organic compounds
trans-4-[(4-Dimethylaminophenyl)ethenyl]-N-methylquinolinium p-toluenesulfonate monohydrate
aSchool of Chemistry, University of Manchester, Manchester M13 9PL, England, bMolecular Materials Research Center, Beckman Institute, MC 139-74, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA, and cEPSRC National Crystallography Service, School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England
*Correspondence e-mail: b.coe@man.ac.uk
In the title salt, C20H21N·C7H7SO·H2O, the quinolinium cation exhibits a large molecular non-linear optical (NLO) response, as determined by Stark spectroscopy, but crystallization in the centrosymmetric P precludes significant bulk NLO effects. Intermolecular O—H⋯O and weak C—H⋯O hydrogen bonding links the constituent molecules into a three-dimensional network.
Comment
The synthesis and study of molecular compounds with non-linear optical (NLO) properties has attracted much attention, because such materials hold promise for applications in optoelectronic and photonic devices (Bosshard et al., 1995; Nalwa & Miyata, 1997). In order to create efficient quadratic (second-order) NLO materials, both the molecular and bulk properties must be optimized. The majority of promising compounds constitute dipolar donor–π-acceptor (D–π-A) molecules and these must be arranged noncentrosymmetrically in order to afford macroscopic structures capable of showing bulk quadratic NLO effects, such as (second-harmonic generation, SHG).
Within the diverse range of existing NLO compounds, stilbazolium salts are particularly attractive for device applications (Lee & Kim, 1999). The archetypal compound trans-4′-(dimethylamino)-N-methyl-4-stilbazolium para-toluenesulfonate (DAST) displays very marked bulk quadratic NLO activity, as originally shown by powder SHG studies (Marder et al., 1989, 1994). At the molecular level, quadratic NLO effects are determined by first hyperpolarizabilities β, and static (`off-resonance') first hyperpolarizabilities β0 are normally used when comparing active compounds. Hyper-Rayleigh scattering experiments with DAST using a 1064 nm laser yielded a large β0 value of 364 × 10−30 esu (Duan et al., 1995). DAST has therefore been intensively investigated over recent years (Meier et al., 2000; Kaino et al., 2002), including the growth of large high-quality single crystals (Pan et al., 1996; Sohma et al., 1999; Mohan Kumar et al., 2003), and the demonstration of prototype NLO devices for parametric interactions and electro-optical modulation (Meier et al. 1998; Bhowmik et al. 2000; Geis et al. 2004; Taniuchi et al. 2004).
In addition to their NLO properties, D–π-A molecules display intense low-energy absorption bands which arise from π(D) → π*(A) intramolecular charge-transfer (ICT) excitations. A two-state model (Oudar & Chemla, 1977; Zyss & Oudar, 1982) shows that β0 is proportional to the product of the square of the ICT transition μ12 and the change Δμ12, and inversely proportional to the square of the ICT energy Emax. Therefore, β0 increases with increasing intensity and decreasing energy of the ICT absorption. The ICT band of the PF6- salt of the cation in (I) ([DAQ+]PF6- ) is red-shifted by ca 0.34 eV, but is ca 85% as intense, when compared with that of the PF6- salt of the chromophore in DAST ([DAS+]PF6- ; λmax = 470 nm, ∊ = 42 800 M−1 dm3 in acetonitrile; Coe et al., 2002). This marked red-shifting suggests that the β0 value of (I) may be larger than that of DAST. We have previously determined β0 for [DAS+]PF6- using Stark (electroabsorption) spectroscopy (Coe et al., 2003), and have now applied the same approach to [DAQ+]PF6- . By applying the two-state equation β0 = 3Δμ12(μ12)2/(Emax)2 to data obtained from butyronitrile glasses at 77 K, the results are 236 and 255 × 10−30 esu for [DAS+]PF6- and [DAQ+]PF6- , respectively. The lower-than-expected increase in β0 is attributable to a decrease in Δμ12 from 16.3 to 13.3 D on moving from [DAS+]PF6- to [DAQ+]PF6- , whilst μ12 remains constant at 9.1 D.
The molecular structure of the cation in (I) is as indicated by 1H NMR spectroscopy, and similar to that observed previously in the corresponding hexamolybdate salt (Xu et al., 1995), although the precision of the present structure is rather higher. The conjugated aromatic system is essentially planar, with a maximum deviation from the mean plane of 0.094 Å for atom C24, and this plane forms an angle of 77.48 (6) ° with the benzene ring plane of the tosylate anion.
The crystal packing structure of (I) is critical in relation to quadratic NLO properties. DAST crystallizes noncentrosymmetrically in the Cc (Marder et al., 1989), but unfortunately (I) adopts the centrosymmetric P and is hence not suitable for bulk NLO effects. Perhaps not unexpectedly, replacement of the pyridinium ring in DAST with a quinolinium group changes the crystallization behaviour. In fact, the presence of water molecules within the of (I) leads to a network of hydrogen bonds involving water, the tosylate anion and the chromophoric cation. The water molecules and tosylate anions form centrosymmetric O—H⋯O hydrogen-bonded rings, and weak intermolecular C—H⋯O hydrogen bonds link these rings to the quinolinium moieties to form a three-dimensional network (Fig. 2).
It has been proposed that the natural tendency towards antiparallel dipole aligment between the cations in DAST is overcome by the presence of the intervening tosylate anions (Marder et al., 1989, 1994), but such an effect is not evident in (I). Although this outcome is rather disappointing, salts of the cation in (I) with other anions may well adopt different crystal structures capable of showing bulk NLO behaviour.
Experimental
The compound trans-4-[(4-dimethylaminophenyl)-2-ethenyl]-N-methylquinolinium iodide (Bahner et al., 1951) was synthesized by adapting a method which has been applied previously to the analogous dibutylamine compound (Alain et al., 2000). Piperidine (3 drops) was added to a solution of 4-methyl-N-methylquinolinium iodide (276 mg, 0.968 mmol) and 4-(dimethylamino)benzaldehyde (289 mg, 1.937 mmol) in methanol (20 ml). The solution immediately turned purple and was stirred under reflux for 4 h. After cooling to room temperature, the solution was added dropwise to diethyl ether to afford a dark precipitate which was filtered off, washed with diethyl ether and then water, and dried under vacuum (yield 349 mg, 87%). A portion of this crude material (125 mg, 0.300 mmol) was metathesized to (I) by precipitation from water–aqueous sodium para-toluenesulfonate (yield 115 mg, 83%). Compound (I) has been reported previously (Metzger et al., 1969). Crystals of (I) suitable for single-crystal X-ray diffraction measurements were obtained by slow diffusion of diethyl ether vapour into a methanol solution of (I) at room temperature; note that the same method is used to produce SHG-active crystals of DAST (Marder et al., 1994). Analysis, found: C 67.99, H 6.35, N 5.86, S 6.69%; calculated for C27H28N2O3S·H2O: C 67.76, H 6.32, N 5.85, S 6.70%. For spectroscopic studies, a portion of the crude iodide salt was also metathesized to the hexafluorophosphate (previously unreported, to our knowledge) by precipitation from water–aqueous ammonium hexafluorophosphate. Analysis, found: C 55.19, H 4.63, N 6.33%, calculated for C20H21F6N2P: C 55.30, H 4.87, N 6.45%. Spectroscopic analysis: 1H NMR (200 MHz, CD3COCD3, δ, p.p.m.): 9.12 (1H, d, J = 6.8 Hz, C5H2N), 9.02 (1H, d, J = 8.5 Hz, C6H4), 8.46 (1H, d, J = 8.4 Hz, C6H4), 8.38 (1H, d, J = 6.6 Hz, C5H2N), 8.27 (1H, t, J = 7.9 Hz, C6H4), 8.21 (1H, d, J = 15.7 Hz, CH), 8.08 (1H, d, J = 16.2 Hz, CH), 8.03 (1H, t, J = 7.7 Hz, C6H4), 7.86 (2H, d, J = 9.0 Hz, C6H4—NMe2), 6.86 (2H, d, J = 9.1 Hz, C6H4—NMe2), 4.68 (3H, s, Me), 3.13 (6H, s, NMe2); λmax (nm) [∊ (M−1 dm3)] (MeCN): 540 (36 700), 306 (12 400), 242 (17 900).
Crystal data
|
Data collection
Refinement
|
|
The H atoms of the water molecule were refined independently with isotropic displacement parameters. H atoms bonded to C atoms were placed in calculated positions, with C—H distances of 0.95 Å [0.98 Å for methyl], and included in the Uiso = 1.2Ueq(C), or 1.5Ueq(C) for methyl groups.
in a riding-model approximation, withData collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536805002138/lh6354sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536805002138/lh6354Isup2.hkl
Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell
DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: Please provide missing details.C20H21N2+·C7H7O3S−·H2O | Z = 2 |
Mr = 478.59 | F(000) = 508 |
Triclinic, P1 | Dx = 1.351 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.033 (4) Å | Cell parameters from 4905 reflections |
b = 10.550 (7) Å | θ = 2.9–27.5° |
c = 14.662 (9) Å | µ = 0.18 mm−1 |
α = 97.75 (7)° | T = 120 K |
β = 97.87 (4)° | Slab, dark green |
γ = 103.97 (5)° | 0.6 × 0.4 × 0.14 mm |
V = 1176.2 (12) Å3 |
Bruker-Nonius KappaCCD area-detector diffractometer | 4160 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
φ and ω scans | θmax = 27.5°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −10→10 |
Tmin = 0.902, Tmax = 0.976 | k = −13→13 |
22326 measured reflections | l = −19→18 |
5337 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.126 | w = 1/[σ2(Fo2) + (0.0684P)2 + 0.4268P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.047 |
5337 reflections | Δρmax = 0.28 e Å−3 |
320 parameters | Δρmin = −0.53 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.016 (4) |
Experimental. The Tmin and Tmax values reported are those calculated from the SHELX SIZE command. The ratio of experimental transmission factors from SADABS is 0.724295. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles. Correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1870 (2) | 0.49093 (15) | 0.22545 (11) | 0.0239 (3) | |
C2 | 0.0344 (2) | 0.50065 (17) | 0.25634 (12) | 0.0289 (4) | |
H2 | 0.0382 | 0.538 | 0.3195 | 0.035* | |
C3 | −0.1235 (2) | 0.45625 (18) | 0.19555 (13) | 0.0323 (4) | |
H3 | −0.2272 | 0.4648 | 0.2171 | 0.039* | |
C4 | −0.1321 (2) | 0.39965 (18) | 0.10393 (13) | 0.0345 (4) | |
C5 | 0.0215 (3) | 0.3901 (2) | 0.07428 (13) | 0.0433 (5) | |
H5 | 0.0175 | 0.3516 | 0.0113 | 0.052* | |
C6 | 0.1807 (2) | 0.4353 (2) | 0.13394 (12) | 0.0363 (4) | |
H6 | 0.2846 | 0.4281 | 0.1121 | 0.044* | |
C7 | −0.3049 (3) | 0.3485 (2) | 0.03880 (16) | 0.0515 (6) | |
H7A | −0.383 | 0.2823 | 0.0653 | 0.077* | |
H7B | −0.2874 | 0.3076 | −0.022 | 0.077* | |
H7C | −0.3567 | 0.4222 | 0.0307 | 0.077* | |
C8 | −0.2581 (3) | 1.0018 (3) | 0.06957 (14) | 0.0482 (5) | |
H8A | −0.2393 | 1.083 | 0.1152 | 0.072* | |
H8B | −0.3833 | 0.9591 | 0.0516 | 0.072* | |
H8C | −0.2099 | 1.0239 | 0.0141 | 0.072* | |
C9 | −0.2729 (2) | 0.7774 (2) | 0.10750 (15) | 0.0456 (5) | |
H9A | −0.2615 | 0.721 | 0.0511 | 0.068* | |
H9B | −0.3956 | 0.7759 | 0.1061 | 0.068* | |
H9C | −0.2302 | 0.7441 | 0.163 | 0.068* | |
C10 | 0.0046 (2) | 0.94966 (19) | 0.14200 (11) | 0.0309 (4) | |
C11 | 0.0997 (2) | 1.08193 (19) | 0.15017 (12) | 0.0325 (4) | |
H11 | 0.0428 | 1.1451 | 0.1301 | 0.039* | |
C12 | 0.2753 (2) | 1.12140 (18) | 0.18701 (12) | 0.0297 (4) | |
H12 | 0.3365 | 1.212 | 0.1925 | 0.036* | |
C13 | 0.3662 (2) | 1.03238 (16) | 0.21654 (11) | 0.0259 (3) | |
C14 | 0.2719 (2) | 0.89901 (17) | 0.20550 (11) | 0.0269 (4) | |
H14 | 0.3301 | 0.8355 | 0.2235 | 0.032* | |
C15 | 0.0966 (2) | 0.85853 (18) | 0.16909 (11) | 0.0293 (4) | |
H15 | 0.0364 | 0.7675 | 0.162 | 0.035* | |
C16 | 0.5484 (2) | 1.08135 (16) | 0.25871 (11) | 0.0252 (3) | |
H16 | 0.6008 | 1.1726 | 0.2599 | 0.03* | |
C17 | 0.6520 (2) | 1.01168 (16) | 0.29644 (11) | 0.0245 (3) | |
H17 | 0.6014 | 0.9209 | 0.2978 | 0.029* | |
C18 | 0.83523 (19) | 1.06637 (15) | 0.33494 (11) | 0.0226 (3) | |
C19 | 0.9158 (2) | 1.20092 (16) | 0.34417 (12) | 0.0267 (3) | |
H19 | 0.8495 | 1.259 | 0.3249 | 0.032* | |
C20 | 1.0898 (2) | 1.25077 (15) | 0.38084 (11) | 0.0260 (3) | |
H20 | 1.1401 | 1.3434 | 0.3872 | 0.031* | |
C21 | 1.3748 (2) | 1.23849 (17) | 0.44935 (12) | 0.0298 (4) | |
H21A | 1.3997 | 1.3342 | 0.4498 | 0.045* | |
H21B | 1.4499 | 1.2011 | 0.4123 | 0.045* | |
H21C | 1.3973 | 1.2223 | 0.5136 | 0.045* | |
C22 | 0.94211 (19) | 0.98455 (15) | 0.36645 (10) | 0.0216 (3) | |
C23 | 1.1223 (2) | 1.04052 (15) | 0.40176 (10) | 0.0219 (3) | |
C24 | 1.2294 (2) | 0.96115 (16) | 0.43134 (11) | 0.0264 (3) | |
H24 | 1.3508 | 0.9991 | 0.4523 | 0.032* | |
C25 | 1.1585 (2) | 0.82932 (17) | 0.42985 (12) | 0.0290 (4) | |
H25 | 1.2308 | 0.7756 | 0.4499 | 0.035* | |
C26 | 0.9798 (2) | 0.77316 (16) | 0.39892 (12) | 0.0280 (4) | |
H26 | 0.9308 | 0.6823 | 0.4006 | 0.034* | |
C27 | 0.8751 (2) | 0.84764 (15) | 0.36628 (11) | 0.0243 (3) | |
H27 | 0.7551 | 0.8067 | 0.343 | 0.029* | |
N1 | −0.17163 (19) | 0.91167 (18) | 0.11094 (11) | 0.0405 (4) | |
N2 | 1.19082 (16) | 1.17505 (13) | 0.40782 (9) | 0.0235 (3) | |
O1 | 0.34481 (16) | 0.55102 (12) | 0.39676 (8) | 0.0347 (3) | |
O2 | 0.48631 (16) | 0.45316 (13) | 0.28231 (9) | 0.0391 (3) | |
O3 | 0.46894 (16) | 0.67913 (13) | 0.28613 (11) | 0.0452 (4) | |
S1 | 0.38860 (5) | 0.54905 (4) | 0.30368 (3) | 0.02578 (14) | |
O4 | 0.76791 (17) | 0.45303 (13) | 0.42219 (11) | 0.0367 (3) | |
H10 | 0.673 (3) | 0.457 (2) | 0.3841 (18) | 0.058 (7)* | |
H2O | 0.740 (3) | 0.450 (2) | 0.4763 (17) | 0.043 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0200 (7) | 0.0216 (7) | 0.0291 (8) | 0.0037 (6) | 0.0026 (6) | 0.0065 (6) |
C2 | 0.0259 (8) | 0.0303 (9) | 0.0300 (9) | 0.0077 (6) | 0.0049 (7) | 0.0026 (7) |
C3 | 0.0210 (8) | 0.0374 (9) | 0.0403 (10) | 0.0086 (7) | 0.0064 (7) | 0.0111 (8) |
C4 | 0.0263 (9) | 0.0379 (10) | 0.0363 (10) | 0.0064 (7) | −0.0029 (7) | 0.0085 (8) |
C5 | 0.0372 (10) | 0.0642 (13) | 0.0260 (9) | 0.0189 (9) | −0.0026 (8) | −0.0026 (9) |
C6 | 0.0268 (9) | 0.0564 (12) | 0.0287 (9) | 0.0164 (8) | 0.0062 (7) | 0.0061 (8) |
C7 | 0.0310 (10) | 0.0609 (14) | 0.0530 (13) | 0.0075 (9) | −0.0131 (9) | 0.0063 (10) |
C8 | 0.0304 (10) | 0.0841 (16) | 0.0351 (10) | 0.0246 (10) | 0.0014 (8) | 0.0144 (10) |
C9 | 0.0243 (9) | 0.0614 (13) | 0.0407 (11) | 0.0043 (8) | 0.0002 (8) | −0.0086 (9) |
C10 | 0.0230 (8) | 0.0478 (11) | 0.0214 (8) | 0.0107 (7) | 0.0038 (6) | 0.0016 (7) |
C11 | 0.0295 (9) | 0.0433 (10) | 0.0291 (9) | 0.0176 (8) | 0.0046 (7) | 0.0073 (7) |
C12 | 0.0283 (9) | 0.0329 (9) | 0.0288 (9) | 0.0098 (7) | 0.0061 (7) | 0.0044 (7) |
C13 | 0.0215 (8) | 0.0324 (9) | 0.0236 (8) | 0.0074 (6) | 0.0051 (6) | 0.0029 (7) |
C14 | 0.0232 (8) | 0.0324 (9) | 0.0246 (8) | 0.0085 (6) | 0.0032 (6) | 0.0019 (7) |
C15 | 0.0233 (8) | 0.0369 (9) | 0.0246 (8) | 0.0051 (7) | 0.0036 (6) | 0.0003 (7) |
C16 | 0.0230 (8) | 0.0263 (8) | 0.0250 (8) | 0.0049 (6) | 0.0056 (6) | 0.0022 (6) |
C17 | 0.0208 (8) | 0.0247 (8) | 0.0259 (8) | 0.0037 (6) | 0.0040 (6) | 0.0018 (6) |
C18 | 0.0206 (7) | 0.0238 (8) | 0.0218 (7) | 0.0038 (6) | 0.0050 (6) | 0.0017 (6) |
C19 | 0.0256 (8) | 0.0235 (8) | 0.0305 (9) | 0.0062 (6) | 0.0033 (7) | 0.0054 (7) |
C20 | 0.0271 (8) | 0.0204 (8) | 0.0289 (8) | 0.0029 (6) | 0.0056 (6) | 0.0047 (6) |
C21 | 0.0194 (8) | 0.0303 (9) | 0.0335 (9) | −0.0007 (6) | −0.0001 (7) | 0.0018 (7) |
C22 | 0.0221 (7) | 0.0211 (7) | 0.0202 (7) | 0.0035 (6) | 0.0056 (6) | 0.0008 (6) |
C23 | 0.0218 (7) | 0.0225 (8) | 0.0201 (7) | 0.0037 (6) | 0.0051 (6) | 0.0015 (6) |
C24 | 0.0229 (8) | 0.0291 (8) | 0.0266 (8) | 0.0076 (6) | 0.0033 (6) | 0.0027 (6) |
C25 | 0.0312 (9) | 0.0287 (8) | 0.0303 (9) | 0.0134 (7) | 0.0061 (7) | 0.0050 (7) |
C26 | 0.0315 (9) | 0.0226 (8) | 0.0307 (9) | 0.0072 (6) | 0.0103 (7) | 0.0024 (7) |
C27 | 0.0237 (8) | 0.0221 (8) | 0.0249 (8) | 0.0030 (6) | 0.0066 (6) | 0.0005 (6) |
N1 | 0.0213 (7) | 0.0603 (11) | 0.0371 (9) | 0.0114 (7) | −0.0014 (6) | 0.0044 (8) |
N2 | 0.0196 (6) | 0.0229 (7) | 0.0240 (7) | 0.0006 (5) | 0.0022 (5) | 0.0012 (5) |
O1 | 0.0312 (7) | 0.0368 (7) | 0.0277 (6) | 0.0002 (5) | −0.0011 (5) | −0.0009 (5) |
O2 | 0.0274 (6) | 0.0419 (7) | 0.0451 (8) | 0.0168 (5) | −0.0062 (5) | −0.0039 (6) |
O3 | 0.0298 (7) | 0.0310 (7) | 0.0664 (9) | −0.0075 (5) | −0.0052 (6) | 0.0215 (6) |
S1 | 0.0194 (2) | 0.0226 (2) | 0.0321 (2) | 0.00188 (14) | −0.00032 (15) | 0.00509 (16) |
O4 | 0.0290 (7) | 0.0443 (8) | 0.0389 (8) | 0.0131 (6) | 0.0054 (6) | 0.0084 (6) |
C1—C6 | 1.379 (3) | C14—H14 | 0.95 |
C1—C2 | 1.385 (2) | C15—H15 | 0.95 |
C1—S1 | 1.771 (2) | C16—C17 | 1.348 (2) |
C2—C3 | 1.384 (3) | C16—H16 | 0.95 |
C2—H2 | 0.95 | C17—C18 | 1.447 (2) |
C3—C4 | 1.380 (3) | C17—H17 | 0.95 |
C3—H3 | 0.95 | C18—C19 | 1.390 (2) |
C4—C5 | 1.384 (3) | C18—C22 | 1.433 (2) |
C4—C7 | 1.506 (3) | C19—C20 | 1.372 (2) |
C5—C6 | 1.384 (3) | C19—H19 | 0.95 |
C5—H5 | 0.95 | C20—N2 | 1.328 (2) |
C6—H6 | 0.95 | C20—H20 | 0.95 |
C7—H7A | 0.98 | C21—N2 | 1.473 (2) |
C7—H7B | 0.98 | C21—H21A | 0.98 |
C7—H7C | 0.98 | C21—H21B | 0.98 |
C8—N1 | 1.453 (3) | C21—H21C | 0.98 |
C8—H8A | 0.98 | C22—C27 | 1.414 (2) |
C8—H8B | 0.98 | C22—C23 | 1.418 (2) |
C8—H8C | 0.98 | C23—N2 | 1.379 (2) |
C9—N1 | 1.444 (3) | C23—C24 | 1.405 (2) |
C9—H9A | 0.98 | C24—C25 | 1.366 (2) |
C9—H9B | 0.98 | C24—H24 | 0.95 |
C9—H9C | 0.98 | C25—C26 | 1.398 (3) |
C10—N1 | 1.368 (2) | C25—H25 | 0.95 |
C10—C11 | 1.400 (3) | C26—C27 | 1.365 (2) |
C10—C15 | 1.413 (3) | C26—H26 | 0.95 |
C11—C12 | 1.379 (3) | C27—H27 | 0.95 |
C11—H11 | 0.95 | O1—S1 | 1.4540 (15) |
C12—C13 | 1.399 (2) | O2—S1 | 1.4502 (15) |
C12—H12 | 0.95 | O3—S1 | 1.4419 (16) |
C13—C14 | 1.404 (3) | O4—H10 | 0.90 (3) |
C13—C16 | 1.447 (2) | O4—H2O | 0.86 (2) |
C14—C15 | 1.375 (2) | ||
C6—C1—C2 | 119.68 (16) | C10—C15—H15 | 119.4 |
C6—C1—S1 | 120.42 (13) | C17—C16—C13 | 127.15 (15) |
C2—C1—S1 | 119.90 (13) | C17—C16—H16 | 116.4 |
C3—C2—C1 | 120.28 (17) | C13—C16—H16 | 116.4 |
C3—C2—H2 | 119.9 | C16—C17—C18 | 124.17 (15) |
C1—C2—H2 | 119.9 | C16—C17—H17 | 117.9 |
C4—C3—C2 | 120.72 (17) | C18—C17—H17 | 117.9 |
C4—C3—H3 | 119.6 | C19—C18—C22 | 116.75 (15) |
C2—C3—H3 | 119.6 | C19—C18—C17 | 121.72 (15) |
C3—C4—C5 | 118.28 (16) | C22—C18—C17 | 121.53 (14) |
C3—C4—C7 | 120.44 (18) | C20—C19—C18 | 120.79 (16) |
C5—C4—C7 | 121.28 (19) | C20—C19—H19 | 119.6 |
C4—C5—C6 | 121.72 (18) | C18—C19—H19 | 119.6 |
C4—C5—H5 | 119.1 | N2—C20—C19 | 122.84 (15) |
C6—C5—H5 | 119.1 | N2—C20—H20 | 118.6 |
C1—C6—C5 | 119.32 (17) | C19—C20—H20 | 118.6 |
C1—C6—H6 | 120.3 | N2—C21—H21A | 109.5 |
C5—C6—H6 | 120.3 | N2—C21—H21B | 109.5 |
C4—C7—H7A | 109.5 | H21A—C21—H21B | 109.5 |
C4—C7—H7B | 109.5 | N2—C21—H21C | 109.5 |
H7A—C7—H7B | 109.5 | H21A—C21—H21C | 109.5 |
C4—C7—H7C | 109.5 | H21B—C21—H21C | 109.5 |
H7A—C7—H7C | 109.5 | C27—C22—C23 | 117.05 (15) |
H7B—C7—H7C | 109.5 | C27—C22—C18 | 122.72 (14) |
N1—C8—H8A | 109.5 | C23—C22—C18 | 120.21 (14) |
N1—C8—H8B | 109.5 | N2—C23—C24 | 120.25 (14) |
H8A—C8—H8B | 109.5 | N2—C23—C22 | 118.87 (15) |
N1—C8—H8C | 109.5 | C24—C23—C22 | 120.87 (15) |
H8A—C8—H8C | 109.5 | C25—C24—C23 | 119.84 (15) |
H8B—C8—H8C | 109.5 | C25—C24—H24 | 120.1 |
N1—C9—H9A | 109.5 | C23—C24—H24 | 120.1 |
N1—C9—H9B | 109.5 | C24—C25—C26 | 120.22 (16) |
H9A—C9—H9B | 109.5 | C24—C25—H25 | 119.9 |
N1—C9—H9C | 109.5 | C26—C25—H25 | 119.9 |
H9A—C9—H9C | 109.5 | C27—C26—C25 | 120.68 (15) |
H9B—C9—H9C | 109.5 | C27—C26—H26 | 119.7 |
N1—C10—C11 | 120.83 (17) | C25—C26—H26 | 119.7 |
N1—C10—C15 | 121.65 (17) | C26—C27—C22 | 121.24 (15) |
C11—C10—C15 | 117.51 (16) | C26—C27—H27 | 119.4 |
C12—C11—C10 | 120.62 (17) | C22—C27—H27 | 119.4 |
C12—C11—H11 | 119.7 | C10—N1—C9 | 121.38 (17) |
C10—C11—H11 | 119.7 | C10—N1—C8 | 120.21 (18) |
C11—C12—C13 | 122.12 (17) | C9—N1—C8 | 117.97 (17) |
C11—C12—H12 | 118.9 | C20—N2—C23 | 120.50 (14) |
C13—C12—H12 | 118.9 | C20—N2—C21 | 118.80 (14) |
C12—C13—C14 | 117.18 (15) | C23—N2—C21 | 120.61 (14) |
C12—C13—C16 | 119.35 (16) | O3—S1—O2 | 113.25 (10) |
C14—C13—C16 | 123.45 (16) | O3—S1—O1 | 113.06 (10) |
C15—C14—C13 | 121.21 (16) | O2—S1—O1 | 111.98 (9) |
C15—C14—H14 | 119.4 | O3—S1—C1 | 106.47 (9) |
C13—C14—H14 | 119.4 | O2—S1—C1 | 105.80 (9) |
C14—C15—C10 | 121.29 (17) | O1—S1—C1 | 105.52 (9) |
C14—C15—H15 | 119.4 | H10—O4—H2O | 107 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H2O···O1i | 0.86 (2) | 2.07 (2) | 2.922 (3) | 175 (2) |
O4—H10···O2 | 0.89 (2) | 1.95 (3) | 2.838 (3) | 169 (2) |
C14—H14···O3 | 0.95 | 2.41 | 3.359 (3) | 174 |
C17—H17···O3 | 0.95 | 2.49 | 3.435 (3) | 175 |
C27—H27···O3 | 0.95 | 2.34 | 3.282 (3) | 172 |
C3—H3···O2ii | 0.95 | 2.59 | 3.535 (3) | 171 |
C20—H20···O1iii | 0.95 | 2.37 | 3.290 (3) | 162 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) x+1, y+1, z. |
Acknowledgements
The authors thank the EPSRC for funding crystallographic facilities and for a postdoctoral grant to JAH (GR/M93864).
References
Alain, V., Blanchard-Desce, M., Ledoux-Rak, I. & Zyss, J. (2000). Chem. Commun. pp. 353–354. Web of Science CrossRef Google Scholar
Bahner, C. T., Pace, E. S. & Prevost, R. (1951). J. Am. Chem. Soc. 73, 3407–3408. CrossRef CAS Web of Science Google Scholar
Bhowmik, A. K., Tan, S., Ahyi, A. C., Mishra, A. & Thakur, M. (2000). Polym. Mater. Sci. Eng. 83, 169–170. CAS Google Scholar
Bosshard, Ch., Sutter, K., Prêtre, Ph., Hulliger, J., Flörsheimer, M., Kaatz, P. & Günter, P. (1995). Organic Nonlinear Optical Materials. Advances in Nonlinear Optics, Vol. 1. Amsterdam: Gordon & Breach. Google Scholar
Coe, B. J., Harris, J. A., Asselberghs, I., Clays, K., Olbrechts, G., Persoons, A., Hupp, J. T., Johnson, R. C., Coles, S. J., Hursthouse, M. B. & Nakatani, K. (2002). Adv. Funct. Mater. 12, 110–116. Web of Science CSD CrossRef CAS Google Scholar
Coe, B. J., Harris, J. A., Asselberghs, I., Wostyn, K., Clays, K., Persoons, A., Brunschwig, B. S., Coles, S. J., Gelbrich, T., Light, M. E., Hursthouse, M. B. & Nakatani, K. (2003). Adv. Funct. Mater. 13, 347–357. Web of Science CrossRef CAS Google Scholar
Duan, X.-M., Okada, S., Oikawa, H., Matsuda, H. & Nakanishi, H. (1995). Mol. Cryst. Liq. Cryst. 267, 89–94. CrossRef CAS Web of Science Google Scholar
Geis, W., Sinta, R., Mowers, W., Deneault, S. J., Marchant, M. F., Krohn, K. E., Spector, S. J., Calawa, D. R. & Lyszczarz, T. M. (2004). Appl. Phys. Lett. 84, 3729–3731. Web of Science CrossRef CAS Google Scholar
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Kaino, T., Cai, B. & Takayama, K. (2002). Adv. Funct. Mater. 12, 599–603. Web of Science CrossRef CAS Google Scholar
Lee, K.-S. & Kim, O.-K. (1999). Photonics Sci. News, 4, 9–20. CAS Google Scholar
Marder, S. R., Perry, J. W. & Schaefer, W. P. (1989). Science, 245, 626–628. CrossRef PubMed CAS Web of Science Google Scholar
Marder, S. R., Perry, J. W. & Yakymyshyn, C. P. (1994). Chem. Mater. 6, 1137–1147. CSD CrossRef CAS Web of Science Google Scholar
Meier, U., Bösch, M., Bosshard, Ch. & Günter, P. (2000). Synth. Met. 109, 19–22. Web of Science CrossRef CAS Google Scholar
Meier, U., Bösch, M., Bosshard, Ch., Pan, F. & Günter, P. (1998). J. Appl. Phys. 83, 3486–3489. Web of Science CrossRef CAS Google Scholar
Metzger, J., Larive, H., Dennilauler, R, Baralle, R. & Gaurat, C. (1969). Bull. Soc. Chim. Fr. pp. 1284–1293. Google Scholar
Mohan Kumar, R., Rajan Babu, D., Ravi, G. & Jayavel, R. (2003). J. Cryst. Growth, 250, 113–117. Web of Science CrossRef CAS Google Scholar
Nalwa, H. S. & Miyata, S. (1997). Editors. Nonlinear Optics of Organic Molecules and Polymers. Boca Raton: CRC Press. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press. Google Scholar
Oudar, J. L. & Chemla, D. S. (1977). J. Chem. Phys. 66, 2664–2668. CrossRef CAS Web of Science Google Scholar
Pan, F., Wong, M. S., Bosshard, Ch. & Günter, P. (1996). Adv. Mater. 8, 592–596. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sohma, S., Takahashi, H., Taniuchi, T. & Ito, H. (1999). Chem. Phys. 245, 359–364. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taniuchi, T., Okada, S. & Nakanishi, H. (2004). J. Appl. Phys. 95, 5984–5988. Web of Science CrossRef CAS Google Scholar
Xu, X.-X., You, X.-Z. & Huang, X.-Y. (1995). Polyhedron, 14, 1815–1824. CSD CrossRef CAS Web of Science Google Scholar
Zyss, J. & Oudar, J. L. (1982). Phys. Rev. A, 26, 2016–2027. CrossRef Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.