metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1,3,3-Tetra­phenyl-1,2,3-triphosphenium tetra­chloro­aluminate di­chloro­methane solvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Rd., Durham, England DH1 3LE
*Correspondence e-mail: k.b.dillon@durham.ac.uk

(Received 5 January 2005; accepted 7 January 2005; online 15 January 2005)

The title compound, (C27H26P3)[AlCl4]·CH2Cl2, was isolated from a mixture containing the triphosphenium ion and its protonated derivative. The central cation ring is non-planar, as in the analogous hexachlorostannate (though the structures are not isomorphous), and the P—P distances are intermediate between those typical for single and double bonds.

Comment

The cyclic triphosphenium cation was formed as its chloride salt by a reaction between 1,3-bis­(di­phenyl­phosphino)­propane (dppp) and PCl3 as shown below:

3Ph2P(CH2)3PPh2 + 2PCl3 [\rightarrow] 2[C17H26P3]+·Cl + [Ph2P(Cl)(CH2)3P(Cl)Ph2]2+·2Cl

A 2:1 mixture of AlCl3 and tBuCl was then added, both to protonate the cation and to complex the Cl ion as the tetra­chloro­aluminate(III) (Lochschmidt & Schmidpeter, 1985[Lochschmidt, S. & Schmidpeter, A. (1985). Z. Naturforsch. Teil B, 40, 765-773.]; Schmidpeter et al., 1985[Schmidpeter, A., Lochschmidt, S., Karaghiosoff, K. & Sheldrick, W. S. (1985). J. Chem. Soc. Chem. Commun. pp. 1447-1448.]; Burton et al., 2005[Burton, J. D., Deng, R. M. K., Dillon, K. B., Monks, P. K. & Olivey, R. J. (2005). Heteroatom Chem. Submitted.]). While clear NMR evidence for protonation was obtained, the crystals isolated from the solution were found to be from the title compound, (I[link]), i.e. the unprotonated ring cation as its tetra­chloro­aluminate(III) salt. This cation has been structurally characterized previously using X-ray crystallography as the hexa­chloro­stannate(IV) salt (Boon et al., 2000[Boon, J. A., Byers, H. L., Dillon, K. B., Goeta, A. E. & Longbottom, D. A. (2000). Heteroatom Chem. 11, 226-231.]). Selected bond distances and angles for the cations in the two structures are listed in Table 2[link].[link]

[Scheme 1]

Despite the close relationship between the hexa­chloro­stannate(IV) and (I[link]), the structures reported are very different, with the former in the space group I4/m and the tetra­chloro­aluminate in P[\overline 1].

In both the hexa­chloro­stannate(IV) salt and (I[link]) (Fig. 1[link]), the six-membered cyclic triphosphenium ring is non-planar, as expected. However, in the hexa­chloro­stannate, both P—P bond lengths are identical at 2.132 (1) Å since the cation occupies a position on a mirror plane, whereas in (I[link]) there is a slight asymmetry in these distances [P1—P2 = 2.1259 (5) Å and P1—P3 = 2.1310 (5) Å]. In both structures, the P—P distance is clearly intermediate between the normal values for P—P single (2.20–2.25 Å) and P=P double bonds (2.00–2.05 Å; Schmidpeter et al., 1983[Schmidpeter, A., Lochschmidt, S., Burget, G. & Sheldrick, W. S. (1983). Phospho­rus Sulfur, 18, 23-26.]). These P—P bond lengths are comparable to those in the analogous five-membered ring compound [2.122 (1) and 2.128 (2) Å; Schmidpeter et al., 1982[Schmidpeter, A., Lochschmidt, S. & Sheldrick, W. S. (1982). Angew. Chem. Int. Ed. Engl. 21, 63-64.]], to those in the related (planar) five-membered ring with a benzene backbone [2.124 (1) and 2.122 (1) Å; Barnham et al., 2001[Barnham, R. J., Deng, R. M. K., Dillon, K. B., Goeta, A. E., Howard, J. A. K. & Puschmann, H. (2001). Heteroatom Chem. 12, 501-510.]] and to those in a neutral six-membered ring compound containing three linked phospho­rus atoms [2.134 (1) Å; Karsch et al., 1995[Karsch, H. H., Witt, E., Schneider, A. & Herdtweck, E. (1995). Angew. Chem. Int. Ed. Engl. 34, 557-560.]]. The P2—P1—P3 bond angle is slightly smaller in (I[link]) at 95.58 (2)° compared with 96.44 (6)° in the hexa­chloro­stannate, possibly reflecting crystal packing effects.

In (I[link]), the charge is balanced by an isolated tetrahedral [AlCl4] anion, with Al—Cl distances between 2.1299 (5) and 2.1446 (5) Å [average 2.1361 (5) Å], and bond angles around the central Al atom between 108.22 (2) and 110.98 (2)° [average 109.47 (2)°]. There is also a di­chloro­methane solvent mol­ecule in the structure, which is ordered and fully occupied (as is the [AlCl4]), which is presumably due to the presence of weak C—H⋯Cl and Cl⋯Cl interactions (Table 1[link]), though the magnitude of the anisotropic displacement parameters indicates that there is slightly increased motion compared with the rest of the structure.

[Figure 1]
Figure 1
View of (I[link]) with selected atoms labelled. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Experimental

1,3-Bis­(di­phenyl­phosphino)­propane (dppp) (0.503 g, 1.22 mmol) was dissolved in CH2Cl2 and PCl3 (0.11 ml, 1.26 mmol) was added. The solution was stirred overnight; its 31P NMR spectrum then showed that the six-membered ring cyclic triphosphenium cation had formed as its chloride salt [δ 31P 23.1 (d, (2P), −209.4 (t, 1P; 1JPP = 424.8 Hz) (Burton et al., 2005[Burton, J. D., Deng, R. M. K., Dillon, K. B., Monks, P. K. & Olivey, R. J. (2005). Heteroatom Chem. Submitted.])]. AlCl3 (0.344 g, 2.58 mmol) and tBuCl (0.14 ml, 1.29 mmol) were placed in a Schlenk tube, and the above solution was added to the mixture, with stirring. After overnight stirring, the 31P{1H} NMR spectrum showed formation of the protonated derivative [δ 31P 13.8 (d, 2P), −156.1 (t, 1P; 1JPP = 226.0 Hz) (Burton et al., 2005[Burton, J. D., Deng, R. M. K., Dillon, K. B., Monks, P. K. & Olivey, R. J. (2005). Heteroatom Chem. Submitted.])]. This was confirmed by recording the proton-coupled spectrum, enabling 1JPH to be evaluated as 223.0 Hz. After filtration, the solution still showed the presence of the unprotonated ring cation. On cooling in a refrigerator, crystals of the title compound appeared after four weeks; the unprotonated ring was still present in the 31P NMR spectrum of the filtrate.

Crystal data
  • (C27H26P3)[AlCl4]·CH2Cl2

  • Mr = 697.09

  • Triclinic, [P\overline 1]

  • a = 9.4446 (1) Å

  • b = 12.4158 (1) Å

  • c = 15.0802 (2) Å

  • α = 72.645 (1)°

  • β = 78.207 (1)°

  • γ = 77.390 (1)°

  • V = 1628.61 (3) Å3

  • Z = 2

  • Dx = 1.422 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5459 reflections

  • θ = 2.5–28.3°

  • μ = 0.72 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.20 × 0.11 × 0.07 mm

Data collection
  • Bruker SMART 6000 CCD area-detector diffractometer

  • ω scans

  • Absorption correction: by integration (XPREP/SHELXTL; Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.869, Tmax = 0.951

  • 15853 measured reflections

  • 8053 independent reflections

  • 7277 reflections with I > 2σ(I)

  • Rint = 0.010

  • θmax = 28.3°

  • h = −11 → 12

  • k = −16 → 16

  • l = −20 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.075

  • S = 1.03

  • 8053 reflections

  • 343 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0359P)2 + 0.9727P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 1.42 e Å−3

  • Δρmin = −0.97 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Cl4 0.99 2.89 3.8275 (14) 158
C3—H3A⋯Cl3i 0.99 2.90 3.6609 (14) 134
C3—H3B⋯Cl4 0.99 2.90 3.8317 (14) 158
C36—H36⋯Cl1ii 0.95 2.85 3.7275 (16) 155
C1S—H1SA⋯Cl1iii 0.99 2.85 3.702 (2) 145
Symmetry codes: (i) 1-x,1-y,1-z; (ii) x,y-1,z; (iii) x-1,y-1,z.

Table 2
Comparison of selected bond distances (Å) and angles (°) for the cation in the title compound as its [SnCl6]2− (Boon et al., 2000[Boon, J. A., Byers, H. L., Dillon, K. B., Goeta, A. E. & Longbottom, D. A. (2000). Heteroatom Chem. 11, 226-231.]) and [AlCl4]salts

        [SnCl6]2− [AlCl4]
P1—P2 2.132 (1) 2.1259 (5)
P1—P3 2.132 (1) 2.1310 (5)
P2—C3 1.815 (3) 1.8146 (13)
P3—C1 1.815 (3) 1.8143 (13)
C1—C2 1.535 (4) 1.5356 (18)
C2—C3 1.535 (4) 1.5362 (18)
P2—C31 1.810 (3) 1.8025 (13)
P2—C41 1.815 (3) 1.8109 (13)
P3—C10 1.815 (3) 1.8063 (13)
P3—C21 1.810 (3) 1.8060 (14)
P2—P1—P3 96.44(6) 95.579 (18)
P1—P2—C3 113.2 (1) 113.68 (4)
P2—C3—C2 113.4 (2) 112.69 (9)
C3—C2—C1 113.5 (4) 113.29 (11)
C31—P2—C41 105.9 (1) 107.16 (6)
C41—P2—C3 110.2 (1) 106.01 (6)
C31—P2—P1 103.4 (1) 104.73 (5)
C21—P3—C1 110.2 (1) 108.17 (6)
C10—P3—P1 103.4 (1) 104.71 (5)
C21—P3—C10 105.9 (1) 107.44 (6)

All H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined using a riding model, with Uiso = 1.2Ueq(C). The largest residual electron-density peak is located 0.88 Å from atom Cl5, as is the deepest hole.

Data collection: SMART-NT (Bruker, 1998[Bruker (1998). SMART-NT (Version 5.0) and SAINT-NT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA. ]); cell refinement: SMART-NT; data reduction: SAINT-NT (Bruker, 1998[Bruker (1998). SMART-NT (Version 5.0) and SAINT-NT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA. ]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SMART-NT; data reduction: SMART-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b); molecular graphics: SHELXTL (Sheldrick, 1997a); software used to prepare material for publication: SHELXTL.

1,1,3,3-Tetraphenyl-1,2,3-triphosphenium tetrachloroaluminate dichloromethane solvate top
Crystal data top
(C27H26P3)[AlCl4]·CH2Cl2Z = 2
Mr = 697.09F(000) = 712
Triclinic, P1Dx = 1.422 Mg m3
Hall symbol: -P 1Melting point: Not measured K
a = 9.4446 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.4158 (1) ÅCell parameters from 5459 reflections
c = 15.0802 (2) Åθ = 2.5–28.3°
α = 72.645 (1)°µ = 0.72 mm1
β = 78.207 (1)°T = 120 K
γ = 77.390 (1)°Block, colourless
V = 1628.61 (3) Å30.2 × 0.11 × 0.07 mm
Data collection top
Bruker SMART CCD 6K area-detector
diffractometer
8053 independent reflections
Radiation source: fine-focus sealed tube7277 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
Detector resolution: 8 pixels mm-1θmax = 28.3°, θmin = 1.7°
ω scansh = 1112
Absorption correction: integration
(XPREP/SHELXTL; Sheldrick, 1997a)
k = 1616
Tmin = 0.869, Tmax = 0.951l = 2017
15853 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.9727P]
where P = (Fo2 + 2Fc2)/3
8053 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 1.42 e Å3
0 restraintsΔρmin = 0.97 e Å3
Special details top

Experimental. The data collection nominally covered full sphere of reciprocal Space, by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (25 s exposure) covering 0.3° in ω. Crystal to detector distance 4.51 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.56045 (4)0.45930 (3)0.18324 (2)0.01808 (7)
P20.51313 (4)0.36113 (3)0.32444 (2)0.01560 (7)
P30.34265 (4)0.55051 (3)0.17372 (2)0.01600 (7)
C10.25194 (15)0.59411 (11)0.27878 (9)0.0188 (2)
H1A0.30420.65050.28720.023*
H1B0.15070.63300.26940.023*
C20.24455 (14)0.49574 (12)0.36912 (9)0.0196 (2)
H2A0.20200.43520.35870.023*
H2B0.17810.52470.42000.023*
C30.39488 (14)0.44310 (11)0.40097 (9)0.0185 (2)
H3A0.38030.39250.46560.022*
H3B0.44390.50520.40260.022*
C100.36384 (15)0.67999 (11)0.08106 (9)0.0188 (2)
C110.46202 (16)0.74660 (12)0.08618 (10)0.0247 (3)
H110.51560.72360.13750.030*
C120.48110 (18)0.84668 (13)0.01596 (11)0.0300 (3)
H120.54810.89190.01920.036*
C130.40217 (19)0.88063 (13)0.05913 (11)0.0301 (3)
H130.41520.94920.10700.036*
C140.30497 (19)0.81480 (14)0.06422 (11)0.0303 (3)
H140.25130.83830.11560.036*
C150.28528 (17)0.71412 (13)0.00569 (10)0.0251 (3)
H150.21860.66890.00200.030*
C210.22155 (14)0.47883 (11)0.14163 (9)0.0190 (2)
C220.27765 (16)0.42033 (13)0.07254 (10)0.0244 (3)
H220.37710.41910.04380.029*
C230.18856 (19)0.36406 (14)0.04587 (12)0.0315 (3)
H230.22610.32560.00200.038*
C240.04398 (19)0.36422 (16)0.08953 (13)0.0363 (4)
H240.01670.32450.07220.044*
C250.01191 (18)0.42155 (16)0.15767 (13)0.0357 (4)
H250.11100.42120.18700.043*
C260.07568 (16)0.48016 (13)0.18395 (11)0.0262 (3)
H260.03630.52070.23030.031*
C310.68874 (14)0.31293 (11)0.36512 (9)0.0185 (2)
C320.75089 (16)0.38556 (13)0.39541 (10)0.0241 (3)
H320.69910.46000.39660.029*
C330.88822 (17)0.34893 (14)0.42368 (12)0.0294 (3)
H330.92980.39790.44520.035*
C340.96503 (18)0.24101 (15)0.42064 (14)0.0362 (4)
H341.05890.21600.44030.043*
C350.90506 (19)0.16953 (14)0.38887 (16)0.0404 (4)
H350.95860.09610.38590.049*
C360.76683 (17)0.20506 (13)0.36133 (13)0.0295 (3)
H360.72570.15580.33990.035*
C410.43240 (14)0.23518 (11)0.34279 (9)0.0177 (2)
C420.40349 (15)0.16479 (12)0.43380 (10)0.0212 (3)
H420.42670.18270.48560.025*
C430.34060 (16)0.06847 (12)0.44799 (11)0.0242 (3)
H430.32090.02040.50970.029*
C440.30660 (16)0.04240 (12)0.37240 (11)0.0264 (3)
H440.26380.02360.38250.032*
C450.33482 (17)0.11221 (13)0.28198 (11)0.0273 (3)
H450.31070.09430.23050.033*
C460.39858 (16)0.20850 (12)0.26699 (10)0.0226 (3)
H460.41900.25590.20510.027*
Al10.73228 (5)0.77435 (3)0.30260 (3)0.01928 (9)
Cl10.72424 (5)0.95008 (3)0.29338 (3)0.03079 (9)
Cl20.81252 (5)0.74412 (4)0.16798 (3)0.03431 (9)
Cl30.87542 (4)0.66723 (3)0.39908 (3)0.02840 (8)
Cl40.51639 (4)0.73263 (3)0.35352 (3)0.02857 (8)
C1S0.0779 (2)0.05980 (15)0.13328 (14)0.0401 (4)
H1SA0.02970.05690.14890.048*
H1SB0.11810.12000.09980.048*
Cl1S0.11409 (6)0.07262 (4)0.05784 (5)0.06626 (18)
Cl2S0.15236 (8)0.09790 (4)0.23782 (5)0.05955 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01489 (15)0.02038 (16)0.01723 (15)0.00291 (12)0.00128 (12)0.00317 (12)
P20.01491 (15)0.01548 (14)0.01654 (15)0.00244 (11)0.00321 (11)0.00397 (11)
P30.01514 (15)0.01713 (15)0.01526 (15)0.00306 (11)0.00257 (11)0.00317 (12)
C10.0188 (6)0.0186 (6)0.0181 (6)0.0005 (5)0.0025 (5)0.0054 (5)
C20.0175 (6)0.0220 (6)0.0163 (6)0.0007 (5)0.0005 (5)0.0042 (5)
C30.0199 (6)0.0188 (6)0.0163 (6)0.0016 (5)0.0030 (5)0.0048 (5)
C100.0189 (6)0.0181 (6)0.0173 (6)0.0018 (5)0.0022 (5)0.0028 (5)
C110.0265 (7)0.0218 (6)0.0256 (7)0.0065 (5)0.0069 (6)0.0019 (5)
C120.0330 (8)0.0223 (7)0.0328 (8)0.0106 (6)0.0039 (6)0.0010 (6)
C130.0376 (8)0.0218 (7)0.0232 (7)0.0041 (6)0.0001 (6)0.0017 (5)
C140.0367 (8)0.0290 (7)0.0204 (7)0.0019 (6)0.0080 (6)0.0004 (6)
C150.0272 (7)0.0258 (7)0.0219 (7)0.0049 (6)0.0079 (5)0.0024 (5)
C210.0181 (6)0.0196 (6)0.0192 (6)0.0045 (5)0.0053 (5)0.0025 (5)
C220.0225 (7)0.0283 (7)0.0242 (7)0.0045 (5)0.0045 (5)0.0091 (6)
C230.0345 (8)0.0338 (8)0.0336 (8)0.0052 (6)0.0123 (7)0.0155 (7)
C240.0321 (8)0.0397 (9)0.0459 (10)0.0126 (7)0.0164 (7)0.0128 (8)
C250.0218 (7)0.0480 (10)0.0409 (9)0.0139 (7)0.0041 (6)0.0116 (8)
C260.0190 (6)0.0335 (7)0.0268 (7)0.0058 (6)0.0029 (5)0.0084 (6)
C310.0164 (6)0.0194 (6)0.0191 (6)0.0023 (5)0.0040 (5)0.0036 (5)
C320.0200 (6)0.0266 (7)0.0285 (7)0.0013 (5)0.0053 (5)0.0122 (6)
C330.0214 (7)0.0386 (8)0.0339 (8)0.0046 (6)0.0082 (6)0.0159 (7)
C340.0216 (7)0.0386 (9)0.0497 (10)0.0014 (6)0.0161 (7)0.0109 (8)
C350.0261 (8)0.0251 (8)0.0709 (13)0.0051 (6)0.0182 (8)0.0134 (8)
C360.0229 (7)0.0211 (7)0.0470 (9)0.0012 (5)0.0100 (6)0.0115 (6)
C410.0154 (6)0.0162 (5)0.0211 (6)0.0021 (4)0.0029 (5)0.0048 (5)
C420.0216 (6)0.0209 (6)0.0211 (6)0.0037 (5)0.0042 (5)0.0047 (5)
C430.0231 (7)0.0196 (6)0.0267 (7)0.0050 (5)0.0022 (5)0.0015 (5)
C440.0242 (7)0.0201 (6)0.0362 (8)0.0067 (5)0.0040 (6)0.0079 (6)
C450.0303 (7)0.0268 (7)0.0303 (7)0.0083 (6)0.0079 (6)0.0113 (6)
C460.0251 (7)0.0223 (6)0.0213 (6)0.0048 (5)0.0045 (5)0.0059 (5)
Al10.0219 (2)0.01810 (18)0.01827 (19)0.00393 (15)0.00434 (15)0.00416 (15)
Cl10.0405 (2)0.01926 (15)0.03274 (19)0.00635 (14)0.00286 (15)0.00794 (13)
Cl20.0443 (2)0.0402 (2)0.02303 (17)0.01149 (17)0.00072 (15)0.01501 (15)
Cl30.02176 (16)0.03175 (18)0.02578 (17)0.00138 (13)0.00626 (13)0.00072 (13)
Cl40.02303 (16)0.03265 (18)0.03203 (18)0.00910 (14)0.00684 (14)0.00659 (14)
C1S0.0458 (10)0.0322 (8)0.0433 (10)0.0166 (7)0.0021 (8)0.0100 (7)
Cl1S0.0487 (3)0.0339 (2)0.0981 (5)0.0129 (2)0.0053 (3)0.0098 (3)
Cl2S0.0791 (4)0.0378 (2)0.0722 (4)0.0077 (2)0.0342 (3)0.0163 (2)
Geometric parameters (Å, º) top
P1—P22.1259 (5)C24—H240.9500
P1—P32.1310 (5)C25—C261.393 (2)
P2—C311.8025 (13)C25—H250.9500
P2—C411.8109 (13)C26—H260.9500
P2—C31.8146 (13)C31—C361.3922 (19)
P3—C211.8060 (14)C31—C321.3973 (19)
P3—C101.8063 (13)C32—C331.387 (2)
P3—C11.8143 (13)C32—H320.9500
C1—C21.5356 (18)C33—C341.386 (2)
C1—H1A0.9900C33—H330.9500
C1—H1B0.9900C34—C351.386 (2)
C2—C31.5362 (18)C34—H340.9500
C2—H2A0.9900C35—C361.390 (2)
C2—H2B0.9900C35—H350.9500
C3—H3A0.9900C36—H360.9500
C3—H3B0.9900C41—C461.3927 (19)
C10—C151.3935 (19)C41—C421.3991 (19)
C10—C111.3971 (19)C42—C431.3908 (19)
C11—C121.390 (2)C42—H420.9500
C11—H110.9500C43—C441.387 (2)
C12—C131.392 (2)C43—H430.9500
C12—H120.9500C44—C451.389 (2)
C13—C141.382 (2)C44—H440.9500
C13—H130.9500C45—C461.393 (2)
C14—C151.394 (2)C45—H450.9500
C14—H140.9500C46—H460.9500
C15—H150.9500Al1—Cl12.1299 (5)
C21—C261.3938 (19)Al1—Cl22.1302 (5)
C21—C221.3970 (19)Al1—Cl32.1396 (5)
C22—C231.386 (2)Al1—Cl42.1446 (5)
C22—H220.9500Cl2S—C1S1.751 (2)
C23—C241.389 (3)C1S—Cl1S1.7564 (18)
C23—H230.9500C1S—H1SA0.9900
C24—C251.375 (3)C1S—H1SB0.9900
P2—P1—P395.579 (18)C25—C24—C23120.47 (15)
C31—P2—C41107.16 (6)C25—C24—H24119.8
C31—P2—C3107.94 (6)C23—C24—H24119.8
C41—P2—C3106.01 (6)C24—C25—C26120.47 (15)
C31—P2—P1104.73 (5)C24—C25—H25119.8
C41—P2—P1116.88 (5)C26—C25—H25119.8
C3—P2—P1113.68 (4)C25—C26—C21119.43 (14)
C21—P3—C10107.44 (6)C25—C26—H26120.3
C21—P3—C1108.17 (6)C21—C26—H26120.3
C10—P3—C1106.83 (6)C36—C31—C32119.68 (13)
C21—P3—P1115.27 (5)C36—C31—P2119.79 (11)
C10—P3—P1104.71 (5)C32—C31—P2120.44 (10)
C1—P3—P1113.86 (5)C33—C32—C31119.96 (13)
C2—C1—P3114.58 (9)C33—C32—H32120.0
C2—C1—H1A108.6C31—C32—H32120.0
P3—C1—H1A108.6C34—C33—C32120.16 (14)
C2—C1—H1B108.6C34—C33—H33119.9
P3—C1—H1B108.6C32—C33—H33119.9
H1A—C1—H1B107.6C35—C34—C33120.08 (14)
C1—C2—C3113.29 (11)C35—C34—H34120.0
C1—C2—H2A108.9C33—C34—H34120.0
C3—C2—H2A108.9C34—C35—C36120.15 (15)
C1—C2—H2B108.9C34—C35—H35119.9
C3—C2—H2B108.9C36—C35—H35119.9
H2A—C2—H2B107.7C35—C36—C31119.95 (14)
C2—C3—P2112.69 (9)C35—C36—H36120.0
C2—C3—H3A109.1C31—C36—H36120.0
P2—C3—H3A109.1C46—C41—C42120.02 (12)
C2—C3—H3B109.1C46—C41—P2120.37 (10)
P2—C3—H3B109.1C42—C41—P2119.61 (10)
H3A—C3—H3B107.8C43—C42—C41119.62 (13)
C15—C10—C11119.92 (13)C43—C42—H42120.2
C15—C10—P3121.70 (11)C41—C42—H42120.2
C11—C10—P3118.38 (10)C44—C43—C42120.20 (13)
C12—C11—C10119.85 (14)C44—C43—H43119.9
C12—C11—H11120.1C42—C43—H43119.9
C10—C11—H11120.1C43—C44—C45120.34 (13)
C11—C12—C13120.06 (14)C43—C44—H44119.8
C11—C12—H12120.0C45—C44—H44119.8
C13—C12—H12120.0C44—C45—C46119.88 (14)
C14—C13—C12120.12 (14)C44—C45—H45120.1
C14—C13—H13119.9C46—C45—H45120.1
C12—C13—H13119.9C41—C46—C45119.93 (13)
C13—C14—C15120.29 (14)C41—C46—H46120.0
C13—C14—H14119.9C45—C46—H46120.0
C15—C14—H14119.9Cl1—Al1—Cl2109.61 (2)
C10—C15—C14119.76 (14)Cl1—Al1—Cl3110.55 (2)
C10—C15—H15120.1Cl2—Al1—Cl3108.60 (2)
C14—C15—H15120.1Cl1—Al1—Cl4108.87 (2)
C26—C21—C22119.79 (13)Cl2—Al1—Cl4110.98 (2)
C26—C21—P3121.92 (11)Cl3—Al1—Cl4108.22 (2)
C22—C21—P3118.28 (10)Cl2S—C1S—Cl1S113.64 (11)
C23—C22—C21120.18 (14)Cl2S—C1S—H1SA108.8
C23—C22—H22119.9Cl1S—C1S—H1SA108.8
C21—C22—H22119.9Cl2S—C1S—H1SB108.8
C22—C23—C24119.64 (15)Cl1S—C1S—H1SB108.8
C22—C23—H23120.2H1SA—C1S—H1SB107.7
C24—C23—H23120.2
P3—P1—P2—C31160.15 (5)P3—C21—C22—C23179.94 (12)
P3—P1—P2—C4181.48 (5)C21—C22—C23—C241.3 (2)
P3—P1—P2—C342.57 (5)C22—C23—C24—C251.2 (3)
P2—P1—P3—C2185.47 (5)C23—C24—C25—C260.1 (3)
P2—P1—P3—C10156.71 (5)C24—C25—C26—C211.0 (3)
P2—P1—P3—C140.39 (5)C22—C21—C26—C250.9 (2)
C21—P3—C1—C273.30 (11)P3—C21—C26—C25178.79 (12)
C10—P3—C1—C2171.31 (10)C41—P2—C31—C3629.28 (14)
P1—P3—C1—C256.22 (11)C3—P2—C31—C36143.06 (12)
P3—C1—C2—C369.03 (13)P1—P2—C31—C3695.50 (12)
C1—C2—C3—P270.70 (13)C41—P2—C31—C32154.40 (11)
C31—P2—C3—C2176.15 (9)C3—P2—C31—C3240.62 (13)
C41—P2—C3—C269.30 (10)P1—P2—C31—C3280.82 (12)
P1—P2—C3—C260.45 (10)C36—C31—C32—C331.6 (2)
C21—P3—C10—C154.74 (14)P2—C31—C32—C33177.89 (12)
C1—P3—C10—C15111.14 (12)C31—C32—C33—C341.0 (2)
P1—P3—C10—C15127.77 (11)C32—C33—C34—C350.3 (3)
C21—P3—C10—C11175.25 (11)C33—C34—C35—C361.0 (3)
C1—P3—C10—C1168.87 (12)C34—C35—C36—C310.4 (3)
P1—P3—C10—C1152.21 (12)C32—C31—C36—C350.9 (2)
C15—C10—C11—C120.1 (2)P2—C31—C36—C35177.24 (14)
P3—C10—C11—C12179.91 (12)C31—P2—C41—C46119.56 (11)
C10—C11—C12—C130.2 (2)C3—P2—C41—C46125.36 (11)
C11—C12—C13—C140.2 (2)P1—P2—C41—C462.51 (13)
C12—C13—C14—C150.0 (2)C31—P2—C41—C4260.71 (12)
C11—C10—C15—C140.1 (2)C3—P2—C41—C4254.37 (12)
P3—C10—C15—C14179.92 (12)P1—P2—C41—C42177.76 (9)
C13—C14—C15—C100.1 (2)C46—C41—C42—C430.2 (2)
C10—P3—C21—C26104.38 (12)P2—C41—C42—C43179.58 (11)
C1—P3—C21—C2610.61 (13)C41—C42—C43—C440.1 (2)
P1—P3—C21—C26139.34 (11)C42—C43—C44—C450.1 (2)
C10—P3—C21—C2275.91 (12)C43—C44—C45—C460.5 (2)
C1—P3—C21—C22169.10 (11)C42—C41—C46—C450.5 (2)
P1—P3—C21—C2240.37 (12)P2—C41—C46—C45179.20 (11)
C26—C21—C22—C230.2 (2)C44—C45—C46—C410.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl40.992.893.8275 (14)158
C3—H3A···Cl3i0.992.903.6609 (14)134
C3—H3B···Cl40.992.903.8317 (14)158
C36—H36···Cl1ii0.952.853.7275 (16)155
C1S—H1SA···Cl1iii0.992.853.702 (2)145
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x1, y1, z.
Comparison of selected bond distances (Å) and angles (°) for the cation in the title compound as its [SnCl6]2- (Boon et al. 2000) and [AlCl4]- salts top
[SnCl6]2-[AlCl4]-
P1—P22.132 (1)2.1259 (5)
P1—P32.132 (1)2.1310 (5)
P2—C31.815 (3)1.8146 (13)
P3—C11.815 (3)1.8143 (13)
C1—C21.535 (4)1.5356 (18)
C2—C31.535 (4)1.5362 (18)
P2—C311.810 (3)1.8025 (13)
P2—C411.815 (3)1.8109 (13)
P3—C101.815 (3)1.8063 (13)
P3—C211.810 (3)1.8060 (14)
P2—P1—P396.44 (6)95.579 (18)
P1—P2—C3113.2 (1)113.68 (4)
P2—C3—C2113.4 (2)112.69 (9)
C3—C2—C1113.5 (4)113.29 (11)
C31—P2—C41105.9 (1)107.16 (6)
C41—P2—C3110.2 (1)106.01 (6)
C31—P2—P1103.4 (1)104.73 (5)
C21—P3—C1110.2 (1)108.17 (6)
C10—P3—P1103.4 (1)104.71 (5)
C21—P3—C10105.9 (1)107.44 (6)
 

Acknowledgements

We thank Dr A. Kenwright for recording some of the NMR spectra, The Royal Society for an award under their Developing World study programme (to RMKD), and the EPSRC for a studentship (to ALT).

References

First citationBarnham, R. J., Deng, R. M. K., Dillon, K. B., Goeta, A. E., Howard, J. A. K. & Puschmann, H. (2001). Heteroatom Chem. 12, 501–510.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoon, J. A., Byers, H. L., Dillon, K. B., Goeta, A. E. & Longbottom, D. A. (2000). Heteroatom Chem. 11, 226–231.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART-NT (Version 5.0) and SAINT-NT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurton, J. D., Deng, R. M. K., Dillon, K. B., Monks, P. K. & Olivey, R. J. (2005). Heteroatom Chem. Submitted.  Google Scholar
First citationKarsch, H. H., Witt, E., Schneider, A. & Herdtweck, E. (1995). Angew. Chem. Int. Ed. Engl. 34, 557–560.  CSD CrossRef CAS Web of Science Google Scholar
First citationLochschmidt, S. & Schmidpeter, A. (1985). Z. Naturforsch. Teil B, 40, 765–773.  Google Scholar
First citationSchmidpeter, A., Lochschmidt, S., Burget, G. & Sheldrick, W. S. (1983). Phospho­rus Sulfur, 18, 23–26.  CrossRef CAS Web of Science Google Scholar
First citationSchmidpeter, A., Lochschmidt, S., Karaghiosoff, K. & Sheldrick, W. S. (1985). J. Chem. Soc. Chem. Commun. pp. 1447–1448.  CrossRef Web of Science Google Scholar
First citationSchmidpeter, A., Lochschmidt, S. & Sheldrick, W. S. (1982). Angew. Chem. Int. Ed. Engl. 21, 63–64.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1997a). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds