organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Chloro­methyl-4-(di­methylamino)-N,N-di­methylanilinium chloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: a.s.batsanov@durham.ac.uk

(Received 14 December 2004; accepted 20 December 2004; online 8 January 2005)

In the cation of the title compound C11H18ClN2+·Cl, the quaternary N atom has a distorted tetrahedral geometry, and the other N a nearly planar-trigonal (owing to conjugation with the benzene ring) bonding geometry.

Comment

The title compound, (I[link]), was obtained as an accidental by-product while co-crystallizing N,N,N′,N′-tetra­methyl-1,4-phenyl­enedi­amine (TMPD) and octa­fluoro­naphthalene (OFN) from CH2Cl2 (Collings et al., 2004[Collings, J. C., Batsanov, A. S. & Marder, T. B. (2004). Unpublished results.]). The asymmetric unit comprises one chloride anion and one Me2(ClCH2)N+–C6H4–NMe2 cation. This cation has been structurally studied earlier as its tetra­phenyl­borate salt di­chloro­methane solvate (II) by Winter (2001[Winter, R. (2001). PhD Thesis, Institut für Anorganische Chemie, University of Stuttgart, Germany. Cited from CCDC-175408, refcode XILVET.]), and the non-chlorinated analogue tri­methyl{4-(di­methyl­amino)­phenyl}ammonium cation as its ozonide salt (III) by Assenmacher & Jansen (1995[Assenmacher, W. & Jansen, M. (1995). Z. Kristallogr. 210, 704-706.]). Unfortunately, the precision of both structure determinations was limited (R = 0.09), in (III) owing to disorder of the ozonide anion and to chemical instability (the compound explodes at 303 K), and in (II) probably because of some unrecognized disorder, as indicated by the discrepant N+—CH3 bond lengths of 1.50 (1) and 1.62 (1) Å.[link]

[Scheme 1]

The atom N2 has nearly planar geometry, the sum of the bond angles being 358.1°. The C10/N2/C11 plane forms an angle of 11.9 (1)° with the benzene ring plane, so that the pπ orbitals of N2 and C4 are nearly coplanar. This and the N2—C4 bond distance of 1.371 (2) Å are indicative of strong π-conjugation. The quaternary atom N1 has a distorted tetrahedral environment. The chloride anion is surrounded by eight H atoms of four different cations at Cl⋯H distances of 2.46 (2) to 2.60 (2) Å (calculated for the idealized C—H bond lengths of 1.08 Å).

[Figure 1]
Figure 1
The cation and anion in the structure of (I[link]). Atomic displacement ellipsoids are drawn at the 50% probability level.

Experimental

Slow evaporation at room temperature of a di­chloro­methane solution of equimolar amounts of TMPD and OFN yielded mainly co-crystals of TMPD and OFN (1:1) and a few smaller crystals of different habit, which were identified by the present study as (I[link]).

Crystal data
  • C11H18ClN2+·Cl

  • Mr = 249.17

  • Monoclinic, P21/c

  • a = 15.121 (3) Å

  • b = 7.234 (1) Å

  • c = 12.773 (2) Å

  • β = 114.95 (1)°

  • V = 1266.8 (4) Å3

  • Z = 4

  • Dx = 1.306 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 977 reflections

  • θ = 10.2–26.9°

  • μ = 0.48 mm−1

  • T = 120 (2) K

  • Parallelepiped, colourless

  • 0.22 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART 6000 CCD area-detector diffractometer

  • ω scans

  • Absorption correction: by integration (XPREP in SHELXTL; Bruker, 2001b[Bruker (2001b). SHELXTL. Versions 5.10 & 6.12. Bruker AXS, Madison, Wisconsin, USA.])Tmin = 0.923, Tmax = 0.962

  • 17336 measured reflections

  • 3689 independent reflections

  • 2994 reflections with I > 2σ(I)

  • Rint = 0.047

  • θmax = 30.0°

  • h = −21 → 21

  • k = −10 → 10

  • l = −17 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.115

  • S = 1.05

  • 3689 reflections

  • 138 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0621P)2 + 0.4607P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.51 e Å−3

Methyl groups bonded to N2 were refined as rigid bodies rotating around the N2—C bonds, and other H atoms were treated as riding on the corresponding C atoms in idealized positions. The C—H distances were fixed at 0.98 Å for methyl, 0.99 Å for methyl­ene, 0.95 Å for benzene H atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the rest.

Data collection: SMART (Bruker, 2001a[Bruker (2001a). SMART (Version 5.625) and SAINT (Version 6.02A). Bruker AXS, Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2001a[Bruker (2001a). SMART (Version 5.625) and SAINT (Version 6.02A). Bruker AXS, Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Bruker, 2001b[Bruker (2001b). SHELXTL. Versions 5.10 & 6.12. Bruker AXS, Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001a); cell refinement: SMART; data reduction: SAINT (Bruker, 2001a); program(s) used to solve structure: SHELXTL (Bruker, 2001b); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL (Bruker, 2001b); software used to prepare material for publication: SHELXTL.

N-Chloromethyl-4-(dimethylamino)-N,N-dimethylanilinium chloride top
Crystal data top
C11H18ClN2+·ClF(000) = 528
Mr = 249.17Dx = 1.306 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 977 reflections
a = 15.121 (3) Åθ = 10.2–26.9°
b = 7.234 (1) ŵ = 0.48 mm1
c = 12.773 (2) ÅT = 120 K
β = 114.95 (1)°Parallelepiped, colourless
V = 1266.8 (4) Å30.22 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 6000 CCD area-detector
diffractometer
3689 independent reflections
Radiation source: fine-focus sealed tube2994 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 5.6 pixels mm-1θmax = 30.0°, θmin = 1.5°
ω scansh = 2121
Absorption correction: integration
(XPREP;SHELXTL), R(int) = 0.053 before correction
k = 1010
Tmin = 0.923, Tmax = 0.962l = 1717
17336 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.4607P]
where P = (Fo2 + 2Fc2)/3
3689 reflections(Δ/σ)max = 0.001
138 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.51 e Å3
Special details top

Experimental. The data collection nominally covered full sphere of reciprocal space, by a combination of 4 sets of ω scans; each set at different φ and/or 2θ angles and each scan (30 sec exposure) covering 0.3° in ω. Crystal to detector distance 4.83 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.13260 (3)0.94831 (6)0.50991 (4)0.03711 (13)
N10.14834 (9)0.61049 (18)0.42545 (11)0.0191 (2)
N20.56069 (10)0.6864 (2)0.65487 (13)0.0270 (3)
C10.25717 (10)0.6300 (2)0.48375 (13)0.0196 (3)
C20.30675 (11)0.5631 (2)0.59580 (13)0.0212 (3)
H20.27150.50600.63350.025*
C30.40730 (11)0.5796 (2)0.65257 (14)0.0233 (3)
H30.44030.53320.72890.028*
C40.46152 (11)0.6645 (2)0.59844 (14)0.0216 (3)
C50.40898 (11)0.7286 (2)0.48480 (14)0.0237 (3)
H50.44330.78370.44540.028*
C60.30805 (11)0.7133 (2)0.42875 (14)0.0233 (3)
H60.27410.76020.35270.028*
C70.10071 (11)0.7136 (2)0.49168 (14)0.0232 (3)
H720.12050.65560.56850.028*
H730.02900.70260.44970.028*
C80.11909 (11)0.4104 (2)0.42498 (14)0.0226 (3)
H810.04780.40090.39040.034*
H820.14550.36390.50440.034*
H830.14500.33680.37980.034*
C90.10507 (12)0.6747 (3)0.30206 (14)0.0285 (4)
H910.03380.66710.27030.043*
H920.12870.59600.25680.043*
H930.12450.80300.29870.043*
C100.61542 (12)0.5952 (3)0.76493 (16)0.0328 (4)
H1010.60520.46140.75550.049*
H1020.59300.64030.82190.049*
H1030.68500.62260.79150.049*
C110.61399 (12)0.7603 (3)0.59259 (16)0.0292 (4)
H1110.68290.77440.64570.044*
H1120.58690.88100.55990.044*
H1130.60810.67540.53020.044*
Cl20.13930 (3)0.37737 (6)0.70918 (3)0.02326 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0342 (2)0.0226 (2)0.0516 (3)0.00034 (16)0.0153 (2)0.00322 (18)
N10.0148 (5)0.0219 (6)0.0193 (6)0.0002 (5)0.0059 (4)0.0022 (5)
N20.0160 (6)0.0309 (7)0.0293 (7)0.0019 (5)0.0046 (5)0.0022 (6)
C10.0136 (6)0.0208 (7)0.0223 (7)0.0000 (5)0.0055 (5)0.0012 (5)
C20.0191 (7)0.0227 (7)0.0216 (7)0.0000 (5)0.0083 (6)0.0011 (5)
C30.0187 (7)0.0251 (8)0.0220 (7)0.0013 (6)0.0048 (6)0.0008 (6)
C40.0162 (6)0.0192 (7)0.0272 (7)0.0006 (5)0.0070 (6)0.0023 (6)
C50.0174 (7)0.0227 (7)0.0306 (8)0.0004 (5)0.0097 (6)0.0046 (6)
C60.0187 (7)0.0241 (7)0.0248 (7)0.0005 (6)0.0071 (6)0.0065 (6)
C70.0191 (7)0.0220 (7)0.0279 (8)0.0005 (6)0.0093 (6)0.0028 (6)
C80.0213 (7)0.0213 (7)0.0232 (7)0.0037 (5)0.0076 (6)0.0041 (5)
C90.0180 (7)0.0426 (10)0.0208 (7)0.0005 (7)0.0043 (6)0.0102 (7)
C100.0199 (8)0.0352 (10)0.0332 (9)0.0005 (7)0.0013 (7)0.0002 (7)
C110.0167 (7)0.0258 (8)0.0415 (10)0.0033 (6)0.0090 (7)0.0016 (7)
Cl20.01681 (17)0.0308 (2)0.02126 (18)0.00192 (13)0.00712 (13)0.00527 (14)
Geometric parameters (Å, º) top
Cl1—C71.7532 (17)C5—H50.9500
N1—C11.4995 (19)C6—H60.9500
N1—C91.5027 (19)C7—H720.9900
N1—C81.513 (2)C7—H730.9900
N1—C71.518 (2)C8—H810.9800
N2—C41.372 (2)C8—H820.9800
N2—C111.452 (2)C8—H830.9800
N2—C101.454 (2)C9—H910.9800
C1—C61.380 (2)C9—H920.9800
C1—C21.392 (2)C9—H930.9800
C2—C31.386 (2)C10—H1010.9800
C2—H20.9500C10—H1020.9800
C3—C41.416 (2)C10—H1030.9800
C3—H30.9500C11—H1110.9800
C4—C51.407 (2)C11—H1120.9800
C5—C61.390 (2)C11—H1130.9800
C1—N1—C9113.14 (12)Cl1—C7—H72109.1
C1—N1—C8110.47 (12)N1—C7—H73109.1
C9—N1—C8107.13 (12)Cl1—C7—H73109.1
C1—N1—C7110.87 (12)H72—C7—H73107.9
C9—N1—C7109.47 (12)N1—C8—H81109.5
C8—N1—C7105.42 (11)N1—C8—H82109.5
C4—N2—C11119.40 (14)H81—C8—H82109.5
C4—N2—C10120.39 (14)N1—C8—H83109.5
C11—N2—C10118.40 (14)H81—C8—H83109.5
C6—C1—C2120.06 (14)H82—C8—H83109.5
C6—C1—N1121.26 (13)N1—C9—H91109.5
C2—C1—N1118.68 (13)N1—C9—H92109.5
C3—C2—C1120.26 (14)H91—C9—H92109.5
C3—C2—H2119.9N1—C9—H93109.5
C1—C2—H2119.9H91—C9—H93109.5
C2—C3—C4121.00 (14)H92—C9—H93109.5
C2—C3—H3119.5N2—C10—H101109.5
C4—C3—H3119.5N2—C10—H102109.5
N2—C4—C5121.36 (14)H101—C10—H102109.5
N2—C4—C3121.55 (14)N2—C10—H103109.5
C5—C4—C3117.08 (14)H101—C10—H103109.5
C6—C5—C4121.64 (14)H102—C10—H103109.5
C6—C5—H5119.2N2—C11—H111109.5
C4—C5—H5119.2N2—C11—H112109.5
C1—C6—C5119.95 (14)H111—C11—H112109.5
C1—C6—H6120.0N2—C11—H113109.5
C5—C6—H6120.0H111—C11—H113109.5
N1—C7—Cl1112.42 (11)H112—C11—H113109.5
N1—C7—H72109.1
Cl1—C7—N1—C156.59 (14)C5—C4—N2—C116.2 (2)
C7—N1—C1—C261.05 (18)C3—C4—N2—C1010.5 (2)
C6—C1—N1—C94.9 (2)
 

References

First citationAssenmacher, W. & Jansen, M. (1995). Z. Kristallogr. 210, 704–706.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001a). SMART (Version 5.625) and SAINT (Version 6.02A). Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001b). SHELXTL. Versions 5.10 & 6.12. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationCollings, J. C., Batsanov, A. S. & Marder, T. B. (2004). Unpublished results.  Google Scholar
First citationWinter, R. (2001). PhD Thesis, Institut für Anorganische Chemie, University of Stuttgart, Germany. Cited from CCDC-175408, refcode XILVET.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds