organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino­pyridinium isonicotinate monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland
*Correspondence e-mail: a.r.kennedy@strath.ac.uk

(Received 5 January 2005; accepted 10 January 2005; online 22 January 2005)

The 4-amino­pyridinium isonicotinate salt was isolated as a monohydrate, C5H7N[{}_{2}^{\,+}]·C6H4NO[{}_{2}^{\,- }]·H2O, with a layered cation–water–anion structure. Hydrogen-bonding between layers utilizes all hydrogen-bonding donors and acceptors, whilst π stacking dominates interactions within the organic layers.

Comment

The isonicotinate anion is well known as a ligand capable of forming supramolecular metal–organic structures. Here, the serendipitous isolation of the title compound, (I)[link], highlights that it is also capable of supporting organic supramolecular architectures. Isolated with the 4-amino­pyridinium cation [itself well known in studies of organic supramolecular structures; see for example Cowan et al. (2001[Cowan, J. A., Howard, J. A. K., Leech, M. A. & Williams, I. D. (2001). Acta Cryst. E57, o563-o565.]) and Teulon et al. (1985[Teulon, P., Delaplane, R. G., Olovsson, I. & Roziere, J. (1985). Acta Cryst. C41, 479-483.])], (I)[link] is found as a monohydrate (Fig. 1[link]) with, in the c direction, alternating layers of cations and anions separated by water molecules (Fig. 2[link]). These layers are held together by the participation of all the molecular fragments in a three-dimensional hydrogen-bonding network. Each cation acts as a threefold donor using all its N—H bonds, each anion acts as a fourfold acceptor with atom O1 accepting two hydrogen bonds and atoms O2 and N1 accepting one each, and the water molecule both accepts a single hydrogen-bond and acts as a twofold donor. Within each organic layer, π stacking inter­actions are observed. The shortest such contacts appear between antiparallel 4-amino­pyridinium cations, with a centroid-to-centroid distance of 3.473 Å, whilst the isonico­tin­ate anions are separated by 3.520 Å.

[Scheme 1]
[Figure 1]
Figure 1
Asymmetric unit of (I)[link], shown with 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
Packing diagram of (I)[link], viewed down the b axis. Dashed lines indicate hydrogen bonds.

Experimental

Compound (I)[link] was formed during an attempt to prepare N-(pyridine-4-methyl­ene)pyridin-4-amine. 4-Amino­pyridine (1.24 g, 13.2 mmol) was dissolved in anhydrous xylene (80 ml), and pyridine-4-carbaldehyde (1.3 ml, 13.6 mmol) and acetic acid (0.38 ml, 6.6 mmol) were added dropwise with stirring. The mixture was heated to reflux in a Dean–Stark apparatus for 20 h. After removing the solvent in vacuo, a yellow oil was obtained. Crystalline (I)[link] was obtained from a chloro­form solution of this oil after layering with diethyl ether (1.64 g, 53% yield). IR (KBr, cm−1): 677, 769, 1204, 1373, 1542, 1603, 1650, 3415.

Crystal data
  • C5H7N[{}_{2}^{\,+}]·C6H4NO[{}_{2}^{\,- }]·H2O

  • Mr = 235.24

  • Triclinic, P[\overline{1}]

  • a = 6.7128 (3) Å

  • b = 6.7911 (2) Å

  • c = 13.6379 (8) Å

  • α = 75.830 (3)°

  • β = 75.999 (2)°

  • γ = 78.326 (3)°

  • V = 578.08 (5) Å3

  • Z = 2

  • Dx = 1.351 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2294 reflections

  • θ = 1.0–26.4°

  • μ = 0.10 mm−1

  • T = 123 (2) K

  • Cut plate, colourless

  • 0.45 × 0.37 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: none

  • 9253 measured reflections

  • 2348 independent reflections

  • 1848 reflections with I > 2σ(I)

  • Rint = 0.030

  • θmax = 26.4°

  • h = −8 → 8

  • k = −8 → 8

  • l = −17 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.090

  • S = 1.04

  • 2348 reflections

  • 207 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0417P)2 + 0.1136P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.046 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N1i 0.957 (19) 1.854 (19) 2.7978 (16) 167.9 (16)
N2—H2N⋯O3ii 0.921 (18) 1.911 (18) 2.8313 (18) 175.8 (14)
N2—H1N⋯O1iii 0.890 (18) 1.938 (19) 2.8283 (16) 177.5 (15)
O3—H1W⋯O2 0.89 (2) 1.86 (2) 2.7369 (15) 172.1 (18)
O3—H2W⋯O1iii 0.85 (2) 1.92 (2) 2.7635 (15) 173 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x, y+1, z.

All H-atom parameters were refined freely; C—H distances are in the range 0.953 (16)–0.993 (16) Å.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1988[Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1988); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

4-Aminopyridinium isonicotinate monohydrate top
Crystal data top
C5H7N2+·C6H4NO2·H2OZ = 2
Mr = 235.24F(000) = 248
Triclinic, P1Dx = 1.351 Mg m3
a = 6.7128 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.7911 (2) ÅCell parameters from 2294 reflections
c = 13.6379 (8) Åθ = 1.0–26.4°
α = 75.830 (3)°µ = 0.10 mm1
β = 75.999 (2)°T = 123 K
γ = 78.326 (3)°Cut plate, colourless
V = 578.08 (5) Å30.45 × 0.37 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
1848 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 26.4°, θmin = 1.6°
ω and φ scansh = 88
9253 measured reflectionsk = 88
2348 independent reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036All H-atom parameters refined
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.1136P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2348 reflectionsΔρmax = 0.17 e Å3
207 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.046 (11)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22409 (15)0.15150 (13)0.22438 (7)0.0316 (3)
O20.14675 (14)0.48046 (14)0.23744 (7)0.0290 (3)
O30.04150 (18)0.87519 (19)0.24467 (10)0.0483 (3)
N10.30325 (18)0.5187 (2)0.14614 (9)0.0343 (3)
N20.5281 (2)0.90081 (17)0.33110 (9)0.0261 (3)
N30.35573 (19)0.65430 (17)0.63958 (9)0.0301 (3)
C10.20050 (19)0.34213 (19)0.18639 (10)0.0233 (3)
C20.3330 (2)0.3211 (2)0.09781 (11)0.0345 (4)
C30.3025 (2)0.2581 (2)0.00823 (11)0.0281 (3)
C40.23968 (18)0.40528 (19)0.06936 (10)0.0221 (3)
C50.2115 (2)0.6099 (2)0.01998 (10)0.0251 (3)
C60.2442 (2)0.6593 (2)0.08700 (11)0.0303 (3)
C70.5595 (2)0.64381 (19)0.59471 (11)0.0280 (3)
C80.6208 (2)0.72207 (18)0.49221 (10)0.0242 (3)
C90.4716 (2)0.81926 (17)0.43125 (10)0.0220 (3)
C100.2598 (2)0.82558 (19)0.48123 (10)0.0254 (3)
C110.2077 (2)0.7433 (2)0.58388 (11)0.0295 (3)
H3N0.320 (3)0.604 (3)0.7125 (15)0.051 (5)*
H20.378 (2)0.219 (2)0.1425 (12)0.040 (4)*
H1W0.030 (3)0.752 (3)0.2392 (15)0.060 (6)*
H2N0.668 (3)0.898 (2)0.3041 (12)0.037 (4)*
H30.325 (2)0.109 (2)0.0397 (12)0.037 (4)*
H2W0.048 (3)0.953 (3)0.2359 (16)0.067 (6)*
H1N0.433 (3)0.977 (3)0.2965 (13)0.042 (5)*
H50.167 (2)0.718 (2)0.0595 (11)0.024 (3)*
H60.225 (2)0.800 (2)0.1230 (12)0.037 (4)*
H70.659 (2)0.578 (2)0.6396 (12)0.032 (4)*
H80.765 (2)0.712 (2)0.4621 (11)0.027 (4)*
H100.153 (2)0.889 (2)0.4410 (12)0.032 (4)*
H110.067 (2)0.744 (2)0.6204 (12)0.034 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0368 (6)0.0263 (5)0.0301 (6)0.0058 (4)0.0126 (4)0.0035 (4)
O20.0330 (5)0.0318 (5)0.0212 (5)0.0023 (4)0.0058 (4)0.0055 (4)
O30.0302 (6)0.0324 (6)0.0791 (9)0.0057 (5)0.0027 (6)0.0182 (6)
N10.0254 (6)0.0570 (8)0.0208 (6)0.0095 (5)0.0047 (5)0.0060 (5)
N20.0269 (7)0.0265 (6)0.0216 (6)0.0016 (5)0.0040 (5)0.0014 (5)
N30.0437 (7)0.0282 (6)0.0175 (6)0.0076 (5)0.0033 (5)0.0040 (5)
C10.0192 (6)0.0276 (7)0.0227 (7)0.0048 (5)0.0067 (5)0.0010 (5)
C20.0286 (8)0.0504 (9)0.0271 (8)0.0049 (7)0.0039 (6)0.0155 (7)
C30.0237 (7)0.0334 (8)0.0281 (8)0.0029 (6)0.0059 (6)0.0087 (6)
C40.0152 (6)0.0295 (7)0.0220 (7)0.0045 (5)0.0051 (5)0.0036 (5)
C50.0208 (7)0.0296 (7)0.0244 (7)0.0055 (5)0.0053 (5)0.0027 (6)
C60.0249 (7)0.0397 (8)0.0238 (7)0.0092 (6)0.0067 (6)0.0035 (6)
C70.0391 (8)0.0228 (7)0.0254 (7)0.0045 (6)0.0132 (6)0.0048 (5)
C80.0273 (7)0.0211 (6)0.0253 (7)0.0036 (5)0.0060 (6)0.0064 (5)
C90.0294 (7)0.0157 (6)0.0215 (7)0.0034 (5)0.0040 (5)0.0058 (5)
C100.0280 (7)0.0220 (6)0.0244 (7)0.0013 (5)0.0045 (6)0.0044 (5)
C110.0336 (8)0.0264 (7)0.0261 (8)0.0049 (6)0.0014 (6)0.0081 (5)
Geometric parameters (Å, º) top
O1—C11.2640 (15)C3—C41.3924 (18)
O2—C11.2486 (15)C3—H30.993 (16)
O3—H1W0.89 (2)C4—C51.3844 (18)
O3—H2W0.85 (2)C5—C61.3873 (19)
N1—C61.3370 (19)C5—H50.971 (14)
N1—C21.341 (2)C6—H60.961 (16)
N2—C91.3342 (16)C7—C81.3610 (19)
N2—H2N0.921 (18)C7—H70.981 (16)
N2—H1N0.890 (18)C8—C91.4129 (19)
N3—C111.3516 (19)C8—H80.954 (15)
N3—C71.3520 (19)C9—C101.4171 (19)
N3—H3N0.957 (19)C10—C111.3614 (19)
C1—C41.5192 (18)C10—H100.975 (16)
C2—C31.380 (2)C11—H110.953 (16)
C2—H20.987 (16)
H1W—O3—H2W106.0 (19)C4—C5—H5120.6 (8)
C6—N1—C2117.13 (12)C6—C5—H5120.2 (8)
C9—N2—H2N117.4 (10)N1—C6—C5123.35 (13)
C9—N2—H1N119.6 (11)N1—C6—H6116.0 (9)
H2N—N2—H1N121.7 (15)C5—C6—H6120.7 (9)
C11—N3—C7120.86 (12)N3—C7—C8120.80 (13)
C11—N3—H3N121.0 (11)N3—C7—H7116.8 (9)
C7—N3—H3N118.1 (11)C8—C7—H7122.4 (9)
O2—C1—O1125.12 (12)C7—C8—C9120.31 (13)
O2—C1—C4118.15 (11)C7—C8—H8119.3 (9)
O1—C1—C4116.73 (11)C9—C8—H8120.4 (9)
N1—C2—C3123.37 (13)N2—C9—C8121.35 (12)
N1—C2—H2116.2 (9)N2—C9—C10121.65 (12)
C3—C2—H2120.4 (9)C8—C9—C10117.00 (12)
C2—C3—C4119.18 (13)C11—C10—C9120.09 (13)
C2—C3—H3119.7 (9)C11—C10—H10120.8 (9)
C4—C3—H3121.1 (9)C9—C10—H10119.1 (9)
C5—C4—C3117.80 (12)N3—C11—C10120.93 (13)
C5—C4—C1121.38 (12)N3—C11—H11116.3 (9)
C3—C4—C1120.81 (11)C10—C11—H11122.8 (9)
C4—C5—C6119.16 (13)
C6—N1—C2—C31.1 (2)C2—N1—C6—C50.5 (2)
N1—C2—C3—C40.7 (2)C4—C5—C6—N10.3 (2)
C2—C3—C4—C50.27 (19)C11—N3—C7—C80.23 (18)
C2—C3—C4—C1178.83 (12)N3—C7—C8—C91.17 (18)
O2—C1—C4—C51.76 (18)C7—C8—C9—N2178.61 (12)
O1—C1—C4—C5177.80 (11)C7—C8—C9—C101.56 (17)
O2—C1—C4—C3179.18 (11)N2—C9—C10—C11179.09 (12)
O1—C1—C4—C31.26 (17)C8—C9—C10—C111.08 (18)
C3—C4—C5—C60.74 (18)C7—N3—C11—C100.26 (19)
C1—C4—C5—C6178.35 (11)C9—C10—C11—N30.19 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N1i0.957 (19)1.854 (19)2.7978 (16)167.9 (16)
N2—H2N···O3ii0.921 (18)1.911 (18)2.8313 (18)175.8 (14)
N2—H1N···O1iii0.890 (18)1.938 (19)2.8283 (16)177.5 (15)
O3—H1W···O20.89 (2)1.86 (2)2.7369 (15)172.1 (18)
O3—H2W···O1iii0.85 (2)1.92 (2)2.7635 (15)173 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x, y+1, z.
 

Acknowledgements

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCowan, J. A., Howard, J. A. K., Leech, M. A. & Williams, I. D. (2001). Acta Cryst. E57, o563–o565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTeulon, P., Delaplane, R. G., Olovsson, I. & Roziere, J. (1985). Acta Cryst. C41, 479–483.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds