metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(η6-N,N-Di­ethyl­aniline)(η4-1,2,3,4-tetra­methyl­cyclo­buta­diene)­cobalt(I) hexa­fluoro­phosphate

CROSSMARK_Color_square_no_text.svg

aDepartment of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland
*Correspondence e-mail: a.r.kennedy@strath.ac.uk

(Received 6 January 2005; accepted 10 January 2005; online 15 January 2005)

The title isocobaltocenium salt, [Co(C8H12)(C10H15N)]PF6, is shown to exist as discrete monomers with near equivalent C—C bonds in the cyclo­buta­diene ring.

Comment

Isocobaltocenes are the series of compounds in which, in place of two cyclo­penta­dienyl residues, the cobalt is π-bonded to one cyclo­buta­diene and one benzene ring. Species with bulky cyclo­buta­diene ring substituents have been known since the work of Maitlis & Efraty (1965[Maitlis, P. M. & Efraty, A. (1965). J. Organomet. Chem. 4, 175-176.]) and have been widely crystallographically characterized. However, despite synthetic protocols being well known (Cook et al., 1987[Cook, M. R., Härter, P., Pauson, P. L. & Šraga, J. (1987). J. Chem. Soc. Dalton Trans. pp. 2757-2760.]), the only known structures of tetra­methyl­cyclo­buta­diene-based isocobalt­ocenes are two species with unusual substituted borata­benzenes (Herberich et al., 2002[Herberich, G. E., Basu Baul, T. S. & Englert, U. (2002). Eur. J. Inorg. Chem. pp. 43-48.]).[link]

[Scheme 1]

Reported here is the structure of (I[link]), a tetra­methyl­cyclo­buta­diene isocobaltocenium salt with a simple N,N-diethyl­aniline group as its arene component (Fig. 1[link]). The centroid of the cyclo­buta­diene group lies further from Co1 than the centroid of the benzene ring (1.705 versus 1.592 Å) and this distance is also slightly longer than those found for the borata­benzene species (range 1.686–1.702 Å; Herberich et al., 2002[Herberich, G. E., Basu Baul, T. S. & Englert, U. (2002). Eur. J. Inorg. Chem. pp. 43-48.]). However, it falls into the middle of the range found for nine general Co–tetra­methyl­cyclo­buta­diene complexes found in a search of the Cambridge Structural Database (Version 5, with updates to December 2004; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). The cyclo­buta­diene ring C—C distances show only slight signs of alternate single- and double-bond nature (Table 1[link]), indicating a high degree of aromaticity. The Co atom is placed over the centre of the cyclo­buta­diene ring but is displaced away from the amine-substituted C1 atom of the benzene ring. No strong intermolecular contacts were observed.

[Figure 1]
Figure 1
The molecular structure of the cation of (I[link]), shown with 50% probability displacement ellipsoids. H atoms and disordered fragments have been omitted for clarity.

Experimental

The title compound was prepared according to the method of Cook et al. (1987[Cook, M. R., Härter, P., Pauson, P. L. & Šraga, J. (1987). J. Chem. Soc. Dalton Trans. pp. 2757-2760.]).

Crystal data
  • [Co(C8H12)(C10H15N)]PF6

  • Mr = 461.31

  • Monoclinic, P21/c

  • a = 8.4201 (2) Å

  • b = 16.2404 (3) Å

  • c = 15.1960 (4) Å

  • β = 103.844 (1)°

  • V = 2017.63 (8) Å3

  • Z = 4

  • Dx = 1.519 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 21 381 reflections

  • θ = 3.0–27.5°

  • μ = 0.99 mm−1

  • T = 120 (2) K

  • Cut block, yellow

  • 0.12 × 0.10 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • 21 381 measured reflections

  • 4587 independent reflections

  • 3068 reflections with I > 2σ(I)

  • Rint = 0.078

  • θmax = 27.5°

  • h = −10 → 10

  • k = −21 → 21

  • l = −17 → 19

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.141

  • S = 1.03

  • 4587 reflections

  • 273 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0681P)2 + 0.6904P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—C14 1.973 (3)
Co1—C11 1.987 (3)
Co1—C13 1.992 (3)
Co1—C12 2.004 (3)
Co1—C3 2.077 (3)
Co1—C5 2.088 (4)
Co1—C4 2.101 (3)
Co1—C2 2.109 (3)
Co1—C6 2.126 (3)
Co1—C1 2.241 (3)
C11—C14 1.447 (5)
C11—C12 1.450 (4)
C12—C13 1.442 (4)
C13—C14 1.452 (5)
C14—C11—C12 90.0 (3)
C13—C12—C11 90.1 (3)
C12—C13—C14 90.1 (3)
C11—C14—C13 89.8 (3)

H atoms were included in the riding-model approximation with C—H distances: CH3 0.98, CH2 0.99 and CH 0.95 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl). The PF6 anion is rotationally disordered about the F3—P1—F4 axis. After several trial calculations, the remaining four F atoms were refined over 12 sites with set occupancies. The largest remaining electron-density peaks all occur near to the PF6 anion. The C10 methyl group was refined as disordered over two sites with occupancies refined [0.52 (2):0.48 (2)]. The occupancies of atoms F1, F2, F5 and F6 were set at 0.5 and the occupancies of atoms F7–F12 were set at 0.25.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1988[Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: DENZO and COLLECT (Otwinowski & Minor, 1997; Hooft, 1988); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

(η6-N,N-Diethylaniline)(η4-1,2,3,4-tetramethylcyclobutadiene)cobalt(I) hexafluorophosphate top
Crystal data top
[Co(C8H12)(C10H15N)]PF6F(000) = 952
Mr = 461.31Dx = 1.519 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.4201 (2) ÅCell parameters from 21381 reflections
b = 16.2404 (3) Åθ = 3.0–27.5°
c = 15.1960 (4) ŵ = 0.99 mm1
β = 103.844 (1)°T = 120 K
V = 2017.63 (8) Å3Cut block, yellow
Z = 40.12 × 0.10 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
3068 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.078
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
φ and ω scansh = 1010
21381 measured reflectionsk = 2121
4587 independent reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.6904P]
where P = (Fo2 + 2Fc2)/3
4587 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.78 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.44977 (5)0.14989 (2)0.68037 (3)0.02448 (16)
P10.07791 (11)0.09763 (5)0.76435 (7)0.0360 (2)
F10.0804 (8)0.1934 (4)0.7872 (5)0.065 (2)0.50
F20.0287 (7)0.0740 (4)0.8545 (4)0.0581 (16)*0.50
F30.2675 (3)0.10062 (16)0.81208 (16)0.0621 (7)
F40.1109 (3)0.09398 (17)0.7176 (2)0.0812 (9)
F50.1390 (9)0.1072 (5)0.6680 (5)0.057 (2)0.50
F60.0897 (8)0.0010 (4)0.7584 (5)0.071 (2)*0.50
F70.0865 (7)0.0158 (4)0.8326 (4)0.0219 (14)*0.25
F80.1053 (8)0.0390 (5)0.6877 (5)0.0245 (15)*0.25
F90.0087 (12)0.1080 (8)0.8508 (6)0.044 (2)*0.25
F100.0699 (10)0.1755 (6)0.7049 (7)0.036 (2)*0.25
F110.0515 (16)0.1946 (9)0.7480 (10)0.040 (3)*0.25
F120.0552 (10)0.1542 (6)0.8531 (6)0.0355 (18)*0.25
F130.123 (2)0.1303 (11)0.6776 (13)0.058 (5)*0.25
F140.0764 (12)0.0062 (6)0.7203 (8)0.042 (2)*0.25
N10.7040 (4)0.11021 (18)0.8825 (2)0.0429 (8)
C10.5745 (4)0.14937 (18)0.8282 (2)0.0329 (8)
C20.5938 (5)0.22397 (19)0.7831 (2)0.0374 (8)
H20.70070.24450.78650.045*
C30.4575 (5)0.2681 (2)0.7334 (2)0.0412 (9)
H30.47350.31950.70700.049*
C40.2990 (5)0.2371 (2)0.7224 (2)0.0431 (9)
H40.20690.26760.69040.052*
C50.2796 (5)0.1602 (2)0.7596 (2)0.0425 (9)
H50.17300.13750.75120.051*
C60.4145 (4)0.1157 (2)0.8094 (2)0.0322 (7)
H60.39830.06220.83080.039*
C70.6824 (5)0.0478 (2)0.9488 (2)0.0472 (10)
H7A0.57710.05780.96520.057*
H7B0.77100.05401.00440.057*
C80.6839 (5)0.0384 (2)0.9146 (3)0.0526 (10)
H8A0.58760.04730.86460.079*
H8B0.68190.07710.96370.079*
H8C0.78330.04730.89290.079*
C90.8713 (5)0.1362 (3)0.8877 (3)0.0701 (15)
H9A0.88310.15810.82890.084*
H9B0.94890.09000.90630.084*
C10A0.9020 (11)0.2107 (5)0.9677 (6)0.040 (3)*0.518 (17)
H10A1.01490.23060.97870.060*0.518 (17)
H10B0.88230.18831.02410.060*0.518 (17)
H10C0.82640.25640.94680.060*0.518 (17)
C10B0.9617 (14)0.1965 (6)0.9370 (7)0.052 (3)*0.482 (17)
H10D0.90460.24920.92330.078*0.482 (17)
H10E1.06820.19970.92160.078*0.482 (17)
H10F0.97800.18421.00170.078*0.482 (17)
C110.3432 (4)0.09746 (18)0.5630 (2)0.0323 (8)
C120.4799 (4)0.04821 (17)0.61148 (19)0.0253 (7)
C130.5916 (4)0.1125 (2)0.6003 (2)0.0353 (8)
C140.4550 (5)0.16211 (19)0.5519 (2)0.0359 (8)
C150.1647 (5)0.0810 (3)0.5277 (3)0.0552 (11)
H15A0.10360.13260.52600.083*
H15B0.12810.04170.56760.083*
H15C0.14530.05800.46650.083*
C160.4987 (4)0.03750 (19)0.6468 (2)0.0348 (8)
H16A0.50080.07560.59710.052*
H16B0.40640.05120.67310.052*
H16C0.60110.04220.69350.052*
C170.7718 (5)0.1187 (3)0.6168 (4)0.0657 (13)
H17A0.82310.08510.66950.099*
H17B0.80510.17630.62840.099*
H17C0.80650.09890.56340.099*
C180.4395 (7)0.2401 (2)0.4985 (3)0.0679 (14)
H18A0.43310.22720.43470.102*
H18B0.53510.27500.52220.102*
H18C0.34010.26920.50350.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0316 (3)0.0195 (2)0.0230 (2)0.00180 (17)0.00793 (18)0.00229 (16)
P10.0291 (5)0.0295 (5)0.0451 (6)0.0006 (4)0.0001 (4)0.0083 (4)
F10.060 (4)0.038 (3)0.093 (6)0.003 (2)0.007 (4)0.042 (4)
F30.0297 (12)0.0898 (19)0.0587 (15)0.0015 (11)0.0057 (11)0.0010 (13)
F40.0309 (13)0.0776 (19)0.118 (2)0.0047 (12)0.0167 (14)0.0332 (16)
F50.063 (4)0.065 (5)0.043 (3)0.024 (3)0.012 (2)0.013 (3)
N10.0461 (19)0.0327 (16)0.0421 (18)0.0054 (14)0.0047 (14)0.0082 (13)
C10.048 (2)0.0233 (16)0.0258 (17)0.0008 (14)0.0063 (16)0.0028 (13)
C20.050 (2)0.0251 (17)0.0321 (19)0.0023 (15)0.0005 (16)0.0072 (14)
C30.065 (3)0.0208 (17)0.0325 (19)0.0105 (16)0.0012 (18)0.0089 (14)
C40.050 (2)0.046 (2)0.0326 (19)0.0235 (18)0.0097 (17)0.0055 (16)
C50.042 (2)0.060 (3)0.0295 (18)0.0087 (18)0.0166 (17)0.0041 (17)
C60.041 (2)0.0339 (18)0.0238 (16)0.0020 (15)0.0119 (15)0.0035 (14)
C70.063 (3)0.039 (2)0.034 (2)0.0015 (18)0.0016 (19)0.0028 (16)
C80.063 (3)0.037 (2)0.061 (3)0.0005 (19)0.023 (2)0.0026 (19)
C90.045 (2)0.058 (3)0.089 (4)0.014 (2)0.021 (2)0.036 (2)
C110.049 (2)0.0237 (16)0.0220 (16)0.0082 (14)0.0035 (15)0.0035 (12)
C120.0363 (18)0.0211 (15)0.0195 (15)0.0015 (13)0.0085 (13)0.0038 (12)
C130.048 (2)0.0247 (17)0.041 (2)0.0015 (15)0.0252 (17)0.0052 (14)
C140.060 (2)0.0248 (17)0.0295 (18)0.0075 (15)0.0231 (17)0.0033 (13)
C150.052 (3)0.050 (2)0.052 (2)0.0150 (19)0.012 (2)0.0141 (19)
C160.050 (2)0.0230 (16)0.0336 (18)0.0058 (15)0.0149 (16)0.0013 (14)
C170.052 (3)0.045 (2)0.114 (4)0.005 (2)0.047 (3)0.018 (3)
C180.131 (4)0.033 (2)0.058 (3)0.019 (2)0.059 (3)0.0158 (19)
Geometric parameters (Å, º) top
Co1—C141.973 (3)C7—C81.495 (5)
Co1—C111.987 (3)C7—H7A0.9900
Co1—C131.992 (3)C7—H7B0.9900
Co1—C122.004 (3)C8—H8A0.9800
Co1—C32.077 (3)C8—H8B0.9800
Co1—C52.088 (4)C8—H8C0.9800
Co1—C42.101 (3)C9—C10B1.352 (9)
Co1—C22.109 (3)C9—C10A1.691 (10)
Co1—C62.126 (3)C9—H9A0.9900
Co1—C12.241 (3)C9—H9B0.9900
P1—F101.546 (8)C10A—H10A0.9800
P1—F131.548 (19)C10A—H10B0.9800
P1—F81.564 (7)C10A—H10C0.9800
P1—F91.568 (9)C10B—H10D0.9800
P1—F21.571 (6)C10B—H10E0.9800
P1—F61.576 (6)C10B—H10F0.9800
P1—F41.579 (2)C11—C141.447 (5)
P1—F31.588 (2)C11—C121.450 (4)
P1—F11.592 (5)C11—C151.494 (5)
P1—F111.602 (14)C12—C131.442 (4)
P1—F141.627 (9)C12—C161.487 (4)
P1—F51.671 (7)C13—C141.452 (5)
N1—C11.358 (4)C13—C171.481 (5)
N1—C91.454 (5)C14—C181.493 (4)
N1—C71.470 (4)C15—H15A0.9800
C1—C61.417 (5)C15—H15B0.9800
C1—C21.420 (4)C15—H15C0.9800
C2—C31.409 (5)C16—H16A0.9800
C2—H20.9500C16—H16B0.9800
C3—C41.399 (5)C16—H16C0.9800
C3—H30.9500C17—H17A0.9800
C4—C51.397 (5)C17—H17B0.9800
C4—H40.9500C17—H17C0.9800
C5—C61.405 (5)C18—H18A0.9800
C5—H50.9500C18—H18B0.9800
C6—H60.9500C18—H18C0.9800
C14—Co1—C1142.86 (14)C1—C6—H6119.4
C14—Co1—C1342.95 (14)Co1—C6—H6128.2
C11—Co1—C1361.91 (15)N1—C7—C8113.3 (3)
C14—Co1—C1261.99 (12)N1—C7—H7A108.9
C11—Co1—C1242.62 (12)C8—C7—H7A108.9
C13—Co1—C1242.29 (13)N1—C7—H7B108.9
C14—Co1—C3106.54 (13)C8—C7—H7B108.9
C11—Co1—C3135.23 (13)H7A—C7—H7B107.7
C13—Co1—C3123.42 (15)C7—C8—H8A109.5
C12—Co1—C3165.54 (14)C7—C8—H8B109.5
C14—Co1—C5138.04 (16)H8A—C8—H8B109.5
C11—Co1—C5109.11 (15)C7—C8—H8C109.5
C13—Co1—C5166.19 (14)H8A—C8—H8C109.5
C12—Co1—C5123.91 (14)H8B—C8—H8C109.5
C3—Co1—C570.38 (15)C10B—C9—N1130.6 (8)
C14—Co1—C4113.03 (14)C10B—C9—C10A27.7 (5)
C11—Co1—C4112.70 (14)N1—C9—C10A103.1 (5)
C13—Co1—C4152.28 (15)C10B—C9—H9A94.3
C12—Co1—C4151.15 (15)N1—C9—H9A111.1
C3—Co1—C439.11 (15)C10A—C9—H9A111.1
C5—Co1—C438.95 (14)C10B—C9—H9B98.3
C14—Co1—C2122.01 (15)N1—C9—H9B111.1
C11—Co1—C2164.86 (14)C10A—C9—H9B111.1
C13—Co1—C2107.67 (15)H9A—C9—H9B109.1
C12—Co1—C2137.26 (13)C9—C10A—H10A109.5
C3—Co1—C239.33 (13)C9—C10A—H10B109.5
C5—Co1—C283.08 (15)C9—C10A—H10C109.5
C4—Co1—C270.89 (15)C9—C10B—H10D109.5
C14—Co1—C6168.49 (14)C9—C10B—H10E109.5
C11—Co1—C6125.70 (14)H10D—C10B—H10E109.5
C13—Co1—C6136.05 (14)C9—C10B—H10F109.5
C12—Co1—C6109.27 (12)H10D—C10B—H10F109.5
C3—Co1—C683.21 (14)H10E—C10B—H10F109.5
C5—Co1—C638.94 (13)C14—C11—C1290.0 (3)
C4—Co1—C670.59 (14)C14—C11—C15135.6 (3)
C2—Co1—C669.42 (13)C12—C11—C15133.8 (3)
C14—Co1—C1151.21 (15)C14—C11—Co168.08 (18)
C11—Co1—C1154.34 (12)C12—C11—Co169.32 (17)
C13—Co1—C1113.93 (14)C15—C11—Co1126.7 (3)
C12—Co1—C1115.67 (12)C13—C12—C1190.1 (3)
C3—Co1—C169.56 (12)C13—C12—C16134.8 (3)
C5—Co1—C169.11 (14)C11—C12—C16134.6 (3)
C4—Co1—C182.52 (13)C13—C12—Co168.44 (16)
C2—Co1—C137.96 (12)C11—C12—Co168.06 (16)
C6—Co1—C137.76 (12)C16—C12—Co1126.8 (2)
C1—N1—C9121.6 (3)C12—C13—C1490.1 (3)
C1—N1—C7121.7 (3)C12—C13—C17134.4 (3)
C9—N1—C7116.1 (3)C14—C13—C17134.7 (3)
N1—C1—C6121.9 (3)C12—C13—Co169.27 (17)
N1—C1—C2121.6 (3)C14—C13—Co167.82 (18)
C6—C1—C2116.4 (3)C17—C13—Co1128.0 (3)
N1—C1—Co1136.6 (2)C11—C14—C1389.8 (3)
C6—C1—Co166.71 (18)C11—C14—C18134.8 (4)
C2—C1—Co165.99 (18)C13—C14—C18134.6 (4)
C3—C2—C1121.3 (3)C11—C14—Co169.06 (17)
C3—C2—Co169.09 (18)C13—C14—Co169.23 (18)
C1—C2—Co176.05 (19)C18—C14—Co1127.1 (2)
C3—C2—H2119.3C11—C15—H15A109.5
C1—C2—H2119.3C11—C15—H15B109.5
Co1—C2—H2127.6H15A—C15—H15B109.5
C4—C3—C2120.8 (3)C11—C15—H15C109.5
C4—C3—Co171.3 (2)H15A—C15—H15C109.5
C2—C3—Co171.57 (18)H15B—C15—H15C109.5
C4—C3—H3119.6C12—C16—H16A109.5
C2—C3—H3119.6C12—C16—H16B109.5
Co1—C3—H3130.1H16A—C16—H16B109.5
C5—C4—C3118.4 (3)C12—C16—H16C109.5
C5—C4—Co170.0 (2)H16A—C16—H16C109.5
C3—C4—Co169.54 (19)H16B—C16—H16C109.5
C5—C4—H4120.8C13—C17—H17A109.5
C3—C4—H4120.8C13—C17—H17B109.5
Co1—C4—H4132.4H17A—C17—H17B109.5
C4—C5—C6121.3 (4)C13—C17—H17C109.5
C4—C5—Co171.0 (2)H17A—C17—H17C109.5
C6—C5—Co172.0 (2)H17B—C17—H17C109.5
C4—C5—H5119.4C14—C18—H18A109.5
C6—C5—H5119.4C14—C18—H18B109.5
Co1—C5—H5130.3H18A—C18—H18B109.5
C5—C6—C1121.2 (3)C14—C18—H18C109.5
C5—C6—Co169.07 (19)H18A—C18—H18C109.5
C1—C6—Co175.53 (19)H18B—C18—H18C109.5
C5—C6—H6119.4
C9—N1—C1—C6167.8 (4)C7—N1—C9—C10B88.3 (7)
C7—N1—C1—C621.4 (5)C1—N1—C9—C10A86.2 (5)
C9—N1—C1—C28.5 (5)C7—N1—C9—C10A85.1 (4)
C7—N1—C1—C2162.3 (3)C13—Co1—C11—C1449.9 (2)
C9—N1—C1—Co179.0 (5)C12—Co1—C11—C1498.7 (3)
C7—N1—C1—Co1110.2 (4)C3—Co1—C11—C1460.5 (3)
C14—Co1—C1—N154.3 (5)C5—Co1—C11—C14141.6 (2)
C11—Co1—C1—N151.5 (5)C4—Co1—C11—C1499.9 (2)
C13—Co1—C1—N123.0 (4)C2—Co1—C11—C140.8 (6)
C12—Co1—C1—N123.7 (4)C6—Co1—C11—C14178.28 (18)
C3—Co1—C1—N1141.6 (4)C1—Co1—C11—C14137.1 (3)
C5—Co1—C1—N1142.4 (4)C14—Co1—C11—C1298.7 (3)
C4—Co1—C1—N1179.8 (4)C13—Co1—C11—C1248.83 (19)
C2—Co1—C1—N1111.4 (4)C3—Co1—C11—C12159.2 (2)
C6—Co1—C1—N1112.4 (4)C5—Co1—C11—C12119.7 (2)
C14—Co1—C1—C6166.7 (2)C4—Co1—C11—C12161.35 (19)
C11—Co1—C1—C660.9 (4)C2—Co1—C11—C1297.9 (5)
C13—Co1—C1—C6135.5 (2)C6—Co1—C11—C1279.6 (2)
C12—Co1—C1—C688.7 (2)C1—Co1—C11—C1238.3 (4)
C3—Co1—C1—C6106.0 (2)C14—Co1—C11—C15131.4 (4)
C5—Co1—C1—C629.9 (2)C13—Co1—C11—C15178.7 (3)
C4—Co1—C1—C667.8 (2)C12—Co1—C11—C15129.9 (4)
C2—Co1—C1—C6136.2 (3)C3—Co1—C11—C1570.9 (4)
C14—Co1—C1—C257.1 (3)C5—Co1—C11—C1510.2 (3)
C11—Co1—C1—C2162.9 (3)C4—Co1—C11—C1531.5 (3)
C13—Co1—C1—C288.3 (2)C2—Co1—C11—C15132.3 (5)
C12—Co1—C1—C2135.1 (2)C6—Co1—C11—C1550.3 (3)
C3—Co1—C1—C230.2 (2)C1—Co1—C11—C1591.5 (4)
C5—Co1—C1—C2106.2 (2)C14—C11—C12—C130.1 (2)
C4—Co1—C1—C268.4 (2)C15—C11—C12—C13171.8 (4)
C6—Co1—C1—C2136.2 (3)Co1—C11—C12—C1366.62 (17)
N1—C1—C2—C3174.3 (3)C14—C11—C12—C16172.9 (3)
C6—C1—C2—C39.2 (4)C15—C11—C12—C161.0 (6)
Co1—C1—C2—C354.4 (3)Co1—C11—C12—C16120.6 (4)
N1—C1—C2—Co1131.3 (3)C14—C11—C12—Co166.49 (17)
C6—C1—C2—Co145.2 (3)C15—C11—C12—Co1121.6 (4)
C14—Co1—C2—C376.5 (3)C14—Co1—C12—C1349.7 (2)
C11—Co1—C2—C377.2 (6)C11—Co1—C12—C1399.3 (3)
C13—Co1—C2—C3121.6 (2)C3—Co1—C12—C1310.1 (6)
C12—Co1—C2—C3158.5 (2)C5—Co1—C12—C13179.2 (2)
C5—Co1—C2—C367.3 (2)C4—Co1—C12—C13137.0 (3)
C4—Co1—C2—C329.2 (2)C2—Co1—C12—C1358.3 (3)
C6—Co1—C2—C3105.0 (2)C6—Co1—C12—C13138.5 (2)
C1—Co1—C2—C3132.0 (3)C1—Co1—C12—C1398.1 (2)
C14—Co1—C2—C1151.5 (2)C14—Co1—C12—C1149.6 (2)
C11—Co1—C2—C1150.8 (5)C13—Co1—C12—C1199.3 (3)
C13—Co1—C2—C1106.5 (2)C3—Co1—C12—C1189.1 (6)
C12—Co1—C2—C169.5 (3)C5—Co1—C12—C1181.5 (2)
C3—Co1—C2—C1132.0 (3)C4—Co1—C12—C1137.7 (3)
C5—Co1—C2—C164.6 (2)C2—Co1—C12—C11157.6 (2)
C4—Co1—C2—C1102.7 (2)C6—Co1—C12—C11122.2 (2)
C6—Co1—C2—C126.9 (2)C1—Co1—C12—C11162.65 (19)
C1—C2—C3—C43.9 (5)C14—Co1—C12—C16179.7 (3)
Co1—C2—C3—C453.8 (3)C11—Co1—C12—C16130.1 (4)
C1—C2—C3—Co157.7 (3)C13—Co1—C12—C16130.6 (4)
C14—Co1—C3—C4106.4 (2)C3—Co1—C12—C16140.7 (5)
C11—Co1—C3—C468.2 (3)C5—Co1—C12—C1648.6 (3)
C13—Co1—C3—C4150.4 (2)C4—Co1—C12—C1692.5 (4)
C12—Co1—C3—C4142.2 (5)C2—Co1—C12—C1672.3 (3)
C5—Co1—C3—C429.5 (2)C6—Co1—C12—C167.9 (3)
C2—Co1—C3—C4133.0 (3)C1—Co1—C12—C1632.5 (3)
C6—Co1—C3—C467.4 (2)C11—C12—C13—C140.1 (2)
C1—Co1—C3—C4103.8 (2)C16—C12—C13—C14172.9 (3)
C14—Co1—C3—C2120.7 (2)Co1—C12—C13—C1466.15 (17)
C11—Co1—C3—C2158.8 (2)C11—C12—C13—C17170.4 (4)
C13—Co1—C3—C276.6 (3)C16—C12—C13—C172.4 (7)
C12—Co1—C3—C284.8 (6)Co1—C12—C13—C17123.4 (4)
C5—Co1—C3—C2103.5 (2)C11—C12—C13—Co166.27 (17)
C4—Co1—C3—C2133.0 (3)C16—C12—C13—Co1121.0 (4)
C6—Co1—C3—C265.6 (2)C14—Co1—C13—C1299.0 (3)
C1—Co1—C3—C229.2 (2)C11—Co1—C13—C1249.25 (18)
C2—C3—C4—C51.9 (5)C3—Co1—C13—C12176.98 (18)
Co1—C3—C4—C552.0 (3)C5—Co1—C13—C122.7 (7)
C2—C3—C4—Co153.9 (3)C4—Co1—C13—C12134.9 (3)
C14—Co1—C4—C5139.4 (2)C2—Co1—C13—C12142.69 (18)
C11—Co1—C4—C592.7 (2)C6—Co1—C13—C1264.3 (3)
C13—Co1—C4—C5165.2 (3)C1—Co1—C13—C12102.51 (19)
C12—Co1—C4—C566.0 (3)C11—Co1—C13—C1449.8 (2)
C3—Co1—C4—C5132.4 (3)C12—Co1—C13—C1499.0 (3)
C2—Co1—C4—C5103.1 (2)C3—Co1—C13—C1478.0 (2)
C6—Co1—C4—C528.9 (2)C5—Co1—C13—C14101.7 (6)
C1—Co1—C4—C565.8 (2)C4—Co1—C13—C1435.9 (4)
C14—Co1—C4—C388.1 (2)C2—Co1—C13—C14118.3 (2)
C11—Co1—C4—C3134.9 (2)C6—Co1—C13—C14163.3 (2)
C13—Co1—C4—C362.4 (4)C1—Co1—C13—C14158.49 (19)
C12—Co1—C4—C3161.5 (2)C14—Co1—C13—C17130.1 (4)
C5—Co1—C4—C3132.4 (3)C11—Co1—C13—C17179.9 (4)
C2—Co1—C4—C329.4 (2)C12—Co1—C13—C17130.9 (4)
C6—Co1—C4—C3103.6 (2)C3—Co1—C13—C1752.2 (4)
C1—Co1—C4—C366.6 (2)C5—Co1—C13—C17128.2 (6)
C3—C4—C5—C61.9 (5)C4—Co1—C13—C1794.2 (5)
Co1—C4—C5—C653.7 (3)C2—Co1—C13—C1711.8 (4)
C3—C4—C5—Co151.8 (3)C6—Co1—C13—C1766.6 (4)
C14—Co1—C5—C463.6 (3)C1—Co1—C13—C1728.4 (4)
C11—Co1—C5—C4102.8 (2)C12—C11—C14—C130.1 (2)
C13—Co1—C5—C4150.1 (6)C15—C11—C14—C13171.5 (4)
C12—Co1—C5—C4147.9 (2)Co1—C11—C14—C1367.76 (18)
C3—Co1—C5—C429.6 (2)C12—C11—C14—C18170.3 (4)
C2—Co1—C5—C468.0 (2)C15—C11—C14—C181.3 (7)
C6—Co1—C5—C4133.6 (3)Co1—C11—C14—C18122.0 (4)
C1—Co1—C5—C4104.5 (2)C12—C11—C14—Co167.63 (17)
C14—Co1—C5—C6162.8 (2)C15—C11—C14—Co1120.7 (4)
C11—Co1—C5—C6123.6 (2)C12—C13—C14—C110.1 (2)
C13—Co1—C5—C676.3 (6)C17—C13—C14—C11170.3 (4)
C12—Co1—C5—C678.5 (2)Co1—C13—C14—C1167.60 (18)
C3—Co1—C5—C6104.0 (2)C12—C13—C14—C18170.4 (4)
C4—Co1—C5—C6133.6 (3)C17—C13—C14—C180.1 (7)
C2—Co1—C5—C665.6 (2)Co1—C13—C14—C18122.1 (4)
C1—Co1—C5—C629.1 (2)C12—C13—C14—Co167.48 (17)
C4—C5—C6—C13.8 (5)C17—C13—C14—Co1122.1 (4)
Co1—C5—C6—C157.0 (3)C13—Co1—C14—C1198.1 (2)
C4—C5—C6—Co153.3 (3)C12—Co1—C14—C1149.30 (19)
N1—C1—C6—C5174.4 (3)C3—Co1—C14—C11140.2 (2)
C2—C1—C6—C59.1 (4)C5—Co1—C14—C1161.4 (3)
Co1—C1—C6—C554.0 (3)C4—Co1—C14—C1199.1 (2)
N1—C1—C6—Co1131.6 (3)C2—Co1—C14—C11179.74 (18)
C2—C1—C6—Co144.9 (3)C6—Co1—C14—C117.0 (8)
C14—Co1—C6—C581.5 (7)C1—Co1—C14—C11142.2 (2)
C11—Co1—C6—C575.6 (3)C11—Co1—C14—C1398.1 (2)
C13—Co1—C6—C5160.5 (2)C12—Co1—C14—C1348.84 (19)
C12—Co1—C6—C5120.5 (2)C3—Co1—C14—C13121.6 (2)
C3—Co1—C6—C567.0 (2)C5—Co1—C14—C13159.5 (2)
C4—Co1—C6—C528.9 (2)C4—Co1—C14—C13162.7 (2)
C2—Co1—C6—C5105.1 (2)C2—Co1—C14—C1381.6 (2)
C1—Co1—C6—C5132.1 (3)C6—Co1—C14—C1391.1 (7)
C14—Co1—C6—C1146.4 (6)C1—Co1—C14—C1344.1 (3)
C11—Co1—C6—C1152.22 (19)C11—Co1—C14—C18131.0 (5)
C13—Co1—C6—C167.4 (3)C13—Co1—C14—C18130.9 (5)
C12—Co1—C6—C1107.4 (2)C12—Co1—C14—C18179.7 (5)
C3—Co1—C6—C165.1 (2)C3—Co1—C14—C189.2 (4)
C5—Co1—C6—C1132.1 (3)C5—Co1—C14—C1869.6 (5)
C4—Co1—C6—C1103.3 (2)C4—Co1—C14—C1831.9 (4)
C2—Co1—C6—C127.07 (19)C2—Co1—C14—C1849.3 (4)
C1—N1—C7—C896.8 (4)C6—Co1—C14—C18138.0 (6)
C9—N1—C7—C892.0 (4)C1—Co1—C14—C1886.8 (5)
C1—N1—C9—C10B82.9 (7)
 

Acknowledgements

Thanks are due to the EPSRC X-ray Crystallography Service at the University of Southampton for data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCook, M. R., Härter, P., Pauson, P. L. & Šraga, J. (1987). J. Chem. Soc. Dalton Trans. pp. 2757–2760.  CrossRef Web of Science Google Scholar
First citationHerberich, G. E., Basu Baul, T. S. & Englert, U. (2002). Eur. J. Inorg. Chem. pp. 43–48.  CSD CrossRef Google Scholar
First citationHooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMaitlis, P. M. & Efraty, A. (1965). J. Organomet. Chem. 4, 175–176.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds