organic compounds
Methyl 2,4-anhydro-5-azido-5,6-dideoxy-L-altronate
aDepartment of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: david.watkin@chem.ox.ac.uk
The title compound, C7H11N3O4, was prepared from L-rhamnose as a conformationally restricted dipeptide isostere containing an oxetane ring. Its was determined to confirm the synthetic product.
Comment
Sugar amino acids (SAA) are an important class of peptidomimetics (Schweizer, 2002; Gruner et al., 2002). In particular, D-amino acid scaffolds derived from pyranoses (Kriek et al., 2003; El Oualid et al., 2002) and furanoses (van Well et al., 2003; Chakraborty et al., 2002) provide a well established series of conformationally fixed dipeptide isosteres. The azido ester described here, (I), prepared from L-rhamnose, is among the first examples of building blocks for dipeptide isosteres which contain an oxetane ring; it may be viewed as a conformationally restricted dipeptide isostere of L-ala-D-ser, (II).
Fig. 1 shows the (I). Its (C4 R conformation, and C6 and C9 S conformation) was assumed based on the known of the starting material.
The crystal packing for (I) consists of slightly pleated ribbons of molecules linked by weak hydrogen bonds, with the sheets stacked in van der Waals contact (Fig. 2).
Experimental
Compound (I) (Johnson et al., 2004) was recrystallized from chloroform by solvent diffusion with hexane to give colourless plate-shaped crystals.
Crystal data
|
Refinement
|
|
|
Because the intensity data were collected with molybdenum radiation, there were no measurable anomalous differences, as a consequence of which it was admissible to merge Freidel pairs of reflections. The L-rhamnose starting material. All H atoms were found in difference-density syntheses. They were initially refined with soft restraints on the bonds to regularize their geometry (bond lengths to accepted values, angles either set by symmetry or to accepted values, and Uiso dependent upon the adjacent bonded atom), after which they were refined with riding constraints only.
of (I) was assumed to correlate with the known of theData collection: COLLECT (Nonius, 1997–2001); cell DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536804019968/hb6077sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536804019968/hb6077Isup2.hkl
Data collection: COLLECT (Nonius, 1997); cell
DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.C7H11N3O4 | F(000) = 212 |
Mr = 201.18 | Dx = 1.377 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 1439 reflections |
a = 4.6318 (2) Å | θ = 5–32° |
b = 9.8575 (5) Å | µ = 0.11 mm−1 |
c = 10.6310 (6) Å | T = 185 K |
β = 92.084 (2)° | Plate, colourless |
V = 485.07 (4) Å3 | 0.50 × 0.40 × 0.20 mm |
Z = 2 |
Nonius KappaCCD diffractometer | 1733 reflections with I > −3σ(I) |
Graphite monochromator | Rint = 0.021 |
ω scans | θmax = 32.0°, θmin = 5.3° |
Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) | h = −6→6 |
Tmin = 0.96, Tmax = 0.98 | k = −14→8 |
4689 measured reflections | l = −15→15 |
1733 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Only H-atom coordinates refined |
wR(F2) = 0.095 | w = 1/[σ2(F) + (0.034P)2 + 0.093P], where P = (max(Fo2,0) + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.000205 |
1733 reflections | Δρmax = 0.22 e Å−3 |
160 parameters | Δρmin = −0.23 e Å−3 |
35 restraints |
x | y | z | Uiso*/Ueq | ||
O1 | 0.1410 (3) | 0.40054 (18) | 0.21529 (13) | 0.0400 | |
C2 | 0.1392 (4) | 0.3140 (2) | 0.31133 (17) | 0.0307 | |
O3 | −0.0147 (3) | 0.21590 (17) | 0.31663 (13) | 0.0401 | |
C4 | 0.3567 (4) | 0.3571 (2) | 0.41317 (18) | 0.0299 | |
O5 | 0.4021 (3) | 0.25130 (15) | 0.50505 (13) | 0.0355 | |
C6 | 0.2570 (4) | 0.32935 (18) | 0.59975 (18) | 0.0320 | |
C7 | 0.2362 (3) | 0.45325 (19) | 0.51267 (17) | 0.0282 | |
O8 | −0.0413 (3) | 0.50394 (17) | 0.48281 (16) | 0.0405 | |
C9 | 0.4480 (5) | 0.3407 (2) | 0.71873 (19) | 0.0401 | |
N10 | 0.2816 (5) | 0.4247 (2) | 0.80673 (19) | 0.0545 | |
N11 | 0.4227 (5) | 0.5193 (3) | 0.85376 (19) | 0.0564 | |
N12 | 0.5334 (7) | 0.6089 (3) | 0.9016 (3) | 0.0819 | |
C13 | 0.5152 (8) | 0.2029 (3) | 0.7759 (3) | 0.0665 | |
C14 | −0.0618 (5) | 0.3739 (3) | 0.1117 (2) | 0.0501 | |
H41 | 0.534 (3) | 0.390 (2) | 0.3796 (16) | 0.0374* | |
H61 | 0.067 (4) | 0.2891 (19) | 0.6166 (16) | 0.0383* | |
H71 | 0.370 (3) | 0.5239 (17) | 0.5357 (17) | 0.0350* | |
H91 | 0.626 (4) | 0.391 (2) | 0.7011 (18) | 0.0519* | |
H131 | 0.645 (5) | 0.216 (3) | 0.851 (2) | 0.0843* | |
H132 | 0.324 (5) | 0.168 (3) | 0.796 (2) | 0.0843* | |
H133 | 0.608 (5) | 0.147 (3) | 0.711 (2) | 0.0843* | |
H141 | −0.034 (5) | 0.450 (2) | 0.056 (2) | 0.0677* | |
H142 | −0.261 (4) | 0.370 (3) | 0.141 (2) | 0.0677* | |
H143 | −0.005 (6) | 0.289 (2) | 0.076 (3) | 0.0677* | |
H5 | −0.069 (6) | 0.576 (4) | 0.519 (3) | 0.0610* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0484 (8) | 0.0328 (7) | 0.0388 (7) | −0.0058 (6) | 0.0007 (6) | 0.0063 (6) |
C2 | 0.0334 (8) | 0.0237 (8) | 0.0353 (8) | 0.0013 (7) | 0.0067 (6) | −0.0004 (7) |
O3 | 0.0482 (7) | 0.0302 (7) | 0.0419 (7) | −0.0118 (6) | 0.0023 (6) | 0.0011 (6) |
C4 | 0.0287 (7) | 0.0207 (7) | 0.0406 (9) | 0.0018 (6) | 0.0052 (7) | 0.0018 (6) |
O5 | 0.0472 (8) | 0.0217 (6) | 0.0377 (7) | 0.0108 (6) | 0.0033 (6) | 0.0009 (5) |
C6 | 0.0369 (9) | 0.0187 (7) | 0.0409 (9) | 0.0007 (7) | 0.0085 (7) | 0.0000 (7) |
C7 | 0.0260 (7) | 0.0174 (7) | 0.0413 (9) | 0.0006 (6) | 0.0013 (6) | −0.0010 (7) |
O8 | 0.0322 (7) | 0.0285 (7) | 0.0603 (9) | 0.0099 (5) | −0.0043 (6) | −0.0116 (7) |
C9 | 0.0530 (11) | 0.0316 (10) | 0.0361 (9) | 0.0099 (9) | 0.0057 (8) | 0.0008 (8) |
N10 | 0.0712 (13) | 0.0455 (11) | 0.0482 (11) | 0.0071 (10) | 0.0211 (9) | −0.0051 (9) |
N11 | 0.0815 (15) | 0.0483 (12) | 0.0388 (9) | 0.0201 (11) | −0.0043 (9) | −0.0065 (9) |
N12 | 0.101 (2) | 0.0691 (18) | 0.0741 (17) | 0.0172 (16) | −0.0171 (15) | −0.0326 (15) |
C13 | 0.106 (2) | 0.0445 (14) | 0.0483 (13) | 0.0222 (16) | −0.0035 (14) | 0.0082 (11) |
C14 | 0.0574 (13) | 0.0535 (15) | 0.0389 (11) | −0.0018 (12) | −0.0035 (9) | 0.0058 (10) |
O1—C2 | 1.331 (2) | O8—H5 | 0.82 (4) |
O1—C14 | 1.445 (3) | C9—N10 | 1.486 (3) |
C2—O3 | 1.204 (2) | C9—C13 | 1.515 (3) |
C2—C4 | 1.513 (3) | C9—H91 | 0.985 (16) |
C4—O5 | 1.439 (2) | N10—N11 | 1.234 (3) |
C4—C7 | 1.540 (2) | N11—N12 | 1.132 (4) |
C4—H41 | 0.964 (15) | C13—H131 | 0.993 (17) |
O5—C6 | 1.451 (2) | C13—H132 | 0.981 (18) |
C6—C7 | 1.533 (2) | C13—H133 | 0.996 (18) |
C6—C9 | 1.521 (3) | C14—H141 | 0.969 (17) |
C6—H61 | 0.986 (15) | C14—H142 | 0.983 (17) |
C7—O8 | 1.405 (2) | C14—H143 | 0.962 (17) |
C7—H71 | 0.958 (16) | ||
C2—O1—C14 | 116.48 (17) | O8—C7—H71 | 112.1 (10) |
O1—C2—O3 | 124.83 (18) | C7—O8—H5 | 111 (2) |
O1—C2—C4 | 110.25 (15) | C6—C9—N10 | 105.37 (17) |
O3—C2—C4 | 124.92 (17) | C6—C9—C13 | 111.88 (19) |
C2—C4—O5 | 111.04 (14) | N10—C9—C13 | 110.54 (19) |
C2—C4—C7 | 114.58 (14) | C6—C9—H91 | 110.1 (11) |
O5—C4—C7 | 91.58 (13) | N10—C9—H91 | 107.2 (12) |
C2—C4—H41 | 112.6 (10) | C13—C9—H91 | 111.5 (12) |
O5—C4—H41 | 113.1 (11) | C9—N10—N11 | 113.4 (2) |
C7—C4—H41 | 112.3 (11) | N10—N11—N12 | 174.7 (3) |
C4—O5—C6 | 91.52 (12) | C9—C13—H131 | 108.5 (19) |
O5—C6—C7 | 91.38 (13) | C9—C13—H132 | 103 (2) |
O5—C6—C9 | 110.23 (15) | H131—C13—H132 | 113.6 (16) |
C7—C6—C9 | 117.75 (15) | C9—C13—H133 | 107.9 (18) |
O5—C6—H61 | 110.5 (11) | H131—C13—H133 | 111.6 (16) |
C7—C6—H61 | 113.2 (11) | H132—C13—H133 | 111.7 (16) |
C9—C6—H61 | 111.9 (10) | O1—C14—H141 | 103.0 (17) |
C4—C7—C6 | 84.73 (13) | O1—C14—H142 | 110.9 (16) |
C4—C7—O8 | 114.53 (15) | H141—C14—H142 | 111.6 (16) |
C6—C7—O8 | 117.18 (15) | O1—C14—H143 | 106.2 (17) |
C4—C7—H71 | 112.1 (11) | H141—C14—H143 | 113.4 (15) |
C6—C7—H71 | 113.5 (11) | H142—C14—H143 | 111.4 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H5···O3i | 0.82 (4) | 2.25 (3) | 2.990 (2) | 150 (3) |
O8—H5···O5i | 0.82 (4) | 2.32 (3) | 2.962 (2) | 135 (3) |
Symmetry code: (i) −x, y+1/2, −z+1. |
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K., Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Chakraborty, T. K., Ghosh, S. & Jayaprakash, S. (2002). Curr. Med. Chem. 9, 421–435. Web of Science CrossRef PubMed CAS Google Scholar
El Oualid, F., Bruining, L., Leroy, I. M., Cohen, L. H., van Boom, J. H., van der Marel, G. A., Overkleeft, H. S. & Overhand, M. (2002). Helv. Chim. Acta, 85, 3455–3472. CrossRef CAS Google Scholar
Gruner, S. A. W., Locardi, E., Lohof, E. & Kessler, H. (2002). Chem. Rev. 102, 491–514. Web of Science CrossRef PubMed CAS Google Scholar
Johnson, S. W., Jenkinson, S. F., Angus, D., Jones, J. H., Watkin, D. J. & Fleet, G. W. J. (2004). Tetrahedron: Asymmetry, 15. In the press. Google Scholar
Kriek, N. M. A. J., van der Hout, E., Kelly, P., van Meijgaarden, K. E., Geluk, A., Ottenhoff, T. H. M., van der Marel, G. A., Overhand, M., van Boom, J. H., Valentijn, A. R. P. M. & Overkleeft, H. S. (2003). Eur. J. Org. Chem. pp. 2418–2427. Web of Science CrossRef Google Scholar
Nonius (1997–2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Schweizer, F. (2002) Angew. Chem. Int. Ed. 41, 230–253. Web of Science CrossRef CAS Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
Well, R. M. van, Marinelli, L., Altona, C., Erkelens, K., Siegal, G., van Raaij, M., Llamas-Saiz, A. L., Kessler, H., Novellino, E., Lavecchia, A., van Boom, J. H. & Overhand, M. (2003). J. Am. Chem. Soc. 125, 10822–10829. Web of Science CSD CrossRef PubMed Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.