organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-Di­cyano­methyl­ene-4,5-di­nitro­fluorene-2,7-disulfon­amide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: a.s.batsanov@durham.ac.uk

(Received 15 September 2004; accepted 22 September 2004; online 30 September 2004)

The title compound, C16H8N6O8S2, has a twisted fluorene moiety due to steric repulsion between the 4- and 5-nitro groups.

Comment

2,4,5,7-Tetra­nitro-9-di­cyano­methyl­enefluorene (DTeF) (Sil­ver­man et al., 1974[Silverman, J., Yannoni, N. F. & Krukonis, A. P. (1974). Acta Cryst. B30, 1474-1480.]) is a strong electron acceptor, used as a component of charge-transfer complexes (CTC) (Perepichka et al., 1998[Perepichka, I. F., Kuz'mina, L. G., Perepichka, D. F., Bryce, M. R., Goldenberg, L. M., Popov, A. F. & Howard, J. A. K. (1998). J. Org. Chem. 63, 6484-6493.]; Batsanov, Bryce et al., 2001[Batsanov, A. S., Bryce, M. R., Chesney, A., Howard, J. A. K., John, D. E., Moore, A. J., Wood, C. L., Gershtenman, H., Becker, J. Y., Khodorkovsky, V. Y., Ellern, A., Bernstein, J., Perepichka, I. F., Rotello, V., Gray, M. & Cuello, A. O. (2001). J. Mater. Chem. 10, 2181-2191.]; Batsanov, Perepichka et al., 2001[Batsanov, A. S., Perepichka, I. F., Bryce, M. R. & Howard, J. A. K. (2001). Acta Cryst. C57, 1299-1302.]). We also prepared and structurally characterized similar complexes with 2,7-bis(n-butyl­sulfonyl)- and 2,7-bis­(phenyl­sulfonyl)-9-di­cyano­methyl­ene-4,5-di­nitro­fluorene (Perepichka et al., 2000[Perepichka, I. F., Popov, A. F., Orekhova, T. V., Bryce, M. R., Andrievskii, A. M., Batsanov, A. S., Howard, J. A. K. & Sokolov, N. I. (2000). J. Org. Chem. 65, 3053-3063.]). The title compound, (I[link]), was prepared in the course of the same study.[link]

[Scheme 1]

The fluorene system of (I[link]), like that of DTeF, adopts a twisted conformation (Fig. 1[link]), due to steric repulsion between the nitro groups in positions 4 and 5 [intramolecular contacts O42⋯N5 = 2.646 (5) Å and O51⋯N4 = 2.674 (5) Å]. The strain is relieved by (i) both nitro groups tilting out of the aromatic plane in opposite directions and (ii) the fluorene moiety itself twisting substantially. Thus, the 13 C atoms of the fluorene moiety show an average deviation of 0.13 Å from their mean plane. Both benzene rings adopt `sofa' conformations, atoms C11 and C12 deviating by 0.12 and 0.06 Å from the planes of the essentially planar moieties C1–C4/C10 and C5–C8/C13, respectively. The latter planes form a dihedral angle of 15.2 (3)°. The twist around the C9=C14 bond, i.e. the dihedral angle between the C9/C10/C13/C14 and C9/C14/C15/C16/N15/N16 planes, is 11.5 (3)°. The bond lengths and angles in (I[link]) (Table 1[link]) are consistent with those observed in other distorted fluorene systems.

The NH2 groups adopt trans orientations with respect to the mean fluorene plane. All amine H atoms participate in intermolecular hydrogen bonds (Table 2[link]), although one of these (H71⋯O41) is very weak.

[Figure 1]
Figure 1
The molecular structure of (I[link]). Displacement ellipsoids are drawn at the 50% probability level.

Experimental

4,5-Di­nitro-9-fluorenone-2,7-di­sulfonyl dichloride [(II); 200 mg, 0.43 mol] (Mysyk et al., 1997[Mysyk, D. D., Perepichka, I. F. & Sokolov, N. I. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 537-545.]) was dissolved in dry dioxane (10 ml) and ammonia (35% solution in water, 0.2 ml) was added dropwise with intense stirring. The mixture was stirred at room temperature for 1 h and poured into water. The solid was filtered off, washed with warm water, dried and recrystallized from acetone, yielding pale yellow crystals of 4,5-di­nitro-9-fluorenone-2,7-disulfon­amide, (III) (130 mg, yield 71%, m.p. >573 K). 1H NMR (400 MHz, acetone-d6): δ 8.63 (2H, d, J = 1.5 Hz, H-3,6), 8.50 (2H, d, J = 1.5 Hz, H-1,8), 7.19 (4H, s, SO2NH2); 13C NMR (100 MHz, acetone-d6): δ 186.56 (C=O), 149.28, 147.15, 139.40, 136.61, 128.86, 126.07. Analysis found: C 36.42, H 1.95, N 13.18, S 14.89%; C13H8N4O9S2 requires: C 36.45, H 1.88, N 13.08, S 14.97%. Compound (III) (300 mg, 0.70 mmol) and malono­nitrile (100 mg, 167 mmol) in di­methyl­form­amide (1.5 ml) were stirred at room temperature for 4 h and diluted with methanol (5 ml), resulting in precipitation. After keeping this solution at 273 K for 6 h, the solid obtained was filtered off and washed with water, yielding crude product (I[link]) as a yellow–green solid. This was dissolved in a minimal amount of hot acetone and diluted with a fourfold volume of hot methanol. On cooling, a bright yellow solid was collected, washed with methanol and dried, giving 210 mg of (I[link]) (yield 63%), m.p. >573 K. 1H NMR (300 MHz, acetone-d6 + ca 0.2 drop CF3CO2D): δ 9.36 (2H, d, J = 1.4 Hz, H-1.8), 8.71 (2H, d, J = 1.4 Hz, H-3,6), 7.32 (4H, s, SO2NH2). Analysis found: C 40.22, H 1.65, N 17.78, S 13.37; C16H8N6O8S2 requires: C 40.34, H 1.69, N 17.64, S 13.46%. Single crystals of (I[link]) of X-ray quality were obtained by slow evaporation (over several days) at room temperature of a solution of (I[link]) (10 mg) in PhCl (10 ml) and aceto­nitrile (3 ml).

Crystal data
  • C16H8N6O8S2

  • Mr = 476.40

  • Orthorhombic, Pna21

  • a = 9.574 (2) Å

  • b = 10.778 (6) Å

  • c = 17.461 (5) Å

  • V = 1801.8 (12) Å3

  • Z = 4

  • Dx = 1.756 Mg m−3

  • Cu Kα radiation

  • Cell parameters from 25 reflections

  • θ = 15.5–25.0°

  • μ = 3.30 mm−1

  • T = 150 (2) K

  • Needle, yellow

  • 0.45 × 0.06 × 0.05 mm

Data collection
  • Rigaku AFC-6S four-circle diffractometer

  • 2θ/ω scans

  • Absorption correction: ψ scan (TEXSAN; Molecular Structure Corporation, 1989[Molecular Structure Corporation (1989). TEXSAN. Version 5.1. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.]) Tmin = 0.745, Tmax = 0.848

  • 2381 measured reflections

  • 1942 independent reflections

  • 1730 reflections with I > 2σ(I)

  • Rint = 0.033

  • θmax = 75.1°

  • h = −1 → 12

  • k = −1 → 13

  • l = −1 → 21

  • 3 standard reflections every 147 reflections intensity decay: 0.9%

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.106

  • S = 1.03

  • 1942 reflections

  • 199 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.06P)2 + 0.7842P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.43 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter = 0.01 (3)

Table 1
Selected geometric parameters (Å, °)

S2—O22 1.424 (4)
S2—O21 1.433 (4)
S2—N2 1.612 (4)
S2—C2 1.785 (5)
S7—O72 1.428 (4)
S7—O71 1.432 (3)
S7—N7 1.606 (4)
S7—C7 1.784 (5)
C1—C2 1.383 (7)
C1—C10 1.396 (6)
C2—C3 1.381 (7)
C3—C4 1.393 (6)
C4—C11 1.387 (7)
C4—N4 1.476 (6)
C5—C12 1.387 (6)
C5—C6 1.391 (6)
C5—N5 1.465 (6)
C6—C7 1.384 (6)
C7—C8 1.394 (6)
C8—C13 1.387 (7)
C9—C14 1.358 (6)
C9—C13 1.469 (6)
C9—C10 1.475 (6)
C10—C11 1.410 (6)
C11—C12 1.473 (6)
C12—C13 1.429 (6)
C14—C15 1.435 (6)
C14—C16 1.446 (7)
C15—N15 1.144 (7)
C16—N16 1.146 (7)
N4—O41 1.218 (5)
N4—O42 1.236 (5)
N5—O52 1.219 (5)
N5—O51 1.239 (5)
C2—C1—C10 117.7 (4)
C3—C2—C1 122.6 (4)
C3—C2—S2 117.4 (4)
C1—C2—S2 120.0 (4)
C2—C3—C4 118.2 (5)
C11—C4—C3 121.7 (4)
C11—C4—N4 122.2 (4)
C3—C4—N4 115.8 (4)
C12—C5—C6 122.6 (4)
C12—C5—N5 122.7 (4)
C6—C5—N5 114.5 (4)
C7—C6—C5 118.5 (4)
C6—C7—C8 121.9 (4)
C6—C7—S7 117.8 (3)
C8—C7—S7 120.2 (4)
C13—C8—C7 118.3 (4)
C14—C9—C13 125.9 (4)
C14—C9—C10 127.1 (4)
C13—C9—C10 106.8 (4)
C1—C10—C11 121.5 (4)
C1—C10—C9 130.4 (4)
C11—C10—C9 108.0 (4)
C4—C11—C10 117.4 (4)
C4—C11—C12 134.2 (4)
C10—C11—C12 108.3 (4)
C5—C12—C13 116.8 (4)
C5—C12—C11 135.2 (4)
C13—C12—C11 107.8 (4)
C8—C13—C12 121.7 (4)
C8—C13—C9 130.2 (4)
C12—C13—C9 107.9 (4)
C9—C14—C15 123.4 (4)
C9—C14—C16 122.2 (4)
C15—C14—C16 114.4 (4)
C1—C2—S2—N2 79.0 (4)
C8—C7—S7—N7 96.3 (4)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O72i 0.89 2.03 2.878 (6) 159
N2—H22⋯O52ii 0.89 2.10 2.925 (5) 153
N7—H71⋯O41iii 0.89 2.51 3.116 (6) 126
N7—H72⋯N2iv 0.89 2.24 3.103 (6) 162
Symmetry codes: (i) [{\script{3\over 2}}-x,y-{\script{1\over 2}},{\script{1\over 2}}+z]; (ii) x,y-1,z; (iii) [1-x,2-y,z-{\script{1\over 2}}]; (iv) [1-x,1-y,z-{\script{1\over 2}}].

Owing to an insufficient number of observed reflections, only the S, O and N atoms were refined with anisotropic displacement parameters, the C atoms being refined in isotropic approximation. Amine H atoms were refined in isotropic approximation, then constrained with the same bond direction but idealized N—H bond lengths (0.89 Å). Other H atoms were treated as riding in idealized positions, with C—H bond lengths of 0.95 Å and Uiso(H) = 1.2Ueq(C).

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988[Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.]); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molec­ular Structure Corporation, 1989[Molecular Structure Corporation (1989). TEXSAN. Version 5.1. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

9-Dicyanomethylene-4,5-dinitrofluorene-2,7-disulfonamide top
Crystal data top
C16H8N6O8S2Dx = 1.756 Mg m3
Mr = 476.40Melting point > 573 K
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54178 Å
a = 9.574 (2) ÅCell parameters from 25 reflections
b = 10.778 (6) Åθ = 15.5–25.0°
c = 17.461 (5) ŵ = 3.30 mm1
V = 1801.8 (12) Å3T = 150 K
Z = 4Needle, yellow
F(000) = 9680.45 × 0.06 × 0.05 mm
Data collection top
Rigaku AFC-6S four-circle
diffractometer
1730 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 75.1°, θmin = 4.8°
2θ/ω scansh = 112
Absorption correction: ψ scan
(TEXSAN; Molecular Structure Corporation, 1989)
k = 113
Tmin = 0.745, Tmax = 0.848l = 121
2381 measured reflections3 standard reflections every 147 reflections
1942 independent reflections intensity decay: 0.9%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.06P)2 + 0.7842P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1942 reflectionsΔρmax = 0.37 e Å3
199 parametersΔρmin = 0.43 e Å3
1 restraintAbsolute structure: Flack (1983), 28 Friedel pairs [CHECK]
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Special details top

Experimental. Needle-like crystal aligned approximately along the φ axis. 118 Friedel pairs has been measured.

exptl_absorpt_correction_type psi-scan (TEXSAN; Molecular Structure Corporation, 1989), on 108 ψ-scans of 3 reflections

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.32267 (12)0.29279 (10)0.30553 (7)0.0227 (2)
S70.85953 (12)0.95636 (10)0.00931 (7)0.0214 (2)
C10.4962 (5)0.4139 (4)0.2047 (3)0.0215 (9)*
H10.50190.33800.17730.026*
C20.4190 (5)0.4233 (4)0.2714 (3)0.0212 (9)*
C30.4144 (5)0.5305 (4)0.3147 (3)0.0248 (9)*
H30.36390.53310.36150.030*
C40.4858 (5)0.6344 (4)0.2879 (3)0.0242 (10)*
C50.6182 (5)0.8599 (4)0.1692 (3)0.0207 (9)*
C60.6941 (5)0.9288 (4)0.1162 (3)0.0236 (10)*
H60.69601.01680.11870.028*
C70.7667 (5)0.8662 (4)0.0596 (3)0.0185 (9)*
C80.7648 (5)0.7372 (4)0.0541 (3)0.0213 (9)*
H80.81230.69580.01380.026*
C90.6638 (5)0.5371 (4)0.1149 (3)0.0201 (9)*
C100.5655 (5)0.5201 (4)0.1790 (3)0.0200 (9)*
C110.5517 (5)0.6348 (4)0.2171 (3)0.0211 (9)*
C120.6193 (5)0.7312 (4)0.1702 (3)0.0195 (9)*
C130.6921 (5)0.6707 (4)0.1093 (3)0.0209 (9)*
C140.7247 (5)0.4468 (4)0.0721 (3)0.0207 (9)*
C150.6810 (5)0.3196 (4)0.0736 (3)0.0253 (10)*
C160.8411 (5)0.4717 (5)0.0216 (3)0.0278 (10)*
N20.4291 (4)0.1993 (4)0.3479 (2)0.0237 (9)
H210.46690.23610.38850.028*
H220.49370.16700.31710.028*
N40.4993 (4)0.7382 (4)0.3425 (2)0.0272 (9)*
N50.5253 (4)0.9336 (4)0.2179 (2)0.0276 (9)*
N70.7527 (4)1.0028 (4)0.0741 (2)0.0290 (9)
H710.70141.05930.04980.035*
H720.71860.93560.09710.035*
N150.6447 (5)0.2185 (4)0.0715 (3)0.0365 (11)
N160.9357 (5)0.4914 (4)0.0167 (3)0.0386 (11)
O210.2300 (4)0.3387 (3)0.3634 (2)0.0324 (8)
O220.2694 (4)0.2294 (4)0.2402 (2)0.0374 (9)
O410.4083 (4)0.7526 (4)0.3904 (2)0.0384 (9)
O420.6069 (4)0.8012 (3)0.3374 (2)0.0328 (8)
O510.4081 (4)0.8909 (3)0.2326 (2)0.0309 (8)
O520.5671 (4)1.0355 (3)0.2378 (2)0.0405 (10)
O710.9091 (4)1.0654 (3)0.0289 (2)0.0296 (8)
O720.9576 (4)0.8737 (3)0.0438 (2)0.0313 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0195 (5)0.0265 (5)0.0222 (5)0.0038 (4)0.0003 (5)0.0048 (5)
S70.0202 (5)0.0226 (5)0.0213 (5)0.0031 (4)0.0013 (5)0.0003 (5)
N20.020 (2)0.0255 (18)0.025 (2)0.0030 (15)0.0008 (17)0.0011 (16)
N70.029 (2)0.032 (2)0.026 (2)0.0028 (17)0.0022 (19)0.0052 (18)
N150.050 (3)0.024 (2)0.036 (3)0.002 (2)0.002 (2)0.0027 (18)
N160.037 (3)0.033 (2)0.046 (3)0.0059 (19)0.016 (2)0.002 (2)
O210.0257 (18)0.0314 (18)0.0402 (19)0.0000 (15)0.0115 (18)0.0068 (16)
O220.041 (2)0.042 (2)0.0292 (19)0.0135 (18)0.0079 (18)0.0041 (17)
O410.042 (2)0.041 (2)0.0321 (19)0.0055 (18)0.0155 (18)0.0097 (18)
O420.033 (2)0.0359 (18)0.0297 (18)0.0071 (15)0.0014 (17)0.0050 (17)
O510.0259 (18)0.0340 (18)0.0327 (19)0.0028 (15)0.0033 (16)0.0009 (16)
O520.045 (2)0.0264 (18)0.050 (2)0.0054 (17)0.020 (2)0.0156 (18)
O710.034 (2)0.0239 (16)0.0305 (18)0.0077 (15)0.0018 (17)0.0069 (15)
O720.0233 (17)0.0338 (19)0.0368 (19)0.0021 (15)0.0099 (18)0.0034 (16)
Geometric parameters (Å, º) top
S2—O221.424 (4)C7—C81.394 (6)
S2—O211.433 (4)C8—C131.387 (7)
S2—N21.612 (4)C8—H80.9500
S2—C21.785 (5)C9—C141.358 (6)
S7—O721.428 (4)C9—C131.469 (6)
S7—O711.432 (3)C9—C101.475 (6)
S7—N71.606 (4)C10—C111.410 (6)
S7—C71.784 (5)C11—C121.473 (6)
C1—C21.383 (7)C12—C131.429 (6)
C1—C101.396 (6)C14—C151.435 (6)
C1—H10.9500C14—C161.446 (7)
C2—C31.381 (7)C15—N151.144 (7)
C3—C41.393 (6)C16—N161.146 (7)
C3—H30.9499N2—H210.8901
C4—C111.387 (7)N2—H220.8900
C4—N41.476 (6)N4—O411.218 (5)
C5—C121.387 (6)N4—O421.236 (5)
C5—C61.391 (6)N5—O521.219 (5)
C5—N51.465 (6)N5—O511.239 (5)
C6—C71.384 (6)N7—H710.8901
C6—H60.9500N7—H720.8900
O22—S2—O21120.6 (3)C13—C8—H8120.8
O22—S2—N2107.1 (2)C7—C8—H8120.9
O21—S2—N2106.5 (2)C14—C9—C13125.9 (4)
O22—S2—C2107.2 (2)C14—C9—C10127.1 (4)
O21—S2—C2106.5 (2)C13—C9—C10106.8 (4)
N2—S2—C2108.6 (2)C1—C10—C11121.5 (4)
O72—S7—O71119.4 (2)C1—C10—C9130.4 (4)
O72—S7—N7108.4 (2)C11—C10—C9108.0 (4)
O71—S7—N7106.5 (2)C4—C11—C10117.4 (4)
O72—S7—C7105.8 (2)C4—C11—C12134.2 (4)
O71—S7—C7107.3 (2)C10—C11—C12108.3 (4)
N7—S7—C7109.1 (2)C5—C12—C13116.8 (4)
C2—C1—C10117.7 (4)C5—C12—C11135.2 (4)
C2—C1—H1121.2C13—C12—C11107.8 (4)
C10—C1—H1121.2C8—C13—C12121.7 (4)
C3—C2—C1122.6 (4)C8—C13—C9130.2 (4)
C3—C2—S2117.4 (4)C12—C13—C9107.9 (4)
C1—C2—S2120.0 (4)C9—C14—C15123.4 (4)
C2—C3—C4118.2 (5)C9—C14—C16122.2 (4)
C2—C3—H3120.8C15—C14—C16114.4 (4)
C4—C3—H3121.0N15—C15—C14177.0 (6)
C11—C4—C3121.7 (4)N16—C16—C14178.2 (6)
C11—C4—N4122.2 (4)S2—N2—H21110.1
C3—C4—N4115.8 (4)S2—N2—H22114.0
C12—C5—C6122.6 (4)H21—N2—H22111.9
C12—C5—N5122.7 (4)O41—N4—O42125.1 (4)
C6—C5—N5114.5 (4)O41—N4—C4118.5 (4)
C7—C6—C5118.5 (4)O42—N4—C4116.3 (4)
C7—C6—H6120.6O52—N5—O51125.0 (4)
C5—C6—H6120.8O52—N5—C5117.0 (4)
C6—C7—C8121.9 (4)O51—N5—C5117.9 (4)
C6—C7—S7117.8 (3)S7—N7—H71103.2
C8—C7—S7120.2 (4)S7—N7—H72107.3
C13—C8—C7118.3 (4)H71—N7—H72124.7
C1—C2—S2—N279.0 (4)C8—C7—S7—N796.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O72i0.892.032.878 (6)159
N2—H22···O52ii0.892.102.925 (5)153
N7—H71···O41iii0.892.513.116 (6)126
N7—H72···N2iv0.892.243.103 (6)162
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x, y1, z; (iii) x+1, y+2, z1/2; (iv) x+1, y+1, z1/2.
 

Acknowledgements

The authors thank Professor M. R. Bryce for fruitful advice. IFP thanks the Royal Society of Chemistry for an International Author grant.

References

First citationBatsanov, A. S., Bryce, M. R., Chesney, A., Howard, J. A. K., John, D. E., Moore, A. J., Wood, C. L., Gershtenman, H., Becker, J. Y., Khodorkovsky, V. Y., Ellern, A., Bernstein, J., Perepichka, I. F., Rotello, V., Gray, M. & Cuello, A. O. (2001). J. Mater. Chem. 10, 2181–2191.  Web of Science CSD CrossRef Google Scholar
First citationBatsanov, A. S., Perepichka, I. F., Bryce, M. R. & Howard, J. A. K. (2001). Acta Cryst. C57, 1299–1302.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMolecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.  Google Scholar
First citationMolecular Structure Corporation (1989). TEXSAN. Version 5.1. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.  Google Scholar
First citationMysyk, D. D., Perepichka, I. F. & Sokolov, N. I. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 537–545.  CrossRef Google Scholar
First citationPerepichka, I. F., Kuz'mina, L. G., Perepichka, D. F., Bryce, M. R., Goldenberg, L. M., Popov, A. F. & Howard, J. A. K. (1998). J. Org. Chem. 63, 6484–6493.  Web of Science CSD CrossRef CAS Google Scholar
First citationPerepichka, I. F., Popov, A. F., Orekhova, T. V., Bryce, M. R., Andrievskii, A. M., Batsanov, A. S., Howard, J. A. K. & Sokolov, N. I. (2000). J. Org. Chem. 65, 3053–3063.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSilverman, J., Yannoni, N. F. & Krukonis, A. P. (1974). Acta Cryst. B30, 1474–1480.  CSD CrossRef IUCr Journals Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds