organic compounds
9-Dicyanomethylene-4,5-dinitrofluorene-2,7-disulfonamide
aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: a.s.batsanov@durham.ac.uk
The title compound, C16H8N6O8S2, has a twisted fluorene moiety due to steric repulsion between the 4- and 5-nitro groups.
Comment
2,4,5,7-Tetranitro-9-dicyanomethylenefluorene (DTeF) (Silverman et al., 1974) is a strong used as a component of charge-transfer complexes (CTC) (Perepichka et al., 1998; Batsanov, Bryce et al., 2001; Batsanov, Perepichka et al., 2001). We also prepared and structurally characterized similar complexes with 2,7-bis(n-butylsulfonyl)- and 2,7-bis(phenylsulfonyl)-9-dicyanomethylene-4,5-dinitrofluorene (Perepichka et al., 2000). The title compound, (I), was prepared in the course of the same study.
The fluorene system of (I), like that of DTeF, adopts a twisted conformation (Fig. 1), due to steric repulsion between the nitro groups in positions 4 and 5 [intramolecular contacts O42⋯N5 = 2.646 (5) Å and O51⋯N4 = 2.674 (5) Å]. The strain is relieved by (i) both nitro groups tilting out of the aromatic plane in opposite directions and (ii) the fluorene moiety itself twisting substantially. Thus, the 13 C atoms of the fluorene moiety show an average deviation of 0.13 Å from their mean plane. Both benzene rings adopt `sofa' conformations, atoms C11 and C12 deviating by 0.12 and 0.06 Å from the planes of the essentially planar moieties C1–C4/C10 and C5–C8/C13, respectively. The latter planes form a dihedral angle of 15.2 (3)°. The twist around the C9=C14 bond, i.e. the dihedral angle between the C9/C10/C13/C14 and C9/C14/C15/C16/N15/N16 planes, is 11.5 (3)°. The bond lengths and angles in (I) (Table 1) are consistent with those observed in other distorted fluorene systems.
The NH2 groups adopt trans orientations with respect to the mean fluorene plane. All amine H atoms participate in intermolecular hydrogen bonds (Table 2), although one of these (H71⋯O41) is very weak.
Experimental
4,5-Dinitro-9-fluorenone-2,7-disulfonyl dichloride [(II); 200 mg, 0.43 mol] (Mysyk et al., 1997) was dissolved in dry dioxane (10 ml) and ammonia (35% solution in water, 0.2 ml) was added dropwise with intense stirring. The mixture was stirred at room temperature for 1 h and poured into water. The solid was filtered off, washed with warm water, dried and recrystallized from acetone, yielding pale yellow crystals of 4,5-dinitro-9-fluorenone-2,7-disulfonamide, (III) (130 mg, yield 71%, m.p. >573 K). 1H NMR (400 MHz, acetone-d6): δ 8.63 (2H, d, J = 1.5 Hz, H-3,6), 8.50 (2H, d, J = 1.5 Hz, H-1,8), 7.19 (4H, s, SO2NH2); 13C NMR (100 MHz, acetone-d6): δ 186.56 (C=O), 149.28, 147.15, 139.40, 136.61, 128.86, 126.07. Analysis found: C 36.42, H 1.95, N 13.18, S 14.89%; C13H8N4O9S2 requires: C 36.45, H 1.88, N 13.08, S 14.97%. Compound (III) (300 mg, 0.70 mmol) and malononitrile (100 mg, 167 mmol) in dimethylformamide (1.5 ml) were stirred at room temperature for 4 h and diluted with methanol (5 ml), resulting in precipitation. After keeping this solution at 273 K for 6 h, the solid obtained was filtered off and washed with water, yielding crude product (I) as a yellow–green solid. This was dissolved in a minimal amount of hot acetone and diluted with a fourfold volume of hot methanol. On cooling, a bright yellow solid was collected, washed with methanol and dried, giving 210 mg of (I) (yield 63%), m.p. >573 K. 1H NMR (300 MHz, acetone-d6 + ca 0.2 drop CF3CO2D): δ 9.36 (2H, d, J = 1.4 Hz, H-1.8), 8.71 (2H, d, J = 1.4 Hz, H-3,6), 7.32 (4H, s, SO2NH2). Analysis found: C 40.22, H 1.65, N 17.78, S 13.37; C16H8N6O8S2 requires: C 40.34, H 1.69, N 17.64, S 13.46%. Single crystals of (I) of X-ray quality were obtained by slow evaporation (over several days) at room temperature of a solution of (I) (10 mg) in PhCl (10 ml) and acetonitrile (3 ml).
Crystal data
|
Data collection
|
Owing to an insufficient number of observed reflections, only the S, O and N atoms were refined with anisotropic displacement parameters, the C atoms being refined in isotropic approximation. Amine H atoms were refined in isotropic approximation, then constrained with the same bond direction but idealized N—H bond lengths (0.89 Å). Other H atoms were treated as riding in idealized positions, with C—H bond lengths of 0.95 Å and Uiso(H) = 1.2Ueq(C).
Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S160053680402361X/cv6380sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053680402361X/cv6380Isup2.hkl
Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell
MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.C16H8N6O8S2 | Dx = 1.756 Mg m−3 |
Mr = 476.40 | Melting point > 573 K |
Orthorhombic, Pna21 | Cu Kα radiation, λ = 1.54178 Å |
a = 9.574 (2) Å | Cell parameters from 25 reflections |
b = 10.778 (6) Å | θ = 15.5–25.0° |
c = 17.461 (5) Å | µ = 3.30 mm−1 |
V = 1801.8 (12) Å3 | T = 150 K |
Z = 4 | Needle, yellow |
F(000) = 968 | 0.45 × 0.06 × 0.05 mm |
Rigaku AFC-6S four-circle diffractometer | 1730 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.033 |
Graphite monochromator | θmax = 75.1°, θmin = 4.8° |
2θ/ω scans | h = −1→12 |
Absorption correction: ψ scan (TEXSAN; Molecular Structure Corporation, 1989) | k = −1→13 |
Tmin = 0.745, Tmax = 0.848 | l = −1→21 |
2381 measured reflections | 3 standard reflections every 147 reflections |
1942 independent reflections | intensity decay: 0.9% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.06P)2 + 0.7842P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
1942 reflections | Δρmax = 0.37 e Å−3 |
199 parameters | Δρmin = −0.43 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 28 Friedel pairs [CHECK] |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (3) |
Experimental. Needle-like crystal aligned approximately along the φ axis. 118 Friedel pairs has been measured. exptl_absorpt_correction_type psi-scan (TEXSAN; Molecular Structure Corporation, 1989), on 108 ψ-scans of 3 reflections |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. |
x | y | z | Uiso*/Ueq | ||
S2 | 0.32267 (12) | 0.29279 (10) | 0.30553 (7) | 0.0227 (2) | |
S7 | 0.85953 (12) | 0.95636 (10) | −0.00931 (7) | 0.0214 (2) | |
C1 | 0.4962 (5) | 0.4139 (4) | 0.2047 (3) | 0.0215 (9)* | |
H1 | 0.5019 | 0.3380 | 0.1773 | 0.026* | |
C2 | 0.4190 (5) | 0.4233 (4) | 0.2714 (3) | 0.0212 (9)* | |
C3 | 0.4144 (5) | 0.5305 (4) | 0.3147 (3) | 0.0248 (9)* | |
H3 | 0.3639 | 0.5331 | 0.3615 | 0.030* | |
C4 | 0.4858 (5) | 0.6344 (4) | 0.2879 (3) | 0.0242 (10)* | |
C5 | 0.6182 (5) | 0.8599 (4) | 0.1692 (3) | 0.0207 (9)* | |
C6 | 0.6941 (5) | 0.9288 (4) | 0.1162 (3) | 0.0236 (10)* | |
H6 | 0.6960 | 1.0168 | 0.1187 | 0.028* | |
C7 | 0.7667 (5) | 0.8662 (4) | 0.0596 (3) | 0.0185 (9)* | |
C8 | 0.7648 (5) | 0.7372 (4) | 0.0541 (3) | 0.0213 (9)* | |
H8 | 0.8123 | 0.6958 | 0.0138 | 0.026* | |
C9 | 0.6638 (5) | 0.5371 (4) | 0.1149 (3) | 0.0201 (9)* | |
C10 | 0.5655 (5) | 0.5201 (4) | 0.1790 (3) | 0.0200 (9)* | |
C11 | 0.5517 (5) | 0.6348 (4) | 0.2171 (3) | 0.0211 (9)* | |
C12 | 0.6193 (5) | 0.7312 (4) | 0.1702 (3) | 0.0195 (9)* | |
C13 | 0.6921 (5) | 0.6707 (4) | 0.1093 (3) | 0.0209 (9)* | |
C14 | 0.7247 (5) | 0.4468 (4) | 0.0721 (3) | 0.0207 (9)* | |
C15 | 0.6810 (5) | 0.3196 (4) | 0.0736 (3) | 0.0253 (10)* | |
C16 | 0.8411 (5) | 0.4717 (5) | 0.0216 (3) | 0.0278 (10)* | |
N2 | 0.4291 (4) | 0.1993 (4) | 0.3479 (2) | 0.0237 (9) | |
H21 | 0.4669 | 0.2361 | 0.3885 | 0.028* | |
H22 | 0.4937 | 0.1670 | 0.3171 | 0.028* | |
N4 | 0.4993 (4) | 0.7382 (4) | 0.3425 (2) | 0.0272 (9)* | |
N5 | 0.5253 (4) | 0.9336 (4) | 0.2179 (2) | 0.0276 (9)* | |
N7 | 0.7527 (4) | 1.0028 (4) | −0.0741 (2) | 0.0290 (9) | |
H71 | 0.7014 | 1.0593 | −0.0498 | 0.035* | |
H72 | 0.7186 | 0.9356 | −0.0971 | 0.035* | |
N15 | 0.6447 (5) | 0.2185 (4) | 0.0715 (3) | 0.0365 (11) | |
N16 | 0.9357 (5) | 0.4914 (4) | −0.0167 (3) | 0.0386 (11) | |
O21 | 0.2300 (4) | 0.3387 (3) | 0.3634 (2) | 0.0324 (8) | |
O22 | 0.2694 (4) | 0.2294 (4) | 0.2402 (2) | 0.0374 (9) | |
O41 | 0.4083 (4) | 0.7526 (4) | 0.3904 (2) | 0.0384 (9) | |
O42 | 0.6069 (4) | 0.8012 (3) | 0.3374 (2) | 0.0328 (8) | |
O51 | 0.4081 (4) | 0.8909 (3) | 0.2326 (2) | 0.0309 (8) | |
O52 | 0.5671 (4) | 1.0355 (3) | 0.2378 (2) | 0.0405 (10) | |
O71 | 0.9091 (4) | 1.0654 (3) | 0.0289 (2) | 0.0296 (8) | |
O72 | 0.9576 (4) | 0.8737 (3) | −0.0438 (2) | 0.0313 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S2 | 0.0195 (5) | 0.0265 (5) | 0.0222 (5) | −0.0038 (4) | −0.0003 (5) | 0.0048 (5) |
S7 | 0.0202 (5) | 0.0226 (5) | 0.0213 (5) | −0.0031 (4) | 0.0013 (5) | −0.0003 (5) |
N2 | 0.020 (2) | 0.0255 (18) | 0.025 (2) | 0.0030 (15) | −0.0008 (17) | 0.0011 (16) |
N7 | 0.029 (2) | 0.032 (2) | 0.026 (2) | −0.0028 (17) | −0.0022 (19) | 0.0052 (18) |
N15 | 0.050 (3) | 0.024 (2) | 0.036 (3) | 0.002 (2) | 0.002 (2) | −0.0027 (18) |
N16 | 0.037 (3) | 0.033 (2) | 0.046 (3) | 0.0059 (19) | 0.016 (2) | −0.002 (2) |
O21 | 0.0257 (18) | 0.0314 (18) | 0.0402 (19) | 0.0000 (15) | 0.0115 (18) | 0.0068 (16) |
O22 | 0.041 (2) | 0.042 (2) | 0.0292 (19) | −0.0135 (18) | −0.0079 (18) | 0.0041 (17) |
O41 | 0.042 (2) | 0.041 (2) | 0.0321 (19) | −0.0055 (18) | 0.0155 (18) | −0.0097 (18) |
O42 | 0.033 (2) | 0.0359 (18) | 0.0297 (18) | −0.0071 (15) | −0.0014 (17) | −0.0050 (17) |
O51 | 0.0259 (18) | 0.0340 (18) | 0.0327 (19) | 0.0028 (15) | 0.0033 (16) | −0.0009 (16) |
O52 | 0.045 (2) | 0.0264 (18) | 0.050 (2) | −0.0054 (17) | 0.020 (2) | −0.0156 (18) |
O71 | 0.034 (2) | 0.0239 (16) | 0.0305 (18) | −0.0077 (15) | −0.0018 (17) | −0.0069 (15) |
O72 | 0.0233 (17) | 0.0338 (19) | 0.0368 (19) | 0.0021 (15) | 0.0099 (18) | 0.0034 (16) |
S2—O22 | 1.424 (4) | C7—C8 | 1.394 (6) |
S2—O21 | 1.433 (4) | C8—C13 | 1.387 (7) |
S2—N2 | 1.612 (4) | C8—H8 | 0.9500 |
S2—C2 | 1.785 (5) | C9—C14 | 1.358 (6) |
S7—O72 | 1.428 (4) | C9—C13 | 1.469 (6) |
S7—O71 | 1.432 (3) | C9—C10 | 1.475 (6) |
S7—N7 | 1.606 (4) | C10—C11 | 1.410 (6) |
S7—C7 | 1.784 (5) | C11—C12 | 1.473 (6) |
C1—C2 | 1.383 (7) | C12—C13 | 1.429 (6) |
C1—C10 | 1.396 (6) | C14—C15 | 1.435 (6) |
C1—H1 | 0.9500 | C14—C16 | 1.446 (7) |
C2—C3 | 1.381 (7) | C15—N15 | 1.144 (7) |
C3—C4 | 1.393 (6) | C16—N16 | 1.146 (7) |
C3—H3 | 0.9499 | N2—H21 | 0.8901 |
C4—C11 | 1.387 (7) | N2—H22 | 0.8900 |
C4—N4 | 1.476 (6) | N4—O41 | 1.218 (5) |
C5—C12 | 1.387 (6) | N4—O42 | 1.236 (5) |
C5—C6 | 1.391 (6) | N5—O52 | 1.219 (5) |
C5—N5 | 1.465 (6) | N5—O51 | 1.239 (5) |
C6—C7 | 1.384 (6) | N7—H71 | 0.8901 |
C6—H6 | 0.9500 | N7—H72 | 0.8900 |
O22—S2—O21 | 120.6 (3) | C13—C8—H8 | 120.8 |
O22—S2—N2 | 107.1 (2) | C7—C8—H8 | 120.9 |
O21—S2—N2 | 106.5 (2) | C14—C9—C13 | 125.9 (4) |
O22—S2—C2 | 107.2 (2) | C14—C9—C10 | 127.1 (4) |
O21—S2—C2 | 106.5 (2) | C13—C9—C10 | 106.8 (4) |
N2—S2—C2 | 108.6 (2) | C1—C10—C11 | 121.5 (4) |
O72—S7—O71 | 119.4 (2) | C1—C10—C9 | 130.4 (4) |
O72—S7—N7 | 108.4 (2) | C11—C10—C9 | 108.0 (4) |
O71—S7—N7 | 106.5 (2) | C4—C11—C10 | 117.4 (4) |
O72—S7—C7 | 105.8 (2) | C4—C11—C12 | 134.2 (4) |
O71—S7—C7 | 107.3 (2) | C10—C11—C12 | 108.3 (4) |
N7—S7—C7 | 109.1 (2) | C5—C12—C13 | 116.8 (4) |
C2—C1—C10 | 117.7 (4) | C5—C12—C11 | 135.2 (4) |
C2—C1—H1 | 121.2 | C13—C12—C11 | 107.8 (4) |
C10—C1—H1 | 121.2 | C8—C13—C12 | 121.7 (4) |
C3—C2—C1 | 122.6 (4) | C8—C13—C9 | 130.2 (4) |
C3—C2—S2 | 117.4 (4) | C12—C13—C9 | 107.9 (4) |
C1—C2—S2 | 120.0 (4) | C9—C14—C15 | 123.4 (4) |
C2—C3—C4 | 118.2 (5) | C9—C14—C16 | 122.2 (4) |
C2—C3—H3 | 120.8 | C15—C14—C16 | 114.4 (4) |
C4—C3—H3 | 121.0 | N15—C15—C14 | 177.0 (6) |
C11—C4—C3 | 121.7 (4) | N16—C16—C14 | 178.2 (6) |
C11—C4—N4 | 122.2 (4) | S2—N2—H21 | 110.1 |
C3—C4—N4 | 115.8 (4) | S2—N2—H22 | 114.0 |
C12—C5—C6 | 122.6 (4) | H21—N2—H22 | 111.9 |
C12—C5—N5 | 122.7 (4) | O41—N4—O42 | 125.1 (4) |
C6—C5—N5 | 114.5 (4) | O41—N4—C4 | 118.5 (4) |
C7—C6—C5 | 118.5 (4) | O42—N4—C4 | 116.3 (4) |
C7—C6—H6 | 120.6 | O52—N5—O51 | 125.0 (4) |
C5—C6—H6 | 120.8 | O52—N5—C5 | 117.0 (4) |
C6—C7—C8 | 121.9 (4) | O51—N5—C5 | 117.9 (4) |
C6—C7—S7 | 117.8 (3) | S7—N7—H71 | 103.2 |
C8—C7—S7 | 120.2 (4) | S7—N7—H72 | 107.3 |
C13—C8—C7 | 118.3 (4) | H71—N7—H72 | 124.7 |
C1—C2—S2—N2 | 79.0 (4) | C8—C7—S7—N7 | 96.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H21···O72i | 0.89 | 2.03 | 2.878 (6) | 159 |
N2—H22···O52ii | 0.89 | 2.10 | 2.925 (5) | 153 |
N7—H71···O41iii | 0.89 | 2.51 | 3.116 (6) | 126 |
N7—H72···N2iv | 0.89 | 2.24 | 3.103 (6) | 162 |
Symmetry codes: (i) −x+3/2, y−1/2, z+1/2; (ii) x, y−1, z; (iii) −x+1, −y+2, z−1/2; (iv) −x+1, −y+1, z−1/2. |
Acknowledgements
The authors thank Professor M. R. Bryce for fruitful advice. IFP thanks the Royal Society of Chemistry for an International Author grant.
References
Batsanov, A. S., Bryce, M. R., Chesney, A., Howard, J. A. K., John, D. E., Moore, A. J., Wood, C. L., Gershtenman, H., Becker, J. Y., Khodorkovsky, V. Y., Ellern, A., Bernstein, J., Perepichka, I. F., Rotello, V., Gray, M. & Cuello, A. O. (2001). J. Mater. Chem. 10, 2181–2191. Web of Science CSD CrossRef Google Scholar
Batsanov, A. S., Perepichka, I. F., Bryce, M. R. & Howard, J. A. K. (2001). Acta Cryst. C57, 1299–1302. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA. Google Scholar
Molecular Structure Corporation (1989). TEXSAN. Version 5.1. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA. Google Scholar
Mysyk, D. D., Perepichka, I. F. & Sokolov, N. I. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 537–545. CrossRef Google Scholar
Perepichka, I. F., Kuz'mina, L. G., Perepichka, D. F., Bryce, M. R., Goldenberg, L. M., Popov, A. F. & Howard, J. A. K. (1998). J. Org. Chem. 63, 6484–6493. Web of Science CSD CrossRef CAS Google Scholar
Perepichka, I. F., Popov, A. F., Orekhova, T. V., Bryce, M. R., Andrievskii, A. M., Batsanov, A. S., Howard, J. A. K. & Sokolov, N. I. (2000). J. Org. Chem. 65, 3053–3063. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Silverman, J., Yannoni, N. F. & Krukonis, A. P. (1974). Acta Cryst. B30, 1474–1480. CSD CrossRef IUCr Journals Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.