research papers
Formation of extended polyiodides at large cation templates
aSchool of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom, bDipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milano, 20133, Italy, cDipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, Monserrato (CA), 09042, Italy, dCentre for Research University Services (CeSAR), Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, Monserrato (CA), 09042, Italy, and eDepartment of Chemistry, The University of Manchester, Manchester, M139PL, United Kingdom
*Correspondence e-mail: alexanderjohnblake@outlook.com
By studying the structures of (μ-1,4,10,13-tetrathia-7,16-diazacyclooctadecane)bis[iodidopalladium(II)] diiodide penta(diiodine), [Pd2I2(C12H26N2S4)](I)2·5I2 or [Pd2I2([18]aneN2S4)](I)2·(I2)5, and 4,7,13,16,21,24-hexaoxa-1,10-diazoniabicyclo[8.8.8]hexacosane triiodide iodide hemipenta(diiodine) dichloromethane monosolvate, C18H38N2O62+·I3−·I−·2.5I2·CH2Cl2 or [H2([2.2.2]cryptand)](I3)(I)(I2)2.5·CH2Cl2, we confirm the structural variety of extended polyiodides achievable upon changing the shape, charge and dimensions of the cation template, by altering the synthetic strategy adopted and/or the experimental conditions. Although it is still often difficult to characterize discrete [I2m+n]n− polyiodides higher than I3− on the basis of structural parameters, such as I—I bond distances, FT–Raman spectroscopy appears to identify them as aggregates of I2, I− and (symmetric or slightly asymmetric) I3− building blocks linked by I⋯I interactions of varying strengths. However, because FT–Raman spectroscopy carries no information about the topological features of extended polyiodides, the two techniques should therefore be applied in combination to enhance the analysis of this kind of compounds.
1. Introduction
Among extended anionic inorganic frameworks, the formation of polyhalides (Sonnenberg et al., 2020; Aragoni et al., 2003, 2022) and, in particular, polyiodides represents a remarkable example of supramolecular self-assembly (Blake et al., 1998c; Svensson et al., 2003), and it continues to capture the interest of many researchers in the field (Savastano, 2021; Savastano et al., 2022; Horn et al., 2003a,b; Aragoni et al., 2004, 2023a) due to the richness of its unpredictable and puzzling structural chemistry, and interesting applicative possibilities (Paulsson et al., 2004; Yin et al., 2012; Fei et al., 2015). Iodine and iodides together tend to catenate (Arca et al., 1999; Garau et al., 2022) via the combination of (Lewis acidic) I2 with (Lewis basic) I−/I3− building blocks (Ciancaleoni et al., 2016). This affords extended arrays exhibiting a range of topologies, and these are highly dependent on the size, shape and charge of the countercation acting as a template. Some polyiodides are present in the as discrete aggregates, but frequently they form extended networks in which the identification of the basic repeat unit of general formula [In(I2)m]n− or [I2m+n]n− (n, m > 0) can become arbitrary. Consequently, they are better described as aggregates of I2, I− and I3−, held together by I⋯I interactions of varying strengths, from rather strong (ca 3.3 Å) to fairly weak, up to the van der Waals contact distance (ca 4 Å). Our interest in this field has been mainly focused on the use of metal complexes of macrocyclic ligands (mainly thioether crowns) as templating cations for controlling the self-assembly of extended polyiodide arrays (Blake et al., 1996, 1998a,b). These complex cations are relatively chemically inert and their shape, size and charge can be changed readily, thus providing cationic templates for different targeted polyiodide topologies. Furthermore, we have also been interested in the reactivity of macrocyclic ligands with I2 and inter-halogens IX (X = Br and Cl) to better understand the structural nature of the resulting products (Blake et al., 1997). The formation of polyiodide networks featuring spirals, belts, ribbons, sheets and cages as their structural motifs has been achieved either by reacting the PF6− or BF4− salts of the complex cation
templates with an excess of I2 in a single phase, or by addition of an NaI/I2 mixture in a single phase, the preferred polyiodide being formed via self-assembly. As a further example of the versatility of this synthetic approach to the formation of multidimensional polyiodide networks, we report here the use of the metal complex [Pd2Cl2([18]aneN2S4)](PF6)2 ([18]aneN2S4 is 1,4,10,13-tetrathia-7,16-diazacyclooctadecane; see Scheme 1) and the neutral [2.2.2]cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) (Scheme 1) as templates in the reaction with I2.2. Experimental
2.1. Materials and methods
All starting materials, including [18]aneN2S4 and [2.2.2]cryptand, and solvents, were obtained from Aldrich or Merck and were used without further purification. [Pd2Cl2([18]aneN2S4)](PF6)2 was prepared according to the literature (Blake et al., 1990). Microanalytical data were obtained on a Fisons EA 1108 CHNS-O instrument operating at 1000 °C. FT–Raman spectra (resolution 4 cm−1) were recorded on a Bruker RF100FTR spectrometer fitted with an indium–gallium–arsenide detector operating at room temperature with an excitation wavelength of 1064 nm (Nd:YAG laser). No sample decomposition was observed during the experiments at the power level of the laser source used between 20 and 40 mW. The values in parentheses next to the values represent the intensities of the peaks relative to the strongest, which is taken to be equal to 10.
2.2. Synthesis and crystallization
2.2.1. Synthesis of (I)
To a solution of [Pd2Cl2([18]aneN2S4)](PF6)2 (17.1 mg, 0.019 mmol) in MeCN (4 ml) was added a solution of I2 (17.7 mg, 0.070 mmol) in MeCN (4 ml). No precipitate formed upon mixing, but dark-brown prismatic crystals of title compound (I) (Scheme 2) formed after several days by slow evaporation of the solvent from the reaction mixture. These were isolated from the mother liquor and washed with diethyl ether (8.4 mg, 36.3% yield). Elemental analysis found [calculated (%) for C6H13I7NPdS2]: C 6.28 (6.22), H 1.15 (1.13), N 1.24 (1.21), S 5.52 (5.54). FT–Raman (range 500–50 cm−1): ν(I–I) 169.7 (10).
2.2.2. Synthesis of (II)
To a solution of [2.2.2]cryptand (20 mg, 0.053 mmol) in CH2Cl2 (4 ml) was added a solution of I2 (53.8 mg, 0.212 mmol) in CH2Cl2 (4 ml). A dark-brown microcrystalline precipitate corresponding to the formulation of title compound (II) (Scheme 2) formed immediately. This was isolated by filtration and washed with diethyl ether (58.5 mg, 77.3% yield). Elemental analysis found [calculated (%) for C19H40Cl2I9N2O6]: C 14.25 (14.21), H 2.47 (2.51), N 1.80 (1.75). FT–Raman (range 500–50 cm−1): ν(I–I) 167.40 (10), 149.8 (6), 106.1 (5). Dark-brown prismatic single crystals suitable for X-ray were grown from a solution of the obtained solid in MeCN by slow evaporation of the solvent.
2.3. of X-ray crystal structures
Crystal data, data collection and structure . H atoms were placed geometrically and refined isotropically riding on their parent C atoms, with Uiso(H) = 1.2Ueq(C). For (II), H atoms bonded to quaternary N atoms could be located from the difference Fourier map and their positions were refined freely. OLEX2 (Dolomanov et al., 2009) was used both as the graphical interface for the structural investigation and for the preparation of the figures.
details are summarized in Table 13. Results and discussion
3.1. Synthesis and crystal structures
Previously, we have reported the crystal structures of [Pd2Cl2([18]aneN2S4)](I3)2 (Blake at al., 1998c,d) and [Pd2Cl2([18]aneN2S4)]1.5(I5)(I3)2 (Blake et al., 1998a,c) obtained from the reaction in MeCN of [Pd2Cl2([18]aneN2S4)](PF6)2 with nBu4NI and I2 in 1:2:2 and 1:2:4 molar ratios, respectively. In the former compound, dinuclear palladium(II) complexes are linked via Pd⋯I contacts into ⋯I3−⋯I3−⋯I3−⋯ sinusoidal chains. In [Pd2Cl2([18]aneN2S4)]1.5(I5)(I3)2, [Pd2Cl2([18]aneN2S4)]2+ cations are held together by N—H⋯Cl hydrogen bonds and occupy channels formed within the self-assembled three-dimensional (3D) polyiodide network. This network is made up of offset layers of stacked poly-I3− moieties (including those I3− belonging to the I5− units), featuring fused 14- and 24-membered rings interwoven by I82− units (I5−⋯I3−). We sought to attempt also the direct reaction of [Pd2Cl2([18]aneN2S4)](PF6)2 with I2 in the absence of preformed I− (see §2.2.1) and, surprisingly, this afforded a different compound corresponding to the formulation [Pd2I2([18]aneN2S4)]I12, as deep-red column-shaped crystals. A single-crystal X-ray (see Table 1 for crystal data) showed an consisting of half a [Pd2I2([18]aneN2S4)]2+ dication, one iodide anion interacting with two crystallographically-independent I2 molecules, and an additional half-occupied I2 molecule disordered across a twofold axis parallel to the b axis. One of the two I atoms is located on a glide plane, thus defining an overall stoichiometry of [Pd2I2([18]aneN2S4)](I)2·(I2)5, (I), for the obtained salt. The complete dication is generated through an inversion centre and features the hexadentate macrocycle binding to the two metal centres via NS2 coordination. A distorted square-planar coordination geometry at each PdII metal ion is completed by coordinated iodide anions that have replaced the chloride ions (Fig. 1) in the starting material upon reaction with I2 (see Table 2 for selected geometric parameters).
|
In (I), the Pd—N [Pd—N1 = 2.076 (9) Å] and Pd—S [Pd—S4 = 2.314 (3) and Pd—S7i = 2.313 (3) Å; symmetry code: (i) −x + , −y + , −z + 1] distances are very close to those observed in previously reported [Pd2Cl2([18]aneN2S4)]2+ dications (Blake et al., 1990, 1998a,c,d), while the Pd—I bond distance [2.5722 (14) Å] is significantly longer than the Pd—Cl distances [2.305 (4)–2.374 (1) Å]. As with the [Pd2Cl2([18]aneN2S4)]2+ dications reported previously, the dications in (I) adopt a stepped conformation. Interestingly, in [Pd2Cl2([18]aneN2S4)]1.5(I5)(I3)2 (Blake et al., 1998a,c), the dications are linked pairwise by hydrogen bonds between the (N)H and Cl atoms to form extended chains. The [Pd2I2([18]aneN2S4)]2+ dications in (I) are linked by intermolecular I⋯I contacts of 3.545 (2) Å to form chains running parallel to the b axis (Fig. 2). In both compounds, the complex dications feature intermolecular interactions of the type C—H⋯X (X = Cl and I) (see Figs. 1 and 2).
The polyiodide network in (I) can also be regarded as comprising I122− anions (Fig. 3) built up by [(I−)2·(I2)5] adducts formed by interaction of the disordered I2 molecules (I6—I7) [2.771 (4) Å] and `V-shaped' I5− of the type [(I−)·(I2)2] with the iodide anion (I3) interacting with two crystallographically-independent I2 molecules [I1—I2 and I4—I5: I1—I2 = 2.7899 (15), I2⋯I3 = 3.1214 (16), I4—I5 = 2.7644 (16), I3⋯I4 = 3.205 (2) Å, I1—I2⋯I3 = 173.23 (5), I3⋯I4—I5 = 173.60 (5) and I2⋯I3⋯I4 = 95.36 (4)°].
Each component of the disordered and half-occupied I2 molecule interacts at both I atoms with the iodide atom (I3) of the I5− moiety via I⋯I interactions of 3.351 (3) (I3⋯I6) and 3.432 (3) Å [I7⋯I3iv; symmetry code: (iv) −x + 1, y + 1, −z + ]. This gives rise to two I122− anions in the structure, which are symmetry-related by a screw axis parallel to the b axis and a glide plane (the same symmetry elements that relate the two disorder components of the half-occupied I6—I7 diiodine molecule) (Fig. 3).
I122− of the same orientation (blue or green in Fig. 3) interact with each other via I⋯I interactions of 3.625 (2) [I1⋯I7vi; symmetry code: (vi) x − , y − , z] and 3.800 (2) Å [I6⋯I5vii; symmetry code: (vii) −x + 1, −y + 1, −z + 1] (Fig. 4) to give one-dimensional (1D) tubes of fused pseudo-cubic cavities defined by 8- and 14-membered polyiodide rings (Fig. 4). Two differently-oriented 1D tubes of this type therefore co-exist at 50% occupancy in the depending on the orientation of the generating I122− units; one type is approximately perpendicular and the other approximately parallel to the [110] direction (blue and green, respectively, in Fig. 5).
Chains of [Pd2I2([18]aneN2S4)]2+ complex dications (Fig. 2) run parallel to the b axis crossing adjacent 1D polyiodide tubes through the pseudo-cubic cavities (Fig. 6). It is interesting to note that, as the I7 atom of the disordered I2 molecule lies on a glide plane, the resulting ratio between the two components is imposed by symmetry and the maximum occupancy possible is 0.5. As a consequence, the ratio between the two types of tubes described above remains constant in the and cannot vary between different crystals. That said, a unique crystal packing is observed in the of (I) featuring the two sets of tubes formed by fused pseudo-cubic boxes (see above) running parallel (green) and perpendicular (blue) to the [110] direction, alternatively layered along the c axis [Figs. 6(b) and 6(c)].
To illustrate further the importance of the shape, charge and dimensions of the template cation in the polyiodide network assembly, we treated the macropolycyclic ligand [2.2.2]cryptand (Scheme 1) with I2 in a 1:4 molar ratio in CH2Cl2. Upon slow evaporation of the solvent at room temperature, dark prismatic crystals formed corresponding to the formulation [H2([2.2.2]cryptand)]I9·CH2Cl2, (II). An X-ray determination (see Table 1 for crystal data) confirmed the presence of an consisting of an [H2([2.2.2]cryptand)]2+ dication in which both tertiary N atoms of the starting macropolycyclic ligand are protonated (Fig. 7). Half an I2 molecule [I1—I1i = 2.7595 (11) Å; symmetry code: (i) −x + 2, −y + 1, −z], an asymmetric triiodide [I2—I3—I4: I2—I3 = 2.9799 (8) and I3—I4 = 2.8629 (8) Å], a `V-shaped' pentaiodide consisting of an iodide anion (I7) interacting with two diiodine molecules [(I−)·(I2)2] (I5—I6 and I8—I9) [I5—I6 = 2.8015 (8), I8—I9 = 2.8001 (8), I6—I7 = 3.0952 (8) and I7—I8 = 3.0940 (9) Å] and a cocrystallized CH2Cl2 solvent molecule define the [H2([2.2.2]cryptand)](I3)(I)(I2)2.5·CH2Cl2 (II) stoichiometry for the obtained polyiodide salt (see Table 2 for selected geometric parameters).
In (II), all three diiodine molecules are slightly elongated with respect to the I—I distance found in the of orthorhombic I2 [2.715 (6) Å] (Blake et al., 1998b). Each I1 atom interacts with an asymmetric triiodide unit at the I2 atom to afford a `Z-shaped' I82− dianion [I1⋯I2 = = 3.4123 (9) Å] that can be regarded as an I3−·I2·I3− [(I3−)2·(I2)] complex (Savastano et al., 2022). Additional longer contacts of 3.907 (1) Å, still within the sum of the van der Waals radii for iodine, between each I1 atom and the terminal iodine (I5) of a pentaiodide moiety, lead to an overall discrete `grasshopper-shaped' I184− polyiodide. This can be envisaged as an [(I82−)·(I5−)2] with a long contact between the I82− anion and the two I5− moieties or, in terms of fundamental building blocks, as an [(I−)2·(I3−)2·(I2)5] adduct (Fig. 8). I184− polyiodides are quite rare in the literature: in [Co(12C4)2]2(I18) (12C4 is 12-crown-4), a unique central planar I9− [(I−)·(I2)4] is attached to four triiodides at I⋯I distances of 3.240 (4)–3.478 (4) Å, and the [(I9−)(I3−)4] units are connected via two bridging I3− to form polymeric chains of I184− = [(I9−)(I3−)2/1(I3−)2/2] (Fiolka et al. 2011); in [SnI2(mbit)2](I3)2·I2 [mbit is 1,1′-bis(3-methyl-4-imidazoline-2-thione)methane], two I82− dianions of the type I2·I−·I2·I−·I2 [(I−)2·(I2)3] and related through an inversion centre are linked to each other at the iodide atoms by a bridging disordered I2 molecule via non-negligible I⋯I interactions of 3.55 (1) Å (Bigoli et al., 1998).
The discrete I184− polyiodide units are located side-by-side and interdigitated along the [101] direction, with [H2([2.2.2]cryptand)]2+ dications sitting in the resulting voids (Fig. 9).
3.2. FT–Raman spectroscopy
Despite the high number of extended polyiodides that have been structurally characterized, and the associated 3−) with their own distinctive structural features is still a matter of debate (Savastano et al., 2022). The reductionist approach whereby higher polyiodides are considered as aggregates of I2, I− and I3− held together by I⋯I interactions of varying strengths, from rather strong (up to ca 3.3–3.4 Å) (covalent interactions) to fairly weak (up to the van der Waals contact distance, ca 4 Å) (supramolecular interactions), is still the most reasonable and least arbitrary. On the basis of structural data, all known higher discrete polyiodides can be regarded, therefore, as weak or medium-weak adducts of the type [(I−)n–y·(I3−)y·(I2)m–y] ≡ [I2m+n]n− (n, m > 0), whose geometrical and topological features can be very different and often unpredictable (Arca et al. 2006). This way of considering higher polyiodides from a structural point of view is strongly supported by spectroscopic evidence. In particular, FT–Raman spectroscopy confirms that extended polyiodides do not have distinctive vibrational properties other than those of perturbed (slightly elongated) I2 molecules and symmetric/slightly asymmetric I3−. Perturbed I2 molecules are characterized by only one strong band in the range 180–140 cm−1 in the FT–Raman spectrum, the wavenumber depending on the extent of the I⋯I elongation; for linear and symmetric I3−, only the Raman-active symmetric stretch (ν1) occurs near 110 cm−1, while the antisymmetric stretch (ν3) and the bending deformation (ν2) are only IR-active (Aragoni et al., 2023b). The latter two modes also become Raman-active for slightly asymmetric I3− and they are found near 134 (ν3) and 80 cm−1 (ν2), having medium and medium–weak intensities, respectively. Highly asymmetric I3− ions show only one band in their FT–Raman spectra in the range 180–140 cm−1, so that they should be regarded as weak (I−)·I2 adducts. To date, FT–Raman spectra of polyiodides of the general formula [I2m+n]n− show peaks in the low wavenumber region with either one strong peak in the range 180–140 cm−1 or the characteristic peaks due to both perturbed I2 and symmetric/slightly asymmetric I3−. They would therefore be better described as [(I−)n·(I2)m] or [(I−)n–y·(I3−)y·(I2)m–y] (n > y ≠ 0)/[(I3−)n·(I2)m–n] (n = y ≠ 0) systems. The polyiodides here described are no exception. The FT–Raman spectrum of (I) features only a strong and broad peak centred at 169 cm−1 indicative of the presence of differently perturbed I2 molecules (Fig. S1 in the supporting information). The FT–Raman spectrum of (II) is shown in Fig. 10. The two peaks at about 167 and 150 cm−1 can be assigned to the stretching vibration of the two differently elongated I2 molecules I5—I6/I6—I7 and I1—I1i [symmetry code: (i) −x + 2, −y + 1, −z], respectively. These data correspond closely to the established linear correlation ν(I–I)/cm−1 versus d(I–I)/Å for weak or medium–weak adducts (Arca et al., 2006). The peak at 106 cm−1 can be attributed to the symmetric stretch (ν1) of the I3− ion (I2—I3—I4), thus confirming the description of the I184− polyiodide as an [(I−)2·(I3−)2·(I2)5] adduct.
data available, the assignment of higher molecular polyiodides (higher than I4. Conclusions
In this article, we confirm the structural variety of extended polyiodides that can be generated by changing the shape, charge and dimension of the cation template, as well as the synthetic strategy adopted and the experimental conditions. Although it is still often difficult to characterize [I2m+n]n− polyiodides higher than I3− on the grounds of any distinctive structural parameters, such as I—I bond distances, FT–Raman spectroscopy appears to confirm their characterization as aggregates of I2, I− and (symmetric or slightly asymmetric) I3− building blocks held together by I⋯I interactions of varying strengths. On the other hand, FT–Raman spectroscopy cannot provide any information on the topological features of extended polyiodides. The two techniques should therefore be used together in the analysis of this kind of compound.
Supporting information
https://doi.org/10.1107/S2053229624004194/vp3036sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock i. DOI: https://doi.org/10.1107/S2053229624004194/vp3036isup2.hkl
Structure factors: contains datablock ii. DOI: https://doi.org/10.1107/S2053229624004194/vp3036iisup3.hkl
Additional FT-Raman spectrum. DOI: https://doi.org/10.1107/S2053229624004194/vp3036sup4.pdf
[Pd2I2(C12H26N2S4)](I)2·5I2 | F(000) = 4040 |
Mr = 2315.99 | Dx = 3.653 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 21.609 (4) Å | Cell parameters from 25 reflections |
b = 8.198 (3) Å | θ = 5–20° |
c = 24.151 (3) Å | µ = 11.33 mm−1 |
β = 100.170 (13)° | T = 220 K |
V = 4211.1 (18) Å3 | Column, red |
Z = 4 | 0.26 × 0.14 × 0.13 mm |
STOE STADI4 4-circle diffractometer | Rint = 0.029 |
Scan width (ω) = 1.64 – 2.20, scan ratio 2θ:ω = 1.00 I(Net) and sigma(I) from profile fitting (Clegg, 1981) | θmax = 25.0°, θmin = 2.7° |
Absorption correction: integration (REDU4; Stoe & Cie, 1996) | h = −25→25 |
Tmin = 0.222, Tmax = 0.306 | k = 0→9 |
4584 measured reflections | l = −28→28 |
3715 independent reflections | 3 standard reflections every 60 reflections |
3059 reflections with I > 2σ(I) | intensity decay: 5.0% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.136 | w = 1/[σ2(Fo2) + (0.0681P)2 + 91.8532P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
3715 reflections | Δρmax = 1.35 e Å−3 |
163 parameters | Δρmin = −1.61 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Diffraction data were collected on Stoe STADI4 4-circle and APEXII CCD area detector diffractometers for [Pd2I2([18]aneN2S4)](I)2.(I2)5, (I)< and [H2([2.2.2]cryptand)](I3)(I)(I2)2.5.CH2Cl2, (II), respectively. The structures were solved by direct methods using SHELXS (Sheldrick, 1997) or SHELXT2018 (Sheldrick, 2015a) and developed by iterative cycles of least-squares refinement on F2 using SHELXL2018 (Sheldrick, 2015b). OLEX2 (Dolomanov et al., 2009) was used both as the graphical interface for the structural investigation and for the preparation of the figures. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Pd | 0.74558 (4) | 0.20976 (10) | 0.41095 (3) | 0.0265 (2) | |
I | 0.74355 (4) | −0.07058 (10) | 0.45843 (3) | 0.0396 (2) | |
N1 | 0.7472 (4) | 0.4224 (12) | 0.3645 (4) | 0.033 (2) | |
H1 | 0.745717 | 0.388974 | 0.324940 | 0.039* | |
C2 | 0.6914 (6) | 0.5217 (15) | 0.3658 (5) | 0.036 (3) | |
H2A | 0.689655 | 0.611209 | 0.338668 | 0.043* | |
H2B | 0.693364 | 0.568860 | 0.403345 | 0.043* | |
C3 | 0.6334 (5) | 0.4162 (15) | 0.3512 (4) | 0.032 (3) | |
H3A | 0.628665 | 0.382092 | 0.311775 | 0.039* | |
H3B | 0.596243 | 0.480422 | 0.355395 | 0.039* | |
S4 | 0.63730 (13) | 0.2371 (4) | 0.39546 (11) | 0.0307 (6) | |
C5 | 0.6221 (5) | 0.3303 (14) | 0.4610 (4) | 0.028 (2) | |
H5A | 0.654611 | 0.411792 | 0.474030 | 0.034* | |
H5B | 0.581340 | 0.385964 | 0.453828 | 0.034* | |
C6 | 0.6220 (5) | 0.2026 (14) | 0.5058 (4) | 0.029 (2) | |
H6A | 0.650767 | 0.114176 | 0.500145 | 0.035* | |
H6B | 0.579687 | 0.156393 | 0.502622 | 0.035* | |
S7 | 0.64573 (13) | 0.2877 (4) | 0.57479 (11) | 0.0283 (6) | |
C8 | 0.6386 (5) | 0.1087 (15) | 0.6175 (5) | 0.033 (3) | |
H8A | 0.637648 | 0.143110 | 0.656212 | 0.040* | |
H8B | 0.598808 | 0.053577 | 0.603074 | 0.040* | |
C9 | 0.6921 (6) | −0.0100 (14) | 0.6177 (5) | 0.033 (3) | |
H9A | 0.688681 | −0.099724 | 0.643794 | 0.040* | |
H9B | 0.690389 | −0.055880 | 0.580004 | 0.040* | |
I1 | 0.17411 (5) | 0.49110 (13) | 0.27632 (4) | 0.0541 (3) | |
I2 | 0.30416 (5) | 0.44729 (11) | 0.29934 (3) | 0.0471 (3) | |
I3 | 0.44647 (5) | 0.35848 (16) | 0.33110 (4) | 0.0632 (3) | |
I4 | 0.44322 (4) | 0.28503 (11) | 0.46091 (4) | 0.0498 (3) | |
I5 | 0.45421 (5) | 0.21053 (14) | 0.57386 (5) | 0.0615 (3) | |
I6 | 0.48062 (11) | 0.7092 (3) | 0.27188 (9) | 0.0694 (6) | 0.5 |
I7 | 0.50658 (10) | 1.0005 (3) | 0.22248 (9) | 0.0692 (6) | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd | 0.0277 (4) | 0.0317 (5) | 0.0191 (4) | 0.0014 (4) | 0.0018 (3) | 0.0031 (3) |
I | 0.0446 (5) | 0.0385 (5) | 0.0356 (4) | 0.0007 (4) | 0.0066 (3) | 0.0056 (3) |
N1 | 0.036 (5) | 0.036 (5) | 0.025 (5) | 0.005 (4) | 0.004 (4) | 0.007 (4) |
C2 | 0.040 (6) | 0.034 (6) | 0.032 (6) | 0.005 (5) | 0.002 (5) | 0.011 (5) |
C3 | 0.033 (6) | 0.041 (7) | 0.021 (5) | 0.010 (5) | −0.003 (4) | 0.007 (5) |
S4 | 0.0275 (13) | 0.0446 (17) | 0.0183 (12) | 0.0019 (12) | −0.0011 (10) | 0.0005 (12) |
C5 | 0.031 (5) | 0.034 (6) | 0.019 (5) | 0.006 (5) | 0.005 (4) | 0.000 (5) |
C6 | 0.032 (6) | 0.038 (6) | 0.015 (5) | 0.000 (5) | −0.004 (4) | −0.004 (5) |
S7 | 0.0296 (13) | 0.0367 (15) | 0.0189 (12) | 0.0031 (12) | 0.0048 (10) | 0.0007 (11) |
C8 | 0.030 (6) | 0.042 (7) | 0.027 (6) | 0.000 (5) | 0.005 (5) | −0.005 (5) |
C9 | 0.048 (7) | 0.027 (6) | 0.026 (6) | −0.004 (5) | 0.011 (5) | 0.000 (5) |
I1 | 0.0707 (6) | 0.0609 (6) | 0.0275 (4) | 0.0073 (5) | −0.0003 (4) | −0.0030 (4) |
I2 | 0.0735 (6) | 0.0451 (5) | 0.0243 (4) | −0.0062 (4) | 0.0128 (4) | −0.0044 (3) |
I3 | 0.0516 (6) | 0.0845 (8) | 0.0538 (6) | −0.0055 (5) | 0.0096 (5) | −0.0075 (5) |
I4 | 0.0310 (4) | 0.0478 (5) | 0.0666 (6) | 0.0020 (4) | −0.0023 (4) | −0.0141 (5) |
I5 | 0.0483 (5) | 0.0740 (7) | 0.0617 (6) | 0.0060 (5) | 0.0080 (5) | −0.0112 (5) |
I6 | 0.0612 (12) | 0.0961 (17) | 0.0465 (11) | 0.0254 (12) | −0.0021 (9) | −0.0094 (11) |
I7 | 0.0578 (12) | 0.1024 (18) | 0.0451 (10) | 0.0283 (12) | 0.0026 (9) | −0.0041 (11) |
Pd—I | 2.5722 (14) | C5—H5B | 0.9800 |
Pd—N1 | 2.076 (9) | C5—C6 | 1.507 (15) |
Pd—S4 | 2.314 (3) | C6—H6A | 0.9800 |
Pd—S7i | 2.313 (3) | C6—H6B | 0.9800 |
N1—H1 | 0.9900 | C6—S7 | 1.796 (10) |
N1—C2 | 1.459 (15) | S7—C8 | 1.816 (12) |
N1—C9i | 1.489 (16) | C8—H8A | 0.9800 |
C2—H2A | 0.9800 | C8—H8B | 0.9800 |
C2—H2B | 0.9800 | C8—C9 | 1.511 (16) |
C2—C3 | 1.514 (17) | C9—H9A | 0.9800 |
C3—H3A | 0.9800 | C9—H9B | 0.9800 |
C3—H3B | 0.9800 | I1—I2 | 2.7899 (15) |
C3—S4 | 1.809 (11) | I3—I7ii | 3.432 (3) |
S4—C5 | 1.838 (10) | I4—I5 | 2.7644 (16) |
C5—H5A | 0.9800 | I6—I7 | 2.771 (4) |
N1—Pd—I | 173.8 (3) | S4—C5—H5A | 109.5 |
N1—Pd—S4 | 86.8 (3) | S4—C5—H5B | 109.5 |
N1—Pd—S7i | 87.7 (3) | H5A—C5—H5B | 108.1 |
S4—Pd—I | 93.57 (8) | C6—C5—S4 | 110.7 (8) |
S7i—Pd—I | 92.20 (8) | C6—C5—H5A | 109.5 |
S7i—Pd—S4 | 173.88 (11) | C6—C5—H5B | 109.5 |
Pd—N1—H1 | 106.8 | C5—C6—H6A | 109.4 |
C2—N1—Pd | 111.4 (7) | C5—C6—H6B | 109.4 |
C2—N1—H1 | 106.8 | C5—C6—S7 | 111.1 (8) |
C2—N1—C9i | 114.4 (9) | H6A—C6—H6B | 108.0 |
C9i—N1—Pd | 110.3 (7) | S7—C6—H6A | 109.4 |
C9i—N1—H1 | 106.8 | S7—C6—H6B | 109.4 |
N1—C2—H2A | 109.8 | C6—S7—Pdi | 104.9 (4) |
N1—C2—H2B | 109.8 | C6—S7—C8 | 100.0 (5) |
N1—C2—C3 | 109.3 (10) | C8—S7—Pdi | 96.2 (4) |
H2A—C2—H2B | 108.3 | S7—C8—H8A | 109.1 |
C3—C2—H2A | 109.8 | S7—C8—H8B | 109.1 |
C3—C2—H2B | 109.8 | H8A—C8—H8B | 107.9 |
C2—C3—H3A | 109.2 | C9—C8—S7 | 112.4 (8) |
C2—C3—H3B | 109.2 | C9—C8—H8A | 109.1 |
C2—C3—S4 | 112.1 (7) | C9—C8—H8B | 109.1 |
H3A—C3—H3B | 107.9 | N1i—C9—C8 | 109.0 (9) |
S4—C3—H3A | 109.2 | N1i—C9—H9A | 109.9 |
S4—C3—H3B | 109.2 | N1i—C9—H9B | 109.9 |
C3—S4—Pd | 96.6 (4) | C8—C9—H9A | 109.9 |
C3—S4—C5 | 100.0 (5) | C8—C9—H9B | 109.9 |
C5—S4—Pd | 103.3 (4) | H9A—C9—H9B | 108.3 |
Pd—N1—C2—C3 | −49.8 (11) | S4—C5—C6—S7 | 151.6 (6) |
Pd—S4—C5—C6 | −81.5 (8) | C5—C6—S7—Pdi | −82.2 (8) |
Pdi—S7—C8—C9 | −30.4 (8) | C5—C6—S7—C8 | 178.6 (8) |
N1—C2—C3—S4 | 53.8 (11) | C6—S7—C8—C9 | 76.0 (9) |
C2—C3—S4—Pd | −29.9 (9) | S7—C8—C9—N1i | 54.5 (11) |
C2—C3—S4—C5 | 74.9 (9) | C9i—N1—C2—C3 | −175.8 (9) |
C3—S4—C5—C6 | 179.2 (8) |
Symmetry codes: (i) −x+3/2, −y+1/2, −z+1; (ii) −x+1, y−1, −z+1/2. |
C18H38N2O62+·I3−·I−·2.5I2·CH2Cl2 | F(000) = 2908 |
Mr = 1605.53 | Dx = 2.585 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 13.831 (2) Å | Cell parameters from 1024 reflections |
b = 14.820 (2) Å | θ = 2.3–25.0° |
c = 20.266 (3) Å | µ = 6.92 mm−1 |
β = 96.70 (1)° | T = 293 K |
V = 4125.6 (10) Å3 | Prism, dark brown |
Z = 4 | 0.2 × 0.15 × 0.11 mm |
Bruker APEXII CCD diffractometer | 5518 reflections with I > 2σ(I) |
ω scan | Rint = 0.047 |
Absorption correction: empirical (using intensity measurements) (SADABS; Bruker, 2001) | θmax = 26.0°, θmin = 1.7° |
Tmin = 0.569, Tmax = 1.000 | h = −17→17 |
30347 measured reflections | k = −17→18 |
8100 independent reflections | l = −24→24 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0409P)2 + 2.6443P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.002 |
8100 reflections | Δρmax = 1.37 e Å−3 |
349 parameters | Δρmin = −1.20 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Diffraction data were collected on Stoe STADI4 4-circle and APEXII CCD area detector diffractometers for [Pd2I2([18]aneN2S4)](I)2.(I2)5, (I)< and [H2([2.2.2]cryptand)](I3)(I)(I2)2.5.CH2Cl2, (II), respectively. The structures were solved by direct methods using SHELXS (Sheldrick, 1997) or SHELXT2018 (Sheldrick, 2015a) and developed by iterative cycles of least-squares refinement on F2 using SHELXL2018 (Sheldrick, 2015b). OLEX2 (Dolomanov et al., 2009) was used both as the graphical interface for the structural investigation and for the preparation of the figures. |
x | y | z | Uiso*/Ueq | ||
I3 | 0.97532 (3) | 0.09815 (3) | −0.09154 (2) | 0.05246 (13) | |
I6 | 1.18118 (3) | 0.25227 (3) | 0.29099 (2) | 0.05446 (13) | |
I8 | 1.02564 (4) | 0.12201 (3) | 0.44048 (2) | 0.05614 (13) | |
I1 | 1.04190 (4) | 0.41593 (4) | −0.00367 (2) | 0.06090 (14) | |
I5 | 1.14617 (4) | 0.36573 (4) | 0.18021 (3) | 0.06725 (15) | |
I9 | 0.84017 (4) | 0.12912 (4) | 0.48279 (3) | 0.07124 (16) | |
I2 | 1.11920 (4) | 0.19711 (4) | 0.00283 (3) | 0.07161 (16) | |
I4 | 0.84421 (4) | −0.00647 (4) | −0.18076 (3) | 0.07345 (17) | |
I7 | 1.23723 (4) | 0.11657 (4) | 0.40516 (3) | 0.08026 (18) | |
Cl1 | 0.95495 (16) | 0.38674 (16) | 0.32137 (13) | 0.0828 (6) | |
Cl2 | 0.7726 (2) | 0.39206 (15) | 0.37582 (16) | 0.1031 (9) | |
O3 | 1.0138 (3) | 0.5948 (3) | 0.4173 (2) | 0.0507 (11) | |
O4 | 0.8153 (3) | 0.6262 (3) | 0.4468 (2) | 0.0505 (11) | |
O6 | 0.7318 (3) | 0.8559 (3) | 0.3468 (2) | 0.0572 (12) | |
O5 | 0.9379 (3) | 0.8313 (3) | 0.3301 (2) | 0.0546 (12) | |
O2 | 0.8968 (3) | 0.6260 (3) | 0.2316 (2) | 0.0557 (12) | |
O1 | 0.7020 (3) | 0.6014 (3) | 0.2611 (2) | 0.0571 (12) | |
N2 | 1.0574 (4) | 0.6895 (4) | 0.3026 (3) | 0.0418 (12) | |
H2 | 1.001 (5) | 0.686 (4) | 0.314 (3) | 0.050* | |
N1 | 0.6452 (4) | 0.6877 (3) | 0.3760 (3) | 0.0413 (12) | |
H1 | 0.699 (5) | 0.691 (4) | 0.362 (3) | 0.050* | |
C11 | 0.7283 (5) | 0.6077 (5) | 0.4753 (4) | 0.0549 (18) | |
H11A | 0.716852 | 0.654111 | 0.507249 | 0.066* | |
H11B | 0.733234 | 0.549923 | 0.497966 | 0.066* | |
C7 | 1.1296 (4) | 0.6832 (4) | 0.3634 (3) | 0.0473 (16) | |
H7A | 1.125640 | 0.737570 | 0.389610 | 0.057* | |
H7B | 1.194607 | 0.680113 | 0.350046 | 0.057* | |
C9 | 0.9878 (5) | 0.6552 (5) | 0.4663 (4) | 0.0548 (18) | |
H9A | 0.975004 | 0.714386 | 0.446738 | 0.066* | |
H9B | 1.041407 | 0.660797 | 0.501438 | 0.066* | |
C2 | 0.6032 (5) | 0.6010 (5) | 0.2706 (4) | 0.0609 (19) | |
H2A | 0.587977 | 0.544205 | 0.290791 | 0.073* | |
H2B | 0.564287 | 0.604898 | 0.227653 | 0.073* | |
C15 | 0.8113 (5) | 0.8730 (5) | 0.3951 (4) | 0.0540 (17) | |
H15A | 0.827712 | 0.818663 | 0.420665 | 0.065* | |
H15B | 0.793995 | 0.919471 | 0.425342 | 0.065* | |
C8 | 1.1135 (5) | 0.6028 (5) | 0.4057 (4) | 0.0542 (18) | |
H8A | 1.132992 | 0.548567 | 0.383870 | 0.065* | |
H8B | 1.154018 | 0.608160 | 0.447929 | 0.065* | |
C12 | 0.6466 (5) | 0.6061 (4) | 0.4194 (4) | 0.0549 (18) | |
H12A | 0.653090 | 0.552702 | 0.392511 | 0.066* | |
H12B | 0.585150 | 0.601838 | 0.437805 | 0.066* | |
C4 | 0.8137 (5) | 0.6384 (6) | 0.1838 (3) | 0.062 (2) | |
H4A | 0.797239 | 0.581965 | 0.161018 | 0.074* | |
H4B | 0.828128 | 0.682662 | 0.151120 | 0.074* | |
C6 | 1.0670 (5) | 0.6125 (5) | 0.2557 (4) | 0.0565 (18) | |
H6A | 1.069183 | 0.556145 | 0.280203 | 0.068* | |
H6B | 1.127538 | 0.618509 | 0.236363 | 0.068* | |
C17 | 1.0294 (5) | 0.8552 (5) | 0.3096 (4) | 0.061 (2) | |
H17A | 1.077173 | 0.864245 | 0.348067 | 0.073* | |
H17B | 1.023659 | 0.910587 | 0.284027 | 0.073* | |
C13 | 0.6242 (5) | 0.7734 (4) | 0.4118 (4) | 0.0523 (17) | |
H13A | 0.557033 | 0.772228 | 0.421256 | 0.063* | |
H13B | 0.665384 | 0.775461 | 0.453878 | 0.063* | |
C18 | 1.0600 (5) | 0.7792 (5) | 0.2680 (4) | 0.061 (2) | |
H18A | 1.125533 | 0.790410 | 0.257413 | 0.073* | |
H18B | 1.017123 | 0.777002 | 0.226584 | 0.073* | |
C16 | 0.8968 (5) | 0.9029 (5) | 0.3625 (4) | 0.0578 (19) | |
H16A | 0.876653 | 0.949941 | 0.330521 | 0.069* | |
H16B | 0.945446 | 0.928241 | 0.395730 | 0.069* | |
C3 | 0.7294 (5) | 0.6700 (5) | 0.2179 (4) | 0.0590 (19) | |
H3A | 0.747298 | 0.724232 | 0.243136 | 0.071* | |
H3B | 0.674802 | 0.684256 | 0.184983 | 0.071* | |
C10 | 0.8991 (5) | 0.6225 (5) | 0.4950 (3) | 0.0553 (18) | |
H10A | 0.909439 | 0.560824 | 0.510303 | 0.066* | |
H10B | 0.888319 | 0.659487 | 0.532918 | 0.066* | |
C5 | 0.9834 (5) | 0.6101 (6) | 0.2012 (4) | 0.062 (2) | |
H5A | 0.991440 | 0.656283 | 0.168403 | 0.074* | |
H5B | 0.980229 | 0.551744 | 0.179350 | 0.074* | |
C14 | 0.6405 (5) | 0.8573 (5) | 0.3732 (4) | 0.061 (2) | |
H14A | 0.588429 | 0.863464 | 0.337011 | 0.074* | |
H14B | 0.638214 | 0.909355 | 0.402005 | 0.074* | |
C1 | 0.5754 (5) | 0.6783 (5) | 0.3143 (4) | 0.0563 (18) | |
H1A | 0.574059 | 0.734240 | 0.289300 | 0.068* | |
H1B | 0.510513 | 0.667798 | 0.326374 | 0.068* | |
C19 | 0.8493 (6) | 0.4487 (6) | 0.3270 (5) | 0.080 (3) | |
H19A | 0.815558 | 0.458231 | 0.282869 | 0.096* | |
H19B | 0.866206 | 0.507217 | 0.346411 | 0.096* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I3 | 0.0500 (3) | 0.0529 (3) | 0.0579 (3) | 0.0116 (2) | 0.0208 (2) | 0.0112 (2) |
I6 | 0.0374 (2) | 0.0686 (3) | 0.0589 (3) | −0.0009 (2) | 0.0123 (2) | −0.0057 (2) |
I8 | 0.0663 (3) | 0.0498 (3) | 0.0490 (3) | 0.0015 (2) | −0.0071 (2) | −0.0035 (2) |
I1 | 0.0563 (3) | 0.0793 (3) | 0.0488 (3) | −0.0036 (2) | 0.0133 (2) | 0.0120 (2) |
I5 | 0.0550 (3) | 0.0809 (4) | 0.0649 (3) | 0.0043 (3) | 0.0032 (2) | 0.0090 (3) |
I9 | 0.0566 (3) | 0.0829 (4) | 0.0709 (4) | 0.0029 (3) | −0.0070 (3) | −0.0118 (3) |
I2 | 0.0556 (3) | 0.0782 (4) | 0.0817 (4) | 0.0073 (3) | 0.0109 (3) | −0.0141 (3) |
I4 | 0.0570 (3) | 0.0763 (4) | 0.0870 (4) | −0.0116 (3) | 0.0080 (3) | 0.0080 (3) |
I7 | 0.0750 (4) | 0.0988 (4) | 0.0689 (4) | 0.0195 (3) | 0.0168 (3) | 0.0200 (3) |
Cl1 | 0.0651 (12) | 0.0855 (15) | 0.1010 (17) | 0.0109 (11) | 0.0239 (12) | −0.0196 (13) |
Cl2 | 0.1055 (19) | 0.0674 (14) | 0.152 (3) | −0.0064 (13) | 0.0815 (19) | −0.0079 (14) |
O3 | 0.041 (2) | 0.059 (3) | 0.053 (3) | −0.004 (2) | 0.008 (2) | −0.005 (2) |
O4 | 0.039 (2) | 0.067 (3) | 0.046 (3) | 0.003 (2) | 0.009 (2) | 0.006 (2) |
O6 | 0.046 (3) | 0.067 (3) | 0.062 (3) | −0.010 (2) | 0.017 (2) | −0.011 (2) |
O5 | 0.045 (3) | 0.051 (3) | 0.072 (3) | −0.001 (2) | 0.025 (2) | −0.004 (2) |
O2 | 0.042 (3) | 0.085 (4) | 0.039 (3) | 0.001 (2) | 0.003 (2) | 0.000 (2) |
O1 | 0.048 (3) | 0.067 (3) | 0.057 (3) | 0.012 (2) | 0.010 (2) | 0.000 (2) |
N2 | 0.026 (2) | 0.053 (3) | 0.048 (3) | 0.005 (2) | 0.016 (2) | 0.007 (3) |
N1 | 0.033 (3) | 0.038 (3) | 0.056 (3) | −0.005 (2) | 0.014 (2) | −0.011 (2) |
C11 | 0.054 (4) | 0.062 (4) | 0.053 (4) | −0.002 (3) | 0.023 (3) | 0.008 (3) |
C7 | 0.030 (3) | 0.058 (4) | 0.053 (4) | −0.003 (3) | 0.004 (3) | 0.007 (3) |
C9 | 0.047 (4) | 0.057 (4) | 0.060 (5) | −0.006 (3) | 0.000 (3) | −0.002 (4) |
C2 | 0.049 (4) | 0.077 (5) | 0.056 (5) | −0.008 (4) | 0.005 (3) | −0.017 (4) |
C15 | 0.044 (4) | 0.064 (4) | 0.055 (4) | 0.000 (3) | 0.008 (3) | −0.008 (4) |
C8 | 0.038 (4) | 0.066 (5) | 0.060 (5) | 0.008 (3) | 0.014 (3) | 0.011 (4) |
C12 | 0.048 (4) | 0.046 (4) | 0.075 (5) | −0.005 (3) | 0.024 (4) | −0.005 (4) |
C4 | 0.050 (4) | 0.096 (6) | 0.039 (4) | 0.002 (4) | 0.001 (3) | 0.001 (4) |
C6 | 0.047 (4) | 0.064 (5) | 0.061 (5) | 0.003 (3) | 0.017 (3) | −0.008 (4) |
C17 | 0.060 (4) | 0.044 (4) | 0.085 (6) | −0.004 (3) | 0.031 (4) | 0.013 (4) |
C13 | 0.050 (4) | 0.047 (4) | 0.065 (5) | −0.003 (3) | 0.028 (3) | −0.015 (3) |
C18 | 0.051 (4) | 0.069 (5) | 0.066 (5) | 0.012 (4) | 0.027 (4) | 0.028 (4) |
C16 | 0.051 (4) | 0.043 (4) | 0.080 (5) | −0.007 (3) | 0.011 (4) | −0.003 (4) |
C3 | 0.053 (4) | 0.067 (5) | 0.056 (5) | 0.009 (4) | 0.005 (3) | 0.006 (4) |
C10 | 0.056 (4) | 0.067 (5) | 0.044 (4) | 0.003 (4) | 0.011 (3) | 0.006 (3) |
C5 | 0.054 (4) | 0.084 (6) | 0.049 (4) | 0.002 (4) | 0.009 (3) | −0.005 (4) |
C14 | 0.048 (4) | 0.045 (4) | 0.095 (6) | 0.000 (3) | 0.023 (4) | −0.011 (4) |
C1 | 0.037 (3) | 0.061 (4) | 0.069 (5) | 0.004 (3) | 0.002 (3) | −0.016 (4) |
C19 | 0.068 (5) | 0.072 (5) | 0.106 (7) | 0.020 (4) | 0.040 (5) | 0.022 (5) |
I3—I2 | 2.9799 (8) | C2—H2A | 0.9700 |
I3—I4 | 2.8629 (8) | C2—H2B | 0.9700 |
I6—I5 | 2.8015 (8) | C2—C1 | 1.525 (9) |
I6—I7 | 3.0952 (8) | C15—H15A | 0.9700 |
I8—I9 | 2.8001 (8) | C15—H15B | 0.9700 |
I8—I7 | 3.0940 (9) | C15—C16 | 1.487 (10) |
I1—I1i | 2.7595 (11) | C8—H8A | 0.9700 |
Cl1—C19 | 1.741 (8) | C8—H8B | 0.9700 |
Cl2—C19 | 1.747 (8) | C12—H12A | 0.9700 |
O3—C9 | 1.415 (8) | C12—H12B | 0.9700 |
O3—C8 | 1.431 (8) | C4—H4A | 0.9700 |
O4—C11 | 1.421 (8) | C4—H4B | 0.9700 |
O4—C10 | 1.428 (8) | C4—C3 | 1.497 (10) |
O6—C15 | 1.408 (8) | C6—H6A | 0.9700 |
O6—C14 | 1.429 (8) | C6—H6B | 0.9700 |
O5—C17 | 1.421 (8) | C6—C5 | 1.503 (10) |
O5—C16 | 1.403 (8) | C17—H17A | 0.9700 |
O2—C4 | 1.426 (8) | C17—H17B | 0.9700 |
O2—C5 | 1.430 (8) | C17—C18 | 1.497 (10) |
O1—C2 | 1.402 (8) | C13—H13A | 0.9700 |
O1—C3 | 1.422 (8) | C13—H13B | 0.9700 |
N2—H2 | 0.84 (7) | C13—C14 | 1.500 (10) |
N2—C7 | 1.495 (8) | C18—H18A | 0.9700 |
N2—C6 | 1.500 (8) | C18—H18B | 0.9700 |
N2—C18 | 1.506 (8) | C16—H16A | 0.9700 |
N1—H1 | 0.83 (7) | C16—H16B | 0.9700 |
N1—C12 | 1.493 (8) | C3—H3A | 0.9700 |
N1—C13 | 1.507 (8) | C3—H3B | 0.9700 |
N1—C1 | 1.495 (9) | C10—H10A | 0.9700 |
C11—H11A | 0.9700 | C10—H10B | 0.9700 |
C11—H11B | 0.9700 | C5—H5A | 0.9700 |
C11—C12 | 1.505 (10) | C5—H5B | 0.9700 |
C7—H7A | 0.9700 | C14—H14A | 0.9700 |
C7—H7B | 0.9700 | C14—H14B | 0.9700 |
C7—C8 | 1.500 (9) | C1—H1A | 0.9700 |
C9—H9A | 0.9700 | C1—H1B | 0.9700 |
C9—H9B | 0.9700 | C19—H19A | 0.9700 |
C9—C10 | 1.497 (9) | C19—H19B | 0.9700 |
I4—I3—I2 | 176.54 (2) | C3—C4—H4A | 109.7 |
I5—I6—I7 | 173.63 (2) | C3—C4—H4B | 109.7 |
I9—I8—I7 | 175.52 (2) | N2—C6—H6A | 109.3 |
I8—I7—I6 | 89.70 (2) | N2—C6—H6B | 109.3 |
C9—O3—C8 | 113.1 (5) | N2—C6—C5 | 111.5 (6) |
C11—O4—C10 | 111.8 (5) | H6A—C6—H6B | 108.0 |
C15—O6—C14 | 113.0 (6) | C5—C6—H6A | 109.3 |
C16—O5—C17 | 111.9 (5) | C5—C6—H6B | 109.3 |
C4—O2—C5 | 112.2 (5) | O5—C17—H17A | 110.3 |
C2—O1—C3 | 114.9 (5) | O5—C17—H17B | 110.3 |
C7—N2—H2 | 110 (5) | O5—C17—C18 | 107.3 (6) |
C7—N2—C6 | 112.0 (5) | H17A—C17—H17B | 108.5 |
C7—N2—C18 | 112.9 (5) | C18—C17—H17A | 110.3 |
C6—N2—H2 | 106 (4) | C18—C17—H17B | 110.3 |
C6—N2—C18 | 111.6 (6) | N1—C13—H13A | 108.9 |
C18—N2—H2 | 104 (4) | N1—C13—H13B | 108.9 |
C12—N1—H1 | 108 (5) | H13A—C13—H13B | 107.7 |
C12—N1—C13 | 113.0 (5) | C14—C13—N1 | 113.6 (6) |
C12—N1—C1 | 112.4 (5) | C14—C13—H13A | 108.9 |
C13—N1—H1 | 111 (5) | C14—C13—H13B | 108.9 |
C1—N1—H1 | 103 (5) | N2—C18—H18A | 109.2 |
C1—N1—C13 | 109.8 (5) | N2—C18—H18B | 109.2 |
O4—C11—H11A | 110.3 | C17—C18—N2 | 112.2 (6) |
O4—C11—H11B | 110.3 | C17—C18—H18A | 109.2 |
O4—C11—C12 | 107.0 (6) | C17—C18—H18B | 109.2 |
H11A—C11—H11B | 108.6 | H18A—C18—H18B | 107.9 |
C12—C11—H11A | 110.3 | O5—C16—C15 | 111.7 (6) |
C12—C11—H11B | 110.3 | O5—C16—H16A | 109.3 |
N2—C7—H7A | 109.0 | O5—C16—H16B | 109.3 |
N2—C7—H7B | 109.0 | C15—C16—H16A | 109.3 |
N2—C7—C8 | 113.0 (5) | C15—C16—H16B | 109.3 |
H7A—C7—H7B | 107.8 | H16A—C16—H16B | 107.9 |
C8—C7—H7A | 109.0 | O1—C3—C4 | 109.7 (6) |
C8—C7—H7B | 109.0 | O1—C3—H3A | 109.7 |
O3—C9—H9A | 109.5 | O1—C3—H3B | 109.7 |
O3—C9—H9B | 109.5 | C4—C3—H3A | 109.7 |
O3—C9—C10 | 110.7 (6) | C4—C3—H3B | 109.7 |
H9A—C9—H9B | 108.1 | H3A—C3—H3B | 108.2 |
C10—C9—H9A | 109.5 | O4—C10—C9 | 111.0 (5) |
C10—C9—H9B | 109.5 | O4—C10—H10A | 109.4 |
O1—C2—H2A | 108.9 | O4—C10—H10B | 109.4 |
O1—C2—H2B | 108.9 | C9—C10—H10A | 109.4 |
O1—C2—C1 | 113.1 (6) | C9—C10—H10B | 109.4 |
H2A—C2—H2B | 107.8 | H10A—C10—H10B | 108.0 |
C1—C2—H2A | 108.9 | O2—C5—C6 | 106.9 (6) |
C1—C2—H2B | 108.9 | O2—C5—H5A | 110.3 |
O6—C15—H15A | 109.7 | O2—C5—H5B | 110.3 |
O6—C15—H15B | 109.7 | C6—C5—H5A | 110.3 |
O6—C15—C16 | 110.0 (6) | C6—C5—H5B | 110.3 |
H15A—C15—H15B | 108.2 | H5A—C5—H5B | 108.6 |
C16—C15—H15A | 109.7 | O6—C14—C13 | 112.1 (6) |
C16—C15—H15B | 109.7 | O6—C14—H14A | 109.2 |
O3—C8—C7 | 111.7 (5) | O6—C14—H14B | 109.2 |
O3—C8—H8A | 109.3 | C13—C14—H14A | 109.2 |
O3—C8—H8B | 109.3 | C13—C14—H14B | 109.2 |
C7—C8—H8A | 109.3 | H14A—C14—H14B | 107.9 |
C7—C8—H8B | 109.3 | N1—C1—C2 | 111.9 (5) |
H8A—C8—H8B | 107.9 | N1—C1—H1A | 109.2 |
N1—C12—C11 | 112.8 (5) | N1—C1—H1B | 109.2 |
N1—C12—H12A | 109.0 | C2—C1—H1A | 109.2 |
N1—C12—H12B | 109.0 | C2—C1—H1B | 109.2 |
C11—C12—H12A | 109.0 | H1A—C1—H1B | 107.9 |
C11—C12—H12B | 109.0 | Cl1—C19—Cl2 | 110.7 (5) |
H12A—C12—H12B | 107.8 | Cl1—C19—H19A | 109.5 |
O2—C4—H4A | 109.7 | Cl1—C19—H19B | 109.5 |
O2—C4—H4B | 109.7 | Cl2—C19—H19A | 109.5 |
O2—C4—C3 | 109.7 (6) | Cl2—C19—H19B | 109.5 |
H4A—C4—H4B | 108.2 | H19A—C19—H19B | 108.1 |
O3—C9—C10—O4 | −67.8 (7) | C12—N1—C1—C2 | −62.5 (8) |
O4—C11—C12—N1 | −51.0 (7) | C4—O2—C5—C6 | 171.4 (6) |
O6—C15—C16—O5 | −72.6 (8) | C6—N2—C7—C8 | −65.1 (7) |
O5—C17—C18—N2 | −52.5 (8) | C6—N2—C18—C17 | 167.7 (6) |
O2—C4—C3—O1 | −65.1 (8) | C17—O5—C16—C15 | −169.0 (6) |
O1—C2—C1—N1 | −47.5 (9) | C13—N1—C12—C11 | −65.1 (7) |
N2—C7—C8—O3 | −48.4 (8) | C13—N1—C1—C2 | 170.9 (6) |
N2—C6—C5—O2 | −43.6 (8) | C18—N2—C7—C8 | 167.9 (5) |
N1—C13—C14—O6 | −47.8 (9) | C18—N2—C6—C5 | −62.6 (7) |
C11—O4—C10—C9 | −171.7 (6) | C16—O5—C17—C18 | −172.5 (6) |
C7—N2—C6—C5 | 169.8 (6) | C3—O1—C2—C1 | −73.2 (8) |
C7—N2—C18—C17 | −65.1 (7) | C10—O4—C11—C12 | −175.5 (6) |
C9—O3—C8—C7 | −77.9 (7) | C5—O2—C4—C3 | −170.5 (6) |
C2—O1—C3—C4 | −150.6 (6) | C14—O6—C15—C16 | −159.8 (6) |
C15—O6—C14—C13 | −75.9 (8) | C1—N1—C12—C11 | 170.0 (5) |
C8—O3—C9—C10 | −158.4 (5) | C1—N1—C13—C14 | −64.4 (7) |
C12—N1—C13—C14 | 169.3 (6) |
Symmetry code: (i) −x+2, −y+1, −z. |
[Pd2I2([18]aneN2S4)](I)2.(I2)5 | |||
Pd—I | 2.5722 (14) | C6—S7 | 1.796 (10) |
Pd—N1 | 2.076 (9) | S7—C8 | 1.816 (12) |
Pd—S4 | 2.314 (3) | C8—C9 | 1.511 (16) |
Pd—S7i | 2.313 (3) | I—Iii | 3.545 (2) |
N1—C2 | 1.459 (15) | I1—I2 | 2.7899 (15) |
N1—C9i | 1.489 (16) | I2—I3 | 3.1214 (16) |
C2—C3 | 1.514 (17) | I3—I4 | 3.205 (2) |
C3—S4 | 1.809 (11) | I4—I5 | 2.7644 (16) |
S4—C5 | 1.838 (10) | I3—I6 | 3.351 (3) |
C5—C6 | 1.507 (15) | I6—I7 | 2.771 (4) |
I7—I3iii | 3.432 (3) | ||
N1—Pd—S4 | 86.8 (3) | S7i—Pd—I | 92.20 (8) |
N1—Pd—S7i | 87.7 (3) | S7i—Pd—S4 | 173.88 (11) |
S4—Pd—I | 93.57 (8) | ||
[H2([2.2.2]cryptand)](I3)(I)(I2)2.5.CH2Cl2 | |||
I3—I2 | 2.9799 (8) | O1—C2 | 1.402 (8) |
I3—I4 | 2.8629 (8) | O1—C3 | 1.422 (8) |
I6—I5 | 2.8015 (8) | O2—C4 | 1.426 (8) |
I6—I7 | 3.0952 (8) | O2—C5 | 1.430 (8) |
I8—I9 | 2.8001 (8) | O3—C9 | 1.415 (8) |
I8—I7 | 3.0940 (9) | O3—C8 | 1.431 (8) |
I1—I1iv | 2.7595 (11) | O4—C11 | 1.421 (8) |
N1—C1 | 1.495 (9) | O4—C10 | 1.428 (8) |
N1—C12 | 1.493 (8) | O5—C17 | 1.421 (8) |
N1—C13 | 1.507 (8) | O5—C16 | 1.403 (8) |
N2—C6 | 1.500 (8) | O6—C15 | 1.408 (8) |
N2—C7 | 1.495 (8) | O6—C14 | 1.429 (8) |
N2—C18 | 1.506 (8) | ||
I4—I3—I2 | 176.54 (2) | C3—C4—H4A | 109.7 |
I5—I6—I7 | 173.63 (2) | C3—C4—H4B | 109.7 |
I9—I8—I7 | 175.52 (2) | N2—C6—H6A | 109.3 |
I8—I7—I6 | 89.70 (2) | N2—C6—H6B | 109.3 |
Symmetry codes: (i) -x+3/2, -y+1/2, -z+1; (ii) -x+3/2, -y-1/2, -z+1; (iii) -x+1, y+1, -z+1/2; (iv) -x+2, -y+1, -z. |
Acknowledgements
We thank Professor Francesco Demartin for useful discussions. We thank the University of Cagliari for financial support and the EPSRC (UK) for the award of X-ray diffractometers.
Data availability
The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.
Funding information
The following funding is acknowledged: Engineering and Physical Sciences Research Council (grant Nos. GR/M54728/01 and GR/K45210/01).
References
Aragoni, M. C., Arca, M., Demartin, F., Garau, A., Isaia, F., Lippolis, V. & Pivetta, T. (2023a). New J. Chem. 47, 8122–8130. CSD CrossRef CAS Google Scholar
Aragoni, M. C., Arca, M., Devillanova, F. A., Isaia, F., Lippolis, V., Mancini, A., Pala, L., Slawin, M. Z. & Woollins, J. D. (2003). Chem. Commun. pp. 2226–2227. CSD CrossRef Google Scholar
Aragoni, M. C., Arca, M., Devillanova, V., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V. & Mancini, A. (2004). CrystEngComm, 6, 540–542. CAS Google Scholar
Aragoni, M. C., Podda, E., Arca, M., Pintus, A., Lippolis, V., Caltagirone, C., Bartz, R. H., Lenardão, E. J., Perin, G., Schumacher, R. F., Coles, S. J. & Orton, J. B. (2022). New J. Chem. 46, 21921–21929. Web of Science CSD CrossRef CAS Google Scholar
Aragoni, M. C., Podda, E., Chaudhary, S., Bhasin, A. K. K., Bhasin, K. K., Coles, S. J., Orton, J. B., Isaia, F., Lippolis, V., Pintus, A., Slawin, A. M. Z., Woollins, J. D. & Arca, M. (2023b). Chem. Asian J. 18, e202300836. CSD CrossRef PubMed Google Scholar
Arca, M., Aragoni, M. C., Devillanova, F. A., Garau, A., Isaia, F., Lippolis, V., Mancini, A. & Verani, V. (2006). Bioinorg. Chem. Appl. 2006, 1–12. CrossRef Google Scholar
Arca, M., Demartin, F., Devillanova, F. A., Garau, A., Isaia, F., Lippolis, V. & Verani, G. (1999). J. Chem. Soc. Dalton Trans. pp. 3069–3073. Web of Science CSD CrossRef Google Scholar
Bigoli, F., Deplano, P., Devillanova, F. A., Lippolis, V., Mercuri, M. L., Pellinghelli, M. A. & Trogu, E. F. (1998). Inorg. Chim. Acta, 267, 115–121. CSD CrossRef CAS Google Scholar
Blake, A. J., Cristiani, F., Devillanova, F. A., Garau, A., Gilby, L., Gould, R. O., Isaia, F., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1337–1346. CSD CrossRef Google Scholar
Blake, A. J., Gould, R. O., Li, W.-S., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998a). Angew. Chem. Int. Ed. Engl. 37, 293–296. CrossRef CAS PubMed Google Scholar
Blake, A. J., Gould, R. O., Li, W.-S., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998b). Inorg. Chem. 37, 5070–5077. CSD CrossRef CAS Google Scholar
Blake, A. J., Li, W., Lippolis, V., Schröder, M., Devillanova, F. O., Gould, R., Parsons, S. & Radek, C. (1998c). Chem. Soc. Rev. 27, 195–205. CAS Google Scholar
Blake, A. J., Li, W.-S., Lippolis, V., Parsons, S. & Schröder, M. (1998d). Acta Cryst. C54, 1408–1410. CSD CrossRef CAS IUCr Journals Google Scholar
Blake, A. J., Lippolis, V., Parsons, S. & Schröder, M. (1996). Chem. Commun. pp. 2207–2208. CSD CrossRef Web of Science Google Scholar
Blake, A. J., Reid, G. & Schröder, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3363–3373. CSD CrossRef Google Scholar
Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ciancaleoni, G., Arca, M., Caramori, G. F., Frenking, G., Schneider, F. S. S. & Lippolis, V. (2016). Eur. J. Inorg. Chem. 2016, 3804–3812. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fei, Z., Bobbink, F. D., Păunescu, E., Scopelliti, R. & Dyson, P. J. (2015). Inorg. Chem. 54, 10504–10512. CSD CrossRef CAS PubMed Google Scholar
Fiolka, C., Pantenburg, I. & Meyer, G. (2011). Cryst. Growth Des. 11, 5159–5165. CSD CrossRef CAS Google Scholar
Garau, A., Aragoni, M. C., Arca, M., Caltagirone, C., Demartin, F., Isaia, F., Lippolis, V. & Pivetta, T. (2022). New J. Chem. 46, 6870–6877. CSD CrossRef CAS Google Scholar
Horn, C. J., Blake, A. J., Champness, N. R., Garau, A., Lippolis, V., Wilson, C. & Schröder, M. (2003a). Chem. Commun. pp. 312–313. CSD CrossRef Google Scholar
Horn, C. J., Blake, A. J., Champness, N. R., Lippolis, V. & Schröder, M. (2003b). Chem. Commun. pp. 1488–1489. CSD CrossRef Google Scholar
Paulsson, H., Berggrund, M., Svantesson, E., Hagfeldt, A. & Kloo, L. (2004). Solar Energy Mater. Solar Cells, 82, 345–360. CrossRef CAS Google Scholar
Savastano, M. (2021). Dalton Trans. 50, 7022-7025. CrossRef Google Scholar
Savastano, M., Bazzicalupi, C. & Bianchi, A. (2022). Dalton Trans. 51, 10728–10739. CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sonnenberg, K., Mann, L., Redeker, F. A., Schmidt, B. & Riedel, S. (2020). Angew. Chem. Int. Ed. 59, 5464–5493. Web of Science CSD CrossRef CAS Google Scholar
Stoe & Cie (1996). STADI4 and REDU4. Stoe & Cie, Darmstadt, Germany. Google Scholar
Svensson, H. & Kloo, L. (2003). Chem. Rev. 103, 1649–1684. CrossRef PubMed CAS Google Scholar
Yin, Z., Wang, Q.-X. & Zeng, M.-H. (2012). J. Am. Chem. Soc. 134, 4857–4863. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.