research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Formation of a di­iron–(μ-η1:η1-CN) com­plex from aceto­nitrile solution

crossmark logo

aTechnical University of Munich, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Lichtenbergstrasse 4, 85748 Garching, Germany
*Correspondence e-mail: fritz.kuehn@ch.tum.de

Edited by D. R. Turner, University of Monash, Australia (Received 11 June 2024; accepted 18 July 2024; online 8 August 2024)

The activation of C—C bonds by transition-metal com­plexes is of continuing inter­est and aceto­nitrile (MeCN) has attracted attention as a cyanide source with com­paratively low toxicity for organic cyanation reactions. A di­iron end-on μ-η1:η1-CN-bridged com­plex was obtained from a crystallization experiment of an open-chain iron–NHC com­plex, namely, μ-cyanido-κ2C:N-bis­{[(aceto­nitrile-κN)[3,3′-bis­(pyridin-2-yl)-1,1′-(methyl­idene)bis­(benzimidazol-2-yl­idene)]iron(II)} tris­(hexa­fluoro­phos­phate), [Fe2(CN)(C2H3N)2(C25H18N6)2](PF6)3. The cyanide appears to originate from the MeCN solvent by C—C bond cleavage or through carbon–hy­dro­gen oxidation.

1. Introduction

The first iron–NHC (N-heterocyclic carbene) com­plex was developed by Öfele in 1969 (Öfele, 1969[Öfele, K. (1969). Angew. Chem. Int. Ed. Engl. 8, 916-917.]). However, it has taken many years for iron–NHC com­plexes to attract the attention of a wider audience of chemists, but, especially in the last decade, there has been a sharp increase in related publications (Riener et al., 2014[Riener, K., Haslinger, S., Raba, A., Högerl, M. P., Cokoja, M., Herrmann, W. A. & Kühn, F. E. (2014). Chem. Rev. 114, 5215-5272.]). The open-chain iron–pyridine-NHC com­plex bis­(aceto­nitrile-κN)[3,3′-bis­(pyridin-2-yl)-1,1′-(methyl­idene)bis­(benzimidazol-2-yl­idene)]iron(II) bis­(hexa­fluoro­phos­phate), 1 (Scheme 1[link]), can be successfully employed in homogeneous epoxidation catalysis (Schlachta et al., 2024[Schlachta, T. P., Zámbó, G. G., Sauer, M. J., Rüter, I. & Kühn, F. E. (2024). Submitted.]). In the present work, a di­iron end-on μ-η1:η1-CN-bridged com­plex, 2 (Scheme 2[link]), is formed from a solution of 1 in deu­ter­ated aceto­nitrile. The activation of C—C bonds by tran­si­tion-metal com­plexes is of continuing inter­est and MeCN has attracted attention as a cyanide source with com­paratively low toxicity for organic cyanation reactions (Ahmad et al., 2020[Ahmad, M. S., Pulidindi, I. N. & Li, C. (2020). New J. Chem. 44, 17177-17197.]; Lu et al., 2004[Lu, T., Zhuang, X., Li, Y. & Chen, S. (2004). J. Am. Chem. Soc. 126, 4760-4761.]; Spentzos et al., 2020[Spentzos, A. Z., Gau, M. R., Carroll, P. J. & Tomson, N. C. (2020). Chem. Commun. 56, 9675-9678.]; Grirrane et al., 2016[Grirrane, A., Álvarez, E., Albero, J., García, H. & Corma, A. (2016). Dalton Trans. 45, 5444-5450.]).

2. Experimental

2.1. General procedures and analytical methods

Complex 1 was synthesized according to a literature method (Schlachta et al., 2024[Schlachta, T. P., Zámbó, G. G., Sauer, M. J., Rüter, I. & Kühn, F. E. (2024). Submitted.]). Solvents were purified, dried and de­gassed using standard methods (Armarego, 2017[Armarego, W. L. (2017). In Purification of laboratory chemicals. London: Butterworth-Heinemann.]) or received from a solvent purification system by M. Braun. All other chemicals were obtained from commercial suppliers and were used without further purification. NMR spectra were recorded on a Bruker Avance Ultrashield AV400 (400.13 MHz for 1H NMR and 100.53 MHz for 13C NMR). The chemical shifts are given in δ values in ppm (parts per million) relative to TMS (tetra­methyl­silane) and are reported relative to the residual deuterated solvent signal (Fulmer et al., 2010[Fulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E. & Goldberg, K. I. (2010). Organometallics, 29, 2176-2179.]). Electrospray ionization mass spectrometry (ESI–MS) data were measured on a Thermo Fisher Ultimate 3000. FT–IR measurements were conducted on a PerkinElmer Frontier FT–IR spec­trom­eter (ATR). The `inVia Reflex Raman System' com­prises a research grade optical microscope [Leica DM2700M, Magnification 5×, 20× and 50× (in this case, 50× was used)] coupled to a high-performance Raman spectrometer (Renishaw). A 633 nm wavelength laser was used (Renishaw RL633 Class 3B).

[Scheme 1]
[Scheme 2]

2.2. Crystallization of 2

Single crystals of 2 suitable for X-ray diffraction were obtained by slow evaporation of a solution of 1 in CD3CN over a period of six months at room temperature under an ambient atmosphere near a window with sunlight (see supporting information).

A solution of 1 (around 1–2 mg) in CD3CN (around 0.4 ml, dry and degassed) from an NMR tube (see supporting information) was placed in a 10 ml vial under an ambient atmosphere. A human hair was fixed with adhesive tape to the inside of the vial, reaching into the solution. Heterogeneous nu­cle­ation occurs more frequently than homogeneous nucleation (Sear, 2014[Sear, R. P. (2014). CrystEngComm, 16, 6506-6522.]; Pruppacher & Klett, 1997[Pruppacher, H. R. & Klett, J. D. (1997). In Microphysics of Clouds and Precipitation. Dordrecht: Springer.]) and human hair has been used for the growth of nanoparticles or as catalyst-support material (Deng et al., 2016[Deng, D., Gopiraman, M., Kim, S. H., Chung, I.-M. & Kim, I. S. (2016). ACS Sustainable Chem. Eng. 4, 5409-5414.]; Liu et al., 2015[Liu, X., Zhou, W., Yang, L., Li, L., Zhang, Z., Ke, Y. & Chen, S. (2015). J. Mater. Chem. A, 3, 8840-8846.]; Haveli et al., 2012[Haveli, S. D., Walter, P., Patriarche, G., Ayache, J., Castaing, J., Van Elslande, E., Tsoucaris, G., Wang, P.-A. & Kagan, H. B. (2012). Nano Lett. 12, 6212-6217.]; Walter et al., 2006[Walter, P., Welcomme, E., Hallégot, P., Zaluzec, N. J., Deeb, C., Castaing, J., Veyssière, P., Bréniaux, R., Lévêque, J.-L. & Tsoucaris, G. (2006). Nano Lett. 6, 2215-2219.]). The vial was closed and the cap was punctured with a cannula. The vial was left for six months at room temperature under ambient conditions near a window with sunlight, allowing the solvent to evaporate slowly. Orange crystals suitable for SC-XRD analysis were obtained.

2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms could not be located in difference Fourier maps and were calculated in ideal positions (riding model), with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for CH3 groups, C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for CH2 groups, and C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for CH groups. Split-layer position refinement was used for atoms P2, F7, F8, F9, F10, F11 and F12 (PF6 anion), as well as N8 and C28 (bridging cyanide). Restraints were applied to atoms N8 and C28 to ensure reasonable ellipsoids. CD3 has been modelled as CH3 as there is no appreciable difference in SC-XRD.

Table 1
Experimental details

Crystal data
Chemical formula [Fe2(CN)(C2D3N)2(C25H18N6)2](PF6)3
Mr 1465.67
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 25.562 (2), 17.0373 (15), 14.8998 (12)
β (°) 112.112 (3)
V3) 6011.8 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.67
Crystal size (mm) 0.13 × 0.05 × 0.04
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.708, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 89835, 5310, 4621
Rint 0.051
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.11
No. of reflections 5310
No. of parameters 461
No. of restraints 9
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.27
Computer programs: APEX4 (Bruker, 2021[Bruker (2021). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2019[Bruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

3. Results and discussion

When a solution of 1 (Scheme 1[link] and Fig. 1[link]) in CD3CN was evaporated slowly over a period of six months under ambient conditions, a di­iron end-on μ-η1:η1-CN-bridged com­plex, [(MeCN)(NHC)Fe]2(μ-η1:η1-CN)(PF6)3 (2) (Scheme 2[link] and Fig. 2[link]), was obtained, as determined by X-ray diffraction. The two iron centres are bridged by a cyanide anion, hence three PF6 anions are present in the crystal structure. Under similar conditions, i.e. MeCN solution, room temperature and air, a dinuclear CuII cryptate has been found to form a μ-η1:η1-CN-bridged com­plex by C—C bond cleavage of MeCN (Lu et al., 2004[Lu, T., Zhuang, X., Li, Y. & Chen, S. (2004). J. Am. Chem. Soc. 126, 4760-4761.]). A possible mechanism involving the activation of the sp-hybridized C atom of MeCN, bound to one Cu atom (MeCN—Cu), by the second Cu centre has been suggested. The increased electrophilicity of the methyl group would allow cleavage by H2O to form MeOH and the cyanide-bridged com­pound (Lu et al., 2004[Lu, T., Zhuang, X., Li, Y. & Chen, S. (2004). J. Am. Chem. Soc. 126, 4760-4761.]; Ahmad et al., 2020[Ahmad, M. S., Pulidindi, I. N. & Li, C. (2020). New J. Chem. 44, 17177-17197.]). Another possible mechanism for the formation of 2 might be the carbon–hy­dro­gen oxidation of MeCN by iron com­plex 1 to form glycolo­nitrile, as observed previously for an iron(III) tetra­carbene com­plex, and subsequent release of cyanide upon decay of glycolo­nitrile (Knapp et al., 2012[Knapp, S. M. M., Sherbow, T. J., Juliette, J. J. & Tyler, D. R. (2012). Organometallics, 31, 2941-2944.]; Dyckhoff et al., 2021[Dyckhoff, F., Schlagintweit, J. F., Bernd, M. A., Jakob, C. H. G., Schlachta, T. P., Hofmann, B. J., Reich, R. M. & Kühn, F. E. (2021). Catal. Sci. Technol. 11, 795-799.]; Lewis, 2008[Lewis, R. J. Sr (2008). In Hazardous Chemicals Desk Reference, 6th ed. Chichester: John Wiley & Sons.]). Due to the stronger Me—CN bond (122 kcal mol−1) com­pared to the H—CH2CN bond (93 kcal mol−1) (Spentzos et al., 2020[Spentzos, A. Z., Gau, M. R., Carroll, P. J. & Tomson, N. C. (2020). Chem. Commun. 56, 9675-9678.]; Blanksby & Ellison, 2003[Blanksby, S. J. & Ellison, G. B. (2003). Acc. Chem. Res. 36, 255-263.]; Goebbert et al., 2010[Goebbert, D. J., Velarde, L., Khuseynov, D. & Sanov, A. (2010). J. Phys. Chem. Lett. 1, 792-795.]; Miscione & Bottoni, 2014[Miscione, G. P. & Bottoni, A. (2014). Organometallics, 33, 4173-4182.]), the carbon–hy­dro­gen oxidation of MeCN seems to be more likely the origin of cyanide in this case. However, C—C bond cleavage of MeCN by UV irradiation is known (Grirrane et al., 2016[Grirrane, A., Álvarez, E., Albero, J., García, H. & Corma, A. (2016). Dalton Trans. 45, 5444-5450.]) and, given the fact that the crystallization setup with 1 was also accessible for sunlight during the extensive period of six months, C—C bond cleavage of MeCN cannot be excluded.

[Figure 1]
Figure 1
The mol­ecular structure of 1. H atoms and hexa­fluoro­phos­phate anions have been omitted for clarity. Displacement ellipsoids are shown at the 50% probability level (Schlachta et al., 2024[Schlachta, T. P., Zámbó, G. G., Sauer, M. J., Rüter, I. & Kühn, F. E. (2024). Submitted.]).
[Figure 2]
Figure 2
The mol­ecular structure of 2. H atoms and hexa­fluoro­phos­phate anions have been omitted for clarity. Displacement ellipsoids are shown at the 50% probability level.

The crystal structure of 2 reveals strongly bent equatorial NHC ligands. This finding is in stark contrast to 1, where the NHC ligand is largely planar (Fig. 1[link]). This sandwich-like structure encapsulates the cyanide ion and is indicative of some noncovalent inter­actions between the equatorial ligands, likely contributing to the stability of 2. Inter­estingly, the py­ri­dine units are bent less towards the centre com­pared to the NHC units, forming a Z-shape or diamond-shape, depending on the viewing angle of 2. The Fe—N—C angle is slightly bent (Table 2[link]) in a trans fashion, resulting in a `zigzag' vertical axis. Another inter­esting finding is the rotation of the NHC ligands towards each other in an anti conformation, resulting in a dihedral angle (CH2—Fe—Fe—CH2) of 160.7° (Scheme 2[link]). The crystal structure can in principle also be solved as the di­iron–(μ-η1:η1-N2) com­plex (Fig. 2[link]), which is why we refrain from a detailed structural discussion at this point. However, there are several arguments against a di­iron–(μ-η1:η1-N2) com­plex:

Table 2
Selected geometric parameters (Å, °)

Fe1—N3 2.0703 (16) Fe1—N8 1.83 (4)
Fe1—N6 2.0754 (17) Fe1—C1 1.824 (2)
Fe1—N7 1.9336 (17) Fe1—C14 1.824 (2)
Fe1—C28i 1.98 (5) N8—C28 1.128 (12)
       
N7—Fe1—N8 173.3 (10) Fe1—N8—C28 171.1 (7)
Fe1i—C28—N8 177 (4) N3—Fe1—C14 167.26 (8)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

(i) The main argument against a di­iron–(μ-η1:η1-N2) com­plex is the fact that the crystal structure contains three counter-ions. As the crystallization was performed with 1 containing an iron(II) centre, bridging two FeII atoms with a neutral N2 ligand should lead to the presence of four counter-ions. Otherwise, three counter-ions would indicate that a redox process has occurred during the formation of 2, but the nature of a hypothetical reducing agent and the location of reduction are highly speculative. The main com­ponents of the crystallization experiment were 1 and CD3CN, as well as un­reacted ligand precursor as a minor impurity (see sup­porting information). In a cyclic voltammetry study of 1, the first reduction event occurred at −1.78 V (versus Fc/Fc+). A pre­limi­nary experiment measuring 1 in cyclic voltammetry under an N2 atmosphere did not show significant redox processes or electric current. Considering all these facts, the involvement of a redox process appears to be quite implausible.

(ii) Di­nitro­gen is a weak σ-donor and a weak π-acceptor, and substitution of the N2 ligand with CO or nitriles like MeCN is often observed (Crossland & Tyler, 2010[Crossland, J. L. & Tyler, D. R. (2010). Coord. Chem. Rev. 254, 1883-1894.]; Sunada et al., 2013[Sunada, Y., Imaoka, T. & Nagashima, H. (2013). Organometallics, 32, 2112-2120.]). A di­iron–(μ-η1:η1-N2) version of 2 would be very surprising in this context, since one axial MeCN ligand coordinates with one iron centre each, the crystallization of 2 occurred in (deuterated) MeCN as solvent and the previous occupation of both axial coordination sites by MeCN in 1. The stability of 2 under air is also inter­esting, which would be rather uncommon for a di­iron–(μ-η1:η1-N2) com­plex (Crossland & Tyler, 2010[Crossland, J. L. & Tyler, D. R. (2010). Coord. Chem. Rev. 254, 1883-1894.]; Takeshita et al., 2018[Takeshita, T., Sato, K. & Nakajima, Y. (2018). Dalton Trans. 47, 17004-17010.]; Saouma et al., 2011[Saouma, C. T., Moore, C. E., Rheingold, A. L. & Peters, J. C. (2011). Inorg. Chem. 50, 11285-11287.]; Regenauer et al., 2022[Regenauer, N. I., Wadepohl, H. & Roşca, D.-A. (2022). Inorg. Chem. 61, 7426-7435.]) and an affinity for N2 over O2 would be very unusual considering other Fe com­pounds tending to form di­iron–μ-oxido species (Schlachta & Kühn, 2023[Schlachta, T. P. & Kühn, F. E. (2023). Chem. Soc. Rev. 52, 2238-2277.]; Schlachta et al., 2021[Schlachta, T. P., Anneser, M. R., Schlagintweit, J. F., Jakob, C. H. G., Hintermeier, C., Böth, A. D., Haslinger, S., Reich, R. M. & Kühn, F. E. (2021). Chem. Commun. 57, 6644-6647.]).

(iii) A di­iron–(μ-η1:η1-N2) com­plex should show a distinctive vNN absorption band in Raman spectroscopy and be IR inactive due to the centrosymmetric structure (Suess & Peters, 2013[Suess, D. L. M. & Peters, J. C. (2013). J. Am. Chem. Soc. 135, 4938-4941.]; McWilliams et al., 2018[McWilliams, S. F., Bunting, P. C., Kathiresan, V., Mercado, B. Q., Hoffman, B. M., Long, J. R. & Holland, P. L. (2018). Chem. Commun. 54, 13339-13342.]; Gu et al., 2018[Gu, N. X., Oyala, P. H. & Peters, J. C. (2018). J. Am. Chem. Soc. 140, 6374-6382.]). No vNN band was detected in the crude material either by IR or Raman spectroscopy. However, no pronounced vCN stretch could be observed either and, inter­estingly, com­plex 1 also does not show a characteristic vCN band in IR, contrary to similar com­plexes (Raba et al., 2012[Raba, A., Cokoja, M., Ewald, S., Riener, K., Herdtweck, E., Pöthig, A., Herrmann, W. A. & Kühn, F. E. (2012). Organometallics, 31, 2793-2800.]), but signals attributable to axial MeCN are visible in the Raman spectrum (see supporting information).

4. Conclusion

A di­iron end-on μ-η1:η1-CN-bridged com­plex, 2, was obtained from a crystallization experiment with an open-chain iron NHC com­plex 1. The cyanide presumably originates from the MeCN solvent by C—C bond cleavage or through carbon–hy­dro­gen oxidation. The strongly bent NHC ligands are positioned in an anti conformation.

Supporting information


Computing details top

µ-Cyanido-κ2C:N-bis[(acetonitrile-κN)[3,3'-bis(pyridin-2-yl)-1,1'-(methylidene)bis(benzimidazol-2-ylidene)]iron(II) tris(hexafluorophosphate), top
Crystal data top
[Fe2(CN)(C2D3N)2(C25H18N6)2](PF6)3F(000) = 2944
Mr = 1465.67Dx = 1.613 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9628 reflections
a = 25.562 (2) Åθ = 2.4–26.4°
b = 17.0373 (15) ŵ = 0.67 mm1
c = 14.8998 (12) ÅT = 100 K
β = 112.112 (3)°Block, orange
V = 6011.8 (9) Å30.13 × 0.05 × 0.04 mm
Z = 4
Data collection top
Bruker D8 Venture
diffractometer
5310 independent reflections
Radiation source: TXS rotating anode4621 reflections with I > 2σ(I)
Helios optic monochromatorRint = 0.051
Detector resolution: 16 pixels mm-1θmax = 25.0°, θmin = 1.8°
phi– and ω–rotation scansh = 3030
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2020
Tmin = 0.708, Tmax = 0.745l = 1717
89835 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0401P)2 + 7.8548P]
where P = (Fo2 + 2Fc2)/3
5310 reflections(Δ/σ)max = 0.001
461 parametersΔρmax = 0.43 e Å3
9 restraintsΔρmin = 0.27 e Å3
Special details top

Experimental. Diffractometer operator Michael J. Sauer scanspeed 8 s per frame dx 52 mm 2745 frames measured in 9 data sets phi-scans with delta_phi = 0.5 omega-scans with delta_omega = 0.5 shutterless mode

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C20.51681 (9)0.54639 (12)0.40847 (15)0.0230 (4)
C10.48971 (8)0.67342 (11)0.41355 (14)0.0191 (4)
C30.52280 (10)0.46741 (12)0.39071 (16)0.0285 (5)
H30.4935450.4391330.3425430.034*
C40.57347 (10)0.43178 (13)0.44656 (16)0.0325 (5)
H40.5787610.3778390.4361700.039*
C50.61662 (10)0.47228 (13)0.51698 (16)0.0309 (5)
H50.6505640.4455030.5536340.037*
C60.61117 (9)0.55136 (12)0.53500 (15)0.0262 (5)
H60.6405360.5794560.5831940.031*
C70.56099 (9)0.58683 (11)0.47936 (14)0.0210 (4)
C80.41982 (8)0.60040 (12)0.29429 (14)0.0216 (4)
C90.39400 (9)0.53318 (13)0.24422 (16)0.0278 (5)
H90.4126630.4838550.2583250.033*
C100.34073 (10)0.53986 (13)0.17372 (16)0.0316 (5)
H100.3222980.4951490.1374620.038*
C110.31423 (9)0.61226 (14)0.15608 (17)0.0315 (5)
H110.2772840.6178890.1082420.038*
C120.34259 (9)0.67626 (13)0.20945 (15)0.0269 (5)
H120.3240370.7256980.1977400.032*
C130.57511 (9)0.72591 (11)0.54465 (15)0.0237 (4)
H13A0.6156370.7186450.5568050.028*
H13B0.5703860.7218980.6074610.028*
C140.50573 (8)0.82068 (11)0.43583 (14)0.0185 (4)
C150.55845 (8)0.93306 (11)0.47385 (14)0.0194 (4)
C160.58037 (8)1.00883 (12)0.48412 (15)0.0220 (4)
H160.5588741.0513460.4471280.026*
C170.63487 (9)1.01944 (12)0.55065 (15)0.0251 (5)
H170.6510771.0704110.5590100.030*
C180.66666 (9)0.95765 (13)0.60568 (16)0.0261 (5)
H180.7038510.9675430.6507540.031*
C190.64519 (9)0.88182 (12)0.59610 (15)0.0241 (4)
H190.6666470.8394380.6335000.029*
C200.59074 (8)0.87146 (11)0.52896 (14)0.0205 (4)
C210.45748 (8)0.92713 (11)0.34057 (14)0.0191 (4)
C220.44959 (9)1.00394 (12)0.30793 (15)0.0229 (4)
H220.4777901.0425640.3364640.027*
C230.39996 (9)1.02300 (13)0.23321 (16)0.0276 (5)
H230.3933591.0753500.2096420.033*
C240.35964 (9)0.96551 (13)0.19246 (16)0.0277 (5)
H240.3251400.9775820.1407300.033*
C250.37087 (9)0.89035 (13)0.22888 (14)0.0240 (4)
H250.3431960.8509720.2008390.029*
C260.37547 (9)0.76394 (12)0.48363 (15)0.0223 (4)
C270.33930 (9)0.76348 (14)0.53938 (16)0.0314 (5)
H27A0.3627030.7603030.6086110.047*
H27B0.3139830.7180300.5205530.047*
H27C0.3168740.8118090.5264640.047*
N10.47349 (7)0.60167 (9)0.36928 (12)0.0211 (4)
N20.54219 (7)0.66444 (9)0.47956 (12)0.0192 (3)
N30.39514 (7)0.67189 (10)0.27707 (12)0.0215 (4)
N40.50588 (7)0.89954 (9)0.41663 (11)0.0184 (3)
N50.55693 (7)0.80364 (9)0.50275 (12)0.0190 (3)
N60.41879 (7)0.86973 (10)0.30185 (12)0.0196 (4)
N70.40318 (7)0.76333 (10)0.43942 (12)0.0201 (4)
N80.4815 (13)0.7578 (5)0.271 (3)0.012 (3)0.5
C280.5088 (17)0.7573 (7)0.226 (4)0.015 (3)0.5
F10.28817 (5)0.30065 (8)0.33162 (9)0.0332 (3)
F20.26765 (5)0.36583 (8)0.11822 (9)0.0329 (3)
F30.27050 (6)0.41972 (7)0.25915 (9)0.0354 (3)
F40.34412 (5)0.34831 (8)0.25648 (10)0.0355 (3)
F50.28548 (6)0.24662 (7)0.19108 (10)0.0389 (3)
F60.21189 (5)0.31830 (9)0.19278 (9)0.0368 (3)
P10.27795 (2)0.33301 (3)0.22461 (4)0.02314 (14)
Fe10.44743 (2)0.75968 (2)0.35901 (2)0.01691 (9)
P20.5028 (4)0.77084 (6)0.7390 (5)0.0259 (9)0.5
F70.4679 (2)0.8423 (3)0.6742 (5)0.0414 (12)0.5
F80.5148 (2)0.8219 (3)0.8346 (4)0.0494 (13)0.5
F90.53865 (16)0.70063 (18)0.8030 (3)0.0597 (10)0.5
F100.49183 (12)0.72121 (15)0.6430 (2)0.0357 (6)0.5
F110.44684 (14)0.7360 (3)0.7446 (2)0.0606 (10)0.5
F120.55908 (11)0.80528 (18)0.7315 (2)0.0400 (7)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0285 (11)0.0170 (10)0.0230 (10)0.0014 (8)0.0092 (9)0.0028 (8)
C10.0226 (10)0.0165 (10)0.0206 (10)0.0039 (8)0.0108 (8)0.0002 (8)
C30.0381 (13)0.0164 (10)0.0273 (11)0.0043 (9)0.0081 (10)0.0004 (9)
C40.0450 (14)0.0148 (10)0.0332 (12)0.0031 (9)0.0094 (11)0.0013 (9)
C50.0382 (13)0.0181 (11)0.0321 (12)0.0059 (9)0.0083 (10)0.0048 (9)
C60.0309 (12)0.0184 (11)0.0265 (11)0.0012 (9)0.0076 (9)0.0013 (8)
C70.0282 (11)0.0143 (10)0.0223 (10)0.0009 (8)0.0116 (9)0.0008 (8)
C80.0232 (10)0.0202 (10)0.0211 (10)0.0057 (8)0.0081 (8)0.0016 (8)
C90.0330 (12)0.0195 (11)0.0301 (12)0.0061 (9)0.0109 (10)0.0012 (9)
C100.0347 (13)0.0269 (12)0.0312 (12)0.0130 (10)0.0101 (10)0.0056 (9)
C110.0232 (11)0.0333 (13)0.0322 (12)0.0068 (9)0.0040 (10)0.0026 (10)
C120.0229 (11)0.0254 (11)0.0305 (12)0.0027 (9)0.0078 (9)0.0013 (9)
C130.0249 (11)0.0147 (10)0.0256 (11)0.0021 (8)0.0029 (9)0.0021 (8)
C140.0227 (10)0.0145 (9)0.0211 (10)0.0015 (8)0.0113 (8)0.0013 (8)
C150.0181 (10)0.0193 (10)0.0216 (10)0.0020 (8)0.0084 (8)0.0047 (8)
C160.0257 (11)0.0167 (10)0.0256 (11)0.0003 (8)0.0120 (9)0.0016 (8)
C170.0262 (11)0.0193 (10)0.0322 (12)0.0069 (8)0.0136 (9)0.0070 (9)
C180.0196 (10)0.0255 (11)0.0308 (12)0.0030 (9)0.0068 (9)0.0073 (9)
C190.0225 (10)0.0194 (10)0.0280 (11)0.0019 (8)0.0067 (9)0.0039 (8)
C200.0215 (10)0.0168 (10)0.0242 (10)0.0017 (8)0.0099 (8)0.0043 (8)
C210.0200 (10)0.0188 (10)0.0205 (10)0.0001 (8)0.0101 (8)0.0008 (8)
C220.0248 (11)0.0201 (10)0.0252 (11)0.0009 (8)0.0111 (9)0.0005 (8)
C230.0308 (12)0.0227 (11)0.0303 (12)0.0031 (9)0.0125 (10)0.0069 (9)
C240.0258 (11)0.0290 (12)0.0255 (11)0.0025 (9)0.0064 (9)0.0064 (9)
C250.0207 (10)0.0265 (11)0.0232 (11)0.0012 (8)0.0064 (9)0.0001 (8)
C260.0209 (10)0.0209 (10)0.0218 (10)0.0018 (8)0.0043 (9)0.0032 (8)
C270.0251 (11)0.0418 (14)0.0298 (12)0.0049 (10)0.0134 (10)0.0073 (10)
N10.0242 (9)0.0144 (8)0.0234 (9)0.0031 (7)0.0075 (7)0.0000 (7)
N20.0207 (8)0.0151 (8)0.0201 (8)0.0002 (7)0.0057 (7)0.0004 (6)
N30.0213 (9)0.0200 (9)0.0235 (9)0.0039 (7)0.0087 (7)0.0012 (7)
N40.0194 (8)0.0139 (8)0.0216 (8)0.0003 (6)0.0074 (7)0.0014 (7)
N50.0190 (8)0.0153 (8)0.0208 (8)0.0009 (7)0.0053 (7)0.0027 (7)
N60.0192 (8)0.0215 (9)0.0197 (8)0.0001 (7)0.0093 (7)0.0004 (7)
N70.0192 (8)0.0181 (9)0.0215 (9)0.0005 (7)0.0062 (7)0.0012 (7)
N80.005 (9)0.010 (3)0.019 (2)0.001 (2)0.003 (6)0.000 (2)
C280.007 (9)0.017 (4)0.020 (3)0.001 (2)0.004 (6)0.000 (3)
F10.0328 (7)0.0370 (7)0.0277 (7)0.0044 (6)0.0092 (6)0.0050 (6)
F20.0345 (7)0.0352 (7)0.0263 (7)0.0045 (6)0.0085 (6)0.0013 (5)
F30.0400 (8)0.0265 (7)0.0361 (7)0.0070 (6)0.0103 (6)0.0047 (6)
F40.0211 (6)0.0412 (8)0.0406 (8)0.0003 (6)0.0075 (6)0.0046 (6)
F50.0550 (9)0.0231 (7)0.0479 (8)0.0001 (6)0.0298 (7)0.0045 (6)
F60.0217 (6)0.0515 (9)0.0340 (7)0.0047 (6)0.0067 (6)0.0013 (6)
P10.0202 (3)0.0226 (3)0.0248 (3)0.0012 (2)0.0064 (2)0.0009 (2)
Fe10.01672 (15)0.01537 (15)0.01870 (15)0.00122 (11)0.00674 (12)0.00098 (11)
P20.0273 (16)0.0196 (4)0.024 (3)0.0010 (8)0.0018 (15)0.0012 (7)
F70.047 (3)0.026 (2)0.042 (2)0.0131 (17)0.0055 (19)0.0051 (16)
F80.056 (4)0.053 (4)0.031 (2)0.004 (2)0.007 (2)0.014 (2)
F90.063 (2)0.0328 (18)0.051 (2)0.0012 (16)0.0151 (19)0.0152 (16)
F100.0386 (15)0.0250 (14)0.0350 (15)0.0053 (11)0.0042 (13)0.0107 (11)
F110.0415 (19)0.099 (3)0.0406 (19)0.029 (2)0.0148 (16)0.007 (2)
F120.0303 (15)0.0353 (16)0.0522 (18)0.0096 (12)0.0130 (13)0.0107 (14)
Geometric parameters (Å, º) top
C2—C31.391 (3)C19—C201.386 (3)
C2—N11.403 (3)C19—H190.9500
C2—C71.403 (3)C20—N51.407 (3)
C1—N21.341 (3)C21—N61.356 (3)
C1—N11.377 (3)C21—C221.384 (3)
C3—C41.388 (3)C21—N41.407 (3)
C3—H30.9500C22—C231.375 (3)
C4—C51.386 (3)C22—H220.9500
C4—H40.9500C23—C241.385 (3)
C5—C61.391 (3)C23—H230.9500
C5—H50.9500C24—C251.378 (3)
C6—C71.377 (3)C24—H240.9500
C6—H60.9500C25—N61.343 (3)
C7—N21.407 (3)C25—H250.9500
C8—N31.351 (3)C26—N71.134 (3)
C8—C91.390 (3)C26—C271.457 (3)
C8—N11.406 (3)C27—H27A0.9800
C9—C101.376 (3)C27—H27B0.9800
C9—H90.9500C27—H27C0.9800
C10—C111.384 (3)Fe1—N32.0703 (16)
C10—H100.9500Fe1—N62.0754 (17)
C11—C121.383 (3)Fe1—N71.9336 (17)
C11—H110.9500Fe1—C28i1.98 (5)
C12—N31.344 (3)Fe1—N81.83 (4)
C12—H120.9500Fe1—C11.824 (2)
C13—N21.460 (2)Fe1—C141.824 (2)
C13—N51.463 (3)N8—C281.128 (12)
C13—H13A0.9900F1—P11.6128 (13)
C13—H13B0.9900F2—P11.6063 (13)
C14—N51.345 (3)F3—P11.5992 (13)
C14—N41.374 (2)F4—P11.5968 (13)
C15—C161.392 (3)F5—P11.5892 (13)
C15—C201.395 (3)F6—P11.5924 (13)
C15—N41.413 (2)P2—F111.580 (8)
C16—C171.384 (3)P2—F91.588 (7)
C16—H160.9500P2—F101.592 (6)
C17—C181.393 (3)P2—F121.595 (8)
C17—H170.9500P2—F81.598 (8)
C18—C191.390 (3)P2—F71.600 (9)
C18—H180.9500
C3—C2—N1134.2 (2)N6—C25—H25118.2
C3—C2—C7120.2 (2)C24—C25—H25118.2
N1—C2—C7105.62 (17)N7—C26—C27178.9 (2)
N2—C1—N1106.73 (17)C26—C27—H27A109.5
N2—C1—Fe1132.87 (15)C26—C27—H27B109.5
N1—C1—Fe1118.74 (14)H27A—C27—H27B109.5
C4—C3—C2117.0 (2)C26—C27—H27C109.5
C4—C3—H3121.5H27A—C27—H27C109.5
C2—C3—H3121.5H27B—C27—H27C109.5
C5—C4—C3122.2 (2)C1—N1—C2110.40 (16)
C5—C4—H4118.9C1—N1—C8114.98 (16)
C3—C4—H4118.9C2—N1—C8134.56 (17)
C4—C5—C6121.3 (2)C1—N2—C7110.73 (16)
C4—C5—H5119.4C1—N2—C13124.95 (16)
C6—C5—H5119.4C7—N2—C13124.30 (16)
C7—C6—C5116.6 (2)C12—N3—C8117.12 (17)
C7—C6—H6121.7C12—N3—Fe1130.04 (14)
C5—C6—H6121.7C8—N3—Fe1112.81 (13)
C6—C7—C2122.75 (19)C14—N4—C21115.07 (16)
C6—C7—N2130.72 (19)C14—N4—C15110.26 (16)
C2—C7—N2106.52 (17)C21—N4—C15134.35 (17)
N3—C8—C9123.18 (19)C14—N5—C20110.67 (16)
N3—C8—N1112.53 (17)C14—N5—C13125.16 (16)
C9—C8—N1124.28 (19)C20—N5—C13124.15 (16)
C10—C9—C8118.4 (2)C25—N6—C21116.92 (17)
C10—C9—H9120.8C25—N6—Fe1129.93 (14)
C8—C9—H9120.8C21—N6—Fe1112.89 (13)
C9—C10—C11119.4 (2)C26—N7—Fe1177.16 (17)
C9—C10—H10120.3F5—P1—F690.05 (8)
C11—C10—H10120.3F5—P1—F490.26 (8)
C12—C11—C10118.7 (2)F6—P1—F4179.66 (8)
C12—C11—H11120.6F5—P1—F3179.58 (8)
C10—C11—H11120.6F6—P1—F390.00 (8)
N3—C12—C11123.2 (2)F4—P1—F389.69 (7)
N3—C12—H12118.4F5—P1—F290.37 (7)
C11—C12—H12118.4F6—P1—F289.96 (7)
N2—C13—N5110.78 (16)F4—P1—F289.92 (7)
N2—C13—H13A109.5F3—P1—F290.05 (7)
N5—C13—H13A109.5F5—P1—F190.02 (7)
N2—C13—H13B109.5F6—P1—F189.98 (7)
N5—C13—H13B109.5F4—P1—F190.14 (7)
H13A—C13—H13B108.1F3—P1—F189.56 (7)
N5—C14—N4106.69 (16)F2—P1—F1179.61 (8)
N5—C14—Fe1132.79 (15)C1—Fe1—C1488.42 (9)
N4—C14—Fe1119.49 (14)C1—Fe1—N886.8 (7)
C16—C15—C20120.54 (18)C14—Fe1—N887.9 (9)
C16—C15—N4133.87 (19)C1—Fe1—N797.85 (8)
C20—C15—N4105.58 (16)C14—Fe1—N797.08 (8)
C17—C16—C15117.04 (19)N7—Fe1—N8173.3 (10)
C17—C16—H16121.5Fe1i—C28—N8177 (4)
C15—C16—H16121.5Fe1—N8—C28171.1 (7)
C16—C17—C18121.99 (19)C1—Fe1—N379.83 (8)
C16—C17—H17119.0N3—Fe1—C14167.26 (8)
C18—C17—H17119.0N8—Fe1—N386.5 (7)
C19—C18—C17121.46 (19)N7—Fe1—N389.44 (7)
C19—C18—H18119.3C1—Fe1—N6165.70 (8)
C17—C18—H18119.3C14—Fe1—N679.71 (7)
C20—C19—C18116.29 (19)N8—Fe1—N684.9 (5)
C20—C19—H19121.9N7—Fe1—N691.55 (7)
C18—C19—H19121.9N3—Fe1—N6111.16 (7)
C19—C20—C15122.68 (18)F11—P2—F990.8 (3)
C19—C20—N5130.53 (18)F11—P2—F1089.5 (4)
C15—C20—N5106.79 (17)F9—P2—F1090.4 (2)
N6—C21—C22123.10 (18)F11—P2—F12179.0 (4)
N6—C21—N4112.40 (16)F9—P2—F1289.3 (5)
C22—C21—N4124.50 (18)F10—P2—F1289.6 (3)
C23—C22—C21118.4 (2)F11—P2—F891.7 (3)
C23—C22—H22120.8F9—P2—F890.1 (5)
C21—C22—H22120.8F10—P2—F8178.7 (5)
C22—C23—C24119.7 (2)F12—P2—F889.2 (4)
C22—C23—H23120.2F11—P2—F790.4 (5)
C24—C23—H23120.2F9—P2—F7178.8 (6)
C25—C24—C23118.3 (2)F10—P2—F789.6 (5)
C25—C24—H24120.8F12—P2—F789.5 (3)
C23—C24—H24120.8F8—P2—F790.0 (2)
N6—C25—C24123.6 (2)
N1—C2—C3—C4179.7 (2)C11—C12—N3—C82.0 (3)
C7—C2—C3—C40.7 (3)C11—C12—N3—Fe1175.72 (16)
C2—C3—C4—C50.1 (3)C9—C8—N3—C121.5 (3)
C3—C4—C5—C60.2 (4)N1—C8—N3—C12177.18 (17)
C4—C5—C6—C70.1 (3)C9—C8—N3—Fe1176.56 (16)
C5—C6—C7—C20.7 (3)N1—C8—N3—Fe14.7 (2)
C5—C6—C7—N2179.7 (2)N5—C14—N4—C21173.84 (16)
C3—C2—C7—C61.0 (3)Fe1—C14—N4—C214.0 (2)
N1—C2—C7—C6179.26 (19)N5—C14—N4—C150.6 (2)
C3—C2—C7—N2179.78 (19)Fe1—C14—N4—C15170.49 (13)
N1—C2—C7—N20.0 (2)N6—C21—N4—C141.5 (2)
N3—C8—C9—C100.0 (3)C22—C21—N4—C14178.39 (18)
N1—C8—C9—C10178.6 (2)N6—C21—N4—C15174.24 (19)
C8—C9—C10—C111.2 (3)C22—C21—N4—C155.6 (3)
C9—C10—C11—C120.8 (3)C16—C15—N4—C14178.8 (2)
C10—C11—C12—N30.9 (3)C20—C15—N4—C140.2 (2)
C20—C15—C16—C170.0 (3)C16—C15—N4—C218.3 (4)
N4—C15—C16—C17178.8 (2)C20—C15—N4—C21172.8 (2)
C15—C16—C17—C180.4 (3)N4—C14—N5—C200.9 (2)
C16—C17—C18—C190.3 (3)Fe1—C14—N5—C20168.81 (15)
C17—C18—C19—C200.1 (3)N4—C14—N5—C13179.66 (17)
C18—C19—C20—C150.4 (3)Fe1—C14—N5—C1312.4 (3)
C18—C19—C20—N5179.3 (2)C19—C20—N5—C14178.2 (2)
C16—C15—C20—C190.4 (3)C15—C20—N5—C140.8 (2)
N4—C15—C20—C19178.70 (18)C19—C20—N5—C130.6 (3)
C16—C15—C20—N5179.45 (17)C15—C20—N5—C13179.59 (17)
N4—C15—C20—N50.4 (2)N2—C13—N5—C1423.9 (3)
N6—C21—C22—C230.5 (3)N2—C13—N5—C20157.43 (17)
N4—C21—C22—C23179.58 (19)C24—C25—N6—C210.1 (3)
C21—C22—C23—C240.4 (3)C24—C25—N6—Fe1173.70 (16)
C22—C23—C24—C250.1 (3)C22—C21—N6—C250.4 (3)
C23—C24—C25—N60.0 (3)N4—C21—N6—C25179.70 (16)
N2—C1—N1—C20.0 (2)C22—C21—N6—Fe1174.44 (15)
Fe1—C1—N1—C2167.21 (14)N4—C21—N6—Fe15.4 (2)
N2—C1—N1—C8177.53 (16)N2—C1—Fe1—C142.1 (2)
Fe1—C1—N1—C810.3 (2)N1—C1—Fe1—C14165.21 (16)
C3—C2—N1—C1179.7 (2)N2—C1—Fe1—N885.9 (9)
C7—C2—N1—C10.0 (2)N1—C1—Fe1—N877.2 (9)
C3—C2—N1—C82.8 (4)N2—C1—Fe1—N799.0 (2)
C7—C2—N1—C8176.8 (2)N1—C1—Fe1—N797.86 (15)
N3—C8—N1—C12.7 (2)N2—C1—Fe1—N3173.0 (2)
C9—C8—N1—C1175.96 (19)N1—C1—Fe1—N39.85 (14)
N3—C8—N1—C2174.0 (2)N2—C1—Fe1—N631.7 (4)
C9—C8—N1—C27.3 (4)N1—C1—Fe1—N6131.5 (3)
N1—C1—N2—C70.0 (2)N5—C14—Fe1—C10.1 (2)
Fe1—C1—N2—C7164.60 (16)N4—C14—Fe1—C1166.63 (16)
N1—C1—N2—C13178.60 (17)N5—C14—Fe1—N886.9 (7)
Fe1—C1—N2—C1316.8 (3)N4—C14—Fe1—N879.8 (7)
C6—C7—N2—C1179.2 (2)N5—C14—Fe1—N797.64 (19)
C2—C7—N2—C10.0 (2)N4—C14—Fe1—N795.65 (15)
C6—C7—N2—C130.6 (3)N5—C14—Fe1—N322.7 (5)
C2—C7—N2—C13178.58 (18)N4—C14—Fe1—N3144.0 (3)
N5—C13—N2—C126.0 (3)N5—C14—Fe1—N6172.1 (2)
N5—C13—N2—C7155.62 (17)N4—C14—Fe1—N65.36 (14)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···F3ii0.952.583.437 (3)150
C6—H6···F4ii0.952.583.348 (3)138
C13—H13A···F1ii0.992.423.312 (2)150
C13—H13B···F100.992.263.006 (4)131
C13—H13B···F11iii0.992.423.396 (4)170
C13—H13B···F120.992.433.257 (4)140
C16—H16···F7iv0.952.473.366 (6)158
C19—H19···F1ii0.952.623.513 (2)158
C22—H22···F7iv0.952.443.310 (7)152
C22—H22···F8v0.952.503.352 (7)150
C25—H25···F6vi0.952.553.034 (2)112
C27—H27A···F9iii0.982.573.299 (4)131
C27—H27A···F110.982.373.286 (4)155
C27—H27A···F12iii0.982.583.497 (4)155
C27—H27B···F2vii0.982.623.348 (3)131
C27—H27C···F2vi0.982.583.346 (3)135
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y, z+3/2; (iv) x+1, y+2, z+1; (v) x, y+2, z1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x, y+1, z+1/2.
 

Acknowledgements

Lena Schröck is gratefully acknowledged for Raman measurements. There are no com­peting inter­ests to declare. Open access funding enabled and organized by Projekt DEAL.

References

First citationAhmad, M. S., Pulidindi, I. N. & Li, C. (2020). New J. Chem. 44, 17177–17197.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArmarego, W. L. (2017). In Purification of laboratory chemicals. London: Butterworth–Heinemann.  Google Scholar
First citationBlanksby, S. J. & Ellison, G. B. (2003). Acc. Chem. Res. 36, 255–263.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2021). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrossland, J. L. & Tyler, D. R. (2010). Coord. Chem. Rev. 254, 1883–1894.  Web of Science CrossRef CAS Google Scholar
First citationDeng, D., Gopiraman, M., Kim, S. H., Chung, I.-M. & Kim, I. S. (2016). ACS Sustainable Chem. Eng. 4, 5409–5414.  Web of Science CrossRef CAS Google Scholar
First citationDyckhoff, F., Schlagintweit, J. F., Bernd, M. A., Jakob, C. H. G., Schlachta, T. P., Hofmann, B. J., Reich, R. M. & Kühn, F. E. (2021). Catal. Sci. Technol. 11, 795–799.  Web of Science CrossRef CAS Google Scholar
First citationFulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E. & Goldberg, K. I. (2010). Organometallics, 29, 2176–2179.  Web of Science CrossRef CAS Google Scholar
First citationGoebbert, D. J., Velarde, L., Khuseynov, D. & Sanov, A. (2010). J. Phys. Chem. Lett. 1, 792–795.  Web of Science CrossRef CAS Google Scholar
First citationGrirrane, A., Álvarez, E., Albero, J., García, H. & Corma, A. (2016). Dalton Trans. 45, 5444–5450.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGu, N. X., Oyala, P. H. & Peters, J. C. (2018). J. Am. Chem. Soc. 140, 6374–6382.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHaveli, S. D., Walter, P., Patriarche, G., Ayache, J., Castaing, J., Van Elslande, E., Tsoucaris, G., Wang, P.-A. & Kagan, H. B. (2012). Nano Lett. 12, 6212–6217.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKnapp, S. M. M., Sherbow, T. J., Juliette, J. J. & Tyler, D. R. (2012). Organometallics, 31, 2941–2944.  Web of Science CrossRef CAS Google Scholar
First citationLewis, R. J. Sr (2008). In Hazardous Chemicals Desk Reference, 6th ed. Chichester: John Wiley & Sons.  Google Scholar
First citationLiu, X., Zhou, W., Yang, L., Li, L., Zhang, Z., Ke, Y. & Chen, S. (2015). J. Mater. Chem. A, 3, 8840–8846.  Web of Science CrossRef CAS Google Scholar
First citationLu, T., Zhuang, X., Li, Y. & Chen, S. (2004). J. Am. Chem. Soc. 126, 4760–4761.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMcWilliams, S. F., Bunting, P. C., Kathiresan, V., Mercado, B. Q., Hoffman, B. M., Long, J. R. & Holland, P. L. (2018). Chem. Commun. 54, 13339–13342.  Web of Science CSD CrossRef CAS Google Scholar
First citationMiscione, G. P. & Bottoni, A. (2014). Organometallics, 33, 4173–4182.  Web of Science CrossRef CAS Google Scholar
First citationÖfele, K. (1969). Angew. Chem. Int. Ed. Engl. 8, 916–917.  Google Scholar
First citationPruppacher, H. R. & Klett, J. D. (1997). In Microphysics of Clouds and Precipitation. Dordrecht: Springer.  Google Scholar
First citationRaba, A., Cokoja, M., Ewald, S., Riener, K., Herdtweck, E., Pöthig, A., Herrmann, W. A. & Kühn, F. E. (2012). Organometallics, 31, 2793–2800.  Web of Science CSD CrossRef CAS Google Scholar
First citationRegenauer, N. I., Wadepohl, H. & Roşca, D.-A. (2022). Inorg. Chem. 61, 7426–7435.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRiener, K., Haslinger, S., Raba, A., Högerl, M. P., Cokoja, M., Herrmann, W. A. & Kühn, F. E. (2014). Chem. Rev. 114, 5215–5272.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSaouma, C. T., Moore, C. E., Rheingold, A. L. & Peters, J. C. (2011). Inorg. Chem. 50, 11285–11287.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSchlachta, T. P., Anneser, M. R., Schlagintweit, J. F., Jakob, C. H. G., Hintermeier, C., Böth, A. D., Haslinger, S., Reich, R. M. & Kühn, F. E. (2021). Chem. Commun. 57, 6644–6647.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchlachta, T. P. & Kühn, F. E. (2023). Chem. Soc. Rev. 52, 2238–2277.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchlachta, T. P., Zámbó, G. G., Sauer, M. J., Rüter, I. & Kühn, F. E. (2024). Submitted.  Google Scholar
First citationSear, R. P. (2014). CrystEngComm, 16, 6506–6522.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpentzos, A. Z., Gau, M. R., Carroll, P. J. & Tomson, N. C. (2020). Chem. Commun. 56, 9675–9678.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuess, D. L. M. & Peters, J. C. (2013). J. Am. Chem. Soc. 135, 4938–4941.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSunada, Y., Imaoka, T. & Nagashima, H. (2013). Organometallics, 32, 2112–2120.  Web of Science CSD CrossRef CAS Google Scholar
First citationTakeshita, T., Sato, K. & Nakajima, Y. (2018). Dalton Trans. 47, 17004–17010.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWalter, P., Welcomme, E., Hallégot, P., Zaluzec, N. J., Deeb, C., Castaing, J., Veyssière, P., Bréniaux, R., Lévêque, J.-L. & Tsoucaris, G. (2006). Nano Lett. 6, 2215–2219.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds