 1, −z.
[Figure 1]
Figure 1
View of the dication in (I)[link], showing the atom-numbering scheme adopted. Displacement ellipsoids are drawn at the 50% probability level. Intra­molecular C—H⋯I hydrogen bonds: C6⋯I = 3.779 (11), H6A⋯I = 2.84, C5i⋯I = 3.755 (10), H5A⋯I = 2.80 Å, C6—H6A⋯I = 162 and C5—H5A⋯Ii = 161°. [Symmetry code: (i) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1.]

In (I)[link], the Pd—N [Pd—N1 = 2.076 (9) Å] and Pd—S [Pd—S4 = 2.314 (3) and Pd—S7i = 2.313 (3) Å; symmetry code: (i) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1] distances are very close to those observed in previously reported [Pd2Cl2([18]aneN2S4)]2+ dications (Blake et al., 1990[Blake, A. J., Reid, G. & Schröder, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3363-3373.], 1998a[Blake, A. J., Gould, R. O., Li, W.-S., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998a). Angew. Chem. Int. Ed. Engl. 37, 293-296.],c[Blake, A. J., Li, W., Lippolis, V., Schröder, M., Devillanova, F. O., Gould, R., Parsons, S. & Radek, C. (1998c). Chem. Soc. Rev. 27, 195-205.],d[Blake, A. J., Li, W.-S., Lippolis, V., Parsons, S. & Schröder, M. (1998d). Acta Cryst. C54, 1408-1410.]), while the Pd—I bond distance [2.5722 (14) Å] is significantly longer than the Pd—Cl distances [2.305 (4)–2.374 (1) Å]. As with the [Pd2Cl2([18]aneN2S4)]2+ dications reported previously, the dications in (I)[link] adopt a stepped conf­ormation. Inter­estingly, in [Pd2Cl2([18]aneN2S4)]1.5(I5)(I3)2 (Blake et al., 1998a[Blake, A. J., Gould, R. O., Li, W.-S., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998a). Angew. Chem. Int. Ed. Engl. 37, 293-296.],c[Blake, A. J., Li, W., Lippolis, V., Schröder, M., Devillanova, F. O., Gould, R., Parsons, S. & Radek, C. (1998c). Chem. Soc. Rev. 27, 195-205.]), the dications are linked pairwise by hydrogen bonds between the (N)H and Cl atoms to form extended chains. The [Pd2I2([18]aneN2S4)]2+ dications in (I)[link] are linked by inter­molecular I⋯I contacts of 3.545 (2) Å to form chains running parallel to the b axis (Fig. 2[link]). In both compounds, the complex dications feature inter­molecular inter­actions of the type C—H⋯X (X = Cl and I) (see Figs. 1[link] and 2[link]).

[Figure 2]
Figure 2
View of a chain of inter­acting [Pd2I2([18]aneN2S4)]2+ dications found in the crystal structure of (I)[link]. The dications are arranged into chains via I⋯I inter­actions of 3.545 (2) Å running along the b axis. [Symmetry codes: (i) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1; (ii) −x + [{3\over 2}], −y − [{1\over 2}], −z + 1.]

The polyiodide network in (I)[link] can also be regarded as comprising I122− anions (Fig. 3[link]) built up by [(I)2·(I2)5] adducts formed by inter­action of the disordered I2 mol­ecules (I6—I7) [2.771 (4) Å] and `V-shaped' I5 of the type [(I)·(I2)2] with the iodide anion (I3) inter­acting with two crystallographically-independent I2 mol­ecules [I1—I2 and I4—I5: I1—I2 = 2.7899 (15), I2⋯I3 = 3.1214 (16), I4—I5 = 2.7644 (16), I3⋯I4 = 3.205 (2) Å, I1—I2⋯I3 = 173.23 (5), I3⋯I4—I5 = 173.60 (5) and I2⋯I3⋯I4 = 95.36 (4)°].

[Figure 3]
Figure 3
View of the two symmetry-related I122− anions in (I)[link] formed by the inter­action of the two components of the disordered I2 mol­ecules with two `V-shaped' I5 moieties of the type [(I)·(I2)2]. [Symmetry codes: (iii) x, y + 1, z; (iv) −x + 1, y + 1, −z + [{1\over 2}]; (v) −x + 1, y, −z + [{1\over 2}].]

Each component of the disordered and half-occupied I2 mol­ecule inter­acts at both I atoms with the iodide atom (I3) of the I5 moiety via I⋯I inter­actions of 3.351 (3) (I3⋯I6) and 3.432 (3) Å [I7⋯I3iv; symmetry code: (iv) −x + 1, y + 1, −z + [{1\over 2}]]. This gives rise to two I122− anions in the structure, which are symmetry-related by a screw axis parallel to the b axis and a glide plane (the same symmetry elements that relate the two disorder components of the half-occupied I6—I7 diiodine mol­ecule) (Fig. 3[link]).

I122− of the same orientation (blue or green in Fig. 3[link]) inter­act with each other via I⋯I inter­actions of 3.625 (2) [I1⋯I7vi; symmetry code: (vi) x − [{1\over 2}], y − [{1\over 2}], z] and 3.800 (2) Å [I6⋯I5vii; symmetry code: (vii) −x + 1, −y + 1, −z + 1] (Fig. 4[link]) to give one-dimensional (1D) tubes of fused pseudo-cubic cavities defined by 8- and 14-membered polyiodide rings (Fig. 4[link]). Two differently-oriented 1D tubes of this type therefore co-exist at 50% occupancy in the crystal structure, depending on the orientation of the generating I122− units; one type is approximately perpendicular and the other approximately parallel to the [110] direction (blue and green, respectively, in Fig. 5[link]).

[Figure 4]
Figure 4
View along the b axis of one of the two 1D polyiodide tubes in (I)[link] formed via I122−⋯I122− inter­actions involving I122− anions of the same orientation (in this case, I122− is the component depicted in green as in Fig. 3[link]). [Symmetry codes: (iv) −x + 1, y + 1, −z + [{1\over 2}]; (vi) x − [{1\over 2}], y − [{1\over 2}], z; (vii) −x + 1, −y + 1, −z + 1.]
[Figure 5]
Figure 5
View of the two differently-oriented polyiodide 1D tubes of inter­acting I122− units co-existing at 50% occupancy in the crystal structure of (I)[link]. Colours are consistent with those in Fig. 3[link] for the differently-oriented I122− units generating the two 1D polyiodides tubes.

Chains of [Pd2I2([18]aneN2S4)]2+ complex dications (Fig. 2[link]) run parallel to the b axis crossing adjacent 1D polyiodide tubes through the pseudo-cubic cavities (Fig. 6[link]). It is inter­esting to note that, as the I7 atom of the disordered I2 mol­ecule lies on a glide plane, the resulting ratio between the two components is imposed by symmetry and the maximum occupancy possible is 0.5. As a consequence, the ratio between the two types of tubes described above remains constant in the crystal structure and cannot vary between different crystals. That said, a unique crystal packing is observed in the crystal structure of (I)[link] featuring the two sets of tubes formed by fused pseudo-cubic boxes (see above) running parallel (green) and perpendicular (blue) to the [110] direction, alternatively layered along the c axis [Figs. 6(b) and 6(c)].

[Figure 6]
Figure 6
(a) View along the b axis of the crystal packing in (I)[link], showing the relative positions between the 1D polyiodide tubes and the chains of [Pd2I2([18]aneN2S4)]2+ complex dications. The polyiodide network is also portrayed in parts (b) and (c) as blue and green tubes according to Fig. 3[link], and cations are coloured according to the type of tubes they cross.

To illustrate further the importance of the shape, charge and dimensions of the template cation in the polyiodide network assembly, we treated the macropolycyclic ligand [2.2.2]cryptand (Scheme 1[link]) with I2 in a 1:4 molar ratio in CH2Cl2. Upon slow evaporation of the solvent at room temperature, dark prismatic crystals formed corresponding to the formulation [H2([2.2.2]cryptand)]I9·CH2Cl2, (II)[link]. An X-ray crystal structure determination (see Table 1[link] for crystal data) confirmed the presence of an asymmetric unit consisting of an [H2([2.2.2]cryptand)]2+ dication in which both tertiary N atoms of the starting macropolycyclic ligand are protonated (Fig. 7[link]). Half an I2 mol­ecule [I1—I1i = 2.7595 (11) Å; symmetry code: (i) −x + 2, −y + 1, −z], an asymmetric triiodide [I2—I3—I4: I2—I3 = 2.9799 (8) and I3—I4 = 2.8629 (8) Å], a `V-shaped' penta­iodide consisting of an iodide anion (I7) inter­acting with two diiodine mol­ecules [(I)·(I2)2] (I5—I6 and I8—I9) [I5—I6 = 2.8015 (8), I8—I9 = 2.8001 (8), I6—I7 = 3.0952 (8) and I7—I8 = 3.0940 (9) Å] and a cocrystallized CH2Cl2 solvent mol­ecule define the [H2([2.2.2]cryptand)](I3)(I)(I2)2.5·CH2Cl2 (II) stoichiometry for the obtained polyiodide salt (see Table 2[link] for selected geometric parameters).

[Figure 7]
Figure 7
The crystal structure of (II)[link], showing the numbering scheme adopted. Displacement ellipsoids are drawn at the 50% probability level. H atoms and the cocrystallized CH2Cl2 mol­ecules are not shown. [Symmetry code: (i) −x + 2, −y + 1, −z.]

In (II)[link], all three diiodine mol­ecules are slightly elongated with respect to the I—I distance found in the crystal structure of ortho­rhom­bic I2 [2.715 (6) Å] (Blake et al., 1998b[Blake, A. J., Gould, R. O., Li, W.-S., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998b). Inorg. Chem. 37, 5070-5077.]). Each I1 atom inter­acts with an asymmetric triiodide unit at the I2 atom to afford a `Z-shaped' I82− dianion [I1⋯I2 = = 3.4123 (9) Å] that can be regarded as an I3·I2·I3 [(I3)2·(I2)] complex (Savastano et al., 2022[Savastano, M., Bazzicalupi, C. & Bianchi, A. (2022). Dalton Trans. 51, 10728-10739.]). Additional longer contacts of 3.907 (1) Å, still within the sum of the van der Waals radii for iodine, between each I1 atom and the terminal iodine (I5) of a penta­iodide moiety, lead to an overall discrete `grasshopper-shaped' I184− polyiodide. This can be envisaged as an [(I82−)·(I5)2] with a long contact between the I82− anion and the two I5 moieties or, in terms of fundamental building blocks, as an [(I)2·(I3)2·(I2)5] adduct (Fig. 8[link]). I184− polyiodides are quite rare in the literature: in [Co(12C4)2]2(I18) (12C4 is 12-crown-4), a unique central planar I9 [(I)·(I2)4] is attached to four triiodides at I⋯I distances of 3.240 (4)–3.478 (4) Å, and the [(I9)(I3)4] units are connected via two bridging I3 to form polymeric chains of I184− = [(I9)(I3)2/1(I3)2/2] (Fiolka et al. 2011[Fiolka, C., Pantenburg, I. & Meyer, G. (2011). Cryst. Growth Des. 11, 5159-5165.]); in [SnI2(mbit)2](I3)2·[2 \over 3]I2 [mbit is 1,1′-bis­(3-methyl-4-imidazoline-2-thione)methane], two I82− dianions of the type I2·I·I2·I·I2 [(I)2·(I2)3] and related through an inversion centre are linked to each other at the iodide atoms by a bridging disordered I2 mol­ecule via non-negligible I⋯I inter­actions of 3.55 (1) Å (Bigoli et al., 1998[Bigoli, F., Deplano, P., Devillanova, F. A., Lippolis, V., Mercuri, M. L., Pellinghelli, M. A. & Trogu, E. F. (1998). Inorg. Chim. Acta, 267, 115-121.]).

[Figure 8]
Figure 8
(a)/(b) Views of the I184− polyiodide in (II)[link] formed by inter­action of a central diiodine mol­ecule with two I3 and two I5 [(I)·(I2)2] species, showing the numbering scheme adopted. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) −x + 2, −y + 1, −z.]

The discrete I184− polyiodide units are located side-by-side and inter­digitated along the [101] direction, with [H2([2.2.2]cryptand)]2+ dications sitting in the resulting voids (Fig. 9[link]).

[Figure 9]
Figure 9
Views along approximately (a) the a axis and (b) the [101] direction of the crystal packing in (II)[link]. The blue colour and the ball-and-stick representation have been used for one of the discrete I184− polyiodide units to better highlight its atomic connectivity in the crystal packing. H atoms and the cocrystallized CH2Cl2 mol­ecules are not shown.

3.2. FT–Raman spectroscopy

Despite the high number of extended polyiodides that have been structurally characterized, and the associated crystal structure data available, the assignment of higher mol­ecular polyiodides (higher than I3) with their own distinctive structural features is still a matter of debate (Savastano et al., 2022[Savastano, M., Bazzicalupi, C. & Bianchi, A. (2022). Dalton Trans. 51, 10728-10739.]). The reductionist approach whereby higher polyiodides are considered as aggregates of I2, I and I3 held together by I⋯I inter­actions of varying strengths, from rather strong (up to ca 3.3–3.4 Å) (covalent inter­actions) to fairly weak (up to the van der Waals contact distance, ca 4 Å) (supra­molecular inter­actions), is still the most reasonable and least arbitrary. On the basis of structural data, all known higher discrete polyiodides can be regarded, therefore, as weak or medium-weak adducts of the type [(I)ny·(I3)y·(I2)my] ≡ [I2m+n]n (n, m > 0), whose geometrical and topological features can be very different and often unpredictable (Arca et al. 2006[Arca, M., Aragoni, M. C., Devillanova, F. A., Garau, A., Isaia, F., Lippolis, V., Mancini, A. & Verani, V. (2006). Bioinorg. Chem. Appl. 2006, 1-12.]). This way of considering higher polyiodides from a structural point of view is strongly supported by spectroscopic evidence. In particular, FT–Raman spectroscopy confirms that extended polyiodides do not have distinctive vibrational properties other than those of perturbed (slightly elongated) I2 mol­ecules and symmetric/slightly asymmetric I3. Perturbed I2 mol­ecules are characterized by only one strong band in the range 180–140 cm−1 in the FT–Raman spectrum, the wavenumber depending on the extent of the I⋯I elongation; for linear and symmetric I3, only the Raman-active symmetric stretch (ν1) occurs near 110 cm−1, while the anti­symmetric stretch (ν3) and the bending deformation (ν2) are only IR-active (Aragoni et al., 2023b[Aragoni, M. C., Podda, E., Chaudhary, S., Bhasin, A. K. K., Bhasin, K. K., Coles, S. J., Orton, J. B., Isaia, F., Lippolis, V., Pintus, A., Slawin, A. M. Z., Woollins, J. D. & Arca, M. (2023b). Chem. Asian J. 18, e202300836.]). The latter two modes also become Raman-active for slightly asymmetric I3 and they are found near 134 (ν3) and 80 cm−1 (ν2), having medium and medium–weak intensities, respectively. Highly asymmetric I3 ions show only one band in their FT–Raman spectra in the range 180–140 cm−1, so that they should be regarded as weak (I)·I2 adducts. To date, FT–Raman spectra of polyiodides of the general formula [I2m+n]n show peaks in the low wavenumber region with either one strong peak in the range 180–140 cm−1 or the characteristic peaks due to both perturbed I2 and symmetric/slightly asymmetric I3. They would therefore be better described as [(I)n·(I2)m] or [(I)ny·(I3)y·(I2)my] (n > y ≠ 0)/[(I3)n·(I2)mn] (n = y ≠ 0) systems. The polyiodides here described are no exception. The FT–Raman spectrum of (I)[link] features only a strong and broad peak centred at 169 cm−1 indicative of the presence of differently perturbed I2 mol­ecules (Fig. S1 in the supporting information). The FT–Raman spectrum of (II)[link] is shown in Fig. 10[link]. The two peaks at about 167 and 150 cm−1 can be assigned to the stretching vibration of the two differently elongated I2 mol­ecules I5—I6/I6—I7 and I1—I1i [symmetry code: (i) −x + 2, −y + 1, −z], respectively. These data correspond closely to the established linear correlation ν(I–I)/cm−1 versus d(I–I)/Å for weak or medium–weak adducts (Arca et al., 2006[Arca, M., Aragoni, M. C., Devillanova, F. A., Garau, A., Isaia, F., Lippolis, V., Mancini, A. & Verani, V. (2006). Bioinorg. Chem. Appl. 2006, 1-12.]). The peak at 106 cm−1 can be attributed to the symmetric stretch (ν1) of the I3 ion (I2—I3—I4), thus confirming the description of the I184− polyiodide as an [(I)2·(I3)2·(I2)5] adduct.

[Figure 10]
Figure 10
FT–Raman spectrum of (II)[link] in the low frequency region.

4. Conclusions

In this article, we confirm the structural variety of extended polyiodides that can be generated by changing the shape, charge and dimension of the cation template, as well as the synthetic strategy adopted and the experimental conditions. Although it is still often difficult to characterize [I2m+n]n polyiodides higher than I3 on the grounds of any distinctive structural parameters, such as I—I bond distances, FT–Raman spectroscopy appears to confirm their characterization as aggregates of I2, I and (symmetric or slightly asymmetric) I3 building blocks held together by I⋯I inter­actions of varying strengths. On the other hand, FT–Raman spectroscopy cannot provide any information on the topological features of extended polyiodides. The two techniques should therefore be used together in the analysis of this kind of compound.

Supporting information


Computing details top

(µ-1,4,10,13-Tetrathia-7,16-diazacyclooctadecane)bis[iodidopalladium(II)] diiodide penta(diiodine) (I) top
Crystal data top
[Pd2I2(C12H26N2S4)](I)2·5I2F(000) = 4040
Mr = 2315.99Dx = 3.653 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.609 (4) ÅCell parameters from 25 reflections
b = 8.198 (3) Åθ = 5–20°
c = 24.151 (3) ŵ = 11.33 mm1
β = 100.170 (13)°T = 220 K
V = 4211.1 (18) Å3Column, red
Z = 40.26 × 0.14 × 0.13 mm
Data collection top
STOE STADI4 4-circle
diffractometer
Rint = 0.029
Scan width (ω) = 1.64 – 2.20, scan ratio 2θ:ω = 1.00 I(Net) and sigma(I) from profile fitting (Clegg, 1981)θmax = 25.0°, θmin = 2.7°
Absorption correction: integration
(REDU4; Stoe & Cie, 1996)
h = 2525
Tmin = 0.222, Tmax = 0.306k = 09
4584 measured reflectionsl = 2828
3715 independent reflections3 standard reflections every 60 reflections
3059 reflections with I > 2σ(I) intensity decay: 5.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0681P)2 + 91.8532P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3715 reflectionsΔρmax = 1.35 e Å3
163 parametersΔρmin = 1.61 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Diffraction data were collected on Stoe STADI4 4-circle and APEXII CCD area detector diffractometers for [Pd2I2([18]aneN2S4)](I)2.(I2)5, (I)< and [H2([2.2.2]cryptand)](I3)(I)(I2)2.5.CH2Cl2, (II), respectively. The structures were solved by direct methods using SHELXS (Sheldrick, 1997) or SHELXT2018 (Sheldrick, 2015a) and developed by iterative cycles of least-squares refinement on F2 using SHELXL2018 (Sheldrick, 2015b). OLEX2 (Dolomanov et al., 2009) was used both as the graphical interface for the structural investigation and for the preparation of the figures.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd0.74558 (4)0.20976 (10)0.41095 (3)0.0265 (2)
I0.74355 (4)0.07058 (10)0.45843 (3)0.0396 (2)
N10.7472 (4)0.4224 (12)0.3645 (4)0.033 (2)
H10.7457170.3889740.3249400.039*
C20.6914 (6)0.5217 (15)0.3658 (5)0.036 (3)
H2A0.6896550.6112090.3386680.043*
H2B0.6933640.5688600.4033450.043*
C30.6334 (5)0.4162 (15)0.3512 (4)0.032 (3)
H3A0.6286650.3820920.3117750.039*
H3B0.5962430.4804220.3553950.039*
S40.63730 (13)0.2371 (4)0.39546 (11)0.0307 (6)
C50.6221 (5)0.3303 (14)0.4610 (4)0.028 (2)
H5A0.6546110.4117920.4740300.034*
H5B0.5813400.3859640.4538280.034*
C60.6220 (5)0.2026 (14)0.5058 (4)0.029 (2)
H6A0.6507670.1141760.5001450.035*
H6B0.5796870.1563930.5026220.035*
S70.64573 (13)0.2877 (4)0.57479 (11)0.0283 (6)
C80.6386 (5)0.1087 (15)0.6175 (5)0.033 (3)
H8A0.6376480.1431100.6562120.040*
H8B0.5988080.0535770.6030740.040*
C90.6921 (6)0.0100 (14)0.6177 (5)0.033 (3)
H9A0.6886810.0997240.6437940.040*
H9B0.6903890.0558800.5800040.040*
I10.17411 (5)0.49110 (13)0.27632 (4)0.0541 (3)
I20.30416 (5)0.44729 (11)0.29934 (3)0.0471 (3)
I30.44647 (5)0.35848 (16)0.33110 (4)0.0632 (3)
I40.44322 (4)0.28503 (11)0.46091 (4)0.0498 (3)
I50.45421 (5)0.21053 (14)0.57386 (5)0.0615 (3)
I60.48062 (11)0.7092 (3)0.27188 (9)0.0694 (6)0.5
I70.50658 (10)1.0005 (3)0.22248 (9)0.0692 (6)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.0277 (4)0.0317 (5)0.0191 (4)0.0014 (4)0.0018 (3)0.0031 (3)
I0.0446 (5)0.0385 (5)0.0356 (4)0.0007 (4)0.0066 (3)0.0056 (3)
N10.036 (5)0.036 (5)0.025 (5)0.005 (4)0.004 (4)0.007 (4)
C20.040 (6)0.034 (6)0.032 (6)0.005 (5)0.002 (5)0.011 (5)
C30.033 (6)0.041 (7)0.021 (5)0.010 (5)0.003 (4)0.007 (5)
S40.0275 (13)0.0446 (17)0.0183 (12)0.0019 (12)0.0011 (10)0.0005 (12)
C50.031 (5)0.034 (6)0.019 (5)0.006 (5)0.005 (4)0.000 (5)
C60.032 (6)0.038 (6)0.015 (5)0.000 (5)0.004 (4)0.004 (5)
S70.0296 (13)0.0367 (15)0.0189 (12)0.0031 (12)0.0048 (10)0.0007 (11)
C80.030 (6)0.042 (7)0.027 (6)0.000 (5)0.005 (5)0.005 (5)
C90.048 (7)0.027 (6)0.026 (6)0.004 (5)0.011 (5)0.000 (5)
I10.0707 (6)0.0609 (6)0.0275 (4)0.0073 (5)0.0003 (4)0.0030 (4)
I20.0735 (6)0.0451 (5)0.0243 (4)0.0062 (4)0.0128 (4)0.0044 (3)
I30.0516 (6)0.0845 (8)0.0538 (6)0.0055 (5)0.0096 (5)0.0075 (5)
I40.0310 (4)0.0478 (5)0.0666 (6)0.0020 (4)0.0023 (4)0.0141 (5)
I50.0483 (5)0.0740 (7)0.0617 (6)0.0060 (5)0.0080 (5)0.0112 (5)
I60.0612 (12)0.0961 (17)0.0465 (11)0.0254 (12)0.0021 (9)0.0094 (11)
I70.0578 (12)0.1024 (18)0.0451 (10)0.0283 (12)0.0026 (9)0.0041 (11)
Geometric parameters (Å, º) top
Pd—I2.5722 (14)C5—H5B0.9800
Pd—N12.076 (9)C5—C61.507 (15)
Pd—S42.314 (3)C6—H6A0.9800
Pd—S7i2.313 (3)C6—H6B0.9800
N1—H10.9900C6—S71.796 (10)
N1—C21.459 (15)S7—C81.816 (12)
N1—C9i1.489 (16)C8—H8A0.9800
C2—H2A0.9800C8—H8B0.9800
C2—H2B0.9800C8—C91.511 (16)
C2—C31.514 (17)C9—H9A0.9800
C3—H3A0.9800C9—H9B0.9800
C3—H3B0.9800I1—I22.7899 (15)
C3—S41.809 (11)I3—I7ii3.432 (3)
S4—C51.838 (10)I4—I52.7644 (16)
C5—H5A0.9800I6—I72.771 (4)
N1—Pd—I173.8 (3)S4—C5—H5A109.5
N1—Pd—S486.8 (3)S4—C5—H5B109.5
N1—Pd—S7i87.7 (3)H5A—C5—H5B108.1
S4—Pd—I93.57 (8)C6—C5—S4110.7 (8)
S7i—Pd—I92.20 (8)C6—C5—H5A109.5
S7i—Pd—S4173.88 (11)C6—C5—H5B109.5
Pd—N1—H1106.8C5—C6—H6A109.4
C2—N1—Pd111.4 (7)C5—C6—H6B109.4
C2—N1—H1106.8C5—C6—S7111.1 (8)
C2—N1—C9i114.4 (9)H6A—C6—H6B108.0
C9i—N1—Pd110.3 (7)S7—C6—H6A109.4
C9i—N1—H1106.8S7—C6—H6B109.4
N1—C2—H2A109.8C6—S7—Pdi104.9 (4)
N1—C2—H2B109.8C6—S7—C8100.0 (5)
N1—C2—C3109.3 (10)C8—S7—Pdi96.2 (4)
H2A—C2—H2B108.3S7—C8—H8A109.1
C3—C2—H2A109.8S7—C8—H8B109.1
C3—C2—H2B109.8H8A—C8—H8B107.9
C2—C3—H3A109.2C9—C8—S7112.4 (8)
C2—C3—H3B109.2C9—C8—H8A109.1
C2—C3—S4112.1 (7)C9—C8—H8B109.1
H3A—C3—H3B107.9N1i—C9—C8109.0 (9)
S4—C3—H3A109.2N1i—C9—H9A109.9
S4—C3—H3B109.2N1i—C9—H9B109.9
C3—S4—Pd96.6 (4)C8—C9—H9A109.9
C3—S4—C5100.0 (5)C8—C9—H9B109.9
C5—S4—Pd103.3 (4)H9A—C9—H9B108.3
Pd—N1—C2—C349.8 (11)S4—C5—C6—S7151.6 (6)
Pd—S4—C5—C681.5 (8)C5—C6—S7—Pdi82.2 (8)
Pdi—S7—C8—C930.4 (8)C5—C6—S7—C8178.6 (8)
N1—C2—C3—S453.8 (11)C6—S7—C8—C976.0 (9)
C2—C3—S4—Pd29.9 (9)S7—C8—C9—N1i54.5 (11)
C2—C3—S4—C574.9 (9)C9i—N1—C2—C3175.8 (9)
C3—S4—C5—C6179.2 (8)
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x+1, y1, z+1/2.
4,7,13,16,21,24-Hexaoxa-1,10-diazoniabicyclo[8.8.8]hexacosane triiodide iodide hemipenta(diiodine) dichloromethane monosolvate (II) top
Crystal data top
C18H38N2O62+·I3·I·2.5I2·CH2Cl2F(000) = 2908
Mr = 1605.53Dx = 2.585 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.831 (2) ÅCell parameters from 1024 reflections
b = 14.820 (2) Åθ = 2.3–25.0°
c = 20.266 (3) ŵ = 6.92 mm1
β = 96.70 (1)°T = 293 K
V = 4125.6 (10) Å3Prism, dark brown
Z = 40.2 × 0.15 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
5518 reflections with I > 2σ(I)
ω scanRint = 0.047
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2001)
θmax = 26.0°, θmin = 1.7°
Tmin = 0.569, Tmax = 1.000h = 1717
30347 measured reflectionsk = 1718
8100 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0409P)2 + 2.6443P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
8100 reflectionsΔρmax = 1.37 e Å3
349 parametersΔρmin = 1.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Diffraction data were collected on Stoe STADI4 4-circle and APEXII CCD area detector diffractometers for [Pd2I2([18]aneN2S4)](I)2.(I2)5, (I)< and [H2([2.2.2]cryptand)](I3)(I)(I2)2.5.CH2Cl2, (II), respectively. The structures were solved by direct methods using SHELXS (Sheldrick, 1997) or SHELXT2018 (Sheldrick, 2015a) and developed by iterative cycles of least-squares refinement on F2 using SHELXL2018 (Sheldrick, 2015b). OLEX2 (Dolomanov et al., 2009) was used both as the graphical interface for the structural investigation and for the preparation of the figures.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I30.97532 (3)0.09815 (3)0.09154 (2)0.05246 (13)
I61.18118 (3)0.25227 (3)0.29099 (2)0.05446 (13)
I81.02564 (4)0.12201 (3)0.44048 (2)0.05614 (13)
I11.04190 (4)0.41593 (4)0.00367 (2)0.06090 (14)
I51.14617 (4)0.36573 (4)0.18021 (3)0.06725 (15)
I90.84017 (4)0.12912 (4)0.48279 (3)0.07124 (16)
I21.11920 (4)0.19711 (4)0.00283 (3)0.07161 (16)
I40.84421 (4)0.00647 (4)0.18076 (3)0.07345 (17)
I71.23723 (4)0.11657 (4)0.40516 (3)0.08026 (18)
Cl10.95495 (16)0.38674 (16)0.32137 (13)0.0828 (6)
Cl20.7726 (2)0.39206 (15)0.37582 (16)0.1031 (9)
O31.0138 (3)0.5948 (3)0.4173 (2)0.0507 (11)
O40.8153 (3)0.6262 (3)0.4468 (2)0.0505 (11)
O60.7318 (3)0.8559 (3)0.3468 (2)0.0572 (12)
O50.9379 (3)0.8313 (3)0.3301 (2)0.0546 (12)
O20.8968 (3)0.6260 (3)0.2316 (2)0.0557 (12)
O10.7020 (3)0.6014 (3)0.2611 (2)0.0571 (12)
N21.0574 (4)0.6895 (4)0.3026 (3)0.0418 (12)
H21.001 (5)0.686 (4)0.314 (3)0.050*
N10.6452 (4)0.6877 (3)0.3760 (3)0.0413 (12)
H10.699 (5)0.691 (4)0.362 (3)0.050*
C110.7283 (5)0.6077 (5)0.4753 (4)0.0549 (18)
H11A0.7168520.6541110.5072490.066*
H11B0.7332340.5499230.4979660.066*
C71.1296 (4)0.6832 (4)0.3634 (3)0.0473 (16)
H7A1.1256400.7375700.3896100.057*
H7B1.1946070.6801130.3500460.057*
C90.9878 (5)0.6552 (5)0.4663 (4)0.0548 (18)
H9A0.9750040.7143860.4467380.066*
H9B1.0414070.6607970.5014380.066*
C20.6032 (5)0.6010 (5)0.2706 (4)0.0609 (19)
H2A0.5879770.5442050.2907910.073*
H2B0.5642870.6048980.2276530.073*
C150.8113 (5)0.8730 (5)0.3951 (4)0.0540 (17)
H15A0.8277120.8186630.4206650.065*
H15B0.7939950.9194710.4253420.065*
C81.1135 (5)0.6028 (5)0.4057 (4)0.0542 (18)
H8A1.1329920.5485670.3838700.065*
H8B1.1540180.6081600.4479290.065*
C120.6466 (5)0.6061 (4)0.4194 (4)0.0549 (18)
H12A0.6530900.5527020.3925110.066*
H12B0.5851500.6018380.4378050.066*
C40.8137 (5)0.6384 (6)0.1838 (3)0.062 (2)
H4A0.7972390.5819650.1610180.074*
H4B0.8281280.6826620.1511200.074*
C61.0670 (5)0.6125 (5)0.2557 (4)0.0565 (18)
H6A1.0691830.5561450.2802030.068*
H6B1.1275380.6185090.2363630.068*
C171.0294 (5)0.8552 (5)0.3096 (4)0.061 (2)
H17A1.0771730.8642450.3480670.073*
H17B1.0236590.9105870.2840270.073*
C130.6242 (5)0.7734 (4)0.4118 (4)0.0523 (17)
H13A0.5570330.7722280.4212560.063*
H13B0.6653840.7754610.4538780.063*
C181.0600 (5)0.7792 (5)0.2680 (4)0.061 (2)
H18A1.1255330.7904100.2574130.073*
H18B1.0171230.7770020.2265840.073*
C160.8968 (5)0.9029 (5)0.3625 (4)0.0578 (19)
H16A0.8766530.9499410.3305210.069*
H16B0.9454460.9282410.3957300.069*
C30.7294 (5)0.6700 (5)0.2179 (4)0.0590 (19)
H3A0.7472980.7242320.2431360.071*
H3B0.6748020.6842560.1849830.071*
C100.8991 (5)0.6225 (5)0.4950 (3)0.0553 (18)
H10A0.9094390.5608240.5103030.066*
H10B0.8883190.6594870.5329180.066*
C50.9834 (5)0.6101 (6)0.2012 (4)0.062 (2)
H5A0.9914400.6562830.1684030.074*
H5B0.9802290.5517440.1793500.074*
C140.6405 (5)0.8573 (5)0.3732 (4)0.061 (2)
H14A0.5884290.8634640.3370110.074*
H14B0.6382140.9093550.4020050.074*
C10.5754 (5)0.6783 (5)0.3143 (4)0.0563 (18)
H1A0.5740590.7342400.2893000.068*
H1B0.5105130.6677980.3263740.068*
C190.8493 (6)0.4487 (6)0.3270 (5)0.080 (3)
H19A0.8155580.4582310.2828690.096*
H19B0.8662060.5072170.3464110.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I30.0500 (3)0.0529 (3)0.0579 (3)0.0116 (2)0.0208 (2)0.0112 (2)
I60.0374 (2)0.0686 (3)0.0589 (3)0.0009 (2)0.0123 (2)0.0057 (2)
I80.0663 (3)0.0498 (3)0.0490 (3)0.0015 (2)0.0071 (2)0.0035 (2)
I10.0563 (3)0.0793 (3)0.0488 (3)0.0036 (2)0.0133 (2)0.0120 (2)
I50.0550 (3)0.0809 (4)0.0649 (3)0.0043 (3)0.0032 (2)0.0090 (3)
I90.0566 (3)0.0829 (4)0.0709 (4)0.0029 (3)0.0070 (3)0.0118 (3)
I20.0556 (3)0.0782 (4)0.0817 (4)0.0073 (3)0.0109 (3)0.0141 (3)
I40.0570 (3)0.0763 (4)0.0870 (4)0.0116 (3)0.0080 (3)0.0080 (3)
I70.0750 (4)0.0988 (4)0.0689 (4)0.0195 (3)0.0168 (3)0.0200 (3)
Cl10.0651 (12)0.0855 (15)0.1010 (17)0.0109 (11)0.0239 (12)0.0196 (13)
Cl20.1055 (19)0.0674 (14)0.152 (3)0.0064 (13)0.0815 (19)0.0079 (14)
O30.041 (2)0.059 (3)0.053 (3)0.004 (2)0.008 (2)0.005 (2)
O40.039 (2)0.067 (3)0.046 (3)0.003 (2)0.009 (2)0.006 (2)
O60.046 (3)0.067 (3)0.062 (3)0.010 (2)0.017 (2)0.011 (2)
O50.045 (3)0.051 (3)0.072 (3)0.001 (2)0.025 (2)0.004 (2)
O20.042 (3)0.085 (4)0.039 (3)0.001 (2)0.003 (2)0.000 (2)
O10.048 (3)0.067 (3)0.057 (3)0.012 (2)0.010 (2)0.000 (2)
N20.026 (2)0.053 (3)0.048 (3)0.005 (2)0.016 (2)0.007 (3)
N10.033 (3)0.038 (3)0.056 (3)0.005 (2)0.014 (2)0.011 (2)
C110.054 (4)0.062 (4)0.053 (4)0.002 (3)0.023 (3)0.008 (3)
C70.030 (3)0.058 (4)0.053 (4)0.003 (3)0.004 (3)0.007 (3)
C90.047 (4)0.057 (4)0.060 (5)0.006 (3)0.000 (3)0.002 (4)
C20.049 (4)0.077 (5)0.056 (5)0.008 (4)0.005 (3)0.017 (4)
C150.044 (4)0.064 (4)0.055 (4)0.000 (3)0.008 (3)0.008 (4)
C80.038 (4)0.066 (5)0.060 (5)0.008 (3)0.014 (3)0.011 (4)
C120.048 (4)0.046 (4)0.075 (5)0.005 (3)0.024 (4)0.005 (4)
C40.050 (4)0.096 (6)0.039 (4)0.002 (4)0.001 (3)0.001 (4)
C60.047 (4)0.064 (5)0.061 (5)0.003 (3)0.017 (3)0.008 (4)
C170.060 (4)0.044 (4)0.085 (6)0.004 (3)0.031 (4)0.013 (4)
C130.050 (4)0.047 (4)0.065 (5)0.003 (3)0.028 (3)0.015 (3)
C180.051 (4)0.069 (5)0.066 (5)0.012 (4)0.027 (4)0.028 (4)
C160.051 (4)0.043 (4)0.080 (5)0.007 (3)0.011 (4)0.003 (4)
C30.053 (4)0.067 (5)0.056 (5)0.009 (4)0.005 (3)0.006 (4)
C100.056 (4)0.067 (5)0.044 (4)0.003 (4)0.011 (3)0.006 (3)
C50.054 (4)0.084 (6)0.049 (4)0.002 (4)0.009 (3)0.005 (4)
C140.048 (4)0.045 (4)0.095 (6)0.000 (3)0.023 (4)0.011 (4)
C10.037 (3)0.061 (4)0.069 (5)0.004 (3)0.002 (3)0.016 (4)
C190.068 (5)0.072 (5)0.106 (7)0.020 (4)0.040 (5)0.022 (5)
Geometric parameters (Å, º) top
I3—I22.9799 (8)C2—H2A0.9700
I3—I42.8629 (8)C2—H2B0.9700
I6—I52.8015 (8)C2—C11.525 (9)
I6—I73.0952 (8)C15—H15A0.9700
I8—I92.8001 (8)C15—H15B0.9700
I8—I73.0940 (9)C15—C161.487 (10)
I1—I1i2.7595 (11)C8—H8A0.9700
Cl1—C191.741 (8)C8—H8B0.9700
Cl2—C191.747 (8)C12—H12A0.9700
O3—C91.415 (8)C12—H12B0.9700
O3—C81.431 (8)C4—H4A0.9700
O4—C111.421 (8)C4—H4B0.9700
O4—C101.428 (8)C4—C31.497 (10)
O6—C151.408 (8)C6—H6A0.9700
O6—C141.429 (8)C6—H6B0.9700
O5—C171.421 (8)C6—C51.503 (10)
O5—C161.403 (8)C17—H17A0.9700
O2—C41.426 (8)C17—H17B0.9700
O2—C51.430 (8)C17—C181.497 (10)
O1—C21.402 (8)C13—H13A0.9700
O1—C31.422 (8)C13—H13B0.9700
N2—H20.84 (7)C13—C141.500 (10)
N2—C71.495 (8)C18—H18A0.9700
N2—C61.500 (8)C18—H18B0.9700
N2—C181.506 (8)C16—H16A0.9700
N1—H10.83 (7)C16—H16B0.9700
N1—C121.493 (8)C3—H3A0.9700
N1—C131.507 (8)C3—H3B0.9700
N1—C11.495 (9)C10—H10A0.9700
C11—H11A0.9700C10—H10B0.9700
C11—H11B0.9700C5—H5A0.9700
C11—C121.505 (10)C5—H5B0.9700
C7—H7A0.9700C14—H14A0.9700
C7—H7B0.9700C14—H14B0.9700
C7—C81.500 (9)C1—H1A0.9700
C9—H9A0.9700C1—H1B0.9700
C9—H9B0.9700C19—H19A0.9700
C9—C101.497 (9)C19—H19B0.9700
I4—I3—I2176.54 (2)C3—C4—H4A109.7
I5—I6—I7173.63 (2)C3—C4—H4B109.7
I9—I8—I7175.52 (2)N2—C6—H6A109.3
I8—I7—I689.70 (2)N2—C6—H6B109.3
C9—O3—C8113.1 (5)N2—C6—C5111.5 (6)
C11—O4—C10111.8 (5)H6A—C6—H6B108.0
C15—O6—C14113.0 (6)C5—C6—H6A109.3
C16—O5—C17111.9 (5)C5—C6—H6B109.3
C4—O2—C5112.2 (5)O5—C17—H17A110.3
C2—O1—C3114.9 (5)O5—C17—H17B110.3
C7—N2—H2110 (5)O5—C17—C18107.3 (6)
C7—N2—C6112.0 (5)H17A—C17—H17B108.5
C7—N2—C18112.9 (5)C18—C17—H17A110.3
C6—N2—H2106 (4)C18—C17—H17B110.3
C6—N2—C18111.6 (6)N1—C13—H13A108.9
C18—N2—H2104 (4)N1—C13—H13B108.9
C12—N1—H1108 (5)H13A—C13—H13B107.7
C12—N1—C13113.0 (5)C14—C13—N1113.6 (6)
C12—N1—C1112.4 (5)C14—C13—H13A108.9
C13—N1—H1111 (5)C14—C13—H13B108.9
C1—N1—H1103 (5)N2—C18—H18A109.2
C1—N1—C13109.8 (5)N2—C18—H18B109.2
O4—C11—H11A110.3C17—C18—N2112.2 (6)
O4—C11—H11B110.3C17—C18—H18A109.2
O4—C11—C12107.0 (6)C17—C18—H18B109.2
H11A—C11—H11B108.6H18A—C18—H18B107.9
C12—C11—H11A110.3O5—C16—C15111.7 (6)
C12—C11—H11B110.3O5—C16—H16A109.3
N2—C7—H7A109.0O5—C16—H16B109.3
N2—C7—H7B109.0C15—C16—H16A109.3
N2—C7—C8113.0 (5)C15—C16—H16B109.3
H7A—C7—H7B107.8H16A—C16—H16B107.9
C8—C7—H7A109.0O1—C3—C4109.7 (6)
C8—C7—H7B109.0O1—C3—H3A109.7
O3—C9—H9A109.5O1—C3—H3B109.7
O3—C9—H9B109.5C4—C3—H3A109.7
O3—C9—C10110.7 (6)C4—C3—H3B109.7
H9A—C9—H9B108.1H3A—C3—H3B108.2
C10—C9—H9A109.5O4—C10—C9111.0 (5)
C10—C9—H9B109.5O4—C10—H10A109.4
O1—C2—H2A108.9O4—C10—H10B109.4
O1—C2—H2B108.9C9—C10—H10A109.4
O1—C2—C1113.1 (6)C9—C10—H10B109.4
H2A—C2—H2B107.8H10A—C10—H10B108.0
C1—C2—H2A108.9O2—C5—C6106.9 (6)
C1—C2—H2B108.9O2—C5—H5A110.3
O6—C15—H15A109.7O2—C5—H5B110.3
O6—C15—H15B109.7C6—C5—H5A110.3
O6—C15—C16110.0 (6)C6—C5—H5B110.3
H15A—C15—H15B108.2H5A—C5—H5B108.6
C16—C15—H15A109.7O6—C14—C13112.1 (6)
C16—C15—H15B109.7O6—C14—H14A109.2
O3—C8—C7111.7 (5)O6—C14—H14B109.2
O3—C8—H8A109.3C13—C14—H14A109.2
O3—C8—H8B109.3C13—C14—H14B109.2
C7—C8—H8A109.3H14A—C14—H14B107.9
C7—C8—H8B109.3N1—C1—C2111.9 (5)
H8A—C8—H8B107.9N1—C1—H1A109.2
N1—C12—C11112.8 (5)N1—C1—H1B109.2
N1—C12—H12A109.0C2—C1—H1A109.2
N1—C12—H12B109.0C2—C1—H1B109.2
C11—C12—H12A109.0H1A—C1—H1B107.9
C11—C12—H12B109.0Cl1—C19—Cl2110.7 (5)
H12A—C12—H12B107.8Cl1—C19—H19A109.5
O2—C4—H4A109.7Cl1—C19—H19B109.5
O2—C4—H4B109.7Cl2—C19—H19A109.5
O2—C4—C3109.7 (6)Cl2—C19—H19B109.5
H4A—C4—H4B108.2H19A—C19—H19B108.1
O3—C9—C10—O467.8 (7)C12—N1—C1—C262.5 (8)
O4—C11—C12—N151.0 (7)C4—O2—C5—C6171.4 (6)
O6—C15—C16—O572.6 (8)C6—N2—C7—C865.1 (7)
O5—C17—C18—N252.5 (8)C6—N2—C18—C17167.7 (6)
O2—C4—C3—O165.1 (8)C17—O5—C16—C15169.0 (6)
O1—C2—C1—N147.5 (9)C13—N1—C12—C1165.1 (7)
N2—C7—C8—O348.4 (8)C13—N1—C1—C2170.9 (6)
N2—C6—C5—O243.6 (8)C18—N2—C7—C8167.9 (5)
N1—C13—C14—O647.8 (9)C18—N2—C6—C562.6 (7)
C11—O4—C10—C9171.7 (6)C16—O5—C17—C18172.5 (6)
C7—N2—C6—C5169.8 (6)C3—O1—C2—C173.2 (8)
C7—N2—C18—C1765.1 (7)C10—O4—C11—C12175.5 (6)
C9—O3—C8—C777.9 (7)C5—O2—C4—C3170.5 (6)
C2—O1—C3—C4150.6 (6)C14—O6—C15—C16159.8 (6)
C15—O6—C14—C1375.9 (8)C1—N1—C12—C11170.0 (5)
C8—O3—C9—C10158.4 (5)C1—N1—C13—C1464.4 (7)
C12—N1—C13—C14169.3 (6)
Symmetry code: (i) x+2, y+1, z.
Selected geometric parameters (Å, °) top
[Pd2I2([18]aneN2S4)](I)2.(I2)5
Pd—I2.5722 (14)C6—S71.796 (10)
Pd—N12.076 (9)S7—C81.816 (12)
Pd—S42.314 (3)C8—C91.511 (16)
Pd—S7i2.313 (3)I—Iii3.545 (2)
N1—C21.459 (15)I1—I22.7899 (15)
N1—C9i1.489 (16)I2—I33.1214 (16)
C2—C31.514 (17)I3—I43.205 (2)
C3—S41.809 (11)I4—I52.7644 (16)
S4—C51.838 (10)I3—I63.351 (3)
C5—C61.507 (15)I6—I72.771 (4)
I7—I3iii3.432 (3)
N1—Pd—S486.8 (3)S7i—Pd—I92.20 (8)
N1—Pd—S7i87.7 (3)S7i—Pd—S4173.88 (11)
S4—Pd—I93.57 (8)
[H2([2.2.2]cryptand)](I3)(I)(I2)2.5.CH2Cl2
I3—I22.9799 (8)O1—C21.402 (8)
I3—I42.8629 (8)O1—C31.422 (8)
I6—I52.8015 (8)O2—C41.426 (8)
I6—I73.0952 (8)O2—C51.430 (8)
I8—I92.8001 (8)O3—C91.415 (8)
I8—I73.0940 (9)O3—C81.431 (8)
I1—I1iv2.7595 (11)O4—C111.421 (8)
N1—C11.495 (9)O4—C101.428 (8)
N1—C121.493 (8)O5—C171.421 (8)
N1—C131.507 (8)O5—C161.403 (8)
N2—C61.500 (8)O6—C151.408 (8)
N2—C71.495 (8)O6—C141.429 (8)
N2—C181.506 (8)
I4—I3—I2176.54 (2)C3—C4—H4A109.7
I5—I6—I7173.63 (2)C3—C4—H4B109.7
I9—I8—I7175.52 (2)N2—C6—H6A109.3
I8—I7—I689.70 (2)N2—C6—H6B109.3
Symmetry codes: (i) -x+3/2, -y+1/2, -z+1; (ii) -x+3/2, -y-1/2, -z+1; (iii) -x+1, y+1, -z+1/2; (iv) -x+2, -y+1, -z.
 

Acknowledgements

We thank Professor Francesco Demartin for useful discussions. We thank the University of Cagliari for financial support and the EPSRC (UK) for the award of X-ray diffractometers.

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Funding information

The following funding is acknowledged: Engineering and Physical Sciences Research Council (grant Nos. GR/M54728/01 and GR/K45210/01).

References

First citationAragoni, M. C., Arca, M., Demartin, F., Garau, A., Isaia, F., Lippolis, V. & Pivetta, T. (2023a). New J. Chem. 47, 8122–8130.  CSD CrossRef CAS Google Scholar
First citationAragoni, M. C., Arca, M., Devillanova, F. A., Isaia, F., Lippolis, V., Mancini, A., Pala, L., Slawin, M. Z. & Woollins, J. D. (2003). Chem. Commun. pp. 2226–2227.  CSD CrossRef Google Scholar
First citationAragoni, M. C., Arca, M., Devillanova, V., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V. & Mancini, A. (2004). CrystEngComm, 6, 540–542.  CAS Google Scholar
First citationAragoni, M. C., Podda, E., Arca, M., Pintus, A., Lippolis, V., Caltagirone, C., Bartz, R. H., Lenardão, E. J., Perin, G., Schumacher, R. F., Coles, S. J. & Orton, J. B. (2022). New J. Chem. 46, 21921–21929.  Web of Science CSD CrossRef CAS Google Scholar
First citationAragoni, M. C., Podda, E., Chaudhary, S., Bhasin, A. K. K., Bhasin, K. K., Coles, S. J., Orton, J. B., Isaia, F., Lippolis, V., Pintus, A., Slawin, A. M. Z., Woollins, J. D. & Arca, M. (2023b). Chem. Asian J. 18, e202300836.  CSD CrossRef PubMed Google Scholar
First citationArca, M., Aragoni, M. C., Devillanova, F. A., Garau, A., Isaia, F., Lippolis, V., Mancini, A. & Verani, V. (2006). Bioinorg. Chem. Appl. 2006, 1–12.  CrossRef Google Scholar
First citationArca, M., Demartin, F., Devillanova, F. A., Garau, A., Isaia, F., Lippolis, V. & Verani, G. (1999). J. Chem. Soc. Dalton Trans. pp. 3069–3073.  Web of Science CSD CrossRef Google Scholar
First citationBigoli, F., Deplano, P., Devillanova, F. A., Lippolis, V., Mercuri, M. L., Pellinghelli, M. A. & Trogu, E. F. (1998). Inorg. Chim. Acta, 267, 115–121.  CSD CrossRef CAS Google Scholar
First citationBlake, A. J., Cristiani, F., Devillanova, F. A., Garau, A., Gilby, L., Gould, R. O., Isaia, F., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1337–1346.  CSD CrossRef Google Scholar
First citationBlake, A. J., Gould, R. O., Li, W.-S., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998a). Angew. Chem. Int. Ed. Engl. 37, 293–296.  CrossRef CAS PubMed Google Scholar
First citationBlake, A. J., Gould, R. O., Li, W.-S., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998b). Inorg. Chem. 37, 5070–5077.  CSD CrossRef CAS Google Scholar
First citationBlake, A. J., Li, W., Lippolis, V., Schröder, M., Devillanova, F. O., Gould, R., Parsons, S. & Radek, C. (1998c). Chem. Soc. Rev. 27, 195–205.  CAS Google Scholar
First citationBlake, A. J., Li, W.-S., Lippolis, V., Parsons, S. & Schröder, M. (1998d). Acta Cryst. C54, 1408–1410.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBlake, A. J., Lippolis, V., Parsons, S. & Schröder, M. (1996). Chem. Commun. pp. 2207–2208.  CSD CrossRef Web of Science Google Scholar
First citationBlake, A. J., Reid, G. & Schröder, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3363–3373.  CSD CrossRef Google Scholar
First citationBruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCiancaleoni, G., Arca, M., Caramori, G. F., Frenking, G., Schneider, F. S. S. & Lippolis, V. (2016). Eur. J. Inorg. Chem. 2016, 3804–3812.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFei, Z., Bobbink, F. D., Păunescu, E., Scopelliti, R. & Dyson, P. J. (2015). Inorg. Chem. 54, 10504–10512.  CSD CrossRef CAS PubMed Google Scholar
First citationFiolka, C., Pantenburg, I. & Meyer, G. (2011). Cryst. Growth Des. 11, 5159–5165.  CSD CrossRef CAS Google Scholar
First citationGarau, A., Aragoni, M. C., Arca, M., Caltagirone, C., Demartin, F., Isaia, F., Lippolis, V. & Pivetta, T. (2022). New J. Chem. 46, 6870–6877.  CSD CrossRef CAS Google Scholar
First citationHorn, C. J., Blake, A. J., Champness, N. R., Garau, A., Lippolis, V., Wilson, C. & Schröder, M. (2003a). Chem. Commun. pp. 312–313.  CSD CrossRef Google Scholar
First citationHorn, C. J., Blake, A. J., Champness, N. R., Lippolis, V. & Schröder, M. (2003b). Chem. Commun. pp. 1488–1489.  CSD CrossRef Google Scholar
First citationPaulsson, H., Berggrund, M., Svantesson, E., Hagfeldt, A. & Kloo, L. (2004). Solar Energy Mater. Solar Cells, 82, 345–360.  CrossRef CAS Google Scholar
First citationSavastano, M. (2021). Dalton Trans. 50, 7022-7025.  CrossRef Google Scholar
First citationSavastano, M., Bazzicalupi, C. & Bianchi, A. (2022). Dalton Trans. 51, 10728–10739.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSonnenberg, K., Mann, L., Redeker, F. A., Schmidt, B. & Riedel, S. (2020). Angew. Chem. Int. Ed. 59, 5464–5493.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoe & Cie (1996). STADI4 and REDU4. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSvensson, H. & Kloo, L. (2003). Chem. Rev. 103, 1649–1684.  CrossRef PubMed CAS Google Scholar
First citationYin, Z., Wang, Q.-X. & Zeng, M.-H. (2012). J. Am. Chem. Soc. 134, 4857–4863.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds