organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

n-Octanol

CROSSMARK_Color_square_no_text.svg

aChemical Crystallography Laboratory, Central Chemistry Laboratory, Mansfield Road, Oxford University, Oxford OX1 3TA, England
*Correspondence e-mail: howard.shallard-brown@lmh.ox.ac.uk

(Received 8 December 2004; accepted 10 December 2004; online 8 January 2005)

The structure of n-octanol, C8H17OH, at 150 K consists of infinite hydrogen-bonded chains forming a ribbon parallel to the b axis.

Keywords: .

Comment

The low-molecular-weight aliphatic monoalcohols are liquid at room temperature. Methanol (CH3OH; Allan et al., 1998[Allan, D. R., Clark, S. J., Brugmans, M. J. P., Ackland, G. J. & Vos, W. L. (1998). Phys. Rev. B, 58, 809-812.]), ethanol (C2H5OH; Jönsson, 1976[Jönsson, P.-G. (1976). Acta. Cryst. B32, 232-235.]; Allan & Clark, 1999[Allan, D. R. & Clark, S. J. (1999). Phys. Rev. B, 60, 6328-6334.]) and cyclo­butanol (C4H10OH; McGregor et al., 2003[McGregor, P. A., Allan, D. R., Clark, S. J. & Parsons, S. (2003). In preparation.]) form planar hydrogen-bonded ribbons in the solid state, while the bulkier tertiary butanol [(CH3)3COH; Steininger et al., 1989[Steininger, R., Bilgram, J. H., Gramlich, V. & Petter, W. (1989). Z. Kristallogr. 187, 1-13.]] forms threefold helical hydrogen-bonded chains. At ambient pressure, phenol also forms threefold helical chains, while at 0.16 GPa and just above its normal melting point (313 K), it forms planar ribbons (Allan et al., 2002[Allan, D. R., Clark, S. J., Dawson, A., McGregor, P. A. & Parsons, S. (2002). Acta Cryst. B58, 1018-1024.]). As part of a programme aimed at simplifying the growth of crystals from materials which are liquid at room temperature, we have looked at n-heptanol (C7H15OH) and n-octanol (C8H17OH). n-Heptanol could only be zone-crystallized, by a modification of the Bridgman technique (Bridgman, 1925[Bridgman, P. W. (1925). Proc. Am. Acad. Arts Sci. 60, 305-315.]), to an unindexable polycrystalline mass. n-Octanol, (I)[link], was obtained as `fair quality' single crystals accompanied by small satellite crystals. A previous examination of n-octanol crystals (Dunoyer & Ribaud, 1951[Dunoyer, J.-M. & Ribaud, G. (1951). C. R. Acad. Sci. 233, 41-42..]) reported, on the basis of Debye–Scherrer photographs, a low-symmetry form just below the melting point, passing to an hexagonal form (a = 4.468 Å, c = 7.282 Å; ice I has a = 4.5 Å and c = 7.3 Å) between 248 and 215 K, after which the original low-symmetry cell reappeared.

[Scheme 1]

In the present experiment, n-octanol was grown as a single crystal just below its melting point, and the temperature was then lowered to 150 K at a rate of 360 K per hour. There was no evidence of a phase transition.

In the low-temperature and ambient-pressure form of ethanol, the molecules form hydrogen-bonded ribbons, with the methyl group oriented somewhat towards the hydrogen-bonded backbone. This leads to a narrow ribbon with strained hydrogen-bonding angles. At ambient temperature and 3.0 GPa, the methyl groups of ethanol are coplanar with the backbone, lying fully extended on alternate sides. In n-octanol, the aliphatic chains are also coplanar, with the hydrogen-bonded backbone forming infinite wide ribbons parallel to the b axis. These ribbons pack side-by-side, with the terminal ethyl groups parallel and in close contact, forming sheets of molecules.

[Figure 1]
Figure 1
The title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are of arbitrary radii.
[Figure 2]
Figure 2
A packing diagram for (I)[link], viewed along the a axis. The molecules are linked into ribbons by hydrogen bonds (dashed lines).

Experimental

A single crystal of (I)[link], which is a liquid at room temperature, was grown by keeping the compound under a cold nitrogen stream at just below its melting point, and slowly moving a small liquid zone up and down the sample. The temperature was then lowered for the main data collection.

Crystal data
  • C8H18O

  • Mr = 130.23

  • Monoclinic, P21/n

  • a = 4.2065 (2) Å

  • b = 5.1845 (2) Å

  • c = 38.9371 (18) Å

  • β = 91.723 (2)°

  • V = 848.78 (7) Å3

  • Z = 4

  • Dx = 1.019 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1584 reflections

  • θ = 5–27°

  • μ = 0.06 mm−1

  • T = 190 K

  • Cylinder, colourless

  • 0.80 × 0.30 × 0.30 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan, DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.75, Tmax = 0.98

  • 11 803 measured reflections

  • 1854 independent reflections

  • 1011 reflections with I ≥ 2σ(I)

  • Rint = 0.042

  • θmax = 27.4°

  • h = −5 → 5

  • k = −6 → 5

  • l = −49 → 50

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.125

  • wR(F2) = 0.157

  • S = 0.99

  • 1854 reflections

  • 82 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F) + 0.062 + 0.164P], where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected geometric parameters (Å, °)

O1—C2 1.4352 (19)
C2—C3 1.511 (2)
C3—C4 1.530 (2)
C4—C5 1.524 (2)
C5—C6 1.526 (2)
C6—C7 1.524 (2)
C7—C8 1.526 (2)
C8—C9 1.518 (3)
O1—C2—C3 108.99 (14)
C2—C3—C4 112.43 (14)
C3—C4—C5 113.66 (14)
C4—C5—C6 113.79 (14)
C5—C6—C7 114.18 (15)
C6—C7—C8 113.72 (15)
C7—C8—C9 113.58 (15)

The `multi-scan' corrections applied by DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) will also contain a contribution due to changes in the illuminated volume of the cylindrical sample. All H atoms were seen in a difference electron-density map. The hydro­xyl H atom was placed as found, and the others were placed geometrically with Uiso values related to the adjacent atoms. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularise their geometry (C—H = 0.93–98 Å) and Uiso(H) values of 1.2–1.5 times Ueq of the adjacent atom, after which they were refined with riding constraints.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

n-Octanol top
Crystal data top
C8H18OF(000) = 296
Mr = 130.23Dx = 1.019 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1584 reflections
a = 4.2065 (2) Åθ = 5–27°
b = 5.1845 (2) ŵ = 0.06 mm1
c = 38.9371 (18) ÅT = 190 K
β = 91.723 (2)°Cylinder, colourless
V = 848.78 (7) Å30.80 × 0.30 × 0.30 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
1854 reflections with I > 3u(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 27.4°, θmin = 5.1°
Absorption correction: multi-scan
DENZO and SCALEPACK (Otwinowski & Minor, 1997)
h = 55
Tmin = 0.75, Tmax = 0.98k = 65
11803 measured reflectionsl = 4950
1854 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.125H-atom parameters constrained
wR(F2) = 0.157 w = 1/[σ2(F) + 0.062 + 0.164P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.99(Δ/σ)max = 0.001
1854 reflectionsΔρmax = 0.45 e Å3
82 parametersΔρmin = 0.42 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3510 (3)0.3671 (2)0.75958 (3)0.0428
C20.5220 (4)0.3257 (4)0.79155 (4)0.0359
C30.6035 (4)0.5840 (3)0.80749 (4)0.0336
C40.7588 (4)0.5578 (3)0.84334 (4)0.0345
C50.8392 (4)0.8154 (3)0.86032 (4)0.0346
C60.9844 (4)0.7901 (4)0.89657 (4)0.0352
C71.0667 (4)1.0467 (3)0.91372 (4)0.0349
C81.2090 (4)1.0191 (4)0.95005 (4)0.0399
C91.2932 (5)1.2750 (4)0.96696 (5)0.0458
H210.38160.23070.80730.0432*
H220.71700.22610.78770.0429*
H310.40730.68370.80940.0404*
H320.74020.68160.79250.0398*
H410.61280.46500.85830.0408*
H420.95270.44820.84170.0413*
H510.64140.91860.86150.0409*
H520.98690.91340.84600.0397*
H610.82810.69970.91100.0422*
H621.17900.68220.89560.0419*
H710.87411.15270.91480.0420*
H721.21851.13900.89970.0420*
H811.05730.92920.96450.0489*
H821.40000.91040.94910.0489*
H911.38341.24900.99010.0542*
H921.11231.39090.96900.0550*
H931.44371.36280.95290.0557*
H10.29810.20740.75230.0686*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0530 (8)0.0363 (8)0.0381 (7)0.0003 (7)0.0160 (5)0.0012 (6)
C20.0387 (10)0.0347 (12)0.0339 (9)0.0015 (9)0.0056 (7)0.0008 (8)
C30.0344 (9)0.0328 (11)0.0337 (9)0.0006 (8)0.0017 (7)0.0002 (8)
C40.0367 (10)0.0325 (11)0.0340 (9)0.0017 (8)0.0025 (7)0.0005 (8)
C50.0371 (10)0.0324 (12)0.0339 (9)0.0012 (8)0.0022 (8)0.0009 (8)
C60.0371 (10)0.0329 (11)0.0352 (9)0.0013 (8)0.0037 (8)0.0026 (8)
C70.0371 (10)0.0312 (11)0.0362 (9)0.0000 (8)0.0027 (7)0.0006 (8)
C80.0435 (11)0.0386 (12)0.0372 (10)0.0030 (10)0.0048 (8)0.0025 (9)
C90.0524 (12)0.0444 (13)0.0400 (10)0.0013 (10)0.0083 (9)0.0069 (9)
Geometric parameters (Å, º) top
O1—C21.4352 (19)C5—H520.989
O1—H10.900C6—C71.524 (2)
C2—C31.511 (2)C6—H610.996
C2—H210.995C6—H620.994
C2—H220.985C7—C81.526 (2)
C3—C41.530 (2)C7—H710.981
C3—H310.978C7—H720.977
C3—H320.974C8—C91.518 (3)
C4—C51.524 (2)C8—H810.981
C4—H410.985C8—H820.983
C4—H420.997C9—H910.976
C5—C61.526 (2)C9—H920.975
C5—H510.991C9—H930.963
C2—O1—H1104.271C5—C6—C7114.18 (15)
O1—C2—C3108.99 (14)C5—C6—H61108.123
O1—C2—H21108.491C7—C6—H61107.949
C3—C2—H21108.500C5—C6—H62108.683
O1—C2—H22110.091C7—C6—H62109.381
C3—C2—H22110.370H61—C6—H62108.373
H21—C2—H22110.347C6—C7—C8113.72 (15)
C2—C3—C4112.43 (14)C6—C7—H71109.287
C2—C3—H31108.570C8—C7—H71108.384
C4—C3—H31108.326C6—C7—H72109.046
C2—C3—H32110.178C8—C7—H72108.576
C4—C3—H32110.478H71—C7—H72107.659
H31—C3—H32106.656C7—C8—C9113.58 (15)
C3—C4—C5113.66 (14)C7—C8—H81109.385
C3—C4—H41109.118C9—C8—H81108.299
C5—C4—H41107.744C7—C8—H82108.380
C3—C4—H42108.716C9—C8—H82109.762
C5—C4—H42110.818H81—C8—H82107.252
H41—C4—H42106.525C8—C9—H91110.975
C4—C5—C6113.79 (14)C8—C9—H92113.709
C4—C5—H51108.527H91—C9—H92106.945
C6—C5—H51108.452C8—C9—H93108.389
C4—C5—H52109.870H91—C9—H93110.178
C6—C5—H52109.031H92—C9—H93106.540
H51—C5—H52106.934
 

References

First citationAllan, D. R. & Clark, S. J. (1999). Phys. Rev. B, 60, 6328–6334.  Web of Science CrossRef CAS Google Scholar
First citationAllan, D. R., Clark, S. J., Brugmans, M. J. P., Ackland, G. J. & Vos, W. L. (1998). Phys. Rev. B, 58, 809–812.  CrossRef Google Scholar
First citationAllan, D. R., Clark, S. J., Dawson, A., McGregor, P. A. & Parsons, S. (2002). Acta Cryst. B58, 1018–1024.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBridgman, P. W. (1925). Proc. Am. Acad. Arts Sci. 60, 305–315.  CrossRef Google Scholar
First citationDunoyer, J.-M. & Ribaud, G. (1951). C. R. Acad. Sci. 233, 41–42..  CAS Google Scholar
First citationJönsson, P.-G. (1976). Acta. Cryst. B32, 232–235.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationMcGregor, P. A., Allan, D. R., Clark, S. J. & Parsons, S. (2003). In preparation.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSteininger, R., Bilgram, J. H., Gramlich, V. & Petter, W. (1989). Z. Kristallogr. 187, 1–13.  CrossRef CAS Web of Science Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds