research papers
Formation of a diiron–(μ-η1:η1-CN) complex from acetonitrile solution
aTechnical University of Munich, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Lichtenbergstrasse 4, 85748 Garching, Germany
*Correspondence e-mail: fritz.kuehn@ch.tum.de
The activation of C—C bonds by transition-metal complexes is of continuing interest and acetonitrile (MeCN) has attracted attention as a cyanide source with comparatively low toxicity for organic cyanation reactions. A diiron end-on μ-η1:η1-CN-bridged complex was obtained from a crystallization experiment of an open-chain iron–NHC complex, namely, μ-cyanido-κ2C:N-bis{[(acetonitrile-κN)[3,3′-bis(pyridin-2-yl)-1,1′-(methylidene)bis(benzimidazol-2-ylidene)]iron(II)} tris(hexafluorophosphate), [Fe2(CN)(C2H3N)2(C25H18N6)2](PF6)3. The cyanide appears to originate from the MeCN solvent by C—C bond cleavage or through carbon–hydrogen oxidation.
Keywords: organometallic iron(II) complex; acetonitrile cleavage; N-heterocyclic carbene; NHC; crystal structure; cyanation.
CCDC reference: 2326821
1. Introduction
The first iron–NHC (N-heterocyclic carbene) complex was developed by Öfele in 1969 (Öfele, 1969). However, it has taken many years for iron–NHC complexes to attract the attention of a wider audience of chemists, but, especially in the last decade, there has been a sharp increase in related publications (Riener et al., 2014). The open-chain iron–pyridine-NHC complex bis(acetonitrile-κN)[3,3′-bis(pyridin-2-yl)-1,1′-(methylidene)bis(benzimidazol-2-ylidene)]iron(II) bis(hexafluorophosphate), 1 (Scheme 1), can be successfully employed in homogeneous epoxidation catalysis (Schlachta et al., 2024). In the present work, a diiron end-on μ-η1:η1-CN-bridged complex, 2 (Scheme 2), is formed from a solution of 1 in deuterated acetonitrile. The activation of C—C bonds by transition-metal complexes is of continuing interest and MeCN has attracted attention as a cyanide source with comparatively low toxicity for organic cyanation reactions (Ahmad et al., 2020; Lu et al., 2004; Spentzos et al., 2020; Grirrane et al., 2016).
2. Experimental
2.1. General procedures and analytical methods
Complex 1 was synthesized according to a literature method (Schlachta et al., 2024). Solvents were purified, dried and degassed using standard methods (Armarego, 2017) or received from a solvent purification system by M. Braun. All other chemicals were obtained from commercial suppliers and were used without further purification. NMR spectra were recorded on a Bruker Avance Ultrashield AV400 (400.13 MHz for 1H NMR and 100.53 MHz for 13C NMR). The chemical shifts are given in δ values in ppm (parts per million) relative to TMS (tetramethylsilane) and are reported relative to the residual deuterated solvent signal (Fulmer et al., 2010). Electrospray ionization (ESI–MS) data were measured on a Thermo Fisher Ultimate 3000. FT–IR measurements were conducted on a PerkinElmer Frontier FT–IR spectrometer (ATR). The `inVia Reflex Raman System' comprises a research grade optical microscope [Leica DM2700M, Magnification 5×, 20× and 50× (in this case, 50× was used)] coupled to a high-performance Raman spectrometer (Renishaw). A 633 nm wavelength laser was used (Renishaw RL633 Class 3B).
2.2. Crystallization of 2
Single crystals of 2 suitable for X-ray diffraction were obtained by slow evaporation of a solution of 1 in CD3CN over a period of six months at room temperature under an ambient atmosphere near a window with sunlight (see supporting information).
A solution of 1 (around 1–2 mg) in CD3CN (around 0.4 ml, dry and degassed) from an NMR tube (see supporting information) was placed in a 10 ml vial under an ambient atmosphere. A human hair was fixed with adhesive tape to the inside of the vial, reaching into the solution. Heterogeneous nucleation occurs more frequently than (Sear, 2014; Pruppacher & Klett, 1997) and human hair has been used for the growth of nanoparticles or as catalyst-support material (Deng et al., 2016; Liu et al., 2015; Haveli et al., 2012; Walter et al., 2006). The vial was closed and the cap was punctured with a cannula. The vial was left for six months at room temperature under ambient conditions near a window with sunlight, allowing the solvent to evaporate slowly. Orange crystals suitable for SC-XRD analysis were obtained.
2.3. Refinement
Crystal data, data collection and structure . H atoms could not be located in difference Fourier maps and were calculated in ideal positions (riding model), with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for CH3 groups, C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for CH2 groups, and C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for CH groups. Split-layer position was used for atoms P2, F7, F8, F9, F10, F11 and F12 (PF6− anion), as well as N8 and C28 (bridging cyanide). Restraints were applied to atoms N8 and C28 to ensure reasonable ellipsoids. CD3 has been modelled as CH3 as there is no appreciable difference in SC-XRD.
details are summarized in Table 13. Results and discussion
When a solution of 1 (Scheme 1 and Fig. 1) in CD3CN was evaporated slowly over a period of six months under ambient conditions, a diiron end-on μ-η1:η1-CN-bridged complex, [(MeCN)(NHC)Fe]2(μ-η1:η1-CN)(PF6)3 (2) (Scheme 2 and Fig. 2), was obtained, as determined by X-ray diffraction. The two iron centres are bridged by a cyanide anion, hence three PF6− anions are present in the Under similar conditions, i.e. MeCN solution, room temperature and air, a dinuclear CuII has been found to form a μ-η1:η1-CN-bridged complex by C—C bond cleavage of MeCN (Lu et al., 2004). A possible mechanism involving the activation of the sp-hybridized C atom of MeCN, bound to one Cu atom (MeCN—Cu), by the second Cu centre has been suggested. The increased of the methyl group would allow cleavage by H2O to form MeOH and the cyanide-bridged compound (Lu et al., 2004; Ahmad et al., 2020). Another possible mechanism for the formation of 2 might be the carbon–hydrogen oxidation of MeCN by iron complex 1 to form glycolonitrile, as observed previously for an iron(III) tetracarbene complex, and subsequent release of cyanide upon decay of glycolonitrile (Knapp et al., 2012; Dyckhoff et al., 2021; Lewis, 2008). Due to the stronger Me—CN bond (122 kcal mol−1) compared to the H—CH2CN bond (93 kcal mol−1) (Spentzos et al., 2020; Blanksby & Ellison, 2003; Goebbert et al., 2010; Miscione & Bottoni, 2014), the carbon–hydrogen oxidation of MeCN seems to be more likely the origin of cyanide in this case. However, C—C bond cleavage of MeCN by UV irradiation is known (Grirrane et al., 2016) and, given the fact that the crystallization setup with 1 was also accessible for sunlight during the extensive period of six months, C—C bond cleavage of MeCN cannot be excluded.
The 2 reveals strongly bent equatorial NHC ligands. This finding is in stark contrast to 1, where the NHC ligand is largely planar (Fig. 1). This sandwich-like structure encapsulates the cyanide ion and is indicative of some noncovalent interactions between the equatorial ligands, likely contributing to the stability of 2. Interestingly, the pyridine units are bent less towards the centre compared to the NHC units, forming a Z-shape or diamond-shape, depending on the viewing angle of 2. The Fe—N—C angle is slightly bent (Table 2) in a trans fashion, resulting in a `zigzag' vertical axis. Another interesting finding is the rotation of the NHC ligands towards each other in an anti conformation, resulting in a dihedral angle (CH2—Fe—Fe—CH2) of 160.7° (Scheme 2). The can in principle also be solved as the diiron–(μ-η1:η1-N2) complex (Fig. 2), which is why we refrain from a detailed structural discussion at this point. However, there are several arguments against a diiron–(μ-η1:η1-N2) complex:
of
|
(i) The main argument against a diiron–(μ-η1:η1-N2) complex is the fact that the contains three counter-ions. As the crystallization was performed with 1 containing an iron(II) centre, bridging two FeII atoms with a neutral N2 ligand should lead to the presence of four counter-ions. Otherwise, three counter-ions would indicate that a redox process has occurred during the formation of 2, but the nature of a hypothetical reducing agent and the location of reduction are highly speculative. The main components of the crystallization experiment were 1 and CD3CN, as well as unreacted ligand precursor as a minor impurity (see supporting information). In a cyclic voltammetry study of 1, the first reduction event occurred at −1.78 V (versus Fc/Fc+). A preliminary experiment measuring 1 in cyclic voltammetry under an N2 atmosphere did not show significant redox processes or Considering all these facts, the involvement of a redox process appears to be quite implausible.
(ii) Dinitrogen is a weak σ-donor and a weak π-acceptor, and substitution of the N2 ligand with CO or like MeCN is often observed (Crossland & Tyler, 2010; Sunada et al., 2013). A diiron–(μ-η1:η1-N2) version of 2 would be very surprising in this context, since one axial MeCN ligand coordinates with one iron centre each, the crystallization of 2 occurred in (deuterated) MeCN as solvent and the previous occupation of both axial coordination sites by MeCN in 1. The stability of 2 under air is also interesting, which would be rather uncommon for a diiron–(μ-η1:η1-N2) complex (Crossland & Tyler, 2010; Takeshita et al., 2018; Saouma et al., 2011; Regenauer et al., 2022) and an affinity for N2 over O2 would be very unusual considering other Fe compounds tending to form diiron–μ-oxido species (Schlachta & Kühn, 2023; Schlachta et al., 2021).
(iii) A diiron–(μ-η1:η1-N2) complex should show a distinctive vNN absorption band in Raman spectroscopy and be IR inactive due to the centrosymmetric structure (Suess & Peters, 2013; McWilliams et al., 2018; Gu et al., 2018). No vNN band was detected in the crude material either by IR or Raman spectroscopy. However, no pronounced vCN stretch could be observed either and, interestingly, complex 1 also does not show a characteristic vCN band in IR, contrary to similar complexes (Raba et al., 2012), but signals attributable to axial MeCN are visible in the Raman spectrum (see supporting information).
4. Conclusion
A diiron end-on μ-η1:η1-CN-bridged complex, 2, was obtained from a crystallization experiment with an open-chain iron NHC complex 1. The cyanide presumably originates from the MeCN solvent by C—C bond cleavage or through carbon–hydrogen oxidation. The strongly bent NHC ligands are positioned in an anti conformation.
Supporting information
CCDC reference: 2326821
https://doi.org/10.1107/S2053229624007058/jx3087sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2053229624007058/jx3087Isup2.hkl
Supporting information. DOI: https://doi.org/10.1107/S2053229624007058/jx3087sup3.pdf
[Fe2(CN)(C2D3N)2(C25H18N6)2](PF6)3 | F(000) = 2944 |
Mr = 1465.67 | Dx = 1.613 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 9628 reflections |
a = 25.562 (2) Å | θ = 2.4–26.4° |
b = 17.0373 (15) Å | µ = 0.67 mm−1 |
c = 14.8998 (12) Å | T = 100 K |
β = 112.112 (3)° | Block, orange |
V = 6011.8 (9) Å3 | 0.13 × 0.05 × 0.04 mm |
Z = 4 |
Bruker D8 Venture diffractometer | 5310 independent reflections |
Radiation source: TXS rotating anode | 4621 reflections with I > 2σ(I) |
Helios optic monochromator | Rint = 0.051 |
Detector resolution: 16 pixels mm-1 | θmax = 25.0°, θmin = 1.8° |
phi– and ω–rotation scans | h = −30→30 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −20→20 |
Tmin = 0.708, Tmax = 0.745 | l = −17→17 |
89835 measured reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0401P)2 + 7.8548P] where P = (Fo2 + 2Fc2)/3 |
5310 reflections | (Δ/σ)max = 0.001 |
461 parameters | Δρmax = 0.43 e Å−3 |
9 restraints | Δρmin = −0.27 e Å−3 |
Experimental. Diffractometer operator Michael J. Sauer scanspeed 8 s per frame dx 52 mm 2745 frames measured in 9 data sets phi-scans with delta_phi = 0.5 omega-scans with delta_omega = 0.5 shutterless mode |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C2 | 0.51681 (9) | 0.54639 (12) | 0.40847 (15) | 0.0230 (4) | |
C1 | 0.48971 (8) | 0.67342 (11) | 0.41355 (14) | 0.0191 (4) | |
C3 | 0.52280 (10) | 0.46741 (12) | 0.39071 (16) | 0.0285 (5) | |
H3 | 0.493545 | 0.439133 | 0.342543 | 0.034* | |
C4 | 0.57347 (10) | 0.43178 (13) | 0.44656 (16) | 0.0325 (5) | |
H4 | 0.578761 | 0.377839 | 0.436170 | 0.039* | |
C5 | 0.61662 (10) | 0.47228 (13) | 0.51698 (16) | 0.0309 (5) | |
H5 | 0.650564 | 0.445503 | 0.553634 | 0.037* | |
C6 | 0.61117 (9) | 0.55136 (12) | 0.53500 (15) | 0.0262 (5) | |
H6 | 0.640536 | 0.579456 | 0.583194 | 0.031* | |
C7 | 0.56099 (9) | 0.58683 (11) | 0.47936 (14) | 0.0210 (4) | |
C8 | 0.41982 (8) | 0.60040 (12) | 0.29429 (14) | 0.0216 (4) | |
C9 | 0.39400 (9) | 0.53318 (13) | 0.24422 (16) | 0.0278 (5) | |
H9 | 0.412663 | 0.483855 | 0.258325 | 0.033* | |
C10 | 0.34073 (10) | 0.53986 (13) | 0.17372 (16) | 0.0316 (5) | |
H10 | 0.322298 | 0.495149 | 0.137462 | 0.038* | |
C11 | 0.31423 (9) | 0.61226 (14) | 0.15608 (17) | 0.0315 (5) | |
H11 | 0.277284 | 0.617889 | 0.108242 | 0.038* | |
C12 | 0.34259 (9) | 0.67626 (13) | 0.20945 (15) | 0.0269 (5) | |
H12 | 0.324037 | 0.725698 | 0.197740 | 0.032* | |
C13 | 0.57511 (9) | 0.72591 (11) | 0.54465 (15) | 0.0237 (4) | |
H13A | 0.615637 | 0.718645 | 0.556805 | 0.028* | |
H13B | 0.570386 | 0.721898 | 0.607461 | 0.028* | |
C14 | 0.50573 (8) | 0.82068 (11) | 0.43583 (14) | 0.0185 (4) | |
C15 | 0.55845 (8) | 0.93306 (11) | 0.47385 (14) | 0.0194 (4) | |
C16 | 0.58037 (8) | 1.00883 (12) | 0.48412 (15) | 0.0220 (4) | |
H16 | 0.558874 | 1.051346 | 0.447128 | 0.026* | |
C17 | 0.63487 (9) | 1.01944 (12) | 0.55065 (15) | 0.0251 (5) | |
H17 | 0.651077 | 1.070411 | 0.559010 | 0.030* | |
C18 | 0.66666 (9) | 0.95765 (13) | 0.60568 (16) | 0.0261 (5) | |
H18 | 0.703851 | 0.967543 | 0.650754 | 0.031* | |
C19 | 0.64519 (9) | 0.88182 (12) | 0.59610 (15) | 0.0241 (4) | |
H19 | 0.666647 | 0.839438 | 0.633500 | 0.029* | |
C20 | 0.59074 (8) | 0.87146 (11) | 0.52896 (14) | 0.0205 (4) | |
C21 | 0.45748 (8) | 0.92713 (11) | 0.34057 (14) | 0.0191 (4) | |
C22 | 0.44959 (9) | 1.00394 (12) | 0.30793 (15) | 0.0229 (4) | |
H22 | 0.477790 | 1.042564 | 0.336464 | 0.027* | |
C23 | 0.39996 (9) | 1.02300 (13) | 0.23321 (16) | 0.0276 (5) | |
H23 | 0.393359 | 1.075350 | 0.209642 | 0.033* | |
C24 | 0.35964 (9) | 0.96551 (13) | 0.19246 (16) | 0.0277 (5) | |
H24 | 0.325140 | 0.977582 | 0.140730 | 0.033* | |
C25 | 0.37087 (9) | 0.89035 (13) | 0.22888 (14) | 0.0240 (4) | |
H25 | 0.343196 | 0.850972 | 0.200839 | 0.029* | |
C26 | 0.37547 (9) | 0.76394 (12) | 0.48363 (15) | 0.0223 (4) | |
C27 | 0.33930 (9) | 0.76348 (14) | 0.53938 (16) | 0.0314 (5) | |
H27A | 0.362703 | 0.760303 | 0.608611 | 0.047* | |
H27B | 0.313983 | 0.718030 | 0.520553 | 0.047* | |
H27C | 0.316874 | 0.811809 | 0.526464 | 0.047* | |
N1 | 0.47349 (7) | 0.60167 (9) | 0.36928 (12) | 0.0211 (4) | |
N2 | 0.54219 (7) | 0.66444 (9) | 0.47956 (12) | 0.0192 (3) | |
N3 | 0.39514 (7) | 0.67189 (10) | 0.27707 (12) | 0.0215 (4) | |
N4 | 0.50588 (7) | 0.89954 (9) | 0.41663 (11) | 0.0184 (3) | |
N5 | 0.55693 (7) | 0.80364 (9) | 0.50275 (12) | 0.0190 (3) | |
N6 | 0.41879 (7) | 0.86973 (10) | 0.30185 (12) | 0.0196 (4) | |
N7 | 0.40318 (7) | 0.76333 (10) | 0.43942 (12) | 0.0201 (4) | |
N8 | 0.4815 (13) | 0.7578 (5) | 0.271 (3) | 0.012 (3) | 0.5 |
C28 | 0.5088 (17) | 0.7573 (7) | 0.226 (4) | 0.015 (3) | 0.5 |
F1 | 0.28817 (5) | 0.30065 (8) | 0.33162 (9) | 0.0332 (3) | |
F2 | 0.26765 (5) | 0.36583 (8) | 0.11822 (9) | 0.0329 (3) | |
F3 | 0.27050 (6) | 0.41972 (7) | 0.25915 (9) | 0.0354 (3) | |
F4 | 0.34412 (5) | 0.34831 (8) | 0.25648 (10) | 0.0355 (3) | |
F5 | 0.28548 (6) | 0.24662 (7) | 0.19108 (10) | 0.0389 (3) | |
F6 | 0.21189 (5) | 0.31830 (9) | 0.19278 (9) | 0.0368 (3) | |
P1 | 0.27795 (2) | 0.33301 (3) | 0.22461 (4) | 0.02314 (14) | |
Fe1 | 0.44743 (2) | 0.75968 (2) | 0.35901 (2) | 0.01691 (9) | |
P2 | 0.5028 (4) | 0.77084 (6) | 0.7390 (5) | 0.0259 (9) | 0.5 |
F7 | 0.4679 (2) | 0.8423 (3) | 0.6742 (5) | 0.0414 (12) | 0.5 |
F8 | 0.5148 (2) | 0.8219 (3) | 0.8346 (4) | 0.0494 (13) | 0.5 |
F9 | 0.53865 (16) | 0.70063 (18) | 0.8030 (3) | 0.0597 (10) | 0.5 |
F10 | 0.49183 (12) | 0.72121 (15) | 0.6430 (2) | 0.0357 (6) | 0.5 |
F11 | 0.44684 (14) | 0.7360 (3) | 0.7446 (2) | 0.0606 (10) | 0.5 |
F12 | 0.55908 (11) | 0.80528 (18) | 0.7315 (2) | 0.0400 (7) | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0285 (11) | 0.0170 (10) | 0.0230 (10) | −0.0014 (8) | 0.0092 (9) | 0.0028 (8) |
C1 | 0.0226 (10) | 0.0165 (10) | 0.0206 (10) | −0.0039 (8) | 0.0108 (8) | −0.0002 (8) |
C3 | 0.0381 (13) | 0.0164 (10) | 0.0273 (11) | −0.0043 (9) | 0.0081 (10) | −0.0004 (9) |
C4 | 0.0450 (14) | 0.0148 (10) | 0.0332 (12) | 0.0031 (9) | 0.0094 (11) | 0.0013 (9) |
C5 | 0.0382 (13) | 0.0181 (11) | 0.0321 (12) | 0.0059 (9) | 0.0083 (10) | 0.0048 (9) |
C6 | 0.0309 (12) | 0.0184 (11) | 0.0265 (11) | 0.0012 (9) | 0.0076 (9) | 0.0013 (8) |
C7 | 0.0282 (11) | 0.0143 (10) | 0.0223 (10) | −0.0009 (8) | 0.0116 (9) | 0.0008 (8) |
C8 | 0.0232 (10) | 0.0202 (10) | 0.0211 (10) | −0.0057 (8) | 0.0081 (8) | 0.0016 (8) |
C9 | 0.0330 (12) | 0.0195 (11) | 0.0301 (12) | −0.0061 (9) | 0.0109 (10) | −0.0012 (9) |
C10 | 0.0347 (13) | 0.0269 (12) | 0.0312 (12) | −0.0130 (10) | 0.0101 (10) | −0.0056 (9) |
C11 | 0.0232 (11) | 0.0333 (13) | 0.0322 (12) | −0.0068 (9) | 0.0040 (10) | −0.0026 (10) |
C12 | 0.0229 (11) | 0.0254 (11) | 0.0305 (12) | −0.0027 (9) | 0.0078 (9) | −0.0013 (9) |
C13 | 0.0249 (11) | 0.0147 (10) | 0.0256 (11) | 0.0021 (8) | 0.0029 (9) | −0.0021 (8) |
C14 | 0.0227 (10) | 0.0145 (9) | 0.0211 (10) | 0.0015 (8) | 0.0113 (8) | −0.0013 (8) |
C15 | 0.0181 (10) | 0.0193 (10) | 0.0216 (10) | −0.0020 (8) | 0.0084 (8) | −0.0047 (8) |
C16 | 0.0257 (11) | 0.0167 (10) | 0.0256 (11) | −0.0003 (8) | 0.0120 (9) | −0.0016 (8) |
C17 | 0.0262 (11) | 0.0193 (10) | 0.0322 (12) | −0.0069 (8) | 0.0136 (9) | −0.0070 (9) |
C18 | 0.0196 (10) | 0.0255 (11) | 0.0308 (12) | −0.0030 (9) | 0.0068 (9) | −0.0073 (9) |
C19 | 0.0225 (10) | 0.0194 (10) | 0.0280 (11) | 0.0019 (8) | 0.0067 (9) | −0.0039 (8) |
C20 | 0.0215 (10) | 0.0168 (10) | 0.0242 (10) | −0.0017 (8) | 0.0099 (8) | −0.0043 (8) |
C21 | 0.0200 (10) | 0.0188 (10) | 0.0205 (10) | 0.0001 (8) | 0.0101 (8) | −0.0008 (8) |
C22 | 0.0248 (11) | 0.0201 (10) | 0.0252 (11) | −0.0009 (8) | 0.0111 (9) | 0.0005 (8) |
C23 | 0.0308 (12) | 0.0227 (11) | 0.0303 (12) | 0.0031 (9) | 0.0125 (10) | 0.0069 (9) |
C24 | 0.0258 (11) | 0.0290 (12) | 0.0255 (11) | 0.0025 (9) | 0.0064 (9) | 0.0064 (9) |
C25 | 0.0207 (10) | 0.0265 (11) | 0.0232 (11) | −0.0012 (8) | 0.0064 (9) | 0.0001 (8) |
C26 | 0.0209 (10) | 0.0209 (10) | 0.0218 (10) | 0.0018 (8) | 0.0043 (9) | 0.0032 (8) |
C27 | 0.0251 (11) | 0.0418 (14) | 0.0298 (12) | 0.0049 (10) | 0.0134 (10) | 0.0073 (10) |
N1 | 0.0242 (9) | 0.0144 (8) | 0.0234 (9) | −0.0031 (7) | 0.0075 (7) | 0.0000 (7) |
N2 | 0.0207 (8) | 0.0151 (8) | 0.0201 (8) | −0.0002 (7) | 0.0057 (7) | −0.0004 (6) |
N3 | 0.0213 (9) | 0.0200 (9) | 0.0235 (9) | −0.0039 (7) | 0.0087 (7) | −0.0012 (7) |
N4 | 0.0194 (8) | 0.0139 (8) | 0.0216 (8) | −0.0003 (6) | 0.0074 (7) | −0.0014 (7) |
N5 | 0.0190 (8) | 0.0153 (8) | 0.0208 (8) | −0.0009 (7) | 0.0053 (7) | −0.0027 (7) |
N6 | 0.0192 (8) | 0.0215 (9) | 0.0197 (8) | −0.0001 (7) | 0.0093 (7) | −0.0004 (7) |
N7 | 0.0192 (8) | 0.0181 (9) | 0.0215 (9) | 0.0005 (7) | 0.0062 (7) | 0.0012 (7) |
N8 | 0.005 (9) | 0.010 (3) | 0.019 (2) | −0.001 (2) | 0.003 (6) | 0.000 (2) |
C28 | 0.007 (9) | 0.017 (4) | 0.020 (3) | −0.001 (2) | 0.004 (6) | 0.000 (3) |
F1 | 0.0328 (7) | 0.0370 (7) | 0.0277 (7) | 0.0044 (6) | 0.0092 (6) | 0.0050 (6) |
F2 | 0.0345 (7) | 0.0352 (7) | 0.0263 (7) | −0.0045 (6) | 0.0085 (6) | 0.0013 (5) |
F3 | 0.0400 (8) | 0.0265 (7) | 0.0361 (7) | 0.0070 (6) | 0.0103 (6) | −0.0047 (6) |
F4 | 0.0211 (6) | 0.0412 (8) | 0.0406 (8) | 0.0003 (6) | 0.0075 (6) | 0.0046 (6) |
F5 | 0.0550 (9) | 0.0231 (7) | 0.0479 (8) | 0.0001 (6) | 0.0298 (7) | −0.0045 (6) |
F6 | 0.0217 (6) | 0.0515 (9) | 0.0340 (7) | −0.0047 (6) | 0.0067 (6) | −0.0013 (6) |
P1 | 0.0202 (3) | 0.0226 (3) | 0.0248 (3) | 0.0012 (2) | 0.0064 (2) | −0.0009 (2) |
Fe1 | 0.01672 (15) | 0.01537 (15) | 0.01870 (15) | −0.00122 (11) | 0.00674 (12) | −0.00098 (11) |
P2 | 0.0273 (16) | 0.0196 (4) | 0.024 (3) | −0.0010 (8) | 0.0018 (15) | 0.0012 (7) |
F7 | 0.047 (3) | 0.026 (2) | 0.042 (2) | 0.0131 (17) | 0.0055 (19) | 0.0051 (16) |
F8 | 0.056 (4) | 0.053 (4) | 0.031 (2) | 0.004 (2) | 0.007 (2) | −0.014 (2) |
F9 | 0.063 (2) | 0.0328 (18) | 0.051 (2) | 0.0012 (16) | −0.0151 (19) | 0.0152 (16) |
F10 | 0.0386 (15) | 0.0250 (14) | 0.0350 (15) | −0.0053 (11) | 0.0042 (13) | −0.0107 (11) |
F11 | 0.0415 (19) | 0.099 (3) | 0.0406 (19) | −0.029 (2) | 0.0148 (16) | 0.007 (2) |
F12 | 0.0303 (15) | 0.0353 (16) | 0.0522 (18) | −0.0096 (12) | 0.0130 (13) | −0.0107 (14) |
C2—C3 | 1.391 (3) | C19—C20 | 1.386 (3) |
C2—N1 | 1.403 (3) | C19—H19 | 0.9500 |
C2—C7 | 1.403 (3) | C20—N5 | 1.407 (3) |
C1—N2 | 1.341 (3) | C21—N6 | 1.356 (3) |
C1—N1 | 1.377 (3) | C21—C22 | 1.384 (3) |
C3—C4 | 1.388 (3) | C21—N4 | 1.407 (3) |
C3—H3 | 0.9500 | C22—C23 | 1.375 (3) |
C4—C5 | 1.386 (3) | C22—H22 | 0.9500 |
C4—H4 | 0.9500 | C23—C24 | 1.385 (3) |
C5—C6 | 1.391 (3) | C23—H23 | 0.9500 |
C5—H5 | 0.9500 | C24—C25 | 1.378 (3) |
C6—C7 | 1.377 (3) | C24—H24 | 0.9500 |
C6—H6 | 0.9500 | C25—N6 | 1.343 (3) |
C7—N2 | 1.407 (3) | C25—H25 | 0.9500 |
C8—N3 | 1.351 (3) | C26—N7 | 1.134 (3) |
C8—C9 | 1.390 (3) | C26—C27 | 1.457 (3) |
C8—N1 | 1.406 (3) | C27—H27A | 0.9800 |
C9—C10 | 1.376 (3) | C27—H27B | 0.9800 |
C9—H9 | 0.9500 | C27—H27C | 0.9800 |
C10—C11 | 1.384 (3) | Fe1—N3 | 2.0703 (16) |
C10—H10 | 0.9500 | Fe1—N6 | 2.0754 (17) |
C11—C12 | 1.383 (3) | Fe1—N7 | 1.9336 (17) |
C11—H11 | 0.9500 | Fe1—C28i | 1.98 (5) |
C12—N3 | 1.344 (3) | Fe1—N8 | 1.83 (4) |
C12—H12 | 0.9500 | Fe1—C1 | 1.824 (2) |
C13—N2 | 1.460 (2) | Fe1—C14 | 1.824 (2) |
C13—N5 | 1.463 (3) | N8—C28 | 1.128 (12) |
C13—H13A | 0.9900 | F1—P1 | 1.6128 (13) |
C13—H13B | 0.9900 | F2—P1 | 1.6063 (13) |
C14—N5 | 1.345 (3) | F3—P1 | 1.5992 (13) |
C14—N4 | 1.374 (2) | F4—P1 | 1.5968 (13) |
C15—C16 | 1.392 (3) | F5—P1 | 1.5892 (13) |
C15—C20 | 1.395 (3) | F6—P1 | 1.5924 (13) |
C15—N4 | 1.413 (2) | P2—F11 | 1.580 (8) |
C16—C17 | 1.384 (3) | P2—F9 | 1.588 (7) |
C16—H16 | 0.9500 | P2—F10 | 1.592 (6) |
C17—C18 | 1.393 (3) | P2—F12 | 1.595 (8) |
C17—H17 | 0.9500 | P2—F8 | 1.598 (8) |
C18—C19 | 1.390 (3) | P2—F7 | 1.600 (9) |
C18—H18 | 0.9500 | ||
C3—C2—N1 | 134.2 (2) | N6—C25—H25 | 118.2 |
C3—C2—C7 | 120.2 (2) | C24—C25—H25 | 118.2 |
N1—C2—C7 | 105.62 (17) | N7—C26—C27 | 178.9 (2) |
N2—C1—N1 | 106.73 (17) | C26—C27—H27A | 109.5 |
N2—C1—Fe1 | 132.87 (15) | C26—C27—H27B | 109.5 |
N1—C1—Fe1 | 118.74 (14) | H27A—C27—H27B | 109.5 |
C4—C3—C2 | 117.0 (2) | C26—C27—H27C | 109.5 |
C4—C3—H3 | 121.5 | H27A—C27—H27C | 109.5 |
C2—C3—H3 | 121.5 | H27B—C27—H27C | 109.5 |
C5—C4—C3 | 122.2 (2) | C1—N1—C2 | 110.40 (16) |
C5—C4—H4 | 118.9 | C1—N1—C8 | 114.98 (16) |
C3—C4—H4 | 118.9 | C2—N1—C8 | 134.56 (17) |
C4—C5—C6 | 121.3 (2) | C1—N2—C7 | 110.73 (16) |
C4—C5—H5 | 119.4 | C1—N2—C13 | 124.95 (16) |
C6—C5—H5 | 119.4 | C7—N2—C13 | 124.30 (16) |
C7—C6—C5 | 116.6 (2) | C12—N3—C8 | 117.12 (17) |
C7—C6—H6 | 121.7 | C12—N3—Fe1 | 130.04 (14) |
C5—C6—H6 | 121.7 | C8—N3—Fe1 | 112.81 (13) |
C6—C7—C2 | 122.75 (19) | C14—N4—C21 | 115.07 (16) |
C6—C7—N2 | 130.72 (19) | C14—N4—C15 | 110.26 (16) |
C2—C7—N2 | 106.52 (17) | C21—N4—C15 | 134.35 (17) |
N3—C8—C9 | 123.18 (19) | C14—N5—C20 | 110.67 (16) |
N3—C8—N1 | 112.53 (17) | C14—N5—C13 | 125.16 (16) |
C9—C8—N1 | 124.28 (19) | C20—N5—C13 | 124.15 (16) |
C10—C9—C8 | 118.4 (2) | C25—N6—C21 | 116.92 (17) |
C10—C9—H9 | 120.8 | C25—N6—Fe1 | 129.93 (14) |
C8—C9—H9 | 120.8 | C21—N6—Fe1 | 112.89 (13) |
C9—C10—C11 | 119.4 (2) | C26—N7—Fe1 | 177.16 (17) |
C9—C10—H10 | 120.3 | F5—P1—F6 | 90.05 (8) |
C11—C10—H10 | 120.3 | F5—P1—F4 | 90.26 (8) |
C12—C11—C10 | 118.7 (2) | F6—P1—F4 | 179.66 (8) |
C12—C11—H11 | 120.6 | F5—P1—F3 | 179.58 (8) |
C10—C11—H11 | 120.6 | F6—P1—F3 | 90.00 (8) |
N3—C12—C11 | 123.2 (2) | F4—P1—F3 | 89.69 (7) |
N3—C12—H12 | 118.4 | F5—P1—F2 | 90.37 (7) |
C11—C12—H12 | 118.4 | F6—P1—F2 | 89.96 (7) |
N2—C13—N5 | 110.78 (16) | F4—P1—F2 | 89.92 (7) |
N2—C13—H13A | 109.5 | F3—P1—F2 | 90.05 (7) |
N5—C13—H13A | 109.5 | F5—P1—F1 | 90.02 (7) |
N2—C13—H13B | 109.5 | F6—P1—F1 | 89.98 (7) |
N5—C13—H13B | 109.5 | F4—P1—F1 | 90.14 (7) |
H13A—C13—H13B | 108.1 | F3—P1—F1 | 89.56 (7) |
N5—C14—N4 | 106.69 (16) | F2—P1—F1 | 179.61 (8) |
N5—C14—Fe1 | 132.79 (15) | C1—Fe1—C14 | 88.42 (9) |
N4—C14—Fe1 | 119.49 (14) | C1—Fe1—N8 | 86.8 (7) |
C16—C15—C20 | 120.54 (18) | C14—Fe1—N8 | 87.9 (9) |
C16—C15—N4 | 133.87 (19) | C1—Fe1—N7 | 97.85 (8) |
C20—C15—N4 | 105.58 (16) | C14—Fe1—N7 | 97.08 (8) |
C17—C16—C15 | 117.04 (19) | N7—Fe1—N8 | 173.3 (10) |
C17—C16—H16 | 121.5 | Fe1i—C28—N8 | 177 (4) |
C15—C16—H16 | 121.5 | Fe1—N8—C28 | 171.1 (7) |
C16—C17—C18 | 121.99 (19) | C1—Fe1—N3 | 79.83 (8) |
C16—C17—H17 | 119.0 | N3—Fe1—C14 | 167.26 (8) |
C18—C17—H17 | 119.0 | N8—Fe1—N3 | 86.5 (7) |
C19—C18—C17 | 121.46 (19) | N7—Fe1—N3 | 89.44 (7) |
C19—C18—H18 | 119.3 | C1—Fe1—N6 | 165.70 (8) |
C17—C18—H18 | 119.3 | C14—Fe1—N6 | 79.71 (7) |
C20—C19—C18 | 116.29 (19) | N8—Fe1—N6 | 84.9 (5) |
C20—C19—H19 | 121.9 | N7—Fe1—N6 | 91.55 (7) |
C18—C19—H19 | 121.9 | N3—Fe1—N6 | 111.16 (7) |
C19—C20—C15 | 122.68 (18) | F11—P2—F9 | 90.8 (3) |
C19—C20—N5 | 130.53 (18) | F11—P2—F10 | 89.5 (4) |
C15—C20—N5 | 106.79 (17) | F9—P2—F10 | 90.4 (2) |
N6—C21—C22 | 123.10 (18) | F11—P2—F12 | 179.0 (4) |
N6—C21—N4 | 112.40 (16) | F9—P2—F12 | 89.3 (5) |
C22—C21—N4 | 124.50 (18) | F10—P2—F12 | 89.6 (3) |
C23—C22—C21 | 118.4 (2) | F11—P2—F8 | 91.7 (3) |
C23—C22—H22 | 120.8 | F9—P2—F8 | 90.1 (5) |
C21—C22—H22 | 120.8 | F10—P2—F8 | 178.7 (5) |
C22—C23—C24 | 119.7 (2) | F12—P2—F8 | 89.2 (4) |
C22—C23—H23 | 120.2 | F11—P2—F7 | 90.4 (5) |
C24—C23—H23 | 120.2 | F9—P2—F7 | 178.8 (6) |
C25—C24—C23 | 118.3 (2) | F10—P2—F7 | 89.6 (5) |
C25—C24—H24 | 120.8 | F12—P2—F7 | 89.5 (3) |
C23—C24—H24 | 120.8 | F8—P2—F7 | 90.0 (2) |
N6—C25—C24 | 123.6 (2) | ||
N1—C2—C3—C4 | −179.7 (2) | C11—C12—N3—C8 | −2.0 (3) |
C7—C2—C3—C4 | 0.7 (3) | C11—C12—N3—Fe1 | 175.72 (16) |
C2—C3—C4—C5 | −0.1 (3) | C9—C8—N3—C12 | 1.5 (3) |
C3—C4—C5—C6 | −0.2 (4) | N1—C8—N3—C12 | −177.18 (17) |
C4—C5—C6—C7 | −0.1 (3) | C9—C8—N3—Fe1 | −176.56 (16) |
C5—C6—C7—C2 | 0.7 (3) | N1—C8—N3—Fe1 | 4.7 (2) |
C5—C6—C7—N2 | 179.7 (2) | N5—C14—N4—C21 | 173.84 (16) |
C3—C2—C7—C6 | −1.0 (3) | Fe1—C14—N4—C21 | 4.0 (2) |
N1—C2—C7—C6 | 179.26 (19) | N5—C14—N4—C15 | −0.6 (2) |
C3—C2—C7—N2 | 179.78 (19) | Fe1—C14—N4—C15 | −170.49 (13) |
N1—C2—C7—N2 | 0.0 (2) | N6—C21—N4—C14 | 1.5 (2) |
N3—C8—C9—C10 | 0.0 (3) | C22—C21—N4—C14 | −178.39 (18) |
N1—C8—C9—C10 | 178.6 (2) | N6—C21—N4—C15 | 174.24 (19) |
C8—C9—C10—C11 | −1.2 (3) | C22—C21—N4—C15 | −5.6 (3) |
C9—C10—C11—C12 | 0.8 (3) | C16—C15—N4—C14 | −178.8 (2) |
C10—C11—C12—N3 | 0.9 (3) | C20—C15—N4—C14 | 0.2 (2) |
C20—C15—C16—C17 | 0.0 (3) | C16—C15—N4—C21 | 8.3 (4) |
N4—C15—C16—C17 | 178.8 (2) | C20—C15—N4—C21 | −172.8 (2) |
C15—C16—C17—C18 | −0.4 (3) | N4—C14—N5—C20 | 0.9 (2) |
C16—C17—C18—C19 | 0.3 (3) | Fe1—C14—N5—C20 | 168.81 (15) |
C17—C18—C19—C20 | 0.1 (3) | N4—C14—N5—C13 | 179.66 (17) |
C18—C19—C20—C15 | −0.4 (3) | Fe1—C14—N5—C13 | −12.4 (3) |
C18—C19—C20—N5 | −179.3 (2) | C19—C20—N5—C14 | 178.2 (2) |
C16—C15—C20—C19 | 0.4 (3) | C15—C20—N5—C14 | −0.8 (2) |
N4—C15—C20—C19 | −178.70 (18) | C19—C20—N5—C13 | −0.6 (3) |
C16—C15—C20—N5 | 179.45 (17) | C15—C20—N5—C13 | −179.59 (17) |
N4—C15—C20—N5 | 0.4 (2) | N2—C13—N5—C14 | 23.9 (3) |
N6—C21—C22—C23 | 0.5 (3) | N2—C13—N5—C20 | −157.43 (17) |
N4—C21—C22—C23 | −179.58 (19) | C24—C25—N6—C21 | 0.1 (3) |
C21—C22—C23—C24 | −0.4 (3) | C24—C25—N6—Fe1 | −173.70 (16) |
C22—C23—C24—C25 | 0.1 (3) | C22—C21—N6—C25 | −0.4 (3) |
C23—C24—C25—N6 | 0.0 (3) | N4—C21—N6—C25 | 179.70 (16) |
N2—C1—N1—C2 | 0.0 (2) | C22—C21—N6—Fe1 | 174.44 (15) |
Fe1—C1—N1—C2 | 167.21 (14) | N4—C21—N6—Fe1 | −5.4 (2) |
N2—C1—N1—C8 | −177.53 (16) | N2—C1—Fe1—C14 | −2.1 (2) |
Fe1—C1—N1—C8 | −10.3 (2) | N1—C1—Fe1—C14 | −165.21 (16) |
C3—C2—N1—C1 | −179.7 (2) | N2—C1—Fe1—N8 | 85.9 (9) |
C7—C2—N1—C1 | 0.0 (2) | N1—C1—Fe1—N8 | −77.2 (9) |
C3—C2—N1—C8 | −2.8 (4) | N2—C1—Fe1—N7 | −99.0 (2) |
C7—C2—N1—C8 | 176.8 (2) | N1—C1—Fe1—N7 | 97.86 (15) |
N3—C8—N1—C1 | 2.7 (2) | N2—C1—Fe1—N3 | 173.0 (2) |
C9—C8—N1—C1 | −175.96 (19) | N1—C1—Fe1—N3 | 9.85 (14) |
N3—C8—N1—C2 | −174.0 (2) | N2—C1—Fe1—N6 | 31.7 (4) |
C9—C8—N1—C2 | 7.3 (4) | N1—C1—Fe1—N6 | −131.5 (3) |
N1—C1—N2—C7 | 0.0 (2) | N5—C14—Fe1—C1 | −0.1 (2) |
Fe1—C1—N2—C7 | −164.60 (16) | N4—C14—Fe1—C1 | 166.63 (16) |
N1—C1—N2—C13 | −178.60 (17) | N5—C14—Fe1—N8 | −86.9 (7) |
Fe1—C1—N2—C13 | 16.8 (3) | N4—C14—Fe1—N8 | 79.8 (7) |
C6—C7—N2—C1 | −179.2 (2) | N5—C14—Fe1—N7 | 97.64 (19) |
C2—C7—N2—C1 | 0.0 (2) | N4—C14—Fe1—N7 | −95.65 (15) |
C6—C7—N2—C13 | −0.6 (3) | N5—C14—Fe1—N3 | −22.7 (5) |
C2—C7—N2—C13 | 178.58 (18) | N4—C14—Fe1—N3 | 144.0 (3) |
N5—C13—N2—C1 | −26.0 (3) | N5—C14—Fe1—N6 | −172.1 (2) |
N5—C13—N2—C7 | 155.62 (17) | N4—C14—Fe1—N6 | −5.36 (14) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···F3ii | 0.95 | 2.58 | 3.437 (3) | 150 |
C6—H6···F4ii | 0.95 | 2.58 | 3.348 (3) | 138 |
C13—H13A···F1ii | 0.99 | 2.42 | 3.312 (2) | 150 |
C13—H13B···F10 | 0.99 | 2.26 | 3.006 (4) | 131 |
C13—H13B···F11iii | 0.99 | 2.42 | 3.396 (4) | 170 |
C13—H13B···F12 | 0.99 | 2.43 | 3.257 (4) | 140 |
C16—H16···F7iv | 0.95 | 2.47 | 3.366 (6) | 158 |
C19—H19···F1ii | 0.95 | 2.62 | 3.513 (2) | 158 |
C22—H22···F7iv | 0.95 | 2.44 | 3.310 (7) | 152 |
C22—H22···F8v | 0.95 | 2.50 | 3.352 (7) | 150 |
C25—H25···F6vi | 0.95 | 2.55 | 3.034 (2) | 112 |
C27—H27A···F9iii | 0.98 | 2.57 | 3.299 (4) | 131 |
C27—H27A···F11 | 0.98 | 2.37 | 3.286 (4) | 155 |
C27—H27A···F12iii | 0.98 | 2.58 | 3.497 (4) | 155 |
C27—H27B···F2vii | 0.98 | 2.62 | 3.348 (3) | 131 |
C27—H27C···F2vi | 0.98 | 2.58 | 3.346 (3) | 135 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+1, y, −z+3/2; (iv) −x+1, −y+2, −z+1; (v) x, −y+2, z−1/2; (vi) −x+1/2, y+1/2, −z+1/2; (vii) x, −y+1, z+1/2. |
Acknowledgements
Lena Schröck is gratefully acknowledged for Raman measurements. There are no competing interests to declare. Open access funding enabled and organized by Projekt DEAL.
References
Ahmad, M. S., Pulidindi, I. N. & Li, C. (2020). New J. Chem. 44, 17177–17197. Web of Science CrossRef CAS Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Armarego, W. L. (2017). In Purification of laboratory chemicals. London: Butterworth–Heinemann. Google Scholar
Blanksby, S. J. & Ellison, G. B. (2003). Acc. Chem. Res. 36, 255–263. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2021). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Crossland, J. L. & Tyler, D. R. (2010). Coord. Chem. Rev. 254, 1883–1894. Web of Science CrossRef CAS Google Scholar
Deng, D., Gopiraman, M., Kim, S. H., Chung, I.-M. & Kim, I. S. (2016). ACS Sustainable Chem. Eng. 4, 5409–5414. Web of Science CrossRef CAS Google Scholar
Dyckhoff, F., Schlagintweit, J. F., Bernd, M. A., Jakob, C. H. G., Schlachta, T. P., Hofmann, B. J., Reich, R. M. & Kühn, F. E. (2021). Catal. Sci. Technol. 11, 795–799. Web of Science CrossRef CAS Google Scholar
Fulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E. & Goldberg, K. I. (2010). Organometallics, 29, 2176–2179. Web of Science CrossRef CAS Google Scholar
Goebbert, D. J., Velarde, L., Khuseynov, D. & Sanov, A. (2010). J. Phys. Chem. Lett. 1, 792–795. Web of Science CrossRef CAS Google Scholar
Grirrane, A., Álvarez, E., Albero, J., García, H. & Corma, A. (2016). Dalton Trans. 45, 5444–5450. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gu, N. X., Oyala, P. H. & Peters, J. C. (2018). J. Am. Chem. Soc. 140, 6374–6382. Web of Science CSD CrossRef CAS PubMed Google Scholar
Haveli, S. D., Walter, P., Patriarche, G., Ayache, J., Castaing, J., Van Elslande, E., Tsoucaris, G., Wang, P.-A. & Kagan, H. B. (2012). Nano Lett. 12, 6212–6217. Web of Science CrossRef CAS PubMed Google Scholar
Knapp, S. M. M., Sherbow, T. J., Juliette, J. J. & Tyler, D. R. (2012). Organometallics, 31, 2941–2944. Web of Science CrossRef CAS Google Scholar
Lewis, R. J. Sr (2008). In Hazardous Chemicals Desk Reference, 6th ed. Chichester: John Wiley & Sons. Google Scholar
Liu, X., Zhou, W., Yang, L., Li, L., Zhang, Z., Ke, Y. & Chen, S. (2015). J. Mater. Chem. A, 3, 8840–8846. Web of Science CrossRef CAS Google Scholar
Lu, T., Zhuang, X., Li, Y. & Chen, S. (2004). J. Am. Chem. Soc. 126, 4760–4761. Web of Science CSD CrossRef PubMed CAS Google Scholar
McWilliams, S. F., Bunting, P. C., Kathiresan, V., Mercado, B. Q., Hoffman, B. M., Long, J. R. & Holland, P. L. (2018). Chem. Commun. 54, 13339–13342. Web of Science CSD CrossRef CAS Google Scholar
Miscione, G. P. & Bottoni, A. (2014). Organometallics, 33, 4173–4182. Web of Science CrossRef CAS Google Scholar
Öfele, K. (1969). Angew. Chem. Int. Ed. Engl. 8, 916–917. Google Scholar
Pruppacher, H. R. & Klett, J. D. (1997). In Microphysics of Clouds and Precipitation. Dordrecht: Springer. Google Scholar
Raba, A., Cokoja, M., Ewald, S., Riener, K., Herdtweck, E., Pöthig, A., Herrmann, W. A. & Kühn, F. E. (2012). Organometallics, 31, 2793–2800. Web of Science CSD CrossRef CAS Google Scholar
Regenauer, N. I., Wadepohl, H. & Roşca, D.-A. (2022). Inorg. Chem. 61, 7426–7435. Web of Science CSD CrossRef CAS PubMed Google Scholar
Riener, K., Haslinger, S., Raba, A., Högerl, M. P., Cokoja, M., Herrmann, W. A. & Kühn, F. E. (2014). Chem. Rev. 114, 5215–5272. Web of Science CrossRef CAS PubMed Google Scholar
Saouma, C. T., Moore, C. E., Rheingold, A. L. & Peters, J. C. (2011). Inorg. Chem. 50, 11285–11287. Web of Science CSD CrossRef CAS PubMed Google Scholar
Schlachta, T. P., Anneser, M. R., Schlagintweit, J. F., Jakob, C. H. G., Hintermeier, C., Böth, A. D., Haslinger, S., Reich, R. M. & Kühn, F. E. (2021). Chem. Commun. 57, 6644–6647. Web of Science CSD CrossRef CAS Google Scholar
Schlachta, T. P. & Kühn, F. E. (2023). Chem. Soc. Rev. 52, 2238–2277. Web of Science CrossRef CAS PubMed Google Scholar
Schlachta, T. P., Zámbó, G. G., Sauer, M. J., Rüter, I. & Kühn, F. E. (2024). Submitted. Google Scholar
Sear, R. P. (2014). CrystEngComm, 16, 6506–6522. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Spentzos, A. Z., Gau, M. R., Carroll, P. J. & Tomson, N. C. (2020). Chem. Commun. 56, 9675–9678. Web of Science CSD CrossRef CAS Google Scholar
Suess, D. L. M. & Peters, J. C. (2013). J. Am. Chem. Soc. 135, 4938–4941. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sunada, Y., Imaoka, T. & Nagashima, H. (2013). Organometallics, 32, 2112–2120. Web of Science CSD CrossRef CAS Google Scholar
Takeshita, T., Sato, K. & Nakajima, Y. (2018). Dalton Trans. 47, 17004–17010. Web of Science CSD CrossRef CAS PubMed Google Scholar
Walter, P., Welcomme, E., Hallégot, P., Zaluzec, N. J., Deeb, C., Castaing, J., Veyssière, P., Bréniaux, R., Lévêque, J.-L. & Tsoucaris, G. (2006). Nano Lett. 6, 2215–2219. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.