research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Crystal structure of the cytotoxic macrocyclic trichothecene Isororidin A

crossmark logo

aDivision of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece, bDepartment of Chemistry, Faculty of Science, Al-Azhar University, Assiut branch, Assiut 71524, Egypt, cInstitute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece, and dBotany and Microbiology Department, Faculty of Science, Assiut University, Egypt
*Correspondence e-mail: echrysina@eie.gr, abatis@pharm.uoa.gr

Edited by C. Hua, University of Melbourne, Australia (Received 28 March 2024; accepted 24 June 2024; online 10 July 2024)

The highly cytotoxic macrocyclic trichothecene Isororidin A (C29H40O9) was isolated from the fungus Myrothesium verrucaria endophytic on the wild medicinal plant `Datura' (Datura stramonium L.) and was characterized by one- (1D) and two-dimensional (2D) NMR spectroscopy. The three-dimensional structure of Isororidin A has been confirmed by X-ray crystallography at 0.81 Å resolution from crystals grown in the ortho­rhom­bic space group P212121, with one mol­ecule per asymmetric unit. Isororidin A is the epimer of previously described (by X-ray crystallography) Roridin A at position C-13′ of the macrocyclic ring.

1. Introduction

Macrocyclic trichothecenes (MTs) constitute the second major group (the other being the simple trichothecenes) of a class of highly functionalized sesquiterpenoid secondary metabolites, mainly of fungal origin, which are well known for their severe toxicity to both animals and humans (Grove, 2007[Grove, J. F. (2007). Progress in the Chemistry of Organic Natural Products, Vol. 88, pp. 63-130. Vienna: Springer Vienna.]; Shank et al., 2011[Shank, R. A., Foroud, N. A., Hazendonk, P., Eudes, F. & Blackwell, B. A. (2011). Toxins, 3, 1518-1553.]; Wu et al., 2017[Wu, Q., Wang, X., Nepovimova, E., Miron, A., Liu, Q., Wang, Y., Su, D., Yang, H., Li, L. & Kuca, K. (2017). Arch. Toxicol. 91, 3737-3785.]). Most trichothecenes are at least tetra­cyclic, as they contain a spiro-epoxide group in the 12–13 position of the `trichothecane' sesquiterpene skeleton. They also usually com­prise a double bond at C9—C10; thus, they are considered as 12–13 ep­oxy-trichothec-9-ene derivatives [see (a) in Scheme 1[link]]. In MTs, an extra cyclic diester or triester ring is connected to the trichothecene core skeleton at C-4 and C-15, making them penta­cyclic macrolides. The presence of the spiro-ep­oxy group, the Δ9,10 bond and the macrocyclic ring in the mol­ecule appear to be crucial for their biological properties, which include anti­fungal, anti­malarial, anti­virus and anti­cancer activity (de Carvalho et al., 2015[Carvalho, M. de, Weich, H. & Abraham, W.-R. (2015). Curr. Med. Chem. 23, 23-35.]; Jarvis & Mazzola, 1982[Jarvis, B. B. & Mazzola, E. P. (1982). Acc. Chem. Res. 15, 388-395.]; McCormick et al., 2011[McCormick, S. P., Stanley, A. M., Stover, N. A. & Alexander, N. J. (2011). Toxins, 3, 802-814.]; Wu et al., 2017[Wu, Q., Wang, X., Nepovimova, E., Miron, A., Liu, Q., Wang, Y., Su, D., Yang, H., Li, L. & Kuca, K. (2017). Arch. Toxicol. 91, 3737-3785.]). The MTs are further classified into the subgroups of the Roridoids, to which Roridin A and Isororidin A belong [see (b) and (c) in Scheme 1[link], respectively], the Baccharinoids, the Verrucaroids and the Trichoverroids, which are considered the biosynthetic precursors of the three former subgroups of MTs (Bräse et al., 2009[Bräse, S., Encinas, A., Keck, J. & Nising, C. F. (2009). Chem. Rev. 109, 3903-3990.]).

There has been a series of articles since the 1980s con­cer­ning the elucidation of the configuration of the stereogenic centres of the macrocyclic ring of the MTs, especially C-6′ and C-13′ in the Roridoids (Jarvis et al., 1982[Jarvis, B. B., Midiwo, J. O., Flippen-Anderson, J. L. & Mazzola, E. P. (1982). J. Nat. Prod. 45, 440-448.], 1987[Jarvis, B. B., Comezoglu, S. N., Rao, M. M., Pena, N. B., Boettner, F. E., Williams, T. M., Forsyth, G. & Epling, B. (1987). J. Org. Chem. 52, 45-56.], 1996[Jarvis, B. B., Wang, S. & Ammon, H. L. (1996). J. Nat. Prod. 59, 254-261.]; Jarvis & Wang, 1999[Jarvis, B. B. & Wang, S. (1999). J. Nat. Prod. 62, 1284-1289.]). The task was based mainly on NMR spectroscopy (despite the technical limitations of the method at that time), as well as chemical manipulations when there were adequate qu­anti­ties available, aided – in rare cases – by stereoselective synthesis and X-ray diffraction analyses. In 1982, Jarvis and co-workers isolated Roridin A and Isororidin A from a large-scale fermentation of Myrothesium verrucaria and resolved the relative configuration of Roridin A by X-ray crystallography. The absolute configuration of Roridin A was confirmed after oxidative cleavage of its hy­droxy­ethyl moiety, which produced Verrucarin A, an MT whose absolute con­fig­uration had already been established (Jarvis et al., 1982[Jarvis, B. B., Midiwo, J. O., Flippen-Anderson, J. L. & Mazzola, E. P. (1982). J. Nat. Prod. 45, 440-448.]). The 1H and 13C NMR spectra of Roridin A and Isororidin A in CDCl3 were almost identical, except for carbon C-6′, which differed in the 13C NMR spectra by 1.1 ppm. The epimeric relation of the two fungal metabolites at C-13′ was deduced indirectly by the selective hydrogenation of Roridin A and Isororidin A to their respective tetra­hydro derivatives, and then oxidation of the C-6′ hy­droxy­ethyl group of these tetra­­hydro derivatives to an identical (in the 1H NMR spectrum) corresponding methyl ketone (Jarvis et al., 1982[Jarvis, B. B., Midiwo, J. O., Flippen-Anderson, J. L. & Mazzola, E. P. (1982). J. Nat. Prod. 45, 440-448.]). Even though Isororidin A was re-isolated a few times in subsequent years from different fungal strains and by different research groups, verification of its structure was performed only by com­parison of the NMR data in CDCl3 with those reported in 1982, but without submitting the NMR data. Isororidin A is one of the most cytotoxic metabolites among all com­pounds containing C, H and O, and was on the shortlist of the National Cancer Institute (NCI) for the most promising anti­cancer agents in the 2000s (Amagata et al., 2003[Amagata, T., Rath, C., Rigot, J. F., Tarlov, N., Tenney, K., Valeriote, F. A. & Crews, P. (2003). J. Med. Chem. 46, 4342-4350.]; de Carvalho et al., 2015[Carvalho, M. de, Weich, H. & Abraham, W.-R. (2015). Curr. Med. Chem. 23, 23-35.]; Sy-Cordero et al., 2010[Sy-Cordero, A. A., Graf, T. N., Wani, M. C., Kroll, D. J., Pearce, C. J. & Oberlies, N. H. (2010). J. Antibiot. 63, 539-544.]). The mechanism of action of the macrocyclic trichothecenes is still underexplored, possibly due to their severe general cytotoxicity. However, there is evi­dence that MTs show large variations in both activity and selectivity against different cancer cell lines induced by alterations in their mol­ecular structure. These findings indicate that MTs may still be considered as highly promising anti­tumour agents, as long as more detailed structure–activity relationship (SAR) and qu­anti­tative structure–activity relationship (QSAR) studies have been performed. For these studies, knowledge of the configuration and conformation of the MTs is undoubtedly critical (Wu et al., 2017[Wu, Q., Wang, X., Nepovimova, E., Miron, A., Liu, Q., Wang, Y., Su, D., Yang, H., Li, L. & Kuca, K. (2017). Arch. Toxicol. 91, 3737-3785.]; Zhu et al., 2020[Zhu, M., Cen, Y., Ye, W., Li, S. & Zhang, W. (2020). Toxins, 12, 417-433.]). In the current article, Isororidin A was isolated from the fun­gus Myrothesium verrucaria endophytic on the wild medicinal plant `Datura' (Datura stramonium L.) and was characterized by 1D and 2D NMR spectroscopy. Its crystal structure is presented for the first time at 0.81 Å resolution.

2. Experimental

2.1. Isolation and crystallization

Isororidin A was isolated as a colourless solid (19.5 mg) after high-performance liquid chromatography (HPLC) using a semipreparative C18 column eluted with a linear gradient mixture of water and methanol. The gross structure of the com­pound was elucidated on the basis of a detailed analysis of its 1D/2D NMR and high-resolution mass spectroscopic (HRMS) data. The full 1D and 2D NMR data recorded in CD3OD are reported for the first time (see the Analytical data section in the supporting information and Table 1[link]). The relative configuration of its chiral centres was deduced from a combined study of nuclear Overhauser effect (NOE) correlations and 3JHH coupling constants, and by com­parison with the NMR data of other Roridoids having similar structures (Amagata et al., 2003[Amagata, T., Rath, C., Rigot, J. F., Tarlov, N., Tenney, K., Valeriote, F. A. & Crews, P. (2003). J. Med. Chem. 46, 4342-4350.]; Jarvis & Wang, 1999[Jarvis, B. B. & Wang, S. (1999). J. Nat. Prod. 62, 1284-1289.]). The absolute configuration of all its chiral centres was confirmed by the X-ray crystallographic analysis of its colourless needle-like crystals that were obtained after the slow evaporation of a solution in methanol from an NMR tube. Most of the Isororidin A crystals had morphological defects that may have led to twinned spots on the diffraction pattern and potential issues at the stage of processing and deconvolution. Therefore, a small fragment of an Isororidin A crystal, with the least morphological defects, was isolated and mounted on a litho loop to minimize the background contribution when exposed to X-rays. The loop was placed on the goniometer head and diffraction data were collected at 0.81 Å resolution.

[Scheme 1]

Table 1
NMR spectroscopic data for Isororidin A [400 (1H) and 100 MHz (13C), δ ppm]a

Position (Scheme 1) 1H NMR (J in Hz) 13C NMR COSY HMBC NOESY
2 3.74 (d, 5.1) 80.4 3b 4, 5, 12 3′, 13a
3 b: 2.14 (overlap by H-3′) 35.7 2, 4 2, 4  
  a: 2.47 (dd, 8.2, 15.2)     2, 5, 12  
4 5.84 (dd, 4.5, 8.2) 76.0 3 2, 3, 5, 6, 12, 11′ 11
5 Cq 50.5      
6 Cq 45.0      
7 1.87 (m, 2H) 21.3 8 6, 8, 9, 11 13, 14
8 a: 1.93 (d, 8.0) 28.7 7 6,7, 9, 10  
  b: 1.98 (m)        
9 Cq 141.7      
10 5.41 (d, 5.4) 119.7 11, 16 6, 8, 11, 16  
11 3.72 (br d, 5.4) 68.5 10 7, 10, 15 4
12 Cq 66.4      
13 2.86 (d, 4.0) 48.5   2, 5, 12 14
  3.05 (d, 4.0)        
14 0.81 (s) 8.0 , 4, 5, 6, 12 2′, 3′, 15, 12′
15 4.32 (d, 12.2) 64.8 15 5, 6, 7, 1′ 14
  4.46 (d, 12.2)     5, 6, 7, 11, 1′  
16 1.72 (s) 23.3 10 8, 9, 10  
1′ CO 175.6      
2′ 4.04 (d, 4.0) 76.7 3′ 1′, 4′, 12′ 14, 3′, 12′
3′ 2.08 (m 37.7 2′, 12′ 1′, 2′ 14, 2′
4′ 1.58 (m) 34.9 4′, 5′ 3′, 5′, 12′  
  1.73 (m)     2′, 3′, 5′  
5′ 3.50 (ddd, 5.2, 8.7, 9.1) 70.9 4′, 5′ 3′, 4′, 6′  
  3.58 (ddd, 5.2, 9.6, 9.8)        
6′ 3.82 (m) 84.6 7′, 13′ 5′, 7′, 8′, 14′ 8′, 14′
7′ 6.17 (dd, 3.0, 15.4) 142.3 6′, 8′ 6′, 8′, 9′ 13′, 14′
8′ 7.60 (ddt, 11.4, 15.4, 1.1) 126.8 7′, 9′ 6′, 9′, 10′ 14, 3′, 10′, 12′
9′ 6.75 (t, 11.4) 145.5 8′, 10′ 7′, 8′, 11′ 7′
10′ 5.76 (d, 11.2) 117.9 9′ 8′, 9′, 11′ 14
11′ CO 168.1      
12′ 1.09 (d, 6.8) 15.1 3′ 2′, 3′, 4′ 14, 2′, 3′, 8′
13′ 3.69 (m) 71.0 6′, 14′ 6′, 14′ 7′, 8′, 14′
14′ 1.16 (d, 6.4) 18.4 13′ 6′, 13′ 6′, 7′, 8′,13′
Note: (a) the assignments were based on 1H–1H COSY, HSQC–DEPT and HMBC experiments, and recorded in MeOD-d4.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Details of the geometry of the Isororidin A crystal structure regarding bond lengths (Å), bond angles (°), torsion angles (°) and the geometry of the hydrogen bonds [distances (Å) and angles (°)] are presented in the supporting information (Tables S1–S5).

Table 2
Experimental details

Crystal data
Chemical formula C29H40O9
Mr 532.61
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 9.2707 (4), 15.2236 (6), 20.0806 (8)
V3) 2834.0 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.76
Crystal size (mm) 0.08 × 0.06 × 0.04
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2021[Bruker (2021). APEX4, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.673, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 101717, 5548, 5338
Rint 0.055
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.07
No. of reflections 5548
No. of parameters 349
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.22
Absolute structure Flack x determined using 2264 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.02 (3)
Computer programs: APEX2 (Bruker, 2021[Bruker (2021). APEX4, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2021[Bruker (2021). APEX4, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

3. Results and discussion

3.1. Structural commentary

The crystal structure of Isororidin A, isolated from the ethyl acetate extract of the culture broth of the endophytic fungus M. verrucaria, after a series of chromatographic separations, is presented at 0.81 Å resolution and confirms the configuration at position C13′. Isororidin A crystallized in the ortho­rhom­bic space group P212121 (No. 19). A data set was initially collected at room temperature at 0.81 Å resolution (Table S1 in the supporting information) and the calculated Flack parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]; Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) was 0.4 (4), which was not sufficient to assess the absolute configuration of Isororidin A. Therefore, a new data set was collected at 100 K. The crystal lattice and space group remained P212121, with unit-cell dimensions a = 9.2707 (4), b = 15.2236 (6), c = 20.0806 (8) Å and α = β = γ = 90°, and the Flack parameter calculated for this structure was −0.02 (3), confirming the absolute configuration of Isororidin A. The experimental details are summarized in Table 2[link] and Tables S2–S6 of the supporting information. The two experiments reveal no temperature-dependent phase change, as the unit-cell param­eters are almost identical (Table 2[link] and Table S1). The measurement at 100 K resulted in an overall better data set with an improved R parameter and a higher precision Flack parameter. Therefore, the structure analysis that follows focuses on the structure determined at 100 K.

The packing of the mol­ecules is stabilized by two inter­molecular hydrogen-bond inter­actions between atom O7, which acts as a donor to symmetry-related O8i and O8, which acts as a donor to symmetry-related O2ii, as well as inter­molecular C—H⋯O inter­actions between C4 and O1iii, C13 and O9iv, and C7′ and O6v (see Table 3[link] for symmetry codes). A schematic representation of the crystal structure, showing the stereoconfiguration of Isororidin A and its packing within the unit cell, is presented in Fig. 1[link].

Table 3
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O8i 0.84 1.94 2.761 (3) 167
O8—H8⋯O2ii 0.84 2.10 2.895 (3) 158
C4—H4⋯O1iii 1.00 2.55 3.467 (3) 153
C13—H13B⋯O9iv 0.99 2.65 3.490 (3) 143
C7′—H7′⋯O6v 0.95 2.62 3.473 (3) 150
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}], [-y+{\script{1\over 2}}, -z+1]; (iv) [x+1, y, z]; (v) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
(a) Schematic representation of the Isororidin A X-ray diffraction solution, drawn with 50% probability displacement ellipsoids. O atoms are shown in red, C atoms in light grey and H atoms in pale pink. The absolute configurations of C6′ (R) and C13′ (S) shown in Scheme 1[link] are indicated. (b) A view of the inter­molecular hydrogen-bond inter­actions formed between Isororidin A (shown in red) and its symmetry-related mol­ecules [colour code for symmetry codes: (x + [{1\over 2}], −y + [{3\over 2}], −z + 1) in lime, (−x + 1, y + [{1\over 2}], −z + [{3\over 2}]) in lavender, (x − [{1\over 2}], −y + [{1\over 2}], −z + 1) in orange, (x + 1, y, z) in tan and (−x + [{1\over 2}], −y + 1, z + [{1\over 2}]) in salmon], while the hydrogen bonding is indicated with blue dashed lines.

Superposition of the crystal structure of Isororidin A with the only available previously determined structure of Roridin A (CCDC deposition No. 1110357, CSD refcode BIDPIN10; Jarvis et al., 1982[Jarvis, B. B., Midiwo, J. O., Flippen-Anderson, J. L. & Mazzola, E. P. (1982). J. Nat. Prod. 45, 440-448.]) showed that the overall structure is the same; more pro­nounced differences are observed in the macrocyclic ring, more specifically, in the vicinity of the C13′ atom [Figs. 1[link](a) and 2[link]]. Both saturated pyran rings adopt dis­torted chair con­formations, with a torsion angle C5—C6—C11—O1 of −46.7 (2)° in Isororidin A versus −41.5° in Roridin A. The un­saturated cyclo­hexene rings adopt flattened half-chair con­formations, while the five-membered rings in both structures adopt envelope conformations, with the C atom at position C12 (C11 for the Roridin A structure) pointing out of the plane. The differences observed between the two structures relate to the hy­droxy­ethyl group and neighbouring atoms that include a significant rotation of the torsion angles O4—C6′—C13′—O8 and C7′—C6′—C13′—O8 by 106.7 and 104.6°, respectively. Additional differences are observed for torsion angles O7—C2′—C3′—C4′ by 18.4°, O7—C2′—C3′—C12′ by 17.2°, O9—C11′—C10′—C9′ by 17.7°, O5—C11′—C10′—C9′ by 16.2°, C7′—C6′—C13′—C14′ by 10.9°, O4—C6′—C13′—C14′ by 9.2° and O6—C1′—C2′—C3′ by 7.3°. The rest of the differences in the torsion angles ob­served in the 18-membered macrocyclic ring are less profound and in the range of 5°; for example, torsion angle O6—C1′—C2′—O7′ by 4.2° (Table S7 in the supporting information). These changes may be attributed to the inter­molecular inter­actions formed in Isororidin A com­pared to Roridin A [Fig. 1[link](b)].

[Figure 2]
Figure 2
Superposition of the three-dimensional structures of determined Isororidin A (with an S configuration at C13′) and its stereoisomer (epimeric at C28 with an R configuration) Roridin A. Isororidin A is shown in red and Roridin A in grey.

3.2. Supra­molecular features

A schematic representation of the structure of Isororidin A and its packing with symmetry-related mol­ecules within the crystal is shown in Fig. 3[link]. Isororidin A crystallized in the ortho­rhom­bic space group P212121. The difference observed in the epimeric C atom seems to foster the inter­molecular inter­actions within the unit cell. Atom O8 is hydrogen bonded to O2 of a symmetry-related mol­ecule within the unit cell, while in the case of Roridin A, the same atom inter­acts with O1.

[Figure 3]
Figure 3
Schematic representation of the supra­molecular structure of Isororidin A. The asymmetric unit is highlighted in black and the hydrogen bonds are indicated in blue. [Symmetry codes: (i) −x+, y − [{1\over 2}], −z + [{3\over 2}]; (ii) −x + [{3\over 2}], −y + 1, z + [{1\over 2}]; (iii) −x + 1, y + [{1\over 2}], −z + [{3\over 2}]; (iv) −x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (v) −x + [{3\over 2}], −y + 1, z − [{1\over 2}].]

3.3. Database survey

One entry is available in the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the structure of Roridin A (CCDC deposition No. 1110357, CSD refcode BIDPIN10; Jarvis et al., 1982[Jarvis, B. B., Midiwo, J. O., Flippen-Anderson, J. L. & Mazzola, E. P. (1982). J. Nat. Prod. 45, 440-448.]) determined in the space group P21 with unit-cell dimensions a = 10.197 (3), b = 14.079 (4), c = 9.606 (2) Å, α = γ = 90° and β = 94.6 (1)°.

Supporting information


Computing details top

(I) top
Crystal data top
C29H40O9Dx = 1.248 Mg m3
Mr = 532.61Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 9959 reflections
a = 9.2707 (4) Åθ = 4.4–74.9°
b = 15.2236 (6) ŵ = 0.76 mm1
c = 20.0806 (8) ÅT = 100 K
V = 2834.0 (2) Å3Irregular, colourless
Z = 40.08 × 0.06 × 0.04 mm
F(000) = 1144
Data collection top
Bruker APEXII
diffractometer
5548 independent reflections
Radiation source: sealed x-ray tube5338 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
φ or ω oscillation scansθmax = 72.1°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2021)
h = 1111
Tmin = 0.673, Tmax = 0.754k = 1818
101717 measured reflectionsl = 2424
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0618P)2 + 1.0952P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.34 e Å3
5548 reflectionsΔρmin = 0.22 e Å3
349 parametersAbsolute structure: Flack x determined using 2264 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.02 (3)
Primary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.88908 (18)0.27189 (12)0.51273 (8)0.0240 (4)
O20.9025 (2)0.38349 (12)0.67471 (9)0.0272 (4)
O30.55743 (19)0.51939 (11)0.47181 (9)0.0247 (4)
O40.1743 (2)0.69785 (13)0.64506 (9)0.0308 (4)
O50.55825 (19)0.34501 (11)0.66449 (8)0.0220 (4)
O60.3838 (2)0.49608 (15)0.39552 (11)0.0424 (5)
O70.2988 (2)0.66973 (14)0.40501 (10)0.0397 (5)
H70.3379670.6715800.3673030.060*
O80.0389 (2)0.80771 (13)0.70903 (10)0.0361 (5)
H80.0034750.8416150.7355990.054*
O90.37443 (19)0.41830 (12)0.61579 (9)0.0269 (4)
C20.8665 (3)0.27417 (17)0.58343 (12)0.0239 (5)
H20.9418950.2393740.6073610.029*
C30.7140 (3)0.24545 (15)0.60435 (12)0.0237 (5)
H3A0.7141920.2227120.6505430.028*
H3B0.6771340.1990500.5742930.028*
C40.6207 (3)0.32912 (15)0.59909 (11)0.0198 (5)
H40.5433320.3214850.5648960.024*
C50.7257 (2)0.40513 (16)0.57878 (12)0.0189 (5)
C60.7370 (3)0.40627 (15)0.50005 (11)0.0194 (5)
C70.8563 (3)0.46869 (17)0.47578 (13)0.0255 (5)
H7A0.8351630.5288840.4916730.031*
H7B0.9495240.4503030.4954030.031*
C80.8701 (3)0.46984 (18)0.39997 (13)0.0301 (6)
H8A0.7907420.5055920.3811290.036*
H8B0.9622840.4983220.3876840.036*
C90.8652 (3)0.37965 (19)0.36967 (12)0.0280 (6)
C100.8205 (3)0.31031 (17)0.40345 (12)0.0250 (5)
H100.8180150.2554420.3809460.030*
C110.7731 (3)0.31230 (16)0.47532 (11)0.0209 (5)
H110.6849130.2750050.4800160.025*
C120.8689 (3)0.36850 (17)0.60468 (12)0.0226 (5)
C130.9983 (3)0.4175 (2)0.62296 (13)0.0289 (6)
H13A0.9986260.4816670.6149930.035*
H13B1.0927740.3882450.6168540.035*
C140.6885 (3)0.49472 (15)0.60854 (13)0.0228 (5)
H14A0.7585860.5384390.5931830.034*
H14B0.6915330.4910810.6572450.034*
H14C0.5915010.5120650.5942730.034*
C150.5923 (3)0.42707 (16)0.46636 (12)0.0221 (5)
H15A0.5973560.4104550.4187530.027*
H15B0.5150510.3918670.4874630.027*
C160.9125 (3)0.3731 (2)0.29815 (14)0.0380 (7)
H16A1.0145810.3892730.2946560.057*
H16B0.8545650.4130670.2708150.057*
H16C0.8993210.3127000.2824170.057*
C1'0.4428 (3)0.54367 (19)0.43490 (13)0.0296 (6)
C2'0.3983 (3)0.63724 (18)0.45204 (13)0.0287 (6)
H2'0.4858170.6756350.4521730.034*
C3'0.3294 (3)0.63843 (18)0.52177 (14)0.0291 (6)
H3'0.3959440.6062400.5524510.035*
C4'0.3149 (4)0.7322 (2)0.54813 (16)0.0407 (7)
H4'A0.3995910.7665980.5333230.049*
H4'B0.2280230.7592720.5281010.049*
C5'0.3034 (4)0.7386 (2)0.62343 (17)0.0407 (7)
H5'A0.3873670.7094190.6443290.049*
H5'B0.3035630.8011010.6370900.049*
C6'0.1495 (3)0.69731 (18)0.71470 (13)0.0274 (5)
H6'0.2094710.7447250.7352490.033*
C7'0.1896 (3)0.61153 (17)0.74684 (13)0.0277 (5)
H7'0.1669650.6051380.7927250.033*
C8'0.2536 (3)0.54364 (17)0.71731 (13)0.0265 (5)
H8'0.2706640.5454000.6706770.032*
C9'0.2979 (3)0.46714 (17)0.75504 (13)0.0281 (5)
H9'0.2642770.4639870.7996770.034*
C10'0.3807 (3)0.40016 (17)0.73433 (12)0.0267 (5)
H10'0.4069540.3563440.7657660.032*
C11'0.4333 (3)0.39102 (15)0.66526 (12)0.0231 (5)
C12'0.1877 (3)0.5878 (2)0.51995 (15)0.0372 (6)
H12A0.1220600.6154900.4879470.056*
H12B0.1435610.5883790.5643040.056*
H12C0.2061710.5269870.5064280.056*
C13'0.0095 (3)0.71915 (18)0.72682 (13)0.0298 (6)
H13'0.0310320.7111920.7752370.036*
C14'0.1081 (3)0.65997 (19)0.68701 (15)0.0334 (6)
H14D0.2085720.6773630.6944320.050*
H14E0.0945610.5989440.7012410.050*
H14F0.0850000.6652370.6395490.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0212 (8)0.0305 (9)0.0202 (8)0.0080 (7)0.0008 (7)0.0009 (7)
O20.0247 (9)0.0368 (10)0.0201 (8)0.0014 (8)0.0056 (7)0.0005 (7)
O30.0238 (8)0.0235 (8)0.0268 (9)0.0042 (7)0.0031 (7)0.0025 (7)
O40.0297 (10)0.0358 (10)0.0268 (9)0.0051 (8)0.0036 (8)0.0023 (8)
O50.0215 (8)0.0251 (8)0.0194 (8)0.0011 (7)0.0014 (7)0.0021 (7)
O60.0451 (12)0.0461 (12)0.0359 (11)0.0143 (10)0.0180 (10)0.0071 (9)
O70.0404 (11)0.0464 (12)0.0324 (10)0.0195 (10)0.0088 (9)0.0164 (9)
O80.0454 (12)0.0303 (9)0.0326 (10)0.0084 (9)0.0132 (9)0.0085 (8)
O90.0213 (8)0.0327 (9)0.0268 (9)0.0046 (7)0.0003 (8)0.0053 (8)
C20.0220 (12)0.0292 (13)0.0205 (11)0.0070 (10)0.0013 (9)0.0027 (10)
C30.0282 (12)0.0215 (12)0.0216 (11)0.0034 (10)0.0038 (10)0.0021 (9)
C40.0208 (11)0.0216 (11)0.0171 (11)0.0007 (9)0.0011 (9)0.0025 (8)
C50.0165 (10)0.0210 (11)0.0192 (11)0.0011 (9)0.0027 (9)0.0016 (9)
C60.0180 (11)0.0217 (11)0.0184 (11)0.0007 (9)0.0013 (9)0.0004 (9)
C70.0232 (12)0.0268 (12)0.0265 (13)0.0043 (10)0.0015 (10)0.0020 (10)
C80.0286 (13)0.0345 (14)0.0272 (13)0.0061 (11)0.0013 (11)0.0074 (11)
C90.0228 (12)0.0406 (15)0.0206 (12)0.0018 (11)0.0005 (10)0.0004 (10)
C100.0237 (12)0.0300 (12)0.0212 (12)0.0055 (11)0.0008 (10)0.0033 (10)
C110.0194 (11)0.0237 (11)0.0196 (11)0.0023 (9)0.0002 (9)0.0009 (9)
C120.0197 (11)0.0314 (13)0.0167 (11)0.0022 (10)0.0012 (9)0.0019 (9)
C130.0196 (11)0.0413 (15)0.0258 (12)0.0022 (11)0.0042 (10)0.0028 (11)
C140.0221 (11)0.0212 (11)0.0252 (12)0.0005 (9)0.0014 (10)0.0034 (9)
C150.0211 (12)0.0213 (11)0.0240 (12)0.0006 (9)0.0042 (9)0.0003 (9)
C160.0398 (17)0.0503 (17)0.0239 (13)0.0020 (14)0.0043 (12)0.0043 (12)
C1'0.0300 (13)0.0345 (14)0.0243 (13)0.0043 (12)0.0010 (11)0.0051 (11)
C2'0.0276 (13)0.0294 (13)0.0289 (13)0.0047 (11)0.0065 (10)0.0065 (10)
C3'0.0295 (13)0.0306 (13)0.0272 (13)0.0022 (11)0.0054 (11)0.0037 (10)
C4'0.0431 (17)0.0292 (14)0.0498 (18)0.0002 (14)0.0197 (15)0.0049 (13)
C5'0.0394 (16)0.0319 (15)0.0506 (18)0.0101 (13)0.0124 (14)0.0109 (13)
C6'0.0306 (13)0.0275 (12)0.0242 (12)0.0018 (11)0.0019 (10)0.0061 (10)
C7'0.0275 (13)0.0318 (13)0.0238 (12)0.0003 (11)0.0022 (10)0.0052 (10)
C8'0.0253 (12)0.0294 (13)0.0247 (12)0.0017 (10)0.0008 (10)0.0056 (10)
C9'0.0261 (12)0.0326 (13)0.0256 (12)0.0030 (11)0.0057 (10)0.0040 (11)
C10'0.0283 (12)0.0273 (12)0.0245 (12)0.0005 (11)0.0048 (10)0.0003 (10)
C11'0.0222 (12)0.0211 (11)0.0259 (12)0.0040 (10)0.0024 (10)0.0039 (10)
C12'0.0342 (15)0.0449 (16)0.0325 (14)0.0029 (14)0.0073 (12)0.0003 (12)
C13'0.0366 (14)0.0313 (14)0.0215 (12)0.0046 (12)0.0012 (11)0.0049 (10)
C14'0.0300 (14)0.0328 (14)0.0373 (15)0.0024 (12)0.0009 (11)0.0014 (11)
Geometric parameters (Å, º) top
O1—C21.436 (3)C12—C131.460 (4)
O1—C111.449 (3)C13—H13A0.9900
O2—C121.458 (3)C13—H13B0.9900
O2—C131.462 (3)C14—H14A0.9800
O3—C1'1.347 (3)C14—H14B0.9800
O3—C151.446 (3)C14—H14C0.9800
O4—C5'1.416 (4)C15—H15A0.9900
O4—C6'1.417 (3)C15—H15B0.9900
O5—C11'1.354 (3)C16—H16A0.9800
O5—C41.456 (3)C16—H16B0.9800
O6—C1'1.204 (4)C16—H16C0.9800
O7—C2'1.409 (3)C1'—C2'1.523 (4)
O7—H70.8400C2'—C3'1.539 (4)
O8—C13'1.421 (3)C2'—H2'1.0000
O8—H80.8400C3'—C12'1.524 (4)
O9—C11'1.207 (3)C3'—C4'1.528 (4)
C2—C121.498 (4)C3'—H3'1.0000
C2—C31.538 (3)C4'—C5'1.519 (4)
C2—H21.0000C4'—H4'A0.9900
C3—C41.543 (3)C4'—H4'B0.9900
C3—H3A0.9900C5'—H5'A0.9900
C3—H3B0.9900C5'—H5'B0.9900
C4—C51.566 (3)C6'—C7'1.503 (4)
C4—H41.0000C6'—C13'1.530 (4)
C5—C141.528 (3)C6'—H6'1.0000
C5—C121.531 (3)C7'—C8'1.331 (4)
C5—C61.584 (3)C7'—H7'0.9500
C6—C151.535 (3)C8'—C9'1.449 (4)
C6—C71.538 (3)C8'—H8'0.9500
C6—C111.551 (3)C9'—C10'1.343 (4)
C7—C81.528 (4)C9'—H9'0.9500
C7—H7A0.9900C10'—C11'1.477 (3)
C7—H7B0.9900C10'—H10'0.9500
C8—C91.502 (4)C12'—H12A0.9800
C8—H8A0.9900C12'—H12B0.9800
C8—H8B0.9900C12'—H12C0.9800
C9—C101.321 (4)C13'—C14'1.512 (4)
C9—C161.505 (4)C13'—H13'1.0000
C10—C111.509 (3)C14'—H14D0.9800
C10—H100.9500C14'—H14E0.9800
C11—H111.0000C14'—H14F0.9800
C2—O1—C11113.23 (17)O3—C15—C6111.26 (19)
C12—O2—C1359.98 (16)O3—C15—H15A109.4
C1'—O3—C15113.7 (2)C6—C15—H15A109.4
C5'—O4—C6'116.2 (2)O3—C15—H15B109.4
C11'—O5—C4115.90 (18)C6—C15—H15B109.4
C2'—O7—H7109.5H15A—C15—H15B108.0
C13'—O8—H8109.5C9—C16—H16A109.5
O1—C2—C12107.62 (19)C9—C16—H16B109.5
O1—C2—C3113.4 (2)H16A—C16—H16B109.5
C12—C2—C3102.03 (19)C9—C16—H16C109.5
O1—C2—H2111.1H16A—C16—H16C109.5
C12—C2—H2111.1H16B—C16—H16C109.5
C3—C2—H2111.1O6—C1'—O3123.7 (3)
C2—C3—C4105.16 (19)O6—C1'—C2'126.0 (3)
C2—C3—H3A110.7O3—C1'—C2'110.3 (2)
C4—C3—H3A110.7O7—C2'—C1'110.7 (2)
C2—C3—H3B110.7O7—C2'—C3'109.5 (2)
C4—C3—H3B110.7C1'—C2'—C3'109.2 (2)
H3A—C3—H3B108.8O7—C2'—H2'109.1
O5—C4—C3107.36 (18)C1'—C2'—H2'109.1
O5—C4—C5111.07 (18)C3'—C2'—H2'109.1
C3—C4—C5106.24 (19)C12'—C3'—C4'113.9 (2)
O5—C4—H4110.7C12'—C3'—C2'109.3 (2)
C3—C4—H4110.7C4'—C3'—C2'111.3 (2)
C5—C4—H4110.7C12'—C3'—H3'107.4
C14—C5—C12112.8 (2)C4'—C3'—H3'107.4
C14—C5—C4114.66 (19)C2'—C3'—H3'107.4
C12—C5—C4100.44 (19)C5'—C4'—C3'114.3 (2)
C14—C5—C6113.28 (19)C5'—C4'—H4'A108.7
C12—C5—C6106.61 (18)C3'—C4'—H4'A108.7
C4—C5—C6107.99 (18)C5'—C4'—H4'B108.7
C15—C6—C7111.19 (19)C3'—C4'—H4'B108.7
C15—C6—C11103.77 (18)H4'A—C4'—H4'B107.6
C7—C6—C11108.23 (19)O4—C5'—C4'109.7 (3)
C15—C6—C5112.62 (19)O4—C5'—H5'A109.7
C7—C6—C5111.73 (19)C4'—C5'—H5'A109.7
C11—C6—C5108.88 (18)O4—C5'—H5'B109.7
C8—C7—C6112.5 (2)C4'—C5'—H5'B109.7
C8—C7—H7A109.1H5'A—C5'—H5'B108.2
C6—C7—H7A109.1O4—C6'—C7'112.9 (2)
C8—C7—H7B109.1O4—C6'—C13'108.2 (2)
C6—C7—H7B109.1C7'—C6'—C13'111.0 (2)
H7A—C7—H7B107.8O4—C6'—H6'108.2
C9—C8—C7113.0 (2)C7'—C6'—H6'108.2
C9—C8—H8A109.0C13'—C6'—H6'108.2
C7—C8—H8A109.0C8'—C7'—C6'126.4 (3)
C9—C8—H8B109.0C8'—C7'—H7'116.8
C7—C8—H8B109.0C6'—C7'—H7'116.8
H8A—C8—H8B107.8C7'—C8'—C9'121.2 (2)
C10—C9—C8122.1 (2)C7'—C8'—H8'119.4
C10—C9—C16121.9 (3)C9'—C8'—H8'119.4
C8—C9—C16116.0 (2)C10'—C9'—C8'127.6 (2)
C9—C10—C11124.5 (2)C10'—C9'—H9'116.2
C9—C10—H10117.8C8'—C9'—H9'116.2
C11—C10—H10117.8C9'—C10'—C11'123.5 (2)
O1—C11—C10105.75 (18)C9'—C10'—H10'118.3
O1—C11—C6112.71 (18)C11'—C10'—H10'118.3
C10—C11—C6112.8 (2)O9—C11'—O5123.7 (2)
O1—C11—H11108.5O9—C11'—C10'126.3 (2)
C10—C11—H11108.5O5—C11'—C10'110.0 (2)
C6—C11—H11108.5C3'—C12'—H12A109.5
O2—C12—C1360.13 (16)C3'—C12'—H12B109.5
O2—C12—C2115.3 (2)H12A—C12'—H12B109.5
C13—C12—C2125.0 (2)C3'—C12'—H12C109.5
O2—C12—C5117.1 (2)H12A—C12'—H12C109.5
C13—C12—C5127.7 (2)H12B—C12'—H12C109.5
C2—C12—C5103.9 (2)O8—C13'—C14'108.4 (2)
C12—C13—O259.90 (15)O8—C13'—C6'110.6 (2)
C12—C13—H13A117.8C14'—C13'—C6'111.6 (2)
O2—C13—H13A117.8O8—C13'—H13'108.7
C12—C13—H13B117.8C14'—C13'—H13'108.7
O2—C13—H13B117.8C6'—C13'—H13'108.7
H13A—C13—H13B114.9C13'—C14'—H14D109.5
C5—C14—H14A109.5C13'—C14'—H14E109.5
C5—C14—H14B109.5H14D—C14'—H14E109.5
H14A—C14—H14B109.5C13'—C14'—H14F109.5
C5—C14—H14C109.5H14D—C14'—H14F109.5
H14A—C14—H14C109.5H14E—C14'—H14F109.5
H14B—C14—H14C109.5
C11—O1—C2—C1265.2 (2)O1—C2—C12—C572.8 (2)
C11—O1—C2—C346.9 (3)C3—C2—C12—C546.8 (2)
O1—C2—C3—C485.5 (2)C14—C5—C12—O238.1 (3)
C12—C2—C3—C430.0 (2)C4—C5—C12—O284.4 (2)
C11'—O5—C4—C3154.6 (2)C6—C5—C12—O2163.10 (19)
C11'—O5—C4—C589.7 (2)C14—C5—C12—C1333.7 (3)
C2—C3—C4—O5121.9 (2)C4—C5—C12—C13156.3 (2)
C2—C3—C4—C53.0 (2)C6—C5—C12—C1391.2 (3)
O5—C4—C5—C1429.1 (3)C14—C5—C12—C2166.5 (2)
C3—C4—C5—C14145.6 (2)C4—C5—C12—C244.0 (2)
O5—C4—C5—C1292.1 (2)C6—C5—C12—C268.5 (2)
C3—C4—C5—C1224.3 (2)C2—C12—C13—O2101.5 (3)
O5—C4—C5—C6156.44 (18)C5—C12—C13—O2102.7 (3)
C3—C4—C5—C687.1 (2)C1'—O3—C15—C6170.8 (2)
C14—C5—C6—C1564.8 (3)C7—C6—C15—O351.0 (3)
C12—C5—C6—C15170.5 (2)C11—C6—C15—O3167.16 (18)
C4—C5—C6—C1563.3 (2)C5—C6—C15—O375.3 (2)
C14—C5—C6—C761.2 (3)C15—O3—C1'—O67.6 (4)
C12—C5—C6—C763.5 (2)C15—O3—C1'—C2'170.7 (2)
C4—C5—C6—C7170.71 (19)O6—C1'—C2'—O713.8 (4)
C14—C5—C6—C11179.32 (19)O3—C1'—C2'—O7168.0 (2)
C12—C5—C6—C1156.0 (2)O6—C1'—C2'—C3'106.9 (3)
C4—C5—C6—C1151.2 (2)O3—C1'—C2'—C3'71.3 (3)
C15—C6—C7—C853.9 (3)O7—C2'—C3'—C12'54.8 (3)
C11—C6—C7—C859.4 (3)C1'—C2'—C3'—C12'66.6 (3)
C5—C6—C7—C8179.3 (2)O7—C2'—C3'—C4'71.8 (3)
C6—C7—C8—C944.4 (3)C1'—C2'—C3'—C4'166.8 (3)
C7—C8—C9—C1014.6 (4)C12'—C3'—C4'—C5'78.2 (4)
C7—C8—C9—C16166.1 (2)C2'—C3'—C4'—C5'157.8 (3)
C8—C9—C10—C111.4 (4)C6'—O4—C5'—C4'179.0 (2)
C16—C9—C10—C11179.3 (2)C3'—C4'—C5'—O464.7 (4)
C2—O1—C11—C10175.6 (2)C5'—O4—C6'—C7'99.2 (3)
C2—O1—C11—C651.9 (3)C5'—O4—C6'—C13'137.6 (2)
C9—C10—C11—O1106.0 (3)O4—C6'—C7'—C8'5.8 (4)
C9—C10—C11—C617.6 (3)C13'—C6'—C7'—C8'127.4 (3)
C15—C6—C11—O1166.89 (18)C6'—C7'—C8'—C9'174.7 (2)
C7—C6—C11—O174.9 (2)C7'—C8'—C9'—C10'169.7 (3)
C5—C6—C11—O146.7 (2)C8'—C9'—C10'—C11'4.7 (4)
C15—C6—C11—C1073.4 (2)C4—O5—C11'—O90.1 (3)
C7—C6—C11—C1044.8 (3)C4—O5—C11'—C10'178.57 (19)
C5—C6—C11—C10166.4 (2)C9'—C10'—C11'—O928.5 (4)
C13—O2—C12—C2117.4 (3)C9'—C10'—C11'—O5152.8 (2)
C13—O2—C12—C5119.9 (3)O4—C6'—C13'—O868.1 (3)
O1—C2—C12—O2157.67 (19)C7'—C6'—C13'—O8167.6 (2)
C3—C2—C12—O282.7 (2)O4—C6'—C13'—C14'52.7 (3)
O1—C2—C12—C1387.6 (3)C7'—C6'—C13'—C14'71.6 (3)
C3—C2—C12—C13152.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O8i0.841.942.761 (3)167
O8—H8···O2ii0.842.102.895 (3)158
C4—H4···O1iii1.002.553.467 (3)153
C13—H13B···O9iv0.992.653.490 (3)143
C7—H7···O6v0.952.623.473 (3)150
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x1/2, y+1/2, z+1; (iv) x+1, y, z; (v) x+1/2, y+1, z+1/2.
Isororidin A (II) top
Crystal data top
C29H40O9Dx = 1.222 Mg m3
Mr = 532.61Cu Kα radiation, λ = 1.54180 Å
Orthorhombic, P212121Cell parameters from 3458 reflections
a = 9.302 (3) Åθ = 4.3–72.7°
b = 15.412 (6) ŵ = 0.74 mm1
c = 20.191 (8) ÅT = 293 K
V = 2894.6 (19) Å3Block, colourless
Z = 40.47 × 0.47 × 0.24 mm
F(000) = 1144
Data collection top
SuperNova (Cu) X-ray Source
diffractometer
4285 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.073
Absorption correction: analytical
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 72.9°, θmin = 3.6°
Tmin = 0.775, Tmax = 0.878h = 611
6984 measured reflectionsk = 1618
5037 independent reflectionsl = 2424
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.086 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.265(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.34 e Å3
5037 reflectionsΔρmin = 0.34 e Å3
349 parametersAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower.
0 restraintsAbsolute structure parameter: 0.4 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1160 (4)0.2734 (3)0.4876 (2)0.0489 (9)
O50.4444 (4)0.3442 (2)0.33576 (19)0.0459 (8)
O90.6291 (4)0.4150 (3)0.3838 (2)0.0552 (10)
O81.0280 (6)0.8042 (3)0.2920 (3)0.0711 (13)
H400.9969080.8369000.2633940.107*
O40.8192 (5)0.6918 (3)0.3550 (2)0.0588 (11)
O60.6101 (7)0.4992 (4)0.6056 (3)0.0914 (19)
O30.4451 (4)0.5178 (2)0.5267 (2)0.0470 (8)
O70.6931 (6)0.6700 (4)0.5946 (3)0.0780 (16)
H390.6542100.6702350.6310380.117*
O20.1010 (4)0.3816 (3)0.3259 (2)0.0552 (10)
C50.2667 (5)0.4062 (3)0.4991 (2)0.0374 (10)
C100.2299 (5)0.3139 (3)0.5240 (3)0.0410 (10)
H100.3161000.2777280.5198810.049*
C90.1829 (6)0.3130 (4)0.5960 (3)0.0489 (12)
H90.1859590.2603680.6184280.059*
C80.1381 (6)0.3814 (5)0.6287 (3)0.0545 (14)
C70.1345 (7)0.4703 (5)0.5984 (3)0.0614 (16)
H70.2123970.5046230.6166960.074*
H80.0447670.4983550.6101640.074*
C60.1486 (6)0.4680 (4)0.5230 (3)0.0510 (13)
H60.1694750.5260860.5071770.061*
H50.0574940.4502130.5040500.061*
C150.0923 (9)0.3768 (6)0.7001 (4)0.078 (2)
H180.1062510.3188600.7163340.117*
H190.0075060.3920310.7035960.117*
H200.1487970.4164940.7258300.117*
C40.2781 (5)0.4043 (3)0.4206 (3)0.0370 (9)
C30.3811 (5)0.3291 (3)0.4010 (3)0.0410 (10)
H40.4564120.3216390.4344320.049*
C20.2894 (6)0.2480 (3)0.3958 (3)0.0495 (12)
H30.3259790.2030220.4249430.059*
H20.2893690.2261400.3507880.059*
C10.1377 (5)0.2748 (4)0.4166 (3)0.0464 (12)
H10.0641810.2410080.3933550.056*
C110.1364 (5)0.3678 (4)0.3957 (3)0.0440 (11)
C120.0054 (6)0.4163 (5)0.3763 (3)0.0589 (15)
H120.0867560.3879740.3825810.071*
H110.0048070.4785670.3831330.071*
C130.3143 (6)0.4929 (3)0.3906 (3)0.0467 (11)
H130.4102650.5090810.4029710.070*
H140.2477440.5355260.4068210.070*
H150.3075280.4896300.3432410.070*
C260.5702 (6)0.3883 (3)0.3352 (3)0.0471 (12)
C250.6222 (7)0.3981 (4)0.2658 (3)0.0539 (13)
H310.5980310.3554820.2351470.065*
C240.7018 (6)0.4650 (4)0.2455 (3)0.0556 (13)
H300.7340230.4622480.2019980.067*
C230.7443 (6)0.5408 (4)0.2820 (3)0.0512 (12)
H290.7276880.5421710.3274500.061*
C220.8056 (6)0.6081 (4)0.2540 (3)0.0523 (12)
H280.8285380.6023300.2094010.063*
C210.8430 (7)0.6929 (4)0.2853 (3)0.0523 (13)
H270.7822510.7381410.2657370.063*
C281.0009 (7)0.7169 (4)0.2733 (3)0.0571 (14)
H351.0222300.7102090.2260720.068*
C291.1011 (7)0.6590 (5)0.3124 (4)0.0708 (19)
H361.1975810.6806680.3089000.106*
H381.0969880.6011050.2950300.106*
H371.0723400.6586220.3580530.106*
C200.6981 (9)0.7363 (5)0.3781 (4)0.077 (2)
H260.6122310.7122860.3579380.092*
H250.7046380.7969760.3656620.092*
C190.6872 (9)0.7289 (4)0.4530 (4)0.073 (2)
H240.7730920.7538990.4725270.088*
H230.6058030.7630210.4679290.088*
C180.6703 (6)0.6377 (4)0.4784 (3)0.0517 (13)
H220.6066370.6069210.4477200.062*
C170.5983 (6)0.6359 (4)0.5475 (3)0.0520 (13)
H210.5119660.6722570.5461920.062*
C160.5547 (7)0.5449 (4)0.5645 (3)0.0527 (13)
C140.4109 (5)0.4275 (3)0.5324 (3)0.0414 (10)
H160.4063030.4117120.5788240.050*
H170.4865380.3934220.5118970.050*
C270.8125 (8)0.5867 (6)0.4818 (4)0.078 (2)
H340.8736130.6118820.5149420.117*
H330.8595940.5890710.4395540.117*
H320.7928100.5273500.4930520.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0333 (16)0.073 (2)0.040 (2)0.0189 (16)0.0039 (17)0.0017 (17)
O50.0357 (16)0.0644 (17)0.0375 (19)0.0007 (16)0.0033 (16)0.0029 (16)
O90.0357 (17)0.081 (2)0.049 (2)0.0155 (18)0.0011 (19)0.0094 (19)
O80.080 (3)0.070 (2)0.063 (3)0.017 (2)0.023 (3)0.018 (2)
O40.052 (2)0.084 (2)0.041 (2)0.014 (2)0.0078 (19)0.0072 (19)
O60.094 (4)0.101 (4)0.079 (4)0.041 (3)0.053 (4)0.024 (3)
O30.0348 (15)0.0587 (17)0.048 (2)0.0084 (15)0.0088 (18)0.0012 (16)
O70.070 (3)0.106 (3)0.058 (3)0.044 (3)0.018 (3)0.033 (3)
O20.0410 (19)0.087 (2)0.038 (2)0.0024 (18)0.0140 (18)0.0003 (19)
C50.0241 (18)0.055 (2)0.033 (2)0.0005 (18)0.005 (2)0.0008 (18)
C100.030 (2)0.057 (2)0.036 (3)0.0048 (19)0.003 (2)0.002 (2)
C90.036 (2)0.075 (3)0.036 (3)0.011 (2)0.000 (2)0.007 (2)
C80.033 (2)0.089 (4)0.041 (3)0.003 (3)0.005 (2)0.000 (3)
C70.049 (3)0.084 (4)0.050 (3)0.015 (3)0.004 (3)0.016 (3)
C60.036 (2)0.073 (3)0.044 (3)0.007 (2)0.002 (3)0.006 (2)
C150.073 (4)0.119 (6)0.042 (3)0.005 (4)0.012 (4)0.005 (4)
C40.0248 (18)0.053 (2)0.033 (2)0.0032 (17)0.005 (2)0.0018 (19)
C30.030 (2)0.060 (2)0.033 (2)0.0010 (19)0.004 (2)0.0060 (19)
C20.046 (3)0.056 (2)0.047 (3)0.005 (2)0.010 (3)0.002 (2)
C10.031 (2)0.069 (3)0.040 (3)0.018 (2)0.002 (2)0.004 (2)
C110.028 (2)0.071 (3)0.033 (2)0.005 (2)0.007 (2)0.003 (2)
C120.031 (2)0.093 (4)0.052 (3)0.012 (3)0.014 (3)0.004 (3)
C130.039 (2)0.056 (2)0.046 (3)0.000 (2)0.007 (2)0.006 (2)
C260.035 (2)0.057 (2)0.049 (3)0.001 (2)0.009 (3)0.003 (2)
C250.052 (3)0.066 (2)0.044 (3)0.005 (2)0.014 (3)0.000 (2)
C240.051 (3)0.073 (3)0.042 (3)0.000 (3)0.010 (3)0.005 (3)
C230.041 (3)0.069 (3)0.043 (3)0.002 (2)0.004 (3)0.009 (2)
C220.046 (3)0.071 (3)0.040 (3)0.004 (2)0.000 (3)0.010 (2)
C210.050 (3)0.068 (3)0.039 (3)0.002 (3)0.002 (3)0.010 (2)
C280.060 (3)0.068 (3)0.044 (3)0.014 (3)0.007 (3)0.010 (2)
C290.051 (3)0.080 (4)0.081 (5)0.004 (3)0.005 (4)0.008 (4)
C200.073 (5)0.080 (4)0.078 (5)0.015 (4)0.025 (4)0.017 (4)
C190.074 (4)0.067 (3)0.078 (5)0.003 (3)0.038 (4)0.009 (3)
C180.041 (3)0.065 (3)0.049 (3)0.002 (2)0.010 (3)0.006 (2)
C170.043 (3)0.064 (3)0.049 (3)0.013 (2)0.009 (3)0.012 (2)
C160.047 (3)0.072 (3)0.039 (3)0.016 (3)0.006 (3)0.004 (2)
C140.028 (2)0.056 (2)0.040 (3)0.0003 (18)0.008 (2)0.002 (2)
C270.060 (4)0.113 (5)0.060 (4)0.028 (4)0.016 (4)0.009 (4)
Geometric parameters (Å, º) top
O1—C101.433 (6)C2—H20.9700
O1—C11.447 (7)C1—C111.494 (8)
O5—C261.354 (7)C1—H10.9800
O5—C31.461 (6)C11—C121.482 (7)
O9—C261.196 (7)C12—H120.9700
O8—C281.420 (7)C12—H110.9700
O8—H400.8200C13—H130.9600
O4—C201.400 (9)C13—H140.9600
O4—C211.424 (7)C13—H150.9600
O6—C161.205 (8)C26—C251.490 (8)
O3—C161.341 (7)C25—C241.334 (9)
O3—C141.432 (6)C25—H310.9300
O7—C171.399 (8)C24—C231.436 (9)
O7—H390.8200C24—H300.9300
O2—C121.454 (8)C23—C221.313 (8)
O2—C111.463 (6)C23—H290.9300
C5—C61.533 (7)C22—C211.493 (9)
C5—C141.536 (6)C22—H280.9300
C5—C101.549 (7)C21—C281.534 (9)
C5—C41.587 (7)C21—H270.9800
C10—C91.517 (7)C28—C291.511 (10)
C10—H100.9800C28—H350.9800
C9—C81.312 (9)C29—H360.9600
C9—H90.9300C29—H380.9600
C8—C71.500 (10)C29—H370.9600
C8—C151.504 (9)C20—C191.520 (11)
C7—C61.528 (9)C20—H260.9700
C7—H70.9700C20—H250.9700
C7—H80.9700C19—C181.504 (9)
C6—H60.9700C19—H240.9700
C6—H50.9700C19—H230.9700
C15—H180.9600C18—C271.540 (9)
C15—H190.9600C18—C171.547 (9)
C15—H200.9600C18—H220.9800
C4—C111.519 (6)C17—C161.499 (8)
C4—C131.531 (6)C17—H210.9800
C4—C31.556 (7)C14—H160.9700
C3—C21.517 (7)C14—H170.9700
C3—H40.9800C27—H340.9600
C2—C11.529 (7)C27—H330.9600
C2—H30.9700C27—H320.9600
C10—O1—C1113.5 (3)C4—C13—H13109.5
C26—O5—C3115.8 (4)C4—C13—H14109.5
C28—O8—H40109.5H13—C13—H14109.5
C20—O4—C21116.7 (5)C4—C13—H15109.5
C16—O3—C14115.2 (4)H13—C13—H15109.5
C17—O7—H39109.5H14—C13—H15109.5
C12—O2—C1161.1 (3)O9—C26—O5124.2 (5)
C6—C5—C14110.8 (4)O9—C26—C25126.0 (5)
C6—C5—C10108.0 (4)O5—C26—C25109.8 (5)
C14—C5—C10104.3 (4)C24—C25—C26123.1 (6)
C6—C5—C4112.0 (4)C24—C25—H31118.4
C14—C5—C4112.5 (4)C26—C25—H31118.4
C10—C5—C4108.8 (4)C25—C24—C23128.6 (6)
O1—C10—C9106.0 (4)C25—C24—H30115.7
O1—C10—C5113.4 (4)C23—C24—H30115.7
C9—C10—C5112.6 (4)C22—C23—C24122.8 (6)
O1—C10—H10108.3C22—C23—H29118.6
C9—C10—H10108.3C24—C23—H29118.6
C5—C10—H10108.3C23—C22—C21127.7 (6)
C8—C9—C10124.5 (5)C23—C22—H28116.2
C8—C9—H9117.7C21—C22—H28116.2
C10—C9—H9117.7O4—C21—C22111.8 (5)
C9—C8—C7122.4 (5)O4—C21—C28107.9 (5)
C9—C8—C15122.3 (7)C22—C21—C28111.5 (5)
C7—C8—C15115.3 (6)O4—C21—H27108.5
C8—C7—C6112.6 (5)C22—C21—H27108.5
C8—C7—H7109.1C28—C21—H27108.5
C6—C7—H7109.1O8—C28—C29108.1 (6)
C8—C7—H8109.1O8—C28—C21110.8 (6)
C6—C7—H8109.1C29—C28—C21111.5 (5)
H7—C7—H8107.8O8—C28—H35108.8
C7—C6—C5113.0 (5)C29—C28—H35108.8
C7—C6—H6109.0C21—C28—H35108.8
C5—C6—H6109.0C28—C29—H36109.5
C7—C6—H5109.0C28—C29—H38109.5
C5—C6—H5109.0H36—C29—H38109.5
H6—C6—H5107.8C28—C29—H37109.5
C8—C15—H18109.5H36—C29—H37109.5
C8—C15—H19109.5H38—C29—H37109.5
H18—C15—H19109.5O4—C20—C19110.4 (7)
C8—C15—H20109.5O4—C20—H26109.6
H18—C15—H20109.5C19—C20—H26109.6
H19—C15—H20109.5O4—C20—H25109.6
C11—C4—C13112.9 (4)C19—C20—H25109.6
C11—C4—C3100.0 (4)H26—C20—H25108.1
C13—C4—C3115.3 (4)C18—C19—C20114.6 (6)
C11—C4—C5106.3 (4)C18—C19—H24108.6
C13—C4—C5113.2 (4)C20—C19—H24108.6
C3—C4—C5108.0 (4)C18—C19—H23108.6
O5—C3—C2107.2 (4)C20—C19—H23108.6
O5—C3—C4111.1 (4)H24—C19—H23107.6
C2—C3—C4106.6 (4)C19—C18—C27113.7 (6)
O5—C3—H4110.6C19—C18—C17111.7 (5)
C2—C3—H4110.6C27—C18—C17108.8 (5)
C4—C3—H4110.6C19—C18—H22107.5
C3—C2—C1106.1 (4)C27—C18—H22107.5
C3—C2—H3110.5C17—C18—H22107.5
C1—C2—H3110.5O7—C17—C16111.5 (6)
C3—C2—H2110.5O7—C17—C18109.4 (5)
C1—C2—H2110.5C16—C17—C18109.9 (5)
H3—C2—H2108.7O7—C17—H21108.7
O1—C1—C11107.1 (4)C16—C17—H21108.7
O1—C1—C2113.3 (5)C18—C17—H21108.7
C11—C1—C2100.9 (4)O6—C16—O3122.4 (6)
O1—C1—H1111.6O6—C16—C17126.1 (5)
C11—C1—H1111.6O3—C16—C17111.5 (5)
C2—C1—H1111.6O3—C14—C5111.5 (4)
O2—C11—C1259.2 (4)O3—C14—H16109.3
O2—C11—C1114.5 (4)C5—C14—H16109.3
C12—C11—C1124.4 (5)O3—C14—H17109.3
O2—C11—C4117.5 (4)C5—C14—H17109.3
C12—C11—C4127.9 (5)H16—C14—H17108.0
C1—C11—C4104.7 (4)C18—C27—H34109.5
O2—C12—C1159.8 (3)C18—C27—H33109.5
O2—C12—H12117.8H34—C27—H33109.5
C11—C12—H12117.8C18—C27—H32109.5
O2—C12—H11117.8H34—C27—H32109.5
C11—C12—H11117.8H33—C27—H32109.5
H12—C12—H11114.9
C1—O1—C10—C9175.3 (4)O1—C1—C11—C472.6 (5)
C1—O1—C10—C551.3 (6)C2—C1—C11—C446.2 (5)
C6—C5—C10—O175.4 (5)C13—C4—C11—O238.3 (6)
C14—C5—C10—O1166.6 (4)C3—C4—C11—O284.8 (5)
C4—C5—C10—O146.4 (5)C5—C4—C11—O2162.9 (4)
C6—C5—C10—C944.8 (5)C13—C4—C11—C1232.7 (8)
C14—C5—C10—C973.1 (5)C3—C4—C11—C12155.8 (6)
C4—C5—C10—C9166.6 (4)C5—C4—C11—C1292.0 (6)
O1—C10—C9—C8106.0 (6)C13—C4—C11—C1166.6 (4)
C5—C10—C9—C818.4 (7)C3—C4—C11—C143.5 (5)
C10—C9—C8—C72.6 (9)C5—C4—C11—C168.8 (5)
C10—C9—C8—C15179.8 (6)C1—C11—C12—O2100.1 (6)
C9—C8—C7—C615.4 (8)C4—C11—C12—O2102.5 (6)
C15—C8—C7—C6166.9 (5)C3—O5—C26—O90.5 (7)
C8—C7—C6—C544.7 (7)C3—O5—C26—C25179.5 (4)
C14—C5—C6—C754.1 (6)O9—C26—C25—C2429.4 (9)
C10—C5—C6—C759.5 (6)O5—C26—C25—C24150.5 (6)
C4—C5—C6—C7179.4 (5)C26—C25—C24—C234.5 (10)
C6—C5—C4—C1163.9 (5)C25—C24—C23—C22170.0 (7)
C14—C5—C4—C11170.5 (4)C24—C23—C22—C21174.3 (6)
C10—C5—C4—C1155.5 (5)C20—O4—C21—C22105.1 (6)
C6—C5—C4—C1360.6 (5)C20—O4—C21—C28131.9 (6)
C14—C5—C4—C1365.0 (5)C23—C22—C21—O46.8 (9)
C10—C5—C4—C13180.0 (4)C23—C22—C21—C28127.7 (6)
C6—C5—C4—C3170.5 (4)O4—C21—C28—O868.0 (6)
C14—C5—C4—C364.0 (5)C22—C21—C28—O8168.8 (5)
C10—C5—C4—C351.1 (5)O4—C21—C28—C2952.4 (7)
C26—O5—C3—C2153.7 (4)C22—C21—C28—C2970.7 (7)
C26—O5—C3—C490.3 (5)C21—O4—C20—C19179.8 (6)
C11—C4—C3—O592.9 (5)O4—C20—C19—C1861.6 (9)
C13—C4—C3—O528.5 (6)C20—C19—C18—C2780.2 (9)
C5—C4—C3—O5156.2 (4)C20—C19—C18—C17156.2 (6)
C11—C4—C3—C223.6 (5)C19—C18—C17—O769.4 (8)
C13—C4—C3—C2145.0 (5)C27—C18—C17—O757.0 (7)
C5—C4—C3—C287.3 (5)C19—C18—C17—C16167.9 (6)
O5—C3—C2—C1122.6 (5)C27—C18—C17—C1665.8 (7)
C4—C3—C2—C13.5 (6)C14—O3—C16—O67.9 (9)
C10—O1—C1—C1164.0 (5)C14—O3—C16—C17170.8 (5)
C10—O1—C1—C246.4 (6)O7—C17—C16—O612.6 (9)
C3—C2—C1—O184.4 (5)C18—C17—C16—O6109.0 (8)
C3—C2—C1—C1129.8 (6)O7—C17—C16—O3168.7 (5)
C12—O2—C11—C1116.8 (6)C18—C17—C16—O369.7 (6)
C12—O2—C11—C4119.7 (6)C16—O3—C14—C5168.2 (4)
O1—C1—C11—O2157.3 (4)C6—C5—C14—O350.8 (6)
C2—C1—C11—O283.9 (5)C10—C5—C14—O3166.8 (4)
O1—C1—C11—C1289.1 (6)C4—C5—C14—O375.4 (5)
C2—C1—C11—C12152.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H40···O2i0.822.132.921 (6)161
O7—H39···O8ii0.821.992.785 (7)164
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1/2, y+3/2, z+1.
NMR spectroscopic data for Isororidin A [400 (1H) and 100 (13C) MHz, δ ppm]a top
Position (Scheme 1)1H NMR (J in Hz)13C NMRCOSYHMBCNOESY
23.74 (d, 5.1)80.43b4, 5, 123', 13a
3b: 2.14 (overlap by H-3')35.72, 42, 4
a: 2.47 (dd, 8.2, 15.2)2, 5, 12
45.84 (dd, 4.5, 8.2)76.032, 3, 5, 6, 12, 11'11
5Cq50.5
6Cq45.0
71.87 (m, 2H)21.386, 8, 9, 1113, 14
8a: 1.93 (d, 8.0)28.776,7, 9, 10
b: 1.98 (m)
9Cq141.7
105.41 (d, 5.4)119.711, 166, 8, 11, 16
113.72 (br d, 5.4)68.5107, 10, 154
12Cq66.4
132.86 (d, 4.0)48.52, 5, 1214
3.05 (d, 4.0)
140.81 (s)8.0,4, 5, 6, 122', 3', 15, 12'
154.32 (d, 12.2)64.8155, 6, 7, 1'14
4.46 (d, 12.2)5, 6, 7, 11, 1'
161.72 (s)23.3108, 9, 10
1'CO175.6
2'4.04 (d, 4.0)76.73'1', 4', 12'14, 3', 12'
3'2.08 (m37.72', 12'1', 2'14, 2'
4'1.58 (m)34.94', 5'3', 5', 12'
1.73 (m)2', 3', 5'
5'3.50 (ddd, 5.2, 8.7, 9.1)70.94', 5'3', 4', 6'
3.58 (ddd, 5.2, 9.6, 9.8)
6'3.82 (m)84.67', 13'5', 7', 8', 14'8', 14'
7'6.17 (dd, 3.0, 15.4)142.36', 8'6', 8', 9'13', 14'
8'7.60 (ddt, 11.4, 15.4, 1.1)126.87', 9'6', 9', 10'14, 3', 10', 12'
9'6.75 (t, 11.4)145.58', 10'7', 8', 11'7'
10'5.76 (d, 11.2)117.99'8', 9', 11'14
11'CO168.1
12'1.09 (d, 6.8)15.13'2', 3', 4'14, 2', 3', 8'
13'3.69 (m)71.06', 14'6', 14'7', 8', 14'
14'1.16 (d, 6.4)18.413'6', 13'6', 7', 8',13'
Note: (a) the assignments were based on 1H–1H COSY, HSQC–DEPT and HMBC experiments and recorded in MeOD-d4.
 

Acknowledgements

MAA acknowledges a joint graduate student scholarship from the Egyptian Ministry of Higher Education (Cultural Affairs and Missions Sector) and the Greek Ministry of Foreign Affairs (E1 sector). The authors also thank Assistant Pro­fessor Nikolaos Tsoureas (Department of Chemistry, National and Kapodistrian University of Athens) for his assistance with the measurement of the X-ray diffraction data at the Core Facilities of the National and Kapodistrian University of Athens, as well as Associate Professor Kostas Bethanis, Department of Science, Agricultural University of Athens, partner of the National Research Infrastructure `INSPIRED', for critical reading of the manuscript.

Funding information

Funding for this research was provided by: `INSPIRED' under the Action `Reinforcement of the Research and Innovation' (NSRF 2014–2020) (grant No. 5002550 to Evangelia Chrysina).

References

First citationAmagata, T., Rath, C., Rigot, J. F., Tarlov, N., Tenney, K., Valeriote, F. A. & Crews, P. (2003). J. Med. Chem. 46, 4342–4350.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBräse, S., Encinas, A., Keck, J. & Nising, C. F. (2009). Chem. Rev. 109, 3903–3990.  PubMed Google Scholar
First citationBruker (2021). APEX4, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarvalho, M. de, Weich, H. & Abraham, W.-R. (2015). Curr. Med. Chem. 23, 23–35.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrove, J. F. (2007). Progress in the Chemistry of Organic Natural Products, Vol. 88, pp. 63–130. Vienna: Springer Vienna.  Google Scholar
First citationJarvis, B. B., Comezoglu, S. N., Rao, M. M., Pena, N. B., Boettner, F. E., Williams, T. M., Forsyth, G. & Epling, B. (1987). J. Org. Chem. 52, 45–56.  CAS Google Scholar
First citationJarvis, B. B. & Mazzola, E. P. (1982). Acc. Chem. Res. 15, 388–395.  CrossRef CAS Google Scholar
First citationJarvis, B. B., Midiwo, J. O., Flippen-Anderson, J. L. & Mazzola, E. P. (1982). J. Nat. Prod. 45, 440–448.  CSD CrossRef CAS Google Scholar
First citationJarvis, B. B. & Wang, S. (1999). J. Nat. Prod. 62, 1284–1289.  CrossRef PubMed CAS Google Scholar
First citationJarvis, B. B., Wang, S. & Ammon, H. L. (1996). J. Nat. Prod. 59, 254–261.  CSD CrossRef CAS PubMed Google Scholar
First citationMcCormick, S. P., Stanley, A. M., Stover, N. A. & Alexander, N. J. (2011). Toxins, 3, 802–814.  CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationShank, R. A., Foroud, N. A., Hazendonk, P., Eudes, F. & Blackwell, B. A. (2011). Toxins, 3, 1518–1553.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSy-Cordero, A. A., Graf, T. N., Wani, M. C., Kroll, D. J., Pearce, C. J. & Oberlies, N. H. (2010). J. Antibiot. 63, 539–544.  CAS Google Scholar
First citationWu, Q., Wang, X., Nepovimova, E., Miron, A., Liu, Q., Wang, Y., Su, D., Yang, H., Li, L. & Kuca, K. (2017). Arch. Toxicol. 91, 3737–3785.  CrossRef CAS PubMed Google Scholar
First citationZhu, M., Cen, Y., Ye, W., Li, S. & Zhang, W. (2020). Toxins, 12, 417–433.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds