organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-4-[(4-Di­methyl­amino­phenyl)ethenyl]-N-methyl­quinolinium p-toluene­sulfonate monohydrate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Manchester, Manchester M13 9PL, England, bMolecular Materials Research Center, Beckman Institute, MC 139-74, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA, and cEPSRC National Crystallography Service, School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England
*Correspondence e-mail: b.coe@man.ac.uk

(Received 14 January 2005; accepted 20 January 2005; online 29 January 2005)

In the title salt, C20H21N[{}_{2}^{+}]·C7H7SO[{}_{3}^{- }]·H2O, the quinolinium cation exhibits a large molecular non-linear optical (NLO) response, as determined by Stark spectroscopy, but crystallization in the centrosymmetric space group P[\overline{1}] precludes significant bulk NLO effects. Intermolecular O—H⋯O and weak C—H⋯O hydrogen bonding links the constituent mol­ecules into a three-dimensional network.

Comment

The synthesis and study of molecular compounds with non-linear optical (NLO) properties has attracted much attention, because such materials hold promise for applications in optoelectronic and photonic devices (Bosshard et al., 1995[Bosshard, Ch., Sutter, K., Prêtre, Ph., Hulliger, J., Flörsheimer, M., Kaatz, P. & Günter, P. (1995). Organic Nonlinear Optical Materials. Advances in Nonlinear Optics, Vol. 1. Amsterdam: Gordon & Breach.]; Nalwa & Miyata, 1997[Nalwa, H. S. & Miyata, S. (1997). Editors. Nonlinear Optics of Organic Molecules and Polymers. Boca Raton: CRC Press.]). In order to create efficient quadratic (second-order) NLO materials, both the molecular and bulk properties must be optimized. The majority of promising compounds constitute dipolar donor–π-acceptor (Dπ-A) mol­ecules and these must be arranged noncentrosym­metrically in order to afford macroscopic structures capable of showing bulk quadratic NLO effects, such as frequency doubling (second-harmonic generation, SHG).

[Scheme 1]

Within the diverse range of existing NLO compounds, stilbazolium salts are particularly attractive for device applications (Lee & Kim, 1999[Lee, K.-S. & Kim, O.-K. (1999). Photonics Sci. News, 4, 9-20.]). The archetypal compound trans-4′-(dimethyl­amino)-N-methyl-4-stilbazolium para-toluene­sulfonate (DAST) displays very marked bulk quadratic NLO activity, as originally shown by powder SHG studies (Marder et al., 1989[Marder, S. R., Perry, J. W. & Schaefer, W. P. (1989). Science, 245, 626-628.], 1994[Marder, S. R., Perry, J. W. & Yakymyshyn, C. P. (1994). Chem. Mater. 6, 1137-1147.]). At the molecular level, quadratic NLO effects are determined by first hyperpolarizabilities β, and static (`off-resonance') first hyperpolarizabilities β0 are normally used when comparing active compounds. Hyper-Rayleigh scattering experiments with DAST using a 1064 nm laser yielded a large β0 value of 364 × 10−30 esu (Duan et al., 1995[Duan, X.-M., Okada, S., Oikawa, H., Matsuda, H. & Nakanishi, H. (1995). Mol. Cryst. Liq. Cryst. 267, 89-94.]). DAST has therefore been intensively investigated over recent years (Meier et al., 2000[Meier, U., Bösch, M., Bosshard, Ch. & Günter, P. (2000). Synth. Met. 109, 19-22.]; Kaino et al., 2002[Kaino, T., Cai, B. & Takayama, K. (2002). Adv. Funct. Mater. 12, 599-603.]), including the growth of large high-quality single crystals (Pan et al., 1996[Pan, F., Wong, M. S., Bosshard, Ch. & Günter, P. (1996). Adv. Mater. 8, 592-596.]; Sohma et al., 1999[Sohma, S., Takahashi, H., Taniuchi, T. & Ito, H. (1999). Chem. Phys. 245, 359-364.]; Mohan Kumar et al., 2003[Mohan Kumar, R., Rajan Babu, D., Ravi, G. & Jayavel, R. (2003). J. Cryst. Growth, 250, 113-117.]), and the demonstration of prototype NLO devices for parametric interactions and electro-optical modulation (Meier et al. 1998[Meier, U., Bösch, M., Bosshard, Ch., Pan, F. & Günter, P. (1998). J. Appl. Phys. 83, 3486-3489.]; Bhowmik et al. 2000[Bhowmik, A. K., Tan, S., Ahyi, A. C., Mishra, A. & Thakur, M. (2000). Polym. Mater. Sci. Eng. 83, 169-170.]; Geis et al. 2004[Geis, W., Sinta, R., Mowers, W., Deneault, S. J., Marchant, M. F., Krohn, K. E., Spector, S. J., Calawa, D. R. & Lyszczarz, T. M. (2004). Appl. Phys. Lett. 84, 3729-3731.]; Taniuchi et al. 2004[Taniuchi, T., Okada, S. & Nakanishi, H. (2004). J. Appl. Phys. 95, 5984-5988.]).

In addition to their NLO properties, Dπ-A mol­ecules display intense low-energy absorption bands which arise from π(D) → π*(A) intramolecular charge-transfer (ICT) excitations. A two-state model (Oudar & Chemla, 1977[Oudar, J. L. & Chemla, D. S. (1977). J. Chem. Phys. 66, 2664-2668.]; Zyss & Oudar, 1982[Zyss, J. & Oudar, J. L. (1982). Phys. Rev. A, 26, 2016-2027.]) shows that β0 is proportional to the product of the square of the ICT transition dipole moment μ12 and the dipole moment change Δμ12, and inversely proportional to the square of the ICT energy Emax. Therefore, β0 increases with increasing intensity and decreasing energy of the ICT absorption. The ICT band of the PF6- salt of the cation in (I)[link] ([DAQ+]PF6- ) is red-shifted by ca 0.34 eV, but is ca 85% as intense, when compared with that of the PF6- salt of the chromophore in DAST ([DAS+]PF6- ; λmax = 470 nm, = 42 800 M−1 dm3 in acetonitrile; Coe et al., 2002[Coe, B. J., Harris, J. A., Asselberghs, I., Clays, K., Olbrechts, G., Persoons, A., Hupp, J. T., Johnson, R. C., Coles, S. J., Hursthouse, M. B. & Nakatani, K. (2002). Adv. Funct. Mater. 12, 110-116.]). This marked red-shifting suggests that the β0 value of (I)[link] may be larger than that of DAST. We have previously determined β0 for [DAS+]PF6- using Stark (electroabsorption) spectroscopy (Coe et al., 2003[Coe, B. J., Harris, J. A., Asselberghs, I., Wostyn, K., Clays, K., Persoons, A., Brunschwig, B. S., Coles, S. J., Gelbrich, T., Light, M. E., Hursthouse, M. B. & Nakatani, K. (2003). Adv. Funct. Mater. 13, 347-357.]), and have now applied the same approach to [DAQ+]PF6- . By applying the two-state equation β0 = 3Δμ12(μ12)2/(Emax)2 to data obtained from butyronitrile glasses at 77 K, the results are 236 and 255 × 10−30 esu for [DAS+]PF6- and [DAQ+]PF6- , respectively. The lower-than-expected increase in β0 is attributable to a decrease in Δμ12 from 16.3 to 13.3 D on moving from [DAS+]PF6- to [DAQ+]PF6- , whilst μ12 remains constant at 9.1 D.

The molecular structure of the cation in (I)[link] is as indicated by 1H NMR spectroscopy, and similar to that observed previously in the corresponding hexamolybdate salt (Xu et al., 1995[Xu, X.-X., You, X.-Z. & Huang, X.-Y. (1995). Polyhedron, 14, 1815-1824.]), although the precision of the present structure is rather higher. The conjugated aromatic system is essentially planar, with a maximum deviation from the mean plane of 0.094 Å for atom C24, and this plane forms an angle of 77.48 (6) ° with the benzene ring plane of the tosyl­ate anion.

The crystal packing structure of (I)[link] is critical in relation to quadratic NLO properties. DAST crystallizes noncentro­symmetrically in the space group Cc (Marder et al., 1989[Marder, S. R., Perry, J. W. & Schaefer, W. P. (1989). Science, 245, 626-628.]), but unfortunately (I)[link] adopts the centrosymmetric space group P[\overline{1}] and is hence not suitable for bulk NLO effects. Perhaps not unexpectedly, replacement of the pyridinium ring in DAST with a quinolinium group changes the crystallization behaviour. In fact, the presence of water mol­ecules within the crystal structure of (I)[link] leads to a network of hydrogen bonds involving water, the tosyl­ate anion and the chromophoric cation. The water mol­ecules and tosyl­ate anions form centrosymmetric O—H⋯O hydrogen-bonded rings, and weak intermolecular C—H⋯O hydrogen bonds link these rings to the quinolinium moieties to form a three-dimensional network (Fig. 2[link]).

It has been proposed that the natural tendency towards antiparallel dipole aligment between the cations in DAST is overcome by the presence of the intervening tosyl­ate anions (Marder et al., 1989[Marder, S. R., Perry, J. W. & Schaefer, W. P. (1989). Science, 245, 626-628.], 1994[Marder, S. R., Perry, J. W. & Yakymyshyn, C. P. (1994). Chem. Mater. 6, 1137-1147.]), but such an effect is not evident in (I)[link]. Although this outcome is rather disappointing, salts of the cation in (I)[link] with other anions may well adopt different crystal structures capable of showing bulk NLO behaviour.

[Figure 1]
Figure 1
A representation of the molecular structure of (I)[link], with 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
A representation of the hydrogen-bonding interactions (dashed lines) in (I)[link].

Experimental

The compound trans-4-[(4-dimethyl­amino­phenyl)-2-ethenyl]-N-methyl­quinolinium iodide (Bahner et al., 1951[Bahner, C. T., Pace, E. S. & Prevost, R. (1951). J. Am. Chem. Soc. 73, 3407-3408.]) was synthesized by adapting a method which has been applied previously to the analogous dibutyl­amine compound (Alain et al., 2000[Alain, V., Blanchard-Desce, M., Ledoux-Rak, I. & Zyss, J. (2000). Chem. Commun. pp. 353-354.]). Piperidine (3 drops) was added to a solution of 4-methyl-N-methyl­quinolinium iodide (276 mg, 0.968 mmol) and 4-(dimethyl­amino)benzaldehyde (289 mg, 1.937 mmol) in methanol (20 ml). The solution immediately turned purple and was stirred under reflux for 4 h. After cooling to room temperature, the solution was added dropwise to diethyl ether to afford a dark precipitate which was filtered off, washed with diethyl ether and then water, and dried under vacuum (yield 349 mg, 87%). A portion of this crude material (125 mg, 0.300 mmol) was metathesized to (I)[link] by precipitation from water–aqueous sodium para-toluene­sulfonate (yield 115 mg, 83%). Compound (I)[link] has been reported previously (Metzger et al., 1969[Metzger, J., Larive, H., Dennilauler, R, Baralle, R. & Gaurat, C. (1969). Bull. Soc. Chim. Fr. pp. 1284-1293.]). Crystals of (I)[link] suitable for single-crystal X-ray diffraction measurements were obtained by slow diffusion of diethyl ether vapour into a methanol solution of (I)[link] at room temperature; note that the same method is used to produce SHG-active crystals of DAST (Marder et al., 1994[Marder, S. R., Perry, J. W. & Yakymyshyn, C. P. (1994). Chem. Mater. 6, 1137-1147.]). Analysis, found: C 67.99, H 6.35, N 5.86, S 6.69%; calculated for C27H28N2O3S·H2O: C 67.76, H 6.32, N 5.85, S 6.70%. For spectroscopic studies, a portion of the crude iodide salt was also metathesized to the hexafluoro­phosphate (previously unreported, to our knowledge) by precipitation from water–aqueous ammonium hexafluoro­phosphate. Analysis, found: C 55.19, H 4.63, N 6.33%, calculated for C20H21F6N2P: C 55.30, H 4.87, N 6.45%. Spectroscopic analysis: 1H NMR (200 MHz, CD3COCD3, δ, p.p.m.): 9.12 (1H, d, J = 6.8 Hz, C5H2N), 9.02 (1H, d, J = 8.5 Hz, C6H4), 8.46 (1H, d, J = 8.4 Hz, C6H4), 8.38 (1H, d, J = 6.6 Hz, C5H2N), 8.27 (1H, t, J = 7.9 Hz, C6H4), 8.21 (1H, d, J = 15.7 Hz, CH), 8.08 (1H, d, J = 16.2 Hz, CH), 8.03 (1H, t, J = 7.7 Hz, C6H4), 7.86 (2H, d, J = 9.0 Hz, C6H4—NMe2), 6.86 (2H, d, J = 9.1 Hz, C6H4—NMe2), 4.68 (3H, s, Me), 3.13 (6H, s, NMe2); λmax (nm) [ (M−1 dm3)] (MeCN): 540 (36 700), 306 (12 400), 242 (17 900).

Crystal data
  • C20H21N[{}_{2}^{+}]·C7H7O3S·H2O

  • Mr = 478.59

  • Triclinic, [P \overline 1]

  • a = 8.033 (4) Å

  • b = 10.550 (7) Å

  • c = 14.662 (9) Å

  • α = 97.75 (7)°

  • β = 97.87 (4)°

  • γ = 103.97 (5)°

  • V = 1176.2 (12) Å3

  • Z = 2

  • Dx = 1.351 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4905 reflections

  • θ = 2.9–27.5°

  • μ = 0.18 mm−1

  • T = 120 (2) K

  • Slab, dark green

  • 0.6 × 0.4 × 0.14 mm

Data collection
  • Bruker-Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.902, Tmax = 0.976

  • 22 326 measured reflections

  • 5337 independent reflections

  • 4160 reflections with I > 2σ(I)

  • Rint = 0.041

  • θmax = 27.5°

  • h = −10 → 10

  • k = −13 → 13

  • l = −19 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.126

  • S = 1.02

  • 5337 reflections

  • 320 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0684P)2 + 0.4268P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.047

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.53 e Å−3

  • Extinction correction: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.])

  • Extinction coefficient: 0.016 (4)

Table 1
Selected geometric parameters (Å, °)

C8—N1 1.453 (3)
C9—N1 1.444 (3)
C10—N1 1.368 (2)
C10—C11 1.400 (3)
C10—C15 1.413 (3)
C11—C12 1.379 (3)
C12—C13 1.399 (2)
C13—C14 1.404 (3)
C13—C16 1.447 (2)
C14—C15 1.375 (2)
C16—C17 1.348 (2)
C17—C18 1.447 (2)
C18—C19 1.390 (2)
C18—C22 1.433 (2)
C19—C20 1.372 (2)
C20—N2 1.328 (2)
C21—N2 1.473 (2)
C22—C27 1.414 (2)
C22—C23 1.418 (2)
C23—N2 1.379 (2)
C23—C24 1.405 (2)
C24—C25 1.366 (2)
C25—C26 1.398 (3)
C26—C27 1.365 (2)
N1—C10—C11 120.83 (17)
N1—C10—C15 121.65 (17)
C11—C10—C15 117.51 (16)
C12—C11—C10 120.62 (17)
C11—C12—C13 122.12 (17)
C12—C13—C14 117.18 (15)
C12—C13—C16 119.35 (16)
C14—C13—C16 123.45 (16)
C15—C14—C13 121.21 (16)
C14—C15—C10 121.29 (17)
C17—C16—C13 127.15 (15)
C16—C17—C18 124.17 (15)
C19—C18—C22 116.75 (15)
C19—C18—C17 121.72 (15)
C22—C18—C17 121.53 (14)
C20—C19—C18 120.79 (16)
N2—C20—C19 122.84 (15)
C27—C22—C23 117.05 (15)
C27—C22—C18 122.72 (14)
C23—C22—C18 120.21 (14)
N2—C23—C24 120.25 (14)
N2—C23—C22 118.87 (15)
C24—C23—C22 120.87 (15)
C25—C24—C23 119.84 (15)
C24—C25—C26 120.22 (16)
C27—C26—C25 120.68 (15)
C26—C27—C22 121.24 (15)
C10—N1—C9 121.38 (17)
C10—N1—C8 120.21 (18)
C9—N1—C8 117.97 (17)
C20—N2—C23 120.50 (14)
C20—N2—C21 118.80 (14)
C23—N2—C21 120.61 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H2O⋯O1i 0.86 (2) 2.07 (2) 2.922 (3) 175 (2)
O4—H10⋯O2 0.89 (2) 1.95 (3) 2.838 (3) 169 (2)
C14—H14⋯O3 0.95 2.41 3.359 (3) 174
C17—H17⋯O3 0.95 2.49 3.435 (3) 175
C27—H27⋯O3 0.95 2.34 3.282 (3) 172
C3—H3⋯O2ii 0.95 2.59 3.535 (3) 171
C20—H20⋯O1iii 0.95 2.37 3.290 (3) 162
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) x+1, y+1, z.

The H atoms of the water mol­ecule were refined independently with isotropic displacement parameters. H atoms bonded to C atoms were placed in calculated positions, with C—H distances of 0.95 Å [0.98 Å for methyl], and included in the refinement in a riding-model approximation, with Uiso = 1.2Ueq(C), or 1.5Ueq(C) for methyl groups.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: Please provide missing details.

trans-4-[(4-Dimethylaminophenyl)ethenyl]-N-methylquinolinium p-toluenesulfonate monohydrate top
Crystal data top
C20H21N2+·C7H7O3S·H2OZ = 2
Mr = 478.59F(000) = 508
Triclinic, P1Dx = 1.351 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.033 (4) ÅCell parameters from 4905 reflections
b = 10.550 (7) Åθ = 2.9–27.5°
c = 14.662 (9) ŵ = 0.18 mm1
α = 97.75 (7)°T = 120 K
β = 97.87 (4)°Slab, dark green
γ = 103.97 (5)°0.6 × 0.4 × 0.14 mm
V = 1176.2 (12) Å3
Data collection top
Bruker-Nonius KappaCCD area-detector
diffractometer
4160 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.902, Tmax = 0.976k = 1313
22326 measured reflectionsl = 1918
5337 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0684P)2 + 0.4268P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.047
5337 reflectionsΔρmax = 0.28 e Å3
320 parametersΔρmin = 0.53 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (4)
Special details top

Experimental. The Tmin and Tmax values reported are those calculated from the SHELX SIZE command. The ratio of experimental transmission factors from SADABS is 0.724295.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles. Correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1870 (2)0.49093 (15)0.22545 (11)0.0239 (3)
C20.0344 (2)0.50065 (17)0.25634 (12)0.0289 (4)
H20.03820.5380.31950.035*
C30.1235 (2)0.45625 (18)0.19555 (13)0.0323 (4)
H30.22720.46480.21710.039*
C40.1321 (2)0.39965 (18)0.10393 (13)0.0345 (4)
C50.0215 (3)0.3901 (2)0.07428 (13)0.0433 (5)
H50.01750.35160.01130.052*
C60.1807 (2)0.4353 (2)0.13394 (12)0.0363 (4)
H60.28460.42810.11210.044*
C70.3049 (3)0.3485 (2)0.03880 (16)0.0515 (6)
H7A0.3830.28230.06530.077*
H7B0.28740.30760.0220.077*
H7C0.35670.42220.03070.077*
C80.2581 (3)1.0018 (3)0.06957 (14)0.0482 (5)
H8A0.23931.0830.11520.072*
H8B0.38330.95910.05160.072*
H8C0.20991.02390.01410.072*
C90.2729 (2)0.7774 (2)0.10750 (15)0.0456 (5)
H9A0.26150.7210.05110.068*
H9B0.39560.77590.10610.068*
H9C0.23020.74410.1630.068*
C100.0046 (2)0.94966 (19)0.14200 (11)0.0309 (4)
C110.0997 (2)1.08193 (19)0.15017 (12)0.0325 (4)
H110.04281.14510.13010.039*
C120.2753 (2)1.12140 (18)0.18701 (12)0.0297 (4)
H120.33651.2120.19250.036*
C130.3662 (2)1.03238 (16)0.21654 (11)0.0259 (3)
C140.2719 (2)0.89901 (17)0.20550 (11)0.0269 (4)
H140.33010.83550.22350.032*
C150.0966 (2)0.85853 (18)0.16909 (11)0.0293 (4)
H150.03640.76750.1620.035*
C160.5484 (2)1.08135 (16)0.25871 (11)0.0252 (3)
H160.60081.17260.25990.03*
C170.6520 (2)1.01168 (16)0.29644 (11)0.0245 (3)
H170.60140.92090.29780.029*
C180.83523 (19)1.06637 (15)0.33494 (11)0.0226 (3)
C190.9158 (2)1.20092 (16)0.34417 (12)0.0267 (3)
H190.84951.2590.32490.032*
C201.0898 (2)1.25077 (15)0.38084 (11)0.0260 (3)
H201.14011.34340.38720.031*
C211.3748 (2)1.23849 (17)0.44935 (12)0.0298 (4)
H21A1.39971.33420.44980.045*
H21B1.44991.20110.41230.045*
H21C1.39731.22230.51360.045*
C220.94211 (19)0.98455 (15)0.36645 (10)0.0216 (3)
C231.1223 (2)1.04052 (15)0.40176 (10)0.0219 (3)
C241.2294 (2)0.96115 (16)0.43134 (11)0.0264 (3)
H241.35080.99910.45230.032*
C251.1585 (2)0.82932 (17)0.42985 (12)0.0290 (4)
H251.23080.77560.44990.035*
C260.9798 (2)0.77316 (16)0.39892 (12)0.0280 (4)
H260.93080.68230.40060.034*
C270.8751 (2)0.84764 (15)0.36628 (11)0.0243 (3)
H270.75510.80670.3430.029*
N10.17163 (19)0.91167 (18)0.11094 (11)0.0405 (4)
N21.19082 (16)1.17505 (13)0.40782 (9)0.0235 (3)
O10.34481 (16)0.55102 (12)0.39676 (8)0.0347 (3)
O20.48631 (16)0.45316 (13)0.28231 (9)0.0391 (3)
O30.46894 (16)0.67913 (13)0.28613 (11)0.0452 (4)
S10.38860 (5)0.54905 (4)0.30368 (3)0.02578 (14)
O40.76791 (17)0.45303 (13)0.42219 (11)0.0367 (3)
H100.673 (3)0.457 (2)0.3841 (18)0.058 (7)*
H2O0.740 (3)0.450 (2)0.4763 (17)0.043 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0200 (7)0.0216 (7)0.0291 (8)0.0037 (6)0.0026 (6)0.0065 (6)
C20.0259 (8)0.0303 (9)0.0300 (9)0.0077 (6)0.0049 (7)0.0026 (7)
C30.0210 (8)0.0374 (9)0.0403 (10)0.0086 (7)0.0064 (7)0.0111 (8)
C40.0263 (9)0.0379 (10)0.0363 (10)0.0064 (7)0.0029 (7)0.0085 (8)
C50.0372 (10)0.0642 (13)0.0260 (9)0.0189 (9)0.0026 (8)0.0026 (9)
C60.0268 (9)0.0564 (12)0.0287 (9)0.0164 (8)0.0062 (7)0.0061 (8)
C70.0310 (10)0.0609 (14)0.0530 (13)0.0075 (9)0.0131 (9)0.0063 (10)
C80.0304 (10)0.0841 (16)0.0351 (10)0.0246 (10)0.0014 (8)0.0144 (10)
C90.0243 (9)0.0614 (13)0.0407 (11)0.0043 (8)0.0002 (8)0.0086 (9)
C100.0230 (8)0.0478 (11)0.0214 (8)0.0107 (7)0.0038 (6)0.0016 (7)
C110.0295 (9)0.0433 (10)0.0291 (9)0.0176 (8)0.0046 (7)0.0073 (7)
C120.0283 (9)0.0329 (9)0.0288 (9)0.0098 (7)0.0061 (7)0.0044 (7)
C130.0215 (8)0.0324 (9)0.0236 (8)0.0074 (6)0.0051 (6)0.0029 (7)
C140.0232 (8)0.0324 (9)0.0246 (8)0.0085 (6)0.0032 (6)0.0019 (7)
C150.0233 (8)0.0369 (9)0.0246 (8)0.0051 (7)0.0036 (6)0.0003 (7)
C160.0230 (8)0.0263 (8)0.0250 (8)0.0049 (6)0.0056 (6)0.0022 (6)
C170.0208 (8)0.0247 (8)0.0259 (8)0.0037 (6)0.0040 (6)0.0018 (6)
C180.0206 (7)0.0238 (8)0.0218 (7)0.0038 (6)0.0050 (6)0.0017 (6)
C190.0256 (8)0.0235 (8)0.0305 (9)0.0062 (6)0.0033 (7)0.0054 (7)
C200.0271 (8)0.0204 (8)0.0289 (8)0.0029 (6)0.0056 (6)0.0047 (6)
C210.0194 (8)0.0303 (9)0.0335 (9)0.0007 (6)0.0001 (7)0.0018 (7)
C220.0221 (7)0.0211 (7)0.0202 (7)0.0035 (6)0.0056 (6)0.0008 (6)
C230.0218 (7)0.0225 (8)0.0201 (7)0.0037 (6)0.0051 (6)0.0015 (6)
C240.0229 (8)0.0291 (8)0.0266 (8)0.0076 (6)0.0033 (6)0.0027 (6)
C250.0312 (9)0.0287 (8)0.0303 (9)0.0134 (7)0.0061 (7)0.0050 (7)
C260.0315 (9)0.0226 (8)0.0307 (9)0.0072 (6)0.0103 (7)0.0024 (7)
C270.0237 (8)0.0221 (8)0.0249 (8)0.0030 (6)0.0066 (6)0.0005 (6)
N10.0213 (7)0.0603 (11)0.0371 (9)0.0114 (7)0.0014 (6)0.0044 (8)
N20.0196 (6)0.0229 (7)0.0240 (7)0.0006 (5)0.0022 (5)0.0012 (5)
O10.0312 (7)0.0368 (7)0.0277 (6)0.0002 (5)0.0011 (5)0.0009 (5)
O20.0274 (6)0.0419 (7)0.0451 (8)0.0168 (5)0.0062 (5)0.0039 (6)
O30.0298 (7)0.0310 (7)0.0664 (9)0.0075 (5)0.0052 (6)0.0215 (6)
S10.0194 (2)0.0226 (2)0.0321 (2)0.00188 (14)0.00032 (15)0.00509 (16)
O40.0290 (7)0.0443 (8)0.0389 (8)0.0131 (6)0.0054 (6)0.0084 (6)
Geometric parameters (Å, º) top
C1—C61.379 (3)C14—H140.95
C1—C21.385 (2)C15—H150.95
C1—S11.771 (2)C16—C171.348 (2)
C2—C31.384 (3)C16—H160.95
C2—H20.95C17—C181.447 (2)
C3—C41.380 (3)C17—H170.95
C3—H30.95C18—C191.390 (2)
C4—C51.384 (3)C18—C221.433 (2)
C4—C71.506 (3)C19—C201.372 (2)
C5—C61.384 (3)C19—H190.95
C5—H50.95C20—N21.328 (2)
C6—H60.95C20—H200.95
C7—H7A0.98C21—N21.473 (2)
C7—H7B0.98C21—H21A0.98
C7—H7C0.98C21—H21B0.98
C8—N11.453 (3)C21—H21C0.98
C8—H8A0.98C22—C271.414 (2)
C8—H8B0.98C22—C231.418 (2)
C8—H8C0.98C23—N21.379 (2)
C9—N11.444 (3)C23—C241.405 (2)
C9—H9A0.98C24—C251.366 (2)
C9—H9B0.98C24—H240.95
C9—H9C0.98C25—C261.398 (3)
C10—N11.368 (2)C25—H250.95
C10—C111.400 (3)C26—C271.365 (2)
C10—C151.413 (3)C26—H260.95
C11—C121.379 (3)C27—H270.95
C11—H110.95O1—S11.4540 (15)
C12—C131.399 (2)O2—S11.4502 (15)
C12—H120.95O3—S11.4419 (16)
C13—C141.404 (3)O4—H100.90 (3)
C13—C161.447 (2)O4—H2O0.86 (2)
C14—C151.375 (2)
C6—C1—C2119.68 (16)C10—C15—H15119.4
C6—C1—S1120.42 (13)C17—C16—C13127.15 (15)
C2—C1—S1119.90 (13)C17—C16—H16116.4
C3—C2—C1120.28 (17)C13—C16—H16116.4
C3—C2—H2119.9C16—C17—C18124.17 (15)
C1—C2—H2119.9C16—C17—H17117.9
C4—C3—C2120.72 (17)C18—C17—H17117.9
C4—C3—H3119.6C19—C18—C22116.75 (15)
C2—C3—H3119.6C19—C18—C17121.72 (15)
C3—C4—C5118.28 (16)C22—C18—C17121.53 (14)
C3—C4—C7120.44 (18)C20—C19—C18120.79 (16)
C5—C4—C7121.28 (19)C20—C19—H19119.6
C4—C5—C6121.72 (18)C18—C19—H19119.6
C4—C5—H5119.1N2—C20—C19122.84 (15)
C6—C5—H5119.1N2—C20—H20118.6
C1—C6—C5119.32 (17)C19—C20—H20118.6
C1—C6—H6120.3N2—C21—H21A109.5
C5—C6—H6120.3N2—C21—H21B109.5
C4—C7—H7A109.5H21A—C21—H21B109.5
C4—C7—H7B109.5N2—C21—H21C109.5
H7A—C7—H7B109.5H21A—C21—H21C109.5
C4—C7—H7C109.5H21B—C21—H21C109.5
H7A—C7—H7C109.5C27—C22—C23117.05 (15)
H7B—C7—H7C109.5C27—C22—C18122.72 (14)
N1—C8—H8A109.5C23—C22—C18120.21 (14)
N1—C8—H8B109.5N2—C23—C24120.25 (14)
H8A—C8—H8B109.5N2—C23—C22118.87 (15)
N1—C8—H8C109.5C24—C23—C22120.87 (15)
H8A—C8—H8C109.5C25—C24—C23119.84 (15)
H8B—C8—H8C109.5C25—C24—H24120.1
N1—C9—H9A109.5C23—C24—H24120.1
N1—C9—H9B109.5C24—C25—C26120.22 (16)
H9A—C9—H9B109.5C24—C25—H25119.9
N1—C9—H9C109.5C26—C25—H25119.9
H9A—C9—H9C109.5C27—C26—C25120.68 (15)
H9B—C9—H9C109.5C27—C26—H26119.7
N1—C10—C11120.83 (17)C25—C26—H26119.7
N1—C10—C15121.65 (17)C26—C27—C22121.24 (15)
C11—C10—C15117.51 (16)C26—C27—H27119.4
C12—C11—C10120.62 (17)C22—C27—H27119.4
C12—C11—H11119.7C10—N1—C9121.38 (17)
C10—C11—H11119.7C10—N1—C8120.21 (18)
C11—C12—C13122.12 (17)C9—N1—C8117.97 (17)
C11—C12—H12118.9C20—N2—C23120.50 (14)
C13—C12—H12118.9C20—N2—C21118.80 (14)
C12—C13—C14117.18 (15)C23—N2—C21120.61 (14)
C12—C13—C16119.35 (16)O3—S1—O2113.25 (10)
C14—C13—C16123.45 (16)O3—S1—O1113.06 (10)
C15—C14—C13121.21 (16)O2—S1—O1111.98 (9)
C15—C14—H14119.4O3—S1—C1106.47 (9)
C13—C14—H14119.4O2—S1—C1105.80 (9)
C14—C15—C10121.29 (17)O1—S1—C1105.52 (9)
C14—C15—H15119.4H10—O4—H2O107 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H2O···O1i0.86 (2)2.07 (2)2.922 (3)175 (2)
O4—H10···O20.89 (2)1.95 (3)2.838 (3)169 (2)
C14—H14···O30.952.413.359 (3)174
C17—H17···O30.952.493.435 (3)175
C27—H27···O30.952.343.282 (3)172
C3—H3···O2ii0.952.593.535 (3)171
C20—H20···O1iii0.952.373.290 (3)162
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z.
 

Acknowledgements

The authors thank the EPSRC for funding crystallographic facilities and for a postdoctoral grant to JAH (GR/M93864).

References

First citationAlain, V., Blanchard-Desce, M., Ledoux-Rak, I. & Zyss, J. (2000). Chem. Commun. pp. 353–354.  Web of Science CrossRef Google Scholar
First citationBahner, C. T., Pace, E. S. & Prevost, R. (1951). J. Am. Chem. Soc. 73, 3407–3408.  CrossRef CAS Web of Science Google Scholar
First citationBhowmik, A. K., Tan, S., Ahyi, A. C., Mishra, A. & Thakur, M. (2000). Polym. Mater. Sci. Eng. 83, 169–170.  CAS Google Scholar
First citationBosshard, Ch., Sutter, K., Prêtre, Ph., Hulliger, J., Flörsheimer, M., Kaatz, P. & Günter, P. (1995). Organic Nonlinear Optical Materials. Advances in Nonlinear Optics, Vol. 1. Amsterdam: Gordon & Breach.  Google Scholar
First citationCoe, B. J., Harris, J. A., Asselberghs, I., Clays, K., Olbrechts, G., Persoons, A., Hupp, J. T., Johnson, R. C., Coles, S. J., Hursthouse, M. B. & Nakatani, K. (2002). Adv. Funct. Mater. 12, 110–116.  Web of Science CSD CrossRef CAS Google Scholar
First citationCoe, B. J., Harris, J. A., Asselberghs, I., Wostyn, K., Clays, K., Persoons, A., Brunschwig, B. S., Coles, S. J., Gelbrich, T., Light, M. E., Hursthouse, M. B. & Nakatani, K. (2003). Adv. Funct. Mater. 13, 347–357.  Web of Science CrossRef CAS Google Scholar
First citationDuan, X.-M., Okada, S., Oikawa, H., Matsuda, H. & Nakanishi, H. (1995). Mol. Cryst. Liq. Cryst. 267, 89–94.  CrossRef CAS Web of Science Google Scholar
First citationGeis, W., Sinta, R., Mowers, W., Deneault, S. J., Marchant, M. F., Krohn, K. E., Spector, S. J., Calawa, D. R. & Lyszczarz, T. M. (2004). Appl. Phys. Lett. 84, 3729–3731.  Web of Science CrossRef CAS Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKaino, T., Cai, B. & Takayama, K. (2002). Adv. Funct. Mater. 12, 599–603.  Web of Science CrossRef CAS Google Scholar
First citationLee, K.-S. & Kim, O.-K. (1999). Photonics Sci. News, 4, 9–20.  CAS Google Scholar
First citationMarder, S. R., Perry, J. W. & Schaefer, W. P. (1989). Science, 245, 626–628.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMarder, S. R., Perry, J. W. & Yakymyshyn, C. P. (1994). Chem. Mater. 6, 1137–1147.  CSD CrossRef CAS Web of Science Google Scholar
First citationMeier, U., Bösch, M., Bosshard, Ch. & Günter, P. (2000). Synth. Met. 109, 19–22.  Web of Science CrossRef CAS Google Scholar
First citationMeier, U., Bösch, M., Bosshard, Ch., Pan, F. & Günter, P. (1998). J. Appl. Phys. 83, 3486–3489.  Web of Science CrossRef CAS Google Scholar
First citationMetzger, J., Larive, H., Dennilauler, R, Baralle, R. & Gaurat, C. (1969). Bull. Soc. Chim. Fr. pp. 1284–1293.  Google Scholar
First citationMohan Kumar, R., Rajan Babu, D., Ravi, G. & Jayavel, R. (2003). J. Cryst. Growth, 250, 113–117.  Web of Science CrossRef CAS Google Scholar
First citationNalwa, H. S. & Miyata, S. (1997). Editors. Nonlinear Optics of Organic Molecules and Polymers. Boca Raton: CRC Press.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.  Google Scholar
First citationOudar, J. L. & Chemla, D. S. (1977). J. Chem. Phys. 66, 2664–2668.  CrossRef CAS Web of Science Google Scholar
First citationPan, F., Wong, M. S., Bosshard, Ch. & Günter, P. (1996). Adv. Mater. 8, 592–596.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSohma, S., Takahashi, H., Taniuchi, T. & Ito, H. (1999). Chem. Phys. 245, 359–364.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaniuchi, T., Okada, S. & Nakanishi, H. (2004). J. Appl. Phys. 95, 5984–5988.  Web of Science CrossRef CAS Google Scholar
First citationXu, X.-X., You, X.-Z. & Huang, X.-Y. (1995). Polyhedron, 14, 1815–1824.  CSD CrossRef CAS Web of Science Google Scholar
First citationZyss, J. & Oudar, J. L. (1982). Phys. Rev. A, 26, 2016–2027.  CrossRef Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds