organic compounds
4-Aminopyridinium isonicotinate monohydrate
aDepartment of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland
*Correspondence e-mail: a.r.kennedy@strath.ac.uk
The 4-aminopyridinium isonicotinate salt was isolated as a monohydrate, C5H7N·C6H4NO·H2O, with a layered cation–water–anion structure. Hydrogen-bonding between layers utilizes all hydrogen-bonding donors and acceptors, whilst π stacking dominates interactions within the organic layers.
Comment
The isonicotinate anion is well known as a ligand capable of forming supramolecular metal–organic structures. Here, the serendipitous isolation of the title compound, (I), highlights that it is also capable of supporting organic supramolecular architectures. Isolated with the 4-aminopyridinium cation [itself well known in studies of organic supramolecular structures; see for example Cowan et al. (2001) and Teulon et al. (1985)], (I) is found as a monohydrate (Fig. 1) with, in the c direction, alternating layers of cations and anions separated by water molecules (Fig. 2). These layers are held together by the participation of all the molecular fragments in a three-dimensional hydrogen-bonding network. Each cation acts as a threefold donor using all its N—H bonds, each anion acts as a fourfold acceptor with atom O1 accepting two hydrogen bonds and atoms O2 and N1 accepting one each, and the water molecule both accepts a single hydrogen-bond and acts as a twofold donor. Within each organic layer, π stacking interactions are observed. The shortest such contacts appear between antiparallel 4-aminopyridinium cations, with a centroid-to-centroid distance of 3.473 Å, whilst the isonicotinate anions are separated by 3.520 Å.
Experimental
Compound (I) was formed during an attempt to prepare N-(pyridine-4-methylene)pyridin-4-amine. 4-Aminopyridine (1.24 g, 13.2 mmol) was dissolved in anhydrous xylene (80 ml), and pyridine-4-carbaldehyde (1.3 ml, 13.6 mmol) and acetic acid (0.38 ml, 6.6 mmol) were added dropwise with stirring. The mixture was heated to reflux in a Dean–Stark apparatus for 20 h. After removing the solvent in vacuo, a yellow oil was obtained. Crystalline (I) was obtained from a chloroform solution of this oil after layering with diethyl ether (1.64 g, 53% yield). IR (KBr, cm−1): 677, 769, 1204, 1373, 1542, 1603, 1650, 3415.
Crystal data
|
Data collection
|
Refinement
|
All H-atom parameters were refined freely; C—H distances are in the range 0.953 (16)–0.993 (16) Å.
Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1988); cell DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536805000887/fl6142sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536805000887/fl6142Isup2.hkl
Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1988); cell
DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.C5H7N2+·C6H4NO2−·H2O | Z = 2 |
Mr = 235.24 | F(000) = 248 |
Triclinic, P1 | Dx = 1.351 Mg m−3 |
a = 6.7128 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 6.7911 (2) Å | Cell parameters from 2294 reflections |
c = 13.6379 (8) Å | θ = 1.0–26.4° |
α = 75.830 (3)° | µ = 0.10 mm−1 |
β = 75.999 (2)° | T = 123 K |
γ = 78.326 (3)° | Cut plate, colourless |
V = 578.08 (5) Å3 | 0.45 × 0.37 × 0.10 mm |
Nonius KappaCCD diffractometer | 1848 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.030 |
Graphite monochromator | θmax = 26.4°, θmin = 1.6° |
ω and φ scans | h = −8→8 |
9253 measured reflections | k = −8→8 |
2348 independent reflections | l = −17→17 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | All H-atom parameters refined |
wR(F2) = 0.090 | w = 1/[σ2(Fo2) + (0.0417P)2 + 0.1136P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
2348 reflections | Δρmax = 0.17 e Å−3 |
207 parameters | Δρmin = −0.15 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.046 (11) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.22409 (15) | 0.15150 (13) | 0.22438 (7) | 0.0316 (3) | |
O2 | 0.14675 (14) | 0.48046 (14) | 0.23744 (7) | 0.0290 (3) | |
O3 | −0.04150 (18) | 0.87519 (19) | 0.24467 (10) | 0.0483 (3) | |
N1 | 0.30325 (18) | 0.5187 (2) | −0.14614 (9) | 0.0343 (3) | |
N2 | 0.5281 (2) | 0.90081 (17) | 0.33110 (9) | 0.0261 (3) | |
N3 | 0.35573 (19) | 0.65430 (17) | 0.63958 (9) | 0.0301 (3) | |
C1 | 0.20050 (19) | 0.34213 (19) | 0.18639 (10) | 0.0233 (3) | |
C2 | 0.3330 (2) | 0.3211 (2) | −0.09781 (11) | 0.0345 (4) | |
C3 | 0.3025 (2) | 0.2581 (2) | 0.00823 (11) | 0.0281 (3) | |
C4 | 0.23968 (18) | 0.40528 (19) | 0.06936 (10) | 0.0221 (3) | |
C5 | 0.2115 (2) | 0.6099 (2) | 0.01998 (10) | 0.0251 (3) | |
C6 | 0.2442 (2) | 0.6593 (2) | −0.08700 (11) | 0.0303 (3) | |
C7 | 0.5595 (2) | 0.64381 (19) | 0.59471 (11) | 0.0280 (3) | |
C8 | 0.6208 (2) | 0.72207 (18) | 0.49221 (10) | 0.0242 (3) | |
C9 | 0.4716 (2) | 0.81926 (17) | 0.43125 (10) | 0.0220 (3) | |
C10 | 0.2598 (2) | 0.82558 (19) | 0.48123 (10) | 0.0254 (3) | |
C11 | 0.2077 (2) | 0.7433 (2) | 0.58388 (11) | 0.0295 (3) | |
H3N | 0.320 (3) | 0.604 (3) | 0.7125 (15) | 0.051 (5)* | |
H2 | 0.378 (2) | 0.219 (2) | −0.1425 (12) | 0.040 (4)* | |
H1W | 0.030 (3) | 0.752 (3) | 0.2392 (15) | 0.060 (6)* | |
H2N | 0.668 (3) | 0.898 (2) | 0.3041 (12) | 0.037 (4)* | |
H3 | 0.325 (2) | 0.109 (2) | 0.0397 (12) | 0.037 (4)* | |
H2W | 0.048 (3) | 0.953 (3) | 0.2359 (16) | 0.067 (6)* | |
H1N | 0.433 (3) | 0.977 (3) | 0.2965 (13) | 0.042 (5)* | |
H5 | 0.167 (2) | 0.718 (2) | 0.0595 (11) | 0.024 (3)* | |
H6 | 0.225 (2) | 0.800 (2) | −0.1230 (12) | 0.037 (4)* | |
H7 | 0.659 (2) | 0.578 (2) | 0.6396 (12) | 0.032 (4)* | |
H8 | 0.765 (2) | 0.712 (2) | 0.4621 (11) | 0.027 (4)* | |
H10 | 0.153 (2) | 0.889 (2) | 0.4410 (12) | 0.032 (4)* | |
H11 | 0.067 (2) | 0.744 (2) | 0.6204 (12) | 0.034 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0368 (6) | 0.0263 (5) | 0.0301 (6) | −0.0058 (4) | −0.0126 (4) | 0.0035 (4) |
O2 | 0.0330 (5) | 0.0318 (5) | 0.0212 (5) | −0.0023 (4) | −0.0058 (4) | −0.0055 (4) |
O3 | 0.0302 (6) | 0.0324 (6) | 0.0791 (9) | −0.0057 (5) | 0.0027 (6) | −0.0182 (6) |
N1 | 0.0254 (6) | 0.0570 (8) | 0.0208 (6) | −0.0095 (5) | −0.0047 (5) | −0.0060 (5) |
N2 | 0.0269 (7) | 0.0265 (6) | 0.0216 (6) | −0.0016 (5) | −0.0040 (5) | −0.0014 (5) |
N3 | 0.0437 (7) | 0.0282 (6) | 0.0175 (6) | −0.0076 (5) | −0.0033 (5) | −0.0040 (5) |
C1 | 0.0192 (6) | 0.0276 (7) | 0.0227 (7) | −0.0048 (5) | −0.0067 (5) | −0.0010 (5) |
C2 | 0.0286 (8) | 0.0504 (9) | 0.0271 (8) | −0.0049 (7) | −0.0039 (6) | −0.0155 (7) |
C3 | 0.0237 (7) | 0.0334 (8) | 0.0281 (8) | −0.0029 (6) | −0.0059 (6) | −0.0087 (6) |
C4 | 0.0152 (6) | 0.0295 (7) | 0.0220 (7) | −0.0045 (5) | −0.0051 (5) | −0.0036 (5) |
C5 | 0.0208 (7) | 0.0296 (7) | 0.0244 (7) | −0.0055 (5) | −0.0053 (5) | −0.0027 (6) |
C6 | 0.0249 (7) | 0.0397 (8) | 0.0238 (7) | −0.0092 (6) | −0.0067 (6) | 0.0035 (6) |
C7 | 0.0391 (8) | 0.0228 (7) | 0.0254 (7) | −0.0045 (6) | −0.0132 (6) | −0.0048 (5) |
C8 | 0.0273 (7) | 0.0211 (6) | 0.0253 (7) | −0.0036 (5) | −0.0060 (6) | −0.0064 (5) |
C9 | 0.0294 (7) | 0.0157 (6) | 0.0215 (7) | −0.0034 (5) | −0.0040 (5) | −0.0058 (5) |
C10 | 0.0280 (7) | 0.0220 (6) | 0.0244 (7) | −0.0013 (5) | −0.0045 (6) | −0.0044 (5) |
C11 | 0.0336 (8) | 0.0264 (7) | 0.0261 (8) | −0.0049 (6) | 0.0014 (6) | −0.0081 (5) |
O1—C1 | 1.2640 (15) | C3—C4 | 1.3924 (18) |
O2—C1 | 1.2486 (15) | C3—H3 | 0.993 (16) |
O3—H1W | 0.89 (2) | C4—C5 | 1.3844 (18) |
O3—H2W | 0.85 (2) | C5—C6 | 1.3873 (19) |
N1—C6 | 1.3370 (19) | C5—H5 | 0.971 (14) |
N1—C2 | 1.341 (2) | C6—H6 | 0.961 (16) |
N2—C9 | 1.3342 (16) | C7—C8 | 1.3610 (19) |
N2—H2N | 0.921 (18) | C7—H7 | 0.981 (16) |
N2—H1N | 0.890 (18) | C8—C9 | 1.4129 (19) |
N3—C11 | 1.3516 (19) | C8—H8 | 0.954 (15) |
N3—C7 | 1.3520 (19) | C9—C10 | 1.4171 (19) |
N3—H3N | 0.957 (19) | C10—C11 | 1.3614 (19) |
C1—C4 | 1.5192 (18) | C10—H10 | 0.975 (16) |
C2—C3 | 1.380 (2) | C11—H11 | 0.953 (16) |
C2—H2 | 0.987 (16) | ||
H1W—O3—H2W | 106.0 (19) | C4—C5—H5 | 120.6 (8) |
C6—N1—C2 | 117.13 (12) | C6—C5—H5 | 120.2 (8) |
C9—N2—H2N | 117.4 (10) | N1—C6—C5 | 123.35 (13) |
C9—N2—H1N | 119.6 (11) | N1—C6—H6 | 116.0 (9) |
H2N—N2—H1N | 121.7 (15) | C5—C6—H6 | 120.7 (9) |
C11—N3—C7 | 120.86 (12) | N3—C7—C8 | 120.80 (13) |
C11—N3—H3N | 121.0 (11) | N3—C7—H7 | 116.8 (9) |
C7—N3—H3N | 118.1 (11) | C8—C7—H7 | 122.4 (9) |
O2—C1—O1 | 125.12 (12) | C7—C8—C9 | 120.31 (13) |
O2—C1—C4 | 118.15 (11) | C7—C8—H8 | 119.3 (9) |
O1—C1—C4 | 116.73 (11) | C9—C8—H8 | 120.4 (9) |
N1—C2—C3 | 123.37 (13) | N2—C9—C8 | 121.35 (12) |
N1—C2—H2 | 116.2 (9) | N2—C9—C10 | 121.65 (12) |
C3—C2—H2 | 120.4 (9) | C8—C9—C10 | 117.00 (12) |
C2—C3—C4 | 119.18 (13) | C11—C10—C9 | 120.09 (13) |
C2—C3—H3 | 119.7 (9) | C11—C10—H10 | 120.8 (9) |
C4—C3—H3 | 121.1 (9) | C9—C10—H10 | 119.1 (9) |
C5—C4—C3 | 117.80 (12) | N3—C11—C10 | 120.93 (13) |
C5—C4—C1 | 121.38 (12) | N3—C11—H11 | 116.3 (9) |
C3—C4—C1 | 120.81 (11) | C10—C11—H11 | 122.8 (9) |
C4—C5—C6 | 119.16 (13) | ||
C6—N1—C2—C3 | 1.1 (2) | C2—N1—C6—C5 | −0.5 (2) |
N1—C2—C3—C4 | −0.7 (2) | C4—C5—C6—N1 | −0.3 (2) |
C2—C3—C4—C5 | −0.27 (19) | C11—N3—C7—C8 | −0.23 (18) |
C2—C3—C4—C1 | 178.83 (12) | N3—C7—C8—C9 | 1.17 (18) |
O2—C1—C4—C5 | −1.76 (18) | C7—C8—C9—N2 | 178.61 (12) |
O1—C1—C4—C5 | 177.80 (11) | C7—C8—C9—C10 | −1.56 (17) |
O2—C1—C4—C3 | 179.18 (11) | N2—C9—C10—C11 | −179.09 (12) |
O1—C1—C4—C3 | −1.26 (17) | C8—C9—C10—C11 | 1.08 (18) |
C3—C4—C5—C6 | 0.74 (18) | C7—N3—C11—C10 | −0.26 (19) |
C1—C4—C5—C6 | −178.35 (11) | C9—C10—C11—N3 | −0.19 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···N1i | 0.957 (19) | 1.854 (19) | 2.7978 (16) | 167.9 (16) |
N2—H2N···O3ii | 0.921 (18) | 1.911 (18) | 2.8313 (18) | 175.8 (14) |
N2—H1N···O1iii | 0.890 (18) | 1.938 (19) | 2.8283 (16) | 177.5 (15) |
O3—H1W···O2 | 0.89 (2) | 1.86 (2) | 2.7369 (15) | 172.1 (18) |
O3—H2W···O1iii | 0.85 (2) | 1.92 (2) | 2.7635 (15) | 173 (2) |
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x, y+1, z. |
Acknowledgements
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Cowan, J. A., Howard, J. A. K., Leech, M. A. & Williams, I. D. (2001). Acta Cryst. E57, o563–o565. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Teulon, P., Delaplane, R. G., Olovsson, I. & Roziere, J. (1985). Acta Cryst. C41, 479–483. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.