organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA
A correction has been published for this article. To view the correction, click here.

2-Acet­amido-4,5-di­nitro­toluene: a test mol­ecule for the CCDC `Blind Structure Prediction Test, 2004'

CROSSMARK_Color_square_no_text.svg

aChemical Crystallography, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bCambridge Crystallographic Data Centre, 12 Union Rd, Cambridge CB2 1EZ, England
*Correspondence e-mail: david.watkin@chem.no.ac.uk

(Received 29 October 2004; accepted 4 November 2004; online 13 November 2004)

The structure of the title compound, C9H9N3O5, was determined as one of a group of five related compounds in order to assess its suitability as a test material for the 2004 Cambridge Crystallographic Data Centre `Blind Structure Prediction Test'.

Comment

The Cambridge Crystallographic Data Centre `Blind Structure Prediction Tests' are carried out periodically by a number of participating groups in order to evaluate developments in structure prediction techniques. As part of the preparations for the 2004 test, five well crystalline samples whose crystal structure was previously unknown were provided by Professor Angelo Gavezzotti. The materials were from a collection of nitro­toluene derivatives synthesized by Wilhelm Koerner about a century ago and retrieved from a depository at the University of Milan. The structures and analyses of several other materials from this collection have recently been discussed (Demartin et al., 2004[Demartin, F., Filippini, G., Gavezzotti, A. & Rizzato, S. (2004). Acta Cryst. B60, 609-620.]).[link]

[Scheme 1]

The sample consisted of a mixture of crushed and broken fragments and some glass-clear pale yellow lath-shaped crystals. These were always long, and generally very thin. Attempts were made to obtain a roughly isometric sample, but the specimens inevitably cleaved freely parallel to their long length if any attempt was made to cut them into shorter lengths. Full data sets were collected for three samples [(1) 0.02 × 0.22 × 0.48 mm, 0.0021 mm3; (2) 0.04 × 0.06 × 2.0 mm, 0.0048 mm3; and (3) 0.04 × 0.15 × 0.83 mm, 0.0049 mm3]. The first two samples were collected at 190 K and refined to R(all data) of 7.99 and 7.44%. The third sample was measured at 150 K and refined to 4.25%. Comparison of the atomic param­eters for the first (smallest crystal) and third (most isometric crystal; Fig. 1[link]) refinements had a mean atomic discrepancy of 0.0018 Å and an r.m.s. atomic discrepancy of 0.008 Å for the non-H atoms. The discrepancies between the Ueq values were larger, but probably not strictly comparable because of the temperature differences. The computed absorption corrections for the third sample perpendicular to the long axis are insignificant; it is presumed that the minimum and maximum scale factors reported by the multiscan calculation (SCALEPACK) are due to changes in illuminated volume (Görbitz, 1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]). The results reported here are for the third sample only.

As reported by Demartin et al. (2004[Demartin, F., Filippini, G., Gavezzotti, A. & Rizzato, S. (2004). Acta Cryst. B60, 609-620.]), the nitro groups are not coplanar with the benzene ring (Fig. 2[link]). Those authors found that the torsion angles for a nitro group adjacent to another nitro group on one side and an H atom on the other fall in the interval 27–41°. In this case, the torsion angles are C1—C2—N12—O14 = 22.87 (19)° and C2—C1—N15—O17 = 52.08 (18)°. The acet­amide group is itself almost planar [C10—C8—N7—C5 = 173.10 (12)°], but also inclined to the benzene ring [C6—C5—N7—C8 = −41.46 (19)°]. Hydro­gen bonding between atom H71 of one mol­ecule and O9 of an adjacent mol­ecule causes the structure to consist of chains parallel to the b axis (Fig. 3[link]). The benzene rings lie parallel to each other other with a perpendicular separation of 3.58 Å (Fig. 4[link]). Other intermolecular contacts are unexceptional.

[Figure 1]
Figure 1
Perspective views of the crystal of (3), showing indices of principal faces and their relationship to the diffractometer axes.
[Figure 2]
Figure 2
The mol­ecule of the title compound, with displacement ellipsoids drawn at the 50% probability level. H-atom radii are proportional to Uiso.
[Figure 3]
Figure 3
Packing diagram of the title compound, viewed parallel to the a axis, showing the hydrogen bonding as dashed lines.
[Figure 4]
Figure 4
Part of the packing of the title compound, showing the parallel stacking of the benzene rings. The dashed line indicates a hydrogen bond.

Experimental

Crystals were obtained by slow evaporation of an ethanol solution

Crystal data
  • C9H9N3O5

  • Mr = 239.19

  • Monoclinic, P21/n

  • a = 12.5693 (4) Å

  • b = 4.8531 (1) Å

  • c = 17.2663 (5) Å

  • β = 99.1624 (15)°

  • V = 1039.81 (5) Å3

  • Z = 4

  • Dx = 1.528 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2364 reflections

  • θ = 5–27°

  • μ = 0.13 mm−1

  • T = 150 K

  • Lath, pale yellow

  • 0.83 × 0.15 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.61, Tmax = 0.99

  • 4326 measured reflections

  • 2357 independent reflections

  • 2356 reflections with I > 3σ(I)

  • Rint = 0.035

  • θmax = 27.5°

  • h = −16 → 16

  • k = −6 → 5

  • l = −22 → 22

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)]= 0.051

  • wR(F2) = 0.095

  • S = 1.00

  • 2356 reflections

  • 182 parameters

  • Only coordinates of H atoms refined

  • w = 1/[σ2(F2) + 0.04 + 0.35p] where p = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.31 e Å−3

  • Extinction correction: Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 291-294. Copenhagen: Munksgaard.])

  • Extinction coefficient: 140 (20)

Table 1
Selected geometric parameters (Å, °)

C1—C2 1.3958 (18)
C1—C6 1.3723 (19)
C1—N15 1.4716 (17)
C2—C3 1.3812 (19)
C2—N12 1.4597 (17)
C3—C4 1.3961 (19)
C4—C5 1.4008 (18)
C4—C11 1.5029 (19)
C5—C6 1.3976 (19)
C5—N7 1.4075 (17)
N7—C8 1.3638 (18)
C8—O9 1.2222 (18)
C8—C10 1.500 (2)
N12—O13 1.2313 (15)
N12—O14 1.2273 (16)
N15—O16 1.2216 (15)
N15—O17 1.2202 (15)
C2—C1—C6 120.39 (12)
C2—C1—N15 122.09 (12)
C6—C1—N15 117.28 (11)
C1—C2—C3 119.86 (12)
C1—C2—N12 121.60 (12)
C3—C2—N12 118.32 (11)
C2—C3—C4 120.96 (12)
C3—C4—C5 118.30 (12)
C3—C4—C11 119.68 (12)
C5—C4—C11 122.01 (12)
C4—C5—C6 120.78 (12)
C4—C5—N7 119.76 (12)
C6—C5—N7 119.43 (11)
C5—C6—C1 119.70 (12)
C5—N7—C8 124.40 (12)
N7—C8—O9 121.95 (13)
N7—C8—C10 115.49 (12)
O9—C8—C10 122.56 (13)
C2—N12—O13 118.02 (11)
C2—N12—O14 117.94 (11)
O13—N12—O14 124.00 (12)
C1—N15—O16 117.18 (11)
C1—N15—O17 117.65 (11)
O16—N15—O17 125.09 (12)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H71⋯O9i 0.868 (19) 2.002 (19) 2.8632 (17) 171.2 (15)
Symmetry code: (i) x,y-1,z.

All H atoms were seen in the difference electron-density map. Their positions and isotropic displacement parameters were regularized by several cycles of refinement using slack restraints, after which the refinement was completed using riding constraints. Reflection [\overline {13}],3,10 was omitted from the final refinement.

Data collection: COLLECT (Nonius, 1997–2001[Nonius (1997-2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

2-Acetamido-4,5-dinitrotoluene top
Crystal data top
C9H9N3O5F(000) = 496
Mr = 239.19Dx = 1.528 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.5693 (4) ÅCell parameters from 2364 reflections
b = 4.8531 (1) Åθ = 5–27°
c = 17.2663 (5) ŵ = 0.13 mm1
β = 99.1624 (15)°T = 150 K
V = 1039.81 (5) Å3Plate, pale yellow
Z = 40.83 × 0.15 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
2356 reflections with I > 3.00u(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.5°, θmin = 5.2°
Absorption correction: multi-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1997)
h = 1616
Tmin = 0.61, Tmax = 0.99k = 65
4326 measured reflectionsl = 2222
2357 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullOnly H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.051 P = [max(Fo2,0) + 2Fc2]/3, w = 1/[σ2(F2) + 0.04 + 0.35p] (SHELXL97; Sheldrick, 1997)
wR(F2) = 0.095(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.37 e Å3
2356 reflectionsΔρmin = 0.31 e Å3
182 parametersExtinction correction: Larson (1970)
52 restraintsExtinction coefficient: 140 (20)
Primary atom site location: structure-invariant direct methods
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11506 (10)0.5271 (3)0.17555 (8)0.0182
C20.07828 (10)0.4023 (3)0.11195 (7)0.0192
C30.00466 (11)0.2129 (3)0.12487 (8)0.0205
C40.05362 (10)0.1462 (3)0.20090 (8)0.0198
C50.01694 (10)0.2778 (3)0.26388 (8)0.0189
C60.06721 (10)0.4688 (3)0.25086 (8)0.0185
N70.06289 (9)0.2109 (3)0.34133 (6)0.0205
C80.08507 (11)0.3977 (3)0.40072 (8)0.0219
O90.07499 (9)0.6455 (2)0.38929 (6)0.0323
C100.12180 (13)0.2780 (3)0.48059 (9)0.0286
C110.14477 (11)0.0576 (3)0.21299 (9)0.0250
N120.11868 (9)0.4843 (2)0.03128 (6)0.0218
O130.10806 (9)0.3212 (2)0.02157 (6)0.0294
O140.15783 (9)0.7153 (2)0.02014 (6)0.0301
N150.21145 (9)0.7037 (2)0.16568 (6)0.0198
O160.20321 (8)0.9276 (2)0.19842 (6)0.0290
O170.29429 (8)0.6111 (2)0.12828 (6)0.0301
H710.0726 (13)0.038 (4)0.3533 (10)0.0290*
H310.0307 (9)0.134 (2)0.0806 (7)0.0247*
H610.0945 (9)0.553 (2)0.2935 (7)0.0230*
H30.1484 (12)0.093 (3)0.4774 (9)0.0343*
H40.0593 (11)0.272 (3)0.5080 (9)0.0345*
H50.1738 (11)0.394 (3)0.5115 (9)0.0352*
H60.1765 (12)0.086 (3)0.1679 (8)0.0346*
H70.2010 (11)0.004 (3)0.2535 (8)0.0337*
H80.1236 (12)0.233 (3)0.2305 (9)0.0344*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0174 (6)0.0154 (6)0.0223 (6)0.0008 (5)0.0050 (5)0.0002 (5)
C20.0217 (6)0.0182 (6)0.0182 (6)0.0019 (5)0.0045 (5)0.0009 (5)
C30.0232 (7)0.0171 (6)0.0227 (6)0.0009 (5)0.0083 (5)0.0011 (5)
C40.0200 (6)0.0149 (7)0.0249 (7)0.0021 (5)0.0053 (5)0.0002 (5)
C50.0207 (6)0.0147 (6)0.0212 (6)0.0031 (5)0.0033 (5)0.0007 (5)
C60.0196 (6)0.0166 (6)0.0202 (6)0.0017 (5)0.0058 (5)0.0012 (5)
N70.0259 (6)0.0134 (6)0.0212 (6)0.0006 (5)0.0011 (5)0.0016 (5)
C80.0237 (7)0.0183 (7)0.0233 (7)0.0002 (6)0.0028 (5)0.0000 (5)
O90.0494 (7)0.0154 (5)0.0288 (5)0.0007 (5)0.0037 (5)0.0006 (4)
C100.0367 (8)0.0231 (8)0.0238 (7)0.0032 (7)0.0017 (6)0.0011 (6)
C110.0244 (7)0.0207 (7)0.0303 (7)0.0025 (6)0.0057 (6)0.0002 (6)
N120.0233 (6)0.0223 (6)0.0209 (6)0.0000 (5)0.0066 (5)0.0017 (5)
O130.0382 (6)0.0301 (6)0.0207 (5)0.0005 (5)0.0073 (4)0.0062 (4)
O140.0384 (6)0.0262 (6)0.0266 (5)0.0084 (5)0.0081 (4)0.0062 (4)
N150.0204 (6)0.0204 (6)0.0193 (5)0.0007 (5)0.0056 (4)0.0010 (5)
O160.0276 (5)0.0185 (5)0.0421 (6)0.0018 (4)0.0090 (5)0.0051 (5)
O170.0212 (5)0.0397 (6)0.0275 (5)0.0012 (5)0.0022 (4)0.0069 (5)
Geometric parameters (Å, º) top
C1—C21.3958 (18)N7—H710.868 (19)
C1—C61.3723 (19)C8—O91.2222 (18)
C1—N151.4716 (17)C8—C101.500 (2)
C2—C31.3812 (19)C10—H30.965 (13)
C2—N121.4597 (17)C10—H40.979 (12)
C3—C41.3961 (19)C10—H50.958 (13)
C3—H310.957 (12)C11—H60.939 (12)
C4—C51.4008 (18)C11—H70.960 (12)
C4—C111.5029 (19)C11—H80.954 (13)
C5—C61.3976 (19)N12—O131.2313 (15)
C5—N71.4075 (17)N12—O141.2273 (16)
C6—H610.951 (12)N15—O161.2216 (15)
N7—C81.3638 (18)N15—O171.2202 (15)
C2—C1—C6120.39 (12)N7—C8—O9121.95 (13)
C2—C1—N15122.09 (12)N7—C8—C10115.49 (12)
C6—C1—N15117.28 (11)O9—C8—C10122.56 (13)
C1—C2—C3119.86 (12)C8—C10—H3111.6 (9)
C1—C2—N12121.60 (12)C8—C10—H4107.6 (9)
C3—C2—N12118.32 (11)H3—C10—H4108.0 (11)
C2—C3—C4120.96 (12)C8—C10—H5111.6 (10)
C2—C3—H31118.8 (8)H3—C10—H5111.6 (12)
C4—C3—H31120.1 (8)H4—C10—H5106.1 (11)
C3—C4—C5118.30 (12)C4—C11—H6113.3 (10)
C3—C4—C11119.68 (12)C4—C11—H7110.6 (9)
C5—C4—C11122.01 (12)H6—C11—H7106.7 (11)
C4—C5—C6120.78 (12)C4—C11—H8112.6 (9)
C4—C5—N7119.76 (12)H6—C11—H8108.1 (12)
C6—C5—N7119.43 (11)H7—C11—H8104.9 (11)
C5—C6—C1119.70 (12)C2—N12—O13118.02 (11)
C5—C6—H61121.0 (8)C2—N12—O14117.94 (11)
C1—C6—H61119.2 (8)O13—N12—O14124.00 (12)
C5—N7—C8124.40 (12)C1—N15—O16117.18 (11)
C5—N7—H71118.1 (11)C1—N15—O17117.65 (11)
C8—N7—H71117.3 (11)O16—N15—O17125.09 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H71···O9i0.868 (19)2.002 (19)2.8632 (17)171.2 (15)
Symmetry code: (i) x, y1, z.
 

Acknowledgements

We thank Professor Angelo Gavezzotti for obtaining the samples, Professor Lucio Merlini, Director of the Dipartimento di Scienze Molecolari Agroalimentari of the University of Milano, for generously donating the samples, and Professor Anna Arnoldi for help in the retrieval of the crystals.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDemartin, F., Filippini, G., Gavezzotti, A. & Rizzato, S. (2004). Acta Cryst. B60, 609–620.  Web of Science CSD CAS Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationNonius (1997–2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds