organic compounds
A 1:1 molecular complex of 4-aminocyclohexanol and (4-hydroxycyclohexyl)carbamic acid
aSchool of Chemistry, University of Hyderabad, Hyderabad 500 046, India, and bDepartment of Chemistry, University of Durham, Durham DH1 3LE, England
*Correspondence e-mail: desiraju@uohyd.ernet.in
The title molecular complex, 4-ammoniocyclohexanol (4-hydroxycyclohexyl)carbamate, C6H14NO+·C7H12NO3−, forms an ionic column with N—H⋯O, O—H⋯O and C—H⋯O interactions. There are two different cyclic supramolecular synthons of note. The crystal structures of ionic amino acids also have similar structural patterns.
Comment
The title molecular complex, (I), was obtained during a study of 4-aminocyclohexanol. This type of compound has a tendency to form carbonated adducts by reaction with atmospheric CO2. In this regard, the of 2-aminocyclohexylcarbamate has been reported (Hanessian et al., 1995). In our case, 4-hydroxycyclohexylcarbamic acid initially formed, then crystallized with the original 4-aminocyclohexanol to give a 1:1 ionic molecular complex with proton transfer.
The molecular structure and atom numbering are given in Fig. 1. The main features are similar to those in the molecular complex of methyl 3-acetoxy-1-ammonio-4-iodocyclohexane-1-carboxylate and trifluoroacetate (Avenoza et al., 1997) and similar to 2-aminocyclohexylcarbamate (Hanessian et al., 1995). The ions form a columnar arrangement with several N—H⋯O interactions (Table 1); the packing is shown in Fig. 2. Weak C—H⋯O interactions (Table 1) reinforce the column formation. A closer view of the columnar packing shows that it is composed of two cyclic supramolecular synthons A and B (Fig. 3). Both types of synthon are observed in other ionic amino acids. In the Cambridge Structural Database (Version 5.24, July 2003; Allen, 2002), the crystal structures with refcodes ACXTPY (Bhattacharjee et al., 1975), ACYHXA01 (Valle et al., 1988), DMTYRS (Gaudestad et al., 1976), FOBJUB (Pirrung, 1987), MEMTYR10 (Satyshur & Rao, 1983) RIGSEF (Avenoza et al., 1997) and TOKNUC (Allan et al., 1996) contain synthons A and B.
O—H⋯O(carboxylate) and O—H⋯O(hydroxyl) hydrogen bonds act as connectors between the columns.
Experimental
Neutralization of the commercially available (Lancaster) hydrochloride salt of 4-aminocyclohexanol by NaHCO3 in water affords the 4-aminocyclohexanol (extracted with EtOAc). The compound crystallized from a 1:1:1 mixture of EtOAc, CH3CN and EtOH. During the time of crystallization, 4-aminocyclohexanol is carboxylated by atmospheric CO2 to give the carbamic acid which cocrystallizes with the parent compound to give yellow crystals of the 1:1 molecular complex.
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536804009134/fl6095sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536804009134/fl6095Isup2.hkl
Data collection: SMART (Bruker, 1997); cell
SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.C6H14NO+·C7H12NO3− | F(000) = 600 |
Mr = 274.36 | Dx = 1.268 Mg m−3 |
Monoclinic, P21/c | Melting point: 377 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 6.3452 (2) Å | Cell parameters from 4934 reflections |
b = 18.6256 (6) Å | θ = 2.8–27.5° |
c = 12.1664 (4) Å | µ = 0.09 mm−1 |
β = 92.284 (2)° | T = 120 K |
V = 1436.72 (8) Å3 | Plate, yellow |
Z = 4 | 0.22 × 0.12 × 0.04 mm |
SMART 6k CCD area-detector diffractometer | 3308 independent reflections |
Radiation source: fine-focus sealed tube | 2537 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 8 pixels mm-1 | θmax = 27.5°, θmin = 2.0° |
ω scans | h = −7→8 |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | k = −24→24 |
Tmin = 0.927, Tmax = 1.000 | l = −15→15 |
19783 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | All H-atom parameters refined |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0538P)2 + 0.3252P] where P = (Fo2 + 2Fc2)/3 |
3308 reflections | (Δ/σ)max = 0.001 |
276 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O3 | −0.46270 (13) | 0.63687 (5) | 0.01886 (7) | 0.0216 (2) | |
O2 | −0.15113 (14) | 0.58448 (5) | 0.05544 (7) | 0.0223 (2) | |
O1 | 0.35337 (16) | 0.73442 (5) | 0.48724 (8) | 0.0300 (2) | |
N1' | 0.74068 (18) | 0.46768 (6) | 0.91750 (8) | 0.0182 (2) | |
O1' | 0.56745 (17) | 0.60426 (6) | 0.50683 (8) | 0.0303 (2) | |
N1 | −0.21577 (18) | 0.69590 (6) | 0.12248 (9) | 0.0227 (2) | |
C7 | −0.27812 (19) | 0.63633 (6) | 0.06402 (9) | 0.0172 (2) | |
C1 | −0.0410 (2) | 0.69605 (7) | 0.20400 (10) | 0.0197 (3) | |
C1' | 0.68231 (19) | 0.48446 (7) | 0.79946 (10) | 0.0182 (3) | |
C4 | 0.1752 (2) | 0.74117 (7) | 0.41197 (10) | 0.0220 (3) | |
C5 | 0.2403 (2) | 0.76883 (8) | 0.30124 (11) | 0.0290 (3) | |
C5' | 0.4282 (2) | 0.54960 (7) | 0.67150 (10) | 0.0217 (3) | |
C4' | 0.6106 (2) | 0.58854 (7) | 0.61997 (10) | 0.0229 (3) | |
C6' | 0.4831 (2) | 0.52980 (7) | 0.79140 (10) | 0.0206 (3) | |
C3' | 0.8078 (2) | 0.54205 (8) | 0.62791 (12) | 0.0291 (3) | |
C6 | 0.0536 (3) | 0.77048 (8) | 0.21763 (12) | 0.0298 (3) | |
C2' | 0.8658 (2) | 0.52213 (8) | 0.74691 (12) | 0.0266 (3) | |
C3 | 0.0736 (3) | 0.66789 (8) | 0.39996 (12) | 0.0321 (3) | |
C2 | −0.1096 (2) | 0.66843 (9) | 0.31494 (12) | 0.0310 (3) | |
H1A | 0.066 (2) | 0.6656 (8) | 0.1757 (12) | 0.020 (3)* | |
H1B | 0.658 (2) | 0.4379 (7) | 0.7637 (11) | 0.015 (3)* | |
H2D | 0.893 (2) | 0.5668 (9) | 0.7913 (13) | 0.028 (4)* | |
H6D | 0.506 (2) | 0.5722 (8) | 0.8348 (12) | 0.021 (4)* | |
H4' | 0.636 (2) | 0.6353 (8) | 0.6590 (12) | 0.021 (4)* | |
H5D | 0.400 (2) | 0.5061 (8) | 0.6273 (12) | 0.020 (4)* | |
H4 | 0.073 (3) | 0.7753 (9) | 0.4436 (13) | 0.030 (4)* | |
H3D | 0.925 (3) | 0.5664 (9) | 0.5937 (14) | 0.033 (4)* | |
H5C | 0.307 (3) | 0.5814 (9) | 0.6675 (13) | 0.030 (4)* | |
H115 | −0.315 (3) | 0.7273 (10) | 0.1311 (14) | 0.038 (5)* | |
H114 | 0.870 (3) | 0.4447 (9) | 0.9227 (13) | 0.031 (4)* | |
H2A | −0.221 (3) | 0.7018 (11) | 0.3403 (15) | 0.047 (5)* | |
H112 | 0.641 (3) | 0.4352 (9) | 0.9465 (14) | 0.038 (5)* | |
H111 | 0.756 (2) | 0.5090 (9) | 0.9608 (13) | 0.027 (4)* | |
H6C | 0.370 (2) | 0.5034 (8) | 0.8226 (12) | 0.021 (4)* | |
H5A | 0.352 (3) | 0.7351 (10) | 0.2737 (15) | 0.042 (5)* | |
H1' | 0.498 (3) | 0.6467 (10) | 0.5041 (15) | 0.042 (5)* | |
H3C | 0.776 (3) | 0.4966 (11) | 0.5837 (15) | 0.045 (5)* | |
H2C | 0.988 (3) | 0.4894 (9) | 0.7499 (13) | 0.036 (4)* | |
H3A | 0.188 (3) | 0.6337 (10) | 0.3776 (14) | 0.042 (5)* | |
H6B | −0.058 (3) | 0.8024 (10) | 0.2441 (14) | 0.035 (4)* | |
H2B | −0.171 (3) | 0.6200 (10) | 0.3086 (14) | 0.039 (5)* | |
H6A | 0.095 (3) | 0.7889 (10) | 0.1460 (16) | 0.047 (5)* | |
H3B | 0.026 (3) | 0.6536 (11) | 0.4732 (17) | 0.053 (5)* | |
H1 | 0.419 (3) | 0.7770 (11) | 0.4939 (16) | 0.049 (5)* | |
H5B | 0.305 (3) | 0.8174 (10) | 0.3088 (14) | 0.042 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.0175 (5) | 0.0204 (4) | 0.0262 (5) | −0.0009 (3) | −0.0078 (3) | 0.0008 (3) |
O2 | 0.0191 (5) | 0.0202 (4) | 0.0270 (5) | 0.0026 (3) | −0.0060 (4) | −0.0046 (3) |
O1 | 0.0349 (6) | 0.0212 (5) | 0.0322 (5) | −0.0039 (4) | −0.0202 (4) | 0.0027 (4) |
N1' | 0.0167 (5) | 0.0184 (5) | 0.0191 (5) | 0.0002 (4) | −0.0026 (4) | −0.0002 (4) |
O1' | 0.0362 (6) | 0.0308 (5) | 0.0235 (5) | 0.0065 (4) | −0.0022 (4) | 0.0075 (4) |
N1 | 0.0207 (6) | 0.0201 (5) | 0.0264 (6) | 0.0044 (4) | −0.0096 (4) | −0.0048 (4) |
C7 | 0.0183 (6) | 0.0169 (6) | 0.0161 (5) | −0.0012 (4) | −0.0022 (4) | 0.0021 (4) |
C1 | 0.0179 (6) | 0.0203 (6) | 0.0202 (6) | 0.0010 (5) | −0.0064 (5) | −0.0024 (5) |
C1' | 0.0176 (6) | 0.0193 (6) | 0.0176 (6) | 0.0000 (5) | −0.0024 (4) | 0.0007 (4) |
C4 | 0.0230 (7) | 0.0213 (6) | 0.0211 (6) | 0.0002 (5) | −0.0085 (5) | −0.0019 (5) |
C5 | 0.0296 (8) | 0.0294 (7) | 0.0272 (7) | −0.0137 (6) | −0.0101 (6) | 0.0048 (5) |
C5' | 0.0187 (6) | 0.0248 (6) | 0.0211 (6) | 0.0023 (5) | −0.0047 (5) | 0.0005 (5) |
C4' | 0.0239 (7) | 0.0218 (6) | 0.0227 (6) | 0.0006 (5) | −0.0041 (5) | 0.0039 (5) |
C6' | 0.0163 (6) | 0.0257 (6) | 0.0196 (6) | 0.0022 (5) | −0.0026 (5) | −0.0002 (5) |
C3' | 0.0218 (7) | 0.0360 (8) | 0.0297 (7) | 0.0044 (6) | 0.0044 (6) | 0.0145 (6) |
C6 | 0.0380 (8) | 0.0245 (7) | 0.0258 (7) | −0.0089 (6) | −0.0134 (6) | 0.0050 (5) |
C2' | 0.0159 (6) | 0.0324 (7) | 0.0311 (7) | 0.0008 (5) | −0.0021 (5) | 0.0113 (6) |
C3 | 0.0432 (9) | 0.0297 (7) | 0.0223 (7) | −0.0158 (7) | −0.0113 (6) | 0.0072 (6) |
C2 | 0.0318 (8) | 0.0352 (8) | 0.0253 (7) | −0.0162 (6) | −0.0065 (6) | 0.0024 (6) |
O3—C7 | 1.2737 (14) | C5—H5A | 1.016 (19) |
O2—C7 | 1.2647 (15) | C5—H5B | 0.996 (19) |
O1—C4 | 1.4316 (15) | C5'—C4' | 1.5224 (19) |
O1—H1 | 0.90 (2) | C5'—C6' | 1.5314 (17) |
N1'—C1' | 1.5016 (15) | C5'—H5D | 0.984 (15) |
N1'—H114 | 0.924 (18) | C5'—H5C | 0.971 (17) |
N1'—H112 | 0.953 (18) | C4'—C3' | 1.5215 (19) |
N1'—H111 | 0.937 (17) | C4'—H4' | 1.002 (15) |
O1'—C4' | 1.4231 (15) | C6'—H6D | 0.959 (15) |
O1'—H1' | 0.905 (19) | C6'—H6C | 0.961 (16) |
N1—C7 | 1.3679 (15) | C3'—C2' | 1.5253 (19) |
N1—C1 | 1.4578 (15) | C3'—H3D | 0.980 (18) |
N1—H115 | 0.869 (19) | C3'—H3C | 1.019 (19) |
C1—C6 | 1.5170 (18) | C6—H6B | 0.990 (18) |
C1—C2 | 1.5240 (19) | C6—H6A | 0.982 (19) |
C1—H1A | 0.958 (15) | C2'—H2D | 1.003 (16) |
C1'—C6' | 1.5198 (17) | C2'—H2C | 0.984 (18) |
C1'—C2' | 1.5216 (18) | C3—C2 | 1.5249 (19) |
C1'—H1B | 0.979 (14) | C3—H3A | 1.011 (19) |
C4—C3 | 1.5141 (18) | C3—H3B | 0.99 (2) |
C4—C5 | 1.5151 (19) | C2—H2A | 1.00 (2) |
C4—H4 | 0.996 (16) | C2—H2B | 0.983 (18) |
C5—C6 | 1.5310 (19) | ||
C4—O1—H1 | 109.3 (12) | H5D—C5'—H5C | 110.4 (13) |
C1'—N1'—H114 | 110.2 (10) | O1'—C4'—C3' | 107.74 (11) |
C1'—N1'—H112 | 110.1 (10) | O1'—C4'—C5' | 112.09 (11) |
H114—N1'—H112 | 106.3 (14) | C3'—C4'—C5' | 109.85 (11) |
C1'—N1'—H111 | 112.6 (9) | O1'—C4'—H4' | 107.5 (8) |
H114—N1'—H111 | 105.6 (14) | C3'—C4'—H4' | 110.5 (8) |
H112—N1'—H111 | 111.7 (14) | C5'—C4'—H4' | 109.1 (8) |
C4'—O1'—H1' | 106.9 (12) | C1'—C6'—C5' | 110.64 (10) |
C7—N1—C1 | 123.48 (11) | C1'—C6'—H6D | 108.3 (9) |
C7—N1—H115 | 114.4 (12) | C5'—C6'—H6D | 110.5 (9) |
C1—N1—H115 | 116.9 (12) | C1'—C6'—H6C | 108.8 (9) |
O2—C7—O3 | 123.25 (11) | C5'—C6'—H6C | 110.8 (9) |
O2—C7—N1 | 119.36 (11) | H6D—C6'—H6C | 107.7 (12) |
O3—C7—N1 | 117.38 (11) | C4'—C3'—C2' | 111.42 (12) |
N1—C1—C6 | 111.28 (10) | C4'—C3'—H3D | 110.3 (10) |
N1—C1—C2 | 111.45 (11) | C2'—C3'—H3D | 110.9 (10) |
C6—C1—C2 | 109.71 (11) | C4'—C3'—H3C | 107.1 (11) |
N1—C1—H1A | 106.5 (8) | C2'—C3'—H3C | 109.5 (10) |
C6—C1—H1A | 107.3 (9) | H3D—C3'—H3C | 107.4 (14) |
C2—C1—H1A | 110.5 (9) | C1—C6—C5 | 110.28 (11) |
N1'—C1'—C6' | 110.50 (10) | C1—C6—H6B | 107.4 (10) |
N1'—C1'—C2' | 109.52 (10) | C5—C6—H6B | 110.0 (10) |
C6'—C1'—C2' | 111.39 (10) | C1—C6—H6A | 110.0 (11) |
N1'—C1'—H1B | 105.6 (8) | C5—C6—H6A | 111.6 (11) |
C6'—C1'—H1B | 110.2 (8) | H6B—C6—H6A | 107.4 (15) |
C2'—C1'—H1B | 109.4 (8) | C1'—C2'—C3' | 110.58 (11) |
O1—C4—C3 | 107.75 (10) | C1'—C2'—H2D | 106.0 (9) |
O1—C4—C5 | 111.25 (11) | C3'—C2'—H2D | 109.9 (9) |
C3—C4—C5 | 110.54 (11) | C1'—C2'—H2C | 108.2 (10) |
O1—C4—H4 | 108.5 (9) | C3'—C2'—H2C | 110.2 (10) |
C3—C4—H4 | 109.3 (9) | H2D—C2'—H2C | 111.9 (13) |
C5—C4—H4 | 109.4 (9) | C4—C3—C2 | 111.69 (12) |
C4—C5—C6 | 111.49 (12) | C4—C3—H3A | 106.7 (10) |
C4—C5—H5A | 107.6 (10) | C2—C3—H3A | 111.0 (10) |
C6—C5—H5A | 109.1 (10) | C4—C3—H3B | 107.4 (12) |
C4—C5—H5B | 110.7 (10) | C2—C3—H3B | 111.2 (12) |
C6—C5—H5B | 110.5 (10) | H3A—C3—H3B | 108.7 (15) |
H5A—C5—H5B | 107.4 (14) | C1—C2—C3 | 111.49 (12) |
C4'—C5'—C6' | 111.03 (10) | C1—C2—H2A | 107.1 (11) |
C4'—C5'—H5D | 107.0 (8) | C3—C2—H2A | 109.0 (11) |
C6'—C5'—H5D | 110.6 (8) | C1—C2—H2B | 111.4 (10) |
C4'—C5'—H5C | 107.6 (9) | C3—C2—H2B | 109.5 (10) |
C6'—C5'—H5C | 110.2 (9) | H2A—C2—H2B | 108.2 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1′—H1′···O1 | 0.90 (2) | 1.88 (2) | 2.784 (2) | 176 (1) |
O1—H1···O3i | 0.90 (2) | 1.79 (2) | 2.687 (1) | 175 (2) |
N1′—H111···O2ii | 0.94 (2) | 1.90 (2) | 2.816 (1) | 167 (1) |
N1′—H112···O3iii | 0.95 (2) | 1.82 (2) | 2.7590 (1) | 170 (1) |
N1′—H114···O2iv | 0.92 (2) | 1.87 (2) | 2.7870 (1) | 169 (1) |
C6′—H6D···O3ii | 0.96 (2) | 2.54 (1) | 3.417 (1) | 152 (1) |
Symmetry codes: (i) x+1, −y+3/2, z+1/2; (ii) x+1, y, z+1; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
AD thanks the CSIR for fellowship support. RM thanks the ORS for support. JAKH thanks the EPSRC for a Senior Research Fellowship. GRD thanks DST for financial assistance.
References
Allan, R. D., Duke, R. K., Hambley, T. W., Johnston, G. A. R., Mewett, K. N., Quickert, N. & Tran, H. W. (1996). Aust. J. Chem. 49, 785–790. CAS Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Avenoza, A., Cativiela, C., Fernandez-Recio, M. A. & Peregrina, J. M. (1997). Synthesis, pp. 165–167. CSD CrossRef Google Scholar
Bhattacharjee, S. K., Chacko, K. K. & Zand, R. (1975). J. Cryst. Mol. Struct. 5, 403–411. CSD CrossRef Web of Science Google Scholar
Bruker (1997) SMART (Version 5.054) and SAINT (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001) SHELXTL (Version 6.12) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Gaudestad, O., Mostad, A. & Romming, C. (1976). Acta Chem. Scand. Ser. B, 30, 501–504. CrossRef Web of Science Google Scholar
Hanessian, S., Simard, M. & Roelens, S. (1995). J. Am. Chem. Soc. 117, 7630–7645. CSD CrossRef CAS Web of Science Google Scholar
Pirrung, M. C. (1987). J. Org. Chem. 52, 4179–4184. CSD CrossRef CAS Web of Science Google Scholar
Satyshur, K. A. & Rao, S. T. (1983). Acta Cryst. C39, 1672–1673. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Valle, G., Crisma, M., Toniolo, C., Sen, N., Sukumar, M. & Balaram, P., (1988). J. Chem. Soc. Perkin Trans. 2, pp. 393–398. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.