crystallography in latin america\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Coordination structure and inter­molecular inter­actions in copper(II) acetate com­plexes with 1,10-phenanthroline and 2,2′-bi­py­ri­dine

crossmark logo

aDepartment of Chemistry, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627 Pampulha, Belo Horizonte – MG, CEP 31270-901, Brazil
*Correspondence e-mail: bernardo@qui.ufmg.br

Edited by M. Rosales-Hoz, Cinvestav, Mexico (Received 29 May 2024; accepted 1 August 2024; online 23 August 2024)

This article is part of the collection Crystallography in Latin America: a vibrant community.

The crystal structures of two coordination com­pounds, (acetato-κO)(2,2′-bi­py­ri­dine-κ2N,N′)(1,10-phenanthroline-κ2N,N′)copper(II) acetate hexa­hydrate, [Cu(C2H3O2)(C10H8N2)(C12H8N2)](C2H3O2)·6H2O or [Cu(bipy)(phen)Ac]Ac·6H2O, and (acetato-κO)bis­(2,2′-bi­py­ri­dine-κ2N,N′)copper(II) acetate–acetic acid–water (1/1/3), [Cu(C2H3O2)(C10H8N2)2](C2H3O2)·C2H4O2·3H2O or [Cu(bipy)2Ac]Ac·HAc·3H2O, are reported and com­pared with the previously published structure of [Cu(phen)2Ac]Ac·7H2O (phen is 1,10-phenanthroline, bipy for 2,2′-bi­py­ri­dine, ac is acetate and Hac is acetic acid). The geometry around the metal centre is penta­coordinated, but highly distorted in all three cases. The coordination number and the geometric distortion are both discussed in detail, and all com­plexes belong to the space group P[\overline{1}]. The analysis of the geometric parameters and the Hirshfeld surface properties dnorm and curvedness provide information about the metal–ligand inter­actions in these com­plexes and allow com­parison with similar systems.

1. Introduction

The biological activities of metal com­plexes is a well studied topic in chemistry. The anti­microbial activities of copper com­plexes with chelated ligands such as 2,2′-bi­py­ri­dine (bipy) and 1,10-phenanthroline (phen) have been reported in the literature (Agwara et al., 2010[Agwara, M. O., Ndifon, P. T., Ndosiri, N. B., Paboudam, A. G., Yufanyi, D. M. & Mohamadou, A. (2010). Bull. Chem. Soc. Eth. 24, 383-389.]; Vignesh et al., 2012[Vignesh, G., Arunachalam, S., Vignesh, S. & James, R. A. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 96, 108-116.]). Potentially correlated with such biochemical behaviour is the fact that the coordination geometry around the copper centre is distorted. The distortion can be significant also when an acetate anion is additionally coordinated to the metal centre (Lobana et al., 2014[Lobana, T. S., Indoria, S., Jassal, A. K., Kaur, H., Arora, D. S. & Jasinski, J. P. (2014). Eur. J. Med. Chem. 76, 145-154.]). These systems are inter­esting from a structural point of view because the deviation from the expected and usual coordination polyhedra may shed some light on the chemical origin of the overall distortion and on the nature of the coordination.

Acetate can coordinate in several different ways in a metal com­plex: monodentate or bidentate, to one or more metal centres, forming usual coordination geometry (e.g. octa­hedral) around the metal or highly distorting the metal coordination, for example, when coordinating as a chelating ligand. The metal–acetate inter­action may be one of the reasons which forces a distorted geometry in the structures discussed in this study. The distortion pre­sent­ed here is similar to cases already reported in other com­plexes with bi­py­ri­dine and nitrate (Hisayoshi, 1980[Hisayoshi, N. (1980). Bull. Chem. Soc. Jpn, 53, 1321-1326.]), as well as in systems having other functional groups containing two O atoms covalently bonded to the same atom within the ligand (Zhong, 2011[Zhong, K.-L. (2011). Acta Cryst. E67, m1215-m1216.], 2012[Zhong, K.-L. (2012). Acta Cryst. E68, m1555.]). It is also possible to rationalize the acetate effect by com­paring the structures of this study with other com­plexes having three coordinated phen or bipy ligands, which also cause distortions but in a different way; while [Cu(phen)3](ClO4)2 (Hu et al., 2009[Hu, F., Yin, X., Mi, Y., Zhang, S., Luo, W. & Zhuang, Y. (2009). Inorg. Chem. Commun. 12, 1189-1192.]) is hexa­coordinated and has two elongated Cu—O bonds trans to each other (with Cu—O around 2.30 Å), [Cu(bipy)3](ClO4)2 (Liu et al., 1991[Liu, Z.-M., Jiang, Z.-H., Liao, D.-Z., Wang, G.-L., Yao, X.-K. & Wang, H.-G. (1991). Polyhedron, 10, 101-102.]) shows one shorter (2.23 Å) and another more elongated Cu—O distance of 2.469 Å, suggesting the Cu atom in this com­plex should be penta­coordinated. The other Cu—N distances for both com­plexes are around 2.0 Å.

It is relevant to understand the mechanism by which these structures become distorted (Pinto et al., 2020a[Pinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2020a). Cryst. Growth Des. 20, 4827-4838.]). Therefore, in addition to the more traditional geometric properties, it is important to consider features of the Hirshfeld surface (HS) (Hirshfeld, 1977[Hirshfeld, F. L. (1977). Theor. Claim. Acta, 44, 129-138.]) around the metal. This study promotes a discussion (a) on the general shape of the Hirshfeld surfaces and (b) on the local properties dnorm and curvedness of the surfaces (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) in the direction of the M—O inter­actions. The dnorm property is defined by Spackman & Jayatilaka (2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]):

[d_{\rm norm} = {{d_{\rm i} - r_{\rm i}^{\rm vdW}}\over{r_{\rm i}^{\rm vdW}}} +{{d_{\rm e} - r_{\rm e}^{\rm vdW}}\over{r_{\rm e}^{\rm vdW}}} \eqno(1)]

The dnorm property is a measure of the distance between the closest atoms inside (di) and outside (de) each point of the Hirshfeld surface in com­parison to the van der Waals radii (rivdW and revdW) of these atoms. The dnorm value is negative for contacts shorter than the sum of the van der Waals radii and positive for contacts longer than that sum.

The curvedness (C) is defined by:

[C = {{2}\over{\pi}}\ln \sqrt{{{k_1^2 + k_2^2}\over{2}}} \eqno(2)]

C is a measure of the curvature of the HS in terms of the principal curvatures k1 and k2. Complementary surfaces (such as the Hirshfeld surfaces of bonded atoms) should have the same values of C.

This article reports the structures of copper com­plexes with (a) one bipy, one phen and one acetate ligand, namely, (ace­tato-κO)(2,2′-bi­py­ri­dine-κ2N,N′)(1,10-phenanthroline-κ2N,N′)copper(II) acetate hexa­hydrate, (I)[link] (see Scheme 1[link]), and (b) two bipy and one acetate ligand, namely, (acetato-κO)bis­(2,2′-bi­py­ri­dine-κ2N,N′)copper(II) acetate–acetic acid–water (1/1/3), (III)[link] (see Scheme 2[link]). Together with a pre­vi­ous­ly published com­plex with two phen and one acetate ligand, (II) (Jing et al., 2011[Jing, B., Li, L., Dong, J. & Xu, T. (2011). Acta Cryst. E67, m464.]), these com­plexes are discussed herein. The structure in each case is unique because of the different proportions of the bipy and phen ligands, and the way the acetate ligand coordinates in each com­plex.

[Scheme 1]
[Scheme 2]

2. Experimental

2.1. Synthesis and crystallization

2.1.1. [Cu(bipy)(phen)(Ac)]Ac·6H2O, (I)

A mixture was prepared containing ethanol (20.0 ml), acetic acid (0.5 ml), copper acetate monohydrate (0.99 mmol, 0.198 g), 2,2′-bi­py­ri­dine (1.29 mmol, 0.201 g) and 1,10-phenanthroline (0.70 mmol, 0.127 g). The mixture was stirred for 1 h at room tem­per­a­ture. Afterward, the resulting solution was filtered and left to crystallize. Blue single crystals of (I)[link] (Fig. 1[link]) had formed in the solution after one month.

[Figure 1]
Figure 1
The asymmetric unit of [Cu(bipy)(phen)Ac]Ac·6H2O, (I)[link], drawn with 50% probability displacement ellipsoids.
2.1.2. [Cu(phen)2Ac]Ac·7H2O, (II)

The previously re­ported structure (Jing et al., 2011[Jing, B., Li, L., Dong, J. & Xu, T. (2011). Acta Cryst. E67, m464.]) is herein revisited and dis­cus­sed because it com­pletes the series (Fig. 2[link]). The data pre­sent­ed here for this system were taken from the original publication.

[Figure 2]
Figure 2
The asymmetric unit of [Cu(phen)2Ac]Ac·7H2O, (II), drawn with 50% probability displacement ellipsoids from previously published data (Jing et al., 2011[Jing, B., Li, L., Dong, J. & Xu, T. (2011). Acta Cryst. E67, m464.]; CCDC deposition No. 820064).
2.1.3. [Cu(bipy)2Ac]Ac·HAc·3H2O, (III)

Single crystals of (III)[link] (Fig. 3[link]) were obtained from a solution of ethanol (18.0 ml) and water (2.0 ml) containing acetic acid (0.5 ml), copper acetate monohydrate (1.58 mmol, 0.316 g) and 2,2′-bi­py­ri­dine (1.29 mmol, 0.201 g). The solution was mixed for 1 h at room tem­per­a­ture, filtered and left to rest to crystallize. A month later, blue crystals had formed at the bottom and on the walls of the beaker.

[Figure 3]
Figure 3
The asymmetric unit of [Cu(bipy)2(Ac)]Ac·HAc·3H2O, (III)[link], drawn with 50% probability displacement ellipsoids.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The H atoms in both systems were fixed or assigned from residual density. The positional and vibrational parameters were fixed for all H atoms.

Table 1
Experimental details

For both structures: triclinic, P[\overline{1}], Z = 2. Experiments were carried out at 293 K for (I) and 150 K for (III) using a Rigaku XtaLAB Synergy Dualflex diffractometer with a HyPix detector. Absorption was corrected for by multi-scan methods (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]). H-atom parameters were constrained.

  (I) (III)
Crystal data
Chemical formula [Cu(C2H3O2)(C10H8N2)(C12H8N2)](C2H3O2)·6H2O [Cu(C2H3O2)(C10H8N2)2](C2H3O2)·C2H4O2·3H2O
Mr 626.12 608.09
a, b, c (Å) 8.1778 (1), 12.3323 (1), 15.9879 (2) 11.0826 (18), 11.1840 (19), 12.1880 (18)
α, β, γ (°) 69.166 (1), 77.689 (1), 88.572 (1) 86.537 (1), 69.820 (1), 83.261 (1)
V3) 1470.03 (3) 1407.8 (4)
Radiation type Cu Kα Mo Kα
μ (mm−1) 1.57 0.83
Crystal size (mm) 0.29 × 0.13 × 0.07 0.13 × 0.07 × 0.06
 
Data collection
Tmin, Tmax 0.758, 1.000 0.995, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 57004, 6248, 5734 36611, 7452, 6436
Rint 0.040 0.029
(sin θ/λ)max−1) 0.638 0.718
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.135, 0.86 0.030, 0.082, 1.05
No. of reflections 6248 7452
No. of parameters 378 364
No. of restraints 20 4
Δρmax, Δρmin (e Å−3) 0.53, −0.52 0.42, −0.37
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

3. Results and discussion

3.1. Coordination and geometry

Compounds (I)–(III) show distorted coordination geometries for the metal atom. The Cu atom is bonded to two nitro­genated ligands (1,10-phenanthroline and/or 2,2′-bi­py­ri­dine) in a chelating manner and to one O atom (O2) from an acetate ligand. The second acetate O atom (O1) inter­acts with the Cu atom with distances over 2.6 Å for all three cases. This inter­action plays a fundamental role in distorting the geometry around the metal atom.

In all the systems, the copper coordination consists of four Cu—N bonds involving the ligands bipy and phen, as well as one Cu—O bond to the acetate ligand. The second O atom of the acetate is further from the Cu atom (Figs. 1[link], 2[link] and 3[link]), with the Cu⋯O1 distances varying from 2.6404 (1) Å for (II) to 2.859 (1) Å for (III)[link].

The Cu—N bond lengths for the three com­plexes are within the inter­val from 2.0 to 2.2 Å (Tables 2[link], 3[link] and 4[link]). Inter­estingly, the longest Cu—N bond length in each com­plex is observed for the N atom that is located in an approximate trans position with respect to O1. In the case of bipy/phen com­pound (I)[link], the longest bond length occurs between the Cu atom and a phen N atom. The angles between the planes of the rings of the bipy ligands are 5.57 (2)°. This value is inter­mediate com­pared to the angles in bipy/bipy com­plex (III)[link] of 1.18 (2)° for the N1/N2 ligand and 7.76 (9)° for the N3/N4 ligand.

Table 2
Selected geometric parameters (Å, °) for (I)[link]

Cu1—O2 1.9594 (10) Cu1—N2 2.0958 (12)
Cu1—N1 1.9796 (12) Cu1—N3 2.1522 (12)
Cu1—N4 1.9810 (12)    
       
O2—Cu1—N1 91.16 (5) N4—Cu1—N2 96.61 (5)
O2—Cu1—N4 95.59 (5) O2—Cu1—N3 127.23 (4)
N1—Cu1—N4 172.71 (5) N1—Cu1—N3 94.57 (5)
O2—Cu1—N2 139.29 (4) N4—Cu1—N3 79.16 (4)
N1—Cu1—N2 79.92 (5) N2—Cu1—N3 93.23 (4)

Table 3
Bond lengths of the coordination of copper (Å) and the angles between these bonds (°) in [Cu(phen)2Ac]Ac·7H2O, (II) (Jing et al., 2011[Jing, B., Li, L., Dong, J. & Xu, T. (2011). Acta Cryst. E67, m464.])

Cu—O2 2.001 (3) Cu—N3 1.988 (3)
Cu—N1 1.989 (3) Cu—N4 2.051 (3)
Cu—N2 2.191 (4)    
       
N1—Cu—N2 79.82 (14) N3—Cu—N4 81.55 (13)
N1—Cu—N3 177.12 (15) O2—Cu—N1 89.98 (13)
N1—Cu—N4 96.80 (13) O2—Cu—N2 101.51 (13)
N2—Cu—N3 98.35 (13) O2—Cu—N3 92.58 (13)
N2—Cu—N4 106.69 (14) O2—Cu—N4 151.73 (14)

Table 4
Selected geometric parameters (Å, °) for (III)[link]

Cu—O2 1.9908 (16) Cu—N1 2.0231 (19)
Cu—N2 1.9982 (18) Cu—N4 2.2356 (18)
Cu—N3 2.0206 (19)    
       
O2—Cu—N2 93.79 (7) N3—Cu—N1 94.62 (7)
O2—Cu—N3 89.88 (7) O2—Cu—N4 88.34 (6)
N2—Cu—N3 173.22 (7) N2—Cu—N4 107.16 (7)
O2—Cu—N1 164.36 (7) N3—Cu—N4 78.61 (7)
N2—Cu—N1 80.37 (7) N1—Cu—N4 107.23 (7)

The acetate coordination to the metal is another feature to be discussed across the systems. One aspect that needs to be addressed is the relationship between the distances from the Cu atom to the O atoms of the acetate groups involving the clearly coordinated O2 atom and the further removed O1 atom, considering that the Cu—O1 distance is always bigger than the Cu—O2 distance. In mixed com­plex (I)[link], the Cu—O2 distance is 1.9908 (16) Å, while the Cu—O1 distance is 2.742 (2) Å. For phen/phen com­plex (II), the distances are 2.001 (3) and 2.640 (1) Å, respectively, and for bipy/bipy com­plex (III)[link], they are 1.9594 (10) and 2.859 (2) Å, respectively. It is clear that the shorter the coordinated Cu—O2 distance, the longer the Cu—O1 distance becomes. In this manner, bipy/bipy com­plex (III)[link] has the smallest coordination bond and the longest Cu—O1 distance. On the other hand, phen/phen com­plex (II) has the longest Cu—O2 coordination bond and the shortest Cu—O1 distance.

It is possible to note that the geometry of the acetate ligand also differs from one system to another. This can be seen by analysing the distance from the acetate C atom to atoms O1 and O2, and the O1—Cu—O2 bite angle. In mixed com­plex (I)[link], the C23—O1 distance is 1.231 (3) Å and the C23—O2 distance is 1.271 (3) Å. The equivalent distances are 1.242 (5)and 1.257 (5) Å for phen/phen com­plex (II), and 1.2396 (18) (C21—O1) and 1.2820 (17) Å (C21—O2) for bipy/bipy com­plex (III)[link]. These data correlate with data in the previous paragraph in such a way to indicate that the longer the C—O2 distance, the shorter the coordination Cu—O2 distance.

For the O1—Cu—O2 bite angles, the values are 54.12 (3), 52.30 (6) and 50.89 (4)°, respectively, for (II), (I)[link] and (III)[link]. In this way, the smaller the O1—Cu—O2 bite angle, the shorter the coordination distance (Cu—O2) and the longer the C—O2 distance (Table 5[link]).

Table 5
Selected geometric parameters over the three reported systems

System [Cu(bipy)(phen)Ac]Ac, (I) [Cu(phen)2Ac]Ac, (II) [Cu(bipy)2Ac]Ac, (III)
Angle between N ligands (°) 111.53 (4) 109.3 (3) 80.51 (3)
Longest bond (Å) 2.2360 (15) 2.191 (4) 2.1521 (12)
τ5 0.148 0.423 0.557
Cu—O2 (Å) 1.991(2′ 2.001 (3) 1.959 (1)
Cu—O1 (Å) 2.742 (2) 2.6404 (1) 2.859 (1)
O1—Cu—O2 (°) 52.30 (6) 54.12 (3) 50.89 (4)

Another aspect to observe in the coordination are the angles (Tables 2[link], 3[link] and 4[link]) formed by the coordination bonds. The first consideration is that all the systems have nonconventional angles when com­paring either standard square-pyramidal or standard bipyramidal–trigonal geometries. The angles can be used to calculate the `angular structural parameter' τ5 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), a parameter used to measure distortion for penta­coordinated com­plexes. The obtained values are 0.148 for (I)[link], 0.423 for (II) and 0.557 for (III)[link]. These results show that the first com­plex is close to standard square-pyramidal geometry, while the coordination geometry in the other two com­plexes deviate more towards standard bipyramidal–trigonal geometry, but both are very inter­mediate geometries. In sequence, the HSs were generated (Fig. 4[link]) around the Cu atom in the systems and their general shape was analysed. The shapes of the surfaces and the τ5 values are in agreement with previously reported HSs around the Cu atom and their respective τ5 values (Pinto et al., 2020b). In this way, the use of the HSs confirms the metal as penta­coordinated, and its shape (Fig. 4[link]) and the τ5 value can be taken with security as a result of the geometry and distortion index. Therefore associating these two parameters, it is possible to truly characterize the systems as distorted penta­coordinated com­plexes, since the τ5 values are proved valid after confirming that the metal is penta­coordinated using the HSs.

[Figure 4]
Figure 4
dnorm Hirshfeld surfaces generated around copper in CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal­Explorer17. University of Western Australia. https://crystalexplorer.net/.]; Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) for (a) [Cu(bipy)(phen)Ac]Ac·6H2O, (I)[link], (b) [Cu(phen)2Ac]Ac·7H2O, (II), and (c) [Cu(bipy)2Ac)]Ac·HAc·3H2O, (III)[link].

The data relating to the global properties of the surfaces, such as volume (V), area (A), globularity (G, a measure of the deviation of the surface area from the area of a sphere with the same volume) and asphericity (Ω, a measure of the surface anisotropy) can be found in Table 6[link]. The values of G and Ω for the three com­pounds are somehow similar despite the differences observed for V and A. Besides the global data, it is inter­esting in these systems to look at the local properties dnorm and curvedness in the points where the Cu—O2 bond goes through the surfaces, and in the points where the Cu—O1 hypothetical bond would cross the surfaces (Tables 7[link], 8[link] and 9[link]). It is possible to note that the local data on the surface around the Cu atom reinforces the tendency observed before regarding the acetate coordination across the systems for dnorm.

Table 6
Information regarding Hirshfeld surfaces generated around the Cu atoms in the title systems

System [Cu(bipy)(phen)Ac]Ac, (I) [Cu(phen)2Ac]Ac, (II) [Cu(bipy)2Ac]Ac, (III)
Volume (Å3) 11.25 10.53 10.85
Area (Å2) 28.78 27.97 27.71
Globularity, G 0.844 0.830 0.855
Asphericity, Ω 0.058 0.040 0.065

Table 7
Data regarding the dnorm surface generated around the Cu atoms in the title systems

System [Cu(bipy)(phen)Ac]Ac, (I) [Cu(phen)2Ac]Ac, (II) [Cu(bipy)2Ac]Ac, (III)
Minimum −0.6413 −0.6476 −0.6542
Mean −0.0391 −0.0735 −0.0611
Maximum 0.9876 0.8396 0.8727
Cu—O2 point −0.6297 −0.6196 −0.6520
Cu—O1 point −0.1165 −0.1858 −0.0885

Table 8
Data regarding the curvedness of the surface generated around the Cu atoms in the title systems

System [Cu(bipy)(phen)Ac]Ac, (I) [Cu(phen)2Ac]Ac, (II) [Cu(bipy)2Ac]Ac, (III)
Minimum −3.6299 −3.3323 −3.4610
Mean −0.9290 −0.9396 −0.8808
Maximum 0.9472 1.0547 0.7287
Cu—O2 point −2.4528 −2.6100 −2.4644
Cu—O1 point −0.7427 −0.9443 −0.6101

Table 9
Values of Hirshfeld surface properties around the coordinated acetate in the title systems

System [Cu(bipy)(phen)Ac]Ac, (I) [Cu(phen)2Ac]Ac, (II) [Cu(bipy)2Ac]Ac, (III)
dnorm      
O2—Cu point −0.6293 −0.6221 −0.6508
O1—Cu point −0.1135 −0.1865 0.0651
Curvedness      
O2—Cu point −2.3655 −2.4345 −2.3591
O1—Cu point −0.7621 −0.8754 −0.7456

In order to understand and com­pare the inter­actions between the Cu atom and both O atoms of the coordinated acetate in each system, graphs relating inter­atomic distances and local HS properties were plotted [Figs. 5[link](a) and 5(b)], using the series data and some published data (Pinto et al., 2019[Pinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2019). Acta Cryst. C75, 707-716.]). The values of the HS properties (dnorm and curvedness) were obtained in surface points that correspond to the directions Cu—O2 and Cu—O1 in the copper and acetate surfaces. The values of these points reproduce well previous studies correlating the values of the properties with the distances between the atoms (Pinto et al., 2019[Pinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2019). Acta Cryst. C75, 707-716.]).

[Figure 5]
Figure 5
(a) dnorm and (b) curvedness values in the Cu—O directions for the Hirshfeld surfaces generated around the Cu atoms (Cu surfaces) and acetate groups (O surfaces). The points for the series are highlighted in red (O surfaces) and blue (Cu surfaces).

Remarkably, this com­parison using the copper surfaces and the acetate surfaces is inter­esting for understanding especially the effectiveness of the inter­actions between atoms Cu and O1 in the systems, which can be easily visualized in the graphs as very different across the three structures. For (III)[link], with Cu—O1 = 2.859 (1) Å, the curvedness on the Cu surface is bigger than the curvedness on the acetate surface and the values present a significant difference, while for (II), with Cu—O1 = 2.640 (1) Å, the C values show the opposite behaviour in terms of which surface presents the greater value, but the values are closer to each other. The C values observed on both surfaces for (I)[link] are also very close to each other, suggesting the com­plementarity of the surfaces in the Cu—O1 direction. This suggests a Cu—O1 inter­action that is more effective in these systems in com­parison with (III)[link]. The com­plementary aspect of the surfaces indicates the effectiveness of the inter­action, and the inversion over the distance indicates that at some point around these distances, there is an inflection point for the curvedness values between both surfaces [Fig. 5[link](b)].

The com­parison of local values for the surfaces around the Cu atom was extended to new data from com­plexes of the type [CuAB(OXO)], where A and B are 2,2′-bi­py­ri­dine and/or 1,10-phenanthroline, and OXO is a third group with two O atoms around the Cu atom, such as, but not restricted to, acetate. The new data were obtained from a search for the structures made with Conquest (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The search considered structures refined with Cu—O distances from 2.4 to 3.1 Å and R < 0.10.

The dnorm versus d[Cu—O1] plot shows a change in behaviour around a distance of 2.8 Å [Fig. 6[link](a)], similar to the previous data. Therefore, another graph was made considering only the points with Cu—O1 distances below 2.767 Å. Using this selection it was possible to fit well a linear regression for the data from the literature together with the data from our series [Fig. 6[link](b)], showing a great correlation. In this way, it was possible to attribute the nonlinearity of the graph dnorm versus d[Cu—O1] for long distances [Fig. 6[link](a)] to the fact that the external atom closest to the inter­est surface point is not O1 anymore but rather another neighbour within the supra­molecular structure. Another way to verify this idea was by studying the curvedness property for the same systems.

[Figure 6]
Figure 6
(a) dnorm versus Cu—O distance plot relating the series of com­plexes of this study (red) and many other already published com­plexes; the Pinto et al. (2019[Pinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2019). Acta Cryst. C75, 707-716.]) data are in black. (b) Comparison for the Cu—O distances below 2.767 Å and the linear regression.

The curvedness property was analysed using the same methodology applied to the dnorm property: the plot of the values of the curvedness obtained for the Cu Hirshfeld surface in the direction of Cu—O against the Cu—O distances. The nonlinearity in the C versus d[Cu—O1] plot occurs in the same region observed for the dnorm [evidenced when com­paring Fig. 7[link] to Fig. 6[link](a)]. However, the presence of a neighbouring atom besides O1 affects more dnorm than the curvedness due to the nature of the two properties: while the definition of dnorm depends only on the inter­nal and external atoms closest to the copper HS, the definition of curvedness depends on the entire neighbourhood (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). Moreover, the changes observed for the curvedness can also be traced back to the inter­ference of atoms that are closer than the acetate O atom to the analysed point on the Hirshfeld surface of the metal centre.

[Figure 7]
Figure 7
Curvedness versus Cu—O distance graph, showing the series of com­plexes of this study, many other already published com­plexes and the Pinto et al. (2019[Pinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2019). Acta Cryst. C75, 707-716.]) data.

3.2. Inter­molecular inter­actions

It is well known that inter­molecular inter­actions, such as hy­dro­gen bonds, have a huge impact on the relative positioning of some groups inside the crystal lattice. Therefore, it is important to identify the presence of these inter­actions in the systems.

In the asymmetric unit of (I)[link] (Fig. 1[link]), there are six crystallographically independent water mol­ecules besides the acetate counter-ion. Complex (II) (Fig. 2[link]) shows the same com­ponents, with seven water mol­ecules instead of six. The asymmetric unit of (II) (Fig. 3[link]) contains three water mol­ecules, one acetate counter-ion and one acetic acid mol­ecule. Each com­plex has the asymmetric unit com­pleted by the cationic part containing the metal and the coordinated ligands.

In the mixed com­plex, the coordinated acetate and the acetate counter-ion are connected through hy­dro­gen bonds linked by two water mol­ecules. It is therefore possible to see a network of hy­dro­gen bonds formed by the water mol­ecules and the acetate counter-ions. For (I)[link] and (II), two water mol­ecules link the coordinated and the counter-ion acetates [Figs. 8[link]a(a) and 8(b)]. Additionally, the three com­pounds show hy­dro­gen-bonding networks in the ac plane involving the acetic acid mol­ecule [for (III)], the water mol­ecules and the acetate counter-ion (Fig. 9[link]). The O—H⋯O-type hy­dro­gen bonds are of medium-to-weak strength, with O⋯O distances greater than 2.69 A (see Tables S3 and S4 in the supporting information).

[Figure 8]
Figure 8
Hydrogen bonds in the asymmetric units of (a) [Cu(bipy)(phen)Ac]Ac·6H2O, (I), (b) [Cu(phen)2Ac]Ac·7H2O, (II), and (c) [Cu(bipy)2Ac)]Ac·HAc·3H2O, (III).
[Figure 9]
Figure 9
Two-dimensional hy­dro­gen-bond network in the ac plane, viewed down the b axis, in (a) [Cu(bipy)(phen)Ac]Ac·6H2O, (I)[link], (b) [Cu(phen)2Ac]Ac·7H2O, (II), and (c) [Cu(bipy)2Ac)]Ac·HAc·3H2O, (III)[link]. The cationic units have been omitted for clarity.

ππ inter­actions between the rings of the ligands are observed as well (Table 10[link]). In mixed com­plex (I)[link], these inter­actions occur between the phen rings that stack on top of each other across the crystal structure in the direction of the a axis; this feature is not observed for the bipy rings of the same system. In the case of (II), only one of the phen rings is stacked inside the unit cell with ππ inter­actions; this stacking also extends in the direction of the a axis. For (III)[link], there is no con­tinuous structure of stacked rings inside one unit cell, but on the edge of two unit cells, two bipy rings inter­act in this way.

Table 10
Geometric parameters (Å) for π–π inter­actions

System [Cu(bipy)(phen)Ac]Ac, (I) [Cu(phen)2Ac]Ac, (II) [Cu(bipy)2Ac]Ac, (III)
Centroid–centroid distance 3.888 3.783 3.596
Centroid–plane distance 3.463 3.493 3.380
Plane–plane distance 3.493 3.505 3.377

The presence of stacking of rings across the crystal structures (Fig. 10[link]) is confirmed by measuring the centroid-to-centroid distances. In this case, the centroids of the ligands and the planes were made across the ligands using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). These objects were used to measure the distances corresponding to the ππ inter­actions. Values around 3.3 and 3.9 Å were obtained. These distances are com­patible with expected values for ππ inter­actions.

[Figure 10]
Figure 10
Stacking of rings showing the ππ inter­actions in (a) [Cu(bipy)(phen)Ac]Ac·6H2O, (I)[link], (b) [Cu(phen)2Ac]Ac·7H2O, (II), and (c) [Cu(bipy)2Ac)]Ac·HAc·3H2O, (III)[link].

HSs around the cationic part (the metal and the bonded ligands) for each com­plex were created to analyse the inter­actions. Inter­estingly, while (I)[link] and (II) have around 9% of C⋯C inter­actions (9.2 and 9.3%, respectively), (III)[link] has 6.1%. This is expected because of the smaller significance of ππ stacking inter­actions for this com­pound.

4. Conclusion

In this work, we have described in detail systems containing the nitro­genous ligands bipy and phen, as well as a third group with two O atoms around a Cu atom, namely, acetate. The com­plexes show that the longer the coordination bond to one O atom of the acetate ligand, the closer the other acetate O atom gets to the Cu atom. In other words, the weaker the Cu—O2 bond, the stronger the Cu—O1 inter­action becomes. Analysing the data related to the noncoordinated O atom (O1), it was possible to note that there is a significant inter­action between this atom and the Cu atom, which is reflected in the values of the Hirshfeld surface properties at the point where the Cu—O1 inter­action would take place. This is one important source for the geometric distortion around the metal centre.

The discussion of the coordination of the Cu atom in these systems is not simple because the data points to the existence of an inter­action between Cu and O1 mainly when the Cu—O1 distance is shorter. Therefore, it is possible to un­der­stand that the Cu—O1 inter­action gets stronger as the Cu—O2 distance gets longer and that com­plexes with a shorter coordination bond between Cu and O2 are those that are more clearly five-coordinated. On the other hand, the shape of the HS around the Cu atom agrees well with the shapes already reported for similar five-coordinated distorted com­plexes (Pinto et al., 2020b[Pinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2020b). J. Appl. Cryst. 53, 1321-1333.]) and suggests that the Cu atom is five-coordinated for the three systems, with the coordination being approximately square-pyramidal in [Cu(bipy)(phen)Ac]Ac·5.5H2O, (I)[link], distorted square-pyramidal in [Cu(phen)2Ac]Ac·7H2O, (II), and is closest to trigonal bipyramidal in [Cu(bipy)2Ac)]Ac·HAc·3H2O, (III)[link], as confirmed by the τ5 parameter.

The present study was also important for understanding the difference in behaviour, pre­sent­ed in graphs relating dnorm and curvedness with distance for this type of system. The difference is caused by the proximity of another atom closer to the surface than atom O1 itself for long Cu—O1 distances.

Finally, it is important to say that this work shows the use of Hirshfeld surfaces to analyse distorted geometries, and the use of the properties of surfaces to better understand inter­actions between the metal atom and the ligands.

Supporting information


Computing details top

(Acetato-κO)(2,2'-bipyridine-κ2N,N')(1,10-phenanthroline-κ2N,N')copper(II) acetate hexahydrate (I) top
Crystal data top
[Cu(C2H3O2)(C10H8N2)(C12H8N2)](C2H3O2)·6H2OZ = 2
Mr = 626.12F(000) = 654
Triclinic, P1Dx = 1.415 Mg m3
a = 8.1778 (1) ÅCu Kα radiation, λ = 1.54184 Å
b = 12.3323 (1) ÅCell parameters from 33446 reflections
c = 15.9879 (2) Åθ = 3.0–78.6°
α = 69.166 (1)°µ = 1.57 mm1
β = 77.689 (1)°T = 293 K
γ = 88.572 (1)°Prism, blue
V = 1470.03 (3) Å30.29 × 0.13 × 0.07 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
6248 independent reflections
Radiation source: micro-focus sealed X-ray tube5734 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.040
ω scansθmax = 79.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2022)
h = 710
Tmin = 0.758, Tmax = 1.000k = 1515
57004 measured reflectionsl = 2020
Refinement top
Refinement on F220 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.1175P)2 + 0.3778P]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max = 0.001
6248 reflectionsΔρmax = 0.53 e Å3
378 parametersΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single crystals were selected for the diffraction experiments that were performed using the XtaLAB Synergy diffractometer equipped with a HyPix detector. Data collections were done using the software CrysAlisPro 1.171.42.62a (Rigaku OD, 2022). In sequence, the structures were solved using SIR-92 (Altomare et al., 1994) and refined with the software SHELXL (Sheldrick, 2015). The experimental details are given in Table 1.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.34620 (3)0.95913 (2)0.23435 (2)0.04449 (11)
N20.45718 (19)0.86470 (12)0.16164 (10)0.0470 (3)
N30.23922 (19)1.07071 (13)0.29390 (10)0.0485 (3)
O20.13253 (16)0.86198 (11)0.28036 (9)0.0529 (3)
N10.54462 (19)1.06922 (13)0.15441 (10)0.0470 (3)
C180.5903 (2)0.91769 (14)0.09431 (11)0.0448 (3)
N40.39798 (18)0.87998 (13)0.37479 (10)0.0483 (3)
C170.6407 (2)1.03392 (14)0.09074 (11)0.0456 (3)
O50.0514 (2)0.67497 (14)0.45096 (11)0.0728 (4)
C230.0337 (2)0.90311 (17)0.22638 (12)0.0530 (4)
O10.0759 (2)0.98642 (16)0.15379 (11)0.0771 (5)
C90.3257 (2)0.94119 (16)0.42682 (12)0.0479 (4)
C40.2450 (2)1.04500 (16)0.38291 (12)0.0474 (4)
C100.4649 (3)0.78111 (18)0.41548 (16)0.0595 (5)
H100.5142910.7379170.3804760.071*
C130.5854 (3)1.17125 (17)0.15940 (16)0.0603 (5)
H130.5187251.1959100.2033910.072*
C10.1588 (3)1.16331 (17)0.25307 (15)0.0599 (5)
H10.1536811.1803500.1921860.072*
C190.6739 (3)0.86440 (18)0.03631 (13)0.0585 (4)
H190.7651680.9023940.0103990.070*
C80.3231 (3)0.9070 (2)0.52105 (13)0.0597 (5)
C160.7796 (3)1.09997 (18)0.02952 (15)0.0600 (5)
H160.8438041.0743800.0146060.072*
C120.3955 (3)0.8025 (2)0.56101 (16)0.0741 (6)
H120.3967570.7762440.6230700.089*
C50.1704 (3)1.11354 (19)0.43262 (15)0.0584 (4)
C140.7237 (3)1.2407 (2)0.1011 (2)0.0741 (6)
H140.7504911.3106180.1061600.089*
C200.6190 (3)0.7526 (2)0.04910 (16)0.0694 (6)
H200.6733570.7149430.0107860.083*
C110.4638 (3)0.7397 (2)0.50936 (18)0.0744 (7)
H110.5096760.6693590.5360690.089*
C220.4057 (3)0.75699 (17)0.17375 (15)0.0608 (5)
H220.3142380.7203310.2207870.073*
C150.8211 (3)1.2046 (2)0.03528 (19)0.0737 (6)
H150.9141191.2503220.0049560.088*
C30.0898 (3)1.2111 (2)0.38736 (18)0.0685 (6)
H30.0414061.2595600.4178960.082*
C240.1396 (3)0.8467 (2)0.25600 (18)0.0727 (6)
H24A0.2200990.9032760.2612710.109*
H24B0.1507280.7848290.3143260.109*
H24C0.1590900.8159980.2113890.109*
C210.4851 (3)0.69868 (18)0.11814 (17)0.0715 (6)
H210.4476520.6237390.1277220.086*
C20.0825 (3)1.23518 (19)0.29798 (18)0.0700 (6)
H20.0270681.2989810.2676170.084*
C60.1750 (3)1.0768 (2)0.52851 (17)0.0738 (6)
H60.1268271.1215920.5624250.089*
C70.2482 (3)0.9786 (3)0.56974 (16)0.0765 (7)
H70.2496230.9573040.6315150.092*
O80.5156 (2)0.37513 (15)0.23832 (12)0.0725 (4)
O70.6243 (2)0.5185 (2)0.33944 (13)0.0863 (5)
O60.2227 (2)0.52867 (19)0.47839 (13)0.0849 (5)
O100.3757300.4339900.0744410.0946 (6)
O40.2848 (2)0.5416 (2)0.31665 (15)0.0924 (6)
O30.1967 (2)0.4602 (2)0.21364 (16)0.0969 (6)
C260.1723 (3)0.5166 (2)0.2604 (2)0.0776 (6)
C250.0075 (4)0.5560 (3)0.2511 (3)0.1105 (12)
H25A0.0750760.5539830.1946830.166*
H25B0.0503350.5051420.3017220.166*
H25C0.0105570.6339110.2508380.166*
O9A0.0569 (14)0.4625 (11)0.0668 (8)0.229 (7)0.5
O9B0.0407 (7)0.4170 (6)0.0815 (3)0.0796 (13)0.5
H5A0.0732100.7240100.3973300.076*
H5B0.1195800.6238160.4619500.076*
H7A0.5242400.5388980.3378300.076*
H7B0.6576900.5006280.3972970.076*
H6B0.2507720.5342040.4285210.076*
H10A0.4043870.4219500.1238780.076*
H10B0.2760610.4331870.0668810.076*
H8B0.4169500.4031720.2283540.076*
H8A0.5675570.4085040.2737040.076*
H6A0.1477790.5827880.4636090.076*
H9A0.0271780.4070220.0518940.076*
H9B0.0091300.4218850.1325860.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.04657 (17)0.04038 (16)0.04396 (16)0.00148 (10)0.00701 (11)0.01366 (11)
N20.0522 (8)0.0402 (7)0.0481 (7)0.0023 (6)0.0108 (6)0.0153 (6)
N30.0507 (8)0.0436 (7)0.0477 (7)0.0051 (6)0.0084 (6)0.0137 (6)
O20.0472 (7)0.0530 (7)0.0523 (7)0.0006 (5)0.0109 (5)0.0114 (5)
N10.0484 (8)0.0425 (7)0.0498 (7)0.0005 (6)0.0098 (6)0.0165 (6)
C180.0505 (9)0.0420 (8)0.0415 (7)0.0051 (6)0.0142 (6)0.0122 (6)
N40.0424 (7)0.0473 (7)0.0510 (7)0.0002 (6)0.0119 (6)0.0113 (6)
C170.0474 (9)0.0427 (8)0.0443 (8)0.0039 (6)0.0127 (7)0.0114 (6)
O50.0769 (10)0.0638 (9)0.0680 (9)0.0008 (7)0.0094 (8)0.0155 (7)
C230.0540 (10)0.0562 (10)0.0473 (9)0.0054 (8)0.0097 (7)0.0176 (8)
O10.0844 (11)0.0785 (11)0.0515 (8)0.0013 (8)0.0117 (7)0.0046 (7)
C90.0415 (8)0.0527 (9)0.0461 (8)0.0057 (7)0.0099 (7)0.0131 (7)
C40.0434 (8)0.0496 (9)0.0482 (8)0.0044 (7)0.0046 (7)0.0189 (7)
C100.0492 (10)0.0506 (9)0.0715 (12)0.0045 (8)0.0173 (9)0.0108 (9)
C130.0605 (11)0.0504 (10)0.0727 (12)0.0041 (8)0.0080 (9)0.0286 (9)
C10.0667 (12)0.0482 (9)0.0599 (10)0.0111 (8)0.0128 (9)0.0148 (8)
C190.0690 (12)0.0553 (10)0.0484 (9)0.0070 (9)0.0076 (8)0.0186 (8)
C80.0539 (10)0.0724 (12)0.0478 (9)0.0110 (9)0.0123 (8)0.0139 (8)
C160.0543 (11)0.0583 (11)0.0594 (10)0.0005 (8)0.0035 (8)0.0164 (8)
C120.0695 (14)0.0832 (15)0.0571 (11)0.0050 (12)0.0236 (10)0.0043 (11)
C50.0526 (10)0.0623 (11)0.0639 (11)0.0045 (8)0.0029 (8)0.0319 (9)
C140.0693 (14)0.0556 (11)0.0969 (17)0.0121 (10)0.0087 (12)0.0313 (12)
C200.0933 (16)0.0579 (11)0.0631 (12)0.0120 (11)0.0128 (11)0.0321 (10)
C110.0626 (13)0.0665 (13)0.0767 (14)0.0032 (10)0.0283 (11)0.0028 (11)
C220.0689 (12)0.0431 (9)0.0669 (11)0.0032 (8)0.0064 (9)0.0201 (8)
C150.0593 (12)0.0621 (12)0.0855 (15)0.0149 (10)0.0005 (11)0.0177 (11)
C30.0656 (13)0.0605 (12)0.0844 (15)0.0058 (9)0.0036 (11)0.0396 (11)
C240.0557 (12)0.0824 (15)0.0778 (14)0.0035 (10)0.0250 (10)0.0200 (12)
C210.0925 (16)0.0455 (10)0.0797 (14)0.0017 (10)0.0139 (12)0.0291 (10)
C20.0706 (13)0.0489 (10)0.0854 (15)0.0140 (9)0.0109 (11)0.0222 (10)
C60.0751 (15)0.0860 (16)0.0681 (13)0.0059 (12)0.0056 (11)0.0421 (12)
C70.0767 (15)0.1015 (19)0.0537 (11)0.0116 (13)0.0120 (10)0.0310 (12)
O80.0728 (10)0.0762 (10)0.0762 (10)0.0021 (8)0.0222 (8)0.0329 (8)
O70.0727 (11)0.1068 (15)0.0738 (10)0.0131 (10)0.0167 (9)0.0257 (10)
O60.0743 (11)0.1004 (13)0.0709 (10)0.0130 (10)0.0077 (8)0.0234 (9)
O100.0834 (12)0.1274 (17)0.0819 (12)0.0139 (11)0.0329 (10)0.0404 (12)
O40.0665 (11)0.1221 (17)0.0971 (14)0.0054 (10)0.0155 (10)0.0502 (13)
O30.0664 (11)0.1311 (18)0.1074 (14)0.0125 (11)0.0102 (10)0.0638 (14)
C260.0618 (13)0.0755 (15)0.0933 (18)0.0037 (11)0.0178 (12)0.0266 (13)
C250.0637 (16)0.112 (2)0.176 (4)0.0042 (15)0.0189 (19)0.080 (3)
O9A0.123 (6)0.295 (15)0.171 (8)0.052 (8)0.064 (6)0.055 (8)
O9B0.062 (2)0.120 (4)0.0541 (18)0.018 (2)0.0104 (16)0.028 (2)
Geometric parameters (Å, º) top
Cu—O21.9897 (13)C5—C31.397 (3)
Cu—N21.9979 (15)C5—C61.445 (3)
Cu—N32.0204 (15)C14—C151.377 (4)
Cu—N12.0251 (15)C14—H140.9300
Cu—N42.2358 (15)C20—C211.364 (4)
N2—C221.338 (2)C20—H200.9300
N2—C181.344 (2)C11—H110.9300
N3—C11.333 (2)C22—C211.384 (3)
N3—C41.355 (2)C22—H220.9300
O2—C231.273 (2)C15—H150.9300
N1—C171.342 (2)C3—C21.367 (4)
N1—C131.343 (2)C3—H30.9300
C18—C191.378 (3)C24—H24A0.9600
C18—C171.479 (2)C24—H24B0.9600
N4—C101.328 (2)C24—H24C0.9600
N4—C91.351 (2)C21—H210.9300
C17—C161.385 (3)C2—H20.9300
O5—H5A0.8391C6—C71.351 (4)
O5—H5B0.8276C6—H60.9300
C23—O11.233 (2)C7—H70.9300
C23—C241.498 (3)O8—H8B0.8460
C9—C81.408 (3)O8—H8A0.8510
C9—C41.443 (3)O7—H7A0.855
C4—C51.401 (3)O7—H7B0.8538
C10—C111.401 (3)O6—H6B0.8552
C10—H100.9300O6—H6A0.8506
C13—C141.383 (3)O10—H10A0.8340
C13—H130.9300O10—H10B0.8499
C1—C21.387 (3)O4—C261.257 (3)
C1—H10.9300O3—C261.235 (3)
C19—C201.391 (3)C26—C251.520 (4)
C19—H190.9300C25—H25A0.9600
C8—C121.399 (3)C25—H25B0.9600
C8—C71.421 (4)C25—H25C0.9600
C16—C151.381 (3)O9A—H9A1.099
C16—H160.9300O9A—H9B0.984
C12—C111.353 (4)O9B—H9A0.838
C12—H120.9300O9B—H9B0.826
O2—Cu—N293.69 (6)C11—C12—C8120.0 (2)
O2—Cu—N389.87 (6)C11—C12—H12120.0
N2—Cu—N3173.29 (6)C8—C12—H12120.0
O2—Cu—N1164.31 (6)C3—C5—C4117.95 (19)
N2—Cu—N180.33 (6)C3—C5—C6123.7 (2)
N3—Cu—N194.77 (6)C4—C5—C6118.3 (2)
O2—Cu—N488.34 (5)C15—C14—C13118.9 (2)
N2—Cu—N4107.19 (6)C15—C14—H14120.6
N3—Cu—N478.57 (6)C13—C14—H14120.6
N1—Cu—N4107.26 (6)C21—C20—C19119.6 (2)
C22—N2—C18119.39 (16)C21—C20—H20120.2
C22—N2—Cu125.01 (14)C19—C20—H20120.2
C18—N2—Cu115.58 (11)C12—C11—C10119.7 (2)
C1—N3—C4118.81 (17)C12—C11—H11120.1
C1—N3—Cu124.68 (14)C10—C11—H11120.1
C4—N3—Cu116.44 (12)N2—C22—C21121.7 (2)
C23—O2—Cu110.02 (12)N2—C22—H22119.1
C17—N1—C13118.96 (16)C21—C22—H22119.1
C17—N1—Cu114.67 (12)C14—C15—C16119.5 (2)
C13—N1—Cu126.37 (13)C14—C15—H15120.2
N2—C18—C19121.59 (17)C16—C15—H15120.2
N2—C18—C17114.43 (15)C2—C3—C5119.70 (19)
C19—C18—C17123.95 (17)C2—C3—H3120.2
C10—N4—C9118.10 (17)C5—C3—H3120.2
C10—N4—Cu131.76 (15)C23—C24—H24A109.5
C9—N4—Cu109.52 (11)C23—C24—H24B109.5
N1—C17—C16121.99 (17)H24A—C24—H24B109.5
N1—C17—C18114.65 (15)C23—C24—H24C109.5
C16—C17—C18123.32 (17)H24A—C24—H24C109.5
H5A—O5—H5B114.9H24B—C24—H24C109.5
O1—C23—O2122.29 (19)C20—C21—C22119.1 (2)
O1—C23—C24120.95 (19)C20—C21—H21120.5
O2—C23—C24116.74 (17)C22—C21—H21120.5
N4—C9—C8123.12 (18)C3—C2—C1119.2 (2)
N4—C9—C4117.57 (15)C3—C2—H2120.4
C8—C9—C4119.30 (18)C1—C2—H2120.4
N3—C4—C5121.81 (18)C7—C6—C5121.1 (2)
N3—C4—C9117.73 (16)C7—C6—H6119.4
C5—C4—C9120.42 (17)C5—C6—H6119.4
N4—C10—C11122.2 (2)C6—C7—C8121.6 (2)
N4—C10—H10118.9C6—C7—H7119.2
C11—C10—H10118.9C8—C7—H7119.2
N1—C13—C14121.9 (2)H8B—O8—H8A100.24
N1—C13—H13119.0H7A—O7—H7B94.81
C14—C13—H13119.0H6B—O6—H6A105.7
N3—C1—C2122.5 (2)H10A—O10—H10B126.533
N3—C1—H1118.8O3—C26—O4124.7 (2)
C2—C1—H1118.8O3—C26—C25117.6 (3)
C18—C19—C20118.6 (2)O4—C26—C25117.7 (3)
C18—C19—H19120.7C26—C25—H25A109.5
C20—C19—H19120.7C26—C25—H25B109.5
C12—C8—C9116.8 (2)H25A—C25—H25B109.5
C12—C8—C7124.0 (2)C26—C25—H25C109.5
C9—C8—C7119.2 (2)H25A—C25—H25C109.5
C15—C16—C17118.7 (2)H25B—C25—H25C109.5
C15—C16—H16120.6H9A—O9A—H9B88.5
C17—C16—H16120.6H9A—O9B—H9B122.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N30.932.623.140 (3)116
C13—H13···O8i0.932.463.210 (3)138
C19—H19···O1ii0.932.333.220 (3)161
C16—H16···O1ii0.932.553.435 (3)160
C22—H22···O20.932.573.062 (3)113
C22—H22···O7iii0.932.653.153 (3)115
O5—H5A···O20.83912.00462.833 (2)169.32
O5—H5B···O6iv0.82762.0362.833 (3)161.52
O7—H7A···O40.861.912.731 (3)160
O7—H7B···O6v0.851.932.768 (3)168
O6—H6B···O40.861.842.689 (3)173
O10—H10A···O8iii0.831.962.7910 (17)173
O10—H10B···O9A^a0.851.822.645 (12)163
O8—H8B···O30.851.892.731 (2)177
O8—H8A···O70.851.982.806 (3)162
C13—H13···N30.932.623.140 (3)116
C13—H13···O8i0.932.463.210 (3)138
C19—H19···O1ii0.932.333.220 (3)161
C16—H16···O1ii0.932.553.435 (3)160
C22—H22···O20.932.573.062 (3)113
C22—H22···O7iii0.932.653.153 (3)115
O5—H5A···O20.83912.00462.833 (2)169.32
O5—H5B···O6iv0.82762.0362.833 (3)161.52
O7—H7A···O40.861.912.731 (3)160
O7—H7B···O6v0.851.932.768 (3)168
O6—H6B···O40.861.842.689 (3)173
O10—H10A···O8iii0.831.962.7910 (17)173
O10—H10B···O9A^a0.851.822.645 (12)163
O8—H8B···O30.851.892.731 (2)177
O8—H8A···O70.851.982.806 (3)162
O6—H6A···O50.851.942.774 (3)165
C13—H13···N30.932.623.140 (3)116
C13—H13···O8i0.932.463.210 (3)138
C19—H19···O1ii0.932.333.220 (3)161
C16—H16···O1ii0.932.553.435 (3)160
C22—H22···O20.932.573.062 (3)113
C22—H22···O7iii0.932.653.153 (3)115
O5—H5A···O20.83912.00462.833 (2)169.32
O5—H5B···O6iv0.82762.0362.833 (3)161.52
O7—H7A···O40.861.912.731 (3)160
O7—H7B···O6v0.851.932.768 (3)168
O6—H6B···O40.861.842.689 (3)173
O10—H10A···O8iii0.831.962.7910 (17)173
O10—H10B···O9A^a0.851.822.645 (12)163
O8—H8B···O30.851.892.731 (2)177
O8—H8A···O70.851.982.806 (3)162
O6—H6A···O50.851.942.774 (3)165
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z; (iii) x+1, y, z; (iv) x, y+1, z+1; (v) x1, y+1, z+1.
(Acetato-κO)bis(2,2'-bipyridine-κ2N,N')copper(II) acetate–acetic acid–water (1/1/3) (III) top
Crystal data top
[Cu(C2H3O2)(C10H8N2)2](C2H3O2)·C2H4O2·3H2OZ = 2
Mr = 608.09F(000) = 634
Triclinic, P1Dx = 1.435 Mg m3
a = 11.0826 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1840 (19) ÅCell parameters from 25526 reflections
c = 12.1880 (18) Åθ = 2.5–31.0°
α = 86.537 (1)°µ = 0.83 mm1
β = 69.820 (1)°T = 150 K
γ = 83.261 (1)°Prism, blue
V = 1407.8 (4) Å30.13 × 0.07 × 0.06 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex
diffractometer with a HyPix detector
7452 independent reflections
Radiation source: micro-focus sealed X-ray tube6436 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.029
ω scansθmax = 30.7°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2022)
h = 1415
Tmin = 0.995, Tmax = 1.000k = 1615
36611 measured reflectionsl = 1717
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.4639P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.078
7452 reflectionsΔρmax = 0.42 e Å3
364 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single crystals were selected for the diffraction experiments that were performed using the XtaLAB Synergy diffractometer equipped with a HyPix detector. Data collections were done using the software CrysAlisPro 1.171.42.62a (Rigaku OD, 2022). In sequence, the structures were solved using SIR-92 (Altomare et al., 1994) and refined with the software SHELXL (Sheldrick, 2015). The experimental details are given in Table 1.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.27208 (2)0.50390 (2)0.20980 (2)0.01722 (6)
C20.20686 (16)0.19209 (14)0.42857 (15)0.0319 (3)
H20.2192420.1091820.4188380.038*
C200.27380 (14)0.67774 (13)0.01845 (12)0.0220 (3)
H200.1926450.6544200.0289610.026*
O20.20865 (9)0.40753 (9)0.11614 (9)0.0216 (2)
O40.20081 (11)0.99389 (11)0.76859 (11)0.0363 (3)
N30.46735 (11)0.49874 (10)0.20837 (10)0.0191 (2)
O10.02070 (10)0.51918 (10)0.19082 (9)0.0282 (2)
C170.51367 (14)0.74396 (12)0.01368 (13)0.0221 (3)
H170.5957800.7648180.0241240.026*
C80.11046 (16)0.76062 (16)0.54841 (16)0.0344 (4)
H80.0818300.8061540.6156560.041*
N10.21842 (11)0.38984 (10)0.34423 (10)0.0187 (2)
N20.19928 (11)0.62534 (10)0.34739 (10)0.0200 (2)
C190.32137 (15)0.76594 (13)0.06415 (13)0.0252 (3)
H190.2727120.8022200.1081450.030*
O30.01773 (12)0.95657 (14)0.74876 (13)0.0493 (4)
N40.34123 (11)0.62436 (10)0.08437 (10)0.0178 (2)
C10.23192 (14)0.26982 (13)0.33276 (14)0.0242 (3)
H10.2588590.2382290.2582860.029*
C60.16399 (13)0.57070 (13)0.45367 (12)0.0202 (3)
C150.52739 (12)0.59088 (12)0.14451 (11)0.0173 (2)
C180.44278 (15)0.79961 (13)0.08053 (13)0.0255 (3)
H180.4766560.8589550.1357860.031*
C130.70201 (14)0.55011 (14)0.21823 (14)0.0267 (3)
H130.7804000.5676230.2221340.032*
C40.14524 (15)0.36336 (15)0.55193 (13)0.0289 (3)
H40.1135840.3965160.6258980.035*
C120.64192 (15)0.45412 (15)0.28189 (14)0.0286 (3)
H120.6798360.4053280.3281580.034*
C50.17558 (13)0.43706 (13)0.45203 (12)0.0198 (3)
C110.52418 (14)0.43187 (14)0.27555 (13)0.0249 (3)
H110.4829970.3681610.3195490.030*
C210.08728 (13)0.43137 (13)0.13494 (12)0.0208 (3)
C140.64414 (14)0.62022 (13)0.14831 (13)0.0224 (3)
H140.6828000.6854210.1049790.027*
C230.07964 (15)1.01243 (14)0.79120 (13)0.0260 (3)
C70.11925 (14)0.63576 (15)0.55621 (13)0.0278 (3)
H70.0956420.5962920.6287280.033*
C160.45967 (12)0.65679 (11)0.06886 (11)0.0170 (2)
C240.00919 (19)1.11281 (17)0.87447 (18)0.0421 (4)
H24A0.0195121.1888130.8330440.063*
H24B0.0443331.1117010.9363730.063*
H24C0.0810021.1016690.9068580.063*
C100.18965 (15)0.74613 (13)0.34065 (14)0.0274 (3)
H100.2138430.7840450.2673790.033*
C90.14479 (16)0.81604 (15)0.43951 (17)0.0360 (4)
H90.1379090.8996050.4324320.043*
C220.02787 (17)0.34497 (16)0.08280 (16)0.0338 (4)
H22A0.0635040.3494340.1243090.051*
H22B0.0662260.2644440.0889930.051*
H22C0.0431350.3661430.0019590.051*
C30.16311 (17)0.23957 (16)0.53906 (15)0.0356 (4)
H30.1456920.1886540.6046420.043*
O50.35995 (12)0.84096 (11)0.63105 (10)0.0344 (3)
O60.36637 (12)0.95964 (10)0.47589 (10)0.0327 (3)
O70.31574 (12)0.09111 (11)0.90556 (12)0.0373 (3)
O80.57412 (14)0.06406 (14)0.77043 (11)0.0469 (3)
H8B0.6361270.0345130.7929090.070*
H8A0.5787840.0403230.7050700.070*
O90.75565 (13)0.94767 (14)0.85495 (13)0.0477 (3)
H9B0.8261630.9787240.8252940.072*
H9A0.7371030.9589060.9283700.072*
C250.40392 (15)0.86879 (14)0.51924 (13)0.0278 (3)
C260.5051 (2)0.7765 (2)0.44747 (17)0.0507 (5)
H26A0.4670640.7287720.4078210.076*
H26B0.5402020.7254160.4976610.076*
H26C0.5729640.8163260.3909730.076*
H7A0.2734210.1031270.8679490.050*
H7B0.3935020.0854230.8587880.050*
H50.3028830.8954360.6684880.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01914 (9)0.01857 (9)0.01475 (9)0.00464 (6)0.00622 (6)0.00140 (6)
C20.0304 (8)0.0228 (7)0.0390 (9)0.0009 (6)0.0093 (7)0.0084 (6)
C200.0192 (6)0.0265 (7)0.0213 (7)0.0007 (5)0.0088 (5)0.0008 (5)
O20.0198 (5)0.0254 (5)0.0205 (5)0.0033 (4)0.0072 (4)0.0047 (4)
O40.0284 (6)0.0469 (7)0.0334 (6)0.0029 (5)0.0098 (5)0.0173 (5)
N30.0173 (5)0.0219 (5)0.0183 (6)0.0014 (4)0.0066 (4)0.0011 (4)
O10.0219 (5)0.0361 (6)0.0259 (5)0.0004 (4)0.0071 (4)0.0072 (4)
C170.0206 (7)0.0204 (6)0.0226 (7)0.0031 (5)0.0037 (5)0.0002 (5)
C80.0251 (8)0.0422 (9)0.0352 (9)0.0038 (7)0.0057 (7)0.0220 (7)
N10.0172 (5)0.0203 (5)0.0178 (5)0.0028 (4)0.0047 (4)0.0007 (4)
N20.0174 (5)0.0211 (5)0.0209 (6)0.0041 (4)0.0048 (4)0.0032 (4)
C190.0271 (7)0.0252 (7)0.0222 (7)0.0039 (6)0.0096 (6)0.0036 (5)
O30.0317 (7)0.0640 (9)0.0511 (8)0.0033 (6)0.0071 (6)0.0373 (7)
N40.0172 (5)0.0197 (5)0.0165 (5)0.0016 (4)0.0057 (4)0.0002 (4)
C10.0221 (7)0.0205 (6)0.0274 (7)0.0024 (5)0.0050 (6)0.0001 (5)
C60.0144 (6)0.0277 (7)0.0196 (7)0.0032 (5)0.0062 (5)0.0037 (5)
C150.0160 (6)0.0198 (6)0.0147 (6)0.0004 (5)0.0036 (5)0.0035 (5)
C180.0281 (7)0.0215 (7)0.0223 (7)0.0012 (6)0.0038 (6)0.0050 (5)
C130.0193 (7)0.0361 (8)0.0280 (8)0.0023 (6)0.0115 (6)0.0050 (6)
C40.0271 (7)0.0406 (9)0.0186 (7)0.0038 (6)0.0083 (6)0.0051 (6)
C120.0251 (7)0.0352 (8)0.0298 (8)0.0015 (6)0.0166 (6)0.0013 (6)
C50.0146 (6)0.0276 (7)0.0178 (6)0.0028 (5)0.0063 (5)0.0012 (5)
C110.0228 (7)0.0274 (7)0.0252 (7)0.0022 (6)0.0101 (6)0.0045 (6)
C210.0215 (7)0.0269 (7)0.0158 (6)0.0069 (5)0.0078 (5)0.0024 (5)
C140.0202 (7)0.0254 (7)0.0218 (7)0.0041 (5)0.0062 (5)0.0030 (5)
C230.0297 (8)0.0265 (7)0.0201 (7)0.0004 (6)0.0068 (6)0.0041 (5)
C70.0211 (7)0.0415 (9)0.0219 (7)0.0040 (6)0.0071 (6)0.0088 (6)
C160.0167 (6)0.0177 (6)0.0156 (6)0.0007 (5)0.0044 (5)0.0028 (5)
C240.0392 (10)0.0395 (9)0.0461 (11)0.0062 (8)0.0125 (8)0.0231 (8)
C100.0246 (7)0.0223 (7)0.0319 (8)0.0062 (6)0.0037 (6)0.0035 (6)
C90.0313 (8)0.0259 (7)0.0476 (10)0.0071 (6)0.0059 (7)0.0146 (7)
C220.0310 (8)0.0401 (9)0.0372 (9)0.0112 (7)0.0169 (7)0.0065 (7)
C30.0361 (9)0.0385 (9)0.0305 (9)0.0052 (7)0.0117 (7)0.0170 (7)
O50.0416 (7)0.0336 (6)0.0227 (6)0.0095 (5)0.0084 (5)0.0003 (4)
O60.0350 (6)0.0327 (6)0.0290 (6)0.0043 (5)0.0121 (5)0.0034 (5)
O70.0401 (7)0.0338 (6)0.0448 (7)0.0021 (5)0.0228 (6)0.0053 (5)
O80.0434 (7)0.0672 (9)0.0290 (7)0.0044 (7)0.0130 (6)0.0093 (6)
O90.0324 (7)0.0670 (9)0.0451 (8)0.0046 (6)0.0135 (6)0.0126 (7)
C250.0269 (7)0.0322 (8)0.0240 (7)0.0037 (6)0.0104 (6)0.0018 (6)
C260.0540 (12)0.0563 (12)0.0302 (9)0.0280 (10)0.0099 (9)0.0051 (8)
Geometric parameters (Å, º) top
Cu1—O21.9594 (10)C13—C121.382 (2)
Cu1—N11.9796 (12)C13—C141.390 (2)
Cu1—N41.9810 (12)C13—H130.9300
Cu1—N22.0958 (12)C4—C31.386 (3)
Cu1—N32.1522 (12)C4—C51.392 (2)
C2—C31.381 (3)C4—H40.9300
C2—C11.381 (2)C12—C111.385 (2)
C2—H20.9300C12—H120.9300
C20—N41.3461 (17)C11—H110.9300
C20—C191.379 (2)C21—C221.511 (2)
C20—H200.9300C14—H140.9300
O2—C211.2820 (17)C23—C241.512 (2)
O4—C231.268 (2)C7—H70.9300
N3—C111.3407 (18)C24—H24A0.9600
N3—C151.3480 (18)C24—H24B0.9600
O1—C211.2396 (18)C24—H24C0.9600
C17—C161.3870 (19)C10—C91.386 (2)
C17—C181.391 (2)C10—H100.9300
C17—H170.9300C9—H90.9300
C8—C91.378 (3)C22—H22A0.9600
C8—C71.388 (2)C22—H22B0.9600
C8—H80.9300C22—H22C0.9600
N1—C11.3435 (18)C3—H30.9300
N1—C51.3510 (18)O5—C251.3106 (19)
N2—C101.3424 (19)O5—H50.8506
N2—C61.3473 (18)O6—C251.2133 (19)
C19—C181.384 (2)O7—H7A0.7577
C19—H190.9300O7—H7B0.8511
O3—C231.230 (2)O8—H8B0.8498
N4—C161.3500 (17)O8—H8A0.8376
C1—H10.9300O9—H9B0.8459
C6—C71.391 (2)O9—H9A0.8599
C6—C51.486 (2)C25—C261.500 (2)
C15—C141.3880 (19)C26—H26A0.9600
C15—C161.4908 (18)C26—H26B0.9600
C18—H180.9300C26—H26C0.9600
O2—Cu1—N191.16 (5)C13—C12—H12120.6
O2—Cu1—N495.59 (5)C11—C12—H12120.6
N1—Cu1—N4172.71 (5)N1—C5—C4121.09 (13)
O2—Cu1—N2139.29 (4)N1—C5—C6114.84 (12)
N1—Cu1—N279.92 (5)C4—C5—C6124.07 (13)
N4—Cu1—N296.61 (5)N3—C11—C12122.47 (14)
O2—Cu1—N3127.23 (4)N3—C11—H11118.8
N1—Cu1—N394.57 (5)C12—C11—H11118.8
N4—Cu1—N379.16 (4)O1—C21—O2123.73 (13)
N2—Cu1—N393.23 (4)O1—C21—C22120.78 (13)
C3—C2—C1118.86 (15)O2—C21—C22115.48 (13)
C3—C2—H2120.6C15—C14—C13118.59 (13)
C1—C2—H2120.6C15—C14—H14120.7
N4—C20—C19122.00 (13)C13—C14—H14120.7
N4—C20—H20119.0O3—C23—O4124.72 (14)
C19—C20—H20119.0O3—C23—C24118.88 (15)
C21—O2—Cu1113.10 (9)O4—C23—C24116.38 (15)
C11—N3—C15118.64 (12)C8—C7—C6118.84 (15)
C11—N3—Cu1128.67 (10)C8—C7—H7120.6
C15—N3—Cu1111.60 (9)C6—C7—H7120.6
C16—C17—C18118.78 (13)N4—C16—C17121.46 (12)
C16—C17—H17120.6N4—C16—C15115.27 (11)
C18—C17—H17120.6C17—C16—C15123.26 (12)
C9—C8—C7118.98 (14)C23—C24—H24A109.5
C9—C8—H8120.5C23—C24—H24B109.5
C7—C8—H8120.5H24A—C24—H24B109.5
C1—N1—C5119.72 (12)C23—C24—H24C109.5
C1—N1—Cu1123.21 (10)H24A—C24—H24C109.5
C5—N1—Cu1116.87 (9)H24B—C24—H24C109.5
C10—N2—C6118.84 (12)N2—C10—C9122.01 (15)
C10—N2—Cu1127.93 (10)N2—C10—H10119.0
C6—N2—Cu1113.17 (9)C9—C10—H10119.0
C20—C19—C18118.91 (13)C8—C9—C10119.39 (15)
C20—C19—H19120.5C8—C9—H9120.3
C18—C19—H19120.5C10—C9—H9120.3
C20—N4—C16119.39 (12)C21—C22—H22A109.5
C20—N4—Cu1123.11 (10)C21—C22—H22B109.5
C16—N4—Cu1117.44 (9)H22A—C22—H22B109.5
N1—C1—C2121.78 (14)C21—C22—H22C109.5
N1—C1—H1119.1H22A—C22—H22C109.5
C2—C1—H1119.1H22B—C22—H22C109.5
N2—C6—C7121.92 (14)C2—C3—C4119.80 (14)
N2—C6—C5114.82 (12)C2—C3—H3120.1
C7—C6—C5123.25 (13)C4—C3—H3120.1
N3—C15—C14122.15 (12)C25—O5—H5110.82
N3—C15—C16114.79 (12)H7A—O7—H7B106.32
C14—C15—C16123.05 (12)H8B—O8—H8A114.12
C19—C18—C17119.45 (13)H9B—O9—H9A102.25
C19—C18—H18120.3O6—C25—O5124.02 (14)
C17—C18—H18120.3O6—C25—C26122.16 (15)
C12—C13—C14119.32 (13)O5—C25—C26113.81 (14)
C12—C13—H13120.3C25—C26—H26A109.5
C14—C13—H13120.3C25—C26—H26B109.5
C3—C4—C5118.70 (15)H26A—C26—H26B109.5
C3—C4—H4120.6C25—C26—H26C109.5
C5—C4—H4120.6H26A—C26—H26C109.5
C13—C12—C11118.80 (14)H26B—C26—H26C109.5
N4—C20—C19—C180.7 (2)C15—N3—C11—C120.1 (2)
C19—C20—N4—C160.7 (2)Cu1—N3—C11—C12166.81 (12)
C19—C20—N4—Cu1176.51 (11)C13—C12—C11—N31.2 (2)
C5—N1—C1—C22.0 (2)Cu1—O2—C21—O111.48 (17)
Cu1—N1—C1—C2172.74 (11)Cu1—O2—C21—C22169.15 (10)
C3—C2—C1—N12.0 (2)N3—C15—C14—C131.6 (2)
C10—N2—C6—C70.7 (2)C16—C15—C14—C13177.43 (13)
Cu1—N2—C6—C7176.81 (11)C12—C13—C14—C150.2 (2)
C10—N2—C6—C5178.80 (12)C9—C8—C7—C60.8 (2)
Cu1—N2—C6—C53.74 (14)N2—C6—C7—C80.2 (2)
C11—N3—C15—C141.5 (2)C5—C6—C7—C8179.19 (13)
Cu1—N3—C15—C14167.52 (10)C20—N4—C16—C170.06 (19)
C11—N3—C15—C16177.56 (12)Cu1—N4—C16—C17177.41 (10)
Cu1—N3—C15—C1613.37 (14)C20—N4—C16—C15178.93 (12)
C20—C19—C18—C170.0 (2)Cu1—N4—C16—C153.72 (15)
C16—C17—C18—C190.7 (2)C18—C17—C16—N40.7 (2)
C14—C13—C12—C111.1 (2)C18—C17—C16—C15179.53 (13)
C1—N1—C5—C40.1 (2)N3—C15—C16—N47.18 (17)
Cu1—N1—C5—C4174.95 (11)C14—C15—C16—N4173.72 (12)
C1—N1—C5—C6179.71 (12)N3—C15—C16—C17171.67 (12)
Cu1—N1—C5—C65.21 (15)C14—C15—C16—C177.4 (2)
C3—C4—C5—N11.7 (2)C6—N2—C10—C90.1 (2)
C3—C4—C5—C6178.43 (14)Cu1—N2—C10—C9176.95 (12)
N2—C6—C5—N10.71 (17)C7—C8—C9—C101.3 (2)
C7—C6—C5—N1178.73 (13)N2—C10—C9—C80.9 (3)
N2—C6—C5—C4179.45 (13)C1—C2—C3—C40.0 (3)
C7—C6—C5—C41.1 (2)C5—C4—C3—C21.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O6i0.932.443.1081 (19)129
C1—H1···O9ii0.932.613.398 (2)142
C14—H14···O7ii0.932.503.306 (2)146
O8—H8B···O9i0.851.892.7306 (19)170
O9—H9B···O3iii0.851.992.753 (2)149
O9—H9A···O7iv0.861.972.769 (2)154
O8—H8A···O6ii0.842.082.8648 (18)157
O7—H7B···O80.85111.91192.758 (2)172.63
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z+2.
Bond lengths of coordination of copper (Å) and angles between these bonds (°) in [Cu(phen)2Ac]Ac.7H2O (Jing et al., 2011) top
Cu—O22.001 (3)Cu—N31.988 (3)
Cu—N11.989 (3)Cu—N42.051 (3)
Cu—N22.191 (4)
N1—Cu—N279.82 (14)N3—Cu—N481.55 (13)
N1—Cu—N3177.12 (15)O2—Cu—N189.98 (13)
N1—Cu—N496.80 (13)O2—Cu—N2101.51 (13)
N2—Cu—N398.35 (13)O2—Cu—N392.58 (13)
N2—Cu—N4106.69 (14)O2—Cu—N4151.73 (14)
Selected geometric parameters over the three title systems top
System[Cu(bipy)(phen)Ac]Ac, (I)[Cu(phen)2Ac]Ac, (II)[Cu(bipy)2Ac]Ac, (III)
Angle between N ligands (°)111.53 (4)109.3 (3)80.51 (3)
Longest bond (Å)2.2360 (15)2.191 (4)2.1521 (12)
τ50.1480.4230.557
Cu—O2 (Å)1.991(2'2.001 (3)1.959 (1)
Cu—O1 (Å)2.742 (2)2.6404 (1)2.859 (1)
O1—Cu—O2 (°)52.30 (6)54.12 (3)50.89 (4)
Information regarding Hirshfeld surfaces generated around the Cu atoms in the title systems top
System[Cu(bipy)(phen)Ac]Ac, (I)[Cu(phen)2Ac]Ac, (II)[Cu(bipy)2Ac]Ac, (III)
Volume (Å3)11.2510.5310.85
Area (Å2)28.7827.9727.71
Globularity, G0.8440.8300.855
Asphericity, A0.0580.0400.065
Data regarding the dnorm surface generated around the Cu atoms in the title systems top
System[Cu(bipy)(phen)Ac]Ac, (I)[Cu(phen)2Ac]Ac, (II)[Cu(bipy)2Ac]Ac, (III)
Minimum-0.6413-0.6476-0.6542
Mean-0.0391-0.0735-0.0611
Maximum0.98760.83960.8727
Cu—O2 point-0.6297-0.6196-0.6520
Cu—O1 point-0.1165-0.1858-0.0885
Data regarding the curvedness of the surface generated around the Cu atoms in the title systems top
System[Cu(bipy)(phen)Ac]Ac, (I)[Cu(phen)2Ac]Ac, (II)[Cu(bipy)2Ac]Ac, (III)
Minimum-3.6299-3.3323-3.4610
Mean-0.9290-0.9396-0.8808
Maximum0.94721.05470.7287
Cu—O2 point-2.4528-2.6100-2.4644
Cu—O1 point-0.7427-0.9443-0.6101
Values of Hirshfeld surface properties around the coordinated acetate in the title systems top
System[Cu(bipy)(phen)Ac]Ac, (I)[Cu(phen)2Ac]Ac, (II)[Cu(bipy)2Ac]Ac, (III)
norm
O2—Cu point-0.6293-0.6221-0.6508
O1—Cu point-0.1135-0.18650.0651
Curvedness
O2—Cu point-2.3655-2.4345-2.3591
O1—Cu point-0.7621-0.8754-0.7456
Geometric parameters (Å) for ππ interactions top
System[Cu(bipy)(phen)Ac]Ac, (I)[Cu(phen)2Ac]Ac, (II)[Cu(bipy)2Ac]Ac, (III)
Centroid–centroid distance3.8883.7833.596
Centroid–plane distance3.4633.4933.380
Plane–pPlane distance3.4933.5053.377
 

Acknowledgements

The authors thank Brazilian agencies CNPq, FAPEMIG and FINEP for financial support.

Funding information

Funding for this research was provided by: Conselho Nacional de Desenvolvimento Cientfico e Tecnolgico; Fundao de Amparo Pesquisa do Estado de Minas Gerais; Financiadora de Estudos e Projetos.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAgwara, M. O., Ndifon, P. T., Ndosiri, N. B., Paboudam, A. G., Yufanyi, D. M. & Mohamadou, A. (2010). Bull. Chem. Soc. Eth. 24, 383–389.  CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirshfeld, F. L. (1977). Theor. Claim. Acta, 44, 129–138.  CrossRef CAS Google Scholar
First citationHisayoshi, N. (1980). Bull. Chem. Soc. Jpn, 53, 1321–1326.  Google Scholar
First citationHu, F., Yin, X., Mi, Y., Zhang, S., Luo, W. & Zhuang, Y. (2009). Inorg. Chem. Commun. 12, 1189–1192.  CSD CrossRef CAS Google Scholar
First citationJing, B., Li, L., Dong, J. & Xu, T. (2011). Acta Cryst. E67, m464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Z.-M., Jiang, Z.-H., Liao, D.-Z., Wang, G.-L., Yao, X.-K. & Wang, H.-G. (1991). Polyhedron, 10, 101–102.  CSD CrossRef CAS Google Scholar
First citationLobana, T. S., Indoria, S., Jassal, A. K., Kaur, H., Arora, D. S. & Jasinski, J. P. (2014). Eur. J. Med. Chem. 76, 145–154.  CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2019). Acta Cryst. C75, 707–716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2020a). Cryst. Growth Des. 20, 4827–4838.  Web of Science CrossRef CAS Google Scholar
First citationPinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2020b). J. Appl. Cryst. 53, 1321–1333.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal­Explorer17. University of Western Australia. https://crystalexplorer.net/.  Google Scholar
First citationVignesh, G., Arunachalam, S., Vignesh, S. & James, R. A. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 96, 108–116.  CrossRef CAS PubMed Google Scholar
First citationZhong, K.-L. (2011). Acta Cryst. E67, m1215–m1216.  CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L. (2012). Acta Cryst. E68, m1555.  CSD CrossRef IUCr Journals Google Scholar

This article is published by the International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds