research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Revisiting a natural wine salt: calcium (2R,3R)-tar­trate tetra­hydrate

crossmark logo

aDepartamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza–CSIC, 50009 Zaragoza, Spain
*Correspondence e-mail: mpgaror@unizar.es, pablo.sanz@unizar.es

Edited by R. Diniz, Universidade Federal de Minas Gerais, Brazil (Received 27 June 2024; accepted 14 August 2024; online 4 September 2024)

The crystal structure of the salt calcium (2R,3R)-tar­trate tetra­hydrate {sys­tem­atic name: poly[[di­aqua­[μ4-(2R,3R)-2,3-di­hydroxy­butane­dioato]calcium(II)] di­hydrate]}, {[Ca(C4H8O8)(H2O)2]·2H2O}n, is reported. The absolute configuration of the crystal was established unambiguously using anomalous dispersion effects in the diffraction patterns. High-quality data also allowed the location and free refinement of all the H atoms, and therefore to a careful analysis of the hy­dro­gen-bond inter­actions.

1. Introduction

The opening of a bottle of wine is a process that can elicit a variety of expectations, either in terms of the wine's taste, colour, smell, sensations or even in the occasional discovery of brilliant crystals, typically found on the surface of the cork in contact with the wine. The so-called Weinsteine or wine diamonds (Derewenda, 2008[Derewenda, Z. S. (2008). Acta Cryst. A64, 246-258.]) are regarded by winemakers as a sign of quality, as their presence indicates that wine has been handled with natural methods and proper timing. It is known that such diamonds are actually crystalline tar­trate salts.

Tartaric acid (Astbury, 1923[Astbury, W. T. (1923). Proc. R. Soc. London A, 102, 506-528.]), also known as 2,3-di­hy­droxy­butane­dioic acid, is a naturally occurring substance that is typically found on grapes and other plants. Although two enanti­omers (2R,3R/2S,3S) and a meso form (2S,3R/2R,3S) are possible, only the 2R,3R enanti­omer, namely L-(+)-tartaric acid, is biologically produced by vining plants. Deprotonation to its tar­trate form (Fig. 1[link]) during the fermentation and aging steps of wine production in the presence of alkali earth metal cations, usually K+ and Ca2+, may result in the slow crystallization of 2R,3R salts. This process can extend over a pro­longed period, frequently becoming noticeable after com­mercial release.

[Figure 1]
Figure 1
The enanti­omeric and meso forms of tar­trate.

Pioneering studies on the unit-cell parameters of the title com­pound, Ca[(2R,3R)-C4H4O6]·4H2O (1), were reported by Evans (1935[Evans, H. (1935). Z. Kristallogr. A92, 154-155.]), yielding a P212121 space group crystal structure, with unit-cell parameters a = 9.20 (2), b = 10.54 (2) and c = 9.62 (2) Å. Several studies since then have confirmed the crystal structure of this salt, corroborating the space group and unit-cell dimensions (Ambady, 1968[Ambady, G. K. (1968). Acta Cryst. B24, 1548-1557.]; Hawthorne et al., 1982[Hawthorne, F. C., Borys, I. & Ferguson, R. B. (1982). Acta Cryst. B38, 2461-2463.]; Boese & Heinemann, 1993[Boese, R. & Heinemann, O. (1993). Z. Kristallogr. 205, 348-349.]; Kaduk, 2007[Kaduk, J. A. (2007). Powder Diffr. 22, 74-82.]). In all the studies, aqueous solutions of tartaric acid were employed, from which crystals were grown. Although tartaric acid and its derivatives, especially its sodium ammonium salt, have long been central to the analysis of stereochemistry and chirality (Gal, 2008[Gal, J. (2008). Chirality, 20, 5-19.]), since the pioneering works of Pasteur and Biott (see Flack, 2009[Flack, H. D. (2009). Acta Cryst. A65, 371-389.], and references therein), it is important to note that in none of these structural reports about Ca(C4H4O6)·4H2O was it possible to identify which of the enanti­omers was being measured through anomalous dispersion effects.

Inter­estingly, triclinic polymorphs of racemic 1 (i.e. with both enanti­omers in the unit cell) have also been reported (Le Bail et al., 2009[Le Bail, A., Bazin, D., Daudon, M., Brochot, A., Robbez-Masson, V. & Maisonneuve, V. (2009). Acta Cryst. B65, 350-354.]; Appelhans et al., 2009[Appelhans, L. N., Kosa, M., Radha, A. V., Simoncic, P., Navrotsky, A., Parrinello, M. & Cheetham, A. K. (2009). J. Am. Chem. Soc. 131, 15375-15386.]; Fukami et al., 2016[Fukami, T., Hiyajyo, S., Tahara, S. & Yasuda, C. (2016). Am. Chem. Sci. J. 16, 28258.]). Furthermore, not only polymorphs, but also hydrates and solvates of Ca and tar­trate have been reported. In this context, calcium tar­trate has been found to also crystallize as its anhydrous (Appelhans et al., 2009[Appelhans, L. N., Kosa, M., Radha, A. V., Simoncic, P., Navrotsky, A., Parrinello, M. & Cheetham, A. K. (2009). J. Am. Chem. Soc. 131, 15375-15386.]; Aljafree et al., 2024[Aljafree, N. F. A., Ahmad, M. F., Aziz, U. A., Borzehandani, M. Y., Jaafar, A. M., Asib, N., Nguyen, H. L., Tahir, M. I. M., Latif, M. A. M., Cordova, K. E. & Rahman, M. B. A. (2024). ACS Appl. Mater. Interfaces. In the press. doi:10.1021/acsami.3c11697.]), trihydrate (de Vries & Kroon, 1984[Vries, A. J. de & Kroon, J. (1984). Acta Cryst. C40, 1542-1544.]) and hexa­hydrate forms (Ventruti et al., 2015[Ventruti, G., Scordari, F., Bellatreccia, F., Della Ventura, G. & Sodo, A. (2015). Acta Cryst. B71, 68-73.]), and has been observed to cocrystallize with other species (Wartchow, 1996[Wartchow, R. (1996). Z. Kristallogr. 211, 329-330.]). The absolute configuration of these hydrates and solvates has been established experimentally, except in the case of the trihydrate form, which was found to contain the meso-tartaric form. Obviously, different hydration is related to dissimilar connectivity and crystal packing.

Here, we report the crystal structure of the calcium (2R,3R)-tar­trate tetra­hydrate salt (1), obtained from a crystal which was found and picked up from the cork of a Crianza red wine bottle from D.O. Campo de Borja (2016). This tetra­hydrated salt crystallizes in the ortho­rhom­bic space group P212121, with the unit-cell dimensions [a = 9.1587 (4), b = 9.5551 (4) and c = 10.5041 (5) Å], which are close to those reported by Evans (1935[Evans, H. (1935). Z. Kristallogr. A92, 154-155.]). High-quality experimental diffraction data allowed us to establish unambiguously the absolute structure and therefore the absolute configuration of the salt, and to analyze inter­molecular inter­actions in the crystal packing.

2. Experimental

2.1. Single-crystal selection

Single crystals were found in the cork of a wine bottle, removed and selected under a microscope.

2.2. Single-crystal X-ray diffraction

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were located in dif­ference Fourier maps and freely refined. High-quality and com­plete diffraction data, with 99.2% of the reflections measured until a maximal resolution of (sin θ/λ)max = 0.667 Å−1 (with almost all the Friedel pairs: number of Friedel pairs measured out to the maximal resolution divided by the num­ber of theoretically possible is 0.981, very close to unity), a mean redundancy higher than 20 and a good agreement factor (Rint = 0.030) of this Ca-containing crystal allowed us to establish the absolute structure in the solid state and therefore the absolute configuration of the mol­ecule. For that purpose, the Flack parameter (Flack & Bernardinelli, 1999[Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915.], 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]) has been refined. The obtained values are 0.028 (19) by classical fit to all intensities and 0.023 (3) using 937 quotients (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). The ob­tained values of the parameter and its standard uncertainty (s.u.) value provide evidence for a strong inversion-distinguishing power and a correct estimation of the absolute structure for this structural model.

Table 1
Experimental details

Crystal data
Chemical formula [Ca(C4H4O6)(H2O)2]·2H2O
Mr 260.22
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 9.1587 (4), 9.5551 (4), 10.5041 (5)
V3) 919.24 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.73
Crystal size (mm) 0.15 × 0.13 × 0.09
 
Data collection
Diffractometer Bruker D8 VENTURE
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.889, 0.937
No. of measured, independent and observed [I > 2σ(I)] reflections 47365, 2275, 2268
Rint 0.030
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.035, 1.09
No. of reflections 2275
No. of parameters 184
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.28, −0.25
Absolute structure Flack x determined using 937 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.023 (3)
Computer programs: SAINT in APEX3 (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and XCIF in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

3. Results and discussion

The asymmetric unit of Ca[(2R,3R)-C4H4O6]·4H2O (1) is formed by a Ca2+ ion, a tar­trate ligand and four water mol­ecules. In the crystal structure, the tar­trate ion exhibits typical bonding connections (Ambady, 1968[Ambady, G. K. (1968). Acta Cryst. B24, 1548-1557.]). Salient bond distances and angles are listed in Tables S1 and S2 of the supporting information. The two C—O bonds of each carboxyl­ate group, which, along with the hy­droxy substituents, chelate two Ca2+ cations, are significantly longer than the other two carboxyl­ate C—O bonds, where the O atoms bind to additional adjacent Ca atoms [C1—O11 = 1.2659 (14) Å and C4—O41 = 1.2681 (14) Å versus C1—O12 = 1.2483 (15) Å and C4—O42 = 1.2472 (14) Å]. All the C atoms of the tar­trate skeleton exhibit similar C—C separations, and are positioned in an almost coplanar manner, with maximal deviations from the best plane of 0.0020 (6) Å. It is noteworthy that the folding of this di­carboxyl­ate entity is asymmetrical. Specifically, the O21 atom of the alcohol group lies nearly in the plane defined by the C1 atom and the atoms coordinated to its sp2 hybridization, namely, C1, C2, O11 and O12 [0.069 (2) Å], whereas the alcohol O31 atom is placed significantly out of the analogous plane [atoms C3, C4, O41 and O42, 0.575 (2) Å].

3.1. Ca environment

In the crystal packing, each tar­trate anion acts as a tetra­topic ligand, serving as a chelate for two Ca2+ cations and as a terminal ligand for two additional Ca2+ cations (Fig. 2[link]), whereas the Ca2+ cations (Ca1) are coordinated to four sym­metry-related tar­trate anions and two water mol­ecules in a distorted pseudo-octa­hedral coordination environment (Fig. 3[link]).

[Figure 2]
Figure 2
Ca2+ cations bonded to a tar­trate anion in 1. [Symmetry codes: (i) −x, y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x + [{1\over 2}], −y + 1, z + [{1\over 2}]; (iii) −x + 1, y + [{1\over 2}], −z + [{1\over 2}].]
[Figure 3]
Figure 3
Coordination sphere of the Ca2+ cation in 1. [Symmetry codes: (iv) −x, y − [{1\over 2}], −z + [{1\over 2}]; (v) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (vi) −x + [{1\over 2}], −y + 1, z − [{1\over 2}].

Among the eight coordination sites of Ca, two are occupied by monodentate O atoms from carb­oxy­late groups [O12—Ca1—O42 = 137.72 (3)°], with another two sites hosting water mol­ecules [O1W—Ca1—O2W = 97.34 (3)°]. The coordination sphere of Ca1 is com­pleted by two chelating tar­trate ligands bonded by different edges, namely, O11—C1—C2—O21 and O31—C3—C4—O41. In both chelates, separation from the deprotonated O atoms to the Ca2+ cation [Ca1—O11 = 2.3733 (8) Å and Ca1—O41 = 2.4137 (9) Å] are significantly shorter com­pared to those of the alcohol groups [Ca1—O21 = 2.4544 (9) Å and Ca1—O31 = 2.5102 (9) Å]. These Ca—O distances range from 2.3733 (8) (Ca1—O11) to 2.5102 (9) Å (Ca—O31), which are consistent with the expected values (Ambady, 1968[Ambady, G. K. (1968). Acta Cryst. B24, 1548-1557.]). It is noteworthy that this coordination of the Ca2+ ion in 1 notably differs from that of the triclinic polymorph, where the eight-coordinated Ca2+ ion is bound to two bis-chelated tar­trate ligands and four water mol­ecules.

3.2. Hydrogen bonding

The two additional water mol­ecules fulfilling the unit cell of 1, and which are not coordinated to Ca, are involved in hy­dro­gen-bonding inter­actions. The crystal lattice is mainly stabilized by electrostatics and hy­dro­gen bonding. The tar­trate anions are connected via short hy­dro­gen bonds [O31—H31⋯O41 = 2.5529 (12) Å] in a zigzag fashion along the a axis (Fig. 4[link]). Finally, water mol­ecules participate in eight additional hy­dro­gen bonds involving tar­trate anions and other water mol­ecules (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O31—H31⋯O41vii 0.84 (3) 1.71 (3) 2.5529 (12) 174 (2)
O21—H21⋯O4W 0.83 (2) 1.88 (2) 2.7023 (13) 174 (2)
O1W—H2W⋯O31 0.82 (3) 2.11 (3) 2.9236 (13) 170 (2)
O2W—H3W⋯O3W 0.82 (2) 1.95 (2) 2.7483 (13) 164 (2)
O2W—H4W⋯O11viii 0.87 (2) 2.12 (2) 2.8658 (13) 144 (2)
O3W—H5W⋯O42ix 0.90 (3) 2.26 (3) 3.0318 (13) 144 (2)
O3W—H6W⋯O11x 0.80 (2) 2.09 (2) 2.8809 (13) 168 (2)
O4W—H7W⋯O2Wx 0.77 (3) 2.16 (3) 2.9199 (14) 170 (2)
O4W—H8W⋯O1Wxi 0.83 (3) 2.31 (3) 3.1263 (15) 171 (2)
Symmetry codes: (vii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (viii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ix) [x, y-1, z]; (x) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (xi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
Hydrogen bonding involving tar­trate anions in 1. Calcium cations and water mol­ecules have been omitted for clarity.

4. Summary

The title calcium (2R,3R)-tar­trate tetra­hydrate salt (1) crystallized in the ortho­rhom­bic space group P212121, as anti­cipated by Evans (1935[Evans, H. (1935). Z. Kristallogr. A92, 154-155.]). In this work, anomalous dispersion effects in the crystal diffraction patterns led to the determination of the absolute configuration of the L-(+)-tar­trate salt 1. The absolute configuration has been resolved on the basis of anomalous dispersion effects in the crystal diffraction patterns and matches the enanti­omer expected from a natural wine-making process. The good crystal quality allowed for precise determination of the geometrical arrangement, particularly enabling the localization of H atoms, and therefore the observation and accurate characterization of the hy­dro­gen-bonding network.

Supporting information


Computing details top

Poly[[diaqua[µ4-(2R,3R)-2,3-dihydroxybutanedioato]calcium(II)] dihydrate] top
Crystal data top
[Ca(C4H4O6)(H2O)2]·2H2ODx = 1.880 Mg m3
Mr = 260.22Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9609 reflections
a = 9.1587 (4) Åθ = 4.8–28.3°
b = 9.5551 (4) ŵ = 0.73 mm1
c = 10.5041 (5) ÅT = 100 K
V = 919.24 (7) Å3Prism, colorless
Z = 40.15 × 0.13 × 0.09 mm
F(000) = 544
Data collection top
Bruker D8 VENTURE
diffractometer
2268 reflections with I > 2σ(I)
Radiation source: Mo microsourceRint = 0.030
φ and ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1212
Tmin = 0.889, Tmax = 0.937k = 1212
47365 measured reflectionsl = 1414
2275 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014All H-atom parameters refined
wR(F2) = 0.035 w = 1/[σ2(Fo2) + (0.0154P)2 + 0.187P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2275 reflectionsΔρmax = 0.28 e Å3
184 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack x determined using 937 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.023 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were included in the model in observed positions and freely refined.

Crystal data, data collection and structure refinement details are summarized in Table 1. The crystal was selected and mounted on a MiTeGen MicroMount, protected with Fomblin oil. X-ray diffraction data were collected at 100 K on a D8 VENTURE Bruker diffractometer with Mo Kα radiation from IµS- DIAMOND microfocus source. Images were collected through ω and φ scans with a narrow step strategy. The raw data collection and processing, including absorption corrections, were done using APEX3 software package (Bruker, 2010). Structure was solved with direct methods and refined with Shelxls and Shelxl programs (Sheldrick, 2008, 2015), respectively. All non-hydrogen atoms were anisotropically refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.10736 (12)0.64913 (12)0.20067 (11)0.0077 (2)
O110.05541 (9)0.53123 (9)0.16952 (9)0.01010 (16)
O120.03571 (9)0.75923 (9)0.21440 (8)0.00979 (16)
C20.27205 (12)0.65990 (11)0.22480 (11)0.0072 (2)
H20.314 (2)0.7252 (18)0.1660 (17)0.013 (4)*
O210.33762 (9)0.52561 (9)0.21224 (8)0.00901 (16)
H210.414 (2)0.540 (2)0.171 (2)0.024 (5)*
C30.29749 (13)0.72088 (11)0.35680 (10)0.0071 (2)
H30.256 (2)0.815 (2)0.3574 (17)0.016 (4)*
O310.22707 (9)0.63913 (9)0.45305 (8)0.00848 (16)
H310.145 (3)0.677 (2)0.463 (2)0.035 (6)*
C40.45907 (12)0.73722 (12)0.39115 (11)0.0074 (2)
O410.48713 (9)0.73136 (10)0.50925 (9)0.01108 (17)
O420.54987 (9)0.76187 (9)0.30555 (8)0.00938 (16)
Ca10.18656 (2)0.31714 (2)0.17634 (2)0.00667 (6)
O1W0.22625 (10)0.33681 (10)0.41016 (9)0.01211 (17)
H1W0.141 (3)0.312 (3)0.435 (2)0.039 (6)*
H2W0.234 (3)0.420 (3)0.429 (2)0.033 (6)*
O2W0.18996 (10)0.06249 (9)0.16357 (9)0.01289 (17)
H3W0.266 (3)0.018 (2)0.153 (2)0.032 (6)*
H4W0.139 (3)0.021 (2)0.223 (2)0.029 (5)*
O3W0.42815 (10)0.08403 (10)0.07665 (9)0.01504 (18)
H5W0.500 (3)0.113 (3)0.129 (3)0.042 (6)*
H6W0.465 (2)0.058 (2)0.012 (2)0.022 (5)*
O4W0.57266 (12)0.57406 (12)0.06310 (11)0.0228 (2)
H7W0.594 (3)0.533 (3)0.003 (3)0.039 (6)*
H8W0.621 (3)0.647 (3)0.063 (2)0.034 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0078 (5)0.0107 (5)0.0046 (5)0.0001 (4)0.0001 (3)0.0010 (4)
O110.0083 (4)0.0089 (3)0.0131 (4)0.0008 (3)0.0017 (3)0.0009 (3)
O120.0089 (4)0.0098 (3)0.0107 (4)0.0019 (3)0.0001 (3)0.0001 (3)
C20.0066 (5)0.0074 (5)0.0076 (5)0.0006 (4)0.0003 (4)0.0005 (4)
O210.0069 (4)0.0081 (4)0.0121 (4)0.0009 (3)0.0016 (3)0.0020 (3)
C30.0068 (5)0.0074 (5)0.0070 (4)0.0000 (4)0.0001 (4)0.0002 (3)
O310.0063 (4)0.0119 (4)0.0073 (4)0.0005 (3)0.0016 (3)0.0013 (3)
C40.0068 (5)0.0058 (4)0.0095 (5)0.0004 (4)0.0005 (4)0.0008 (4)
O410.0082 (4)0.0171 (4)0.0080 (4)0.0028 (3)0.0007 (3)0.0007 (3)
O420.0076 (4)0.0114 (3)0.0092 (4)0.0010 (3)0.0013 (3)0.0000 (3)
Ca10.00612 (10)0.00727 (10)0.00663 (10)0.00011 (8)0.00011 (7)0.00023 (8)
O1W0.0110 (4)0.0151 (5)0.0102 (4)0.0030 (3)0.0008 (3)0.0006 (3)
O2W0.0103 (4)0.0106 (4)0.0178 (4)0.0010 (3)0.0025 (4)0.0010 (3)
O3W0.0116 (4)0.0179 (4)0.0157 (5)0.0014 (4)0.0022 (4)0.0057 (4)
O4W0.0236 (5)0.0228 (5)0.0220 (5)0.0094 (4)0.0124 (4)0.0101 (4)
Geometric parameters (Å, º) top
C1—O121.2483 (15)O41—Ca1ii2.4137 (9)
C1—O111.2659 (14)O42—Ca1iii2.4784 (9)
C1—C21.5330 (15)Ca1—O12iv2.4016 (9)
O11—Ca12.3733 (8)Ca1—O41v2.4136 (9)
O12—Ca1i2.4015 (9)Ca1—O2W2.4371 (9)
C2—O211.4229 (13)Ca1—O42vi2.4784 (9)
C2—C31.5220 (15)Ca1—O1W2.4900 (9)
C2—H20.959 (18)Ca1—O31v2.5102 (9)
O21—Ca12.4544 (9)Ca1—H1W2.75 (2)
O21—H210.83 (2)O1W—H1W0.86 (3)
C3—O311.4312 (13)O1W—H2W0.82 (3)
C3—C41.5313 (16)O2W—H3W0.82 (2)
C3—H30.974 (19)O2W—H4W0.87 (2)
O31—Ca1ii2.5102 (9)O3W—H5W0.90 (3)
O31—H310.84 (3)O3W—H6W0.80 (2)
C4—O421.2472 (14)O4W—H7W0.77 (3)
C4—O411.2681 (14)O4W—H8W0.83 (3)
O12—C1—O11125.61 (10)O41v—Ca1—O21129.72 (3)
O12—C1—C2116.20 (10)O2W—Ca1—O21144.25 (3)
O11—C1—C2118.18 (10)O11—Ca1—O42vi132.76 (3)
C1—O11—Ca1124.68 (7)O12iv—Ca1—O42vi137.72 (3)
C1—O12—Ca1i134.03 (8)O41v—Ca1—O42vi131.06 (3)
O21—C2—C3111.42 (9)O2W—Ca1—O42vi77.23 (3)
O21—C2—C1109.84 (9)O21—Ca1—O42vi67.18 (3)
C3—C2—C1109.08 (9)O11—Ca1—O1W92.21 (3)
O21—C2—H2110.9 (11)O12iv—Ca1—O1W70.71 (3)
C3—C2—H2106.0 (10)O41v—Ca1—O1W145.89 (3)
C1—C2—H2109.6 (11)O2W—Ca1—O1W97.34 (3)
C2—O21—Ca1120.55 (6)O21—Ca1—O1W72.84 (3)
C2—O21—H21104.9 (14)O42vi—Ca1—O1W78.36 (3)
Ca1—O21—H21121.7 (15)O11—Ca1—O31v89.30 (3)
O31—C3—C2111.45 (9)O12iv—Ca1—O31v138.76 (3)
O31—C3—C4108.95 (9)O41v—Ca1—O31v63.91 (3)
C2—C3—C4113.68 (9)O2W—Ca1—O31v96.36 (3)
O31—C3—H3108.8 (11)O21—Ca1—O31v80.26 (3)
C2—C3—H3107.4 (11)O42vi—Ca1—O31v78.48 (3)
C4—C3—H3106.3 (11)O1W—Ca1—O31v149.66 (3)
C3—O31—Ca1ii115.29 (6)O11—Ca1—H1W88.3 (5)
C3—O31—H31104.6 (16)O12iv—Ca1—H1W52.8 (5)
Ca1ii—O31—H3195.5 (16)O41v—Ca1—H1W128.0 (5)
O42—C4—O41125.35 (11)O2W—Ca1—H1W92.2 (5)
O42—C4—C3119.59 (10)O21—Ca1—H1W87.0 (5)
O41—C4—C3114.95 (10)O42vi—Ca1—H1W93.8 (5)
C4—O41—Ca1ii125.89 (7)O1W—Ca1—H1W17.9 (5)
C4—O42—Ca1iii129.37 (8)O31v—Ca1—H1W166.9 (5)
O11—Ca1—O12iv77.52 (3)Ca1—O1W—H1W98.7 (16)
O11—Ca1—O41v79.05 (3)Ca1—O1W—H2W108.8 (16)
O12iv—Ca1—O41v75.20 (3)H1W—O1W—H2W106 (2)
O11—Ca1—O2W149.92 (3)Ca1—O2W—H3W122.1 (16)
O12iv—Ca1—O2W78.88 (3)Ca1—O2W—H4W114.1 (15)
O41v—Ca1—O2W77.10 (3)H3W—O2W—H4W109 (2)
O11—Ca1—O2165.82 (3)H5W—O3W—H6W108 (2)
O12iv—Ca1—O21126.25 (3)H7W—O4W—H8W107 (2)
O12—C1—O11—Ca1169.66 (9)O21—C2—C3—C458.87 (11)
C2—C1—O11—Ca19.98 (14)C1—C2—C3—C4179.70 (9)
O11—C1—O12—Ca1i47.52 (17)C2—C3—O31—Ca1ii163.52 (7)
C2—C1—O12—Ca1i132.12 (9)C4—C3—O31—Ca1ii37.29 (10)
O12—C1—C2—O21176.93 (10)O31—C3—C4—O42156.19 (10)
O11—C1—C2—O212.74 (14)C2—C3—C4—O4231.26 (14)
O12—C1—C2—C354.54 (13)O31—C3—C4—O4127.48 (13)
O11—C1—C2—C3125.12 (10)C2—C3—C4—O41152.41 (10)
C3—C2—O21—Ca1115.99 (8)O42—C4—O41—Ca1ii179.72 (8)
C1—C2—O21—Ca15.00 (11)C3—C4—O41—Ca1ii4.20 (14)
O21—C2—C3—O3164.72 (11)O41—C4—O42—Ca1iii2.40 (18)
C1—C2—C3—O3156.71 (11)C3—C4—O42—Ca1iii173.52 (7)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y+1, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x+1/2, y+1, z1/2; (vi) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31—H31···O41vii0.84 (3)1.71 (3)2.5529 (12)174 (2)
O21—H21···O4W0.83 (2)1.88 (2)2.7023 (13)174 (2)
O1W—H2W···O310.82 (3)2.11 (3)2.9236 (13)170 (2)
O2W—H3W···O3W0.82 (2)1.95 (2)2.7483 (13)164 (2)
O2W—H4W···O11iv0.87 (2)2.12 (2)2.8658 (13)144 (2)
O3W—H5W···O42viii0.90 (3)2.26 (3)3.0318 (13)144 (2)
O3W—H6W···O11ix0.80 (2)2.09 (2)2.8809 (13)168 (2)
O4W—H7W···O2Wix0.77 (3)2.16 (3)2.9199 (14)170 (2)
O4W—H8W···O1Wiii0.83 (3)2.31 (3)3.1263 (15)171 (2)
Symmetry codes: (iii) x+1, y+1/2, z+1/2; (iv) x, y1/2, z+1/2; (vii) x1/2, y+3/2, z+1; (viii) x, y1, z; (ix) x+1/2, y+1/2, z.
 

Acknowledgements

Financial support from the University of Zaragoza, the Aragón Government and the MCIU/AEI/FEDER is kindly acknowledged.

Funding information

Funding for this research was provided by: Gobierno de Aragon (AP predoctoral fellow; award Nos. E42_23R and E05_23R); MCIU/AEI/FEDER (award Nos. PID2021-122406NB-I00 and PID2022-137208NB-I00); Universidad de Zaragoza.

References

First citationAljafree, N. F. A., Ahmad, M. F., Aziz, U. A., Borzehandani, M. Y., Jaafar, A. M., Asib, N., Nguyen, H. L., Tahir, M. I. M., Latif, M. A. M., Cordova, K. E. & Rahman, M. B. A. (2024). ACS Appl. Mater. Interfaces. In the press. doi:10.1021/acsami.3c11697Google Scholar
First citationAmbady, G. K. (1968). Acta Cryst. B24, 1548–1557.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAppelhans, L. N., Kosa, M., Radha, A. V., Simoncic, P., Navrotsky, A., Parrinello, M. & Cheetham, A. K. (2009). J. Am. Chem. Soc. 131, 15375–15386.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAstbury, W. T. (1923). Proc. R. Soc. London A, 102, 506–528.  Google Scholar
First citationBoese, R. & Heinemann, O. (1993). Z. Kristallogr. 205, 348–349.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDerewenda, Z. S. (2008). Acta Cryst. A64, 246–258.  Web of Science CrossRef IUCr Journals Google Scholar
First citationEvans, H. (1935). Z. Kristallogr. A92, 154–155.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (2009). Acta Cryst. A65, 371–389.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFukami, T., Hiyajyo, S., Tahara, S. & Yasuda, C. (2016). Am. Chem. Sci. J. 16, 28258.  CSD CrossRef Google Scholar
First citationGal, J. (2008). Chirality, 20, 5–19.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHawthorne, F. C., Borys, I. & Ferguson, R. B. (1982). Acta Cryst. B38, 2461–2463.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKaduk, J. A. (2007). Powder Diffr. 22, 74–82.  Web of Science CSD CrossRef CAS Google Scholar
First citationLe Bail, A., Bazin, D., Daudon, M., Brochot, A., Robbez-Masson, V. & Maisonneuve, V. (2009). Acta Cryst. B65, 350–354.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVentruti, G., Scordari, F., Bellatreccia, F., Della Ventura, G. & Sodo, A. (2015). Acta Cryst. B71, 68–73.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVries, A. J. de & Kroon, J. (1984). Acta Cryst. C40, 1542–1544.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationWartchow, R. (1996). Z. Kristallogr. 211, 329–330.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds